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CHAPTER 3

3. Tool Condition Monitoring

3.1 Introduction

A wide variety of techniques for machining process monitoring have been developed through the years
in industrial and academic projects. Due to the wide variety of manufacturing processes, it is not pos-
sible to apply a single technique to all operations. It is not uncommon for a monitoring system to be
reliable for one process, but unsatisfactory for the next. However, a number of techniques exist that

can be used for different processes, if the necessary adjustments are made to them.

In this chapter the various approaches to TCM are discussed. As an introduction to TCM, a brief over-
view of process monitoring in the area of manufacturing is given. There exist sensorless and sensor-
based approaches to the problem of TCM. Sensorless approaches are not monitoring methods but are
of relevance to this work. Basic sensorless approaches were discussed in Chapter 2. This chapter is
concerned with sensor-based methods. It is widely accepted that intelligent, sensor based manufactur-
ing is vital to achieve reliable operation of a manufacturing process. Sensor signals supply information
about the manufacturing conditions that enables optimisation, control and decision-making. The in-
formation from sensors can be treated in numerous ways and research is aimed towards developing the
best techniques to extract the relevant information from the signals. One way to utilise sensor informa-
tion is through the use of Artificial Intelligence (AI) models. The use of Al in TCM will be discussed
in more detail because it is the most relevant to this research. As a general case, designing a TCMS

consists of the steps depicted in Figure 3.1. Various methods that could be used for each step will be
discussed.
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Figure 3.1: TCM steps

The reader is also referred to other overviews of sensor-assisted TCM, published by Dan and Mathew
[92], Byme et al. [5], Scheffer and Heyns [93] and Dimla [41]. A TCM database was also published by
Teti [94]. This database includes more than 500 research papers focusing on TCM. The overview in
this chapter is mainly concerned with developments in the literature. However, the commercial appli-
cability of TCMSs is very important and as a result Appendices A and B were compiled that deals spe-
cifically with commercial systems. These two Appendices are the result of an exhaustive overview of
commercial equipment and their application in industry. It is also important to compare the abnormal
gap between research and industrial practice in this case, as it was an objective of this research to over-
come this gap by developing a reliable TCMS for industry.
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3.2 Sensors for general process monitoring

A wide variety of sensors for process monitoring are available. The most common sensors found in
industry are force, power, vibration and acoustic emission sensors. Others include [5,95]:

e flame detector e ph sensor e smoke sensor

e sound level sensor e level meter e image sensor

e lubrication oil detector e accelerometer (vibration) e temperature sensor

e touch sensor e seismic sensor e tool wear sensor

e edge position sensor e humidity sensor e tool damage sensor

e limit sensor ® gas sensor e current sensor

e clamping force sensor e chip monitoring sensor ® pressure sensor

e speed sensor e dust sensor e torque sensor

e thermal deformation sensor e temperature distribution sensor e acoustic emission (AE) sensor
e coolant temperature sensor e surface roughness sensor

These sensors and many more have found their rightful place in the manufacturing industry. Most of
them are only used for a specific monitoring objective. The focus of monitoring may fall on one or
more of the following areas [5,96]:

i The machine (diagnostics and performance).

2. The tools for machining (wear, lubrication and alignment).

3 Workpiece (surface roughness, tolerance, geometry).

4. Process (chip formation, energy consumption, temperature).

Cho et al. [97] surveyed the different sensor approaches and their application in industry for research
in Korea. A summary from [97] is shown in Figure 3.2. It is interesting to note that cutting force seems
be the most popular for most applications. The second most popular method is Acoustic Emission
(AE), which can also be used for different applications. Furthermore, it can be noted that the motor
current is not used for wear monitoring, but only tool breakage detection. The relative pie chart di-

ameters correlate with the number of applications for monitoring particular events.
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Figure 3.2: Sensor application in manufacturing process monitoring [97]
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Sensor systems can communicate with the CNC control through different standards. A number of

standard interfaces exist that can allow many sensor/ actuator systems to communicate with the CNC
control, as was demonstrated by Pfeifer and Thrum [95]. This is very helpful to streamline the installa-
tion of sensor technology into modern machine tools. The development of smart sensor technology
also presents new and exciting prospects for the manufacturing industry [5,98,99]. With smart sensors,
the time needed for signal processing is reduced significantly, thus enabling faster response for on-line
control. These sensors can also possess abilities such as self-calibration, self-diagnostics, signal condi-
tioning and decision-making. In the future Analogue to Digital (A/D) converters may become obsolete
for sensor systems, because this will be integrated within the sensor itself [100]. Smart sensors can also
have built-in filters to filter certain vibration modes with application in intelligent structures [99]. The
Transducer Electronic Data Sheet (TEDS) has also become an acceptable standard in sensor technol-
ogy. This development, together with sophisticated signal processing software, makes inexpensive,
fast and accurate measurements possible. The latest development in sensor technology is to develop
wireless systems that can achieve high sampling rates across multiple channels.

It will be shown in this chapter that the emphasis in recent research is to integrate sensor systems. This
enables more accurate and robust characterisation of a process. Integrated sensor systems can handle
noisy input data, which is caused by random disturbances in the machining process. The sensor inte-
gration systems include learning schemes such as NNs, and have the ability to handle complex proc-
esses that defy analytical mathematical modelling.

3.3 Sensor-based tool wear monitoring

3.3.1 Introduction

A. Direct and Indirect systems

Approaches to monitor tool wear can be divided in two categories, namely direct and indirect. Direct
methods are concerned with a measurement of volumetric loss at the tool tip, while indirect methods
seek a pattern in sensor data from the process to detect a failure mode [5]. Direct methods are of less
importance to this research. In general, direct methods are sensitive to dirt and chips, and are therefore
not commonly accepted in industry. Indirect methods will be discussed in more detail. Indirect meth-
ods are said to be less accurate than direct methods, but have found more acceptance in industry due to
the fact that they are easily interpreted, cost-effective, and reliable. Also, for some applications, it
might not be possible to use a direct monitoring method due to the nature of the process.

B. Continuous and Intermittent systems
The second important distinction to be made with TCMSs is between continuous and intermittent sys-
tems [5]. In the case of continuous systems, the measurement variable is available throughout the ma-
chining process. This enables the on-line classification of the process, and ensures that sudden changes
can be reacted upon in time. This research is focused on continuous systems. In the case of intermittent
systems, the variable is recorded off-line. This approach has many disadvantages, which includes time

losses and high costs. One practical application of an intermittent system can be a wear measurement
on a magazine of tools while the machine is using a different tool.
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C. Sensor requirements for tool wear monitoring

Monitoring usually takes place in very hostile environments. Subsequently, sensors used for tool wear
monitoring should be robust and easy to install. Sensors used for TCM must meet certain require-
ments, such as [5]:

e Measurement as close to the machining point as possible.

e No reduction in the static and dynamic stiffness of the machine tool.

e No restriction of working space and cutting parameters.

e Wear and maintenance free, easy to replace and cost-effective.

e Resistant to dirt, chips and mechanical, electromagnetic and thermal influences.

e Function independent of tool and workpiece.

e Adequate metrological characteristics.

e Reliable signal transmission, e.g. from rotating to fixed machine components.
3.3.2 Force-based monitoring

