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Abstract

Let (Q2,%, 1) be a non-atomic probability space, 1 < p < oo and X be an
infinite dimensional Banach space. We shall prove that each of the inclusions

weak

A P Vv P * »
LP(p) ® X <= Lhygng(p, X) = DP(p) © X = L (p, X) — L(X7, L7(p))

is injective with norm < 1, and also that the inclusions

A Vv
LP(p) ® X = Lirong(p, X) = LP(p) ® X

are strict.

The Radon-Nikodym property and the Lewis-Radon-Nikodym prop-
erty for tensor norms will be introduced and discussed. In particular, it
will be shown that the Hilbertian tensor norm A introduced in (Grothen-
dieck (1956a), §3) has the Lewis-Radon-Nikodym property but does not
have the Radon-Nikodym property. However, we shall single out another
of Grothendieck’s natural tensor norms, namely the projective tensor norm
A, that does have the Radon-Nikodym property. Furthermore, it will be
shown that if « is a tensor norm with the Radon-Nikodym property, then
a/, \@ and /o have the property as well, but that in general a\ need not
have the property. However, the tensor norms -, and 7,\ will both be shown
to have the Lewis-Radon-Nikodym property.
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Chapter 1

Tensor products and
preliminaries

In this chapter we lay the foundations for the ensuing developments
that will prove the main results. After the historical introduction of tensor
products, we clarify the notation and introduce the preliminary results. In
the process, we describe the historical evolution of our central problems.

1.1 Historical introduction

Tensor products apparently appeared in Functional Analysis for the first time
during the late thirties in the work of Murray and John von Neumann on
Hilbert spaces. The systematic study of tensor products of Banach spaces
took off the ground in the 1940’s with the works of Dunford, Schatten, and
von Neumann.

The first systematic study of classes of norms on tensor products
of Banach spaces is due to Schatten who in 1943 continued his work in a
series of papers, some co-authored with von Neumann. Schatten organised
and extended the basic results of the early works in his influential mono-
graph “A Theory of Cross-Spaces” (Schatten (1950)). The most fascinating
applications of the theory dealt with operator ideals on Hilbert spaces, the
Hilbert-Schmidt operators and the Schatten-von Neumann classes. Also, the
greatest and least reasonable crossnorms made their debut appearance in
this monograph. The testimony borne by these early works is that tensor
products were developed as a tool for studying spaces of operators, the very
objective that impeded the very progress in the study of tensor products. In-
terpretations of tensor products other than as spaces of operators was given



little attention.

The real breakthrough in the study of tensor products of Banach
spaces came with the genius of Grothendieck in his “Résumé de la théorie
métrique des produits tensoriels topologiques”submitted in 1954 and pub-
lished in 1956 in the Bulletin of the Mathematical Society of Sdo Paulo
(Grothendieck (1956a)). Grothendieck wrote the Résumé (as this paper later
came to be called) independently of Schatten’s work. This paper deeply in-
fluenced the course of Functional Analysis in that it demonstrated enormous
possibilities for the using of tensor products in Banach space theory and
anticipated the study of Banach spaces in terms of their finite dimensional
subspaces - the so-called the ‘local’ theory - which has substantially enriched
our understanding of Banach spaces. A great deal of the more elementary
aspects of Grothendieck’s theory were known to Schatten, but he was not
aware of the important role of the finite dimensional behaviour of tensor
norms. He, therefore, did not succeed in developing a useful duality theory
for tensor products of general Banach spaces. However, the idea of ideals
of operators was always apparent in the study of tensor products in both
Schatten’s and Grothendieck’s works.

More attention was given to the Résumé in 1968 through the fa-
mous paper “Absolutely summing operators in Ly-spaces and their applice-
tions” (Lindenstrauss and Pelczynski (1968)) which presented Grothendieck’s
fundamental theorem, the main result of the Résumé, as an inequality con-
cerning n X n matrices and Hilbert spaces. Various applications were given,
mainly on the class of absolutely p-summing operators, without using tensor
products. This approach incredibly revived the Banach space theory which
was deemed almost complete by certain people in the middle of the sixties.
Most important results today trace their roots back to the Résumé, includ-
ing many classical results which “... are already contained in Grothendieck’s
paper, although sometimes in a hidden way” (Defant and Floret (1993), In-
troduction, page 1, 3rd paragraph, lines 11 and 12).

Going along with Grothendieck in 1956, call a norm on a tensor
product X ® Y a tensor norm if it arises as a special case of a method for
norming X ® Y for every pair of Banach spaces X and Y. The excellent ex-
amples of such tensor norms are the greatest and least reasonable crossnorms.
The norm on L}, (4, X) clearly comes from a tensor norm on L'(u) ® X.
Kwapien showed in 1972 that for 1 < p < oc there is no tensor norm such
that for all 4 and X the norm on L% .. (1, X) comes from a tensor norm.
In particular, the L% . (1, X) norm is not the completion of L?(u) ® X
(1 < p < oo) under either the greatest or the least reasonable crossnorms.
The question arising out of this setup is:



e For1 < p < 0o and for a Banach space X, how is L% .. (1, X) related
to the completion of L () ® X under the Grothendieck’s natural tensor
norms A and V¢

This question is central to our later investigation.

In the case where Q = N and p is a counting measure on N, LP(u)
is a classical sequence space 7, 1 < p < oo, and the above question has
been addressed by Grothendieck under the greatest (called the projective)
and the least (called the injective) tensor norms. The presentation appears
in the article, “Sur certaines classes de suites dans les espaces de Banach, et
le théoréme de Dvoretzky-Rogers” contained in the same volume of Boletin
de Sociedade de Matemética de Sdo Paulo in which the Résumé appeared
(Grothendieck (1956b)), namely:

e Let X be a Banach space and 1 < p < oco. Then

A ) \'
PROX B (X)X,

where =’ denotes a ‘canonical inclusion map’. Both inclusions have
norm < 1, and are injective.

As discovered by D.R.Lewis and C.Stegall (Diestel and Uhl Jr (1977), I11.1.8)
the space ¢! plays an important role in the study of the Radon-Nikodym
property. The central role of this space in the Radon-Nikodym theory was
exploited further by D.R. Lewis by embarking on an intensive study of ®
norms with the Radon-Nikodym property (Lewis (1976)). This property, as
observed in (Defant and Floret (1993), 1st paragraph on page 430), paved
the way towards the appreciation of the full duality theory of the projective
and injective tensor norms, namely the description of the conditions under

which X* & Y* = (X ® Y)* holds, where A and V are the notations for the
projective and injective ® norms, respectively. While our hat is off to these
developments and their role in the Radon-Nikodym theory, a question that
is our central concern is:

o Can we abstract the properties enjoyed by the space ', namely the
Radon-Nikodym property and the approzimation property, and consider
any spaces that enjoy the same properties to study the Radon-Nikodym
property of ® norms?

We shall address this question affirmatively in the sequel.



1.2 Notation and tensor products

Let X and Y be infinite dimensional real or complex Banach spaces. Then
X* denotes the Banach space dual of X and By is the closed unit ball of
X. The space of all continuous (or bounded) linear operators from X to ¥
is denoted by £(X,Y). If Z is another infinite dimensional Banach space,
then B(X,Y;Z) denotes the space of all continuous (or bounded) bilinear
mappings from X x Y to Z.

Let T € L(X,Y) and ¢ € B(X,Y; Z). Then

7| := sup{||Tz|| : z € Bx},
the operator norm, and

1]l := sup{li¢(z, y)|| : = € Bx,y € B},

where “:=’ is used for a definition.

The topology o(X*,X) on X* is denoted by w*. Hence we denote
by Ky (X*,Y) the subspace of £L(X*,Y) consisting of all the compact oper-
ators from X* to Y that are w*-to-weakly continuous and equipped with the
operator norm. All the spaces defined above are Banach spaces.

We shall not give any formal definition of the algebraic tensor product
X ®Y of X and Y: for the formal definition see, for instance, (Defant and
Floret (1993), Chapter I, Greub (1978), Chapter I, Jarchow (1981), page 22).

A norm @ on X ® Y is called a reasonable crossnorm if it satisfies
the following conditions:

(a) a(z®y) < ||z||lly|]| forallz € X and y € Y,
(b) forz* € X* and y* € Y*, 2* Q y* € (X ® Y, )* and

lz* ® y* | xev,a < llz*Hly*]l-

If « is a reasonable crossnorm on X ®Y, then « satisfies the following
conditions:

() a(z@y) = |lzllllyll,
(b) for z* € X* and y* € Y*,

le* ® " ll(xev,e)r = Il Iyl

Two reasonable crossnorms are of particular interest: the least rea-
sonable crossnorm and the greatest reasonable crossnorm. Let us describe
them.

Let v € X ® Y. Define |u|, by

|uly »= sup{|(z* ® y*)(u)| : 2" € Bx-,y" € By-}.

4



Then |.|, is a norm. In addition, |.|, is a reasonable crossnorm and is
the least reasonable crossnorm, in the sense that, if « is any other reasonable

crossnorm on X ® Y, then |uly < a(u) forallu € X ® Y. Denote by X ®Y
the completion of the normed space (X ®Y, |.|y), called the injective tensor
product of X and Y.

Alternatively, |.|, can be described as follows: with B(X,Y) :=
B(X,Y;C), C the Banach space of complex numbers, each member of X @ Y
acts naturally as a continuous bilinear functional on X* ® Y*. Moreover, if
u € X ®Y is viewed as a member of B(X*,Y™*), then |uly = |ju||. Thus there

v
is a natural isometry of X ® Y into B(X*, Y™).
Define |.|, on X ® Y by

|u|a == sup{|¢(u)| : ¢ € B(X,Y), ||| < 1}

foru € X ® Y. Then |.| is a norm. It is a reasonable crossnorm and is
the greatest reasonable crossnorm, in the sense that, if ¢ is any reasonable
crossnorm on X ® Y, then a(u) < |uls for all w € X ® Y. In particular, for
the following result see (Diestel and Uhl Jr (1977), VIIL1.8):

Proposition 1.2.1. Letu € X @Y. Then |u|y < |ula.
\%

Proof. X* ® Y* is isometric to a closed subspace of B(X**,Y™*), so we may
write

12" @ y™{lsoxe v==) = llz"lly" I
Hence the restriction £* ® 4*|p(x,v) to X ® Y satisfies

llz* ® ¥*|xevllsox,y) < llz* Hly* -
Therefore, if u € X ® Y, then

uh, = sup{la® ®y'(W)|: 3" € Bx-,y" € By}

sup{|¢(u)| : ¢ € B(X,Y), [|¢]] < 1}

|-

IA

O

Denote by X ® Y the completion of X ® Y under |.|5 and call it the
projective tensor product of X and Y. Next, we describe a more convenient
alternative version of |.|4.

Let ue X ® Y. Then

uly = inf (> il 1z € X,y € Viu=) z ©u}.

i<n i<n



The proof of this description emphasizes once more the fact that |.|, is greater
than all crossnorms on X ® Y (Diestel and Uhl Jr (1977), page 227, Diestel
et al. (2002a), Diestel et al. (2002b)).

