
PRONUNCIATION MODELLING AND BOOTSTRAPPING

By

Marelie Hattingh Davel

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor (Electronic Engineering)
in the

Faculty of Engineering, the Built Environment and Information Technology

at the

UNIVERSITY OF PRETORIA

Advisor: Professor E. Barnard

August 2005

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

PRONUNCIATION MODELLING AND BOOTSTRAPPING

Bootstrapping techniques have the potential to acceleratethe development of language technology re-

sources. This is of specific importance in the developing world where language technology resources

are scarce and linguistic diversity is high. In this thesis we analyse the pronunciation modelling

task within a bootstrapping framework, as a case study in thebootstrapping of language technology

resources.

We analyse the grapheme-to-phoneme conversion task in the search for a grapheme-to-phoneme

conversion algorithm that can be utilised during bootstrapping. We experiment with enhancements

to the Dynamically Expanding Context algorithm and developa new algorithm for grapheme-to-

phoneme rule extraction (Default&Refine) that utilises the concept of a ‘default phoneme’ to create

a cascade of increasingly specialised rules. This algorithm displays a number of attractive proper-

ties including rapid learning, language independence, good asymptotic accuracy, robustness to noise,

and the production of a compact rule set. In order to have greater flexibility with regard to the var-

ious heuristic choices made during rewrite rule extraction, we define a new theoretical framework

for analysing instance-based learning of rewrite rule sets. We define the concept ofminimal repre-

sentation graphs, and discuss the utility of these graphs in obtaining the smallest possible rule set

describing a given set of discrete training data.

We develop an approach for the interactive creation of pronunciation models via bootstrapping,

and implement this approach in a system that integrates various of the analysed grapheme-to-phoneme

alignment and conversion algorithms. The focus of this workis on combining machine learning

and human intervention in such a way as to minimise the amountof human effort required during

bootstrapping, and a generic framework for the analysis of this process is defined. Practical tools that

support the bootstrapping process are developed and the efficiency of the process is analysed from

both a machine learning and a human factors perspective. We find that even linguistically untrained

users can use the system to create electronic pronunciationdictionaries accurately, in a fraction of the

time the traditional approach requires. We create new dictionaries in a number of languages (isiZulu,

Afrikaans and Sepedi) and demonstrate the utility of these dictionaries by incorporating them in

speech technology systems.

Keywords: bootstrapping, grapheme-to-phoneme conversion, grapheme-to-phoneme alignment,

letter-to-sound, pronunciation modelling, pronunciation prediction, pronunciation rules, pronuncia-

tion dictionary, language technology resource development.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

UITSPRAAKMODELLERING EN SELFSTEUN

Selfsteuntegnieke beloof om die ontwikkeling van taalhulpbronne vir tegnologiese toepassings te

versnel. Hierdie belofte is veral belangrik in die onwikkelende wêreld, waar sulke hulpbronne

skaars is, en beduidende taalverskeidenheid voorkom. In hierdie tesis ontleed ons die uitspraakvoor-

spellingstaak binne ’n selfsteunraamwerk, as ’n gevallestudie van selfsteunontwikkeling van taalhulp-

bronne.

Ons ontleed grafeem-na-foneemomskakeling, op soek na ’n algoritme wat vir selfsteundoelein-

des gebruik kan word. Ons ondersoek verbeteringe aan die “Dinamiese Konteksuitbreiding” (DEC)

algoritme, en ontwikkel ’n nuwe algoritme vir die onttrekking van grafeem-na-foneemreëls (Ver-

stek&Verfyn) wat die begrip van ’n ‘verstekfoneem’ gebruik om ’n rits vantoenemend afgestemde

reëls te skep. Hierdie algoritme vertoon ’n aantal aantreklike eienskappe, insluitende kort leertye,

taalonafhanklikheid, goeie uitloopakkuraatheid, ruisbestandheid, en die skep van klein reëlstelle. Om

groter plooibaarheid in ’n aantal heuristiese keuses te verkry, stel ons ’n nuwe teoretiese raamwerk

vir die ontleed van geval-gebasseerde leerprosesse van herskryfreëls voor. Ons stel die begrip van

kleinste voorstellende grafiekevoor, en bespreek die nut van sulke grafieke in die onttrek vandie

kleinste moontlike reëlstel wat gegewe leervoorbeelde beskryf.

Ons ontwikkel ’n benadering tot die wisselwerkende skep vanuitspraakmodelle deur selfsteun,

en verwerklik hierdie benadering in ’n stelsel wat verskeievan die ontlede algoritmes vir belyning en

reëlonttrekking saamvat. Ons gee aandag aan die saamvoeg van masjienleer en menslike ingrype om

die hoeveelheid menslike inset tydens selfsteun so klein moontlik te hou, en ontwikkel ’n algemene

raamwerk vir die ontleding van hierdie proses. Verder ontwikkel ons praktiese gereedskap ter on-

dersteuning van selfsteun, en ontleed die doeltreffendheid daarvan uit die oogpunte van masjienleer

en menslike bruikbaarheid. Ons bevind dat selfs gebruikerssonder taalkundige opleiding akkurate

woordeboeke sodoende kan skep, in ’n breukdeel van die tyd wat die gebruiklike benadering vereis.

Ons skep nuwe woordeboeke vir verskeie tale (isiZulu, Afrikaans en Sepedi), en toon die nuttigheid

van hierdie woordeboeke in spraaktegnologietoepassings.

Sleutelterme: selfsteun, grafeem-na-foneem omsetting, grafeem-na-foneem belyning, letter-

na-klank, uitspraakmodellering, uitspraakvoorspelling, uitspraakwoordeboek, uitspraakreëls,

hulpbronontwikkeling vir taaltegnologie.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

ACKNOWLEDGEMENTS

This research was performed in the Human Language Technologies (HLT) Research Group of the

Meraka Institute. It was guided by Etienne Barnard, for the past three years my PhD advisor, col-

league and the ideal co-explorer (a rare privilege!)

The HLT Research group grew in parallel with this thesis, andI am grateful to all the group members

who assisted in one way or another: Louis Joubert, Francois Aucamp and others, who assisted with

the development of ’System B’; Aby Louw who assisted in integrating some of the newly created

dictionaries in Text-to-Speech systems; and the many otherHLT researchers, developers and students

who provided a supportive research environment.

Much of the collected data relied on the patience of the various dictionary developers. I am especially

grateful to Nadia Barnard, who assisted with both kindness and skill.

I would also like to thank:

• Johan Eksteen, my manager at the CSIR at the time, who initially supported my decision to

make the jump from project manager to researcher, and who hassupported my work ever since.

• Liesbeth Botha, who guided my initial explorations in speech-related research.

• Rich Stern and the Carnegie Mellon Speech Group, who hosted me at Carnegie Mellon in

Pittsburgh for a very enjoyable year.

Finally, I would like to thank my friends and family for putting up with me as a mostly absent, part-

time PhD student; and of course, MC, without whose support this whole endeavour would have been

quite impossible.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION 2

1.1 HLT in the developing world 2

1.2 Bootstrapping of HLT resources 3

1.3 Pronunciation modelling within a bootstrapping framework 4

1.4 Overview of thesis 4

CHAPTER TWO - BACKGROUND 6

2.1 Introduction 6

2.2 Pronunciation Modelling 6

2.2.1 Manual development of pronunciation models 7

2.2.1.1 Pronunciation dictionaries 7

2.2.1.2 Pronunciation rules .. 8

2.2.2 Data-driven approaches to g-to-p rule extraction 9

2.2.2.1 Neural networks and decision trees 9

2.2.2.2 Pronunciation by Analogy .. . 10

2.2.2.3 Instance-based learning 10

2.2.2.4 Alternative approaches .. . 12

2.2.3 Grapheme-to-phoneme alignment 12

2.2.4 Grapheme-based systems 13

2.3 Bootstrapping of HLT resources 14

2.4 The automated generation of pronunciation dictionaries 15

2.5 Conclusion 16

CHAPTER THREE - BOOTSTRAPPING MODEL 17

3.1 Introduction 17

3.2 Model description 17

3.2.1 Components .18

3.2.2 Process .19

3.2.3 Examples .19

3.3 Efficiency of bootstrapping process 20

i

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

3.3.1 Human factors .. 22

3.3.2 Machine learning factors 23

3.3.3 System analysis 24

3.4 Bootstrapping pronunciation models 25

3.4.1 Algorithmic requirements 25

3.5 Conclusion 25

CHAPTER FOUR - GRAPHEME-TO-PHONEME CONVERSION 26

4.1 Introduction 26

4.2 Baseline algorithm 26

4.3 Experimental data and approach 27

4.4 Grapheme-to-phoneme alignment 28

4.4.1 Pre-processing of graphemic nulls 29

4.4.2 Utilising the phonemic character of null-phonemes 29

4.5 DEC-based grapheme-to-phoneme prediction 31

4.5.1 Standard DEC .31

4.5.2 Shifting windows 32

4.5.3 Rule pairs .. 35

4.5.4 Conflict resolution 36

4.5.5 Default rules .. . 36

4.6 A default-and-refinement approach to g-to-p prediction. 37

4.6.1 Asymptotic performance 40

4.6.1.1 Regular spelling systems .. . 40

4.6.1.2 Less regular spelling systems 41

4.6.2 Learning efficiency 42

4.6.3 Size of the rule set 43

4.6.4 Continuous learning 43

4.7 Bootstrapping analysis 47

4.7.1 Predictive ability 47

4.7.2 Conversion accuracy 48

4.7.3 Computational cost 49

4.7.4 Robustness to noise 52

4.8 Conclusion 54

CHAPTER FIVE - MINIMAL REPRESENTATIONGRAPHS 55

5.1 Introduction 55

5.2 Conceptual approach 55

5.3 Theoretical framework 70

ii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

5.3.1 Rule format .. 70

5.3.2 Rule set analysis 73

5.3.2.1 Training data, word patterns and sub-patterns 73

5.3.2.2 Conflict rules and conflict resolution 75

5.3.2.3 Complete, accurate, minimal and possiblyminimal rule sets 77

5.3.2.4 Allowed states and allowed operations 78

5.3.2.5 Matchwords, possiblewords, rulewords and sharedwords 80

5.3.2.6 Complementing rules: containpat, mincomp and supercomp 83

5.3.2.7 Zm as a subset ofZcombined . 86

5.3.3 Rule ordering .. . 87

5.3.4 Characteristics of an allowed state 90

5.3.5 Initial allowed state 92

5.3.6 Allowed operations 92

5.3.6.1 Decreasing rule set size .. . 93

5.3.6.2 Removing unnecessary edges .. . 93

5.3.6.3 Identifying required rules 94

5.3.6.4 Resolving conflict rules .. . 94

5.3.7 Breaking ties .. . 95

5.3.8 Optimising generalisation ability 95

5.4 Alternative algorithms as specialisation of general framework 96

5.5 Extensions 96

5.6 Conclusion 97

CHAPTER SIX - BOOTSTRAPPING PRONUNCIATION MODELS 98

6.1 Introduction 98

6.2 Bootstrapping system 98

6.2.1 User perspective 99

6.2.2 System perspective 100

6.2.3 Algorithmic choices 101

6.2.4 System configuration 102

6.3 Experiment A: Validation of concept 102

6.3.1 Experimental protocol 103

6.3.2 Human factors .. 104

6.3.2.1 User learning curve .104

6.3.2.2 Effect of linguistic expertise 105

6.3.2.3 The cost of using audio assistance 106

6.3.2.4 The cost of phoneme corrections 107

6.3.2.5 Related factors .107

iii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER

6.3.3 Machine learning factors 108

6.3.3.1 System continuity .108

6.3.3.2 Predictive accuracy .. 108

6.3.3.3 Validity of base data .. 109

6.3.4 System analysis 109

6.4 Experiment B: Semi-automatic detection of verifier errors 110

6.5 Experiment C: Building a medium-sized dictionary 112

6.5.1 Experimental protocol 112

6.5.2 Human factors analysis 112

6.5.3 Analysis of machine learning factors 114

6.5.4 System analysis 115

6.6 Building systems that utilise bootstrapped dictionaries 118

6.6.1 isiZulu Text-to-Speech 118

6.6.2 Sepedi Speech Recognition 118

6.6.3 Afrikaans Text-to-Speech 118

6.6.4 Other systems .. . 119

6.7 Conclusion 120

CHAPTER SEVEN - CONCLUSION 121

7.1 Introduction 121

7.2 Summary of contribution 121

7.3 Further application and future work 122

7.4 Conclusion 124

APPENDIX A - THE ARPABET PHONE SET 125

APPENDIX B - SOME THEOREMS REGARDING M INIMAL REPRESENTATION

GRAPHS 126

B.1 Word sets .. . 126

B.2 Characteristics ofZm . 129

B.3 Zm as a subset ofZcombined . 131

B.4 Rule ordering inZm . 134

B.5 Rule ordering inZm as a subset ofZcombined . 137

B.6 Characteristics of an allowed state 139

B.7 Initial allowed state 141

REFERENCES 144

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER ONE

INTRODUCTION

1.1 HLT IN THE DEVELOPING WORLD

Human language technologies (HLT) hold much promise for thedeveloping world, especially for

user communities that have a low literacy rate, speak a minority language, or reside in areas where

access to conventional information infrastructure is limited. For example, information systems that

provide speech-enabled services via a telephone can serve auser in his or her language of choice

in a remote location, without requiring additional expertise from the user, or a sophisticated Internet

infrastructure. In South Africa, while Internet penetration is still low, more than90% of the population

has access to a telephone; and the potential of voice services for improving access to information is

receiving increasing attention [1].

The development of various forms of human language technology - such as speech recognition,

speech synthesis or multilingual information retrieval systems - requires the availability of exten-

sive language resources. The development of these resources involves significant effort, and can be

a prohibitively expensive task when such technologies are developed for a new language. The de-

velopment of an accurate automatic speech recognition system, for example, requires access to an

electronic pronunciation dictionary, a large annotated speech corpus from various speakers, and an

extensive textual corpus. Such resources are freely available for only a small subset of the world’s

languages. This presents a significant obstacle to the development of HLT in the developing world,

where few electronic resources are available for local languages, skilled computational linguists are

scarce, and linguistic diversity is high. (India, for example, recognises nineteen official languages

and South Africa eleven. In countries such as Indonesia and Nigeria, several hundred languages are

widely spoken [2].)

2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER ONE INTRODUCTION

In order to realise the potential benefit of HLT in the developing world, the language resource

barrier must first be overcome: techniques are required thatsupport the fast and cost-effective de-

velopment of language resources in a new language, without extensive reliance on assistance from

skilled computational linguists or access to prior language resources. Techniques that can support or

accelerate the language resource development effort include the cross-language re-use of information

[3, 4], statistical approaches to automated resource generation [5, 6], and bootstrapping, the focus of

this thesis.

1.2 BOOTSTRAPPING OF HLT RESOURCES

The popular saying “to pull oneself up by one’s bootstraps” is typically used to describe the process

of “improving one’s position by one’s own efforts” [7]. In computer terminology this term was

originally used to describe the process of iteratively loading a computer operating system from a few

initial instructions, but soon came to describe any processwhere “a simple system activates a more

complicated system” [8]. We use the term to describe an iterative process whereby a model of some

form is improved via a controlled series of increments, at each stage utilising the previous model to

generate the next one1.

This generic technique has been applied successfully to thelanguage resource development prob-

lem previously, especially in the creation of automatic speech recognition systems [3, 9–11]. When

acoustic models are developed for a new target language, an automatic speech recognition system

can be initialised with pre-developed models from an acoustically similar source language, and these

initial models improved through an iterative process whereby audio data in the target language is au-

tomatically segmented using the current set of acoustic models, the models retrained and the target

data re-segmented via a set of incremental updates. The potential saving in resource requirements

achieved through such a process was well demonstrated by Schultz and Waibel [12], among others.

When considering resource bootstrapping approaches in more detail (as discussed in Chapter 3)

it becomes apparent that these approaches rely on an automated mechanism that converts between

various representations of the data considered. Each representation provides some specific advantage

– making the data more amenable to a particular form of analysis – which can be utilised in improving

or increasing the resource itself. In the above example, tworepresentations are utilised: annotated

audio data and acoustic models; and the mechanisms to move from one representation to the other are

well defined through the phone alignment and acoustic modelling tasks, respectively.

The bootstrapping process has been applied successfully toa variety of additional language re-

source development tasks, including the development of parallel corpora [13], morphological dictio-

naries [14], morphological analysers [15] and linguistically tagged corpora [16]. We are specifically

interested in the use of bootstrapping for the development of pronunciation models in new languages.

1The term ‘bootstrapping’ is discussed in more detail in Section 2.3.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER ONE INTRODUCTION

1.3 PRONUNCIATION MODELLING WITHIN A BOOTSTRAPPING

FRAMEWORK

A pronunciation model for a specific language describes the process of letter-to-sound conversion:

given the orthography of a word, it provides a prediction of the phonemic realisation of that word.

This is a component required by many speech processing tasks– including general domain speech

synthesis and large vocabulary speech recognition – and is often one of the first resources required

when developing speech technology in a new language.

The letter-to-sound relationship is typically modelled through explicit pronunciation dictionar-

ies [17–19], but can also be represented according to various abstract letter-to-sound formalisms.

Grapheme-to-phoneme (g-to-p) rule sets can either be hand-crafted, or a letter-to-sound represen-

tation can be obtained from a given training dictionary, using approaches such as neural networks,

instance-based learning, decision trees, or pronunciation by analogy models [20–25]. In effect, these

data-driven letter-to-sound formalisms provide a second representation of the training dictionary, by

converting the training dictionary to a set of base elementsand operators of some form, which we

will refer to in general as g-to-p rule sets. These letter-to-sound formalisms have been studied over

the past twenty years (as discussed in more detail in Section2.2), resulting in a number of efficient

representation techniques. Since efficient techniques exist to analyse the same pronunciation data ac-

cording to more than one representation, it should be possible to utilise these representations during

bootstrapping.

A letter-to-sound conversion mechanism is valuable, not only in the absence of explicit pronun-

ciation dictionaries, but also in order to accommodate speech technology in memory constrained

environments, or to deal with out-of-vocabulary words in speech systems. Such applications require

a balance between the need for small rule sets, fast computation and optimal accuracy, and various

approaches to pronunciation modelling have been defined to meet these requirements. Bootstrapping

introduces an additional requirement: the ability to obtain a high level of generalisation given a very

small training set. If such a g-to-p mechanism can be obtained, it seems probable that a bootstrapping

approach will be beneficial in improving the speed and accuracy with which pronunciation models

can be developed in a new language.

1.4 OVERVIEW OF THESIS

The aim of this thesis is to analyse the pronunciation modelling task within a bootstrapping frame-

work. The goals are two-fold: (a) to obtain a mechanism for pronunciation modelling that is well

suited to bootstrapping; and (b) to analyse the bootstrapping of pronunciation models from a theoret-

ical and a practical perspective, as a case study in the bootstrapping of HLT resources.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER ONE INTRODUCTION

The thesis is structured as follows:

• In Chapter 2 we provide background information with regard to the pronunciation modelling

task and the use of bootstrapping for the development of HLT resources in general.

• In Chapter 3 we sketch a framework for analysing the bootstrapping process. This framework

provides the context for subsequent chapters, and describes the requirements for a conversion

algorithm suitable to bootstrapping.

• In Chapter 4 we analyse the grapheme-to-phoneme conversiontask in the search for an appro-

priate conversion algorithm. This leads to the definition ofDefault & Refine, a novel algorithm

for grapheme-to-phoneme rule extraction that is well suited to bootstrapping.

• In Chapter 5 we utilise the characteristics of the pronunciation modelling task analysed in

the prior chapter in order to define a new framework for grapheme-to-phoneme prediction.

We define the concept ofminimal representation graphs, and demonstrate the utility of these

graphs in obtaining a minimal rule set describing a given setof training data.

• In Chapter 6 we apply the new grapheme-to-phoneme algorithms in the bootstrapping of pro-

nunciation models. We experiment with a number of options, and analyse the efficiency of this

process according to the framework defined in Chapter 3. We develop bootstrapped pronunci-

ation models in three languages (isiZulu, Afrikaans and Sepedi) and integrate the bootstrapped

dictionaries in speech technology systems.

• In Chapter 7 we summarise the contribution of this thesis, and discuss further applications and

future work.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 5

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO

BACKGROUND

2.1 INTRODUCTION

This chapter provides background information with regard to the main topics discussed in subsequent

chapters:

• Section 2.2 provides an overview of various approaches to pronunciation modelling;

• Section 2.3 describes the use of bootstrapping for the development of HLT resources in general;

and

• Section 2.4 discusses current approaches to the creation ofpronunciation dictionaries in a semi-

automated fashion.

In this chapter, as in the remainder of this thesis, we use theARPAbet symbol set (included in Ap-

pendix A) to demonstrate phonemic concepts.

2.2 PRONUNCIATION MODELLING

A pronunciation model for a specific language provides an accurate mechanism for letter-to-sound

conversion, also referred to as grapheme-to-phoneme (g-to-p) conversion. Given the orthography

of a word, grapheme-to-phoneme conversion provides a prediction of the phonemic realisation of

that word. Where additional pronunciation characteristics such as stress or tone are predicted, this

process is referred to as grapheme-to-phoneme conversion with stress and/or tone assignment. This

can be the first of a two-phase process in pronunciation prediction: the first task being grapheme-

to-phoneme conversion, the second phoneme-to-allophone conversion. The rules utilised in the latter

phase are typically referred to as phonological rules, and are not always required explicitly, depending

6

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

on the specific type of speech technology that will be utilising the dictionary. For example, a speech

recognition system may either model phonological effects explicitly, or utilise a phonemic lexicon

and rely on the context-dependent acoustic models to capture many of the phonological effects [26].

As the distinction between phonemes and phones is often blurred, we approach this differentiation in

a pragmatic fashion in this thesis.

Pronunciations can be idiosyncratic, and not all pronunciation phenomena are regular to the ex-

tent of being predictable. Also, letter-to-sound conversion does not only depend on orthography: the

phonemic outcome can (and does) depend on other linguistic features such as word part-of-speech,

word morphology or word etymology. From a bootstrapping perspective, we are interested in ap-

proaches to the pronunciation prediction problem where additional linguistic resources are not avail-

able (or can be bootstrapped easily), and therefore we focusour attention on grapheme-to-phoneme

conversion based mainly on orthography.

The remainder of this section provides an overview of current approaches to pronunciation mod-

elling: Section 2.2.1 describes the manual development of pronunciation models, both the develop-

ment of explicit pronunciation dictionaries and the handcrafting of grapheme-to-phoneme conversion

rules, and Section 2.2.2 provides an overview of different approaches to the data-driven extraction of

grapheme-to-phoneme conversion rules. As many of the data-driven approaches require grapheme-

to-phoneme alignment prior to grapheme-to-phoneme rule extraction, approaches to grapheme-to-

phoneme alignment are discussed separately in Section 2.2.3. Section 2.2.4 discusses an alternative

speech processing approach that circumvents the need for explicit pronunciation modelling.

2.2.1 MANUAL DEVELOPMENT OF PRONUNCIATION MODELS

2.2.1.1 PRONUNCIATION DICTIONARIES

Many electronic pronunciation dictionaries (such as NETtalk [20] or OALD [18]) were created as

digital versions of similar printed dictionaries. Classical printed pronunciation dictionaries typically

only list word base forms, and for each word base form its ‘standard’ pronunciation. Pronunciation

variants are only included when more than one distinct pronunciation exists for a single word (e.g.

the past tense and present tense variants of the English word‘read’: r iy d and r eh d). Electronic

dictionaries that are frequently utilised in speech applications (such as CMUdict [17]) soon grow to

include additional word forms (plurals and other derivatives), and multiple pronunciation variants, as

required by the applications utilising the dictionary. Pronunciation variants can be generated auto-

matically using phonological rule sets1 or added according to a manual process.

Task-designed electronic pronunciation dictionaries, such asFONILEX, developed by Mertens

and Vercammen [19], include systematic mechanisms to derive word variants from base forms.

FONILEX specifically is a full-form lexicon (it lists the various word base forms separately) and

1The automatic extraction of phonological rules utilise techniques similar to those applied during grapheme-to-phoneme
rule extraction, as described in Section 2.2.2.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 7

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

provides an ‘abstract’ representation of each word, as wellas three ‘concrete’ pronunciations repre-

senting three different speaking styles. The concrete pronunciations are derived automatically from

the abstract representation via a set of phonological rewrite rules. In this way, regular variants are cap-

tured via phonological rules, rather than additional dictionary entries. Irregular variants are included

as additional dictionary entries. A related approach, followed independently by Allenet al [27] and

Cokeret al [28], utilises morphemes as the stored unit, and obtains dictionary entries by combining

these morphemes using a set of morphological rules. Here morphological rules are used to generate

the word base form itself, which is not stored individually.It is interesting to note thatFONILEX

was compiled semi-automatically using grapheme-to-phoneme conversion, and verified manually –

an approach that is related to the bootstrapping process investigated in this thesis.

2.2.1.2 PRONUNCIATION RULES

Manual pronunciation rules are typically developed according to the two-stage process described in

Section 2.2; that is, two rule sets are created: one set of grapheme-to-phoneme rules, and a second

set of phonological rules that generate the appropriate allophone (or allophones) per phoneme. Both

rule sets are often augmented by a set of exceptions. These rule sets can be described according to

different formalisms, a general formalism for a multi-level rewrite rule being:

{a}∗g{b}∗ → {c}∗p{d}∗ (2.1)

which, more typically, is simplified as:{a}∗g{b}∗ → p, whereg indicates the grapheme being con-

sidered andp the specific phonemic realisation ofg. {a}∗ and{b}∗ represent zero or more contextual

elements to the left and the right of the grapheme (respectively) of words that this rule can be applied

to, and{c}∗ and{d}∗ indicate how the word is amended (or not) during the application of this spe-

cific rule. Depending on the exact formalism, the left and/orright contexts of the left-hand side can

either consist of graphemes only, or a combination of graphemes and phonemes, and similarly, the

right-hand side can either be defined in terms of phonemes only, or a combination of graphemes and

phonemes. A null (or empty) phoneme or grapheme may be utilised explicitly within the formalism.

Furthermore, a single contextual element can also be used torepresent a class of such graphemes or

phonemes. Formalisms differ based on the order in which rules are applied, the direction in which

rules are parsed, and whether a single rule or a sequence of all matching rules are applied when pre-

dicting a single word. Manually developed rewrite rules exist for a number of languages, including

languages as diverse as English [29], Arabic [30] and isiXhosa [31].

Typically, the more modern the writing system of a language,the stronger the connection between

the spoken and written form of a language, and the more regular the spelling system of the language2.

Languages with a fairly recent spelling system (such as Swahili) have an almost direct correspondence

between the orthography and the pronunciation of a word, while a language such as English or French

2As discussed further in Section 4.6.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 8

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

includes significant historical ‘baggage’ in its spelling system. For languages with highly regular

spelling systems, the manual development of a set of pronunciation rules can be a manageable task

for a skilled linguist. For languages with less regular spelling systems this task becomes particularly

arduous, with the set of words that that can be predicted correctly using the manually developed rule

set only achieving larger sizes if amended by a sizeable exceptions dictionary. For example, the rule

set developed by Elovitzet al [29], consisting of 329 rules for English, achieved only25.7% word

accuracy when evaluated by Damperet al[25] and19.3% word accuracy when a modified version was

evaluated by Bagshaw [32] (using different corpora). Semi-manually developed finite state transducer

systems can achieve better performance [26], but require significant expertise to develop.

2.2.2 DATA-DRIVEN APPROACHES TO G-TO-P RULE EXTRACTION

Data-driven approaches to grapheme-to-phoneme rule extraction can be used to generalise from ex-

isting pronunciation dictionaries when handling out-of-vocabulary words in speech systems, and to

compress information when requiring a pronunciation modelin a memory-constrained environment.