It is well established that worn tools cause an increase in the cutting force components [5,101,102].
The dynamic and static force components generally increase with increasing tool wear (due to fric-
tional effects). The difference between the static and dynamic components of the cutting force is
shown schematically in Figure 3.3.
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Figure 3.3: Static and dynamic forces

The different components of the cutting forces respond differently to machining parameters and tool
wear modes. Depending on the type of process that is investigated and specific experimental setup, re-
sults among researchers vary. This can be contributed to dynamic effects of the machine tool and
measurement equipment. Many types of sensors have been developed to measure cutting forces. These
include [5] (also refer to Appendix A):

A. Direct measurement dynamometers
These sensors are based on the piezoelectric effect and can measure dynamic cutting forces very accu-
rately. However, these sensors are expensive and in most cases not protected from overload, and there-
fore not used in industry. There is also some difficulty in protecting the sensors against cutting lubri-
cant. Force-measuring tool turrets have been developed that can measure three force components, but
are still very expensive.
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B. Plates and rings

Force-measuring plates can be fitted with relative ease on turning machines between the turret housing
and the cross slide, or between the turret disc and slide. These thin plates are fitted with piezoelectric
force measuring sensors. These sensors have some advantages, but are subject to many disturbing fac-
tors, such as thermal expansion.

C. Pins, extension sensors
These sensors are suitable for tool breakage monitoring in rough machining. They are fitted on force
carrying machine components to detect the cutting force indirectly. The identification of a suitable fit-
ting position can only be determined experimentally, which is a disadvantage.

D. Measurement of displacement
Non-contact sensors to detect the displacement or bending of tools can be mounted directly on the tool
[103]. However, these sensors are subjected to the high risk of damage and disturbances from chips,
dirt and cooling lubricant.

E. Force-measuring bearings
Bearings and bushes can be specially fitted with strain gauges in certain positions to measure cutting
forces. Force-measuring bearings require a low-pass filter due to disturbances from the ball contact

frequency, and as a result high frequency signal processing is not possible. Force-measuring bushes are
only accepted in special cases because they reduce the rigidity of the machine.

F. Force and torque at spindles
These systems can be very complex because they have to monitor the torque of the spindle with high
resolution, and within the entire range of the motor. Furthermore, the signal must be transmitted on a
non-contact basis. The installation of such a system is not possible on most machines because of a con-

straint on the available space for sensor mounting. The use of a torque sensor for TCM in drilling is
described in [104] and [105].

3.3.3 Measurement of motor current

The measurement of motor current is an easy alternative to other sensors and can be installed without
much difficulty. A wide range of sensors is available for this purpose. However, due to fluctuations in
the signal due to friction, the signal is not accurate enough for wear monitoring. Also, tool breakage
can only be detected after some damage has occurred. Spindle power is proportional to the cutting
force in the primary motion, and is not the most sensitive direction for tool wear monitoring. The cut-
ting process consumes only a small portion of the measured power of the spindle. However, monitor-
ing systems based on the principle of spindle current can be successful when used with the right opera-
tion [102]. Ni et al. [106] used the spindle motor current to identify faults such as misalignment, over-
size, undersize and wear for a tapping operation. A combination of wavelet analysis and Principal
Component Analysis (PCA) of the motor current signal is used to distinguish between the faults. Tseng
and Chou [107] use the reaction of the spindle motor’s workload to cutting conditions to detect abnor-

malities. When these abnormalities are accumulated to the warning limits, the tool must be replaced. A
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disadvantage is the appropriate selection of the warning level, which must be determined experimen-
tally for different cutting conditions.

3.3.4 Acceleration

Piezoelectric accelerometers can measure the machine vibration caused by oscillations of cutting
forces. Vibrations from a cutting process have components of free and forced vibration response. Fur-
thermore, random and periodic behaviour can be observed. It has been shown by previous authors that
the vibration levels change with tool wear (see references below). Industrial accelerometers fulfil the
environmental requirements for tool wear monitoring because they are resistant to the aggressive me-
dia present in machining operations. Accelerometers are less expensive than most force sensors, and
can measure vibration levels within a very wide frequency range. For these reasons, accelerometers are
often used for TCM [38,102, 108-112]. Kim and Klamecki [113] also reported the use of torsional vi-
bration (using a Laser-Doppler Vibrometer) for monitoring the wear of milling cutters.

One of the main difficulties of monitoring the tool life with acceleration is to identify the frequency
range that is influenced by tool wear, since machining processes comprise of many factors that pro-
duce vibrations that are not related to tool wear. Bonifacio and Diniz [38] suggest that the useful fre-
quency range falls between 0 — 8 kHz. It would seem that the frequency range sensitive to tool wear
depends on the specific machining operation, and must be determined experimentally. A ‘global’ range
that would satisfy all machining operations does not exist.

3.3.5 Acoustic emission

Cutting processes produce elastic stress waves that propagate through the machine structure. Different
sources in the cutting process generate these stress waves known as Acoustic Emission (AE). Sources
of AE in metal cutting are:

e Friction on the tool face and flank.

e Plastic deformation in the shear zone.

e Crack formation and propagation.

e Impact of the chip at the workpiece.

e Chip breakage.

The fact that crack formation generates AE, makes AE very useful for tool breakage detection. Gener-
ally, collection of the AE requires special hardware that can bandpass filter the signals to the AE range
(between approx. 50kHz — 250kHz). Amplification is also required and an analogue root mean square
(rms) circuit with a short time constant is often included to collect the rms AE level. The different
steps required to collect AE for are depicted in Figure 3.4 (adapted from [114]).

Araujo et al. [115] investigated the sliding friction as a possible source of AE during metal cutting.
The AErms in different frequency ranges was collected for different widths of cut and also with the
tool rubbing against the workpiece (without cutting). It was found that the level of AE remains almost

constant for all width of cut conditions, and hence it can be concluded that the main mechanism for AE
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during metal cutting is the sliding friction between the tool and workpiece. Consequently, an increase

or decrease of AE can be expected with tool wear depending on the effect on the sliding friction due to
tool wear. It is also believed that the cutting temperatures will affect the level of AE due to thermal
expansion effects. The effect of plastic deformation with other materials is currently under investiga-
tion. Chio and Liang [116] investigated AE with tool wear and chatter effects in turning. A model is
presented that can predict the chatter AErms amplitude with certain severities of flank wear. Good cor-
relation was found between the model and experimental results. Kim et al. [117] reports on the use of
AE to monitor the tool life during a gear shaping process. The AErms is collected and used in a soft-
ware program to predict the remaining tool life.
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Figure 3.4: Steps for collecting AE during turning

Although a wide range of AE sensors exist, only a few can withstand the hostile environments of ma-
chining processes. AE sensors specially designed for use on machine tools are available, and these can
be attached anywhere on the machine tool. A new concept is to use a coolant stream to transmit the AE
waves from the tool to the sensor, for example the system presented by Dollinsek and Kopac [118].
The advantage is that the distance between the cutting area and the sensor is reduced, and thereby
damping effects are minimised. Some problems with this approach are that bubble free coolant is re-
quired, and monitoring may be disturbed when chips pass through the coolant stream. Dollinsek and
Kopac compared different tool insert types and found that the AE is most sensitive to tool wear but is
also affected by the insert type. Another approach is to use non-contact transmission of the signal, al-
lowing measurement near the process.

