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CHAPTER 6

6. Further investigations towards improvement of Al method

6.1 Introduction

In the previous chapters it was shown how a tool wear monitoring system can be designed using Al
The formulation of the AI method is such that it is not sensitive to the noisy shop floor conditions and
other typical influences. The method was shown to be applicable to different turning operations and
with different machining parameters. An important component of the research was that it was shown
that a TCMS using Al could be implemented on the shop floor in a cost-effective way. The purpose of
this chapter is to discuss some further results into the improvement of the TCMS. The investigations in
this chapter are mainly concerned with improving the Al, signal processing and feature selection meth-
ods.

6.2 Signal processing

6.2.1 Coherence function

The coherence function is commonly used as a measure of the integrity of frequency response func-
tions in vibration analysis. It can also be used to detect non-linearities in a system with an input-output
relationship. Coherence is a function of frequency with values between 0 and 1 that indicate how well
input corresponds to the output at each frequency. The coherence between an input X and an output Y
is defined as:
2
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(6.1)

where:

P, = the power spectral density of x

P, = the power spectral density of y

P, = the cross spectral density of x and y

It follows that if x and y are completely correlated at a particular frequency the coherence will be 1 at
that frequency. In practice, a value near one is reached for correlation and a value near zero is reached
when there is no correlation. The coherence is typically calculated for a force input with a vibration
output. However, the coherence can be calculated for any two sensors, and the coherence function can
assist as a feature for condition monitoring. The coherence function between two acceleration signals
was used by Li et al. [109] to detect tool wear and chatter during turning. They established that the
value of coherence at certain frequencies could be used to trend tool wear or to detect the onset of chat-
ter. Because the coherence is easy to calculate and interpret, it might be useful for on-line implementa-
tion, and it was decided to investigate the coherence function as a possible feature for TCM.
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If force and vibration measurements are present, the coherence function is particularly useful to inves-
tigate the dynamics of the system. In Chapter 4, an accelerometer was attached to the tool holder dy-
namometer, as shown in Figure 6.1. The coherence function can now be used to determine the coher-
ence in the response of the dynamometer over a range of frequencies. The coherence functions be-
tween force and acceleration in the three principal directions for various experiments with increasing

tool wear was investigated over the range 8Hz — 2kHz.
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Figure 6.1: Sensor configuration (Chapter 4)

Examples of the coherence functions for experiment 2 are shown in Figure 6.2 and Figure 6.3. The
vertical red lines on the figure indicate a high level of coherence. It is interesting to see that there are in
fact quite a few areas in both figures where the coherence is very low, especially in the low frequency
range. There are several possible reasons why coherence could be low:

e noise in the measurements

e resolution bias errors in the spectral estimates

e the output is due to other inputs besides the measured input

e non-linearity of the system

frequency [Hz]

Figure 6.2: Coherence between thrust force and vibration (hard turning)
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Figure 6.3: Coherence between cutting force and vibration (hard turning)

The areas where coherence is low probably indicate non-linearities and non-measured inputs. The ar-
eas with high coherence indicate frequencies that can be used for TCM because they are due to the ac-
tual dynamic force inputs and the dynamics of the tool holder. Closer investigations revealed that the
average coherence function in the cutting force direction shows a slight increase due to tool wear, but
would not suffice as a feature for TCM. There were also no particular frequencies that showed a sig-
nificant correlation with tool wear.

The investigation was then moved to the coherence between two acceleration signals in the different
directions, hence the method proposed by Li ef al. [109]. Some of the results from experiment 2 are
shown in Figure 6.4 and Figure 6.5. Again, there are certain regions where the coherence is very low,
but in this case it is expected because different directions are used. However, in contrast with the find-
ings in [109], there were no frequencies in the different coherence functions with a useful agreement
with tool wear. From this it can be concluded that the usefulness of the coherence function is limited to
the particular experimental setup, and is thus not a general solution for TCM.

frequency [Hz]

Figure 6.4: Coherence between feed and thrust vibration (hard turning)
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frequency [Hz]

Figure 6.5: Coherence between cutting and thrust vibration (hard turning)