Such applications require a balance between the need for small rule sets, fast computation and optimal

accuracy, and various approaches to pronunciation modelling have been defined to meet these require-

ments. Approaches include the application of neural networks [20, 33], decision trees [22–24, 34],

Pronunciation by Analogy (PbA) models [32,35–38], instance-based learning algorithms such as Dy-

namically Expanding Context (DEC) [21,36] and IB1-IG [24],finite state transducers [39], Bayesian

networks [40], and the combination of methods and additional information sources through meta-

classifiers [41]. Many of these algorithms require grapheme-to-phoneme alignment prior to rule ex-

traction, as discussed in Section 2.2.3.

Benchmarking these pronunciation prediction algorithms is difficult: There are few standardised

pronunciation prediction tasks that are widely used, and the task itself is very sensitive to training/test

set distributions. A strict evaluation of three of the data-driven approaches (a neural network, IB1-IG

and PbA) can be found in [25]. Results obtained when applyingdifferent algorithms are discussed

in further detail in Section 4.6.1; the remainder of this section provides an overview of the various

approaches to grapheme-to-phoneme rule extraction mentioned above.

The automatic extraction of phonological rules utilise similiar techniques as those described here.

Such rule sets are used to generate an allophonic representation for a phonemic pronunciation, as

demonstrated by Ellison [42], Tajchmanet al [43] and others, or to assign additional pronunciation

characteristics such as stress to the pronunciation of the word [44]. The application of data driven

techniques for the development of phonological rule sets isnot discussed further: we rather focus our

attention on the grapheme-to-phoneme conversion process specifically.

2.2.2.1 NEURAL NETWORKS AND DECISION TREES

A neural network was one of the first data-driven approaches to grapheme-to-phoneme rule set ex-

traction demonstrated. A neural network was trained by Sejnowski and Rosenberg [20] using the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 9

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

English NETtalk corpus, and later re-implemented by McCulloch and others as the NETspeak [33]

system. Words were windowed with a fixed number of graphemes (between 3 and 11 graphemes)

per window, and a feed-forward neural network was trained toassociate each letter, surrounded by

its graphemic window, with a specific phoneme outcome. A similar system was later evaluated by

Damperet al [25].

Various decision tree based approaches have been demonstrated, including systems developed by

Andersenet al [22, 45], Blacket al [23] and Hakkinenet al [34], obtaining comparable results. The

detail implementations differed based on various aspects,including the type of questions generated,

the pruning method, the splitting criteria and detailed parameter choices. The algorithms were applied

to different languages and corpora, and different evaluation processes used. Andersenet alcompared

a binary decision tree with Trie structures using both an English (NETtalk and CMUdict) and a French

(ONOMASTICA) database [22]. Blacket alutilised Classification and Regression Trees (CART) and

English (OALD and CMUdict), French (BRULEX) and German (CELEX) dictionaries [23]. Hakki-

nenet al explicitly compared the performance of neural networks anddecision trees for the English

CMUdict task. Hakkinenet al found that neural networks provide better generalisation than deci-

sion trees when limited training data is available, and perform more consistently across mismatched

test sets, while decision trees typically outperform neural networks where training and test data are

closely matched [34].

2.2.2.2 PRONUNCIATION BY ANALOGY

Pronunciation by Analogy (PbA) models predict the pronunciation of a new word by searching

through known words for matching sub-word parts. This set ofalgorithms was designed specifically

for the task of grapheme-to-phoneme prediction. Originally suggested by Dedina and Nusbaum [46],

the approach was further developed by Sullivan and Damper [35], Yvon [36, 47], Damper and East-

mond [37], Bagshaw [32], and Marchand and Damper [38].

Languages with irregular spelling systems such as English and French perform well within

analogy-based frameworks, and for English, the best asymptotic results to date have been achieved

with PbA [25]. Unfortunately, current versions of these algorithms can be ‘slow learners’, only ap-

proaching asymptotic accuracy for larger training dictionary sizes, as discussed further in Section 4.2.

Depending on the amount of prior manipulation of the training data employed by PbA algorithms,

these algorithms can be seen as a form of instance-based learning.

2.2.2.3 INSTANCE-BASED LEARNING

We use the terminstance-based learningas used by Ahaet al [48] to describe algorithms that gen-

erate classification predictions using specific instances from a set of training data, rather than using

a generalised abstraction created from the training set, and do not differentiate among instance-based

learning, memory-based learning or case-based reasoning.These algorithms all utilise ‘lazy learn-

ing’: rather than generalising from a training set, the entire training set is typically retained (in some

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 10

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

form or another) and predictions are based on reasoning about these retained exemplars, analogous to

the process of nearest neighbour classification3.

In [24], Daelemanset alprovide a strong argument for the utility of memory-based approaches for

language processing tasks, noting that in many of these tasks exceptions tend to occur in ‘groups or

pockets in instance space’. As it is difficult to differentiate between actual noise inherent to language

data4 and small regular families of exceptions (that provide useful predictive information), Daele-

mans argues that exceptions should preferably be retained,as is inherent to standard instance-based

learning. Two specific approaches that have been applied successfully to grapheme-to-phoneme con-

version are (1) variations ofIB1-IG [49], as developed and applied to the grapheme-to-phoneme task

by Daelemanset al [24]; and (2) Kohonen’s Dynamically Expanding Context (DEC) [50], initially

applied by Torkkola [21] to the grapheme-to-phoneme task:

1. IB1-IG

IB1-IG [24, 49] is in essence a k-nearest neighbour classifier that utilises as distance measure

a weighted version of graphemic context overlap. Appropriate weighting of the graphemic

context is an important aspect of the algorithm, and is attained through information gain tech-

niques. Given a grapheme-to-phoneme aligned training dictionary, words are windowed, and a

learning instance is generated per window (each instance focussing on a specific letter within

the context of the rest of the window) and associated with a specific phonemic classification

of that letter. Weights are associated with each feature based on a normalised measure of the

amount of information the specific feature contributes to knowledge about the specific phone-

mic class (over the entire instance base). New words are predicted by finding the instances

that are closest to the target word, using the weighted distance measure. Ties are resolved by

considering frequency of outcome, and frequency of occurrence of the specific feature (where

a feature defines both a letter and its position).

Daelemanset al [24] evaluated this algorithm on the task of grapheme-to-phoneme conver-

sion with stress assignment, using the CELEX database (as one of a set of language learning

tasks considered), and found comparable accuracy rates between IB1-IG and a decision tree

approach. The IB1-IG algorithm performed better than the C5.0 decision tree used for com-

parison: the difference in performance was slight (but significant) if the number of instances

required for a decision tree node to be retained was chosen as1 (similar to the IB1-IG ap-

proach); a larger number of required instances caused greater pruning of the decision tree, and

decreased its performance. Damperet al [25] found that IB1-IG obtained higher accuracy than

a neural network, but not the same level of asymptotic accuracy as PbA. Further results are

provided by Hosteet al [41] in an evaluation of meta-classification techniques.

3It should be noted that the differentiation among techniques described in this section is not strict: for example, a
decision tree learning algorithm that does not allow any pruning can also be seen as a form of instance-based learning.

4For example, as caused by true exceptions, or discrepanciesin the way in which the lexicon was developed.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 11

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

2. DEC

Kohonen’s Dynamically Expanding Context (DEC) [50], initially applied by Torkkola to the

grapheme-to-phoneme problem [21], is another instance-based learning algorithm that predicts

phoneme realisation based solely on graphemic context. In DEC, each rule specifies a mapping

of a single grapheme to a single phoneme for a given left and right graphemic context, i.e is of

the form:(left-context,grapheme,right-context)→ phoneme.

Rules are extracted by finding the smallest context that provides a unique mapping of grapheme

to phoneme. If ann−letter context is not sufficient, the context is expanded to either the right

or the left. This ‘specificity order’ influences the performance of the algorithm. The set of

extracted rules are stored as a hierarchical tree, with moregeneral rules at the root, and more

specific rules at the leaves. The tree is traversed from the root to the leaves, and the rule at

the first matching leaf (the rule describing the largest matching context) is used to predict the

specific grapheme-to-phoneme realisation. If no leaf is matched, the most probable outcome of

the last matching leaf is used, as can be estimated from the training data. If the extracted ‘rule

set’ is allowed to contain contexts of an arbitrary size, no training words are discarded, and the

tree structure is simply used to arrange the set of all training instances in an efficient structure.

2.2.2.4 ALTERNATIVE APPROACHES

A number of further approaches to pronuncation modelling exist, including:

1. Finite state transduction, as demonstrated by Luk and Damper [39], and more recently by

Hazenet al [26]. Finite state transduction as used in [26] requires significant linguistic specifi-

cation, while Luk and Damper’s approach requires less linguistic input but makes a number of

(restrictive) assumptions in order to create a trainable system.

2. The application of Bayesian networks for grapheme-to-phoneme conversion [40]. Bayesian

networks are more typically used for pronunciation variation modelling, rather than phonemic

base form generation.

3. The use of hierarchical systems of meta-classifiers, and even meta-meta-classifiers as investi-

gated by Hosteet al [41].

Various of these approaches can be utilised during bootstrapping, as discussed further in Section 4.2.

2.2.3 GRAPHEME-TO-PHONEME ALIGNMENT

The majority of data-driven approaches to grapheme-to-phoneme rule extraction first require that the

training dictionary be aligned on a grapheme-to-phoneme basis. For languages with alphabetic writ-

ing systems5, each grapheme is mapped to its corresponding phoneme, and phonemic or graphemic

5For ideographic, pictographic, syllabic or even moraic languages, a more complex process is required – see for example
[51] for a comparison of alignment approaches for Japanese.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 12

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

nulls inserted where required: A phonemic null is inserted where a single phoneme is produced

from more than one grapheme; a graphemic null where a single grapheme results in more than one

phoneme. In languages where graphemic nulls are rare, graphemic exceptions that can map to more

that one phoneme (such asx → k s) can be replaced with two pseudo-graphemes (e.g. replacingx

with x X) and only phonemic nulls inserted. This technique, suggested by Pagelet al [52], results in

fewer alignment errors.

Initial data sets used for grapheme-to-phoneme benchmarking (such asNETtalk[20]) were hand

aligned. Dalsgaard, Andersen and others [53, 54] applied forced Viterbi alignment [55] to create

automatic grapheme-to-phoneme alignments, based on the probabilitiesP(grapheme i| phoneme j).

Initial probabilities were obtained from words and pronunciations that have equal length. This ap-

proach provides fairly accurate alignments: when benchmarked against theNETtalkhand alignments,

Andersenet al achieved a word alignment accuracy of83.7% and a phoneme alignment accuracy of

93.2% [22]. It should be noted that theNETtalkhand alignments may not be the ideal benchmark to

use for measuring alignment accuracy, as discussed in more detail in Section 4.4. Blacket al [23]

used a similar alignment approach but defined a candidate setto restrict misalignments. In Black’s

approach the possible grapheme-to-phoneme mappings are specified prior to alignment, and used to

restrict the alignment options during Viterbi alignment.

2.2.4 GRAPHEME-BASED SYSTEMS

The discussion up to this point has assumed that a pronunciation model is a required component for

a variety of speech processing systems, including automatic speech recognition systems. Schilloet

al [56] demonstrated an alternative approach by introducing the concept of grapheme-based speech

recognition: rather than using a pronunciation dictionary, graphemes are used directly as basis for the

acoustic sub-units modelled. This grapheme-based approach results in surprisingly accurate systems.

Since the perplexity of the language model has a significant effect on the accuracy of the system,

a strong language model compensates well for an inaccurate pronunciation model. The results ob-

tained by Schilloet alwere independently confirmed by Kanthak and Ney [57] and Killer [58]. While

grapheme-based systems are conceptually less complete than system that incorporate an explicit pro-

nunciation dictionary, grapheme-based systems for languages with fairly regular spelling systems

(such as Italian, Spanish or Dutch) do not seem to be significantly less accurate than phoneme-based

systems, especially in the presence of a strong language model, exhibiting a less than2% relative de-

crease in accuracy in [57]. For languages with less regular systems, the decrease in accuracy becomes

more noticeable: In [57] a25.7% relative decrease in accuracy was observed for an English system

with a word trigram perplexity of124.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 13

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

2.3 BOOTSTRAPPING OF HLT RESOURCES

We use the term ‘bootstrapping’ to describe an iterative process whereby a model of some form is

improved via a controlled series of increments, at each stage utilising the previous model to generate

the next one. This is a broader definition than often employedin machine learning, where boot-

strapping typically indicates a semi-supervised approachto learning, where a small set of labelled

instances is used to seed a classifier, label unclassified data, and retrain the classifier [59, 60]. Both

the above interpretations should not be confused with the use of this term in the field of Statistics,

where it can also indicate a statistical method for estimating the sampling distribution of an estimator

by resampling with replacement from the original sample [61].

Bootstrapping can be a useful technique during language resource development, and has been

used extensively in the creation of resources required by automatic speech recognition systems [3,9–

11]. In speech recognition, a bootstrapping technique is often combined with some form of cross-

language information sharing. For example, when acoustic models are developed for a new target

language, an automatic speech recognition system can be initialised with pre-developed models from

an acoustically similar source language, and these initialmodels improved through an iterative process

whereby audio data in the target language is automatically segmented using the current set of acoustic

models, the models retrained and the target data re-segmented via a set of incremental updates.

The potential saving in resource requirements achieved through such a process was well demon-

strated by Schultz and Waibel [12]. For example, in a set of experiments conducted on a Portuguese

system, Schultz and Waibel obtained near-equal performance using either a fairly large amount (16.5

hours) of target data, or adapting multilingual models through a combination of bootstrapping and

adaptation, using 90 minutes of target data. The increase inperformance using different techniques

is illustrated in Figure 2.1. Here,Data refers to the amount of target language data used andQuality

refers to the quality of the alignments:initial alignments are generated by the multilingual system,

while good alignments are updated based on improving systems.Methodrefers to the adaptation

method used: using the unadapted initial system in a cross-language transfer approach (CL), Viterbi

training using the alignments from the initial system (Vit), Maximum Likelihood Linear Regression

adaptation of the initial system using the target data (MLLR), or bootstrapping (Boot). Bootstrapping

consists of the following phases per bootstrapping cycle: creating initial alignments, Viterbi training,

model clustering, retraining and writing improved alignments.Treerefers to the decision tree used for

clustering: the original multi-lingual language independent tree (LI), a Portuguese language depen-

dent tree (LD) or a tree built using the Polyphone Decision Tree Specialisation (PDTS) process6 [12].

This example illustrates both the cross-language re-use ofinformation – seeding the acoustic models

using a related language – and the essence of a bootstrappingapproach: iteratively improving acous-

6A standard context modelling technique is to cluster modelsusing a CART-based clustering technique and a splitting
criterion based on maximum entropy gain. The Polyphone Decision Tree Specialisation (PDTS) technique was proposed
by Schultz as a mechanism to adapt the context modelling based on the target data, by restarting the decision tree growing
process according to the target data available, resulting in significant improvements [62].

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

Figure 2.1:Experimental results when applying cross-language re-useof acoustic information tech-
niques in the bootstrapping of a Portuguese system, from [12].

tic models by utilising the models developed during the previous bootstrapping cycle to re-align the

data, and retrain the models.

Additional language resource development tasks that have been shown to benefit from some form

of bootstrapping include the development of parallel corpora [13], morphological dictionaries [14],

text categorization [63], automatic audio alignments [64], grammar parsers [65], morphological anal-

ysers [15], linguistically tagged corpora [16], and the development of pronunciation lexicons, as

discussed in Section 2.4.

2.4 THE AUTOMATED GENERATION OF PRONUNCIATION DICTIONARIE S

In this section, we consider automated and semi-automated approaches to the generation of pronun-

ciation dictionaries in a new language, referring to two types of approaches: Stuker [66] investigated

ways in which existing phoneme recognisers can be used to generate a pronunciation dictionary for

a new language, utilising audio data and word-level transcriptions in the target language. Using nine

mono-lingual and a multi-lingual phoneme recogniser, phoneme recognition of the audio data is per-

formed, and different voting and normalisation techniquesare used to obtain a hypothesized pronun-

ciation (or pronunciations) per words. This technique doesnot currently result in usable dictionaries,

but further work is in progress.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 15

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER TWO BACKGROUND

A demonstrably successful approach to the semi-automated generation of pronunciation dictionar-

ies, is the use of bootstrapping within the Festival Text-to-Speech System [67]. This system includes

a rule extraction component based on Classification and Regression Trees, which can be used to gen-

erate letter-to-sound rules from a small lexicon. This lexicon is then grown iteratively by submitting

additional words to the system, and having a human verify thecorrectness of the predictions. This

process was recently demonstrated by Maskeyet al [68], utilising an approach that is analogous to

the approach used in this thesis. Maskeyet al developed a Nepali pronunciation dictionary by iter-

atively extracting a grapheme-to-phoneme rule set, predicting a set of additional dictionary entries

(varying from 100 words per cycle initially to 5000 words percycle later in the process), identify-

ing a subset of these words based on a calculated confidence score, and having these corrected by

a Nepali speaker. In a related approach, theFONILEXdictionary was compiled semi-automatically

using grapheme-to-phoneme conversion, and verified manually [19].

2.5 CONCLUSION

This chapter provided background on the pronunciation modelling task, and described various ap-

proaches to pronunciation modelling, focussing on data-driven techniques. The pronunciation mod-

elling topic is addressed further in Chapter 4, where we define a grapheme-to-phoneme rule extrac-

tion mechanism suitable to bootstrapping. The current chapter also provided a brief overview of prior

work related to the bootstrapping of HLT resources; this discussion continues in Chapter 3 with the

definition of a general model for the bootstrapping of HLT resources.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 16

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE

BOOTSTRAPPING MODEL

3.1 INTRODUCTION

In this chapter we sketch a basic framework for the analysis of the bootstrapping process. We de-

scribe the bootstrapping model in Section 3.2, and discuss the factors to consider when evaluating the

efficiency of the bootstrapping process in Section 3.3. In Section 3.4 we show how this model applies

to the pronunciation modelling task in particular.

3.2 MODEL DESCRIPTION

As introduced in Section 2.3, we use the term ‘bootstrapping’ to describean iterative process whereby

a model is improved via a controlled series of increments, ateach stage utilising the previous model

to generate the next one. During bootstrapping the model is grown systematically, becoming increas-

ingly accurate from one increment to the next. When analysing the bootstrapping process, it soon

becomes apparent that the process relies on an automated or semi-automated mechanism to convert

among various representations of the model considered. Each representation describes the same task

in a format that provides a specific benefit: either because the representation is amenable to auto-

mated modelling and analysis, or because it describes the current model in a way that is convenient

for a human to verify and improve. The remainder of this section contains a definition of the various

components of a bootstrapping system, a description of the bootstrapping process, and examples of

bootstrapping applications.

17

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

3.2.1 COMPONENTS

The general bootstrapping concept utilising two model representations is depicted in Figure 3.1. The

number of representations is limited to two for the sake of simplicity – three or more representations

can also be included in the model.

Figure 3.1:General bootstrapping concept, utilising two model representations.

The following components play a role during bootstrapping:

• Alternative representations:Two or more representations of the same model lie at the heartof

the bootstrapping process. In the Fig. 3.1 these are indicated asA andB.

• Conversion mechanisms:Each conversion mechanism (indicated asA → B andB → A)

provides an automated or semi-automated means to convert data from one representation to

another.

• Verification mechanisms:Once converted to a specific representation, the model can beim-

proved via automated or human (manual) verification, indicated in the figure by theVerify

components.

• Base data:This term is used to refer to the domain of the model. Thecurrent baseindicates

the domain that has been used in training the current model, and consists of a subset of, or the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 18

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

full base data set. The current base data is implicitly or explicitly included in each of the two

representations.

• Increment mechanisms:The Add components are used to increase the current base during

bootstrapping. At the one extreme, all model instances can be included in a single increment;

at the other, a single instance can be added per bootstrapping cycle. The increment mechanisms

may utilise active learning techniques [69,70] in order to select an appropriate set of instances

to add.

• External data: This term refers to additional data sources that are utilised during bootstrap-

ping. Typically, external data is used to initialise a bootstrapping system with models that were

developed on a related task.

3.2.2 PROCESS

Prior to bootstrapping, the various representations are initialised in preparation for the first iteration.

Typically only a single representation requires initialisation (A in this instance). External data may

be included in this process, or the bootstrapping process starts without any initial knowledge of the

task not included in the base data. The increment mechanism chooses the first base set to use. Once

initialised, the bootstrapping process consists of the following steps, many of which are optional, as

indicated:

1. The current base, as well as the current representationA is used to generate the next represen-

tationB.

2. B is verified, either manually or automatically. (Optional)

3. Based on the current state of the bootstrapping system, the increment mechanism increases the

current base set. (Optional if (6) is not)

4. The current base, as well as the current representationB is used to generate representationA.

5. A is verified, either manually or automatically. (Optional)

6. Based on the current state of the bootstrapping system, the increment mechanism increases the

current base set. (Optional if (3) is not)

This cycle is repeated until a sufficiently accurate and/or comprehensive model is obtained.

3.2.3 EXAMPLES

Two typical examples of bootstrapping are illustrated in Figures 3.2 and 3.3. The first example (Fig.

3.2) illustrates the automated bootstrapping scenario described in Section 1.2. For this task, the

base data consists of audio data and phonemic transcriptions (initially not aligned with the audio

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 19

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

Figure 3.2:An example of automated bootstrapping.

data).A represents the phonemic segmentation of the audio data, andB the acoustic models derived

from the segmentations. The focus is on the refinement of the acoustic models: the segmentations

themselves are only important to the extent that they influence the quality of the acoustic models. The

A → B mechanism consists of the training, re-clustering, and re-training of acoustic models, and

theB → A mechanism of automatic Viterbi alignment of the phonemic transcriptions, utilising the

current acoustic models.

The second example (Fig. 3.3) illustrates a simple bootstrapping scenario where machine learning

and human intervention are combined, as would be the case, for example, when bootstrapping audio

segmentations for Text-to-Speech purposes. The base data again consists of audio data and phonemic

transcriptions;A represents the human-readable segmentation of the audio data, andB the acoustic

models derived from the segmentations. TheA → B mechanism consists of acoustic model training,

and theB → A mechanism of automatic alignment. Here the focus is on achieving optimal segmen-

tations and these are hand-verified until the acoustic models are stable enough to support accurate

alignments (and possibly even after that, if high quality segmentations are required).

3.3 EFFICIENCY OF BOOTSTRAPPING PROCESS

The main aim of a bootstrapping system is to obtain as accurate a model as possible from available

data. When human intervention is used to supplement or create the training data itself, the aim shifts

towardsminimising the amount of human effort required during the process. This is the focus of our

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 20

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

Figure 3.3:An example of bootstrapping where machine learning and human intervention are com-
bined.

analysis, and we therefore measure bootstrapping efficiency as a function of model accuracy:

efficiency(a) =
tbootstrap(a)

tmanual(a)
(3.1)

where a is the accuracy of the current model as measured against an independent test set and

tbootstrap(a) andtmanual(a) specify the time (measured according to amount of human intervention)

required to develop a model of accuracya with and without bootstrapping respectively.

Bootstrapping is analysed according to bootstrapping cycles. While bootstrapping, all base in-

stances do not result in valid data that can be included in themodel training process. Of the instances

that define valid base data, some will be correctly represented by the initial representation (B), and

others will contain errors. We define a number of variables toassist us in the analysis of these in-

stances: At the start of cyclex of the bootstrapping process, we definen(x) as the number of instances

included in the current base,ninvalid(x) as the number of instances that are invalid,ncorrect(x) as the

number of instances that are valid and correct, andnerror(x) as the number of instances that are valid

and incorrect. For these variables, the following will always hold:

n(x) = ninvalid(x) + nvalid(x)

nvalid(x) = ncorrect(x) + nerror(x) (3.2)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 21

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

Related incremental variables are used to represent the increase during cyclex, namelyinc n(x),

inc ninvalid(x), inc nvalid(x), inc ncorrect(x) andinc nerror(x). The same intervention mechanism

may have different cost implications based on thestatus of the instance. In the simplest case, the

status of an instance may simply be correct, incorrect or invalid, but subtler differences are possible,

e.g. the number of changes required to move from an incorrectto a correct version. The expected

status of a newly predicted instance changes as the system becomes more accurate. Prior to human

intervention at stagex of the bootstrapping process, the number of instances of each status within the

current increment is given by:

inc n(x) =
∑

s∈status

inc n(s, x) (3.3)

Combining machine learning and human intervention in a way that minimises the amount of

human effort required during the process can be achieved in two ways: (a) by minimising the effort

required by the human verifier to identify errors accurately, and (b) by optimising the speed and

accuracy with which the system learns from the human input. This section describes the various

factors that influence the efficiency of the bootstrapping process from both these perspectives.

3.3.1 HUMAN FACTORS

The first human factor that impacts on the efficiency of the bootstrapping process relates torequired

user expertise:whether the task requires expert skills, or whether a limited amount of task-directed

training is sufficient. If is assumed that the user has the skills required, the following measurements

provide an indication of the efficiency of the bootstrappingprocess for a specific user:

• User learning curve:The time it takes for a specific user to become fully proficientusing the

bootstrapping system. Measured asttrain, initial training data is assumed to be discarded.

• Cost of intervention:The average amount of user time required per interventioni when an

instance is in statuss, for a fully trained user using the bootstrapping system. Measured as

tverify(i, s) a different average cost may be associated with different types of interventions.

If more than one intervention is used to generate a single instance during one cycle of boot-

strapping, the combination of mechanisms is modelled as an additional (single) mechanism.

Depending on the bootstrapping process, it may be more realistic to measure this value for a

set of instances.

• Task difficulty:The average number of errors for a fully trained user using the bootstrapping

system. Indicated byerror ratebootstrap(i, s), this is measured in percentage as the average

number of errors per 100 instances generated using intervention mechanismi to verify an in-

stance initially in states.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 22

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

• Quality and cost of user verification mechanisms:Implicit in the above two measurements

are the cost and effect on error-rate of additional assistance provided during user intervention.

Rather than modelling additional user assistance providedduring existing interventions sepa-

rately, the combined intervention is again modelled as an additional type of intervention. In the

same way, automated verification mechanisms are modelled asadditional interventions.

• Difficulty of manual task:The average number of errors for a fully trained user developing

instances manually. Indicated byerror ratemanual, this is measured in percentage as the

average number of errors per 100 manual instances developed, where each manual instance

can be associated with an individual base data instance in the bootstrapped system.

• Manual development speed:The average amount of time per instance development for a fully

trained user performing this task manually, measured astdevelop; this value can also be analysed

separately per types of instance development astdevelop(s), if so required.

• Initial set-up cost:The time it takes for a user to prepare the initial system for manual devel-

opment or bootstrapping; measured in time astsetup manual andtsetup bootstrap respectively.

3.3.2 MACHINE LEARNING FACTORS

The faster a system learns between verification cycles, the fewer corrections are required from a

human verifier, and the more efficient the bootstrapping process becomes. From a machine learning

perspective, learning speed and accuracy are directly influenced by:

• Predictive accuracy of current base:modelled as the expected number of instances of each

status at a specific cycle of the bootstrapping process, and indicated byE(inc n(s, x)). Implicit

to this measurement are four factors:

– Accuracy of representations:The ability of the chosen representations to model the spe-

cific task.

– Set sampling ability:The ability to identify the the next ‘best’ instance or instances to add

to the knowledge base, possibly utilising active learning techniques.

– System continuity:The speed at which the system updates its knowledge base. This

has a significant effect on system responsiveness, especially during the initial stages of

bootstrapping.

– Robustness to human error:The stability of the conversion mechanisms and chosen rep-

resentations in the presence of noise introduced by human error.

• On-line conversion speed:Any additional time costs introduced when computation is per-

formed while a human verifier is required to be present (but idle while waiting for the com-

putation to complete); measured as an average per number of valid instances developed and

indicated bytidle(n).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 23

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

• Quality and cost of verification mechanisms:The average amount of time required to utilise

additional assistance mechanismj – from a computational perspective – when an instance is in

statuss, measured astauto(j, s).