One problem still lies with an appropriate interpretation of the AE frequency spectrum. In most stud-
ies, an explanation for the choice of certain frequencies and their advantages are not given or not
investigated. In fact, Jemielnaik [114] found that using the average value of AE (or AErms) is most
suitable for TCM. A similar result was found during the course of this research (refer Chapter 4). Li
[119] presents an overview of using AE for TCM in turning operations. It is stated the AE is heavily
dependant on cutting conditions, and as a result methods should be employed to handle this problem
effectively. Some methods are proposed that include advanced signal processing, sensor fusion and
modelling techniques for tool wear and breakage monitoring [102,114,120-126]. There are also
industrial implementations, and these are described in Appendix A.
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3.3.6 Temperature monitoring

The high temperatures around the cutting edge during machining have a direct influence.on the tool
wear. The cutting temperature also affects chip formation and surface quality. The high frictional
forces when cutting with worn tools cause higher temperatures. The heat is removed from the process
by the chip (approx. 90%) and the workpiece and tool itself (approx. 10%). If the temperature in the
cutting zone can modelled or measured, it will provide a complete solution to many problems encoun-
tered with machining. However, measuring the temperature directly is virtually impossible. Accurate

temperature modelling for some machining operations is now possible by numerical techniques such
as the FEM.

Lin [127] attempted to measure the cutting tool temperature using infrared pyrometry, but only
achieved partial success due to hardware limitations. Chow and Wright [128] used a standard thermo-
couple inserted at the bottom of the tool insert to estimate the tool-chip interface temperature. The
method could possibly be extended for on-line TCM. Wang et al. [129] report the use of an Infrared
(IR) camera for analysing chip formation. The method is mainly used to study the stress distribution in

cutting chips and can assist in developing chip breakers. However, the approach can also be considered
for TCM, but will be expensive.

Using a remote thermocouple technique seems to be the only practical method for temperature moni-
toring for machining. This renders the temperature approach very ineffective. If an accurate and cost
effective method can be established to estimate the temperature in the cutting zone, the technique will
be very useful for TCM. Klocke and Hoppe [130] used a special fibre-optic pyrometer embedded into
the tool insert to measure the temperature directly in the secondary shear zone for high-speed machin-
ing. The result was correlated with a FEM model and a good agreement was found. It is unclear if this
approach could be used for TCM, but seems to be the best attempt up to date.

3.3.7 Ultrasonic methods

Abu-Zahra et al. [131,132] describe the use of an ultrasonic system for indirect tool wear measure-
ment. With this approach, an ultrasonic signal is transmitted through oil to the tool insert. The reflec-
tion / echo of the ultrasonic waves is then collected with the transceiver. When the tool wears, more
ultrasonic energy is reflected. The use of a calibration mark on the tool insert assists to quantify the
severity of flank wear and eliminates temperature effects on the ultrasonic signals. The ultrasonic
measurements are made when the tool is not engaged to the workpiece. The approach is very refresh-

ing but somewhat limited in application and not yet cost-effective enough for industrial implementa-
tion.

Cho et al. [97] also report on the use of an ultrasonic sensor in a very interesting overview paper deal-
ing with the research and developments in Korea. The methodology is similar to that of [131], but a

thermocouple for temperature measurements is also included. A diagrammatical layout of the ultra-
sonic approach is shown in Figure 3.5 [97].
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Figure 3.5: Ultrasonic TCM approach [97]

3.3.8 Vision systems

The use of vision systems for tool wear measurement is described by Kurada and Bradley [133] as
well as Novak et al. [134]. In these approaches, a special camera is installed on the machine tool to
assess the tool wear when the tool is not engaged in cutting. The digital picture taken by the camera is
processed with special techniques and can yield the sizes of the flank and nose wear. The vision sys-
tems are accurate but have some disadvantages. One difficulty is to determine the flank and crater wear
simultaneously with one camera. This problem was overcome by Karthik ef al. [135]. In this case, a 3-
D vision system was developed using only one camera that takes pictures from different angles. It was
shown that the system could determine the average crater depth for different wear geometries. Another
problem is the costs involved in installing and calibrating such a system on a CNC machine tool. Fur-
thermore, chips, cutting fluid or components of the machine tool can restrict the line of sight of the
camera.

3.3.9 Surface roughness monitoring

A. Introduction
Surface roughness is one of the most important factors in evaluating the quality of the machining op-
eration. Because it is sometimes easier to measure the surface roughness of the machined component
than to measure the tool wear, surface roughness estimation can be utilised to monitor the tool wear
[136]. Cutting conditions, such as cutting speed, feed rate, depth of cut, tool geometry and material
properties of the tool and workpiece, significantly influence the surface finish of the workpiece mate-

rial. If these factors are known and set correctly, an in-process surface roughness measurement system
can also indicate a worn tool [137,138].

Surface inspections in industry are typically done as a post-process operation, which is time consum-
ing and uneconomical since a number of non-conforming parts can be produced prior to inspection.
This underlines the importance of devices to monitor surface finish continuously without interrupting
the machining process. Several methods have been proposed to estimate surface roughness on-line in
flexible manufacturing systems. Some of these methods are [139]:

e Correlation between surface roughness and cutting vibration to develop an on-line roughness
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measuring technique.

e Image processing, stray light and laser focus methods [137].

e Roughness measurement with non-contacting inductance pick-up.

e Direct measurement with a stylus (contacting sensor or profilometer).
e Ultrasonic sensing approach [137].

e Sensing with a special air pressure transducer.

As with TCM systems, roughness-monitoring systems can also be divided into direct and indirect ap-
proaches. This section concentrates on tool wear and vibration monitoring with relevance to surface

roughness monitoring. The calculation of surface roughness parameters for machined parts is dis-
cussed in Appendix L.

B. Surface roughness analysis and tool wear
The surface roughness of machined components holds direct correlation with tool wear [138,140]. A
logical consequence is to use the roughness information to control the machining operation as the tool
wears. To maintain a certain roughness, the feed and cutting depth must either be increased or de-
creased to maintain the workpiece quality. For this, relatively simple geometric control systems can be
developed that measures the roughness, calculates an error value, and then changes certain machining
parameters accordingly. The ultimate goal is to develop an automated in-process monitoring system
that would counteract any troublesome external factors. Process parameters could be varied in process

with an adaptive or geometric control scheme, which would ensure consistent part quality [137].

Bonifacio and Diniz [38] found that vibration of the tool is a reliable way to monitor the growth of sur-
face roughness in finish turning, and can be used to establish the end of tool life for these operations.
Flank and groove wear mostly influence surface roughness. Some researchers found that there is in-

creased amplitude of roughness at the beginning stages of cut, a lesser tendency in the middle and
again an increasing tendency at the end of tool life.

C. Vibration monitoring and surface roughness analysis

The average surface roughness of a machined part can be assumed to be the result of the superposition-
ing of a theoretical profile computed from cutting kinematics, and of the oscillatory profile determined
by the relative vibration between the cutting edge and the workpiece [141]. The random resistance
against cutting (stick-slip process between the chip and the tool) causes the relative vibration between
the tool and workpiece. The ideal or theoretical surface profile can be easily calculated from the cut-
ting kinematics. The actual surface profile can be measured, or it can be estimated by measuring the
relative vibration between the tool and the workpiece. This makes it possible to determine the surface
roughness on-line without interrupting the machining process. However, there are a lot of practical
problems involved when working in a real manufacturing environment.