The results from the coherence function investigations with the data from Chapter 4 also raised an im-
portant question — does the dynamometer measure the actual dynamic force inputs or is it measuring its
response to these inputs, which may contain non-linearities within the measuring range? This can only
be answered if proper dynamic tests are conducted. However, the use of resistance strain gauges
(Chapter 5) offered a cost-effective alternative that had no effect on the dynamic characteristics of the
system. The dynamic properties of the sensor-integrated tool holder were characterised in Section
5.2.3. Consequently, coherence functions were also calculated on the force data from the strain gauges
for the Aluminium turning experiments. A result for the coherence between forces Fx and Fy (refer to
Chapter 5) is shown in Figure 6.6. It can be seen that in this case, the coherence is high for most of the
frequencies. However, the coherence is influenced by the tool wear in the lower frequency range up to
about 800Hz, and also at the tool holder natural frequency near 3kHz. In this case, increasing tool wear
generally cause lower coherence values, except for the very low frequencies near 0 Hz where an in-
crease is present. The mean value of the coherence over the whole frequency with respect to tool wear
1s shown in Figure 6.7. In this case the coherence could be used as a feature for TCM. Further investi-
gations revealed that the features chosen for wear monitoring in Chapter 5 are more reliable than the
coherence function.

a 1000 2000 3000 4000
frequency [Hz]

Figure 6.6: Coherence between Fx and Fy (Aluminium turning)
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Figure 6.7: Mean of the coherence function between Fx and Fy (Aluminium turning)

6.2.2 Wavelet analysis

As a further step towards generating more reliable features for wear monitoring, wavelet analyses were
conducted on the data sets. Some authors state that wavelet analysis is the key to successful TCM (re-
fer to Section 3.4.2). However, the usefulness of wavelet analysis in TCM applications is debatable.
Wavelet analysis cannot be used effectively to detect temporal information in data because they are not
time invariant. In the case of TCM, this is not always important, depending on the aim of monitoring
system. They only way that wavelet analysis can really assist in TCM applications is to act as a filter to
enhance the signal-to-noise problem common to tool wear data.

The reader is referred to Appendix F for a more detailed discussion on wavelet analysis. During this
research, wavelet packet analyses were performed with various types of wavelets to act as digital fil-
ters. With the wavelet packets calculated, certain packets may contain useful information on tool wear
with little noise present. A simple method is to select the packets containing the most energy by means
of an energy function (e.g. rms or entropy) for a second phase of processing. The second phase is gen-
erally a repeat of the initial signal processing in the time and frequency domains, such as rms, variance
and crest factor values.

The purpose of the wavelet analysis is to act as a filter, which automatically identifies certain fre-
quency ranges and bandpass filter the signal through these ranges. When the signal is reconstructed
with the wavelet coefficients from the selected wavelet packets, it can be compared with the original
signal. During this research, it was often observed that the reconstructed signal is just a filtered repre-
sentation of the original. Hence, the same result can be obtained by using an appropriate digital filter.
In fact, the wavelet packet type of filtering is a “black box” type filter because there is no indication
beforehand or afterward which frequencies are attenuated. In the case of digital filtering, this can be
controlled and explained. A result from the wavelet packet analysis from experiment 4 is plotted in
Figure 6.8. In this figure, the rms trend with increasing tool wear are compared for a selected wavelet
packet, a digital filtered signal and an unfiltered signal. It can be seen from this figure that although the
wavelet packet rms trend is more consistent than the unfiltered signal, the digital filter yielded the best
result. A similar result can be observed in Figure 6.9, where the trends of the variance with increasing

tool wear are compared.
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Figure 6.8: Comparison of rms trend with tool wear (hard turning)
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Figure 6.9: Comparison of variance trend with tool wear (hard turning)