• Validity of base data:Using invalid data slows the bootstrapping process, especially if human

intervention is required to verify the validity of base data; measured in % of base data, this is

indicated byvalid ratio.

Two additional factors that are not included explicitly in the general model, but can be included

based on the requirements of the specific bootstrapping task, are:

• Conversion accuracy:The ability of the conversion to model convert between representations

without loss of accuracy.

• Effect of incorporating additional data sources:The ability of the system to boost accuracy by

incorporating external data sources at appropriate times.

3.3.3 SYSTEM ANALYSIS

The combined effect of the machine learning factors and human factors provide an indication of the

expected cost of using the bootstrapping system. The time todevelop a bootstrapping model viaN

cycles of bootstrapping, utilising a set of interventionsI, is given by:

tbootstrap(N, I) = tsetup bootstrap + ttrain + titerate(N, I)

= tsetup bootstrap + ttrain

+

N−1
∑

x=1

(

∑

i∈I

∑

s∈status

(tverify(s, i) + tauto(s, i)) ∗ inc n(s, x)

+tidle ∗ inc nvalid(x + 1)

)

(3.4)

wheretiterate(N, I) combines the cost of the various iterations, excluding the cost associated with

system setup and user training. The expected value ofinc n(s, x) depends on the specific conversion

mechanism, and is influenced byvalid ratio anderror ratebootstrap(i, s).

This cost of bootstrapping can be compared to the expected cost of developingnmanual instances

via a manual process:

tmanual = tsetup manual + tdevelop ∗ nmanual (3.5)

If nbootstrap andnmanual are chosen such that

E[inc n(correct, nbootstrap)] = E[inc n(correct, nmanual)] (3.6)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 24

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER THREE BOOTSTRAPPING MODEL

where the number of valid instances generated during bootstrapping is given by:

nbootstrap =

N−1
∑

x=1

inc n(valid, x) (3.7)

the accuracy of each of the two systems is approximately equivalent, and the values of eq. 3.4 and 3.5

can be combined according to eq. 3.1 in order to obtain a measure of the expected efficiency of the

bootstrapping process. We use this measure to analyse a specific bootstrapping system in Chapter 6.

3.4 BOOTSTRAPPING PRONUNCIATION MODELS

The scenario depicted in Fig. 3.3 can be applied to the bootstrapping of pronunciation models. In

this case, the base data consists of a word list;A represents an explicit pronunciation dictionary,

each instance consisting of a word and pronunciation pair; and B represents a set of grapheme-to-

phoneme rules. TheA → B mechanism represents grapheme-to-phoneme rule extraction, and the

B → A mechanism grapheme-to-phoneme conversion. Additional verification assistance that can be

provided include automated error detection, and audio support during verification.

3.4.1 ALGORITHMIC REQUIREMENTS

An appropriate grapheme-to-phoneme rule extraction and conversion mechanism lies at the heart of

the bootstrapping process. From the discussion in 3.3.2 it follows that the following are the most

important requirements for a grapheme-to-phoneme formalism to be used in bootstrapping:

1. It should have high predictive ability, even for very small training set sizes.

2. It should be able to represent the word/pronunciation data exactly (in order to prevent conver-

sion loss when switching between representations).

3. It should allow continuous model updating at a low computational cost.

4. Pronunciation prediction should be fast.

5. It should be robust to noise in the training data.

3.5 CONCLUSION

In this chapter we defined a framework and terminology for theanalysis of a bootstrapping system.

We showed how this model applies to the bootstrapping of pronunciation models and defined the

requirements for a grapheme-to-phoneme conversion mechanism suitable for bootstrapping. These

requirements are taken into account in the next chapter (Chapter 4) in the search for such a mecha-

nism. The bootstrapping topic itself is revisited in Chapter 6.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 25

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

4.1 INTRODUCTION

In this chapter we analyse the grapheme-to-phoneme (g-to-p) conversion task through a number of

experiments. Our aim is obtain a pronunciation modelling mechanism that is well suited to boot-

strapping. We choose an instance based learning approach, with Dynamically Expanding Context

(DEC) as the baseline algorithm, for reasons discussed in Section 4.2. We utilise the pronunciation

dictionaries described in Section 4.3 to analyse various aspects of the task, and to benchmark our

results. As DEC is sensitive to alignment errors, we first analyse grapheme-to-phoneme alignment

accuracy (in Section 4.4), and define the alignment approachwe utilise in subsequent experiments.

We then proceed to analyse a number of variations of DEC, and suggest small adaptations to the stan-

dard algorithm (Section 4.5). These variations lead to the definition of a new grapheme-to-phoneme

conversion algorithm described in Section 4.6. This algorithm –Default & Refine– has a number of

attractive properties that makes it suitable for bootstrapping.

4.2 BASELINE ALGORITHM

As discussed in Section 3.4.1, the ideal grapheme-to-phoneme conversion mechanism will have the

following characteristics:

1. High predictive ability, even for very small training setsizes.

2. Exact representation of training data.

3. Low computational cost (both for rule extraction and pronunciation prediction).

4. Robustness to noise in the training data.

26

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Of the approaches discussed in Section 2.2.2, we exclude anythat require linguistic input (such as

finite state transduction) or extensive computational resources (such as meta-classifiers). Of the re-

maining approaches, most exhibit comparable asymptotic performance, with the best results currently

achieved by pronunciation by analogy (PbA) approaches and instance-based learning methods, as de-

scribed earlier.

Both PbA approaches and instance-based learning methods can provide exact representation after

conversion, as required. Also, the computational complexity of examples within both of these classes

of algorithms are within acceptable limits, with PbA approaches providing some advantage with

regard to computational cost [25]. As bootstrapping is typically not the aim of grapheme-to-phoneme

approaches, little information is available with regard torobustness to noise. The first requirement

then becomes the deciding factor for choice of algorithm: how well does the algorithm generalise

from very small data sets. Again, explicit information is not available, but it seems from the results

provided by Damperet al in [25] that the PbA algorithm only starts to generalise wellwhen the

training dictionary is of sufficient size1. We therefore choose an example of instance-based learning

as the basis for our initial experimentation. Specifically,we choose Dynamically Expanding Context

(DEC), an algorithm that is simple to implement, and generalises fairly well from a small training set.

4.3 EXPERIMENTAL DATA AND APPROACH

We utilise the following databases during experiments:

• NETtalk, a publicly available 20,008-word English pronunciation dictionary [20], derived from

Miriam Webster’s pocket dictionary (1974). Hand-crafted grapheme-to-phoneme alignments

are included in the electronic version.

• FONILEX, a publicly available pronunciation dictionary of Dutch words as spoken in the Flem-

ish part of Belgium [19]. We obtained the exact 173,873-wordpre-aligned version of the dic-

tionary as used by Hoste [41].

• OALD, a publicly available English pronunciation dictionary [18]. We obtained the exact

60,399-word pre-aligned version of the dictionary as used by Black [23].

• Afrikaans A, a 5,013-word Afrikaans pronunciation dictionary, built using the bootstrapping

system and developed as part of this thesis. This dictionarywas transcribed by a linguistically

sophisticated first-language Afrikaans speaker and manually verified by the author. Of the

5,013 words, 90 words are invalid: the remaining 4,923 wordsare all valid and distinct.

• Afrikaans B, a 8,053-word Afrikaans pronunciation dictionary, built using the bootstrapping

system and developed as part of this thesis. This dictionarywas bootstrapped fromAfrikaans

1When trained on the (American English) Teachers’ Word Book (TWB), the PbA algorithm that was evaluated achieved
approximately 40% word accuracy after 2000 words [25]

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 27

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

A and transcribed by a linguistically sophisticated first-language Afrikaans speaker, but not

exhaustively verified. (Some verification was performed, asdescribed in Section 6.5.) Of the

8,053 words, 271 words are invalid: the remaining 7,782 words are all valid and distinct.

Where any of the above databases include pronunciation variants (one word associated with two

or more valid pronunciations), all but the first pronunciation variant are removed from the database,

prior to dividing the database into training and test sets. When we report on results, we use the term

phoneme correctnessto specify the percentage of phonemes identified correctly,phoneme accuracy

as the number of correct phonemes minus the number of insertions, divided by the total number of

phonemes in a correct pronunciation, andword accuracyto specify the percentage of words com-

pletely correct. While we typically report on phoneme accuracy only, phoneme correctness is some-

times included in order to provide a comparative measure with results from other sources. Unless

otherwise stated, we perform 10-fold cross-validation. During 10-fold cross-validation we subdivide

the entire corpus randomly into 10 distinct sub-sections, and then perform 10 training/testing exper-

iments, training on nine of the sub-sections and testing on the tenth. For the different measurements

(word accuracy, phoneme accuracy, phoneme correctness) wereport on the standard deviation of the

mean of each of these measurements, indicated byσ10
2. Where there is uncertainty with regard to the

measure used in a benchmark result, word accuracy provides the least ambiguous comparison.

As in previous sections, we use the format

(x1..xm, g, y1..yn) → p (4.1)

to specify extracted grapheme-to-phoneme rules. Hereg indicates the focal grapheme,xi andyj the

graphemic context, andp the phonemic realisation of the graphemeg. We also use a more compact

representation:

x1..xm − g − y1..yn → p (4.2)

to indicate the same rule. Note that each grapheme specifies aseparate element, even though these

separate elements are written next to each other (without spaces or other indicators of element bound-

ary.)

4.4 GRAPHEME-TO-PHONEME ALIGNMENT

Errors in grapheme-to-phoneme alignment do not affect different rule extraction techniques to the

same extent. DEC-based rule extraction mechanisms are sensitive to alignment accuracy. For ex-

ample, the correct DEC extraction rule for the grapheme-pair ‘ee’ in English is−e − e → iy and

e − e− → φ whereφ indicates the null phoneme. If the system incorrectly aligns the words “keen”

2If the mean of a random variable is estimated withn independent measurements, and the standard deviation of those
measurements isσ, the standard deviation of the mean isσn = σ√

n
.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 28

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and “seen” as follows:k e e n → k iy φ n ands e e n → s φ iy n, DEC will not be able to extract

the fairly simple rule specified above, as the two words provide conflicting evidence with regard to

the pronunciation of the grapheme pair ‘ee’. Note that the linguistic accuracy of the position of the

null phoneme is not important, as long as the choice of position is consistent across the set of train-

ing instances. As DEC is sensitive to alignment accuracy, weoptimise the grapheme-to-phoneme

alignment process before analysing the grapheme-to-phoneme conversion process.

4.4.1 PRE-PROCESSING OF GRAPHEMIC NULLS

Many languages require few or no graphemic nulls and the additional variability introduced by cater-

ing for graphemic nulls result in miss-alignments. For our base algorithm (Align v1) we use forced

Viterbi alignment based on the probabilitiesP(grapheme i| phoneme j); and initialise probabilities

from words and pronunciations that have equal length, as described by Andersenet al [54]. However,

we insert graphemic and phonemic nulls in two separate steps. In a pre-processing phase, graphemic

null generator pairs (two graphemes that result in more thantwo phonemes) are identified by Viterbi

alignment of all word-pairs where pronunciation length is longer than word length. Phonemic nulls

are inserted in a second phase of Viterbi alignment. (Where the first phase introduces unnecessary

graphemic nulls, these are typically mapped to phonemic nulls during the second phase.) In both

phases the alignment process is repeated until no further likelihood improvement is observed.

Alignment accuracy on theNETtalkcorpus using this implementation (Align v1) is higher than

the results reported by Andersenet al [22], as compared in Table 4.1. This improvement is due to an

implementation difference rather than a conceptual difference: The algorithms are similar, apart from

the different handling of graphemic nulls, and graphemic nulls do not occur in theNETtalkcorpus3.

4.4.2 UTILISING THE PHONEMIC CHARACTER OF NULL-PHONEMES

An additional improvement can be obtained if the transcription convention used byNETtalk is

adapted. InNETtalk, null phonemes are used to identify graphemes that are “deleted” during pro-

nunciation, for example the wordwriter is transcribed asw r i t e r → φ r ay t φ axr. An alternative

convention would be to use null phonemes simply to identify instances where two or more graphemes

give rise to a single phoneme (without identifying a particular grapheme as deleted), by aligning the

first grapheme in such a group with a non-null phoneme, and subsequent graphemes with nulls. Using

this convention, the wordwriter is transcribed asw r i t e r → r φ ay t axr φ. A null phoneme then

simply indicates that the phonemic realisation remains thesame for more than one grapheme.

Using a set of about 40 rewrite rules, theNETtalkdictionary can be rewritten using either the

one convention or the other. Using the second convention, the dictionary responds better to data-

3In earlier work, when adding graphemic nulls by hand, we found that the use of pseudo-phonemes can complement
the use of pseudo-graphemes. Pagelet al [52] suggested the use of pseudo-graphemes (e.g. creating two graphemesXx to
represent thek ands phonemes that originate fromx separately). We found that, when a more natural choice, the use of
pseudo-phonemes (e.g. creating aks phoneme to represent thek ands combination) can improve alignment accuracy.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 29

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

driven alignment and the second version of our Viterbi algorithm (Align v2). This algorithm explicitly

calculates theprobability that a specific grapheme is realised as a null phoneme, given the previous

non-null phonemic realisation of the preceding grapheme orgraphemes, and provides a significant

performance improvement, as shown in Table 4.1.

Table 4.1:Phoneme and word alignment accuracy obtained on the NETtalkcorpus.

Database Type Phoneme Word
NETtalk-original Iterative Viterbi [22] 93.2 83.7
NETtalk-original Align v1 96.5 87.3
NETtalk-rewritten Align v2 98.7 95.4

The effect of the improvement in alignment accuracy on rule extraction accuracy is depicted in

Fig. 4.1. TheAlign v1 and Align v2 algorithms are used prior toDEC-min4 rule extraction on a

10,000-word subset of theFONILEXdatabase, and grapheme-to-phoneme prediction accuracy mea-

sured against a 5000-word test set.

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

W
or

d-
le

ve
l a

cc
ur

ac
y

Number of words

Align v1
Align v2

Figure 4.1:Effect of different alignment algorithms on word-level pronunciation prediction accuracy
of DEC-min, as measured on a 10,000-word subset of FONILEX.

In order to verify that this effect is not corpus-specific, weperform a further evaluation using the

OALD corpus. We analyse the effect of the two different alignmentalgorithms (Align v1 and Align

v2) when extracting bothDEC-growandDEC-minrules using training sets of increasing size. For

each training set of a specific size, 10 distinct training sets are generated. All training sets are tested

against a non-overlapping 5970-word test set (10% of the full data set). A similiar trend is observed as

on theFONILEXcorpus, as depicted in Fig. 4.2. For example, the mean phoneme accuracy forDEC-

grow rules trained on a 5000-word training set is86.83% (with σ10 = 0.07) when aligned according

to Align v1, and87.54% (with σ10 = 0.06) when aligned according toAlign v2. During the earlier

4TheDEC-minalgorithm is described in Section 4.5.2.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 30

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-min

Align v1

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-min

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-min

Align v1

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-min

Align v1
Align v2

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-grow

Align v1

 74

 76

 78

 80

 82

 84

 86

 88

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

DEC-grow

Align v1
Align v2

Figure 4.2:Effect of different alignment algorithms on prediction accuracy of DEC-grow and DEC-
min, as measured using the OALD corpus.

stages of the rule extraction process (when alignment probabilities are still unstable) this provides a

signficant advantage.

4.5 DEC-BASED GRAPHEME-TO-PHONEME PREDICTION

4.5.1 STANDARD DEC

A conceptual description of DEC as applied to the grapheme-to-phoneme problem by Torkkola [21]

is provided in Section 2.2.2.3. In this section, we discuss the approach in further detail: Each DEC

rule specifies a mapping of a single grapheme to a single phoneme for a given left and right graphemic

context, i.e is of the form:(left-context,grapheme,right-context)→ phoneme. Each word in the train-

ing dictionary is aligned with its pronunciation on a per-grapheme basis, as illustrated in Table 4.2.

Rules are extracted by finding the smallest context that provides a unique mapping of grapheme to

phoneme. If ann−letter context is not sufficient, the context is expanded to either the right or the left.

This ‘specificity order’ influences the performance of the algorithm. Different orderings are illustrated

in Table 4.3 as applied to grapheme‘s’ in the word‘interesting’. Context 1 is expanded symmetri-

cally on a right-grapheme-first basis, context 2 is expandedsymmetrically on a left-grapheme-first

basis, and context 3 favours the right context on a 2:1 basis.The set of extracted rules are stored as

a hierarchical tree, with more general rules at the root, andmore specific rules at the leaves. The tree

is traversed from the root to the leaves, and the rule at the first matching leaf (the rule describing the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 31

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.2:Word alignment and rule extraction in standard DEC.

Alignment examples r o s e→ r ow zφ
r o w s→ r ow φ z
r o o t→ r uw φ t

Rule examples for -o- in context -o: -o-o→ uw
in context -se: -o-se→ ow
in context o-: o-o-→ φ

Table 4.3:Different examples of context expansion order in DEC.

size context 1 context 2 context 3
0 s s s
1 st es st
2 est est sti
3 esti rest esti
4 resti erest estin

largest matching context) is used to predict the specific grapheme-to-phoneme realisation. If no leaf

is matched, the most probable outcome of the last matching leaf is used, as can be estimated from the

training data. In our implementation of DEC, we do not explicitly order the rules in a tree structure,

but number them according to the order in which they are extracted (corresponding to a topological

sort of all rules that can apply to a single word). We then search via reverse rule order rather than tree

traversal. This variation does not change the algorithm functionally.

If DEC is not allowed to grow an asymmetric context when it reaches a word boundary and

conflicting rules are ignored (DEC-conflict) the performance of the algorithm degrades for larger

training corpora, especially if rules regarding the context surrounding a grapheme early or late in a

word are of predictive importance. In order to remove this effect, the version of DEC (DEC-grow)

that was implemented as baseline algorithm allows a contextto grow towards the opposite side if a

word boundary is encountered. This effect is illustrated inFig. 4.3 where we plot the results for

DEC-conflictandDEC-growduring the initial stages of learning (using theFONILEXcorpus).

4.5.2 SHIFTING WINDOWS

DEC, as applied by Torkkola [21] expands the context of a grapheme one letter at a time, either

favouring the right- or left-hand side explicitly. We analyse the implications of using a sliding window

rather than a strict expanding context. We define a sliding window that first considers all possible

contexts of sizen, before continuing to consider contexts of sizen+1, which prevents rules with

unnecessarily large contexts from being extracted. In contrast to the DEC context expansion of Table

4.3, a sliding window applied to grapheme‘s’ in the word‘interesting’ would result in the context

ordering indicated in Table 4.4. Since multiple rules of thesame context size may apply to a single

grapheme-to-phoneme mapping (such asre,s,ti→ sandere,s,t→ s), contexts that are already served

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 32

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

 30

 35

 40

 45

 50

 55

 60

 65

 0 1000 2000 3000 4000 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-conflict
DEC-grow

Figure 4.3:Comparing DEC-conflict and DEC-grow during initial learning stage (first 5000 words
of FONILEX). DEC-grow is chosen as baseline algorithm.

Table 4.4:Context expansion order in shifted DEC.

order size context order size context
1 0 s 2 1 st
3 1 es 4 2 est
5 2 sti 6 2 res
7 3 esti 8 3 rest
9 3 stin 10 3 eres

by existing rules can be removed to prevent over-specialisation. Because all contexts of each size

are considered, the order in which contexts are expanded (for a specific context-level) becomes less

significant than in standard DEC.

Figures 4.4 and 4.5 compare the performance of different DECvariations. In all experiments,

a symmetric right-first expansion scheme is used5 (as also in Table 4.4). The size of the maximum

context allowed when extracting rules is not restricted, and the same word training order (random

selection from corpus) is used. In order to compare with previous results, we use the exact alignments

as used in [41]. Where word variants occur, we only use the first variant – both for training and testing

purposes.

Three shifted window versions of DEC are implemented: extracting the first valid rule encoun-

tered (DEC-win) extracting the maximum number of valid rules (DEC-max) and pruning this system

to obtain the minimum number of rules that still provide fullcoverage for the training corpus (DEC-

min). When a shifting window is used, more than one conflicting rule of the same size may apply to

a word. Various conflict resolution strategies can be implemented: in the set of experiments reported

below, the most frequently observed rule is favoured. For the training set sizes analysed, the pruned,

shifted window version of DEC (DEC-min) provides a small but consistent performance improvement

in word accuracy6. DEC-win is not shown, but results in a learning curve similar toDEC-grow, both

5A symmetric, right-first expansion scheme is used when rule options are generated for consideration prior to selection
of the actual rule – actual rules are generated according to ashifting window, and do not exhibit strict right-first behaviour.

6Note that phoneme accuracy initially follows a different trend for this corpus.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 80

 85

 90

 95

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-max
DEC-min

Figure 4.4:Word-level accuracy of different DEC variations during initial learning stage, as mea-
sured using the first 5000 words of FONILEX.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-max
DEC-min

Figure 4.5: Phoneme-level accuracy of different DEC variations duringinitial learning stage, as
measured using the first 5000 words of FONILEX.

with regard to word and phoneme accuracy. Asymptotic performance is only approached for larger

training sets, as compared in Table 4.5.DEC-mincontinues to perform better thanDEC-grow, with a

small margin. The improvements during the initial learningstages are small, and introduce additional

overhead during computation. Of more interest is that the new DEC variation (DEC-min) forms the

basis for further algorithmic improvement, as discussed inthe next sections.

As can be expected, the extracted rule sets grow in differentways with regard to rule number

and rule length, as the size of the training dictionary increases. An analysis of the different types

of rule sets extracted from the same training dictionary is provided in Table 4.6. The numbers of

rules of each size (the size of the context that specifies the rule) are compared, as extracted from

different sized training dictionaries usingDEC-grow, DEC-maxandDEC-min. Note thatDEC-max

tends to extract more rules thanDEC-growbut that these rules tend to be shorter.DEC-minreduces

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 34

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.5: Phoneme correctness, phoneme accuracy and word accuracy comparison for different
DEC variations, as measured using the FONILEX corpus.

phoneme correctnessphoneme accuracy word accuracy
±σ10 ±σ10 ±σ10

DEC-max 98.44 0.01 98.28 0.01 88.71 0.06
DEC-grow 98.50 0.01 98.32 0.04 88.60 0.07
DEC-win 98.57 0.01 98.40 0.01 89.53 0.05
DEC-min 98.58 0.01 98.41 0.01 89.58 0.06

the number of rules significantly (in comparison withDEC-max). DEC-minextracts slightly more

rules thanDEC-win, but as can be expected, these are much shorter (more general).

Table 4.6:Number and size of rules: DEC-grow, DEC-max and DEC-min
Rule type: DEC-grow DEC-max DEC-min
Dict size: 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

1 27 27 27 27 27 27 27 27 27
2 65 92 103 108 105 103 86 104 102
3 127 545 1259 256 1224 2375 102 705 1661
4 19 323 1996 24 926 7031 9 375 3469
5 7 131 1845 - 78 3081 - 33 1381
6 - 33 712 - 7 341 - 3 178
7 - 8 280 - - 27 - - 18
8 - - 71 - - 5 - - 3
9 - - 32 - - 1 - - 1
10 - - 4 - - 1 - - 1
11 - - 5 - - - - - -
12 - - 1 - - - - - -
13 - - - - - - - - -
14 - - - - - - - - -
15 - - 1 - - - - - -

Total 245 1,160 6,337 415 2,367 12,992 224 1,247 6,841

4.5.3 RULE PAIRS

When analysing the specific errors made by these DEC variations, it becomes apparent that some

rules occur in ‘rule pairs’, i.e. two rules always occur as companions in the training data. These rule

pairs are sometimes not applied as companions in the test data, causing errors. For example, during

rule extraction a rule−e − en → iy is typically followed by a second rule rulee − e − n → φ

or e − e− → φ, and is a better rule to apply when predicting the instancek − e − en than the

otherwise equally likely rule#k− e−. We experiment with the implication of forcing such rule pairs

to occur in tandem. First, we identify rule pairs that alwaysoccur together in the training data and

exhibit a context overlap of at least the two focal graphemes. Then we restrict our rule application

to only use one of the rules in such a pair if the second rule in the pair is also applicable to the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 35

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

same training instance. However, constraining rule pairs in this way does not have a significant effect

on predictive accuracy: In some instances the rule pair approach does correct a second phoneme that

would otherwise have been wrong, but in a comparable number of cases this approach causes a second

phoneme to be wrong, which would otherwise have been correct. We therefore do not continue with

further experimentation along this route.

4.5.4 CONFLICT RESOLUTION

In standard DEC, the largest matching rule is always unique7. When a shifting window is used, more

than one conflicting rule of the same size may apply to a word. If we usenum(r, p) to specify the

number of training instances that match the context of a specific rule r and specific outcome asp, we

calculate the ‘accuracy’ of the ruler as:

accuracy(r) =
num(r, outcome(r))
∑

x num(r, x) + 1
for all possible outcomesx. (4.3)

In the experiments described above, if more than one candidate rule (of the same size) is applicable to

the current word being predicted, we choose the rule for which accuracy(r) is highest. This is a fairly

simple conflict resolution strategy, and various alternative options are possible. We experiment with

a number of these, including (1) voting among possible rules(choosing the outcome that most of the

candidate rules agree upon), (2) applying the smaller (fall-back) context rather than any of the larger

conflicting rules, and (3) simply choosing any of the rules atrandom (in practice whichever of the

candidate rules was generated first during rule extraction), and find no consistent improvement using

any of the alternative conflict resolution strategies. We continue to use the initial conflict resolution

strategy (highestaccuracy(r)) for further experimentation.

4.5.5 DEFAULT RULES

The question of how to best resolve conflict is closely linkedto the question of how to best define

default rules. One of the consequences of DEC rule extraction is that there exists only a single rule

of any given length that can potentially apply to a specific word (where this length lies between one

and the total length of the word being predicted). If the wordbeing predicted is of lengthn, and no

matching rule of lengthn exists, then a single rule of sizen − 1 may potentially apply. In effect the

latter rule acts as ‘back-off value’ for the rule of lengthn. If a rule of lengthn − 1 does not exist

either, the (unique) matching rule of lengthn− 2 becomes the next possible candidate8. When using

shifting windows, there is no longer a unique rule of any given length that can potentially apply when

predicting a word – more than one candidate may exist. We therefore consider the effect of adding

default rules explicitly: for any set of rules of context sizen with one or more internal disagreements

7This rule may be conflicted (i.e. not a leaf node in Torkkola’soriginal implementation) in which case the most fre-
quently observed outcome across the training data is generated, but no conflicting rules of the same size can exist.

8From a conceptual perspective – this is not the process that is followed in practice during DEC prediction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 36

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and no ‘default rule’ of sizen − 1, we add an explicit rule of context sizen − 1 with an outcomep

such thatnum(r, p) is the maximum over all possible outcomes. Interestingly, adding this additional

information decreases rule accuracy. An error analysis indicates that inappropriate ‘default rules’ are

extracted: while these rules correctly ‘fill the gaps’ amongthe rules extracted from the training data,

the ‘default rules’ are forced to specific value by the previously extractedDEC-minrules, and do not

generalise well. This leads us to the definition of a default-and-refinement approach to grapheme-to-

phoneme prediction, as discussed in the next section (Section 4.6). This approach utilises a similar

rule definition format as DEC, but the rule extraction process is more distant from original DEC than

the variations studied up to this point.

4.6 A DEFAULT-AND-REFINEMENT APPROACH TO G-TO-P PREDICTIO N

Grapheme-to-phoneme prediction algorithms rely on the connection between the spoken and written

form of a language. It is expected that, the more modern the writing system of a language, the stronger

this connection, and the more regular the spelling system ofthe language [71]. This may not always

hold in practice, for example, when a language with mainly (or only) an oral tradition is transcribed

for the first time, and the variability introduced through the initial transcription process has not yet

stabilised through usage or an education system that utilises the written form. While alternative

outcomes are possible, the languages studied as part of thisthesis all exhibit a combination of a fairly

modern writing system associated with a fairly to highly regular spelling system.