One problem is that chatter between the tool and workpiece causes large vibrations that cannot be su-
perimposed on the surface roughness. Another problem is that loose metal parts and other external fac-

tors easily distort signals from the sensors. However, the method has been successfully implemented in
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dry turning with ferrous metals by Jang et al. [139]. In this case the kinematics of the machine tool are

taken into account to estimate the roughness from vibration signals collected during cutting. They sug-
gested that further research be done in this field.

Bonifacio and Diniz [38] did experiments with coated carbide tools in finish turning, measuring in the
0 — 8 kHz range. The vibration was measured on two channels, one in the cutting direction and one in
the feed direction. The rms value was used to compare sets of measurements. They also varied the feed
and cutting speeds during different experiments. It was found that cutting speed had a much larger in-
fluence on the tool life than the feed, and that vibration and roughness measurements correspond to a
certain severity of tool wear at a given time.

3.3.10 Other methods

Some of the other methods for indirect / direct tool wear monitoring (excluding surface roughness ap-
proaches) are:

e Use of a non-contact capacitive sensor [142]

e Laser scatter methods [143]

e Fibre-optic sensor [144]

e Audible Emission [9]

Future research should be directed towards directly comparing different sensor methods for certain
machining processes. Choi ef al. [145] developed a single sensor for parallel measurement of force and
AE. A FEM analysis was carried out to determine the optimal position for the sensor away from the
tool holder. The reason for a more indirect measurement is because dynamometers sometimes restrict
the working space of the machine tool. The approach was successful for breakage detection but no
wear estimations are reported. Barrios et al. [102] compared AE, vibration and spindle current for
TCM during milling. It was found that the spindle current is the most sensitive sensor for detecting
tool wear, and found that AE is the least sensitive. However, contradictory results are reported in other
publications, and hence more research would be required to ultimately determine which method will
yield the best results for continuous estimation of tool wear. Govekar et al. [146] compared force and
AE methods for TCM, and concluded that the best result is achieved when the sensor information is
combined. Dimla and Lister [147] compared the use of force and vibration signals for TCM and also
combined the features obtained in a single decision making technique [148]. Similar comparative stud-
ies were conducted during this research and are reported in Chapter 4.

3.4 Decision making in sensor-assisted TCM

3.4.1 Introduction

With the sensor information from the different sensor systems described in the previous section, a de-
cision must be made regarding the tool condition. In complex problems it is advantageous to combine

knowledge from sensor data to achieve the best results. Sick [6] recently proposed a generic sensor fu-
sion architecture for TCM, shown in Figure 3.6.
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Figure 3.6: Sensor fusion architecture for TCM by Sick [6]

Fusion of sensor information can occur at any of the levels. Analogue and digital pre-processing con-
sist of signal amplification, conditioning, filtering, calibration, temperature compensation etc. The fea-
ture extraction step is one of the most important steps, because here the sensor signals must be reduced
to only a few appropriate wear-sensitive values. Many different methods are available to achieve this
and will be discussed in further detail. The wear model level establishes a relationship between the
chosen features and the tool condition. In many cases NN are used in this step and sensor fusion also
occurs. A decision level can also be included where a final decision can be made with respect to the
tool condition, e.g. a “competing experts™ approach if a TCMS is used in conjunction with a tool-life
equation. In many cases the decision is made directly from the NN output. A discussion on the tech-
niques for feature extraction, wear model and decision-making for TCM follows.

3.4.2 Feature extraction

Most decision-making techniques for process monitoring are based on signal features. Through appro-
priate signal processing, features can be extracted from these signals that show effective and consistent
trends with respect to tool wear. Once these features are extracted through preliminary processing of
the signal, the tool condition can be predicted with pattern recognition or other classification tech-

niques [149]. Features are mainly derived through time, frequency, joint time-frequency domain signal
processing or statistical analysis.

A. Time domain
Features extracted from the time domain are mostly basic values such as the signal average, mean, or a
root mean square (rms) value. Other techniques include the shape of enveloping signals, threshold
crossings, ratios between time domain signals, peak values and polynomial approximations of time
domain signals. It has been found that some of the time domain features are very useful and they are
easy to implement. Bayramoglu and Dungel [150] investigated the use of several different force ratios

(calculated from the static cutting forces). It was found that certain force ratios can be used to monitor
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tool wear under a wide range of cutting conditions. The only parameter that has a significant influence
on the ratios (besides tool wear) was found to be the rake angle, and therefore two different force ratios
are required to distinguish between a rake angle and tool wear effect. Ruiz et al. [58] also report using
derivatives and integrals of the time waveforms to generate features. Most commercial systems rely on
the time domain information for TCM. The time domain features are somewhat susceptible to distur-

bances and should be complimented with features from another domain. Typical time domain features
are shown in Figure 3.7.
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Figure 3.7: Typical time domain features

B. Frequency domain
The most common frequency domain features are the power in certain frequency bands. It is often dif-
ficult to identify spectral bands that are sensitive to tool wear. It is even more difficult to determine
exactly why these frequencies are influenced by tool wear. Power in certain bands will generally in-
crease due to higher excitation forces because of the increase in friction when the tool wears. Some-
times a peak in the Fast Fourier Transform (FFT) will also shift due to changing process dynamics
when the tool wears. An early frequency domain approach is reported by Jiang et al. [110], in which a

frequency band energy is determined from the Power Spectral Density (PSD) function as a feature for
tool wear monitoring.

Some authors suggest that two frequency ranges must be identified from the original signal [38]. The
one range must be sensitive to tool wear, the other must be insensitive. For instance, if the measure-
ment was made from 0 — 8000 Hz, it must be split (using appropriate filters) into a 0 — 4000 Hz signal,
and a 4000 — 8000 Hz signal. If the lower range is more sensitive to tool wear, a ratio between the two
ranges can be calculated. If this ratio exceeds a certain pre-established value, it can be deducted that
the end of the tool life has been reached. This can also apply for a ratio between the signals recorded

from a fresh tool to that compared with a worn tool. Typical frequency domain features are shown in
Figure 3.8.
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Figure 3.8: Typical frequency domain features

One problem with frequency domain approaches is the fact that the dynamics of the measurement
hardware is not always fully understood. This not only applies to TCM applications but also to other
research topics in the area of machining that requires dynamic force measurements. This problem was
also identified by Warnecke and Siems [151]. The limitations and dynamics of measurement hardware
should always be kept in mind, and a Frequency Response Function (FRF) of the installed hardware
should preferably be available. The response of a force dynamometer is influenced by its clamping
condition, which cause it to experience non-linearities at relatively low frequencies. There also exist
some uncertainties when using these instruments, relating to their calibration and varying parameters.
A model for expressing the uncertainties when collecting cutting forces with a dynamometer was pro-
posed by Axinte et al. [152]. The identified properties might be responsible for the scatter of force
components often reported in the literature. An interesting study is also reported by Bahre ez al. [112]
to determine the natural frequencies of the machine tool components using the FEM. These are taken

into account for interpretation of the vibration / AE signal.