Furthermore, for u € X é) Y and € > 0, there exist sequences (z,) in
X and (y,) in Y such that limy, e |Zn]] = 0 = limpsoo [Ynll, v =D 02, Tn ®
Yn in |.|s norm and |uls < 327 | ||zal|llyn]] < |ula+e See (Diestel and Uhl Jr
(1977), page 227) for the proof.

A
In fact, if we allow representations of ‘infinite length’ foru € X ® Y,
ie. u=3 > Tp® Yy, and define

ap(u) := inf{z EAN Zﬂ?f ® yi},

where the infimum is taken over all finite representations u = » ;. Z; ® y;

A
ofue X®Y,and

o 0 A
oo () = 10f{D> _zallllvnll :u =D @y € X @Y},
n=1 n=1

then we have |u|s = ao(u), since it can be shown that

luln < @oo(u) < ap(u),

forallu e X <§) Y. In fact, it is enough if u is taken from (X ® Y, |.|n). The
infinite representation can be consulted in (Diestel et al. (2002a), Diestel
et al. (2002b)). We shall need the following theorem:

A
Theorem 1.2.2. (The Universal Mapping Property of ®) For any Banach
A
spaces X, Y and Z, the space L(X @ Y,Z) of all bounded linear operators

A
from X @ Y to Z is isometrically isomorphic to the space B(X,Y; Z) of all
bounded bilinear mappings taking X x Y to Z. The natural correspondence
establishing this isometric isomorphism is given by

A
veELXQY,Z) 6 ¢ € B(X,Y; Z)
via
v(z ®y) := ¢(z,y).

A
In particular, (X ® Y)* is the Banach space dual B(X,Y) of continuous
bilinear functionals on X x Y.



The proof can be found in (Diestel and Uhl Jr (1977), VIII.2.1, Di-
estel et al. (1997)).

A tensor norm (® norm, for short) « is a method of ascribing to any
pair (E, F) of finite dimensional Banach spaces (over the scalar field R or C)
a reasonable crossnorm « for E ® F in such a way that should E, F,G, H
be finite dimensional Banach spaces and u : E — F and v : G — H be
bounded linear operators, then u® v: E® G — F ® H has bound

fu® vl oll-

crdarsm S el
This inequality is referred to as the uniform crossnorm property of c.

This definition extends to infinite dimensional Banach spaces. In
particular, |.|y and |.|5 are tensor norms.

Given vector spaces G and H, the transposition mapt: G® H —
H ® G is the isomorphism generated by t(g® h) = h®g. fu e G® H,
denote by *u the image t(u) € H ® G.

Let o be a tensor norm. We define the ¢ranspose o of « as follows:
If E, F are any finite dimensional Banach spaces, then for u € E® F

It can be proved that, if o is a tensor norm, then so, too, is e and !(*a) = «
(Diestel et al. (1997), Chapter I, §2). We shall write %« for (*a).

Due to the finite dimensional nature of the spaces £ and F, EQ F'is
algebraically identical to (E* é F*)y*. If ais a tensor norm and foru € EQ F'
we define a*(u) by

a* (u) = “u“(E*§F-)n7

then it can be shown that o* is also a tensor norm and (a*)* = a. We
shall write o** for (*)*. Furthermore, (*a)* = *(a*) (Diestel et al. (1997),
Chapter I, §2).

The contragradient of a tensor norm « is defined by
&= t(a") = (),

and this is also a tensor norm.

Given tensor norms « and 3, we define o < 3 to mean that a(u) <
B(u) for any « € E® F and for any finite dimensional Banach spaces F and
F.

It is easily established that for any tensor norms « and 8, a < 8 if
and only if o < B (respectively, 8* < o) (Diestel et al. (1997), Chapter I,
§2).



Since for any tensor norms « and 3, @ < 8 if and only if 8* < o* and

a** = q, it follows that the tensor norms constitute a complete lattice. So
we can naturally build new tensor norms from a given tensor norm c. To do
this, we need the following proposition (Diestel et al. (1997), Chapter II, §3):
F denotes the class of all finite dimensional Banach spaces over the scalar
field K.

Proposition 1.2.3. Let a be a tensor norm. Then the following statements
regarding o are equivalent:

1.

Gwen E,F,G € F with F C E, the natural inclusion F (%) G—E (%) G
1§ an sometry.

Given E,F,G € F with F C E, the canonical map E ?8) G —
(E/F) ®Gisa quotient map.

Given E,F,G € F with F C E, every o* form on F x G extends to an
o* form on E X G having the same o* norm.

Given E,F,G € F with F C E, every o form on E x G that vanishes
on F x G induces an a form on (E/F) x G having the same a norm.
Should o enjoy any (and, hence, all) of 1 through 4, then « also enjoys
the following properties:

Given Banach spaces XY, Z with Y @ closed linear subspace of X, the
natural inclusion Y @ Z = X ® Z is an isometry.

Given Banach spaces X,Y, 7 withY a closed linear subspace of X, the
canonical map X % Z — (X]Y) ?8) Z is a quotient map.

Given Banach spaces X,Y,Z with Y a closed linear subspace of X,

every o form onY x Z extends to an o* form on X X Z having the
same ¢ norm.

Given Banach spaces X,Y,Z with Y a closed linear subspace of X,
every o form on X x Z that vanishes on Y x Z induces an « form on
(X/Y) x Z of the same & norm.

Let « be a tensor norm. We say « is left injective if the conditions of

Proposition 1.2.3 hold for «; o is said to be right injective if 'v is left injective;
« is injective if it is both left and right injective. We say « is left projective

LV
if o* is left injective; o is right projective if o* is right injective, that is , if c
is left injective; o is projective if it is both left and right projective.

8



Define
/o :=sup{B: Bis a ® norm < «, Sleft injective}

o\ :=sup{B : Bis a® norm < «, Bright injective}
\a :=inf{8 : Bis a ® norm > a, Bleft projective}
o/ :=inf{f : fis a ® norm > o, Bright projective}.

For a tensor norm ¢, the notations /«, o\, \« and ¢/ are called, respectively,
the left injective, right injective, left projective and right projective hulls of
Q.

We define

fe\ = (fa)\ = /(@)

called the injective hull of the tensor norm ¢, and

\e/ == (\)/ =\(e/),

called the projective hull of the tensor norm o.

1.3 Other preliminary results

We shall also need some standard results of Banach space theory and vector
measures. Firstly, we put on record the following definitions for our later
use.

A Banach space X is said to be metrically accessible (or has the
metric approzimation property) if for any finite dimensional subspace E of
X and any € > 0 there is a finite rank operator u : X — X with norm
< 1+ ¢ and such that for any z € E, ||z — uz|| < e

A Banach space is said to be accessible (or has the approzimation
property) if given a compact set K in X and an € > 0, there is a finite rank
bounded linear operator u : X — X such that for any z € K, ||z —uz| <€

The second definition is weaker than the first one and will be indis-
pensable in the formulation of one of our main results.

Let (Q, %, 1) be a complete positive finite measure space. A function
f:Q — X is called simple if there are disjoint members Ey,..., E, of X
and vectors ry,...,7, in X for which f(w) = 31, xg, (w)z; holds for all
w € 2, where x5 denotes the characteristic function of the set E C 2. Such
functions are measurable. A function f : ) — X is said to be y-measurable
(or strongly measurable) if there exists a sequence (f,) of simple functions
such that limp—eo fn = f p-almost everywhere. It must be noted that



measurable functions are stable under sums, scalar multiples and pointwise
almost everywhere convergence. A function f : & — X is said to be scalarly
p-measurable (or weakly measurable) if z* f is y-measurable for each z* € X*.

The proof of the next theorem can be found in (Diestel (1984), page
25, Diestel and Uhl Jr (1977), page 42).

Theorem 1.3.1. (Pettis Measurability Theorem) A function f : Q@ — X s
u-measurable if and only if f is scalarly p-measurable and there ezists an
E € ¥ with u(E) = 0 such that f(Q\E) is a norm-separable subset of X.

Even stronger results than the above theorem appear in its proof and
these are crystallized in the next two corollaries.

Corollary 1.3.2. A function f : @ — X is u-measurable if and only if |
is the p-almost everywhere uniform limit of a sequence of countably valued
u-measurable functions.

A set T' C X* is said to be norming if

MWw@q,{fen,

forall z € X.

Corollary 1.3.3. A pu-essentially separably valued function f:Q — X is
p-measurable if there ezists a norming set I C X* such that the numerical
function z* f is u-measurable for each z* € I'.

Let f : @ — X be a simple function, say, f(w) = > i, x&:(W)Ti-

| fe)dute ZMEDE)%

for all £ € ¥. A u - measurable functlon f: Q — X is called Bochner
integrable if there exists a sequence of simple functions (f,) such that

1m/wm £ (@) ldulw) = 0.

In this case, [, f(w)du(w) is defined for each E € ¥ by

ff w)dp(w) := lim fn() u(w).

N—00

Then

Theorem 1.3.4. (Bochner Characterzzatzon of Integrable Functions) A p-
measurable function f:Q — X is Bochner integrable if and only if

wawwm<w.

10



The proof can be consulted in (Diestel and Uhl Jr (1977), page 45,
Diestel (1984), page 26). Although our interest is in the case 1 < p < oc,
our next consideration holds for 1 < p < oc. We define

Phvenglps X) 1= {7+ @ — X prmeasurable s [ [[f(@)Pdu) < oo},
193

in the case 1 < p < o0, and

Lw

strong

(1, X) :={f : @ — X p-measurable : f is u—essentially bounded},

normed, respectively, by

”f“rstmng(ux (/ 1 (W) |Pdu( w)) < 00

and

1l

When X is the scalar field, we denote the above Banach spaces, respectively,
by LP(p) and L*®(u). We write

strong(“'X = €58 Sup{”f(w)“ w e Q} < 00.

LP

weak

(1, X) := {f : @ — X p-measurable : z*f € LP(p) for allz” € X},
for 1 < p< oo, and

L2 (4, X) :={f : @ — X p-measurable : z*f € L>(u)for allz* € X"},
normed, respectively, by

1llzz_ oy = sup{lle" Fllisg : 2° € By} < oo,

and

17 lzee

weak (X)) " sup{||z* fllze(u : ** € Bx+} < o0.
The finiteness of ||.||z» L (:X) and ||. [|Ioo LX) follow from the Closed Graph
weak

Theorem: we will justify this claim for our case of interest, namely 1 < p < 00,
later on in the proof of Theorem 2.2.1.

Let K be a compact Hausdorff space. We define C(K, X) to be the
Banach space of all X-valued continuous functions on K equipped with the
supremum norm; namely, if f € C(K, X) then we define

171l == sup{|| F(K)|| : k € K}

11



If X =K, the scalar field R or C, then C(K,X) = C(K). The proof of the
next result appears in (Diestel et al. (1997), Diestel et al. (2002a), Diestel
et al. (2002b)).

Theorem 1.3.5. Let X be a Banach space, K a compact Hausdorff space
and (2,3, 1) a finite measure space. Then

1. C(K) ® X = C(K, X) isometrically isomorphically.
A
2. LY (p) ® X = L, (1, X) isometrically isomorphically.

The next result is a consequence of the first part of the preceding
theorem.

Corollary 1.3.6. If K and S are compact Housdorff spaces, then
C(K) & C(S) = C(K x S).