The more regular the spelling system of the language, the stronger the concept of a ‘default

phoneme’: a grapheme that is realised as a single phoneme significantly more often than as any

other phoneme. Figure 4.6 and Figure 4.7 illustrate this phenomenon for Flemish. When counting

the number of times a specific grapheme is realised as a specific phoneme, most graphemes follow

the trend depicted in Figure 4.6. Here,y is realised as a single phoneme more than60% of the

time, with the next two phonemic candidates occurring only24% and4% of the time, respectively.

For graphemes that exhibit ‘conflicted default phoneme’ behaviour, such as (h,j,n,u), the trend is

less strong, but also clearly discernible, as depicted in Figure 4.7. Similar trends are observable for

languages with less regular spelling systems, with a largerproportion of graphemes of these languages

displaying the behaviour depicted in Figure 4.7.

We use this information to define an algorithm that utilises greedy search to find the most general

rule at any given stage of the rule extraction process, and explicitly orders these rules according to the

reverse rule extraction order9. Explicitly ordering the rules provides flexibility duringrule extraction,

and ensures that the default pattern acts as a back-off mechanism for the more specialized rules.

The framework we use is similar to that used in previous sections: Each grapheme-to-phoneme rule

9It is interesting to note that, while the rule application order of DEC is ordered by context size (largest rule first), our
reverse rule extraction order automatically reverts to context size ordering in the case of DEC-based rule extraction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 37

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

%
 o

f s
am

pl
es

Most to least frequent g-to-p mapping observed

d
s
t
y

Figure 4.6:Default phoneme behaviour of graphemes d,s,t and j in Flemish. Only the first 10 phone-
mic candidates are displayed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

%
 o

f s
am

pl
es

Most to least frequent g-to-p mapping observed

h
j

n
u

Figure 4.7:Conflict phoneme behaviour of graphemes h,j,n,u in Flemish.Only the first 10 phonemic
candidates are displayed.

consists of a pattern

gleft − g − gright → p (4.4)

whereg indicates the grapheme being considered,gleft andgright are the graphemic left and right

contexts of the rule, andp the specific phonemic realisation ofg. The pronunciation for a word is

generated one grapheme at a time. Each grapheme and its left and right context as found in the target

word are compared with each rule in the ordered rule set; and the first matching rule is applied.

Prior to rule extraction, grapheme-to-phoneme alignment is performed according to the Viterbi-

based alignment process described in Section 4.4. Pronunciation variants are currently not allowed:

if a word has more than one possible pronunciation, only the first is kept. Each aligned word-

pronunciation pair is used to generate a set of possible rules by extracting the sub-pattern of each

word pattern; an example of such a process is shown in Table 4.7.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 38

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.7:The relationship between a word (test) and, for one of its graphemes (e), the word pattern
and sub-patterns that are generated during rule extraction.

Word test
Word pattern #t-e-st#→ eh
Sub-patterns -e-→ eh,-e-s→ eh,t-e-→ eh,t-e-s→ eh

t-e-st→ eh, #t-e-s→ eh,-e-st#→ eh
#t-e-st→ eh,t-e-st#→ eh,#t-e-st#→ eh

Once all possible rules have been generated in this way, rules are extracted on a per-grapheme

basis, one rule at a time. For any specific grapheme, applicable words are split into two sets based on

whether the current rule set (initially empty) predicts thepronunciation of that grapheme accurately

(Completedwords) or not (Newwords). These two large word sets are used to keep track of status,

but further manipulation utilises two sets of sub-patterns: the Possiblesub-patterns, indicating all

possible new rules, and consisting of all the sub-patterns of each word pattern inNew, excluding all

for which the left-hand side is an existing rule; and theCaughtset of sub-patterns, indicating all the

sub-patterns covered by the current rule set irrespective of whether the outcome of the rule matches

that of the word or not. Both thePossibleandCaughtsets of sub-patterns count the number of times,

per possible outcome, that a matching word pattern is observed in the relevant word sets.

The next rule is chosen by finding the pattern for which the matching count inPossibleminus

the conflicting count inCaughtis highest. (The conflicting count is the number of times a matching

left-hand pattern is observed with a conflicting right-handphoneme.) Definition of a new rule moves

words from theNew to theCompletedset. Any words that are currently in theCompletedset and

conflict with the new rule, are moved back to theNewset. This process is repeated until all words have

been moved from theNewto theCompletedset. The algorithm ensures that the next rule chosen is the

one that will cause the most net words to be moved from theNewto theCompletedset, irrespective of

context size. As this number (net words processed) is alwayspositive10, the algorithm cannot enter an

infinite loop. The stronger the default behaviour exhibitedby a specific grapheme described by a new

rule, the more words are processed during the extraction of that specific rule. Conflict is only resolved

in theCompletedset: new rules are allowed to conflict with words still inNew, which ensures that the

rule set is built for the default pattern(s) first.

In order to ensure computational efficiency when trained on larger dictionaries, we use the fol-

lowing techniques during implementation:

• Words are pre-processed and the word patterns relevant to a single grapheme extracted and

written to file. All further manipulation considers a singlegrapheme (and the corresponding

set of word patterns) at a time.

• The context size of the sub-patterns considered is grown systematically: only sub-patterns up to

10A rule based on a full word pattern can only apply to that single word, and will result in a ‘net move count’ of 1. Since
the maximum of all these ‘net move counts’ is selected, this value will always be positive.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 39

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

sizemax+win are evaluated, wheremax indicates the current largest rule, andwin is defined

to ensure that any larger contexts that may be applicable areconsidered, without requiring all

patterns to be searched.

• Whenever a sub-pattern inPossibleor Caughtreaches a count of zero, the sub-pattern is deleted

and not considered further, unless re-added based on an inter-set move of a related word.

While these techniques ensure that a fairly large dictionary (200,000 words) can be trained in an

acceptable amount of time when using the process in a non-interactive fashion, the process to train

a sizeable dictionary becomes too slow for interactive bootstrapping. This issue is addressed fur-

ther in Section 4.6.4. In the remainder of this thesis we refer to the algorithm described above as

‘Default&Refine’.

4.6.1 ASYMPTOTIC PERFORMANCE

In order to evaluate the asymptotic behaviour ofDefault&Refine, we compare our results on a fairly

large corpus with published results for a number of alternative algorithms. As theDefault&Refine

algorithm is motivated by ’default behaviour’, we first evaluate the algorithm on a language with a

fairly regular spelling system (Flemish), before testing it on a language with an irregular spelling

system (English).

4.6.1.1 REGULAR SPELLING SYSTEMS

We evaluate the accuracy of theDefault&Refinealgorithm when trained on the fullFONILEXtraining

set, and compare its performance with that of alternative algorithms in Table 4.8: theIB1-IG result

utilises an instance-based learning algorithm and is as reported in [41]; theDEC-growandDEC-min

results are calculated using the algorithms described in Section 4.5.2; and theD&R result reports the

Default&Refinevalues. TheDEC andDefault&Refineexperiments utilise the same alignments as

used in [41].

Table 4.8: Phoneme correctness, phoneme accuracy and word accuracy comparison for different
algorithms using the FONILEX corpus

phon correct phon accuracy word accuracy
±σ10 ±σ10 ±σ10

IB1-IG 98.18 - - - 86.37 -
DEC-grow 98.50 0.01 98.32 0.04 88.60 0.07
DEC-min 98.58 0.01 98.41 0.01 89.58 0.06
D&R 98.87 0.01 98.78 0.01 92.03 0.06

The focus of [41] was to investigate the effect of cascading two classifiers – one trained onFONILEX

and one onCELEX– a Dutch variant corpus, and creating meta-classifiers using C5.0 (decision tree

learning), IB1-IG (instance-based learning as described in Section 2.2.2.3), IGTREE (an algorithm

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 40

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

that induces decision trees utilising information gain) and MACCENT (a maximum entropy-based

algorithm). The highest accuracy reported was for such a meta-classifier system:91.55% word

accuracy for a single meta-classifier; and92.25% word accuracy for a meta-meta-classifier of all

meta-classifiers. (These systems all utilised theCELEX data as an additional data source.) We find

thatDefault&Refinehas good asymptotic accuracy, and performs better than the comparative (single)

classifiers.

4.6.1.2 LESS REGULAR SPELLING SYSTEMS

As the algorithm is motivated by ’default behaviour’ we wereinterested in the extent in which the

algorithm would fail for a language such as English, with a less regular spelling system. We therefore

evaluate the asymptotic performance of the algorithm against benchmark results available for both

theNETtalkand theOALD corpus. It is reassuring to find that the algorithm again performs well, as

shown in Tables 4.9 and 4.10.

Table 4.9: Phoneme accuracy, phoneme correctness and word accuracy comparison for different
algorithms using the NETtalk corpus

phon correct phon accuracy word accuracy
±σ10 ±σ10 ±σ10

Trie - - 89.8 - 51.7 -
DTree - - 89.9 - 53.0 -
DEC-T - - 90.8 - - -
DEC-Y - - 92.21 - 56.67 -
D&R 91.37 0.08 90.50 0.1 58.66 0.21
SMPA - - 93.19 - 63.96 -

In Table 4.9 we compare the performance of a number of algorithms on theNETtalk corpus.

We list the results obtained by Andersenet al [22] using Trie structures (Trie) and decision trees

(DTree) respectively; by both Torkkola [21] and Yvon [36] using Dynamically Expanding Context

(DEC-T and DEC-Y); by Yvon [36] using SMPA, a pronunciation-by-analogy algorithm; and the

results ofDefault&Refine(D&R) using own alignments. The phoneme correctness reported in[36]

for DEC seems anomalously high, in relation to our own experiments, those obtained in [21], and the

reported word accuracy. TheSMPAalgorithm employs a pronunciation by analogy approach, andis

less suitable for training on very small data sets. The latter results only pertain to words that could

be pronounced – about0.5% of words were not pronounceable with SMPA when fully trained. Note

also that the SMPA results score the accuracy of variants in the test set differently to the approach

employed in this thesis11.

In Table 4.10 we compare the performance ofDefault&Refine(D&R) with the results obtained by

11In the SMPA experiments all variants but one are removed fromthe training set, but all variants are retained in the test
set – if any of the possible variants are generated during testing, the prediction is marked as accurate. This is different to
the scoring approach used in this thesis, as described in Section 4.3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 41

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Black et al [23] using Classification and Regression Trees (CART) for two data sets: one including

stress assignment (SA) and one without. We use the exact alignments, and the same single training

set and test set as used by Black12. The CART trees were generated taking part-of-speech information

into account – whichDefault&Refinedoes not use. Without POS information, the CART result (with

stress assignment) decreases to95.32% phoneme correctness and71.28% word accuracy .

Table 4.10:Phoneme accuracy, phoneme correctness and word accuracy comparison for CART and
Default&Refine using the OALD corpus (SA indicates stress alignment)

phon correct phon accuracy word accuracy
Incl. SA:
CART 95.80 - 74.56
D&R 97.12 96.87 83.76

Excl. SA:
CART 96.36 - 76.92
D&R 97.80 97.56 87.40

4.6.2 LEARNING EFFICIENCY

In order to use this algorithm for the bootstrapping of pronunciation dictionaries, we are specifically

interested in the performance of the algorithm when trainedon very small training sets. We therefore

evaluate word and phoneme accuracy for different training dictionaries of sizes smaller than 3,000

words, using subsets fromFONILEX. Figure 4.8 demonstrates the phoneme accuracy learning curve

for Default&Refinein comparison withDEC-grow. Each rule set is evaluated against the full 17,387-

word test set.

 80

 82

 84

 86

 88

 90

 92

 94

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

Default&Refine
DEC

Figure 4.8:Phoneme accuracy during initial 3000 training words, as measured using the FONILEX
corpus.

12When 10-fold cross-validation is performed using different subsets of this data set, a slightly lower cross-validated
accuracy is obtained:96.62% phoneme accuracy and82.37% word accuracy when stress assignment is included, and
97.66% phoneme accuracy and86.41% word accuracy without stress assignment.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 42

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

4.6.3 SIZE OF THE RULE SET

While the size of the rule set is typically not a concern during grapheme-to-phoneme bootstrapping,

it can be important for other applications (such as dictionary compression). We therefore analyse the

size of the rule set, and find that the rule set extracted byDefault&Refineis significantly smaller that

extracted byDEC-grow, as shown in Figures 4.9 and 4.10.Default&Refineprovides both a more

accurate and more compact prediction model: the 156,486-word training dictionary is represented

with 100% accuracy by 15,053 rules.

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

S
iz

e
of

 r
ul

e
co

nt
ex

t

Number of rules per context size

DEC

1,000
10,000

156,486

Figure 4.9:Number of rules per context size extracted by DEC-grow from training dictionaries of
three different sizes.

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000

S
iz

e
of

 r
ul

e
co

nt
ex

t

Number of rules per context size

Default&Refine

1,000
10,000

156,486

Figure 4.10:Number of rules per context size extracted by Default&Refinefrom training dictionaries
of three different sizes.

4.6.4 CONTINUOUS LEARNING

The ideal bootstrapping system will be able to update the rule set after every correction by the verifier,

immediately incorporating further learning in the bootstrapping knowledge base. The time taken for

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 43

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

such updates is therefore of crucial importance. The updatespeed is influenced by two factors: the

alignment speed and the rule extraction speed. Ifn represents the number of words in the training

dictionary, then the complexity of the alignment process and that of the rule extraction process is

both approximatelyO(n), if it is assumed for the sake of simplicity that all words aremore or less

of equal length13. This is typical of various of the rule extraction techniques that are appropriate for

grapheme-to-phoneme bootstrapping.

If the entire set of training words is processed after every correction, the update time becomes

a limiting factor as the dictionary grows. In our implementation, continuous updating becomes un-

wieldy when the number of words with known pronunciations exceeds approximately 2000. On the

other hand, by performing batch updates at specific times that suit the verifier (e.g. at the end of a

verification session), the update time does not become a constraint, but the learning obtained during

the session is not utilised to refine models until after the end of the session. In order to obtain an

algorithm that allows for continuous model updating while keeping the update time within acceptable

limits, an incremental version of theDefault&Refinealgorithm was developed.

While the original algorithm creates a set of graphemic ruletrees (one tree per grapheme) from the

training set by considering all the training words simultaneously, the incremental version utilises the

trees constructed during the previous (batch mode) update,and adds the new refinements as leaves to

these trees: for each grapheme in the new word, if the realised phoneme is predicted accurately by the

current graphemic tree, no update occurs; otherwise the smallest rule is extracted that will describe the

new word without affecting any of the existing predictions.This version hasO(d) complexity where

d represents the average depth of the various graphemic rule trees (which is approximately equivalent

to the average context size of the graphemic rule set). Usingthis incremental process, additional

learning can be obtained from the new words added without causing discernible delay, even for large

training dictionaries.

In practice, the bootstrapping process operates in two phases: during the first phase a batch up-

date occurs for every word; during the second phase a batch update occurs at synchronisation events

only, and incremental updates are performed in between synchronisation events. The interval between

synchronisation events is based on a set number of “update words”, i.e. words that have been cor-

rected by the verifier (words that were correctly predicted prior to verification do not contribute to this

count). At the end of this interval, a synchronisation eventoccurs: the complete training dictionary is

re-aligned, and new rules are extracted in batch mode. During the update interval, the Viterbi proba-

bilities calculated at the previous synchronisation eventare used per word to perform a fast alignment

(the probabilities are used in the standard way, but not updated) and incrementalDefault&Refineis

used to extract additional rules from the single aligned word-pronunciation pair. Phase 2 is initiated

well before the time required by the full update event becomes noticeable. (For our current system

we progress from phase 1 to phase 2 when 1500 valid words have been processed.)

As can be expected, the new algorithm is an approximation of standardDefault&Refine, and

13See section 4.7.3 for a further discussion of the computational complexity ofDefault&Refine.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 44

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

Batch mode (50)
Incremental mode (50)

Figure 4.11:Phoneme accuracy comparison for incremental and batch modeat an update interval of
50, measured using the FONILEX corpus.

-10

-5

 0

 5

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
er

ce
nt

ag
e

ch
an

ge
 in

 p
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

d1: Inc vs Batch (50)
d2: Inc vs None (50)

Figure 4.12:Relative change in phoneme accuracy when comparing incremental with batch mode
(δ1), and incremental mode vs no updating between synchronisation events (δ2); both at update in-
terval 50.

therefore somewhat less accurate than the original. We evaluate the performance of the system using

an existing pronunciation dictionary (FONILEX), and perform 10-fold cross-validation on all our

results. In order to determine the efficiency of the incremental approach, we first compare the two

rule extraction processes (incremental mode and batch or standard mode) without taking changes in

alignment into account. We utilise the same set of alignments14 for both types of rule extraction, and

measure phoneme accuracy on the same training set using the two different algorithms. We find that

the decrease in accuracy is slight once the graphemic trees are of sufficient size, as demonstrated in

Fig. 4.11 for a synchronisation interval of 50. The difference in accuracy can be analysed in further

detail by calculating two values:δ1, the relative increase in phoneme error rate when utilisingthe

14The alignments used were obtained from a 173,873-word training dictionary.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 45

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

incremental mode compared to the batch mode, andδ2, the relative decrease in phoneme error rate

when utilising the incremental mode, in comparison with only performing updates at synchronisation

events and not updating the models in between; that is,

δ1(x) =
inc(x) − batch(x)

1 − batch(x)
∗ 100 (4.5)

δ2(x) =
inc(x) − batch(x − 1)

1 − batch(x − 1)
∗ 100 (4.6)

and wherebatch(x) indicates the phoneme accuracy using batch rule extraction, and inc(x) the

phoneme accuracy using incremental rule extraction, both at synchronisation pointx. Fig. 4.12 illus-

trates the trends for theδ1 andδ2 values for an update interval of 50 (still utilising ideal alignments),

providing an additional perspective on the same data as displayed in Fig. 4.11.

The effect on rule set accuracy is strongly influenced by the length of the update interval. We

therefore compare the performance of the two algorithms fordifferent update intervals, and find that

the averageδ1 andδ2 values are both fairly linear in relation to the update interval: the longer the

interval, the less accurate incremental updating becomes when compared with batch updating, and the

more value is provided by incremental updating vs performing no updates in between synchronisation

events. In Fig 4.13 we plot theδ1 andδ2 values for update intervals of length50, 100, 150 and200

during the first 4500 words of bootstrapping. These trends continue for larger update intervals.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250

P
er

ce
nt

ag
e

ch
an

ge
 in

 p
ho

ne
m

e
ac

cu
ra

cy

Length of update interval

Average d1
Average d2

Figure 4.13:Averageδ1 andδ2 values for update intervals of length 50,100,150 and 200.

Finally, in order to ensure that the fast alignment process does not introduce a noticeable loss

in accuracy, we compare the two algorithms (batch and incremental rule extraction), applying the

alignment process as it would be used in practise: performing a full alignment during synchronisation

events and using the fast alignment process in between. We find that while there is a greater variance

in the effect on phoneme accuracy when using the fast alignment process during the first phase of

bootstrapping, this effect becomes negligible during the second phase of bootstrapping. (In practice,

fast alignment is only used during the second stage of bootstrapping.) In Fig 4.14 we plot theδ1

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 46

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

values for an update interval of 50, when using ideal alignments and actual alignments.

-10

-5

 0

 5

 10

 500 1000 1500 2000 2500 3000 3500

C
ha

ng
e

in
 p

ho
ne

m
e

ac
cu

ra
cy

Number of words

(a) Ideal alignments
(b) Actual alignments

Figure 4.14:Change in phoneme accuracy (δ1) when comparing incremental with batch mode when
(a) ideal alignments are used, and (b) when actual alignments are used.

The above results indicate that incrementalDefault&Refineprovides an effective way of increas-

ing system responsiveness. As there is a clear trade-off between the length of an update interval and

learning efficiency, the update interval can be chosen in a way that is suitable for the specific dictio-

nary developer: longer continuous sessions (requiring slightly more corrections), or shorter sessions

with frequent breaks. As the dictionary size increases and the rule set approaches asymptotic accu-

racy, the number of words considered between synchronisation events increases automatically15. For

large dictionaries, the batch update process can become a daily event, rather than an hourly event,

as would be the case for relatively small dictionaries. Also, as the user interface requires little pro-

cessing capacity, the batch update may be scheduled to occurin the background during incremental

verification, transparent to the user16.

4.7 BOOTSTRAPPING ANALYSIS

In this section we summarise the characteristics ofDEC-grow, DEC-minandDefault&Refineaccord-

ing to the four main requirements for bootstrapping, as described in Section 4.2: predictive ability,

conversion accuracy, computational cost and robustness tonoise.

4.7.1 PREDICTIVE ABILITY

In Fig. 4.15 we compare the accuracy of the three algorithms for small training sets, using

the FONILEX corpus. TheDefault&Refinealgorithm performs particularly well, achieving 90%

15For example, using an update interval of 50, approximately 200 training words are considered per session when just
past the 4000-word mark. (See Fig. 4.12.)

16This approach was not implemented.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 47

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

phoneme accuracy prior to the 500 word-mark.DEC-grow requires an additional 800 words be-

fore the same level of accuracy is reached. Since the correction of incorrectly predicted phonemes is

the most labour-intensive aspect of bootstrapping pronunciation dictionaries (as discussed in Section

6.3.2.4) this represents a significant improvement to the process.

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000

P
ho

ne
m

e
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

W
or

d
ac

cu
ra

cy

Number of words in training dictionary

DEC-grow
DEC-min

D&R

Figure 4.15: Accuracy comparison during initial 5000 words of training,as measured using the
FONILEX corpus.

From a bootstrapping perspective, asymptotic accuracy is not as important, unless very large

dictionaries are built. Asymptotic accuracies for different languages are compared for the dictionaries

listed in Table 4.11. Per dictionary the number of words in total (size) and number of distinct words

(distinct) are indicated. Word accuracy is listed in Table 4.12 and phoneme accuracy in Table 4.13, as

analysed during 10-fold cross-validation of the dictionaries.

Table 4.11:Dictionaries used for accuracy analysis

Language Dictionary Size Distinct
Afrikaans Afrikaans B 7,782 7,782
English NETtalk 20,008 19,802
English OALD (no SA) 60,399 59,835
Flemish FONILEX 173,873 163,526

Table 4.12:Word accuracy of g-to-p algorithms for larger dictionariesin different languages.

Dictionary DEC-grow DEC-min Default&Refine
±σ10 ±σ10 ±σ10

Afrikaans B 79.08 0.44 79.90 0.51 84.82 0.29
NETtalk 47.82 0.41 47.61 0.35 58.66 0.21
OALD (excl SA) 77.62 0.17 79.98 0.17 86.41 0.15
FONILEX 88.60 0.07 89.58 0.06 92.03 0.06

4.7.2 CONVERSION ACCURACY

All the studied algorithms are memory-based and provide complete retrieval of training data: the

entire training dictionary can be reconstructed from the grapheme-to-phoneme rule set without any

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 48

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.13:Phoneme accuracy of g-to-p algorithms for larger dictionaries in different languages.

Dictionary DEC-grow DEC-min Default&Refine
±σ10 ±σ10 ±σ10

Afrikaans B 95.96 0.09 95.98 0.14 97.08 0.08
NETtalk 87.82 0.11 87.20 0.08 90.50 0.10
OALD (no SA) 95.85 0.04 96.08 0.04 97.41 0.03
FONILEX 98.32 0.04 98.41 0.01 98.78 0.01

loss of accuracy.

4.7.3 COMPUTATIONAL COST

 0

 1000

 2000

 3000

 4000

 5000

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Align

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract DEC-win

 0

 50
 100

 150

 200

 250

 300

 350

 400

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract DEC-grow

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract D&R

 0

 10

 20

 30

 40

 50

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

Extract D&R

Figure 4.16:Time required for alignment and extraction of initial patterns from different sized train-
ing dictionaries, measured using the FONILEX corpus.

The computational cost of the various algorithms results from four separate processes:

1. Grapheme-to-phoneme alignment:Aligning words on a grapheme-to-phoneme basis. An iden-

tical grapheme-to-phoneme alignment process is used for all of the algorithms. The computa-

tional cost of alignment is influenced by the number of times the full dictionary is processed

before the alignment probabilities stabilise. As this is typically a small number, alignment is

approximatelyO(n) wheren indicates the number of words in the training dictionary. Asthe

probabilities stabilise more quickly when more training data is available, alignment can exhibit

better than linear dependency in practice.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 49

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

2. Extracting initial patterns prior to rule set extraction:In the current implementation, the dic-

tionary is read once, all required patterns are extracted and separated according to grapheme.

Further rule extraction utilises the per-grapheme patternsets as input. This process is again

O(n) for all the algorithms.

3. Rule extraction:Extracting a specific rule set from a grapheme-specific pattern set. For the

implementations ofDEC-growandDefault&Refine, rule extraction may require as many as

n + (n − 1) + (n − 2)... ∼
n(n − 1)

2
(4.7)

steps, which results inO(n2) behaviour. This would be the case for a dictionary that is con-

flicted to the extent that every single word gives rise to a separate rule. However, in practise,

the number of steps required is closer to

n + k.n + k2.n + ... ∼
n

1 − k
(4.8)

where0 ≤ k < 1 provides some indication of the pronunciation conflict for the specific lan-

guage (and dictionary) being considered. The more exceptions in the dictionary, the higherk,

and the higher the complexity of rule extraction. In practice, rule extraction therefore displays

O(n) behaviour.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

DEC-max
DEC-min

DEC-grow

Figure 4.17:Time required to extract DEC-grow, DEC-max and DEC-min rules from different sized
training dictionaries, measured using the FONILEX corpus.

4. Pronunciation prediction:Predicting the pronunciation of a single word based on an existing

rule set. Pronunciation prediction is efficient for all the algorithms studied. For each type of

rule extraction, the ensuing rule set can be arranged in an efficient tree structure. Pronunciation

prediction is ofO(d.l) wherel indicates the length of the word predicted, andd again repre-

sents the average depth of the various graphemic rule trees (which is approximately equivalent

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 50

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

to the average context size of the graphemic rule set, as described in Section 4.6.4). Our im-

plementation ofDEC-maxandDEC-minexhibit worse than linear dependency, as depicted in

Fig. 4.17.

 0

 200

 400

 600

 800

 1000

 1200

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000

T
im

e
in

 s
ec

on
ds

Figure 4.18:Time required to extract Default&Refine rules for differentphonemes from different sized
training dictionaries, measured using the FONILEX corpus.

These trends are further illustrated in Fig. 4.16 4.18 and 4.17. Execution time for alignment,

pattern extraction and rule extraction is plotted for a training dictionary as it increases in size. These

values were measured on a 1600 MHz Intel Pentium 4 personal computer with 1 GB memory, using

the initial Perl prototype used during experimentation (System A). In comparison, equivalent algo-

rithms are much faster as implemented in System B, a more robust version of the initial prototype17,

as listed in Table 4.14.

17These systems are described in more detail in Chapter 6. System A was developed inPerlby the author, and used during
algorithm development and experimentation; System B was re-implemented inJava(without any algorithmic changes) by
members of the CSIR HLT Research Group. The second system wasused to build a medium-sized dictionary, as described
in Section 6.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 51

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.14:A comparison of computation times in seconds for alignment and Default&Refine rule
extraction for two different implementations of the bootstrapping system.

Task System A System B
Alignment: 10,000 words 185.32 8.15
Alignment: 50,000 words 793.23 49.08
Default&Refine: 10,000 words 272.40 26.13
Default&Refine: 50,000 words 1335.36 320.06

4.7.4 ROBUSTNESS TO NOISE

In order to analyse the effect of errors on predictive accuracy, we conduct a number of simulation

experiments, usingAfrikaans A, one of a set of Afrikaans bootstrapped dictionaries, as described

in Section 4.3. Based on earlier experience with dictionarydevelopers who are more error prone

(see Section 6.3.2.2), we artificially corrupt a fraction ofthese transcriptions and then measure the

predictive accuracy ofDefault&Refineon the corrupted databases.