Choi and Kim [153] describe the use of the spectral energy from the PSD for both vibration and force
to identify different stages of wear in diamond tools. Lee et al. [154] investigated the correlation be-
tween the dynamic cutting force and tool wear. Two important frequencies are identified: The 1™ natu-
ral frequency of the tool holder and the frequency of chip formation. Normally, the tool holder natural
frequency will dominate the results of a dynamic analysis of the force signals. A rough estimation of
the frequency can be obtained by modelling it as a cantilever beam (refer to Chapter 5). This frequency
can be used as a feature for TCM and is unrelated to the chip formation frequency. The chip formation

frequency can be monitored if process stability problems are encountered.

C. Statistical processing
In the case of statistical features, signals are assumed to have a probabilistic distribution. Hence, the
signal is regarded as a random process. Generally, machining processes are non-stationary but are as-
sumed stationary for the short periods during which these features are calculated. Several statistical
features have been investigated for TCM and can be applied to machining operations. The main fea-
tures are those that describe the probability distribution of a random process (variance, standard devia-
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tion, skewness, kurtosis efc.), and coefficients of time series models. There are also various other mis-

cellaneous statistical features, such as cross-correlations, the coherence function and harmonic mean.

One useful approach is the use of Auto-Regressive (AR) and Auto-Regressive Moving Average
(ARMA) coefficients. AR coefficients computed for a signal represent the characteristic behaviour of
the signal. When the signal changes during the cutting operation as a result of tool wear, the model co-
efficients also change and can then be utilised to monitor the progressive tool wear. Hence, AR coeffi-
cients can also be used as features for pattern recognition [149]. Beak et al. [155] report the use of an
8-th order AR model for tool breakage detection in end milling. It was found that the AR approach is
somewhat more accurate than the frequency band energy method. Yao er al. [156,157] used the
ARMA method to decompose the dynamic cutting force signals and wear sensitive frequencies were

identified. This assisted to identify the importance of certain vibration modes with respect to tool wear
monitoring.

El-Wardany et al. [108] found that the instantaneous Ratio of Absolute Mean Value (RAMV) was use-
ful in eliminating false alarms that occur when monitoring drill wear and breakage in conjunction with
kurtosis and cepstrum analysis. They state that the kurtosis value is useful in identifying transients and
spontaneous events within vibration signals. Cepstrum analysis is used to identify a series of harmon-
ics or side bands in the power spectrum and to estimate their relative strength. Drill breakage consis-
tently caused a peak at the quefrency corresponding to one spindle revolution. The RAMV was used to
trigger the onset of kurtosis and cepstrum analysis.

Li et al. [109] found that the coherence function of two crossed accelerations can be used as an easy
and effective way to identify tool wear and chatter. They found that with progressive tool wear, the
autospectra of the two accelerations and their coherence function increase gradually in magnitude
around the first natural frequencies of the cross-bending vibration of the tool shank. As the tool ap-
proaches a severe wear stage, the peaks of the coherence function increase to values close to unity.
This was also proved in theory by the authors. However, there are two conditions to be fulfilled when
using this approach: The first is the careful selection of sensor locations on the tool shank. The second
is the high-speed computation required for real-time monitoring on the tool performance, as well as the
need for a fast FFT co-processor.

The use of Statistical Process Control (SPC) methods were also reported by some authors. Jun and Suh
[158] consider the X-bar and Exponentially Weighted Moving Average (EWMA) for tool breakage
detection in milling. Jennings and Drake [159] use statistical quality control charts for TCM. Different
statistical parameters are calculated and examples of one-, two- and three-variable control charts are
given.

D. Time-frequency domain
Several types of time-frequency domain analyses will be encountered in the literature. The most com-
mon time-frequency domain processing method in TCM applications is wavelet analysis. A compre-

hensive description of the advantages and disadvantages of wavelet analysis for TCM can be found in
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[6]. It is often stated that wavelets are used because they provide information about the localisation of

an event in the time as well as in the frequency domain. However, the time domain information is ei-
ther not used or is not important. Furthermore, a localisation of events in the time domain is rarely of
importance if the aim of the model is wear estimation. A breakage event, which will have a large local
effect in the time domain, can be better detected and reacted upon with pure time domain techniques.
Furthermore, wavelets are time variant and the exact contribution of a particular frequency at any
given time can never be determined accurately due to Heisenberg’s uncertainty principle.

The use of wavelet analysis is reported in several publications, such as [37,160-165]. A combination of
wavelet decomposition and NN is described by Hong et al. [161] as well as by Xiaoli et al. [162]. Lee
and Tarng [160] use the discrete wavelet transform for cutter breakage detection in milling and found
that the technique is reliable even under changing machining conditions. Scheffer [164] implemented
the approach suggested by Wu and Du [163] and showed how wavelets can be used as a digital filter to
enhance the reliability of features obtained from statistical analysis of the time waveform. It was found

that statistical processes of certain wavelet packets can yield features that correlate well with tool wear.

An advantage is that feature selection from wavelet packet analysis can be done automatically and
does not require a large amount of processing time. Luo [166] recently published results of a TCMS
using wavelet analysis of vibration signals. In this case the wavelet is used as a filter to enhance wear
sensitive features in the signals. However, the results are not compared with conventional digital filter-
ing. A comparative study was carried out during this research and is discussed in Chapter 6.

Another method of time-frequency analysis rarely found in the literature in the area of TCM is spec-
trograms. Spectrograms are more conventional time-frequency analysis methods and are very useful to
identify stationarity in the dynamic signal. They are also useful for detection of disturbances that may
be time-localised in signals. The use of the Choi-Williams time-frequency distribution for TCM during
multi-milling is described by Li and Tzeng [167]. Wear sensitive regions on the time-frequency distri-
bution are calculated and used as inputs to a NN for wear classification. Although not applied to TCM,
the use of the Choi-Williams time-frequency distribution for machining process monitoring is also de-
scribed by Gu ef al. [168]. It was shown that the method could be applied on-line for transient monitor-
ing and diagnosis, for example chatter detection. Several examples of spectrogram analysis will also be
found in Chapter 4. Although no features were derived from spectrograms, they should always be in-
cluded as an exploratory step before further processing can commence.

D. Other
There are also a few other techniques that cannot be categorised as either time or frequency domain.
One interesting technique is the use of entropy functions. An example is described by Fu et al. [169],
where the entropy of the frequency spectrum is calculated. The result is one value that is used for pat-
tern classification of different faults that may occur during machining. It is stated that the advantage is
the entropy function’s insensitivity towards new geometries of cutting. This might however be more
related to the characteristic of the FFT than the entropy function! Chungchoo and Saini [170] use the
total energy and total entropy of force signals in the frequency domain for TCM. It is stated that the
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entropy is more related to the distribution of energy in the spectrum, and is relatively insensitive to

changing machining parameters. However, the total energy was found to be the only parameter sensi-
tive to progressive tool wear. The entropy is often also used as a time domain feature, and also repre-
sents the energy contained within the wave, thus more or less the same as the signal rms.