One naturally asks whether we can interchange the tensor norms in
Theorem 1.3.5 above. This can be done with some care.

Theorem 1.3.7. Let X be a Banach space, K and S compact Hausdorff
spaces and (0, %, 1) a finite measure space. Then

\
1. LY(p) ® X is isometrically isomorphic to the completion of P'(u, X),
the space of all Pettis integrable functions f : @ — X equipped with
the norm

| fllp, = sup /Q|IE*f|dp,.

fle*fj<t

2. A continuous function f : K x S — K belongs to C(K) QA@ C(S) if and
only if there are continuous functions g : K — £ and h : S — €2
such that f(z,y) =< g(z),h(y) >, (z,y) € K x S, where <,> denotes
the inner product of £2.

The proof of the first part appears in (Diestel and Uhl Jr (1977),
VIII.1.5) while the proof of the second part appears in (Defant and Floret
(1993), 11.14.5. Corollary 2).

We hasten to mention that by the Uniform Boundedness Theorem
the next result is seen to hold. The notation ‘<’ will be used for a ‘canonical
inclusion map’.

Theorem 1.3.8. Let (), X, 1) be a complete finite measure space. Then
L?uc:zak(ﬂaX) = L??mng(qu)

wsometrically isomorphically.

12



Proof Indeed, if f € L2, (1, X), then f is p-measurable, and so Pettis

weak
Measurability Theorem 1.3.1 assures us that there exists an E € X with

p(E) = 0 such that f(Q\ E) is a norm-separable subset of X. Set
Aps =[O\ E).
Then
sup{|z* f(w)|: f(w) € App} <0
for any z* € X*. It follows from the Uniform Boundedness Theorem that
sup{|f(w)|| : f(w) € Agp} < oo.

Therefore,
ess-sup{ || f(w)]| : w € Q} < o0,

and 50, f € Lg5on.(1; X). We have shown that
L:::zak ()uaX) — L;.frorlg(l‘:X)

is a bounded inclusion of norm < 1.
On the other hand, if f € L3, (1, X), then there is an M > 0 such
that || f(w)|| £ M p-a.e.. That is,

sup{[* f(w)| : o* € By} < M

p-a.e.. Hence |z*f(w)] < M p-a.e. for each z* € Bx-, and so there is a
K > 0 such that |z* f(w)] < K for all z* € X* p-a.e.. It follows that

ess-sup{|z* f(w)| : w € Q} < 0.
That is, z* f(.) € L>(u) for each z* € X* so that f € L, (1, X). Therefore
L rong (1t X) = Lnaic(p, X)
is an inclusion of norm < 1. This shows that
Lo (1 X) = Lgrong (11, X)

isomorphically. Furthermore,

”f“Lg?rong(u,X) = ess- Sup{”f(w)ll rw e Q}
= ess-sup sup |r*f(w)]
well {jz+{|<1
= sup ess-sup|z*f(w)]
lefi<t weo
= sup Hfﬂ*f(-)”L"“(u)
|| <1

- “f“Lg;)eak(ﬂ:X)'

Hence, the equality of the sets holds isometrically isomorphically as
claimed. O

13



In particular, the above theorem holds for a discrete measure p on
the set 2 =N.
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Chapter 2

Vector-valued sequence and
function spaces

2.1 Tensoring with sequence spaces

Let Q@ = N, the set of all positive integers. Then a sequence (z;); of mem-
bers of X is said to be p-th power summable (or strongly p-summable) if
YillzillP < co. Then we write (2;); € fyrong(X), in which case we define the
Lirong (X )-norm of (x;); by

l(@)ille (x):= (Z ||:v,-|l”)xl7.

strong
[

This norm makes £&,,.(X) a Banach space. A sequence (z;); of members
of X is said to be scalarly p-th power summable or (weakly p-summable if
for each z* € X*, the scalar sequence (z*(z;)); belongs to . By the Closed

Graph Theorem, the linear map
¥ (2 (z))i
from X* to £ is continuous. Consequently the quantity

@kl 0 = sup{(} o ()P)7 « 7 < 1} < oo,

and so it defines a norm on the space £, (X) of all weakly p-summable
sequences from X. This norm makes £, (X) a Banach space.

The space £ o,,(X) is a linear subspace of £, ,, (X) with a continuous
inclusion of norm one. These spaces are equal precisely when X is finite
dimensional, by a Weak Dvoretzky-Rogers Theorem. Otherwise the inclusion

1s strict.



Let 1 < p < oo and define p/ by J + ; := 1. Then

strong(X ) strong(X *) (isometrica]ly),

where for a member (z}); of @é’;m“g(X *) the evaluation at a member (z;); of

CEirong(X ) is given by
1
a series that is clearly absolutely convergent.

As an example of a strict inclusion of £5,,,,(X) into £, (X), let X
be ¢ (vespectively co if p = 1). Then the standard unit vector basis can be
seen to be a weakly p-summable sequence in 7 (respectively ¢y) that is not
strongly p-summable.

In this section we shall prove the following setwise inequality which
forms an important part of the developments in (Diestel et al. (1997), Grothen-
dieck (1956b)) and whose vector-valued function spaces analogue is the sub-
ject of the next section:

PREX L (X))o PR X o £ (X) o LX,P),

strong
for 1 < p < oo, where ‘>’ denotes a ‘canonical inclusion map’. Bach
inclusion is injective and has norm < 1 with the exception of the last one
which will be shown to be an isometric isomorphism. The inclusions

7 P o

1% ® X o Lrong(X) = P B X
are strict.

Proposition 2.1.1. Let 1 < p < oo and X be Banach space. Define p' by
l——i—i = 1. Then the space L(£7, X) of all bounded linear operators from & to

X zs isometrically isomorphic to the space &, . (X) of all scalarly p-th power
summable sequences of vectors in X, equipped with the norm ||.|| £ WX

Proof. Let 1 < p < oo and let (z;); € £ ., (X). Define the operator
u: X* —
u(z*) = (2*(z;)):-

Then the adjoint u* of u defines a bounded linear operator from e to X**.
However, for e; denoting the j-th unit coordinate vector in % we have that
u*e; = z;. For, if z* € X*, then

' (2;) = u(z*); = u’ (&) (27),

16



and so u*(e;) = z; j. Since u*(e;) lies in X for each j and the linear span of the
e;’s is dense in #7, we have that u*(¢”') C X. Hence, each weakly p- -summable
sequence (z;); of vectors in X determines an operator u* P — X by
u*e; = ;.

Conversely, let v : # — X be a bounded linear operator with
v(e;) := z;. Suppose that ();); € ¢ and (u;); € Beo. Then

1Y wdzdl = llo( Y el

i=m+1 t=m-+1

< il D Meillp = 0,

i=n41

as m,n — co. From this and the Bounded Multiplier Test, it follows that
>~ Aiz; is an unconditionally convergent series in X. Moreover, for z* € X*,
the unconditional summability of the sequence (\;z;); for each ()\) € @"
ensures that (\iz*(z;)); is absolutely summable for each (\;); € #', and in
this way, the membership of (z*(z;)); in  is defined for each z* € X*. That
is, each v : ' — X determines a weakly p-summable sequence (z;)i of
vectors in X by v(e;) = z;. This completes the proof for 1 < p < co.

Next we address the case p = oo. Precisely, we shall show that
L0, X) is isometrically isomorphic to £2, ,(X). We have already shown
in Theorem 1.3.8 that, by the Uniform Boundedness Theorem . (X) =
Sorong (X)) 1sometr1cally isomorphically. Now let (z;); € (X). Consider
the map

weak

u: Xt — %
defined by
u(z*) = (< z*,z; >), V' e X"

Then u is well-defined. The adjoint u* of u is a bounded linear operator
from ¢£°* (L + 1 :=1) with values in X**. Let v := u*|sn. Let us show that
’U(Cj) = T;. Take z* € X*. Then

z*(z;) = u(z");
= u*(g;)(z")
= v(e;)(z").
This is the case for all z* € X*, so v(e;) = z;. Since the linear span of
the e;’s is dense in £' and v(e;) € X for each j, it follows that v(¢') C X.
Therefore, each weak ¢>°-sequence (z;); of vectors in X ; that is, a sequence

(z:) C X such that (z*(z;)); € £*° for each 2* € X*¥, determmeb an operator
v: 8 — X byv(e;) = x;.

17



Conversely, let w : ' — X be a bounded linear operator defined by
w(e;) := x; for each j. Then proceeding similarly to the case of a finite p,
let (X\;) € €' and (u;) € Beo. Then

1Y wahmill = fw( D mwhe)l

i=m+1 i=m+1

lwlll Y- wdieidla

i=m+1
n n

= Jwll (D2 lmlAd) < Jwll( Y XD

1=m+1 i=m—+1

= Jlwlll > Aes

i=m+1

IA

|g| — 0,

as m,n — co. By the Bounded Multiplier Test, Y, A;z; converges uncon-
ditionally in X, and so for z* € X*, the sequence (X;z*(z;)); is absolutely
summable for each ();) € £'. This determines, by duality, the membership
of (z*(z;)); in £ for every z* in X*. Therefore, each operator w: £' — X
determines a weak (*-sequence (x;); of vectors in X by w(e;) = z;. O

For some examples of strict inclusions, let 1 < p < co. Then we have
the isometric relations &2 ® X = F(&, X) — L(", X) = £, (X) so that

weak

POX P (X),

isometrically. This inclusion is generally strict as can be seen, for instance,
by considering 1 < p < oo. Then the metric accessibility of # ensures that

P =K, ),

the compact operators on ', while id,, is doubtlessly a non-compact mem-
ber of
L(gp’, EP’) = Efveak (gp'))

\Y
by Proposition 2.1.1. For p = oo, note that sequences that belong to £*° ® X
all have relatively compact ranges, while there are sequences in £, (X) =
£3rong (X)) that do not have relatively compact ranges for dim X = oo.
Write

Co weak (X)

18



for the closed subspace of £2,,(X) = £3,ng(X) consisting of all sequences
(x,) in X with lim, ,o, < z*, 2, >= 0 for all z* € X*. Such sequences are

said to be weakly null sequences in X. Also, coweax(X) has a closed subspace

Ci strong (X )

of all sequences () in X with limp_, |2, || = 0. Such sequences are said
to be strongly null sequences in X.

By the Schur’s #! Theorem (Diestel et al. (1995), page 6), it can
happen that coweak(X) = Costrong(X) for infinite dimensional spaces X, in
particular when X = ¢'. This phenomenon is, however, not typical since
the unit vector basis in #7 (1 < p < 00) is weakly null but not strongly null.
However, we have the following fact:

Proposition 2.1.2. Let X be a Banach space. Then

\
cp ® X =c stmng(X)
wsometrically.