We introduce two types of corruptions into the transcriptions:

• Systematic corruptionsreflect the fact that users are prone to making certain transcription errors

- for example, in the ARPAbet phone set,ay is often used whereey is intended. We allow a

number of such substitutions, to reflect observed confusions by Afrikaans transcribers.

• Random corruptionssimulate the less systematic errors that also occur in practice; in our sim-

ulations, random insertions, substitutions and deletionsof phonemes are introduced.

We generate four corrupted data sets (systematic substitutions and random insertions, substitu-

tions and deletions), where 1%, 2%, 5% and 10% of the words arerandomly selected for corruption.

We generateDefault&Refineand DEC-grow rule sets with 90% of the words of each (corrupted)

dictionary and measure the accuracy of the rules against theremaining 10% (using the original un-

corrupted dictionary), and perform 10-fold cross-validation.

The effect of the simulated errors on predictive accuracy isdepicted below. In Figure 4.19 the

average word accuracy and phoneme accuracy are plotted against the percentage of corrupted words

for DEC-grow and Default&Refine. Note that the most significant effect is due to insertions, as

unnecessary insertions cause superfluous graphemic nulls,which introduce alignment errors. This

effect is visible for bothDEC-growand Default&Refine, as both rely on accurate pre-alignments.

Figure 4.20 provides a more detailed analysis: the change inaverage word accuracy and phoneme

accuracy is plotted in the same way as above. Here it can be seen that deletions and substitutions

affect the predictive accuracy to a similar extent, whetherrandom or systematic. This behaviour is

quite different to the behaviour observed later (see Section 6.4), when the position of rules in the

extracted rule set is used to predict errors in the training data. As no rules are discarded during

standardDefault&Refine, rule set position does not affect predictive accuracy. Both rule extraction

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 52

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

techniques perform well in the presence of low levels of noise, withDefault&Refineproviding a slight

advantage overDEC-grow.

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd
rs

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

Default&Refine

ri
rd
rs
cx

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

Default&Refine

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

ab
s)

DEC-grow

Figure 4.19:Effect of noise on average phoneme and word accuracy when extracting rules from a
corrupted version of the Afrikaans A database. Databases are corrupted with random insertions(ri),
random deletions (rd), random substitutions (rs) and systematic substitutions (cx).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 53

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd
rs

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

Default&Refine

ri
rd
rs
cx

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

Default&Refine

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10 12

P
ho

ne
m

e
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12

W
or

d
ac

cu
ra

cy
 (

di
ff)

DEC-grow

Figure 4.20: Effect of noise on change in average phoneme and word accuracy when extracting
rules from a corrupted version of the Afrikaans A database. Databases are corrupted with random
insertions(ri), random deletions (rd), random substitutions (rs) and systematic substitutions (cx).

4.8 CONCLUSION

In this chapter we analysed the grapheme-to-phoneme conversion task through a set of experiments

based on variations of Dynamically Expanding Context (DEC). We proposed an enhancement to the

standard approach for grapheme-to-phoneme alignment and defined a new grapheme-to-phoneme

conversion algorithm (Default & Refine). This algorithm utilises the concept of a default phoneme

to extract a cascade of increasingly more specialised rules, and has a number of attractive proper-

ties including language independence, rapid learning, good asymptotic accuracy, robustness to noise,

and the production of compact rule sets. In subsequent chapters, we utilise bothDEC-minandDe-

fault&Refineas grapheme-to-phoneme conversion mechanism during bootstrapping.

Table 4.6 and Figures 4.9 and 4.10 depict an interesting trend: as the rule sets that fully describe

the training data become smaller and smaller, the generalisation accuracy of the rule set increases.

This raises an interesting theoretical question: What is the smallest possible rule set within a rewrite

rule based framework that can fully reconstruct a given set of training data with 100% accuracy? In

the next chapter (Chapter 5) we explore this question further.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 54

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE

M INIMAL REPRESENTATIONGRAPHS

5.1 INTRODUCTION

In Chapter 4 we analysed the grapheme-to-phoneme conversion task and developed an algorithm

suitable for bootstrapping. During the development of thisalgorithm (Default&Refine) an interesting

trend was observed: if different rule sets that all provide complete recovery of a set of training data

are extracted, the smaller rule sets tend to generalise better on an unseen test set. This is not an atyp-

ical situation when addressing machine learning problems,but leads us to an interesting theoretical

question: is it possible to define an algorithm that extractsthe smallest possible rule set within the

rewrite rule framework studied in the previous chapter, from any given set of training data? All the

algorithms discussed in Chapter 4 use heuristic information to attempt to obtain such a rule set; we

are interested in understanding the exact options available when attempting to obtain a minimal rule

set given a set of training data.

In Section 5.2 we describe a conceptual approach that allowsus to analyse the interdependencies

among words in the training data in a rigorous fashion. This framework provides us both with a

basis for analysing current rule extraction algorithms, and points towards a method for the extraction

of a provably minimal rule set. In Section 5.3 we define the discussed framework in more detail,

and demonstrate how this framework can be used to extract rule sets. In Section 5.6 we discuss the

implications of our results.

5.2 CONCEPTUAL APPROACH

In this section we provide a conceptual overview of the suggested approach, referred to asminimal

representation graphsin the remainder of this thesis. We use the same rewrite rule formalism as

55

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

utilised in Chapter 4; that is, each rule describes the mapping of a single grapheme to a single phoneme

using the format:

x1..xm − g − y1..yn → p (5.1)

Hereg indicates the focal grapheme,xi andyj the graphemic context, andp the phonemic realisation

of the graphemeg. The rule set is accompanied by an explicit rule applicationorder. A pronunciation

prediction for any specific word is generated one focal grapheme at a time, by applying the first

matching rule found when searching through the rule set according to the rule application order.

Initially we focus on a training data set that does not contain any variants, that is, every word is

associated with a single unique pronunciation1.

The goal of the approach is to obtain the smallest possible rule set that describes a set of training

data completely, as an indirect approach to obtaining optimal accuracy on an unseen test set. In

order to better analyse the options available when attempting to extract such a rule set, we define a

framework that relies on four main observations:

1. If, for every training word, we extract all the sub-patterns of that word (as illustrated in Table

5.1), we obtain a list of all the rules that can possibly be extracted from the training data. Some

of these rules will conflict with one another with regard to phonemic outcome, and we refer to

these rules asconflictedrules. By choosing any subset of the full set of rules, and assigning

a specific outcome to each rule, all possible rule sets can be generated, whether accurate in

predicting the training data, or not.

Table 5.1:The relationship between a word and its sub-pattern rules.
Example grapheme e to phoneme E in word ’test’
Word pattern #t-e-st#→ E
Sub-patterns -e-→ E,-e-s→ E,t-e-→ E,t-e-s→ E

t-e-st→ E, #t-e-s→ E,-e-st#→ E
#t-e-st→ E,t-e-st#→ E,#t-e-st#→ E

2. If all the orderings among the full set of possible rules (sayZ) that may be required by a subset

of Z to be accurate in predicting the training data can be defined,then it becomes possible to

construct a rule graph of the full rule set according to all the orderings possible, and to define

appropriate operations that can manipulate this rule graphin well defined ways. During graph

manipulation, specific outcomes can be assigned to rules andrules identified asrequired or

superfluous. Superfluous rules can consequently be deleted,until only a minimal rule set is

retained.

3. During rule prediction, the relative rule application order of two rules that occur in an extracted

rule set is only of importance if the two rules conflict with regard to outcome, and if both can

1We discuss options for dealing with pronunciation variantsin Section 5.5

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 56

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

apply to a single word. During rule extraction, the order in which two rules occur in an interim

rule set is only of importance if both can apply to a single word in the training data, and that

word has not yet been ‘caught’ by any required rule occurringearlier in the rule set. For each

rule, we refer to the latter set of words as thepossible wordsassociated with that rule.

4. The full set of possible rulesZ cannot occur in any order. It is possible to restrict the allowable

orderings between any two rules for two reasons: (1) if one rule is more specific than another,

the first rule must occur earlier in the rule set than the second in any minimal rule set. If not,

the second (more general) rule will always be invoked when predicting a word that applies to

both rules, and the first rule will be redundant (which is impossible if the rule set is minimal);

and (2) if two rules are applicable to the same word in the training data but conflict with regard

to outcome. For such rules the words shared in thepossible wordssets of each rule dictate the

orderings that are valid.

Using the above observations, we can analyse a set of training data in order to understand the

interdependencies among words in the training data, and theoptions for extracting a minimal rule set.

We illustrate the concepts using a simple 3-word example, consisting of the words ‘test’,‘ten’ and

’tea’ and consider the steps required to extract a rule set for the letter ‘e’. As the software that we

developed to implement this approach uses a single character representation of each grapheme and

phoneme, we do the same in this example.

Prior to rule extraction, aword patternis generated from each aligned word-pronunciation pair in

the training data, as shown in Table 5.2. Hashes denote word boundaries.

Table 5.2:Word patterns associated with the words ‘test’,‘ten’ and ‘tea’.
aligned ARPAbet example single character representation

Words t e s t→ t eh s t t e s t→ t e s t
t e n→ t eh n t e n→ t e n
t e a→ t iy φ t e a→ t i φ

Word patterns #t-e-st#→ eh #t-e-st#→ e
#t-e-n#→ eh #t-e-n#→ e
#t-e-a#→ iy #t-e-a#→ i

For each of the word patterns, we generate a set of sub-patterns (as listed in Table 5.1 for the word

pattern #t-e-st#→ e). These sub-patterns are arranged in a graph structure according to specificity,

with the more general rules later in the graph (closer to the root), and more specialised rule earlier

(higher up in the graph). Initially, an ordering is only added between two rules where the context

of one rule contains the context of another, and we refer to these orderings ascontain patternre-

lationships. A topological sort of this graph will result ina rule set that is accurate, but contains a

large number of superfluous rules. From the outset, the process assumes that any of the rules may be

deleted in future. As it becomes clear that certain rules arerequired in order to retain accuracy over

the training data (irrespective of further allowed changesto the rule set), these rules are marked as

requiredrules.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 57

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Figure 5.1:An example rule graph, corresponding to the word patterns inTable 5.2

This process is illustrated in Fig. 5.1. Word nodes (one per word pattern) are indicated in green.

Clear nodes indicate rule nodes that can only predict a single outcome. For these nodes, different

coloured outlines indicate different outcomes. Orange nodes are associated with more than one pos-

sible outcome: different choices with regard to outcome will result in different rule sets. Black edges

indicate that an ordering between two rules is required, irrespective of further rule graph manipula-

tion. In the initial graph these edges representcontain patternrelationships. Currently no rules are

marked as required; if there were, these would be marked in yellow.

Orderings are transitive. If all the orderings implied by the current set of edges are considered,

then the only additional orderings that can possibly occur in the full rule set are between rules that

share a word in their respectivepossible wordsset, and have not already been assigned a fixed order-

ing. We refer to these rules asminimal complements. Theseminimal complementrelationships are

added and utilised during rule extraction. We do not indicate them explicitly on all the graphs used to

illustrate the current example, as the addition of minimal complement relationships results in visually

complex graphs. For illustration, we mark the minimal complements related to a single rule ‘-e-st’

for the initial graph of Fig. 5.1 and display the result in Fig. 5.2. Minimal complement relationships

are marked as orange edges.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 58

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Figure 5.2:Marking the minimal complement relationships associated with the rule ‘-e-st’ for the
rule graph of Fig. 5.1.

Note that the minimal complements associated with any ruler can only occur in a restricted

range: the context of the earliest rule may not contain ruler, and the context of the latest rule may

not be contained byr itself. As this range is restricted, the number of additional orderings that may

be required is similarly restricted. Each additional minimal complement pair added to the graph

introduces two possible orderings. This increases the number of options to consider when making

any single decision (whether to resolve a conflicted node to asingle outcome, or whether a specific

rule is required or can be deleted.) We would like to remove asmany of the ‘double orderings’ as

possible, and replace these with orderings that indicate a single direction. In some cases additional

information is available to choose one of the orderings and discard the other:

• If the possible words associated with a ruler is a subset of the possible words of a second rule

s, ruler must always occur earlier in the rule extraction order thans. The reasoning is similar

to that followed when adding the initial contain pattern orderings, but now holds for minimal

complements that are not necessarily in a contain pattern relationship. We refer to these rela-

tionships assuper complements. While contain pattern relationships can be added to the graph

from the outset,super complementsemerge as the rule set extraction process progresses. As

more rules are marked asrequired, the possible words sets of later rules decrease, and su-

per complement relationships start to emerge. Once an ordering is added between two super

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 59

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

complements, this relationship is not changed at a later stage during rule manipulation2

• If a ruler predicts a single outcome, and accurately matches all the words in the intersection of

the possible words of ruler and the possible words of another rules, and there is at least one

word in this set thats will mispredict given any of its allowed outcomes, then ruler has to occur

before rules for the rule set to be accurate. We refer to these relationships asorder required

relationships. If neither of the two rules matches the full set of shared words, the relationship

is still inconclusive. As with super complement relationships, order required relationships also

emerge as the rule set extraction process progresses.

In Fig. 5.3 we identify and add additional super complement relationships. The current rule graph

does not have any order required relationships among nodes.

Figure 5.3:Adding super complements to the rule graph of Fig. 5.1. (Minimal complements are not
shown.)

Since orderings are transitive, we can remove any definite orderings that are already implied by

others. For example, in Fig. 5.3 the relationship between rules ‘t-e-st’ and ‘#t-e- is already implied

2As more rules are marked as required, the possible words setsof all other rules become smaller. If a set of possible
words associated with a ruler is the subset of the possible words associated with a rules, this relationship will be maintained
unless both sets become equal. In the latter case, one of the two rules are redundant and will be deleted during rule
extraction, as discussed later. Since eitherr or s will be deleted, the ordering between these two rules becomeinsignificant,
and the prior ordering based on their previous super complement relationship may be retained without restricting rule graph
manipulation options.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 60

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

by the relationships between rules ‘t-e-st’ and ‘t-e-s’, and between rules ‘t-e-s’ and ‘#t-e-’. Such

redundant edges can be removed without losing any information currently captured in the rule graph.

This process is illustrated in Fig. 5.4. Note how the relationships become simpler and the graph

more loosely connected from Fig. 5.1 to Fig. 5.4.

Figure 5.4:Removing unnecessary edges from the rule graph of Fig. 5.3. (Minimal complements are
not shown.)

If we can be sure that we have added all the necessary orderings (caused by contain pattern, super

complement or order required relationships) and we keep track of all minimal complement relation-

ships that still have an uncertain ordering, we now have a rule graph that both contains all possible

rules, and specifies all possible orderings that may be required to define a valid rule application order.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 61

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Figure 5.5:Removing unnecessary rules from the rule graph of Fig. 5.4.(Minimal complements are
not shown.)

We can now use this rule graph as basis to make decisions aboutwhich outcome to select where a

rule is conflicted (has more than one outcome), or even decidewhen a rule can be deleted or not.

When rules are deleted, it is possible that one of the rules required by a minimal rule set is deleted

unintentionally, and in order to compensate for this deletion, two or more additional rules may have

to be kept to retain accuracy over the training data. The finalrule set will then have more rules than

strictly required. To prevent this from happening, rules are eliminated by deleting redundant rules,

identifying required rules and resolving conflict rules viaa small set of allowed operations. The

state of rule extraction can always be described by a triple consisting of the possible rules that can

be included in the rule set (Z ′), the rules that have been marked as required (Ze), and the orderings

that are definite (oset(Z ′), the black edges in the graph). Additional orderings that are possible

can automatically be generated from such a state. Each allowed operation changes the state of rule

extraction, from oneallowed stateto another, with the initial allowed state as depicted in Fig. 5.1.

One example of such an allowed deletion operation can be illustrated as follows: The rule graph

in Fig. 5.4 clearly contains a number of superfluous rules. Whenever a ruler exists such that (1) it

is not conflicted, and (2) all the possible words associated with rule r can be caught by one or more

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 62

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

immediate successors that agree with ruler with regard to outcome, and (3) ruler does not have any

immediate successors that can potentially disagree with regard to outcome, then ruler can safely be

deleted from the rule graph. All rules that meet these conditions, can be deleted from the rule graph,

as illustrated in Fig. 5.5. Since the rule graph is now significantly simpler, we start displaying the

remaining minimal complements from Fig. 5.6 onwards.

Figure 5.6:Removing unnecessary rules from the rule graph of Fig. 5.4.(Minimal complements are
shown.)

Where the possible words associated with ruler are exactly the same as the possible words of any

one of its successorss, rule r and rules are deemedrule variants. Either of two rule variants can be

generated at the same point in the rule extraction order, without influencing the number of rules in the

final rule set. The process keeps track of all deleted rules that are variants of retained rules. In this

way, while a rule node is physically deleted, the rules are ineffect merged, and either of the two rules

may be utilised in the final rule set, as discussed later.

Additional deletion operations identify rules that have anempty set of possible words, and rules

that are true variants of another, that is, two rules that areboth resolved to a single outcome, and have

identical relationships with identical predecessors and successors. While these deletion operations

create a rule graph that is significantly simpler, we have notyet made any decisions with regard to

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 63

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

the best choice of outcome for any of the conflicted nodes. Prior to rule resolution, we first identify

any ruler assinglewhere – given the current state of rule extraction – at least one word can only be

predicted by either ruler or by another rule directly in the path ofr. In the remaining figures, these

single rules are marked ‘*S’.

There are various conditions under which a conflicted rule can be resolved, one of which we illus-

trate here. Conflicted nodes can be thought of as ‘default’ or‘fallback’ nodes. During pronunciation

prediction, a fallback node will only be invoked if a more specialised rule is not available that matches

the word being predicted. These nodes therefore only need tobe retained if, in some way or another,

the rule can generalise from its immediate predecessors. This requires that at least two predecessors

should predict a similar outcome. If this is not the case, thefallback node does not provide any further

advantage, and can be removed from the rule graph without constraining the rule set in a way that

does not allow final minimisation3. This process is illustrated in Fig. 5.7 and Fig. 5.8.

Figure 5.7:Resolving conflicted rule ‘t-e-’.

3This does not apply to the root node. The root node is handled as a special case, as discussed below.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 64

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Figure 5.8:Resolving conflicted rule ‘#t-e-’.

Note that in the Fig. 5.8, none of the minimal complement relationships have been retained.

Additional resolution operations analyse the definite and possible predecessors and select a specific

outcome based on this analysis. When resolving a conflicted rule to a specific outcome, it is required

that at least one of the predecessors that has an outcome thatmatches the outcome selected for reso-

lution must be marked as asinglerule. If such a single rule exists, this implies that some rule with

the selected outcome will be generated at this point in the rule extraction order. While there is not

certainty that such a rule is required, the conflicted rule may not yet be resolved.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 65

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Applying the same deletion operator discussed earlier, three additional rule nodes can be deleted,

as illustrated in Fig. 5.9.

Figure 5.9:Removing unnecessary rules ‘-e-st’, ‘-e-st#’ and ‘t-e-s’.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 66

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

If the resolution operator discussed previously were to be applied to the root node, the rule set

would remain valid. However, this would result in the root node being deleted, and it is easier in

practise to manipulate the graph assuming a single root node. Also, we would like to generate some

‘default rule’ that can be used to predict any word pattern not previously seen. Therefore the root

node is always resolved to a single outcome, once all its predecessors are resolved (and not deleted,

as would be the case if the standard resolution operator wereapplied). Resolving the root node

to a single outcome when standard application of a deletion operator indicated that it should have

been deleted, is similar to choosing one variant of a rule above another variant of the same rule. As

all variants are retained during rule extraction, and the final choice with regard to which variant to

choose is postponed until after graph minimisation, manipulating the root node as a special case does

not restrict the rule extraction process in any way. In Fig. 5.10 the root node is resolved to one of its

possible outcomes.

Figure 5.10:Resolving conflicted rule ‘-e-’.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 67

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

If for at least one word patternw in the possible words set of a ruler, there exists no other

rule than can possibly predict word patternw correctly, given the current state of rule extraction (the

remaining rule set, the required rule set and the decided orderings); then ruler is arequired rule and

can be marked as such. When a rule is identified as a required rule, all words in the possible words

set of ruler are removed from the possible words sets of rules occurring later in the rule graph. In

Fig 5.11 two rules are marked as required, with required nodes indicated in yellow. One final deletion

(using the standard deletion operator) and the minimal ruleset is obtained, as depicted in Fig. 5.12.

Figure 5.11:Identifying required rules ‘-e-a’ and ‘-e-’.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 68

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Figure 5.12:The final (minimal) rule graph.

The rule set that can now be extracted from the rule graph by performing a topological graph

traversal. This results in the rule set listed in Table 5.3. For each extracted rule, a number of possible

variants are listed. A rule can be replaced by any of its variants without affecting the accuracy of the

rule set, or requiring the inclusion of additional rules. Note that for any single word that gives rise to

a single rule (such as the word pattern #t-e-a# in this example), all word sub-patterns that have not

been identified as currently part of the rule set are includedas variants.

Table 5.3:The final rule set generated from the words in Table 5.2, including possible variants.
Rule number Extracted rule Possible variants

1 -e-a→ i #t-e-a #t-e-a# -e-a# t-e-a# t-e-a
2 -e-→ e -e-st# -e-s -e-st

At this stage, heuristic choices related to characteristics such as rule context size, rule context

symmetry, or variance with regard to the training data can beutilised to choose the most appropriate

rule set. In larger rule sets, many rules do not have variants, but a relatively large proportion of rules

retain one or more variants. The ability to make heuristic choices late in the rule extraction process,

provides significant flexibility in obtaining the appropriate rule set.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 69

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3 THEORETICAL FRAMEWORK

In this section we describe the above framework in more detail, and provide a more rigorous definition

of the terminology used4. We provide proofs for the key statements in Appendix B. Whenwe refer to

a specific statement in the text, we are referring to the statement as found in Appendix B.

Firstly, we define the rule format and the various terms used during rule set analysis. We then

proceed to show how a relationship between two rules in a minimal rule set translates to a specific

relationship between the same two rules in a larger rule set,and describe the conditions and impli-

cations of a rule ordering between two rules occurring in either of these types of rule sets. Using

these conditions, we provide a formal definition of an allowed state of rule extraction. We analyse the

characteristics of an allowed state and define an initial state that can be shown to be allowable in these

terms. We then define the various allowed operations that, when applied, progress the rule graph from

one allowed state to another. In contrast to the overall framework, the set of allowed operations are

still somewhat experimental, as discussed in section 5.3.6. Finally, we discuss the minimality of the

extracted rule set and describe additional options for the improvement of generalisation ability.

5.3.1 RULE FORMAT

As discussed in Section 5.2, we use a set of rewrite rules to describe the mapping of a single grapheme

to a single phoneme.

If G is the set of possible graphemes andH the set of possible phonemes; theith rule for

graphemeg is formulated as

rule(g, i) = (x1..xm, g, y1..yn) → z;

x1..xm, g, y1..yn ∈ G; z ∈ H; (5.2)

alternatively written as:

x1..xm − g − y1..yn → z

wherex1..xm defines them-grapheme left context ofg, y1..yn defines then-grapheme

right context ofg, andz is the predicted phonemic realisation of graphemeg when found

within the given left and right word contexts.G includesφG, the null grapheme and# the

word boundary marker (with alwaysg 6= #). H includesφH , the null phoneme.

4Terms and definitions are presented in definition boxes, interspersed among more general comments.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 70

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Theoutcome(r) function describes the phonemic outcome of the ruler:

outcome(rule(g, i)) = outcome(x1..xm − g − y1..yn → z) = z. (5.3)

Thecontext(r) function describes the application context of the rulea r directly:

context(rule(g, i)) = context(x1..xm − g − y1..yn → z) = x1..xm − g − y1..yn. (5.4)

acontext(.) can also be applied to word patterns, as defined in eq. 5.9

The rule application orderrule order(Z ′, r, s) specifies the order in which any two rules

r ands occurring in a rule setZ ′ are applied, where

∀r, s ∈ Z ′ : rule order(Z ′, r, s) = 1 =⇒ rulenum(r) < rulenum(s) (5.5)

and therulenum(r) function describes the rule number of a specific ruler directly:

rulenum(rule(g, i)) = i. (5.6)

The oset(Z ′) for a rule setZ ′ consists of the entire set of orderings specified by

rule order(.), i.e:

oset(Z ′) = closure(Z ′, rule order(.)) (5.7)

whererule order(.) defines the current set of orderings overZ ′ andclosure(.) consists of

the transitive closure of the set of rule pairs for which a specific relation is defined, i.e.:

closure(Z ′, relation(.)) = ∪i(r, s)∀r, s ∈ Z ′ :

relation(Z ′, r, s) = 1 or ∃t ∈ Z ′ : relation(Z ′, r, t) = 1,

relation(Z ′, t, s) = 1. (5.8)

Therule order(.) relation restricts therulenum(.) function to a set of options, and does not neces-

sarily specify an ordering between every two rules. If rulesare applied according to therule order(.)

relation and an ordering between two rules that both match a word is indeterminate, either of the rules

can potentially be invoked. It is possible to convert from animplicit rule order(.) to an explicit rule

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 71

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

numbering via theassign(.) function:

Let the setassign(Z ′, oset(Z ′)) define all the possible rule number assignments that are

valid given the specified rule setZ ′ and rule orderingsoset(Z ′). Per assignment, a single

rule number is assigned to every rule, consistent withoset(Z ′).

Note that for a specific value ofassign(Z ′, oset(Z ′)), rulenum(r) < rulenum(s) does not imply

thatrule order(Z ′, r, s) = 1.

A word w consists of a sequence of graphemes inG. During pronunciation prediction of

a word of lengthn (also counting word boundaries), we createn word patterns that each

focus on a specific grapheme in the word. When focusing on graphemei, the word pattern

is described as:

∀w = x1..xn;xj ∈ G ;n ≥ 1; 1 ≤ i ≤ n :

word pattern(w, i) = x1..xi−1 − xi − xi+1..xn. (5.9)

(5.10)

The context(w) function can also be applied to word patterns, where thecontext of a

word patternw is simply the word pattern itself.

Thematch(w, r) function indicates that a ruler occurring in a rule setZ ′ can be applied

to predict a word patternw:

∀r ∈ Z ′ : match(w, r) = 1 ⇐⇒ context(w) ⊇ context(r). (5.11)

The winningrule(w, g) relation describes the first matching rule(s) found in rule set Z ′

for word patternw with regard to graphemeg, i.e

∀r ∈ Z ′ : r ∈ winningrule(Z ′, oset(Z ′), w, g) ⇐⇒ match(w, r) = 1,

6 ∃s : match(w, s) = 1, (s, r) ∈ oset(Z ′). (5.12)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 72

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Rules with equivalent contexts and different outcomes are not allowed in the final rule set, i.e:

∀g ∈ G, i, j ∈ N : context(rule(g, i)) = context(rule(g, j)) =⇒

outcome(rule(g, i)) = outcome(rule(g, j)). (5.13)

Conflicting rules will however exist during the interim steps of rule extraction, as discussed below.

5.3.2 RULE SET ANALYSIS

5.3.2.1 TRAINING DATA, WORD PATTERNS AND SUB-PATTERNS

The rule set is derived from a set of training data. As in the previous chapters, a data set consisting

of aligned word-pronunciation pairs is used as input duringrule extraction. Word patterns and word

sub-patterns are extracted from this set, and form the basisfor further rule set construction.