3.4.3 Feature selection

It is often found in the literature that authors attempt to generate features that are sensitive to tool wear
but insensitive to changing machining parameters. The choice might depend on the particular applica-
tion, but the sensitivity of a feature towards machining conditions is not of utmost importance because
machining conditions can be included in a wear model. There are also other techniques for normalising
sensor data with respect to machining conditions, for instance the use of a theoretical model [171-174].
This is very useful if the machining conditions change so often that not enough data can be collected
for training or calibrating a model. Numerous techniques exist for selecting the most wear sensitive
features, or reducing the input feature matrix to a lower dimension. The main techniques (not necessar-
ily often applied in the area of TCM) are:

e Principal Component Analysis (PCA)

e Statistical Overlap Factor (SOF)

e QGenetic Algorithm (GA)

e Partial Least Squares (PLS)

e Automatic Relevance Determination (ARD)

e Analysis of Variance (ANOVA)

e Correlation Coefficient

e Simulation error calculations

Al-Habaibeh et al. [175] presented a TCMS for a parallel kinematics machine tool for high speed mill-
ing of titanium. An interesting approach to feature selection is employed, called Self-Learning Auto-
mated Sensors and Signal Processing Selection (ASPS). This approach is based on an on-line self-
learning methodology, whereby a certain feature will be selected automatically based on a correlation
with tool wear. A linear regression is performed on each feature in the sensory feature matrix to detect
the sensitivity of each feature with respect to tool wear. A very interesting cost analysis is then per-
formed to determine if the installation of a sensor justifies the costs involved.

Ruiz et al. [58] proposed the use of a discrimination power for feature selection in a TCM application.
The method is similar to that of the SOF. An automated version is proposed that also checks for linear
correlation between features. It is difficult to assess the success rate of the automated procedure be-
cause the experiments / simulations are not described in enough detail. Quan et al. [176] reported the
use of the correlation coefficient to assist in feature selection. Lee ef al. [177] describe the use of the
ANOVA to determine the best force ratio for TCM statistically. Several ratios between the three main
cutting forces are computed and the influence of controllable parameters (e.g. machining conditions)
on these ratios are investigated by means of the ANOVA technique. The use of ANOVA as well as the
correlation coefficient was also reported by Scheffer [164]. Du [33] describes the use of a blackboard
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system, which is a knowledge-based approach for feature selection and decision-making. An advan-

tage is the fact that a physical interpretation of feature can be linked to phenomena in the machining
operation. The method is also flexible, but suffers from the disadvantage of requiring a large amount of
data and expertise to establish the knowledge-based rules. Some of these techniques can also be auto-
mated for a faster implementation. In the opinion of the author, engineering judgement plays a vital
role in feature selection for TCM. Some of the techniques and their role in feature selection will be-
come apparent in the chapters that follow.

3.4.4 Wear model / Decision making

A. Time domain signature
The techniques used in commercial systems are often based on the time domain history (also called the
“part signature’ in industry). If the time domain history of a vibration sensor yields values outside the
limits from a reference cut, a decision is made with respect to the condition of the tool. Two methods

are used, namely static and dynamic limits. Examples of these methods can found in Appendix B.

B. Trending, threshold
Instead of investigating the complete time domain signal, a very simple decision making technique can
be based on trending features derived from the signals. When a certain feature, or a set of features,
reach certain pre-established set limits, an estimation of the tool condition is made. Threshold values
for the features can be established that can be related to a certain tool condition. Unfortunately, these
thresholds can only be determined through experiments, and problems are encountered under diverse
cutting conditions. Furthermore, the features typically exhibit high variance due to disturbance and

consequently cause false alarms. An example of trending and thresholds in shown in Figure 3.9.
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Figure 3.9: Thresholds

C. Neural networks

The use of NNs as a secondary, more sophisticated signal processing and decision making technique
have been investigated by many authors in various areas of manufacturing. This is also very true for
TCM [171-195]. A NN is usually used to model the input-output relationship between signal features
and tool wear. Due to the many complexities involved, NN modelling is ideal for TCM problems be-
cause it utilises a matrix of independent data simultaneously to make a classification. The extraction of

underlying information and the robustness towards distorted sensor signals are two of the most attrac-
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tive characteristics of NNs.

This also applies to sensor fusion schemes for TCM. Combining features from the vibration, AE, force
and current signals results in a model that can predict the tool condition with improved accuracy [56].
The successful implementation of NNs is dependent on the proper selection of the network structure,
as well as the availability of reliable training data. It is also important to make a distinction between
supervised and unsupervised network paradigms. Unsupervised NNs are trained with input data only
and are usually used for discrete classification of different stages of tool wear. Supervised NNs are

trained with input and output data and these are used for a continuous estimation of tool wear.

Because NNs form an integral part of this study, some comments on their formulation are necessary
here. A simple single neuron is shown in Figure 3.10 [196]. In this case, p is a scalar.
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Figure 3.10: Single neuron with bias

The value for a is determined by:
a=f(wp+b) (3.1)
where w is referred to as the weight value and b the bias value of the neuron. The function f is called

the activation function and many different activation functions for NNs exist. The most popular are the

linear, hardlimit, log-sigmoid, tan-sigmoid and radial basis function. Examples of activation functions
are shown in Figure 3.11.
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Figure 3.11: Common activation functions

The input to the neuron is normally a vector, and would then resemble the layout in Figure 3.12. The
weight would then also be a vector, and will be multiplied with the vector input. The neuron could now
be trained to reach a required value for a resulting from the input vector p. Adjusting the weight and
bias values with an unconstrained optimisation algorithm until the target is reached, will achieve neu-
ron training. Depending on the type of activation function, different optimisation algorithms are used.
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Figure 3.12: Vector input to a neuron [196]

For most NN modelling applications, more than one neuron are required to achieve proper training. An
example of a layer of neurons is shown Figure 3.13.
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Figure 3.13: A layer of neurons [196]

For simplicity, it is easier to refer to schematic figures representing a layer of neurons such as the illus-
tration in Figure 3.14. The dotted arrow depicts the layer of neurons that may consist of a number of
neurons. In this case, the network resembles a Single Layer Perceptron (SLP) network, due to the use
of the hardlimit activation function. SLPs are used for basic classification problems.

Figure 3.14: A layer of neurons with “hardlimit” activation functions
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Adaptive Linear Neuron Networks (ADELINES) are similar to perceptron networks, but these use the
linear activation function. ADELINEs are also useful for linear classification, which means that the
classification information must be linearly separable. Adaptive filtering can be achieved by adding a
Tapped Delay Line (TDL). The TDL cause the input to pass through a number of delays before it is
entered to the neuron, shown in Figure 3.15. If the activation function in this example is linear, it
represents an adaptive linear filter, which is used in many physical applications. The TDL can be in-
cluded in any network type, and such a network is called a Time Delay Neural Network (TDNN). The
function of a TDNN is to model a time series resulting from the inclusion of temporal (time) informa-
tion.

y n(t),, f ——»a(t)

p(t-3)

Figure 3.15: Neuron input with a TDL [196]

Neurons can also be combined in multiple layers, and in this way very complex non-linear models can
be created. These can be either Multilayer Perceptron (MLP) networks or Multilayer Feedforward (FF)
networks. An example of a network with multiple layers is shown in Figure 3.16. Normally, a non-
linear activation function should be used in the first layer and a linear neuron in the subsequent layers.
In the case of the FF networks, the backpropagation algorithm is used to train the networks. Back-
propagation can generally be described as an optimisation algorithm based on steepest gradient de-
scent. The algorithm is quick and efficient, but it is obvious that it can only be used if the gradient of
all the activation functions can be determined analytically. If not, for example when using perceptron
neurons, other training methods must be used. Delay elements can also be included in multilayer net-
works, for example the FF network with two input delays, depicted in Figure 3.17.