Proof. Let (A1), ..., (A}); € ¢y and zy,...,Z, € X, then the natural inclu-
sion

0 ®X — E20,(X) : Y _(M)i@ i O M)

j<n j<n

clearly takes values in Cpstrong(X) and satisfies

D _()i®zllv = sup | Y y((A)i)z" ()]

j<n YEB,1 ,2*E€EBx j<n

= sup YD 7" (z;)(M)y)
Y€Bp e €Bx o,

= s (o @)l

x*€Bxx ]S'"r

= 1O Mazs)ille, x)

j<n

— Jo ).
= H(Z)\i%)z‘leggm,,g(m

igtn

= “(Z A-g"’l‘.j)i“Costron.g(x)'

ign
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A scalarly summable sequence in a Banach space need not be strongly
summable. For instance, consider the sequence of unit coordinate vectors in
co- For any z* € (cp)* = £' with z* = (X;);, say, we have

D Izt (el =D 1Al < oo,
J J
so that (e;); € ¢}

! ac(co). But for each j, |le;ll =1 and so (e;); ¢ L3trong (Co)-

If p’ = oo, the proof given above for a finite p’ does not apply because
the linear span of ‘the e;’s is not dense in £*°. However, we can restrict
attention to the subspace ¢y of £*° and obtain the following:

Proposition 2.1.3. Let p = 1. Then the space L(cy, X) of bounded linear
operators from ¢y to X is isometrically isomorphic to the space of scalarly
suminable sequences of vectors in X, where an operator u € L(cy, X) corre-
sponds to the sequence (z;); € €1, (X) by means of the formula u(e;) = z;.

Proof. Let u : c¢ — X be a bounded linear operator and z* € X*. Let
ue; = x; and consider

Yl = Y lule)
= Z(sign z*u(e;)) . z ule;)
= ;c—*(u(z sign z*u(e;) - €:))

i<n

<zl Y (sign a*u(e:) eilleo

i<n

<l il
Hence
l@ille o0 < lul.

Conversely, let (z;); € €3, (X) and define v : ¢¢ — X by ue; := z;.
If z* € Bx-, then for any (A;); € ¢p and any n € N we have

n

lx*U(Z nedl <D It (ules)]

=1

1<i<n

1) leoll (@il

weak

< (sup P\il)z 2" (u(es))]

IA

(X)»
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whence

(3 el < 05l
for each n, and so

HU(Z Ae)|l < [H(Asdillooll ()il ox)-

It follows that
lull < [l (za)ille |, x)-
|

A\
Corollary 2.1.4. (' ® X identifies with the space of unconditionally sum-

\%
mable sequences in X. Furthermore, £' @ X can be identified wz_'th the space
of weak*-weak continuous compact linear operators from £°(= (£')*) to X or
with the space of compact linear operators from ¢y into X.

A
Proof. We start by indentifying £ ® X with the space of unconditionally
\%
summable sequences in X. Let (z,), € £' ® X. Then

(Tn)n = |-Jv — lir{nZei ® ;.
i<n

It follows that

liHlI(O,. . .,0,.7),—,,,.’1?”_‘_],. . )lv = 0.
n

Choose 1 =ng < ny, < ...so that

sup Z]:L (z:)| < G+1)7°

flesli<t i>n;

for j =1,2,.... Let s; = 57! for n;_y < i < n; and let y; = sy 'x; for all
i € N. Then (s;); € gand if n;o1 <m <n < ng

sup Z 2 ()] < Zﬂ
e €Bx~ i =5

which ensures that (z*(1;)); € €' for each z* € X* and (y;) € Lyea(X) 50
that 3 t,y, converges in X for each (¢,), € co by Proposition 2.1.3. Hence
Y o0 AnTn = 3., AnSnyy converges in X for each (M), € £%°. By the Bounded
Multiplier Test }  z, is unconditionally convergent in X.
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Conversely, suppose (Zn), is unconditionally summable in X. Then
3., AaZn converges for each A = (An)n, € £°. It follows that (n)n € Lyeac(X)-
By Proposition 2.1.3 the operator

vigg— X

defined by
v(A) := Z AnTn,

is a bounded linear operator. Suppose that m < n. Then

lZei@)xilv = sup [Zz\ix*(xi)l

AEByoo,*EBy —

= sup ]Z)\zaz*(a:z)l (by Goldstine’s Theorem)

A€Beg,z"€Bx o,

n
= sup || ) Al
AEB(;O

i=m

n
= sup {lv Ai€;
,\eBI:OH (; i 1)”

n
< ol D Ao
i=m

Since A € ¢y, limp, || 30 Ai€illc = 0; whence the unconditional

Vv
summability of (z,), in £! @ X follows.
Since ¢ is metrically accessible,

=i

0 ®X = Fleg, X) = K(co, X).

A weak* - weakly continuous linear operator u : £*° — X is auto-
matically compact since u = v* where v : X* — (' is a weakly compact
linear operator into £', a Banach space in which relatively weakly compact
sets are relatively norm compact by the Schur’s ¢! Theorem.

We identify K(cp, X) with KCp» (£, X) by realizing that u belongs to
K~ (£, X ) precisely when there is a v in K(cp, X ) such that v** = u. In this
case v = ulq,. O

Proposition 2.1.5. Let 1 < p < oc. Then for every Banach space X, each
of the inclusions

A Y
ep ®X — Egtmng(X) = gp ®X7

s injective and has norm < 1,
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Proof. Define @ : ## x X — £5,,0,(X) by
‘D(/\,.’E) = AL = (/\i$)i,

where A = (\;); € £ and z € X. Then ||A.zll;, < [|Allllz]| so that @ is a
bilinear operator from # x X into £, (X) of norm < 1. By the Universal
Mapping Propertv ® induces a linear operator, still denoted by ®, of norm

<1 from # ® X into £,,,,(X) which is the inclusion ® X o L ong(X)-
Let (‘El)l € Ezs,trong( ) Then ( ) € eweak(X) since

N EACATE Y A
i i
= e M@l o
for each z* € X*; whence

l=ille,, 00 < @dile, .00

Moreover, on #® X, a dense hneal subspace of £5,,,(X), the natural inclu-
X
sion of £, .. (X) into £, (X) is the natural identity taking & ® 7 X strong ™)

into /7 ® X ek g é X since for each u € £ ® X such that u =
> i<n Ji ® z; we have

”U“egveak(X) = | Zfi ® $i1|z§veak(X)
i<n
= | Z(Z < fi,er > ex) @ zilley | (x)
i<n  k
= | Zek ® () < foer > z)lle 0
i<n
= lim | Z €k ®$’°“£§reak(x) where 1z} = Z < fi, ek > Ti
k<m i<n

= lim “(SE;C)k<m“E” ()

= hm sup ||(z* (xk))k<m“f”
-'L‘EBX*

= lim sup sup | <@, (@"(}))k<m > |
M g*cBxx PEB,,

= lim sup | Z oz (xh)]

m ., ]
i*Eme,ﬁenlpl ksﬂl

= lim sup | Z p(er)x™ ()]

m T“EBX“:‘PEBH)’ k<m

luly.
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Since P is metrically accessible, the inclusion
A Vo
PRIX>PRX
is injective. Hence the set theoretical considerations force the inclusion
A
PRX — egtrong (X)
to be injective as well. That the inclusion
P v
gstrong(X) — £p ® X

is also injective is shown as follows: let (zy) € frong(X) With 3, €n @2 =0
v !
in ## ® X. Then for all A € 7, z* € X* it follows that

A® 7)) en ®z,) =0.

That is,
> Azt (2n) = 0.

In particular, if A = ¢; for a fixed k¥ € N, then

> ex(n)z*(za) =0

for every z* € X*. Hence z*(z;) = 0 for every z* € X*; whence z; = 0.
Since k is arbitray, it follows that (z,) = 0. Therefore, the inclusion

P g
Estrong (X) — Ep ® X
is injective. This completes the proof of the proposition. 0

Grothendieck’s version of the famous Dvoretzsky-Rogers lemma is
stated below and its proof can be consulted in (Grothendieck (1956b), Lemme,
page 97).

Proposition 2.1.6. Let E be an n-dimensional Banach space. There exist
T1,...,ZLn € Sp such that if 1 < 7 < n, then for any real Aty ooy Ap

1Y dizsll < Mefl () llezs
i=1

where

ryF
8

1 ¢
My=1+—-(+2+.. .+ (-1 <1+
n 7

24



This lemma gives rise to the following keystone result (Grothendieck
(1956b), Théorem 2, page 99):

Proposition 2.1.7. If X is an infinite dimensional Banach space, (a;); 18 @

sequence of non-negative real numbers with each a; < 1 and lim; a; =0, then
Y,

there is a sequence (z;); € X such that (z;); € {2 @ X yet ||z;]| = a; for each

Proposition 2.1.7 has consequences that underly our claim of strict
inclusions in Proposition 2.1.5. The first major consequence is Théorem 3 in
(Grothendieck (1956b), page 100):

Proposition 2.1.8. If X is an infinite dimensional Banach space, 1 <p < 2

and q satisfies % = % — 5 (so that 2 < ¢ < o), then for any sequence (a;)

of non-negative real numbers with (a;) € €9 (respectively co if ¢ = +00),
, v

there exists (z;); € # ® X such that ||z;]| = a;. Moreover, given € > 0,

A\
(a;); € P @ X can be chosen so that ]I(:I:i)i“gx:mk(x) < Hai)illee + €.

The following corollary (Grothendieck (1956b), Corollaire 2, page
101) shows that the second inclusion in Proposition 2.1.5 is strict.

Corollary 2.1.9. If X is an infinite dimensional Banach space and 1 <

p < oo, then £F é X and &,,,,(X) are not the same. Hence, there 15 @
scalarly p-th power summable sequence of members of X which is not p-th
power summable.
Proof. Let 1 < p <2. Since ; = %—— 1 implies that p < g, we need only take
(a;) € €2\ £? and apply Proposition 2.1.8 above.

Suppose 2 < p < oo. Let (a;); € ¢ \ ¢°. By Proposition 2.1.7 we

choose (z;); so that (z;); € £ ® X and lz:|| = |a;|- Then (z;); € £F ® X but
2 [zl = +oo. n

The second major consequence of Proposition 2.1.7 is Théorém 4 in
(Grothendieck (1956b), page 101):

Proposition 2.1.10. Let X be an infinite dimensional Banach space, 2 <
P < oo and ¢ satisfy ;= 5+ 3 (sothat 1 < ¢ <2). If(a)i ¢ 07 s
a sequence of non-negative real numbers, then there 1s a sequence (2)i of

members of X so that =q; and (%) ¢ & Q% X.
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Corollary 2.1.11. Let X be an infinite dimensional Banach space.
1. If (a;) is a sequence of non-negative real numbers that is not summable,
then there is a sequence (z;); of members of X with ||zi|] = a; yet
A
(z;) ¢ P ® X.
2. If (a;); is a sequence of non-negative real numbers that is not square
summable, then there is a sequence (z;); of members of X with ||z:]| = a;
A
yet (z;); ¢ (@ X.
The next corollary (Grothendieck (1956b), Corollaire 2, page 103)
shows that the first inclusion in Proposition 2.1.5 is strict.
Corollary 2.1.12. If X is an infinite dimensional Banach space and 1 <
A
p < 00, then L, (X) # F ® X.
Proof. Suppose that 2 < p. Take (a;); € ¢ \ £9 where 1 = - + 5. By
Proposition 2.1.10 there is a sequence (z;); of members of X so that llzill =

A
|a;| yet (z;); € € ® X.
Suppose that 1 < p < 2. Take (a;); € # \ ¢'. By Corollary 2.1.11

A
there is a sequence (z;); of members of X so that ||z;|| = |a;| yet (z:); ¢ €2 ®
X. On the one hand, ||z;]| = |ai| 50 (%:); € Lirong(X) While, on the other