Each word-pronunciation pair consists of two sequencesx1..xn and y1..yn, wheren ≥

1, xi ∈ G andyi ∈ H. Let TD(g) be the set of all word patterns in the training data

that describe a specific graphemeg, associated with a specific phonemic outcome per word

pattern. Then:

∀g ∈ G : w ∈ TD(g) ⇐⇒ w = x1..xi−1 − g − xi+1..xn → yi,

wherex1..xn andy1..yn an aligned word-pronunciation pair. (5.14)

In the remainder of this section, assumeg to simplify notation (for example letrule(i) be

equivalent torule(g, i) for the specificg being considered). TD does not contain word

variants (multiple pronunciations of a single word), that is:

6 ∃w1, w2 ∈ TD : context(w1) = context(w2) =⇒

outcome(w1) 6= outcome(w2). (5.15)

A word pattern is in effect the largest possible rule that describes the grapheme-to-phoneme mapping

accurately. The combined left and right contexts of the wordpattern therefore contains the full word,

including word boundaries. For each word pattern, a set of sub-pattern rules – describing all possible

sub-contexts of the word pattern – can be generated, as previously shown in Table 5.1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let Z be the set of all possible word patterns and sub-patterns associated with the word

patterns inTD.

For any two rule sets,ZA andZB , let ZA ⊆ ZB indicate that one set is equal to or a subset

of the other, both with regard to the context and outcome of rules. More specifically:

ZA ⊆ ZB ⇐⇒ r ∈ ZA =⇒ r′ ∈ ZB ,

context(r) = context(r′), outcome(r) ⊆ outcome(r′). (5.16)

Let |Z ′| indicate the number of rules in any rule setZ ′, whereZ ′ ⊆ Z.

Let allset(Z ′) consist of all possible orderings in a rule setZ ′, whether contradictory or

not:

∀Z ′ ⊆ Zcombined : allset(Z ′) = ∪i,j(vi, vj)∀vi, vj ∈ Z ′, i 6= j. (5.17)

A word patternw can be referred to either as a word patternw ∈ TD or as a rulew ∈ Z. The setZ

then consists of all possible rules that can potentially apply to the word patterns inTD.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 74

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.2.2 CONFLICT RULES AND CONFLICT RESOLUTION

As the setZ consists of all possible rules that can potentially apply tothe word patterns inTD, it

may include a number of conflicting rules. Under certain conditions, these rules can be resolved to a

specific outcome. Until a rule is resolved to a single outcome, a set of allowable outcomes is retained

per rule.

Let Zconflict consist of all the conflicting rules inZ, that is, rules that contradict eq. 5.13.

Let Zno−conflict be the set of remaining rules, when all conflicting rules inZconflict are

removed fromZ, i.e

Zconflict ∪ Zno−conflict = Z.

Zconflict ∩ Zno−conflict = φ. (5.18)

Define theconflictrule(rα1, rα2, .., rαn) for all n rules rαi ∈ Zconflict with equivalent

contexts as one rule with one ofn alternative outcomes, i.e:

∀rαi ∈ Zconflict, context(rαi) = context(rα)∀i = 1...n :

conflictrule(rα1, rα2, .., rαn) = context(rα) → z1‖z2‖...‖zn,

zj = outcome(rαj)∀j = 1...n,

wherezj ||zk indicate that eitherzj or zk is a possibleoutcome. (5.19)

Define the resolution of aconflictrule as a specific-outcome version of the rule, i.e let:

∀rα ∈ Zconflict, zx ∈ ∪rαi
outcome(rule(rαi)) :

resolve(conflictrule(rα1, rα2, .., rαn), zx) = context(rα) → zx. (5.20)

If a rule r with the same context is referred to with regard to differentrule sets in which

different resolved versions of the rule may occur, letoutcome(r|Z ′) indicateoutcome(r)

wherer ∈ Z ′.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 75

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

For each subset of all elements inZconflict with equivalent contexts, it is possible to

generate a singleconflictrule. Let the setZconflict−combined consist of all the conflict

rules generated fromZconflict according to eq. 5.19, which have not been resolved. Let

the setZconflict−resolved consist of all the resolved conflict rules, where a conflict rule

will move from Zconflict−combined to Zconflict−resolved upon resolution (according to eq.

5.20). LetZcombined consist of all elements inZno−conflict combined with the elements in

Zconflict−combined andZconflict−resolved, where

Zno−conflict ∪ Zconflict−resolved ∪ Zconflict−combined = Zcombined

Zconflict−combined ∩ Zno−conflict = φ

Zconflict−resolved ∩ Zconflict−combined = φ

Zconflict−resolved ∩ Zno−conflict = φ (5.21)

and let Zsingle = Zconflict−resolved ∪ Zno−conflict (5.22)

Figure 5.13:Examples of rules inZ, Zcombined and their subsets.

The relationships among the different sets are depicted in Fig. 5.13.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 76

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.2.3 COMPLETE, ACCURATE, MINIMAL AND POSSIBLYMINIMAL RULE SETS

Any subset ofZcombined, ordered according to a specific rule orderingrule order(.) will describe the

training data with a certain degree of accuracy. The ideal rule set will be one that is not only complete

but also accurate, and not only accurate but also minimal, asdefined below:

A complete rule set can predict all the words in the training data:

∀Z ′ ⊆ Zcombined : complete(Z ′) = 1 ⇐⇒

∀w ∈ TD,∃r ∈ Z ′ : match(w, r) = 1. (5.23)

An accurate rule set predicts all words in the training data accurately:

∀Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

accurate(Z ′, oset(Z ′)) = 1 ⇐⇒ complete(Z ′) = 1,

∀w ∈ TD,∀r ∈ winningrule(Z ′, oset(Z ′), w) : outcome(w) = outcome(r). (5.24)

A minimal rule set is an accurate rule set that contains the fewest rules possible:

∀Z ′ ⊆ Zcombined, oset(Z
′) ⊆ allset(Z ′) :

minimal(Z ′, oset(Z ′)) = 1 ⇐⇒ accurate(Z ′, oset(Z ′)) = 1,

6 ∃Z ′′ ⊆ Zcombined, oset(Z
′′) ⊆ allset(Z ′′) :

accurate(Z ′′, oset(Z ′′)) = 1, |Z ′′| < |Z ′|. (5.25)

A possibly minimal rule set is a set of rules that can be minimal, if ordered correctly:

∀Z ′ ⊆ Zcombined : possibly minimal(Z ′) = 1 ⇐⇒

∃oset(Z ′) ⊆ allset(Z ′) : minimal(Z ′, oset(Z ′)) = 1. (5.26)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 77

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.2.4 ALLOWED STATES AND ALLOWED OPERATIONS

The full set of rules inZcombined consists of all possible rules and is therefore a superset ofone or

moreminimal rule setsZm
5. We would like to delete the unnecessary rules until only aminimal

rule set is retained. When rules are deleted, it is possible that one of the rules required byZm is deleted

unintentionally, and in order to compensate for this deletion, two or more additional rules may have to

be kept to retain accuracy overTD. The final rule setZ ′ will then have a number of rules|Z ′| > |Zm|.

To prevent this from happening, rules are eliminated by adding orderings, deleting redundant rules,

identifying required rules and resolving conflict rules viaa set of allowed operations. Thestate of

rule extraction can always be described by the tripleZ ′, Ze, oset(Z
′) , whereZ ′ indicates the possible

rules that can still be included in the final rule set,Ze indicates required rules that have to be included

in the final rule set, andoset(Z ′) identifies some of the required rule orderings among elements of

Z ′. Each allowed operation changes thestate of rule extraction, from oneallowed state to another,

with allowed state as defined below (in eq 5.29).

Let theorder subset(osetA(ZA), osetB(ZB)) relation be true if a set of rule orderings

osetA(ZA) is equal to or a subset of another set of rule orderingsosetB(ZB) (possibly

defined on a different rule set) when the two sets of rule orderings are compared on their

rule set intersection. More specifically:

∀ZA ⊆ Zcombined, ZB ⊆ Zcombined,

∀osetA(ZA) ⊆ allset(ZA), osetB(ZB) ⊆ allset(ZB) :

order subset(osetA(ZA), osetB(ZB)) = 1 ⇐⇒

∀r, s ∈ ZA ∩ ZB : (r, s) ∈ oset(ZA) =⇒ (r, s) ∈ oset(ZB). (5.27)

Let minrules(Z ′, Ze, oset(Z
′)) identify all theminimal rule set and rule ordering set

pairs that can be derived fromZ ′, given the set of orderingsoset(Z ′) and a required rule

subsetZe. More specifically:

∀Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)) ⇐⇒

minimal(Zm, osetm(Zm)) = 1, Ze ⊆ Zm ⊆ Z ′,

order subset(oset(Z ′), osetm(Zm)) = 1. (5.28)

5By definition, at least onemiminal rule set will always exist.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 78

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let allowed state(Z ′, Ze, oset(Z
′)) indicate that for a given required subsetZe and re-

quired set of orderingsoset(Z ′), there exists aminimal rule setZm contained withinZ ′:

∀Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

allowed state(Z ′, Ze, oset(Z
′)) = 1 ⇐⇒

∃Zm, osetm(Zm) : (Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)). (5.29)

Define anallowed op as any operation that, when applied to any possibleallowed state

of a rule set and rule ordering set, will result in anotherallowed state.

Let each element inminset(Zm, oset(Zm)) consist of all and only those orderings required

for a possibly minimal rule setZm to be minimal, given some prior set of orderings

oset(Zm):

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) :

osetm(Zm) ∈ minset(Zm, oset(Zm)) ⇐⇒

oset(Zm) ⊆ osetm(Zm),minimal(Zm, osetm(Zm)) = 1. (5.30)

It follows directly from the definition ofminrules (eq. 5.28) andminset (eq. 5.30) that:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,∀oset(Zm) ⊆ allset(Zm) :

osetm(Zm) ∈ minset(Zm, oset(Zm)) ⇐⇒

(Zm, osetm(Zm)) ∈ minrules(Zm, Zm, osetm(Zm)). (5.31)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 79

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Such a minset(.) ordering does not exist for all prior orderingsoset(.). The

valid(Zm, oset(Zm)) relation indicates that a specificoset(Zm) defined with regard to

apossibly minimal rule setZm consists of a subset of the restrictions required by at least

oneminset(Zm, oset(Zm)). Specifically:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) : valid(Zm, oset(Zm)) = 1 ⇐⇒

∃osetm(Zm) ⊆ allset(Zm) : osetm(Zm) ∈ minset(Zm, oset(Zm)). (5.32)

It follows directly from the definition ofallowed state (eq. 5.29) andvalid (eq. 5.32) that:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,∀oset(Zm) ⊆ allset(Zm) :

valid(Zm, oset(Zm)) = 1 ⇐⇒ allowed state(Zm, Zm, oset(Zm)) = 1. (5.33)

If Zm is a minimal rule set describing the training dataTD, then some of the rules inZm will each

be a single unique rule, while other rules will each be one of aset of possible options – any one of

which could have been generated at a specific point in the ruleapplication order without influencing

the number of rules required to predict the training set accurately and completely. Such a combination

of rules is referred to as arule variant set.

5.3.2.5 MATCHWORDS, POSSIBLEWORDS, RULEWORDS AND SHAREDWORDS

Throughout rule extraction, we keep track of the set of wordsthat may influence our decisions with

regard to a specific rule. In this way we identify words that match a specific rule (matchwords),

words that will invoke a specific rule during prediction (rulewords), and the set of possible words

that may result in rulewords in the final ordering (possible words). We also identify the possible

words that any two rules share (shared words).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 80

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let the setmatchwords(r) consist of all words matched by a specific ruler:

∀r ∈ Zcombined, w ∈ TD :

w ∈ matchwords(r) ⇐⇒ match(w, r) = 1. (5.34)

Let the setrulewords(Z ′, oset(Z ′), r) consist of all words that can cause a specific ruler

to be invoked (where the actual rule invoked will depend on the actual rule number assign-

ment), given the current set of rule orderingsoset(Z ′):

∀r ∈ Z ′, Z ′ ⊆ Zcombined, w ∈ TD :

w ∈ rulewords(Z ′, oset(Z ′), r) ⇐⇒

r ∈ winningrule(Z ′, oset(Z ′), w) (5.35)

Not all rules can necessarily be invoked when predicting thewords in TD - for rules that

cannot be invoked given the current rule set, the set ofrulewords(.) is empty. Note also

that the actual words that will invoke ruler in the final ordered rule set consists of the set

rulewords(Zm,minset(oset(Zm)), r) not the setrulewords(Zm, oset(Zm), r).

As the rule set is manipulated, additional rules are added tothe required subsetZe, which can

affect thepossible words sets of all rules later in the rule graph. When comparing two rulesr ands,

it is possible that rule set extraction has progressed further in a section of the rule graph leading up to

one rule than in the section of the rule graph leading up to theother. In order to be able to obtain a

clear comparison of the two rules, we choose a shared point inthe rule graph (rulev in the definition

below) and only allow rules defined prior to this point to influence thepossible words(.) sets of both

rules, resulting in a stable basis for rule comparison.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 81

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let the setpossible words(Z ′, Ze, oset(Z
′), v, r) consist of all words that match a specific

rule r, and have not yet been caught by rulev or an earlier rule thanv, wherev in Ze, the

required subset of rule setZ ′ when rule extraction is in stateZ ′, Ze, oset(Z
′):

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

w ∈ possible words(Z ′, Ze, oset(Z
′), v, r) ⇐⇒

v = r or (v, r) ∈ oset(Z ′),match(w, r) = 1,

6 ∃s ∈ Ze : match(w, s) = 1, s = v or (s, v) ∈ oset(Z ′)a. (5.36)

aNote that ifv 6= r and(v, r) 6∈ oset(Z′) thenpossible words(Z′, Ze, oset(Z
′), v, r) = φ

Let v0 be an imaginary rule that matches no words, is always the firstrule to occur in any

rule set, and does not contribute to the rule count of a rule set. The rulev0 has the following

characteristics:

v0 ∈ Zcombined. (5.37)

|{v0}| = 0. (5.38)

∀w ∈ TD : match(w, v0) = 0. (5.39)

∀vi ∈ Z ′, Z ′ ⊆ Zcombined, vi 6= v0,∀oset(Z ′) ⊆ allset(Z ′) :

(v0, vi) ∈ oset(Z ′). (5.40)

Sincev0 does not affect further rule set orderings directly, and cannot affect any word-rule relation-

ship, such a rule can be added without causing any side effects in the rule set. We use rulev0 as a

stable point for rule comparison when two rules do not share identical predecessors inZe when eval-

uatingpossible words sets with regard to some stable pointv, as defined in eq. 5.36. An alternative

stable point that can be used is the last shared parent of the two rules inZe, as defined below.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 82

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let last parent(Z ′, Ze, oset(Z
′), r, s) be the latest possible rule or rules inZe that occur

earlier than both rulesr ands according tooset(Z ′), or the earliest ofr ands, if r, s ∈ Ze:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

v ∈ last parent(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

{(v, r), (v, s)} ∈ oset(Z ′); 6 ∃t ∈ Ze : {(v, t), (t, r), (t, s)} ∈ oset(Z ′). (5.41)

Let shared words(Z ′, Ze, oset(Z
′), r, s, v) identify those words that are in the

possible words sets of two different rulesr ands with regard to some rulev:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset′(Z ′) ⊆ allset(Z ′) :

shared words(Z ′, Ze, oset(Z
′), v, r, s) ≡

possible words(Z ′, Ze, oset(Z
′), v, r) ∩ possible words(Z ′, Ze, oset(Z

′), v, s). (5.42)

5.3.2.6 COMPLEMENTING RULES: CONTAINPAT, MINCOMP AND SUPERCOMP

We now introduce a number of relationships that may exist between pairs of rules. These relation-

ships are crucial in understanding how rules may substitutefor one another, and therefore form the

foundation for the derivation of minimal rule sets.

Let complement(Z ′, Ze, oset(Z
′), v, r, s) indicate that rulesr and s have overlapping

possible words sets, i.e.

∀r, s ∈ Z ′, r 6= s, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

∃w ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s). (5.43)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 83

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let thepath(relation(r, s)) indicate that a path of relations of a specific type exists be-

tween rulesr ands in a rule setZ ′, i.e

∀r, s ∈ Z ′ : path(relation(r, s)) = 1 ⇐⇒ ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) = 1. (5.44)

∀r, s ∈ Z ′ : path(relation(r, s)) = −1 ⇐⇒ ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) = −1. (5.45)

∀r, s ∈ Z ′ : path(relation(r, s)) = 0 ⇐⇒ 6 ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) 6= 0. (5.46)

wherer, s andxi in the domain of the specific relation.

Let thepath(relation1/relation2(r, s)) = −1|0|1 indicate that a path exists betweenr

ands as defined above, but with edges of either typerelation1(.) or typerelation2(.).

Let thepath(relation1&relation2(r, s)) = −1|0|1 indicate that a path exists betweenr

ands as defined above, but with edges such that bothrelation1(.) andrelation2(.) hold.

Let the relationcontainpat(Z ′, r, s) indicate that ruler is a rule with the smallest possible

context that contains the context of rules, i.e.:

∀r, s ∈ Z ′, Z ′ ⊆ Zcombined :

containpat(Z ′, r, s) = 1 ⇐⇒ context(r) ⊃ context(s)

and 6 ∃t ∈ Z ′ : context(r) ⊃ context(t) ⊃ context(s). (5.47)

Let containpat(Z ′, r, s) = −1 if and only if containpat(Z ′, s, r) = 1; and let

containpat(Z ′, r, s) = 0 if and only if no containpat(.) relationship exists betweenr

ands in Z ′.

From the definition ofcontainpat it follows immediately that

∀r, s ∈ Z ′, Z ′,⊆ Zcombined :

path(containpat(Z ′, r, s)) = 1 ⇐⇒ context(r) ⊃ context(s). (5.48)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 84

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let the bidirectional relationmincomp(Z ′, Ze, oset(Z
′), v, r, s) be true for all rulesr and

s that are minimal complements of each other, i.e.

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

mincomp(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1,

path(containpat(Z ′, r, s)) = 0. (5.49)

Let the bidirectional relationdirect(.) be true for rules that have either a directmincomp(.)

or a directcontainpat(.) relationship, i.e.

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

direct(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

containpat(Z ′, r, s) = ±1 or mincomp(Z ′, Ze, oset(Z
′), r, s) = 1. (5.50)

Let thesubset(Z ′, Ze, oset(Z
′), v, r, s) relation indicate that thepossible words that can

be caught by a ruler is a strict subset of thepossible words that can be caught by another

rules, with respect to a rulev that occurs earlier in the rule set than eitherr or s, for a given

rule extraction stateZ ′, Ze, oset(Z
′):

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

v ∈ Ze, {(v, r), (v, s)} ∈ oset(Z ′) :

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

shared words(Z ′, Ze, oset(Z
′), v, r, s) 6= φ,

possible words(Z ′, Ze, oset(Z
′), v, r) ⊂ possible words(Z ′, Ze, oset(Z

′), v, s).(5.51)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 85

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let thesupercomp(Z ′, Ze, oset(Z
′), v, r, s) relation be true when two rulesr ands are

both in asubset(Z ′, Ze, oset(Z
′), v, r, s) and amincomp(Z ′, Ze, oset(Z

′), v, r, s) rela-

tion:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

supercomp(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒ (5.52)

mincomp(Z ′, Ze, oset(Z
′), v, r, s) = 1,

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1. (5.53)

For all r, s ∈ Z ′, Z ′ ⊆ Zcombined, oset′(Z ′) ⊆ allset(Z ′): Let anyset(Z ′, oset(Z ′), r, s)

be an alternative naming convention foranyset(Z ′, Z ′, oset(Z ′), r, s), whereanyset can

be thesubset (eq. 5.51),possible words (eq. 5.36), ororder req (eq. 5.58).

5.3.2.7 ZM AS A SUBSET OFZCOMBINED

As mentioned in section 5.3.2.4, the full set of rules inZcombined consists of all possible rules and is

therefore a superset of one or moreminimal rule setsZm. During rule extraction eachallowed rule

state is defined by a tripleZ ′, Ze, oset(Z
′), and each allowed state can can give rise to one or more

minimal rule setsZm, oset(Zm), where(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)).

If any two rulesr ands in Zm have a specific relationship in one such state, this implies further

relationships in prior and ensuing states (as shown in statement 15). For any two rulesr ands in Zm

it holds that ifr ands have acontainpat relationship with regard to an appropriate6 nodev when the

rule extraction process is in stateZ ′, Ze, oset(Z
′) , rulesr ands will have a similar relationship when

rule extraction reaches the stateZm, Zm, osetm(Zm). It can also be shown that, for any two rulesr

ands in Zm, it holds that ifr ands have acomplement relationship with regard to an appropriate

nodev when the rule extraction process is in the final stateZm, Zm, osetm(Zm), then rulesr and

s will have a similar relationship for eachallowed state Z ′, Ze, oset(Z
′) leading up to the final

state. Forcontainpat path relations, the statement is stronger: Any two rulesr ands in Zm will

have apath(containpat(.)) relationship when the rule extraction process is in stateZ ′, Ze, oset(Z
′)

if and only if rulesr and s will have a similar relationship when rule extraction reaches the state

Zm, Zm, osetm(Zm).

6Thisv acts as the stable comparison point previously described. Any v such that both(v, r) and(v, s) are included in
the set of established orderings would be valid.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 86

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.3 RULE ORDERING

In this section, we analyse the conditions and implicationsof an ordering relationship between two

rules in a rule setZ ′ whereZ ′ ⊆ Zcombined. We first define what we mean by ordering requirements,

and then show how these requirements can be translated to therelationships defined in section 5.3.2.6.

Let orderacc(Z
′, Ze, oset(Zm), r, s) indicate that ifr does not occur befores, no state

Z ′, Ze, oset
′(Z ′) can result in anallowed state, whereoset′(Z ′) is a superset of the

oset(Z ′) orderings:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

orderacc(Z
′, Ze, oset(Z

′), r, s) = 1 ⇐⇒

6 ∃oset′(Z ′) ⊇ oset(Z ′) ∪ (s, r) : allowed state(Z ′, Ze, oset
′(Z ′)) = 1. (5.54)

Let orderred(Z
′, oset(Z ′), r, s) indicate that if rules occurs before ruler, at least one rule

in the rule setZ ′ will become redundant, irrespective of any further orderings added:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

orderred(Z
′, Ze, oset(Z

′), r, s) = 1 ⇐⇒

at least one rulet ∈ Z ′ becomes redundant given any state

(Z ′, Z ′

e, oset
′(Z ′)), oset′(Z ′) ⊇ oset(Z ′) ∪ (s, r), Z ′

e ⊇ Ze. (5.55)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 87

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let order(Z ′, Ze, oset(Z
′), r, s) indicate that either anorderacc(Z

′, Ze, oset(Z
′), r, s) or

anorderred(Z
′, Ze, oset(Z

′), r, s) relationship holds between any two rulesr ands:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ orderacc(Z

′, Ze, oset(Z
′), r, s) = 1,

or orderred(Z
′, Ze, oset(Z

′), r, s) = 1. (5.56)

Let direct order(Z ′, Ze, oset(Z
′), r, s) = 1 indicate that a direct ordering requirement

exists between rulesr ands:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

direct order(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ order(Z ′, Ze, oset(Z

′), r, s) = 1;

6 ∃t : direct order(Z ′, Ze, oset(Z
′), r, t) = 1,

direct order(Z ′, Ze, oset(Z
′), t, s) = 1.(5.57)

As before, for each of theorder∗ relations (order, orderacc, orderred anddirect order),

let order∗(Z ′, Ze, oset(Z
′), r, s) = −1 indicate thatorder∗(Z ′, Ze, oset(Z

′), s, r) = 1,

and letorder∗(Z ′, Ze, oset(Z
′), r, s) = 0 indicate thatorder∗(Z ′, Ze, oset(Z

′), r, s) 6=

±1.

Using the above definitions it can be shown that if anorderacc relationship exists between any two

rulesr ands in Zm, then a path ofcomplement anddirect order relations exist between these two

rules (statement 19). That is, under appropriate conditions, orderacc(Zm, , Zm, oset(Zm), r, s) =

1 =⇒ path(direct order&complement(Zm, Zm, oset(Zm), v, r, s)) = 1, wherev is a rule earlier

thanr ors (and in practice typically thelast parent of these two rules). This means that any two rules

in Zm can only have an accuracy ordering requirement if there exists a path of such complementing

direct orderings from one to the other.

Once aminimal rule setZm has been obtained, then, iforderred(Zm, Zm, oset(Zm), r, s) = 1

it also follows thatorderacc(Zm, Zm, oset(Zm), r, s) = 1 (statement 16). The redundancy ordering

requirement therefore does not introduce any additional ordering requirements in the final rule graph,

but does provide a way to restrict the set of rule orderings early on in the rule extraction process.

If any two rulesZ ′ are in asubset relationship with regard to some rulev as above, then it can

be shown that these two rules are also in anorderred(Zm, Zm, oset(Zm), r, s) relationship with re-

gard to anyZm, osetm(Zm) pair that can be reached from the currentallowed state (statement 21).

Identifiedsubset relationships can therefore be used to define initial orderings prior to further graph

manipulation.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 88

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

The process of applying allowed operations (as discussed insection 5.3.6) leads to further or-

dering requirements becoming visible. Below we define the conditions under which anorder req

relationship can be enforced between two rules. It can be shown that if two rulesr ands are in an

order req(Z ′, Ze, oset(Z
′), v, r, s) relationship with regard to a rulev as above, then these two rules

are also in anorderacc(Z
′, Ze, oset(Z

′), r, s) relationship (statement 26). Theorder req relation-

ships therefore provide an indication of accuracy orderingrequirements that emerge during rule set

extraction.

Let theorder req(Z ′, Ze, oset(Z
′), v, r, s) relation be true if two rulesr ands disagree

with regard to outcome, and have a non-empty set ofshared words, all of which agree

with rule r with regard to outcome, and at least one of which disagrees with rule s with

regard to outcome:

∀r ∈ Zsingle, s ∈ Z ′, v ∈ Ze, Ze ⊆ Zm ⊆ Z ′ ⊆ Zcombined,

∀oset′(Z ′) ⊆ allset(Z ′) :

order req(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

direct order(Z ′, Ze, oset(Z
′), r, s) = 1,

shared words(Z ′, Ze, oset(Z
′), v, r, s) 6= φ,

∀wi ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s) : outcome(wi) = outcome(r),

∃w′ ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s) : outcome(w′) 6∈ outcome(s). (5.58)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.4 CHARACTERISTICS OF AN ALLOWED STATE

Let order decided(Z ′, Ze, oset(Z
′), r, s) indicate that the direction of rule ordering be-

tween two directly related rulesr ands in a rule setZ ′ has been established based on an

identifiedcontainpat or supercomp relationship, given some required subset of rulesZe

and some prior set of orderingsoset(Z ′). More specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset′(Z ′) ⊆ allset(Z ′) :

order decided(Z ′, Ze, oset
′(Z ′), r, s) = 1 ⇐⇒

containpat(Z ′, r, s) = 1;

or ∃v ∈ Ze : supercomp(Z ′, Ze, oset
′(Z ′), v, r, s) = 1;

or ∃oset(Z ′) ⊆ allset(Z ′) : order subset(oset(Z ′), oset′(Z ′)) = 1,

order decided(Z ′, Ze, oset(Z
′), r, s) = 1. (5.59)

Let decided set(Z ′, Ze, oset(Z
′)) take any rule setZ ′, required subsetZe and set of rule

orderingsoset(Z ′), and generate a set of all the currentorder decided relationships:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

(r, s) ∈ decided set(Z ′, Ze, oset(Z
′)) ⇐⇒

path(order decided(Z ′, Ze, oset(Z
′), r, s)) = 1. (5.60)

Note that anorder decided(Z ′, Ze, oset(Z
′), r, s) relationship does not imply that ruler ands will

either or both be retained inZm, but only that if both were retained,r would be ordered prior tos.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 90

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let order possible1(Z ′, Ze, oset(Z
′), r, s) indicate that, even though it has not yet been

established whether a rule ordering is required between tworulesr ands: if a rule ordering

is required, the direction of such an ordering will be from rule r to rule s because of the

existence of aorder req relationship between these two rules. More specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order possible1(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

∃v ∈ Ze, {(v, r), (v, s)} ∈ oset(Z ′) : order req(Z ′, Ze, oset
′(Z ′), v, r, s) = 1. (5.61)

Let order possible(Z ′, Ze, oset(Z
′), r, s) indicate that the direction of rule ordering (if

any) has not yet been established between two minimal complementsr and s that have

remainingshared words when rule extraction is in stateZ ′, Ze, oset(Z
′). More specifi-

cally:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order possible(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ mincomp(Z ′, r, s) = 1,

shared words(Z ′, Ze, oset(Z
′), r, s) 6= φ,

order decided(Z ′, Ze, oset(Z
′), r, s) = 0.

order possible1(Z ′, Ze, oset(Z
′), r, s) 6= −1. (5.62)

Let possible set(Z ′, Ze, oset(Z
′)) take any rule setZ ′, required subsetZe and set of rule

orderingsoset(Z ′), and generate a set of all thedecided andpossible rule orderings. More

specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined, oset(Z
′) ⊆ allset(Z ′) :

(r, s) ∈ possible set(Z ′, Ze, oset(Z
′)) ⇐⇒

path(order possible/order decided(Z ′, Ze, oset(Z
′), r, s)) = 1. (5.63)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 91

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Consider anyZ ′, Ze, oset(Z
′) combination such thatallowed state(Z ′, Ze, oset(Z

′)) = 1. By defi-

nition (eq. 5.28 and eq. 5.29) it will always hold that:

Ze ⊆ Zm ⊆ Zcombined. (5.64)

Furthermore, it can be shown (statement 28 and 27) that:

order subset(decided set(Z ′, Ze, oset(Z
′)), osetm(Zm))) = 1. (5.65)

order subset(osetm(Zm), possible set(Z ′, Ze, oset(Z
′))) = 1. (5.66)

Now consider any two rulesr ands that will be retained in the minimal rule setZm. From the above

it follows that if rulesr ands are ordered according todecided set(Z ′, Ze, oset(Z
′)) then these two

rules will retain this ordering in the minimal rule set ordering osetm(Zm). Also, any rule ordering

that will eventually be required inosetm(Zm) is currently listed inpossible set(Z ′, Ze, oset(Z
′). For

any given stateZ ′, Ze, oset(Z
′), the definite and possible rule orderings can therefore be generated

automatically, and used to reason about further graph manipulation options.