Figure 3.16: Multilayer FF network
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There are many variants on the basic NN formulation. One is the Radial Basis Function (RBF) net-
work. These networks may require more neurons but training is much faster. An RBF neuron is de-
picted in Figure 3.18. Note that the input of the neuron differs from the FF type. In this case, the input
is the vector distance between the input vector p and the weight vector w. The activation function is
called a RBF and resembles a normal distribution. The user normally selects the spread of the distribu-
tion.
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Figure 3.18: RBF neuron [196]

Recurrent NNs have feedback connections from their output to the input. There are various types of
recurrent NN that are useful for specific applications. A simple example of a multilayer network with
a feedback connection is shown in Figure 3.19a. Of course, more than one delay or feedback connec-
tion can be used. The Elman network type is quite interesting. Generally, it is a two-layer network with
feedback from the first layer output to the first layer input. This type of network can be used to learn
and model temporal patterns. A schematic example of an Elman type network is shown in Figure
3.19b. For further reading on the theory of NNs, the reader is referred to [196], which also lists many

other useful references.
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Figure 3.19: Recurrent networks: Feedback connection a) and Elman network b)

Dimla et al. [197] presented an overview of using NNs for TCM in 1997. Recently, Sick [6] presented
an overview of more than a decade of research of using NNs for tool wear monitoring in turning. This
exhaustive overview is the most comprehensive overview of NNs for tool wear monitoring up to date,
and includes more than 200 references. Thus, for more in-depth information regarding previous re-
search in using NNs for TCM, the reader is referred to [6]. A short overview of different NN para-
digms for TCM is presented here.

C.1 Unsupervised networks
There are two basic network paradigms for unsupervised classifications, namely Adaptive Resonance
Theory (ART) and the Self-Organising Map (SOM), also known as the Kohonen Feature Map (KFM).
There are many practical advantages for using unsupervised networks. One is the fact that the machin-
ing operation is not interrupted for wear measurements. There is also the advantage of practical im-
plementation if machining conditions change very often and appropriate training samples for super-
vised learning cannot be collected. Furthermore, the numerous different combinations of tool and
workpiece materials and geometries can make supervised learning impossible. It should be mentioned
that other methods exist to assist in handling tool and workpiece influences but these are subject to the
disadvantages of analytical and empirical models. Normally, unsupervised NNs are used to identify

discrete classes and cannot be used for a continuous estimation of tool wear.

ART is based on competitive learning, addressing the stability-plasticity dilemma (i.e. overfitting ver-
sus generalisation) of NNs. The main advantage is its ability to adapt to changing conditions. ART
networks also have self-stability and self-organisation capabilities. The SOM is actually a data-mining
method used to cluster multi-dimensional data automatically. A high dimensional feature matrix can be
displayed on a two-dimensional grid of neurons that are arranged in similar clusters. Clusters for new
and worn tools can be formed and these are used for automatic classification of the tool condition. A
SOM is schematically depicted in Figure 3.20 (also refer to Appendix H).
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Figure 3.20: Schematic representation of the SOM

Silva et al. [9] investigated the adaptability of the SOM and ART methods for tool wear monitoring
during turning with changing machining conditions. It was found that with appropriate training the
methods have enough adaptive capabilities to be employed in industrial applications. Govekar and
Grabec [198] used the SOM for drill wear classification, where the SOM is used as an empirical mod-
eller. It was found that the adaptability of the SOM and its ability to handle noisy data makes the tech-
nique feasible for on-line TCM. Jiaa and Dornfeld [199] used the SOM for prediction and detection of
tool wear during turning. Scheffer and Heyns [165,200] showed how a TCMS can be adaptable using
SOMs. Different network sizes were compared to define discrete classes of new and worn tools. Lar-
ger networks yielded more continuous results. The TCMS using SOMs was applied to monitoring syn-
thetic diamond tools for a turning operation in industry, and data mining by using the SOM was also
carried out to assist in feature selection. It was found that the SOM can be used for industrial applica-
tions, especially if tool wear measurements are not available. Examples from [165] are shown in
Figure 3.21 and Figure 3.22. If an accurate value of the tool wear is required, supervised networks can
be used, but these will require suitable training data.
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Figure 3.21: Data mining with SOM [165]
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Figure 3.22: Wear classification with SOM [165]

C.2 Supervised networks

The most common supervised NNs for TCM is the Multilayer Perceptron (MLP), Recurrent Neural
Network (RNN), Supervised Neuro-Fuzzy System (NFS-S), Time Delay Neural Network (TDNN),
Single Layer Perceptron (SLP) and the Radial Basis Function (RBF) network. The use of an SLP for
TCM is described by Dimla [178], using the perceptron learning rule. The SLP can only be used to
identify discrete classes of the tool condition. MLPs are usually trained with the backpropagation algo-
rithm, for example [101]. However, backpropagation should not always be the preferred choice be-
cause other methods are known that outperform this technique in terms of training time and generalisa-
tion capabilities. The size of the hidden layer of the MLP network should be optimised or at least in-
vestigated for performance [180,187]. Many contradictory statements about the use of MLP networks
can be found in the literature. One of the main problems is the choice of the number of input features,
size of the network and the number of training samples. In fact, the structure of an MLP network
should always be optimised for performance [6].

The use of FF networks with the backpropagation training rule are reported by authors such as Zhou et
al. [47], Das et al. [181,183] and Zawada-Tomkiewicz [193]. The sigmoid is often used as the activa-
tion function in the hidden layer and the linear function in the output layer. Cutting conditions can also
be included in FF networks. Lou and Lin [201] describe the use of a FF network using a Kalman filter
to avoid training problems encountered with backpropagation training for a TCM application. The
method is less sensitive to the initialisation values of the weights and biases that often cause conver-
gence problems with backpropagation. Lui and Altintas [189] report on the use of a FF network using
a combination of TDLs and feedback connections. Machining conditions are also included. It is stated
that the system was integrated into an industrial TCMS, but no results are reported, due to “the avail-
ability of robust, practical cutting force sensors...” [189]. It can thus be concluded that the system is

not operational in industry yet. However, the NN formulation is quite unique and is depicted in Figure
3.23.
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Figure 3.23: NN formulation with TDLs and feedback [189]

Recurrent NNs can be classified as dynamic systems due to the use of feedback connections. Gener-
ally, -monitoring a dynamic system such as cutting processes should be done through a dynamic model-
ling technique such as dynamic NN paradigms. Using recurrent networks, or even combining recurrent
networks with other NN types can achieve this. Luetzig et al. [182] reported the use of recurrent net-
works for TCM, using a two-layer perceptron in combination with a SOM and RBFs. Ghasempoor et
al. [8,34,192] reported the use of a non-linear observer technique based on NNs for TCM under vari-
able cutting conditions for estimating two wear modes. It was shown that the technique works quite
well for the range of cutting that was considered. One drawback was that the technique was only ap-
plied to a laboratory setup and no significant feature generation and selection is employed.