A
hand, p < 2 puts ¢ ® X setwise inside £ ® X and so ;)¢ P®X. O

2.2 Tensoring with function spaces

We shall prove the following result:

Theorem 2.2.1. (The Main Theorem) Let (S, X, p) be a non-atomnic prob-
ability measure space, 1 < p < oo and X be an infinite dimensional Banach
space. Then each of the inclusions

IP(u) ® X o L2y, (1, X) = DP(u) ® X o L%, (n,X) < L(X*, IP(1))

strong weak

is injective and has norm < 1. The inclusions
A \%
LP(p) ® X 5 Liyong(p, X) = LP(p) © X

strong

are strict.
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Lemma 2.2.2. Let 1 < p < oo and X be an infinite dimensional Banach

space. Then
LP

strong

(1, X) = L(X*, L7 (1)
18 an inclusion of norm < 1,

Proof. Define
& L7

strong

(1, X) — L(X7, LP (1))

by
$: feuy,

where
up(z*) :=2"f(), z*€ X"

. Take an f € Lf ;0 (11, X). Then uy is well-defined, linear and continuous.
To see that uy is continuous we’ll show it has a closed graph. So let
(zy) € X* and z} — zf and us(zk) — g in LP(u). Since z;, — z3,
zy f(w) = z3f(w)
for each w € Q. On the other hand,
2 (F()) = up(z3)() = 9()

in LP(u); so there is a subsequence (z}, ) of (z7) so that
o f() = 9()
p-almost everywhere. Of course,
Ty, f(w) = 25f(w) we

It follows that g and z}f = uy(z}) agree p-almost everywhere and so as
members of LP(y1). Therefore us has a closed graph. O

Furthermore, u; takes Bx. into the lattice bounded set: for each
* € BX*,

lug(z®)l = |z ()
< =il O
< [FON € L (w)-
Lemma 2.2.3. Let 1 < p < oo. Then

LP

strong

(1, X) = LF (1, X)

weak

boundedly with norm at most 1.
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Proof. Take f € L% n,(1, X) and z* € X*. Then

/ﬂ 12 f (@) Pdp < ||| / 1 (@) |Pdp < oo,

and so f € LY ., (u, X). Therefore,

L:veak(“”x) S “f”L:trong(“’X)'

Remark 2.2.4. In general, the inclusion in Lemma 2.2.3 is strict.

Lemma 2.2.5. Let 1 < p < oo. Then

LP(p) & X > L(X*, L (1))
wsometrically.
Proof. Let u € LP(p) ® X, u =}, fi ® z;. Define
O (L) ® X, |.lv) — L(X™, LP(p))

by
®(u) := g,
where 4 € L(X*, L?(n)) is defined by
(@) = 32 (2 f
i<n

Then @(z*) € LP(p) and 4 is well-defined. For,ifu =3}, g;®z] is another
representation of u, then for all p € (L7(u))* -

o> () = D (h)elg)

i<m i<m

= (p®1")()_gi®1))

= (p®z%)(u)
= (pos) (Y fi®w)

i<n
- e

i<n

= o) 2" () fi)-

i<n
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Since ¢ € L¥ (i) is arbitrary,
>zt (z5)g; = >z () fis
j<m i<n
as members of LP(u). Clearly, i is linear. Furthermore, it is norm bounded:

uly = sup{| Y e(fi)e* (@)l : llell <1, llz"|| < 1}

i<n

= sup{|(Q_ " (=) fi) (@)l - lell < 1, ="} < 1}

i<n
= sup{|| > z*(@:) fill o : lz"| < 1}
i<n
sup{||@(z")|zo(w : l2*]l < 1}

Nall e, po )

So @ is an isometry. By density, it extends to an isometry, still denoted by
®, from

IP(4) & X — LIX*, IP(n)).
Therefore,
D) ® X < L(X*, 1P (1))
isometrically. O

The proof of the next proposition can be consulted in (Diestel et al.
(2002a), Diestel et al. (2002b)).

Proposition 2.2.6. If either X* orY 1s accessible, then the natural inclusion
X* QY < L(X,Y) is one-to-one.

Proof of Theorem 2.2.1. Recall that we assume that 1 < p < oo and (€2, %, p1)
is a non-atomic probability measure space.

A ,
1. LP(u) ® X < Liirong (1, X), injectively.

Define a bilinear map
T IP() X X — Dhong 11, X)

by
J(f,z) = f()z.
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Then
( / 1 @)z lPdp@)r = ( / |F (@) PllzlPdu(w))?

= ol 17 Paue)?
= Ilalllf

L2(p)-

So
75150 = Dl e

which implies that ||J|| < 1.
A
By the Universal Mapping Property of ®, J induces a bounded linear
/\ .
operator, still denoted by J, from LP(p) ® X to L% o0, (1, X), with
A
IIJ]] < 1. That is, for all u € LP(p) @ X,

10012, ey < 1l
and so A
LP () ® X < Lirong(1t, X)
with ||.]| < 1.

Next, we address the question of the injectivity of J. First recall that
LP(u) is metrically accessible (Diestel and Uhl Jr (1977), VIIL3.11) and
(Diestel et al. (2002a), Diestel et al. (2002b)).

Of course, metric accessibility implies accessibility, and so we shall
appeal to Proposition 2.2.6 with impunity.

Recall the definition of p’ by % + z% = 1, and consider the configuration
below:

LP(n) ® X = (1P (W))° ® X < L(LP (), X) — L(X*, I (n)),
where the inclusion
() ® X = (I (W))* ® X > L(IP (), X)
is one-to-one by Proposition 2.2.6, and the map
L(LF (u), X) — L(X*, L7 ()

defined by
T—T

30



is an isometric isomorphism, and therefore, injective. It follows that
the map

S:IP(u) ® X — L(X*, IP())

is injective. On the other hand, the following configuration

LP (1) ® X L IR g (1 X) 2 L( X, L2 ()
L

g
tells us that
S=30o0.l

Since S is injective, it follows from set-theoretic arguments that J is
injective. This inclusion, namely J, is strict. Indeed, ¥ contains an
infinite sequence (E,) of pairwise disjoint sets with 0 < p(E;) < oo, for
A
j=1,2,..., such that U2 E, = Q. Let (2,)2, € Bron(X)\ P & X

A
and consider f := Y%  XEn_g . Then f € L& o0 (1, X)\IP(1) ® X.

n=1 ((En)?
Indeed,

/n 1 (@)|Pds(eo)

/ﬂ HZXE" ) g alPdps(e)

n=1 H‘ p
= Z/ HZX“ wnupdmw)
m=1YBm  p=1 ﬂ'

-y / ()
- Et.

= > lenl < co.

m=]

As credit we obtain equality of norms: || f|]z» Lirong#:X) = = |(zn)]le Zrong %)

Furthermore, let us recall that for a measure space as above ¢ embeds
isometrically into I” under the mapping

1P — L7
&)~ > &n(E;) 7 xa;-
1=1
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Then we have

XE,
“f“ = ] = ®$n|/\
[P®X i /J/(En)%
al X
= lim[Z Br @ 2pln
N =1 IJ’( ﬂ)p
N

N
= lim|(i @ idx)(D_ en ® 7n)]s

n=1
o
< 1) en®aala
n=1
= Hon)l, gy
Conversely,
el = 130 ®aln
n=l
< ﬁ;nZuxnu
XEr,
= hmZu ezl
n=1 n)p
Hence
Naml g < 171
so that
1710, 2 @), =
So f¢IP® X.
o LP o (py X) — L(X*, LP(u)) isometrically.

We shall first show that sup{||z* f||zs(u : [|z*]| < 1} is a finite quantity
and defines a norm on Lf _, (1, X). Define

& LF (1, X) — L(X*, LP(p))
f = Ug,
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by
ug(z*) =" (),
for all z* € X*. It is now routine to justify (as we did, for instance, in
the proof of Lemma 2.2.2) the conclusion that uy is a bounded linear
operator: once again the Closed Graph Theorem comes to our rescue.
Hence
sup{flus(z*)l|ze : 2"l < 1} = [Jugl] < oo

That is,

sup{[|z*f ()

Lo ¢ [|l27]} < 1} < oo

Putting

£z x) = sup{llz* f()lzeq ¢ le*l] < 1},

eak

it is routine to verify that this is a norm on L? . (1, X). In this way
our first task is accomplished. To address the above inclusion we have

lugll = sup{llus(z*)llzsgo : 2"l < 1}
= sup{lls* FOllg : o'l < 1}
Hf() !szeak(p,X):

so that
1ef1l = 1Oz

as was to be shown.

\
L) ® X — LE | (u, X) isometrically.

weak
Define

U (P(p)ye X, |.lv) — L2, (uX)

weak

fez — f()z

and extend by linearity. Letu =Y, fi®z; € (L?(1)®X,]|.|v). Then
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for all z* € X*, ||z*|| < 1, we have

([ 12 f@adPaut)? = ([ 13 fiw)a* @) Pdu)?

i<n i<n

I Zw llzow

= sup{lgo(z z*(z;) fi)l + lell £ 1}
= sup{lzx (z:)e(fi)l : lell < 1}

i<n

< sup {[ ) w(@e(fi)l: el < 1}

i<t G<n

‘th ® Z;lv-

i<n

I

Therefore,

sup(( [ 1273 fw)a) Pdufu))? 12" <1} < luly < o0,

i<n

which implies that

D Fi)Ts € D, X)

i<n
and
1> £Qzllee wx) < lulv-
i<n
That is,

’I\I’ule&eak(;x,X) < uly.

Extending by continuity and still denoting the extension by ¥, we have

v
LP(p) ® X = LE o (1, X)

with norm < 1. Now we chase the following diagram:

L2(4) ® X Y3 L (11, X) 25 £(X*, L2 (1))
.

e
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Here ¥ is the bounded inclusion just proved in 3 above, @ is the iso-
metric embedding proved in 2 above and O is the isometric embedding
in Lemma 2.2.5. We have that © = ® o ¥, and since © and ® are
isometric embeddings, it follows that ¥ is an isometric embedding too.

The above inclusion can be strict. Indeed, consider our earlier function

f=3x, —(x;’ﬂ)—_rxn where, this time, (z;) € £, (X) and (E,)%, is
Wl tn )P

a pairwise disjoint sequence of sets in ¥ with 0 < u(E,) < oo for all

n € Nand U2 | E, = (1. Then

”f”Lfveak(p,X) = sup{||z* f 'LP(ﬂ) et < 1},

where

la Sl = ([ Io*f(@)Pdu(w)>

= *(z ———XE"(w)p w >
- (mZ/EmiZ () X5 )

= X / 10 (@) —— PPdp(w))}

1
m=1"Y Em t(Em)?

Hence
Ml = sup{llz* Flosgo : lle* < 1)
SN Lo,
sup{() _ lz* (zm)PP)7 : [Ja*]| < 1}
ma=c]

= ”(Im)“l!:reak(x) < oC.

Since y
FeoX— Esmak(X)
is strict, it follows that by taking (z,) € £ _ (X)\# ® X and building
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f as above, f ¢ LP(u) ® X. In fact,

171l

IP(u

= hm sup ‘Z‘P @en (xn){ : “‘PHLP'(;L) < 1}

N et 7o

= hm sup {|Zlﬁ en)T" (2zn)| : Y]l <1}

N e “H<

= hm|Zen®xn)V
= ||(= )H

EP®X
v
o L rong (1, X) = LP(p) ® X injectively.