The wavelet analysis was also conducted on the TCM data for Aluminium turning. Exhaustive investi-
gations were conducted with different types of wavelets and threshold values. One of the results is
shown in Figure 6.10, where the rms values of the best wavelet packets are compared to the rms of the

digital highpass filtered signal and unfiltered signals. In this case, it is again clear that the digital filter
yields the best results.
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Figure 6.10: Wavelet packet rms comparison (Aluminium turning)
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It was found that wavelet analysis sometimes yielded an improvement in the trend, but the improve-

ment is small and the same result can be achieved with digital filtering. Furthermore, wavelet analysis
is computationally much slower than regular digital filtering, which hampers it as a possibility for on-
line implementation. It should be kept in mind that this conclusion was only reached for TCM applica-
tions and not for other applications of wavelet analysis. Consequently, the features generated by wave-
let analysis were discarded from the feature selection step because the improvement was too small to
make it worthwhile for on-line implementation. It should be mentioned here that there exists a TCMS
for ball-end milling which is using wavelet packet analysis as a filter, and the method is successfully
running as a demonstration system [239]. It would nevertheless be interesting to investigate the neces-
sity of wavelet packet analysis to make the system run effectively.

6.2.3 Feature selection and feature space reduction

In Chapters 4 and 5 the methods for feature selection were described. A combination of engineering
judgment and automated feature selection methods were used. The automated feature selection meth-
ods were based on the agreement between a feature’s trend and tool wear. The methods were employed
to quantify this agreement, namely the correlation function and difference minimisation by means of
GAs. Both methods usually yielded more or less the same results and as a last step engineering judge-
ment was used to select particular features. Normally, only four signal features were chosen for moni-
toring purposes.

Another method of verifying that the best features have indeed been selected is by calculating the Sta-
tistical Overlap Factor (SOF). The SOF determines the degree of separation of a feature between the
new and worn tool conditions. Ideally, a feature should show a high degree of separation due to the
worn condition and a low degree of variance due to noise. The SOF is one method that can assist in
investigating the behaviour of a feature. The SOF is defined by:

X — X,

SOF =|———=—
(0'1 +O'2)/2

(6.2)

where X is the mean and ois the standard deviation of vector x;. Vector x; should be data col-
lected from new tools and x, should be data collected from worn tools. As a consequence the SOF

will yield a value that is an indication of a feature’s ability to separate between new and worn condi-
tions. Comparisons between the correlation coefficient approach and the SOF were made for several
experiments (correlation coefficient approach described in earlier chapters: The correlation is calcu-
lated between tool wear and the feature vectors). One result is shown as a bar graph comparison in
Figure 6.11 for 30 different features calculated from the Aluminium turning data. Ideally, features
should be chosen that exhibit a high degree of SOF and correlation.

One problem with the SOF method is that it will not separate between linearly dependant features.
Thus, there is the risk of selecting linearly dependant features when only the SOF method is employed.
Another method that can assist to remove linear dependency is Principal Component Analysis (PCA).
However, it is known that TCM problems are often one-dimensional (all the signal features increase

when tool wear increase), and thus features that are linearly dependant to some degree will have to be
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selected. Consequently, as a last step, engineering judgement must be used to select features that are
not completely linearly dependant and also have high SOF and correlation values. Referring to Fi 1gure
6.11, features 7, 14, 17 and 25 were selected.

B correlation
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Figure 6.11: Comparison of correlation coefficient and SOF

In many cases, choosing many features and then using a feature space reduction method such as PCA
to reduce the feature space can achieve a better result. Fortunately in data sets with many features,
groups of features often move together. One reason for this is that more than one variable may be
measuring the same driving principle governing the behaviour of the system. In many systems there
are only a few such driving forces. But an abundance of instrumentation allows us to measure dozens
of system variables. When this happens, the problem can be simplified by replacing a group of vari-
ables with a single new variable. PCA is a one method for achieving this simplification. The method
generates a new set of variables, called principal components. Each principal component is a linear
combination of the original variables. All the principal components are orthogonal to each other so
there is no redundant information. The principal component as a whole forms an orthogonal basis for
the space of the data, and is essentially based on the statistical representation of a random variable.