Neuro-Fuzzy Systems (NFS-8) attempts to combine the learning ability of NNs with the interpretation
ability of fuzzy logic. A TCMS using NFS-S can be generated almost automatically because the gener-
ated fuzzy rules can be learned by the NN. A combination of supervised and unsupervised training is
used for NFS-S. An in-process NFS-S system to monitor tool breakage were designed and imple-
mented successfully by Chen and Black [202], concentrating on end milling operations. Xiaoli et al.

[97] as well as Chunchoo and Saini [195] also propose some of the advantages of using a NFS-S for
TCM.

TDNNSs are also dynamic systems, for example the formulation shown in Figure 3.24 (also refer to
Figure 3.15). One advantage of TDNNs above RNNs is that stability problems are avoided. An inves-
tigation towards the inclusion of one and two phase delays for a TCM application was reported by
Venkatesh [179]. Different network sizes were also investigated, and it was found that the NNs with
temporal memory (time delays) generally perform better than those without memory. It is also stated

that new algorithms should be investigated for training (refer to Chapter 4 and Appendix D). Sick and
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Sicheneder [174] also describe the use of TDNNs for TCM in turning. The TDNN is compared to the
MLP and a significant improvement was found when using TDNNSs. In another paper, Sick e? al. [173]
compares the SOM, Fuzzy ART, NFS-S and MLP networks for wear estimation. The following critical
questions are used to evaluate the different NN paradigms [173]:

e Are the generalisation capabilities of the NN sufficient (test on previously unseen data)?

e What rate of correct classification can be achieved for different wear stages?

e Are the results repeatable (e.g. with a new initialisation)?
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Figure 3.24: TDLs for a TCM application [171]

In the case of [173], MLPs were found to yield the best results. It is stated however that the results can
be improved when using TDNNs, which is just a different formulation of MLPs. Such results are re-
ported in [172]. Furthermore, a very novel combined approach is suggested by Sick [171,172] to han-
dle the effect of machining parameters on TCM data. An empirical model is used to normalise the data
with respect to machining conditions before the data is entered to the NN. Thus, machining conditions
are not included within the NNs. This approach solves the problem of extrapolation of NN to classify
with previously unseen machining parameters. Although many authors test their NNs paradigms in
such a way, NNs cannot be expected to extrapolate in this way. The NNs should be tested with previ-
ously unseen data under the same conditions (hence interpolate instead of extrapolate — refer [6]). This
1s a huge problem because training and testing patterns for each condition must be supplied. However,
if the data can be normalised with respect to machining conditions, the NN only requires training for
the normalised condition. This was in effect achieved by Sick [6], and the method is shown diagram-
matically in Figure 3.25. A difficulty still lies with establishing an appropriate model to achieve this,
and in many cases it will still require many experiments to develop such a model. However, if an accu-
rate and reliable model is available, the combined approach presents the best solution. The model

should preferably be completely analytical to avoid excessive experimentation. An overview of com-
bined techniques for wear monitoring can be found in [203].

37



4-——@(-1iveJr-sity—ef-Pxeteria_etdg.Sgheﬁe_rgéFA-Z@éé—_3: Tool Condition Monitoring
chipping process

process __, <« disturbances
parameters |

! characteristic| | | signals i

muiti-sensor system i
analog pre-processing !
analog-to-digital conversion
T¥ ¥
process-specific
digital pre-processing
¥ ¥ ¥
l feature extraction
1 | ] pattern
neural networks considering
the position of a single pattern
in a pattern sequence

estimated § wear
| ‘mixture of experts' |
improved Jr estimation

Figure 3.25: TCM method including process model as a pre-processing step [6]

RBF networks are often preferred because of the convergence properties of the training algorithm. In
essence, convergence can be guaranteed and is often achieved much faster than with MLPs. However,
the accuracy of RBFs depends on the choice of the centres for the basis functions, and should be
treated with care. Pai et al. [191,194] reported the use of a Resource Allocation Network (RAN) for
TCM. The RAN is a RBF network with sequential learning. The RAN is compared to the MLP for
wear estimation during face milling. It was found that the RAN has faster learning ability but the MLP
is more robust.

In summary, it could be stated that many supervised NN paradigms yield good results for TCM appli-
cations, but dynamic paradigms are preferred. Despite a decade of research, an industrial TCMS using
the advantages of NNs does not exist. There are a number of possible reasons for this, one being the
fact that a laboratory setup differs significantly to an industrial situation. Furthermore, some of the
methods and results presented in the literature are not very realistic — for instance the training, valida-
tion and testing data sets are not treated properly. The reason for this can probably be contributed to
the expense of conducting tool life tests. A cutting test should be repeated at least three times under the
same conditions for adequate training, validation and testing. Unfortunately, this is rarely possible.

Also, in many cases, the NNs are not subjected to repeatability tests and methods of testing are ques-
tionable in some cases.

D. Fuzzy logic
Many authors [204-208] have investigated the use of fuzzy logic to classify tool wear. It has been
shown that fuzzy logic systems demonstrate great potential for use in intelligent manufacturing appli-
cations. While NN models cannot directly encode structured knowledge, fuzzy systems can directly
encode structured knowledge in a numerical framework. Additionally, fuzzy control systems are capa-
ble of estimating functions of systems with only a partial description of the systems’ behaviour. This is
very difficult to construct by simply using NNs.
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Du et al. [209] propose a very interesting method called transition fuzzy probability, which was ap-
plied to a boring process. This formulation can handle the uncertainty of process conditions. The rea-
son why the method performs well is because TCM has two uncertainties: that of occurrence and that
of appearance. The transition fuzzy probability solves this issue also through the use of temporal in-
formation, similar to dynamic NNs. The method was shown to outperform a backpropagation NN al-

though only minor details are given. It would be interesting to compare this method with dynamic
NN, such as TDNNs or the method proposed in Chapters 4 and 5.

Fu et al. [205] combined force, acceleration and AE in a fuzzy classifier for TCM during milling. Time
and frequency domain features were used, and it was found that combining the sensory information
achieved the best result, and this is done within the fuzzy classifier. Li and Elbestawi [206], Kuo [190]
and Kuo and Cohen [207,208] combine fuzzy modelling steps with NNs at different levels for TCM.

E. Other methods
There are also a number of other decision-making and modelling methods that have been applied to
TCM, and these include:
e Knowledge Based Expert Systems (KBES) [33,39].
e Pattern recognition algorithms [149].
e Dempster-Shafer theory of evidence [210].
e Hidden Markov Models [211,212].

Of these four approaches, only Hidden Markov Models have the potential to possibly outperform NNs

and fuzzy systems. However, not enough comparable research has been conducted in this area and is
certainly a worthwhile topic for future research.

3.5 Conclusion

In this chapter, the most important issues regarding sensor-based tool wear monitoring were discussed.
The advantages and disadvantages of various sensor systems were discussed with relevance to TCM.
Furthermore, an in-depth investigation of different signal processing methods for TCM were given and
these will be encountered in further chapters. The formulation of NNs and different NN paradigms
were discussed in detail and are especially relevant with respect to this research. From the overviews
in Chapters 2 and 3 it can be concluded that sensor-based monitoring using an Al modelling scheme
such as NN is the only way to achieve reliable and accurate TCM. Other approaches cannot achieve
the objectives of effective TCM stated in Chapter 1. In the remaining chapters, the focus is on the
development of a industrial TCMS using the best techniques available in a unique way.