As Lemma 2.2.3 has shown,

f € Lstrong('u’ax) = f € Lweak(p’vx))

and

11z

weak

(wx) S F ez, g tn)-

The natural inclusion above is the natural identity on L” () ® X . Since
LP(u) ® X is a dense subspace of both L% . (4, X) and L%, (4, X),

this inclusion takes L?(p) ® X Hitrong 14 X) into L7(p) ® X weak(“’ )

If we call this natural identity I', for a moment, then it holds that on

Lr(p) ® X,
F(Zfi ®z;) = Zfi@ﬂii

i<n i<n
and

It _r® zillez ) S Y e Zill 2, g1
i<n i<n
on IP(u) ® X, and extending by continuity, using the same notation,
I' takes LP(p) ® X Estrong %) 3110 T (W) ® X Frvea t%) boundedly with
IIT|] < 1. But

)

e x Y = iy X
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isometrically. Indeed, let u =3, fi ® z;, and observe that

e = 1250zl

llullze,
i<n
= sup{||z* Zfz zi) e ¢ 127l < 1}
= sup{|Z'E | ]la*l < L flell <1}
= IZfi@xz:lv
= I“i“v

On extending by density we obtain

v

-——-———-——Lp(#) & X[’weak(“’X) — Lp(ﬂ,) ® X

isometrically. Thus we have shown that

2 (1, X)os IP(n) ® X

strong (

with norm < 1. Since L?(u) is metrically accessible, it follows that

A A\
DPp)@X < LP(p)® X

is an injection: one needs only apply Proposition 2.2.6 to the diagram
below.

() ® X 51p @ X Oup(X*, IP(1))

N 7

i

By Lemma 2.2.5, © is an isometric inclusion. From the size of its norm,

LP(p) ® X sits boundedly in L?(u) ® X so that IT is at least bounded,
where

: IP(0) ® X < LP(y) ® X,

and S is the injection, by Proposition 2.2.6, established in the course
of proving 1 above. It follows from

S=00ll

that II is injective.
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Next we lay to rest the fact that

L ong (s X) o LP(1) ® X

strong

is injective. We shall show this directly by appealing to Pettis’ Measur-

v
ability Theorem. Let f € L%, (%, X) and consider uy € LP(p) ® X
with
Uy = 0,

where u; : X* — LP(u) is defined by uy(z*) := z*f(.). Then Vz* €
X*, Vg € L¥ (),

tﬂwuﬂwmwmmm=m

which implies that
/szmwmmw=a
(9]

So z*f(.) (as a member of LP(u)) = Op-a.e. Since f is strongly -
measurable, ANy, a set of y-measure zero so that outside Ny, f has a
separable range; that is,

fF@\N) CScCX,

where S is a separable subset of X. There exists a countable set {z}} C
X* that norms S and so norms f(Q2\ Ng). Thus Vn, 3N, p-null so that
z;, f(.) = 0 outside N,,. Put

N———NDUN]UNQU

Then N is a p-null set and z% f(w) = 0 whenever w ¢ N. Since {z}}
norms f(Q2\ N), we have
flw)y=0

for all w ¢ N. It follows that f = 0 p-a.e. The injective inclusion
, \%
Lgtrong (1, X) = LP(p) ® X

can be strict. Indeed, take (z,) € ¢7 ® X \ irong(X) and consider
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again the function f =3 l—ﬂTxn Then

#(En)?
XEn z*
Wl = Tigp su { tZ )" (@)l el gy < 13
" n=1

~ lim sup {;Zwen (@) el < 13

N jlesli<r o

= lim sup {]Z'JJ €n)z"(zn)| * [[Yllr <1}

Il£*11<1 n=1

= hm]Zen®znlv

= el

so that f € LP(u) é X. Since
1F 1Lz

f ¢ Lgtrong (,ll,, X)

= [[(zn) lez

=
Strong(X) ’

“strong (Ih

O

Remark 2.2.7. The injectivity of Il in the above proof forces the inclusion

L ( )®X — Lstmng(N7X)

to be injective and so reproves 1. One needs only take I in conjunction with
4 above to appreciate this.
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Chapter 3

The Hilbertian tensor products

In the first section of this chapter we derive the basic facts about the ten-
sor norms h and h* as introduced in (Grothendieck (1956a), §3). We follow
this with a discussion of the Radon-Nikodym property and the Lewis-Radon-
Nykodym property for tensor norms. In particular we show that the Hilber-
tian tensor norm h has the Lewis-Radon-Nikodym property but does not
have the Radon-Nikodym property. Along the way we show that if o is a
tensor norm with the Radon-Nikodym property, then «/, \a and /« have
the property as well, but that in general «\ doesn’t need to also have this
property.

3.1 The Hilbertian tensor norms h and h*

Let a be a tensor norm and X and Y be Banach spaces. Since a(u) < |u|a

for any u € X ® Y, it follows that (X ® Y')* consists of bilinear continuous
forms on X x Y that are a-continuous.
A bilinear form ¢ € B(X,Y) is said to be of type a or a-integral

provided ¢ € (X ® Y)*. The space of all these bilinear forms on X x Y, the

dual of X ® Y is denoted by B*(X,Y) and equipped with the norm |||,
where

lelle = llell

(x%y)’
The space B*(X,Y) is a Banach space, a dual space, with this norm.

A bounded linear operator u : X — Y is said to be of type « or
a-integral if the bilinear map ¢, on X x Y* given by

Pu(2,y7) = y" (u(z))
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is of type ae. The space of a-integral linear operators from X to Y is denoted
by £%(X,Y) and equipped with the norm |jull, = ||¢u||ga(x,v+)- The space
L£%(X,Y) is a Banach space, an isometric isomorph of B*(X,Y™*), in this
norm. .
The action <,> of X* on X induces the functional 7r on X* ® X.

We can identify the space £*(X,Y*) with the dual (X ® Y)* as follows: if
u: X — Y* is a-integral, the Kronecker product

u®idy : X QY — Y*®Y
extends to a continuous map of norm < |jul|, from X ®Yinto Y* & Y.
Then the action of w on v € X %@ Y is taken to be
<v,u>=< (u®idy)(v), Tr > .

There is always a canonical map

X*®Y* < LY9X,Y)
which send a simple tensor z* ® y* to the operator defined by

u(z) :=<z,z* > y*.

This natural map has norm one and is injective if X* or Y* are accessible
and is an into isometry if both X* and Y* are metrically accessible. We write

X*QY* = LoX, YV

isometrically if this canonical map is an onto isometry.
Let 1 <p < oc. An operator u : X — Y is said to be vy,-integral if
jvu has a factorization

X 5 IPw) Sy

for some measure v, where jy : Y < Y** is the canonical embedding. The
“p-integral norm is
T (w) = inf [jv]|[|w],
with the infimum taken over all such factorizations.
We write u € L7%(X,Y) if u is y,-integral; the notation I'y(X,Y) is
also used in the literature (Diestel et al. (1995), Chapters 7 and 9). It is
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shown in (Kwapien (1972), §2, Proposition 1) that v, is a maximal Banach
operator ideal norm. Then the isometric equality
(E® F,ny,) = L"?(E* F)

defines a tensor norm 1, (using the same notation) on E ® F for all finite
dimensional normed spaces E and F associated with the maximal Banach
operator ideal L™ (Defant and Floret (1993), 17.3, Ryan (2002), Theorem
8.9); that is, if u € (E ® F,7,) and @ € L(E*, F) is the associated operator,
then

Tp(u) 1= 7p(1)
defines vy, to be a tensor norm: it is clearly a crossnorm. The uniform

crossnorm property of -y, is the same as the ideal property for the Banach
operator ideal £ (for finite dimensional normed spaces) since foru € EQF,

holds for all € L(E, E1) and & € L(F, F1), where G5y, € L(E}, Fy) is the
operator associated with (7 ® £)(u). The extension of the definition of the
tensor norm -y, on E'® F' to infinite dimensional spaces is the following result
the proof of which can be consulted in (Defant and Floret (1993), Chapter
H, §17.5):

Proposition 3.1.1. (Representation Theorem For Mazimal Operator Ideals)
Let (U, A) be a mazimal normed ideal and o a finitely generated tensor norm
which are associated with each other: (U, A) ~ «. Then for all Banach spaces
X andY the relations

UX,Y)=(XQY,a")
and
UX)Y)=(X®Y*a*)* NLX,Y)
hold isometrically.
A tensor norm « is said to be metrically accessible if the inclusion
X ®Y < BX(X*Y")

is an isometry provided that one of X, Y is finite dimensional.
The following result is proved in (Diestel et al. (1997)).

Proposition 3.1.2. The canonical inclusion
[s3
X®Y < B*(X*,Y*)
15 an isometric injection in case

1. both X and 'Y are metrically accessible or
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2. « is metrically accessible and one of X and Y is metrically accessible.

In particular, the norms A and V are metrically accessible (Diestel
et al. (1997)).

A semi-inner product ® on X is a continuous functional ® on X x X
such that:

(a) ®(z,z) >0 forallz € X,

(b) @ is linear in its first variable,

(¢) ®(z,2') = ®(s’, 7) for any z,2’ € X.

A proof analogous to the standard proof of the Cauchy-Schwarz The-
orem establishes that if @ is a semi-inner product on X, then

1®(z,2')| < ®(z,1)20(7, )7

Proposition 3.1.3. Let ¢ be a continuous bilinear functional on X x Y.
Then the following statements about o are equivalent:

1. There exists a Hilbert space H and there are bounded linear operators
a: X — Handb:Y — H* each of norm < 1, such that for any
t€EX andyey,

(p(:E:U) =< aw,b’y > .

2. There are Hilbert spaces H, K and bounded linear operators ¢ : X —
H andd:Y — K, each of norm < 1, such that for any € X and
yevy,

lo(z,y)| < llezflidyl]-

3. There are semi-inner products ® and © on X and Y, respectively, such
that ®(z,z) < ||z||* forz € X, O(y,y) < ||y||? fory € Y and

lo(z,y)| < ®(z,2)70(y, )7,
forxre X andyeY

Proof. 1 = 2: This is easy and clear.

2 = 1: Suppose H and K are Hilbert spaces, ¢ : X — H and
d:Y — K are bounded linear operators, each of norm < 1, ¢ € B(X,Y)
and ¢ satisfies

lo(z,y)| < llezlllidyll
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forany z € X and y €Y. Assume, without loss of generality, that X =H
and dY = K. For z € X and y € Y, define ¥(cz,dy) := ¢(z,y). Then ¢ is
well-defined since for cz = ¢z’ and dy = dy’ we have

[(ez, dy) — p(ce',dy')| = |¢(z,y) — ¢(z',¥)]
= %lfp(m +2y—y)+ ez —2y+9)

< Sz + )iy - )|
+ et =2l + I}

By hypothesis,
[ (cz, dy)| = |p(z, y)| < llexlllldyll,

and so, v is continuous on ¢X x dY. It is clear that ¢ is bilinear and extends
to a continuous bilinear form on H x K = ¢X x dY. Thus a bounded linear
operator uy : K — H* defined by uy(k)(h) := ¢(h,k) is born. Since
luyll = l¥ll <1, 1 follows from setting ¢ = ¢ and b = uy o d.