Suppose there is a random vector population x where:
I
x=(x,005 %) (6.3)
and the mean of that population is denoted by
#y = E{x) (6:4)

and the covariance of the same data set is

T
C, =E{(x—yx)(x—,ux) } (6.5)
The components of C,, denoted by ¢;j » Tepresent the covariances between the random variable com-

ponents x; and x;. The component c;;is the variance of the component x;. The variance of a compo-

nent indicates the spread of the component around its mean. If two components x; and x 7 of the data

are uncorrelated, their covariance is zero (Czj =cj = O). The covariance matrix will always be sym-

metric. From a sample of vectors x;,...,x;;, the mean and covariance matrices can be calculated.
From the covariance matrix, an orthogonal basis can be calculated by determining eigenvalues and ei-
genvectors. The eigenvectors ¢;and the corresponding eigenvalues J; are the solutions of the follow-
ing equation:
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Cxei = /'L,-ei with i = 1,...,” (66)

For simplicity it is assumed that ;is distinct. These can be determined by solving the characteristic
equation:

I, —2,1|=0 6.7)
where I is the identity matrix of the same order as C, . If the data vector has » components, the charac-

teristic equation will have order #. By ordering the eigenvectors in the order of descending eigenval-
ues (largest first), an ordered orthogonal basis can be established where the first eigenvector has largest
variance of the data. In this way, the directions where the data has the most energy can be found. If the
data is transformed with these principal components, it reduces the amount of data but retains the in-

formation containing the most energy.

Principal component analyses were performed on the hard turning and Aluminium turning experi-
ments. The results of the 1™ two principal components, together with the features chosen for the Al
monitoring method in the previous chapters, are plotted in Figure 6.12 and Figure 6.13. It can be seen
that the 1™ principal component follows the increasing trend of features with less noise than features
themselves. The 2™ principal component is unfortunately only noise, because the TCM problem is
one-dimensional. Features generally increase (or sometimes decrease) with increasing tool wear. The
tool wear is also a monotonically increasing variable. As a result, the 1% principal component contains
the information along the increasing axis, and the 2" principal component is generated by the inherent
noise in the data. An advantage of PCA is that the 1* principal component is less noisy than the feature
values themselves. Care must be taken not to contaminate the principal components with noise from
redundant data.

W

15 principal comp
: o

27 principal cormp
(]

0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
1 ' T W

001 002 003 004 ‘001 002 003 004

I IO

Fx
-
Fy
[su}

& 20
A : -1 -
001 002 003 004 001 002 003 004
VB, [mm?] VB, [mm?]

Figure 6.12: Principal component analysis Hard turning (data normalised)
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Figure 6.13: Principal component analysis Aluminium turning (data normalised)

It is clear from the examples from the two different turning processes that a PCA can actually increase
the reliability of the TCMS, despite the fact that the problem is one-dimensional. One possibility
would be to keep the existing four features and just add a fifth, namely the 1** principal component of
the data. Another possibility would be to base the TCMS only on the 1™ principal component. This was
done with data from Aluminium turning and the results are compared in Figure 6.14. It can be seen
from the figure that adding the 1¥ principal component achieved a slight increase in the reliability of
the TCMS. However, using the 1* principal component only did not work very well. This is an impor-
tant result, because it shows that using data that are linearly correlated to some degree yields better re-
sults than using only the principal component.
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Figure 6.14: Tool wear estimation with / without PCA
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The conclusion from the investigations into feature selection is that available techniques can be used to
assist in the decision but the engineer should make the final decision. The correlation coefficient, the
SOF and PCA are three useful techniques that can help to identify the best features. The problem of
selecting linear dependant data should always be kept in mind, but it was shown that selecting features
that are linearly dependant to some degree would have to be selected for TCM. Adding the 1* principal
component as an addition feature could increase the accuracy and reliability of the TCMS.

6.3 Alternative modelling techniques

6.3.1 Introduction

One of the advantages of the proposed Al method in this research is that certain parts of it can be re-
placed by other methods - should a method become available that is more accurate and fit for shop
floor implementation. The dynamic NN will remain a crucial part of the method, but the static NNs
can be replaced by some other method, if such a method can model a chosen signal feature. Models
that can calculate static cutting forces for sharp tools are common. However, due to the complex nature
of tool wear, it is difficult to estimate the worn tool forces with most other methods. Features such as
those derived from the frequency spectrum would be very difficult if not impossible to determine by
means of theoretical models only.