5.3.5 INITIAL ALLOWED STATE

The rules inZcombined describe the training data completely, but not necessarilyaccurately. Since

all possible rules are included inZcombined, it follows that φ ⊆ Zm ⊆ Zcombined for all

minimal rule setsZm. Furthermore, it can been shown that if the rules inZcombined are or-

dered according tocontainpat andsupercomp relations, then no overly restrictive orderings will

be added. If the rule setZcombined is ordered according to the rule set orderings generated by

decided set(Zcombined, φ, φ), then the rule set is in anallowed state (statement 33). This state

is used as the initial state prior to application of the variousallowed ops, as described below.

5.3.6 ALLOWED OPERATIONS

Eachallowed op as defined in section 5.3.2.4 changes the state of the rule set, required rule subset

and rule ordering set, from oneallowed state to another, with the initialallowed state defined

in section 5.3.5. These operations are not unique, and both stronger and weaker versions can be

constructed. While the framework up to this point has been defined rigorously, we now discuss a

number of possible operations in order to demonstrate how this framework can be used during rule

extraction. We describe a number of operations that we have implemented and tested in our rule

extraction system. Specifically, we describe allowed operations that can be applied to (1) delete rules,

(2) remove unnecessary edges, (3) mark rules as required, and (4) resolve conflicted rules.

When applying any of these operations it is assumed that the rule graph is in anallowed state de-

fined by the tripleZ ′, Ze, oset(Z
′). Prior to discussing these operations in further detail, itshould be

noted that the rule graph edges added according to thedecided set andpossible set orderings have

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 92

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

two functions: On the one hand, these edges define the order inwhich rules will occur, as discussed

up to this point. Secondly, these edges link any rule toall possible rulesthat may potentially replace

or be replaced by the current rule.Direct successorsor predecessorsare identified by following both

decided set andpossible set orderings and identifying rules that either have to or can occur directly

before or after the rule being considered. From these sets ofrules it is possible to define the total

number of rules that (1) will definitely and (2) may potentially (based on decisions made in other

sections of the rule graph) be deleted if a current rule is associated with a specific outcome.

5.3.6.1 DECREASING RULE SET SIZE

A rule r can only be deleted if it can be shown that the rule has become redundant, and will remain

redundant. This can occur for two reasons: (1) because of theposition of the specific ruler in the rule

graph, all words that match this rule are already caught by required rules (correctly identified as such)

that occur earlier in the rule set; or (2) because the rule canbe ‘merged’ with a second rule occurring

at the same point in the rule extraction order. We define threedifferent allowed operations with regard

to rule deletion:

1. A ruler may be deleted if some rules exists such that:

• Rulesr ands are resolved (r, s ∈ Zsingle) and agree with regard to outcome.

• Rulesr ands have identical relationships with identical predecessors(both possible and

definite).

• Rulesr ands have identical relationships with identical successors (both possible and

definite).

2. A ruler may be deleted if a set of rulesvi exists such that:

• Thevi constitute all the direct successors of ruler.

• Ruler and all thevi are resolved (r, vi ∈ Zsingle) and agree with regard to outcome. (No

rule t with a potentially conflicting outcome can have an ordering that allows it to occur

between ruler and anyvi.)

3. A ruler may be deleted if for some allowedv, thepossible words(Z ′, Ze, oset(Z
′), v, r) = φ.

5.3.6.2 REMOVING UNNECESSARY EDGES

Since decided orderings are transitive, it is possible to remove any explicit ordering

rule order(Z ′, r, s) if it already holds thatrule order(Z ′, r, t) = 1 andrule order(Z ′, t, s) = 1

for somet ∈ Z ′. Note that this does not remove(r, s) from oset(Z ′).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 93

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.3.6.3 IDENTIFYING REQUIRED RULES

When a rule is identified asrequired, it is moved from the possible rule setZ ′ to the set of required

rulesZe. This is anallowed op for a ruler if the rule r itself has already been resolved (that is, it

can only predict a single outcome), and no further rules exist that may potentially agree with regard

to outcome.

5.3.6.4 RESOLVING CONFLICT RULES

We define four different operations that can be used to resolve conflicted rules. All of these operations

utilise the concept of asingle rule and aconflict count. A rules is identified as asingle rule if there

exists at least one wordw such that(w, s) ∈ oset(Z ′) and not exists such thatmatch(w, t) = 1, un-

less(s, t) ∈ oset(Z ′). This means that wordw can only be predicted by rules, or by a later rule that

has a decided path from wordw via rules. For each possible outcome we count the number of prede-

cessors that will definitely be deleted if ruler is resolved to that specific outcome (definite count),

as well as the number of predecessors that may possibly be deleted (possible count). These counts

are not calculated per predecessor, but rather per word set that a predecessor represents. For a prede-

cessors to contribute to a (definite count), the predecessor must be resolved (that is,s ∈ Zsingle),

be identified as asingle rule, and have only one successor (the conflicted ruler itself).

1. If it is clear that ruler will provide an advantage if resolved to a specific outcome, resolution is

performed, and the conflicted rule is replaced with a normal rule with the selected outcome. A

rule may only be resolved in this way, if thedefinite count for a specific outcome dominates

the sum of thedefinite count and possible count for all alternative outcomes. It is also

required that at least one of the predecessors with a outcomematching the outcome selected

for rule resolution be asingle rule. This prevents an unnecessary rule from being generated at

this point in the rule application order. (In a later step, the resolved conflict node will merge

with thesingle predecessor.)

2. If a conflicted ruler has no predecessors that can potentially agree with each other with regard

to a specific outcome, the ruler may be deleted. (We refer to this process as alost conflict). A

rule may be resolved in this way if the sum of thedefinite count andpossible count is less

than or equal to one, for all possible outcomes.

3. If for any of the outcomes the sum of thedefinite count andpossible count is less than or

equal to one, that outcome may be removed from the possible outcomes of the conflicted rule,

even though the rule remains a conflicted rule. If all except one outcome are removed in this

way, then at least one predecessor must be asingle rule that agrees with regard to the final

outcome, as discussed with regard to the previous operator.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 94

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

4. The root node is not allowed to be resolved via operator (2)or (3). If operator (1) is not

applicable, the root node is resolved to the outcome that occurs most in the training data. This

operation is only allowed when all predecessors have been resolved.

5.3.7 BREAKING TIES

Once all the possible operations have been applied to the rule graph, and no further simplification is

possible, it does not necessarily mean that all conflicted rules have been resolved. The extent to which

the rule graph is resolved, depends on the strength of the various allowed operations defined. Note

that the set difference between the increasing rule setZe, and the decreasing rule setZ ′ provides a

clear indication of the extent to which the current solutionstill falls short of the minimal rule setZm.

If Ze equalsZ ′, a minimal rule set has been obtained.

The remaining conflicted nodes can be solved by viewing the rule graph as a constraint satisfaction

problem (CSP). By assigning the various remaining (node-specific) outcome values to each of the

remaining conflicted nodes, and searching through the resulting search space, the final solution can

be obtained. During the CSP search process, all conflicted nodes are solved simultaneously, and

the rule minimisation process proceeds rapidly using the various deletion operations. By searching

through all the remaining allowed rule sets, the smallest possible set can be obtained.

The magnitude of this CSP is determined by the coverage of theoperations employed. If only

trivial operations were employed, and all conflicts were left to the CSP to resolve, a huge CSP would

result for even very small problems. The stronger the allowed operations defined, the smaller the

CSP to solve. Our current implementation has been used to solve small tasks ofn = 100 words,

and we have been able to extract rule sets that are smaller than that extracted byDefault&Refine.

Various CSP-specific techniques can be applied to improve the computational tractability of the task.

However, this is not the focus of the current chapter, which aims to define a solid theoretical basis for

further experimentation: computational tractability will be addressed in future work.

5.3.8 OPTIMISING GENERALISATION ABILITY

Once all conflicted rules have been solved, and the minimal rule set obtained, it is possible to refine

the rule set by choosing the best rule option among the various variants available. Possible selection

criteria include smallest rule context, most symmetric rule context, best coverage of the training data,

best fallback given the following set of rules in the specificity hierarchy, and various others. Since

the choice of variant does not influence the number of rules generated, this provides flexibility in the

construction of the final rule set. When heuristics are employed during rule extraction, choices are

limited earlier on: this framework allows heuristic choices to be postponed as late as possible during

rule extraction, and makes those choices explicit.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 95

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

5.4 ALTERNATIVE ALGORITHMS AS SPECIALISATION OF GENERAL

FRAMEWORK

It is interesting to note that the rule extraction algorithms discussed in Chapter 4 can be viewed

within the minimal representation graphframework. In the case of DEC the full set of rules in

Z is not constructed: only the rules that match the DEC format are generated. The rule graph is

not constructed prior to rule extraction but is grown duringrule extraction according tocontainpat

relationships. Each additional conflicting word results inanother leaf being added to the graph.

Default&Refinealso grows the graph from the root outwards, ordering rules according to rule

extraction order. At each level, a decision is made with regard to the rule and associated outcome

that best predicts the set of words that must be caught at thatlevel in the rule graph (that will not be

predicted correctly by a later rule). This is conceptually similar to generating a full rule graph prior

to rule extraction, and resolving rules strictly from the root outwards according to a greedy heuristic

at each level. Since neither algorithm proceeds with allowed operations from an allowed initial state,

both will in general produce larger-than-minimal rule sets.

5.5 EXTENSIONS

The current framework provides a solid theoretical base forreasoning about the choices made during

grapheme-to-phoneme rule extraction. We are interested inhow this framework can be extended to

incorporate additional techniques, and this will be addressed in future work. Specific extensions that

may fit well within this framework include:

• Pronunciation variants: currently pronunciation variants are not allowed (See eq. 5.13). If

a single pseudo-phoneme is generated for each alternating sound, the same framework can

be used to process pronunciation variants, with variants expected to drift towards the top of

the graph, unless clearly systematic. Further choices ensue with regard to resolving conflict

between a single phoneme and a matching pseudo-phoneme, andextensions to the current

framework may assist in resolving such issues.

• Class-based groupings: It is clear from rule set analysis that groups of graphemes tend to

influence neighbouring graphemes in systematic ways. It should be possible to accelerate the

learning process by extracting such graphemic groups during rule set extraction. This may

require the interlinking of a number of minimal memory graphs in a single structure.

• Combining phonemic and graphemic context: The same rule setcan be generated in terms of

either graphemic or phonemic context. We are interested in the advantages and disadvantages

of combining both approaches in a single rule set.

• Graphemic chunks: As all possible word sub-components are generated during rule set extrac-

tion, the extent to which the rule graph is manipulated brings this approach closer or removes

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 96

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

it further from pronunciation-by-analogy techniques. We are interested in the similarities and

differences between these two approaches.

5.6 CONCLUSION

In this chapter we described a theoretical framework that can be used to analyse the grapheme-to-

phoneme prediction problem in a rigorous fashion. Using this framework, it is possible to define a

number of ‘allowed operations’ that attempt to extract the smallest possible rule set from any given

set of training data. By making the various options available at each stage of rule extraction explicit,

we obtain a better understanding of the grapheme-to-phoneme prediction task itself. Furthermore, the

new framework provides a solid foundation for further research in pronunciation prediction, including

the potential incorporation of pronunciation variants, class-based groupings and/or graphemic chunks

within a rewrite-rule based framework.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 97

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX

BOOTSTRAPPING PRONUNCIATION MODELS

6.1 INTRODUCTION

In this chapter we apply the grapheme-to-phoneme rule extraction mechanisms developed earlier

in order to bootstrap pronunciation models. We analyse the bootstrapping process by developing

pronunciation models in Afrikaans, a Germanic language with a fairly regular grapheme-to-phoneme

relationship, and describe a number of experiments conducted to evaluate specific aspects of the boot-

strapping process. In Section 6.5.4 we analyse the efficiency of the bootstrapping process according

to the framework defined in Chapter 3. The completed system has since been used for the develop-

ment of dictionaries in a number of additional languages (isiZulu, Sepedi and Setswana1) and these

dictionaries integrated in speech technology systems, as described in Section 6.6.

6.2 BOOTSTRAPPING SYSTEM

Two bootstrapping systems were developed:

• System A: The bootstrapping approach as described in Section 3.4 was implemented in Perl,

to run within a Web browser [72]. This prototype provided an experimental platform for the

evaluation of the various algorithms described in Chapter 4and allowed initial measurements

with regard to developer efficiency and accuracy. The experiments described in Sections 6.3

and 6.4 utilised this system.

• System B: Components of System A were re-implemented in Javain order to provide more

user-friendly interaction. The new system does not implement all the algorithms evaluated in

1Three more of South Africa’s official languages, from the Bantu family.

98

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

this thesis, but provides a more robust platform for dictionary development2. System B was

used in the experiment described in Section 6.5.

Both systems implement the bootstrapping approach described in Section 3.4, as described in more

detail from both the user and system perspective in the next two sections.

6.2.1 USER PERSPECTIVE

Figure 6.1:Correcting the predicted pronunciations (System A).

The dictionary development task as presented to theverifier is depicted in Fig. 6.1. The verifier is

presented with each word/pronunciation pair in turn, and asked to provide a verdict of pronunciation

accuracy. The verifier is required to verify all new predictions – none are assumed to be correct3.

2This system will be released as Open Source Software in the near future – see http://www.csir.co.za/hlt for more
information.

3In an alternative approach, Maskeyet al [68] utilised a confidence metric to assume the correctness of some of the
words. We preferred to verify all new predictions, given theunpredictability of some exceptions in pronunciation prediction
tasks.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 99

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

Figure 6.2:The bootstrapping system concept.

Once the word list and phoneme set have been loaded and the system prepared, no further exper-

tise is required from the verifier apart from being able to differentiate between correct and incorrect

pronunciations.

The verifier is presented with two representations of the pronunciation, namely a visual transcrip-

tion and an audio version. The audio version is created by concatenating pre-recorded samples of each

phoneme (i.e. the word is ‘sounded’ rather than synthesised). The verifier specifies a verdict: whether

the pronunciation iscorrectas predicted, whether the word itself isinvalid, ambiguousdepending on

context, or whether the verifier isuncertainabout the status of the word. If the pronunciation is

wrong, the verifier specifies the correct pronunciation by removing, adding or replacing phonemes in

the presented pronunciation. Once the verifier is certain ofthe accuracy of a specific pronunciation,

he or she is encouraged to listen to the audio version of the final pronunciation, and so identify po-

tential errors. At any stage the verifier canRedoa word, in order to correct a previous mistake. The

verifier can alsoList possible errorswhich provides a list of exceptional pronunciations, as discussed

in more detail in Section 6.4.

6.2.2 SYSTEM PERSPECTIVE

Fig. 6.2 illustrates the bootstrapping concept from a system perspective. The bootstrapping system is

initialised with a grapheme and phoneme set, and a large wordlist (containing no pronunciation infor-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 100

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

mation). Each phoneme is associated with a pre-recorded audio sample. The system can be primed

with an existing rule set or dictionary, if available. If neither is available, the system will predict

empty pronunciations initially, which, when corrected, form the basis for further bootstrapping.

Bootstrapping occurs in two phases. During the initial phase, the grapheme-to-phoneme models

are updated whenever a word is verified as correct. In the second phase, a complete update (referred

to as a synchronisation event) only occurs after a set of words has been verified as correct. In between

synchronisation events, learning can either be ceased, or continued using an incremental algorithm4.

The dictionary developer chooses the number of words at which the system progresses from the first

to the second phase, as well as the size of the set corrected before models are synchronised with the

new training data during the second phase. Once initialised, the following steps are repeated:

1. The system analyses its current understanding of the taskand generates the next word to con-

sider, as described in Section 6.2.3.

2. For the chosen word, the system generates a new pronunciation using its current grapheme-to-

phoneme rule set.

3. The system creates a ‘sounded’ version of each word using the predicted pronunciation and

associated sound samples, and records the verifier’s final response.

4. If a word has been verified as correct, the system increasesits update synchronisation counter.

If an update event is due, the system updates its grapheme-to-phoneme rule set based on the

new set of pronunciations.

This process is repeated (with increasingly accurate predictions) until a pronunciation dictionary

of sufficient size is obtained.

6.2.3 ALGORITHMIC CHOICES

In the experiments conducted here we either useDEC-minor Default&Refinefor rule extraction, as

stated per experiment. We also state whether incremental learning is utilised between synchronisation

events or not. A further algorithmic choice concerns the mechanism whereby the next ‘best’ word

to add to the knowledge base is selected, as this can influencethe speed at which the system learns.

We utilise three different techniques in our experiments, as referred to in the various experiment

descriptions:

• Evenly selected from corpus:

Here we order the available word list alphabetically, and select everynth word in order to

obtain a subset of the required size.

4Such as incremental Default&Refine, described in Section 4.6.4

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 101

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

• Systematic growth in context:

The system grows its understanding of pronunciations-in-context systematically. Contexts of

varying sizes are ordered according to occurrence frequency in general text, creating a list of

‘contexts in question’. A continuous process predicts the next best word to verify based on

the current state of the system: the shortest word is chosen that contains the next context in

question. If so required, the system will attempt to obtain certainty on as many contexts of size

n as possible, before continuing to a context of sizen+1.

• Random:

A subset is chosen at random.

An alternative approach is suggested in [68], where words are ordered according to frequency in

general text, and the most frequent words are processed first. This provides the advantage that more

frequent words are automatically included in the dictionary but can also decrease learning perfor-

mance if the more frequent words tend to have irregular pronunciations, as is possible, depending on

the specific language being considered.

6.2.4 SYSTEM CONFIGURATION

Fig. 6.3 depicts the options presented to the user preparingthe dictionary development process.

Displaying the current status, as shown here, is one task within an experimental environment that

allows a user to manipulate and generate the various resources involved (the rule set, word list and

pronunciation dictionary) as required. For each experiment, the system logs the history of all activities

and archives the intermediary data resources for further analysis.

6.3 EXPERIMENT A: VALIDATION OF CONCEPT

In this section we report on a series of experiments conducted in order to analyse the bootstrapping

approach. The experiments are aimed at understanding a number of issues, including the following:

1. Can the bootstrapping approach be used to develop pronunciation dictionaries more quickly

than conventional transcription?

2. How important is the linguistic background of the dictionary developer? Is it possible for

a first language speaker without any phonetic training to develop an accurate pronunciation

dictionary? (As mentioned in Section 1.1, this is highly significant in the developing world.)

3. How long does it take for a developer to become proficient with the bootstrapping system?

4. What are the practical issues that affect the speed and accuracy of dictionary development using

the bootstrapping approach?

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 102

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

Figure 6.3:Preparing the bootstrapping system (System A).

In Section 6.3.1 we describe the experimental protocol followed. Utilising the framework defined

in Chapter 3, we analyse the bootstrapping process from botha human factors perspective (Section

6.3.2) and a machine learning perspective (Section 6.3.3).In Section 6.3.4 we analyse the efficiency

of the overall system, and compare expected and measured values.

6.3.1 EXPERIMENTAL PROTOCOL

The first set of experiments involved three dictionary developers who created pronunciation dictio-

naries for Afrikaans. All three developers are first-language Afrikaans speakers; and in informal in-

terviews all three were found to employ a broadly similar dialect of “standard” Afrikaans. Two of the

developers (whom we will refer to as A and B) have no formal linguistic training, whereas developer

C has significant linguistic expertise, and has previous experience in the creation of pronunciation

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 103

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

dictionaries.

The following protocol was used for all three developers:

1. A brief tutorial on the bootstrapping system, as well as the chosen phonetic representation, was

presented by one of the experimenters.

2. A training set of 1000 words was drawn from a corpus of Afrikaans words, and the developers

were given the opportunity to familiarise themselves with the system (and the phoneme set)

by developing pronunciation rules for a subset of these words using the bootstrapping system.

The process continued until the developers were satisfied that they were comfortable with the

software and phoneme set.

3. A new set of 1000 words was selected, and the developers were asked to produce the most ac-

curate rules they could, by listening to the sounded versionproduced by the system, correcting

it if necessary, and repeating these two steps until satisfied with the pronunciation.

4. Further sets of 1000 words were used to experiment with various other factors, such as the

effect of giving developers the option not to use audio assistance.

Each set of 1000 words was selected according to the ‘systematic growth in context’ word se-

lection technique5 from an independent 40,000-word subset of the full Afrikaans word list. The

DEC-minalgorithm was used for rule extraction, and all experimentswere conducted inphase 1op-

eration, that is, the rule set was updated after every corrected word. During these experiments we

measured several relevant variables, including: the time taken to complete each verification; the num-

ber of phonemes changed per word verified; whether the developer chose to use the audio assistance;

whether a developer returned to a word to re-correct it at a later stage; and the amount of idle (resting)

time between sets of verifications.

6.3.2 HUMAN FACTORS

6.3.2.1 USER LEARNING CURVE

To measure a developer’s facility in using the bootstrapping software, it is useful to obtain separate

measurements of how long it takes (on average) to verify words in which no corrections are made,

words where one correction is made, words where two corrections are made, etc. This eliminates the

confounding effect of the system becoming more accurate as it learns more rules (thus accelerating

apparent developer performance). By this measure, all three developers reached a satisfactory level

of performance within approximately 400 words. For example, Fig. 6.4 depicts how the times for

developer C to correct zero through four errors converge to their stable values; similar tendencies

were seen for the other developers as well.

5as described in Section 6.2.3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 104

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
pe

r
ac

tio
n

(in
 s

)

Number of words verified

Correcting 0 errors
Correcting 1 errors
Correcting 2 errors
Correcting 3 errors

Figure 6.4: Average time taken by developer C to verify words requiring zero, one, two or three
corrections, as a function of the number of words verified. The averages were computed for blocks of
50 words each.

This is highly encouraging, since the initial 400 words werecompleted in less than two hours in

every case. Even linguistically untrained users can therefore become proficient at using bootstrapping

within this length of time.

6.3.2.2 EFFECT OF LINGUISTIC EXPERTISE

The ability of linguistically untrained users to become proficient at using the bootstrapping system

does not necessarily imply that the users were using the system accurately. It is an interesting question

whether it is at all possible for a first language speaker without any phonetic training to develop an

accurate pronunciation dictionary.

In order to analyse the effect of linguistic sophistication, the performance of developers A and B

(who have had no linguistic training) was compared with thatof developer C along the dimensions

of speed and accuracy. Because there is unavoidable ambiguity in defining “correct” pronunciations

(even within a particular dialect), we measured accuracy bymanually comparing all cases where any

pair of developers chose different transcriptions for a word. In those cases, a transcription was flagged

as erroneous if (in the opinion of the author) it did not represent an accurate transcription of the word.

Table 6.1:Estimated transcription accuracies of three developers ona set of 1000 words.
Developer Transcription experience Word accuracy

A None 83.6%
B None 98.0%
C Substantial 99.0%

Table 6.1 summarises the accuracies of the three developers, as estimated using this process. Only

words marked as “valid” by a developer were included in the evaluation. As expected, developer C

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 105

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

was found to be highly accurate. Interestingly, developer Bwas only slightly less accurate, whereas

developer A made significantly more errors than either of theothers. During analysis it was revealed

that developer A had not adhered to the protocol defined in Section 6.3.1: when confident of the

accuracy of a pronunciation, developer A had accepted pronunciations without utilising the audio

assistance provided by the system. Two conclusions are suggested by these measurements:

• It is possible for a linguistically inexperienced developer to use the bootstrapping system to

attain levels of speed and accuracy comparable to those of a highly proficient dictionary devel-

oper.

• Developers with limited linguistic experience should be required to listen to every transcription,

since it is easy to become over-confident about one’s abilityto read phonetic transcriptions.

6.3.2.3 THE COST OF USING AUDIO ASSISTANCE

Since we found that the developer who did not sound words out made many more errors than those

who did, it is important to investigate how much this sub-process delays the process of verification.

To this end, we asked developer C to verify an additional set of 200 words, only choosing to sound out

those words where she considered it useful. In Fig. 6.5 the time taken to verify words with various

numbers of corrections is compared with the times when the use of audio assistance was compulsory.

-10

 0

 10

 20

 30

 40

T
im

e
pe

r
ac

tio
n

(in
 s

)

Verdict

Invalid Correct Edit 1 Edit 2 Edit 3Uncertain

Compulsory audio assistance
Optional audio assistance

Figure 6.5:Average time taken by developer C to verify words, with and without compulsory use of
audio assistance.

We found that this choice did not cause the developer to commit any errors; however, the reduction

in verification time was also relatively small (3.6 seconds on average). This confirms the suggestion

in Section 6.3.2.2 that it is generally better not to make theuse of audio assistance optional.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 106

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.2.4 THE COST OF PHONEME CORRECTIONS

The number of phoneme corrections required is the dominant factor in determining verification time.

For example, analysis shows that the length of the words to beverified correlates with the verification

time if no corrections are required, but not if one correction is required, and that word length is the

less important of these two factors. (Word length similarlydoes not predict verification time if two or

more corrections are required.) Developers take comparable durations to perform their verifications,

as shown in Fig. 6.6.

-10

 0

 10

 20

 30

 40

 50

T
im

e
pe

r
ac

tio
n

(in
 s

)

Verdict

Invalid Correct Edit 1 Edit 2 Edit 3 Edit 4Uncertain

Developer A
Developer B
Developer C

Figure 6.6: Average time taken by three developers to verify words requiring different numbers of
corrections (or to mark words as invalid or ambiguous/uncertain). The averages were computed for
the same set of 1000 words as above.

6.3.2.5 RELATED FACTORS

Our experiments have underlined a number of practical factors that need to be taken into account

when developing pronunciation dictionaries using bootstrapping:

• Relatively informal instruction of the developers is sufficient, if they are given the opportunity

to learn by using the system.