2 = 3: If 2 holds, then the semi-inner products on X and Y defined,
respectively, by

®(z,2') := (cz,cx’)m, O(y,y) = (dy,dy)k
satisfy ®(z,z) < ||z||? for r € X, O(y,y) < |ly||* for y € Y and

lo(z,y)] < lexllildyl]
1 1
= (cx,cx) 4 (dy, dy)%
= ®(z,2)70(y,y)?

for z € X and y € Y so that 3 holds, where (,)y and (,)x denote the inner
products of H and K respectively.

3 = 2: If 3 holds, we consider X equipped with the semi-inner
product ®. Define |z on X by

2]e = 8(z,2)7,
and (z,7')e by
(z,1') := ®(z,2').

Then {z € X : |z|s = 0} is a linear subspace of X. On lifting |z|s and (z,z')e
to X/{z : |z|s = 0}, we obtain an inner product space whose completion H
is a Hilbert space. The natural map of X onto X/{z : |z|s = 0} is of norm
< 1into H. It is a cin 2. Similarly, Y and © give rise to K and d for 2. [
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We shall write 7(X,Y) for the collection of all continuous bilinear
functionals on X x Y satisfying the conditions in Proposition 3.1.1. Then
the following properties about H(X,Y) hold (Diestel et al. (1997)):

Proposition 3.1.4. If X and Y are Banach spaces, then H(X,Y) salisfies
the following properties:

1. H(X,Y) is a convex set.
2. H(X,Y) is compact in the topology of pointwise convergence on X X Y.
3. H(X,Y) is a balanced set.

It follows that H(X,Y) is an ideal candidate to be the closed unit
ball of a dual space. We shall define the tensor norm A* in such a way that

h*
the closed unit ball of (X ® Y)* is H(X,Y) (Diestel et al. (1997)).
Let u€e X ®Y. Then

|ulps := sup|(a ® b)(u)|a,

where the supremum is taken over all Hilbert spaces H, K and all bounded
linear operatorsa: X — H, b:Y — K of norm < 1. Indeed, (a®b)(u) €

H ® K so that we can measure its size in H <§> K.
Proposition 3.1.5. h* is a norm on X @ Y. Moreover,
1. h* is a reasonable crossnorm.
2. h* is a uniform crossnorm.
3. H(X,Y) = Bixav.|m)-
4. h* is a ® norm.

The next proposition introduces the tensor norm b (Diestel et al.
(1997)).

Proposition 3.1.6. Given any Banach spaces X andY , there ezists a unique
®-norm h such that a bilinear functional p on X x Y is h-integral with
lolln < 1 4f and only if a Hilbert space H and bounded linear operators
a:X — H,b:Y — H*, each of norm < 1, exist such that

p(z,y) =< az,by >

foranyre X andy €Y.



More elegantly, we can describe the h-integral operators as follows:

Corollary 3.1.7. A bounded linear operator v : X — Y is h-integral with
lulls < 1 if and only if there exist a Hilbert space H and bounded linear
operators v : X — H, w : H — Y, each of norm < 1, such that the
following diagram

15 commutative.
It follows that I'y(X,Y) = LM(X,Y) isometrically. In fact, that
LMX,Y) o Ty(X,Y)

is an inclusion of norm < 1 follows at once from the preceding corollary.
On the other hand, u € I'y(X,Y) implies, by the same corollary that jyu €
LM X,Y**), where jy : Y < Y** denotes the canonical isometric embedding.
It follows from (Diestel et al. (1997), p67)' that v € L*(X,Y) with [lull, =
l7vullp. Therefore

I(X,Y) = LMX,Y)
is an inclusion of norm < 1.

We shall denote by h the tensor norm whose existence is cited in
Proposition 3.1.6 and call it the Hilbertian ®-norm. We shall also call the h-
forms and h-integral linear operators Hilbertian. As a matter of fact, every
operator from or to a Hilbert space is h-integral with its h-integral norm
precisely its operator norm.

Proposition 3.1.8. h is a symmetric injective metrically accessible ®-norm
and h* is a symmetric projective metrically accessible ® norm.

Hence, h < / A\ and h* > \ V /. The next result follows from the
former inequality.

Corollary 3.1.9. A / A \-integral bilinear functional ¢ is h-integral with
llelln < llellya-

Proposition 3.1.10. A bilinear functional ¢ on X XY is h*-integral with
lells < 1 if and only if for every Hilbert space H and for every bounded
linear operator v : H — X, of norm < 1, the form po(u®idy) € B (H,Y)
with | 0 (u® idy)||r < 1.

If u : X — Y is a bounded linear operator, then v € £%(X,Y) if and only if
Jru € Lo X, Y**) with |julle = |7y ulls for any tensor norm a
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3.2 Some generalities about the RNP and the
Lewis-RNP for tensor norms

A tensor norm ¢ has the Radon-Nikodym property (RNP) if whenever Y™
has the approximation property and the Radon-Nikodym property then

LAX,Y)=X"®Y"
for all Banach spaces X.
A classical result of Grothendieck says
\Y A
(XY)=X"QY"

whenever Y* has the approximation property and the Radon-Nikodym prop-
erty (Diestel and Uhl Jr (1977), VIII §§ 3.8, 3.10 and 4.6).

In the proof of our next theorem, we shall apply the following result
that exhibits the role of ¢' in the study of the Radon-Nikodym property
(Diestel and Uhl Jr (1977), Chapter III, Theorem 1.8):

Proposition 3.2.1. (Lewis-Stegall) A Banach space X is said to have the
Radon-Nikodym property with respect to (2, X, p) if and only if every bounded
linear operator u : L'(p) — X admits a factorization u = wv:

Li(p) =6 =5 X,
where w: &' — X and v : L'(1) — £' are continuous linear operators. In

this case, for each € > 0, w,v can be chosen such that |jv}] < |lull + € and
Jwl] < 1.

Theorem 3.2.2. 1. If o has the Radon-Nikodym property, then so does
af.
2. If o has the Radon-Nikodym property, then so does \c.
3. If a has the Radon-Nikodym property, then so does [c.

Proof. Throughout this proof, Y* has the approximation property and the
Radon-Nikodym property (and hence the metric approximation property)
(Diestel and Uhl Jr (1977), VIIL4.1).

1. Let u: X — Y* be o/-integral and A > 1. By Corollaire 1 (page 32) to
Théoréme 8 in §2.4 of (Grothendieck (1956a)), u admits a factorization:

X\ 2 ;Y*
N e

L' ()
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where v € £%(X, L' (1)), w : L} () — Y™ is bounded and linear, and
lulley < flollallwll < Allele-

Now Y* has the Radon-Nikodym property so that Lewis-Stegall Theo-
rem 3.2.1 says there is a set I' and a pair of bounded linear operators
s and { such that

s: LY (p) — £4T), 1:44T) — Y™

so that
w=1[s

and
Hewll < N2HEsl] < Afjwll.

Here is the picture we want:

X @ A0 EELA(X,0(T) @

idxx ®zl

.ol
X* @Y ——L/(X,Y*)  la

where the horizontal arrows are canon}xcal inclusions. Here is what we
see: sv is (the image of some) b € X* @ ¢'(I') where

[bla < llslHlvlle-

S0
u=wouv =1osv= (idx ®1)(b)

and

|(idx- & 1)(b)|ay
121 1B]le
ZHistfloll
Mlwlllivlle

X lufla-

|2]qy

ININ N IN

Since A > 1 is arbitrary, u = (idx- ® l)(b) satisfies
lulay = |(idx- @ )(B)lay < Hluflas-
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af .
On the other hand X* ® Y* < £%/(X,Y™) is a norm-one inclusion, so
the reverse inequality holds as well and so

o/
X*@Y*=LY(X,Y")

holds.

. Let u: X — Y™ be \a-integral and A > 1. Again by Grothendieck’s
words on projective hulls (Corollaire 1 (page 32) to Théoreme 8 in §2.4
of Grothendieck (1956a)), u admits a factorization

X = »Y™*
N, A
C(K)

where v : X — C(K) is a bounded linear operator, w € L*(C(K),Y™),
and
lwlha < [ofillwlle < Allulha-

(We must keep in mind the fact that the operator w: C(K) — Y™ is
actually \a-integral, too, with [Jw|ls = |lw||\o.) Here is the picture to
be gazing at this time:

CK)Y @ Y*REro(C(K), YY) a

v*@idwl

\a
X*Q@Y*——— V(XY™ av
What we expect to see is this: w € L*(C(K),Y™) is the image of some
be CK)* ® Y* where ble = |lw]le and so u = wv is the image of
\a
(v* @ idy+)(b) € X* ® Y* with
(0" @ idy-)(B)l\a < Wllllwlle < Affulha-

Again A > 1 is arbitrary so |(v* ® idy+)(b)\a < |lull\o- Since the

\ .
inclusion X* ® Y* < £\*(X,Y*) is norm-one, the reverse inequality
holds. Hence |ju|\a = |(v* ® idy~)(b)|\o holds and with it

\a
X*®Y*=LX, Y.
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3. Let u : X — Y* be /o-integral and let L be an L'(u)-space and
é: L - X be a quotient operator. Again, a picture drives the proof:

/e
X*QY'Csr/e(X,YY) a

L' @Y —=——=L*(L,Y*)  a¢

e ¢’ @ idy~ is an isometry thanks to Corollaire 3 to Théoreme 6 of
§2.4 of (Grothendieck (1956a)).

* \(e")
e ¢: L — X induces a quotient ¢ ® idy of L %) YontoX ® Y
- this is what left projectivity of \(¢”*) is all about - by Corollaire
4 to Théoréme 6 of §2.4 of (Grothendieck (1956a)).

\e™)
o It follows that (¢ @1idy)* takes £/*(X,Y*) = (X ® Y)* isomet-

rically into (L ® Y)* = £(L,Y*). Checking what this adjoint
looks like,

(¢ @ idy)* : L/*(X, V™) — LXL,Y™)

takes a € L£/%(X,Y™) to (¢ ®idy)*(a) € L*(L,Y™); take | € L,
any y € Y and compute

(¢ ®@idy)" (0))(y) = a((¢®idy)(®Y))
= a(6()()
= (a0¢)(D(y)-

e Equality on the bottom is just our RNP hypothesis for a at work.

Now let u : X — Y* be /a-integral. We know that
up € LX(L,Y) =L @ V",

so we just need to show that u¢ is in the image

(6" ® idy-)(X" & v
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Jo
of X* ® Y* under ¢* ® idy.. To this end, take v € (L* ® Y*)* to be a
functional that vanishes on the range of ¢* ® idy+. View v as a member of
* o .
Lo (L*, Y*) = (L* ® Y*)* and suppose that v(¢*) = 0 - remember that ¢ is
a metric quotient map, so ¢* : X* < L* is an isometric inclusion. What we
have is that

v((¢* @idy-)(z* ®y*)) =0 foreach z*e€ X*,y*€Y".