One possibility would be to combine available theoretical models with the Al approach. An advantage
of theoretical approaches is that they can handle changing machining conditions with more ease and
accuracy than AI models. The reason for this is the a priori knowledge of the theoretical models of
what the effect of changing conditions would be, whereas the AI model needs appropriate training
samples to obtain this knowledge. In this section, some promising theoretical methods are discussed
that may enhance the accuracy of a TCMS.

6.3.2 Finite Element Method (numerical models)

The use of the FEM to model machining operations was discussed in Section 2.5. Besides the FEM,
various other numerical computer simulation methods are available or are under development. This
approach, though still in the development stage for many machining operations, seems to be one of the
most promising to assist is sensor-based TCM. A numerical model can be used instead of the static NN
for TCM. This is what makes the new formulation proposed in this work particularly useful: Instead of
modelling the tool wear as an output of the model it is actually used as input to the static NN. Hence,
with tool wear as an input, a numerical method such as the FEM can estimate the static cutting forces
for many combinations of tools, workpieces and machining parameters. The dynamic NN will still be
included to follow the development of wear, but will be trained with error between the FEM model

simulation and on-line measurements.

One problem is that this approach will be computationally very slow with available computing power.
In future years computers might become fast enough to use the FEM model iteratively to train the dy-
namic NN. In fact, with available computing speed, it might not be extremely slow because the dy-

namic NN usually requires less than ten iterations. The use of response surfaces could also prove very
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useful to lessen the number of FEM simulations. Unfortunately, the FEM approach could not be inves-
tigated for this work but is suggested for further research. FEM models could also be used to normalise
data with respect to machining conditions. To achieve this will require intensive research and collabo-
ration between various research groups.

6.3.3 Theoretical models

The basics of theoretical models to predict cutting forces were discussed in Chapter 1. A pure theoreti-
cal model that can accurately predict wormn tool forces does not exist and establishing such a model
would be virtually impossible. The only possible use of these models is to assist another method, such
as the Al approach. For instance, an accurate theoretical model can be used to:

e Predict the sharp tool cutting forces

e Normalise the Al approach for cutting conditions

e Assist as a validation procedure

In this research, the analytical method described in Section 2.2.3 was evaluated as a possible method
of calculating the sharp tool forces and then adding the wormn tool forces by means of the Al approach.
The analytical procedure involves determining the oblique cutting constants through orthogonal cut-
ting tests. When this is found, an oblique cutting transformation is applied to two regions along the ra-
dius of the tool insert. The complete model relies on the accuracy in determining certain constants
(some of which will be available from a database for some tool and workpiece combinations [240])
and the validity of a few assumptions. Because this and other theoretical models rely on cutting tests
and underlying assumptions, it raises the question if it is worthwhile to implement the method if it can
only assist with TCM in part, namely predicting sharp tool cutting forces. Also, the dynamic behaviour
of the tool is not included in the model. After careful consideration it was decided that it is not worth-
while to attempt a shop floor implementation of the method because it will raise the complexity of a
problem that the Al approach can already handle to satisfaction.

6.3.4 Mechanistic models

The underlying assumption of mechanistic cutting models is that the cutting forces are proportional to
the uncut chip area. The constants of proportionality depend on the cutting conditions and geometry
and material properties. Kapoor et al. [241,242] also described a method that can be incorporated into
a basic mechanistic approach that can predict dynamic cutting forces. This could be achieved by im-
pact tests on the machine structure. They also describe a worn tool force model [223,243] for turning
operations. This is the first model based on theoretical foundations for predicting worn tool forces. Of

course, other experimental models exist that rely on the accurate determination of certain empirical

constants.

Because the mechanistic worn tool force model is a possible complete replacement of the static NN, it
was decided to attempt an implementation of the model. The complete mechanistic approach for pre-
dicting worn tool forces is described in Appendix G. The method was applied to the hard turning data

after personal correspondence with Kapoor and DeVor from UIUC indicated that the method would
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after personal correspondence with Kapoor and DeVor from UIUC indicated that the method would
possibly be applicable to the type of processes investigated in this research. To determine the sharp
tool forces is basically a matter of calculating empirical constants from cutting experiments. With this
a calibration procedure is carried out that will yield the mechanistic constants. The part of model that
deals with determining the worn tool forces relies on a number of assumptions, the most important be-
ing:

e There is a linear growth of the plastic flow region on the tool flank

e There exists a critical value of flank wear after which plastic flow will be observed

e The worn tool forces are governed only by flank wear

e An accurate calculation of the maximum effective stress in the workpiece is possible

It was found that for most of the hard turning experiments, the critical value of flank wear could not be
determined. Even after extensive testing, it was not always observed. Attempts were made to calculate
the maximum contact stress in the workpiece by the method described in Appendix G, and a result is
shown in Figure 6.15. When this is accurately established and verified, the 3-D womn tool forces can be
calculated by the equations described in Appendix G. However, the maximum contact stress could not
be verified because the assumptions made for the mechanistic model does not seem to apply for hard
turning. It was mentioned several times in Chapter 4 that the stability of hard turning is governed
largely by crater wear. During hard turning, the crater wear also has an influence on the cutting forces,
but crater wear is not included in the mechanistic approach. In fact, a theoretical inclusion of the crater
wear is rather difficult because the mechanics of cutting with crater wear is not as clear as the case
with flank wear.
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Figure 6.15: Calculating maximum contact stress in workpiece (hard turning)

The linear growth of the plastic flow and the critical flank wear was also not so clearly observed with
the CBN tools, and as a result the maximum contact stress could not be determined. However, the plas-
tic and elastic zones were better observed in the Aluminium turning experiments. Because the aim of
this work is to determine a method of TCM that can be treated as a general methodology for turning, it
was decided not to attempt an implementation of the model on Aluminium turning because the method

did not apply to hard turning as well.

142



University of Pretoria etd — Scheffer C 2003 CHAPTER 6: Investigation

6.3 Al approach improvement

6.3.1 Introduction

In this section, some aspects regarding the improvement of the Al methodology are investigated. In the
opinion of the author, the improvement that can be obtained by optimising the network type, structure
and activation functions are relatively small compared to selecting the correct measurement procedure,
signal processing and feature selection steps. In this case, same aspects of the NN structure were

investigated in order determine if it yields a worthwhile improvement or not.
6.3.2 Type of network

Many different types of network were compared for the best results. This included FF networks, FF
networks with time delays, radial basis function networks, perceptrons, recurrent networks and unsu-
pervised networks. In the case of the FF backpropagation networks, different activation functions and
networks sizes were also compared. A comparison of the FF network as formulated in Chapter 5 and
FF networks with time delays are shown Figure 6.16. The time delay networks required more training
steps and when the convergence criteria were kept the same, the time delay networks did not yield very
good results. Investigations only apply to the static NNs. If more training steps were taken, the time
delay networks improved but did not yield better results than the initial formulation of the FF net-
works. Sick [171] has shown that time delay NNs should be used for TCM, because the TCM problem
requires temporal information for accurate estimation. In the case of a the Al implemented in this re-
search, the temporal information is already built into the time delay of the dynamic networks, and is
not required for the static NNs. It was decided not to attempt to optimise time delays in the static NNs

because it requires more training and also slows the training of the dynamic NNs down.
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Figure 6.16: Time delay comparison (Aluminium turning)

In Figure 6.17 the result of using different network types is shown. The FF and the cascade forward
networks yielded similar results. The Elman network requires longer training but the smooth response
of the Elman network is a very nice attribute. The Elman network utilise feedback connections, and
thus doubles the use of temporal information in the Al approach. The last investigation into network
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formulation was to compare different activation functions. The results of using three different activa-
tion functions are shown in Figure 6.18. The tansigmoid and radial basis function yielded the best re-
sult.
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Figure 6.17: Different network types (Aluminium turning)
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Figure 6.18: Different activation functions (Aluminium turning)

The results presented in this sub-section are only a fraction of the many investigations into formulating
the best method for TCM. Unfortunately, only a few results can be shown and discussed here. In con-
clusion it can be stated that the FF network with a tansigmoid and linear layers yielded the best results
and requires the least amount of time for adequate training. The Multilayer Perceptron (MLP) also ex-
hibits good results, but requires a larger network. Elman type networks can also be considered due to

their smooth response but training is very time consuming.