A
Consider the operator v ® idy» : L* (%) Y* — Y™ ® Y* such that

A
(v ® idy-)*(tr) = v. If @ — @ denotes the natural map of Y** ® Y™ into
L(Y*), then a — @ is one-to-one thanks to Y* having the approximation
property. If we let a = (v ® idy~)(u¢), we see that

(@) = v'u" = vg*(u*) =0
and so
tra = 0.
But then
v(ug) =tra =0.

But v € L (LY, Y*) = (L* ® Y*)* was arbitrary. So there is an

fo
sEX*®Y"*s0

ud = (¢* ® idy~)(s)

where |s|/o = |u¢|o = ||ul|/a - keeping in mind the fact that ¢* ® idy- is an
isometry and

LYX,Y") = (X ®Y)".
Ifu: X — Y* is a-integral then u®idy : X ®Y — Y*®Y acts on
v € X ®Y via the formula

u(v) := tr((u ® idy)(v)).

For elementary tensors £ ® y in X ® Y we have (u® idy)(z @ y) = u(z) ®y
and u(z ® y) = u(z)(y) = tr((u ® idy)(z ® y)). Further, if a*(v) < 1,

@)l = [tr((u@idy)(v))|
|u(v)]
luflac(v)

[l

o

IAIA

o1



So extending u to (X ® Y)* there is but one choice - and that’s the functional
v — tr((u ® idy)(v))

whose norm is < ||ul|s too. But then we see u to be the original member of
(X ® Y)* = L3(X,Y*). 0

Since the tensor norm A has the Radon-Nikodym property, the fol-
lowing corollary holds too.

Corollary 3.2.3. The tensor norms A/, \A and /A have the Radon-Nikodym
property.

Next is the question: does the right injective hull of a tensor norm
with the Radon-Nikodym property have the Radon-Nikodym property? We
give an example below that bears testimony to the answer that the right
injective hull of a tensor norm with the Radon-Nikodym property need not
have the Radon-Nikodym property. Firstly, we need a proposition.

Proposition 3.2.4. Let X and Y be Banach spaces. Then L'\(X,Y) =
AS(X,Y), where AS(X,Y) denotes the absolutely summing operators.

Proof. By definition, u € £"\(X,Y) if and only if for every C-space C and
operator i : Y — C, with ||i]] < 1 it holds that the operator iu: X — C
is integral, and hence 1-summing. In particular, if we choose C = C( By-)
and ¢ = iy~ where iy~ : Y < C(By-) is the canonical isometric embedding.

Since the 1-summing operators are, by definition, injective (i.e. the
property of an operator being 1-summing does not depend on the range
space) (Diestel et al. (1995), 2.5) it follows that w : X — Y is already
1-summing.

For the converse, we shall first prove the following known fact (cf
Stegall and Retherford (1972)):

e Absolutely summing operators into C(K) are integral.

For, let v : X — C(K) be absolutely summing. Then v** : X** — C(K)**
is absolutely summing too (Diestel et al. (1995), Proposition 2.19). Since
C(K)* is injective (as an L*°-space (Diestel et al. (1995), Theorem 4.14)),
v** is integral (Diestel et al. (1995), Corollary 5.7), and so, v is integral too
(Diestel et al. (1995), Theorem 5.14).

Now, let u : X — Y be absolutely summing. Then for every C-
space C and operator i : ¥ — C such that ||¢|| < 1, it holds that iu : X —
C is absolutely summing too by the ideal property, and so, integral by the
afore-mentioned fact. Therefore u : X — Y is A\-integral. O
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Example 3.2.5. The tensor norm A\ does not have the Radon-Nikodym
property.

Proof. If we were to assume that A\ has the Radon-Nikodym property, then

it would imply that £"(X,Y) = X* % Y for every Banach spaces X and
Y, where Y is reflexive and has the approximation property. In particular,
any u € L"\(X,Y) would have to be compact.

By Grothendieck’s Theorem, every operator u : £* —» £2 is summing
(Diestel et al. (1995), 1.13, Wojtaszczyk (1991), IIL.F.7). So L(¢',£?) =
LN (€', £%) by Proposition 3.2.4. Hence every u € L(¢£',£?) is compact. This
is a contradiction since the natural inclusion ¢! < #? is not compact. For,
the unit vector basis has no convergent subsequence in £2. o

A tensor norm o has the Lewis-Radon-Nikodym property (Lewis-
RNP) if X* ® £! = £%(X, ) for every Banach space X.

The following lemma, whose proof is presented in (Lewis (1976),
Lemma 1, page 59), will be applied immediately in the proof of Proposi-
tion 3.2.7 below.

Lemma 3.2.6. Let X* be metrically accessible or let o be an accessible tensor

norm. Ifu: X — Y is a-integral and v : Y —> Z is in the norm closure of

the finite rank operators, then vu is the image, under the canonical inclusion
[s3 X [24

of X* ® Z into L*(X,Z), of at € X* ® Z satisfying |to < |lullalv]l-

Proposition 3.2.7. If 1 < p < oo, then v, has the Lewis- Radon- Nikodym
property.

Proof. Let ¢ : X —> £! be 7,-integral and A > 1. Write ¢ = uwv with
ullllvl] < Ayp(p), where v : X —s LP(v), u: LP(v) —> £' for some measure
v. Let (e;); C £ be the sequence of unit vectors of £*°. We shall first show
that u = ugu,, where u, is a compact operator on £' with |Jus]] < 1 and
uy : LP(v) — £ is v,-integral for some v with ,(u;) < Aljul].

Since 1 < p, u : LP(v) — ¢! is weakly compact and hence compact
by the Schur’s ¢! Theorem. So

lim sup ZI < u(z),e; > | =0.

" oleli<l S,

Hence there is a positive sequence (a;) € ¢ of norm one which satisfies

sup 3 ar!| < uzyes > | < Aul.
{leli<1 i>1



Define u, : IP(v) — ¢ by
uy (z) = (a7 < uz,e; >)ix1,

and uy : £' — £ by
uy(z) == (a; < z,€; >)iz1-
Then v, is 7,-integral with 7,(u1) < Ajul| and uy is compact with |luz|| < 1.
Now consider the following commutative diagram:

T )
L) @ £'——=L7(LP(v), ')

v* ®idt1J/ j/a»—mv

Tp
X* & 0w (X, 1)

The unlabeled arrows are the canonical inclusions. Since L?(v)* is metrically
accessible, it follows from Lemma 3.2.6 that u = upuy € L% (LP(v),£') is the

image of a t € LP(v)* & £' such that

[ty < Nuallllually, < Allull.

Then (v* ® idp )(¢) goes to uv = ¢ under the natural map and

(v @ idp) ()], < Aljo™|ll]ul]
= Ajolf{jul
< Nyle).

Since A > 1 is arbitrary and the inclusion
« 125 1
X*@ 0 < L7(X,0)
is one-to-one (by the accessibility of £'), it is also an onto isometry. O

Corollary 3.2.8. If 1 < p < oo, then v,\ has the Lewis-Radon-Nikodym
property.

This is, in fact, a corollary to the proof of Proposition 3.2.7; in fact,
if we factor p € £7\(X,£') as ¢ = uv, then v’s codomain is a subspace of
an LP(u)-space which is, in turn, the domain of » and little else changes.

Corollary 3.2.9. The tensor norm h has the Lewis-Radon-Nikodym prop-
erty.
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However, the next example shows that the tensor norm A does not
have the Radon-Nikodym property.

Example 3.2.10. The tensor norm h does not have the Radon-Nikodym
property.

Proof. 15 proof. Suppose that h has the Radon-Nikodym property. Then
for every Banach space Y* that has the Radon-Nikodym property and the
approximation property, £*(X,Y*) = L£4(X,Y™*) for all Banach spaces X.

Consider the operator u : L2[0,1] — H, where H is a Hilbert space. Then
[14a

u is Hilbertian, and so belongs to L£,(L%0,1],H) = F(L?[0,1,H) = =
F(L?[0,1],H )‘l'””. Therefore, u is compact. In particular,

idgep + L0, 1] — L?[0,1]

is compact and this is a contradiction.
2nd proof. Consider u : L?[0,1] — H. Assume that u is repre-
sentable:

n ]
u(g) = / Fodu,

where f € L2([0,1], H). All these operators are bounded since for g € Br2p,1,
vl
@l = | / Fodulln
n ]
oy L
< ([ 11 etz

So Jlull < (f; 1£12)z < oo. Every f € L?([0,1], H) is the limit of simple
functions by Pettis’ Measurability Theorem 1.3.1. But simple functions de-
fine finite rank operators. So u is the limit of the finite rank operators. It
follows that u is compact. Now look at

idpep,y « L*[0,1] — L*[0,1].
If edpz2p0,1) were representable, then it would be compact. O

In the special case when F' = ¢, our Radon-Nikodym property co-
incides with the Lewis-Radon-Nikodym property. Also note that Corollary
3.2.8 also follows from Proposition 3.2.7 and Theorem 3.2.2. Furthermore,
the next corollary is not unexpected.

Corollary 3.2.11. The tensor norms h/, \h and /h have the Lewis-Radon-
Nikodym property.

ot
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Chapter 1 presents the historical introduction of tensor products as well as
the preliminary results on them and describes the evolution of our central
problems, namely:

e For 1 < p < oo and for a Banach space X, how is LE . (1, X) related
to the completion of LP(1)® X under the Grothendieck’s natural tensor
norms A and V?

e Can we abstract the properties enjoyed by the space £, namely the
Radon-Nikodym property and the approximation property, and con-
sider any spaces that enjoy the same properties to study the Radon-
Nikodym property of ® norms?

Answers to these questions occupy much of the next two chapters.

In Chapter 2 we present the results on tensor products with sequence
spaces. The most important of these is a result of Grothendieck, namely if
1 < p < oo and X is an infinite dimensional Banach space, then

PRIX L (X) P RX o £ (X),

where ‘5’ denotes a norm < 1 inclusion map. The inclusions

A Vv
PRX B (X)X

strong

are strict. Then we state and prove the main result, namely:

e Let (2,%, 1) be a non-atomic probability measure space, 1 < p < o0
and X be an infinite dimensional Banach space. Then each of the
inclusions

A ; \'%
LP(p) @ X o LE (i, X) = LP(p) @ X > LF o (1, X) > L(X7, LP(p)

strong

o8



is injective and has norm < 1. The inclusions

A v
Lp(:u’) Y X = Lstrong(y"X) — Lp(:u‘) °zY X
are strict.

This result extends the inclusion diagrams mentioned above to the case where
¢? is replaced by LP(p) for the given measure space. Thus, the first question
raised above is addressed.

In Chapter 3, the basic facts about the tensor norms h and h* are
derived. This is followed by a discussion of the Radon-Nikodym property and
the Lewis-Radon-Nikodym property for tensor norms. We single out the pro-
jective norm A as the tensor norm that enjoys the Radon-Nikodym property.
We show that if o is a tensor norm with the Radon-Nikodym property, then
o/, \o and /o have the property as well, but that in general a\ need not
also have this property. Both the -y, and ,\ tensor norms, 1 < p < oo, are
shown to have the Lewis-Radon-Nikodym property. Furthermore, it is shown
that the Hilbertian tensor norm A has the Lewis-Radon-Nikodym property
but does not have the Radon-Nikodym property. These deliberations address
the second question raised above.
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