An important contribution of this research lies in the use of the dynamic NN for on-line monitoring.
However, using only static NNs can also model the tool wear with the chosen features. For this reason
a comparison of the two methods are included here to show that the proposed formulation of using
static and dynamic networks is indeed the better one for practical applications. An example is shown in
Figure 6.19, where simulations of a regular FF network is compared with that of the new formulation
proposed in this study (without a sliding window output). The data is from three tools that wear from
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new to approximately 0.1lmm flank wear. It can be seen that the performance of the combined static

and dynamic formulation is better than the FF network (static only). A much smoother network re-
sponse is noted and the network has no difficulty to return to zero (automatic re-initialisation was

used).
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Figure 6.19: Comparison of formulations (Aluminium turning)

The new formulation was also compared to other conventional formulations, some of which performed
well but do not hold the advantages of the combined formulation. No other NN formulation that was
investigated outperformed the proposed combined formulation on the noisy shop floor data. Some of
the results are reported in the figures that follow. The results are based on networks trained on the
same data and tested on a previously unseen set of data. Where possible, the same network training
tolerances were used. As a result, the sizes of the networks are not exactly the same for all the cases.
The results of using of a Single Layer Perceptron (SLP), Adaptive Linear Neuron Networks
(ADELINE) and adaptive linear filter network (linear layer with input delays) are plotted in Figure
6.20. The SLP can only be used for classification and is not recommend for continuous estimation. The
ADELINE and linear adaptive filter display more or less the same result.
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Figure 6.20: SLP, ADELINE and linear adaptive filter result

A Radial Basis Function (RBF) network is compared with a Generalised Regression Neural Network
(GRNN), which is a RBF with an added linear layer at the output), and a two-layer FF network trained
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with backpropagation in Figure 6.21. Again, the results are very similar.
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Figure 6.21: RBF, GRNN and FF backpropagation network result

A recurrent network (Elman formulation) is compared with the new formulation of combining the
static and dynamic networks in Figure 6.22. The Elman network performs well but the new combined
network still outperforms the Elman network.
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Figure 6.22: Recurrent (Elman) and new formulation with static and dynamic networks result

The results for this case study are summarised in Table 6.1. It should be kept in mind that the result
reported here is for one case study although many more were performed to ensure that the newly pro-
posed dynamic formulation does indeed outperform “static only” networks. From the graphs it can also
be seen that besides increased accuracy, the response of the dynamic network is smoother and more
stable. Training and stability problems were not encountered when using the PSOA.

As a last step the use of an unsupervised NN were investigated, one again in the form of the SOM (re-
fer to Appendix H). The normalised training features were subjected to SOM training, and the result is
shown in Figure 6.23. From the figure it can be seen that the features are automatically arranged in low
and high regions.
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Table 6.1: rms errors on training data

network type rms error [mm]
SLP 0.0167
ADELINE 0.0097
linear adaptive filter 0.0092
RBF 0.0106
GRNN 0.0106
FF 0.0109
Elman 0.0106
combined static and dynamic 0.0057
mFy

Figure 6.23: SOM result of training data

The labels of the training data, (in this case the flank wear values in mm) are plotted on the left hand

side on Figure 6.24. A separate independent data set was labelled as “brand new”, “new”, “medium”,
“worn” and “replace”. The Best Matching Units (BMUs) for this data were calculated the trajectory is

plotted in Figure 6.25, together with the classification labels. From this it can

be established that the

SOM is very useful for interpreting the multi-dimensional data, but should rather be used for discrete

classification (e.g. “new” or “worn”) than continuous estimation. In this example, the SOM yielded

very good results in terms of classification.
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Figure 6.24: Training labels and testing classification
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6.3.3 Size of networks

Although no mathematical optimisation procedure was performed, the size of the static and dynamic
networks was optimised with manual iterations. To improve network generalisation, the networks were
kept as small as possible to avoid overtraining. This also helps to improve training speed. If larger
network sizes were used, the training was slow and the network could not generalise properly. If feed
rate or cutting speed was included in the networks, a larger network size had to be used. In general, a
middle layer of five neurons sufficed for a network with no machining parameters. If machining pa-

rameters were included, a middle layer of approximately ten neurons had to be used.

As an example, a result of three different static NN sizes is shown in Figure 6.25. A FF network with
five neurons in the middle layer is compared to the same type of network with 15 neurons in the mid-
dle layer. The result from another network, with two large hidden layers is also shown in the figure. It
can be seen from the figure that despite the fact that the larger networks can also follow the tool wear,
they are much more prone to noise and can even become unstable if it encounters a noisy measure-
ment.
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Figure 6.25: Different network sizes (Aluminium turning)
6.3.4 Training algorithm

The static networks were FF networks with backpropagation as a training procedure. The method was
fast and accurate enough for the application without any convergence problems. In the case of the dy-
namic algorithms, a number of different algorithms had to be investigated to achieve fast on-line train-

ing. With conventional training procedures, convergence was slow or not at all.

The different optimisation algorithms that were investigated are discussed in Appendix D. These are
ETOP, SQSD and LFOP. It was found that the gradient methods are fast but it is difficult to determine
the gradient function with the correct step size due to the dynamic nature of the network. This is be-
cause the input data is always changing. The gradient must be determined by a finite difference
method and the step size for finite differences is very important to ensure an accurate estimation of the
gradient, especially with noisy functions. It was found that the gradient methods improve for dynamic
training when the step size is decreased linearly when the objective function approach zero.
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It was then decided to investigate another method that does not utilise a gradient calculation, and this
was found in the PSOA. It was found that the PSOA provided quick and accurate training and rarely
fails to converge. Furthermore, the PSOA does not have the problem of calculating gradient functions,
and the random nature of the algorithm is ideal for this application. It was concluded that the PSOA is
the best choice for on-line training of dynamic NNs.

6.3.5 Repeatability of simulations

Another important test for any implementation of NN is to determine the repeatability of simulation
results. This involves re-initialising and re-training all the networks and repeating the simulation on the
same data. This was repeated for several data sets, and an example is plotted in Figure 6.26. Due to the
nature of the PSOA and various convergence criterions to enforce generalisation, the simulations are
not expected to be exactly the same every time, but should at least be very similar. This can be ob-
served from the various simulations in Figure 6.26. Each follows the same progression of tool wear but
they are not numerically the same. It can thus be concluded that the simulations are repeatable with

newly trained networks.
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Figure 6.26: Repeated simulations with newly trained static NN
6.4 Conclusion

In this chapter, it was shown that:

e The coherence function is a method that can assist in TCM but is not universally applica-
ble.

e Wavelet analysis can sometimes improve the accuracy of a TCMS but the same result (if
not better) can be reached by simple digital filtering procedures.

e TFeature selection could be done by the correlation function method and the SOF. PCA is
another useful method and including the 1% principal component as another data feature
can improve the accuracy of a TCMS.

e Engineering judgement remains the most important step of feature selection and care must
be taken to avoid 100% linearly correlated data.

e Different modelling methods can assist in the Al method of TCM, but not all methods are

universally applicable and often increase the complexity of required experiments and
149



CHAPTER 6: Investigation

2002

University of Pretoriaetd—=-Scheffer€—2003
mathematical formulation unnecessarily, making these methods insufficient for on-line
implementation.
- Attempts were made to improve the formulation of the NNs in the Al approach for TCM
by investigating network type, activation functions, network size and training algorithms.
Comparisons between formulations were made and it was also shown that the result of the
new formulation is repeatable.

150