• The appropriate definition and usage of the phoneme set requires some care. When a new lan-

guage is being developed, it is advisable to do this in an iterative fashion: developers develop

a small dictionary, and their comments as well as transcriptions are reviewed to determine

whether any phonemes are absent from the set being used, and also to determine what conven-

tions are required to ensure consistency of the dictionary.

• For a linguistically inexperienced dictionary developer,the audio samples used should ideally

match the developer’s regional accent.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 107

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

• When developers have limited linguistic experience, they should be required to listen to every

word prior to final acceptance of a transcription.

6.3.3 MACHINE LEARNING FACTORS

6.3.3.1 SYSTEM CONTINUITY

The faster the system learns, the fewer corrections are required of the human verifier, and the more

efficient the bootstrapping process becomes. The most important aspect that influences the speed at

which the system learns relates to the continuity with whichthe system updates its knowledge base.

A continuous process was chosen, whereby the system regenerates its prediction models after every

single word verified. This has a significant effect on system training responsiveness, especially during

the initial stages of dictionary development when the system has access to very little information on

which to base its predictions.

6.3.3.2 PREDICTIVE ACCURACY

The increasing likelihood that the system will correctly predict pronunciations as more words are

verified is depicted in Fig. 6.7, which shows the average number of phoneme corrections required

as a function of the number of words verified by developer B. The number of corrections decreases

steadily as more words are verified, producing an increasingly accurate dictionary and enabling the

developer to process subsequent words more rapidly.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 100 200 300 400 500 600 700

N
um

be
r

of
 p

ho
ne

m
e

co
rr

ec
tio

ns
 p

er
 w

or
d

Number of words verified

Figure 6.7:Expected number of phonemes that required correction by developer B as a function of
the number of words verified.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 108

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.3.3 VALIDITY OF BASE DATA

A final factor that influences the speed of dictionary development concerns the validity of the initial

word lists. In this set of experiments word lists were obtained from Internet text and contained up to

15% invalid words.

6.3.4 SYSTEM ANALYSIS

We can combine the information in Figs. 6.7 and 6.6 to derive amodel of how long it will take system

users such as developers B and C to create pronunciation dictionaries of various sizes. To do this, we

fit an exponential curve through the smooth part of the graph in Fig. 6.7 (i.e., for 100 or more words

verified), and estimate a linear model for the expected verification time as a function of the required

number of corrections. Fig. 6.8 shows how machine learning produces slower-than-linear growth

in development time, and that a fairly sizeable dictionary can be created in fewer than 20 hours of

developer time. The bootstrapping approach is compared to manual verification at 19.2s and 30s

per word. (19.2s was the fastest average time observed in ourlaboratory using a proficient phonetic

transcriber, and represents an optimistic time estimate.)

Also note that the model of expected development time, whichwas based on measurements of the

time taken by Developer B, predicts Developer C’s measurements with reasonable accuracy.

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(in

 h
ou

rs
)

Number of words verified

Manual transcription: 30s per word
Manual transcription: 19.2s per word

Bootstrapping: predicted time
Bootstrapping: measured time (Dev C)

Figure 6.8:Expected time (in hours) required to compile an Afrikaans pronunciation dictionary, as a
function of dictionary size.

From this set of experiments we conclude that a bootstrapping approach can be used to generate

pronunciation dictionaries efficiently. Encouragingly, similar estimates are found for an experienced

creator of pronunciation dictionaries (with significant linguistic training), and a developer with no

prior exposure to formal linguistics.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 109

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.4 EXPERIMENT B: SEMI-AUTOMATIC DETECTION OF VERIFIER

ERRORS

Dictionary developers are typically required to enter phonemic predictions for several thousand words

in order to develop dictionaries of sufficient accuracy. Although our interface attempts to assist devel-

opers in this task (e.g. by audibly sounding out the chosen pronunciations and by providing automatic

predictions for every word), it is inevitable that errors will arise from time to time.

Fortunately, theDefault&Refineapproach is well suited to assist in the detection of such errors.

Since every rule in the hierarchy is selected to describe a particular set of words, and errors are likely

to result in rules that are applicable to few words besides the erroneous one, one expects that erroneous

transcriptions will tend to show up as rules which support few words. Of course, there may also be

valid pronunciation rules which are not supported by many examples; it therefore is an experimental

issue to determine how useful this guideline is in practically detecting transcription errors. Different

languages will differ in this regard – a highly “regular” language such as Spanish6 will generally

have many examples of each valid rule, whereas the idiosyncrasies of English pronunciation will

produce a large number of valid special cases. As a consequence, our approach is expected to be

more successful for languages such as Spanish.

To investigate the utility of the proposed method for detecting transcription errors, we conduct a

number of simulation experiments with Afrikaans. Heuristically, we expect Afrikaans to lie some-

where in the middle of the continuum between regular and irregular languages. Our experiments use

a verified dictionary with 4 923 valid words (Afrikaans A). Based on earlier experience with dictio-

nary developers who are error prone (see Section 6.3.2.2), we artificially corrupt a fraction of these

transcriptions and then measure the efficiency of the number-of-words guideline to indicate the words

with corrupted transcriptions. This is the similar to the process followed in Section 4.7.4 where we

evaluated the effect of noise on the predictive ability of theDefault&RefineandDEC-growalgorithms.

As in Section 4.7.4 we introduce two types of corruptions into the transcriptions:

• Systematic corruptionsreflect the fact that users are prone to making certain transcription errors

- for example, in the DARPA phone set,ay is often used whereey is intended. We allow a

number of such substitutions, to reflect observed confusions by Afrikaans transcribers.

• Random corruptionssimulate the less systematic errors that also occur in practice; in our sim-

ulations, random insertions, substitutions and deletionsof phonemes are introduced.

We generate four corrupted data sets (systematic substitutions; random insertions, substitutions and

deletions), where 1% of the words are randomly selected for corruption.Default&Refinerule sets are

then generated for each case, and the percentage of erroneous words that are matched by the most

specific rules are determined7. In Fig. 6.9 we show the fraction of errors that remain undetected

6That is, a language with a very regular mapping between phonemes and graphemes.
7SinceDefault&Refinealways applies rules in the order most to least specific, the rule ordering used for prediction was

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 110

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

against the fraction of words examined, as this threshold ofspecificity is adjusted. Note that this

depiction is closely related, but not identical, to that in the well known Detection Error Tradeoff

(DET) curves [73].

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(c)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(b)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(d)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

(d)

Figure 6.9: Fraction of erroneous words that are not detected as a function of the fraction of all
words examined, when words are examined in the order of theirmost specific rules, for various
types of corruptions: (a) random substitutions (b) random insertions (c) random deletions and (d)
systematic substitutions.

These results suggest that this method has significant use inaccelerating the process of error

detection. For all three types of random errors, more than 90% of the errors can be identified after

inspecting fewer than 20% of the transcriptions. As far as the systematic errors are concerned, about

half the errors occur in the first 5% of the words inspected; bythat time, the systematic patterns are

obvious, and can be used to select other candidate words where these same errors may have occurred.

In practice, the error-detection process can be combined with the synchronisation event, with pos-

sible errors flagged by the bootstrapping system and corrected where necessary by a human verifier,

prior to continuing with the next session. This then becomesa simple and efficient way of identifying

errors during bootstrapping. Alternatively, the error-detection process can be used as a stand-alone

technique, in order to identify possible errors in a pronunciation dictionary developed via different

means.

used as measure of specificity. The specificity of a word is taken as the specificity of its most specific grapheme, since a
transcription error may result in one or more rules becominghighly specific to that word.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 111

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.5 EXPERIMENT C: BUILDING A MEDIUM-SIZED DICTIONARY

In the final controlled experiment we build a medium-sized Afrikaans dictionary utilising the new

techniques developed in this thesis. In section 6.5.1 we define our experimental protocol and in the

remainder of this section we analyse the efficiency of the process according to the framework defined

in Section 3.

6.5.1 EXPERIMENTAL PROTOCOL

Up to this point, the various dictionaries developed duringexperimentation were fairly small (approx-

imately 1000 to 2000 words). In this experiment, we verify the effectiveness of the various techniques

when building a medium-sized dictionary in a continuous process. Since we are growing the dictio-

nary from a previous baseline we are specifically interestedin the extent to which the bootstrapping

process supports the extension of an existing dictionary.

We utilise one of the developers (Developer C) who has previous experience in using the boot-

strapping system. We perform bootstrapping using System B,and initialise the bootstrapping system

using the dictionaryAfrikaans A8. We use incrementalDefault&Refinefor active learning in between

synchronisation sessions, and standardDefault&Refineduring synchronisation. We set the update

interval (number of words modified in between synchronisations) to 50, and order words randomly

(in the list of new words to be predicted).

At the end of the bootstrapping session we perform error detection. (No additional error detection

is performed during bootstrapping.) We first extract the list of graphemic nulls, and identify possible

word errors from the graphemic null generators. We then extractDefault&Refinerules from the full

dictionary with the purpose of utilising these rules to identify errors, similar to the process described

in Section 6.4. We list all words from word sets that result ina new rule and contain fewer than five

words as possible errors, and verify these words manually9.

6.5.2 HUMAN FACTORS ANALYSIS

We measure the time taken by the verifier (developer C) to perform each verification action, and

analyse the effectiveness of the verification process from ahuman factors perspective. Fig. 6.10

illustrates the verification process as the dictionary grows from 5500 to 7000 words. We plot the time

taken to verify each valid word, indicating whether 0,1,2, or 3 corrections are required, for each word

as it is added to the dictinary. (The number of training wordson the x-axis includes both valid and

invalid words.)

We note the following:

8As described in Section 4.3, we create theAfrikaans Adictionary by cross-analysing the dictionaries from the various
experiments run to date and manually verify discrepancies.

9A word set associated with a rule tends to have either only oneor two words associated with it, or a large set of words:
within an acceptable range, the error detection process is not sensitive with regard to the exact cut-off point selected.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 112

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

 0

 5

 10

 15

 20

 25

 30

 5600 5800 6000 6200 6400 6600 6800 7000

T
im

e
in

 s
ec

on
ds

Number of words in training dictionary

0 corrections
1 corrections
2 corrections
3 corrections

Figure 6.10:Time taken to verify words requiring zero, one, two or three corrections, as a function of
the number of words verified. For the first three measures, theaverages were computed for blocks of
5 words each.

• User learning curve:Developer C was proficient in using the system prior to the current boot-

strapping session, and further training was not required10.

• Cost of intervention:In this experiment we utilised two intervention mechanisms: verifying

predictions, and verifying the list of possible errors. Table 6.2 provides the average verification

times observed for Developer C where the intervention mechanism is a single verification of

a prediction (tverify(single,s)) for words that are in different statess prior to verification. Ver-

ification of the list of possible errors took approximately 27 minutes (for approximately 3000

words).

Table 6.2:Statistics of the time taken to verify words requiring 0,1,2or 3 errors, or to identify a word
as invalid or ambiguous (µ is the mean, andσ the standard deviation.).

Verdict Time in seconds
µ σ

correct 1.95 1.35
1 error 5.79 2.30
2 errors 10.74 3.19
3 errors 17.91 6.12
invalid 3.39 4.71
ambiguous 8.92 5.08

• Task difficulty: During the bootstrapping process, 3019 words were added to the dictionary,

of which 181 were invalid or ambiguous. During error detection, 9 errors were found in the

remaining 2838 valid words. Given our analysis in Section 6.4 we estimate that this represents

10The value ofttrain during the initial session was< 120 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 113

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

at least 50% of the errors, and therefore estimate the actualerror rate to be0.6%11. It is

interesting to note that, while our error detection protocol resulted in a re-verification of3.3% of

the full dictionary (1832 grapheme-specific patterns, or about 300 words), the average position

of each error in the ordered error prediction list was at0.67% of the full training dictionary,

with the majority of errors found in the first0.1% of words, i.e. the first or second pattern on

the per-grapheme list of potential errors.

• Difficulty of manual task:error ratemanual is assumed to be< 0.5%, which is an optimistic

estimate for the range of manual development speeds evaluated.

• Manual development speed:Different values oftdevelop are used for comparison, ranging from

19.2s, again an optimistic estimate.

• Initial set-up cost:As this is an extension of an existing system, no further set-up cost was

incurred12.

6.5.3 ANALYSIS OF MACHINE LEARNING FACTORS

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 5400 5600 5800 6000 6200 6400 6600

A
ve

ra
ge

 n
um

be
r

of
 c

or
re

ct
io

ns
 r

eq
ui

re
d

Number of words in training dictionary

Figure 6.11:The average number of corrections required as a function of the number of words veri-
fied. Averages were computed for blocks of 50 words each.

From a machine learning perspective, the following is observed:

• Predictive accuracy of current base:Measured directly during experimentation, the number of

corrections required per word added to the dictionary(inc n(s, n)) is depicted in Fig. 6.11.

We plot the running average (per blocks of 50 words) of the number of corrections as a function

of the number of words verified.

1118 errors in 2838 valid words.
12In the previous experimenttsetup bootstrap - tsetup manual < 60 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 114

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

• On-line conversion speed:The average time taken for a synchronisation event was50.15 sec-

onds (σ = 7.72s). This value increased gradually from35s during the initial cycle, to56s in

the final cycle.

• Quality and cost of verification mechanisms:The computational times required for both verifi-

cation mechanisms are included in the verification times. Noadditional processing is required.

• Validity of base data:valid ratio = 94%.

6.5.4 SYSTEM ANALYSIS

Based on our observations during this experiment, we can assign approximate values to the different

costs and efficiencies involved during bootstrapping of an Afrikaans dictionary up to 10,000 words.

We list these values in Table 6.3.

Table 6.3:Typical observed values for various bootstrapping parameters.

Bootstrapping parameter Estimated value
Training cost ttrain < 120 min
Verification cost for single words, with x
corrections required for a word in state s:

tverify(single,s) (2 + 4.5x) sec

Verification cost during error detection
(per 1000 words):

tverify(error−det) < 10 min

Verification cost during error detection
(per 400 words):

tverify(error−det) < 3 min

Task difficulty - bootstrapping, no error
detection

error ratebootstrap 0% − 1%

Task difficulty - bootstrapping, error de-
tection

error ratebootstrap 0% − 0.5%

Task difficulty - manual error ratemanual 0 − 0.5%

Manual development speed tdevelop 19.2 − 30 sec
Initial set-up cost tsetup bootstrap - tsetup manual < 60 min

We use eq. 3.4 to analyse our results, and for the single word verifier we combine the values

of tauto(s,single) with tverify(s,single) as a single measurement, as discussed in the previous section.

We also combine the value oftidle with tverify(error−det), as these two events both occur during

synchronisation. We then obtain the following expected cost of N cycles of bootstrapping:

E[tbootstrap(N)] = E[tsetup bootstrap] + E[ttrain] + E[titerate(N)] (6.1)

E[titerate(N)] =

N−1
∑

x=1

(

∑

s∈status

(E(tverify(s, single)).E(inc n(s, x))

)

+

N−1
∑

x=1

(

tidle(inc n(valid, x + 1)) + tverify(error−det)(inc n(valid, x + 1))

)

(6.2)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 115

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

We assume an update event after every 100 errors (approximately 400 words verified.) Astidle

is dominated bytverify(error−det) during the initial 10,000 words, we keep this value constantas the

number of words in the training dictionary increases13, and estimate it at:

tverify(error−det)(400) + tidle(400) = 180 seconds (6.3)

From Table 6.3 we estimateE(tverify(s, single)) as t0 + tex seconds, wherex is an in-

dication of the number of corrections required,t0 = 2 and te = 4.5. In order to estimate
∑N−1

x=1 E(tverify(s, single))E(inc n(s, x)) for different states (different numbers of corrections per

word) we smooth the number of errors across the training data– as if a word could only have one

error – and fit an exponential curve through the accuracy measurements depicted in Fig. 6.11. That

is, we assume the probability that the system will predict anerror when the training dictionary is of

sized is given bype(d), where:

pe(d) = P0e
−

d
k

i.e. log pe(d) = log P0 −
d

k
(6.4)

andP0 andk are parameters to be estimated. The time required ford correctionsT (d) (excluding

synchronisation events) is then given by:

T (d) =

d−1
∑

i=0

(t0 + teP0)

= dt0 + teP0

d−1
∑

i=0

e−
d
k

= dt0 + teP0
1 − e−

d
k

1 − e−
1

k

(6.5)

For the specific data depicted in Fig. 6.11 we obtain the estimates:

logP0 = −1.274

−
1

k
= −3.49 ∗ 10−5 (6.6)

We can combine eq. 6.2 and eq. 6.5 in order to estimate the value of E[titerate(d/400)] for

various values of total dictionary sized:

E[titerate(d/400)] = dt0 + teP0
1 − e−

d
k

1 − e−
1

d

+
d

400
∗ (tverify(error−det)(400) + tidle(400)) (6.7)

13This value is influenced by the number of words corrected per cycle – a number that remains constant per cycle.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 116

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ev

el
op

m
en

t t
im

e
in

 h
ou

rs

Number of words in training dictionary

bootstrapping
manual (19.2s)
manual (30.0s)

Figure 6.12:Time estimates for creating different sized dictionaries.Manual development is illus-
trated for values oftdevelop(1) of 19.2 and30 seconds, respectively.

In Fig. 6.12 we plot eq. 6.7 for different values ofd, using the estimates from eq. 6.3 and eq.

6.6. On the same graph we plot the cost of manual dictionary development (again excluding setup

cost) using eq. 3.5 and estimates fortdevelop(d) of 19.2 and30 seconds, both optimistic estimates.

For these estimates we assume that the same base data (or at least data with a similiar validity ratio)

is used for both approaches. We also assume that the error rates for the bootstrapping system with

error detection and the manual process are approximately equal. In Fig. 6.13 we plot the efficiency

estimates of the bootstrapping process as compared to a manual dictionary development process for

the same values as Fig. 6.12.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
ffi

ci
en

cy
 r

at
io

Number of words in training dictionary

19.2s
30.0s

Figure 6.13:Estimates of the efficiency of bootstrapping, as compared with manual development for
values oftdevelop(1) of 19.2 and30 seconds, respectively.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 117

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.6 BUILDING SYSTEMS THAT UTILISE BOOTSTRAPPED DICTIONARI ES

In the work up to this point we have verified the bootstrappingprocess through (1) simulated ex-

periments in which an actual pronunciation dictionary existed, and was utilised as a pseudo-verifier,

and (2) by creating multiple dictionaries using different human verifiers and comparing the results.

In this section we describe a number of speech technology systems that were developed using the

bootstrapped dictionaries.

6.6.1 ISIZULU TEXT-TO-SPEECH

The first system developed using a bootstrapped dictionary was a general purpose text-to-speech

(TTS) system developed in the Festival [74] framework as part of the Local Language Speech Tech-

nology Initiative (LLSTI) [75], a collaborative project that aims to support the development of speech

technology systems in local languages. A small grapheme-to-phoneme rule set was generated using

the bootstrapping system and converted to the Festival letter-to-sound format. (TheDictionaryMaker

prototype can automatically export a developed dictionaryas either a Festival-formatted lexicon or

Festival-formatted letter-to-sound rules.)

The TTS system used theMultisynapproach to synthesis and is described in more detail in [76]

and [77]. The completed system was evaluated for intelligibility and naturalness by both technologi-

cally sophisticated and technologically unsophisticatedusers, as described in [78].

Table 6.4:Parameters of the isiZulu text-to-speech dictionary

Number of graphemes in orthography 26
Number of phonemes in phoneme set 50
Number of words in dictionary 855
Number of derived rules (DEC-min) 84

6.6.2 SEPEDI SPEECH RECOGNITION

During 2004, the University of Limpopo collected a first corpus of Sepedi (Northern Sotho) speech

with the purpose of creating an automatic speech recognition (ASR) system, and required a pronun-

ciation dictionary in order to proceed with further development. In collaboration with partners from

the University of Limpopo, a bootstrapped dictionary was created. Again a fairly small number of

words were bootstrapped in order to develop a concise set of letter-to-sound rules. These were then

used to develop a speech recognition system using the HTK [79] framework, as described in [80].

6.6.3 AFRIKAANS TEXT-TO-SPEECH

Much of the initial experimentation with the bootstrappingapproach was performed for Afrikaans,

as described in previous sections of this thesis. The Afrikaans dictionary was used to develop a

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 118

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

Table 6.5:Parameters of the Sepedi speech recognition dictionary

Number of graphemes in orthography 27
Number of phonemes in phoneme set 41
Number of words in dictionary 2827
Number of derived rules (DEC-min) 90

Afrikaans TTS system for the South African Centre for PublicService Innovation (CPSI), who are

using the voice to pilot a system that will allow citizens to interact with a governmental service that

deals with passport applications via a number of interaction mechanisms not previously available.

One of the mechanisms tested includes the use of cellphone based Short Message Service (SMS) to

communicate, and converting such SMSs to voice when a user prefers a voice-based service – mainly

in order to ensure accessibility to all citizens, includingilliterate system users, and system users with

specific disabilities. This system is currently being piloted.

Table 6.6:Parameters of the Afrikaans text-to-speech dictionary

Number of graphemes in orthography 40
Number of phonemes in phoneme set 43
Number of words in dictionary 7782
Number of derived rules (Default&Refine) 1471

6.6.4 OTHER SYSTEMS

The CPSI pilot project described above aims to provide services in four languages: English,

Afrikaans, isiZulu and Sepedi; a Sepedi voice similar to those described in Sections 6.6.1 and 6.6.3

was therefore developed, using the dictionary built as described in Section 6.6.2. Further development

on the Sepedi voice is currently under way, specifically aimed at improving the intonation contours

of the current voice.

Furthermore, an initial isiZulu ASR system and an AfrikaansASR system were developed, with

further optimisation currently in progress. A first Setswana dictionary was developed, and will be

refined and integrated in similar systems as part of the OpenPhone [81] project, a project sponsored by

the International Development Research Centre (IDRC) and the Open Society Initiative (OSI), which

aims to make telephony services more accessible to information service providers in the developing

world.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 119

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.7 CONCLUSION

In this section we demonstrated the practical application of the bootstrapping system, evaluating

the efficiency of the approach from both a human factors and a machine learning perspective. We

found that, even with optimistic estimates for the time required to develop a single instance of a

pronunciation dictionary manually, the bootstrapping process provides a significant cost saving, as

illustrated in Fig. 6.12. We also described a number of speech technology systems developed using

newly bootstrapped dictionaries. In the next chapter (Chapter 7) we discuss the implications of our

results.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 120

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SEVEN

CONCLUSION

7.1 INTRODUCTION

As initially discussed in Section 1.4, the aim of this thesiswas two-fold: (a) to obtain a mechanism

for pronunciation modelling that is well suited to bootstrapping; and (b) to analyse the bootstrapping

of pronunciation models from a theoretical and a practical perspective, as a case study in the boot-

strapping of HLT resources. In this chapter we evaluate the extent in which we were able to reach

these goals. We summarise the contribution of this thesis, and discuss future work.

7.2 SUMMARY OF CONTRIBUTION

This thesis was able to demonstrate conclusively that the proposed bootstrapping approach is a prac-

tical and cost-efficient way to develop pronunciation dictionaries in new languages. The specific

contributions made in the course of this research are the following:

• A demonstration of a fully interactive (on-line) bootstrapping approach to the development of

pronunciation dictionaries, in Section 6.5 [82].

• Development and evaluation of a practical system that allows users (without specialist linguis-

tic expertise) to develop such pronunciation dictionaries, and an analysis of the factors that

influence this process, in Section 6.3 [83,84].

• The development ofDefault&Refine, a new algorithm for grapheme-to-phoneme prediction,

in Section 4.6 [85]. This algorithm has a number of desirablefeatures, including language

independence, rapid generalisation from small data sets, good asymptotic accuracy, robustness

to human error, and the production of compact rule sets.

121

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SEVEN CONCLUSION

• A number of algorithmic refinements to ensure a practical bootstrapping system, including

optimised alignment and an incremental (on-line learning)version of the g-to-p algorithm used

during bootstrapping, in Sections 4.4.2 and 4.6.4 [84,86].

• The development and evaluation of a novel error-detection tool that can assist in the verifi-

cation of pronunciation dictionaries – both during bootstrapping and in support of alternative

dictionary development approaches, in Section 6.4 [86].

• Definition of a conceptual framework that can be used to describe the bootstrapping process in

general, and the bootstrapping of pronunciation dictionaries in particular, in Chapter 3.

• Development of usable pronunciation dictionaries in a number of South African languages

(isiZulu, Sepedi, Afrikaans and Setswana), and the integration of these dictionaries in actual

speech technology (speech recognition and speech synthesis) systems, in Section 6.6.

• The development ofminimal representation graphs: a theoretical framework that supports the

rigorous analysis of instance-based learning of rewrite rule sets, in Section 5. This framework

aims to derive the smallest possible rule set describing a given set of discrete training data.

7.3 FURTHER APPLICATION AND FUTURE WORK

The current thesis forms the basis for three main directionsof future research, related to (1) the

process of bootstrapping pronunciation dictionaries, (2)grapheme-to-phoneme conversion, and (3)

further refinement of theminimal representation graphframework.

The current bootstrapping process provides an effective platform for the development of pronun-

ciation dictionaries but further gains are likely to arise from future improvements. Specific issues that

we would like to address in future include:

• Active learning during bootstrapping: determining optimal ways in which to choose the next

instance or set of instances to utilise during bootstrapping.

• An evaluation of the implications of different initialisation mechanisms, for example when a

limited rule set is known prior to dictionary creation, or when a pronunciation dictionary exists

in a phonologically similar language.

• Further analysis of the ways in which algorithmic requirements change for different phases of

the bootstrapping process.

• Practical support for phone set manipulation during bootstrapping, including re-bootstrapping

of appropriate sections of the dictionary after phone set manipulation.

• Support for the bootstrapping of other linguistic entitiessuch as intonation, stress or hyphen-

ation.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 122

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SEVEN CONCLUSION

G-to-p conversion algorithms in general have been well studied, especially with regard to asymp-

totic accuracy and computational complexity. However, little work has been published to date in

evaluating and improving initial learning efficiency (accuracy when trained on very small data sets)

and robustness to noise (transcription errors occurring inthe training dictionaries) – two aspects that

are of importance during bootstrapping. We are interested whether further improvements may be

obtained from the following sources:

• Adapting the algorithm (or its parameters) according to thespecific grapheme extracted. As all

rule extraction and rule application occurs on a per-grapheme basis, it should be possible to in-

troduce further algorithmic refinements suitable to the characteristics of the specific grapheme

being considered. We would like to analyse the current graphemic behaviour in further detail.

• Utilising this algorithm within a framework that includes additional data sources (such as part-

of-speech tags).

• Learning from and predicting multiple pronunciations (incorporating word-level pronunciation

variants).

• Incorporating class-based learning in the current algorithm: combining graphemes according

to predictive behaviour in such a way that learning is accelerated.

• Investigating the threshold for valuable exceptions. In Section 6.4 it was clearly shown that the

effect of errors in the training data tend to accumulate in the last10 − 20% of rules extracted.

For Default&Refinespecifically (and for noisy training sets) all exceptions may not contribute

to predictive accuracy.

Some of the above questions related to grapheme-to-phonemeconversion may be better analysed

in terms of theminimal representation graphframework. The current framework provides a theoreti-

cal basis for understanding the task of instance-based learning of rewrite rules. Further work related

to this framework specifically include:

• Further development of the set of allowed operators utilising the framework, as well as a rigor-

ous analysis of the legality and optimality of the set of operators.

• The application of established techniques related to the solution of constraint satisfaction prob-

lem, in order to improve the computational tractability of the current graph solution process.

This will be required before a rigorous evaluation of the extracted rule sets on larger training

dictionaries will become possible.

Additionally, theDefault&Refinealgorithm provides an interesting perspective on the grapheme-

to-phoneme conversion task, viewing pronunciation as a hierarchy of regularity – with systematic

instances and exceptions occuring in a continuum of regularity. We are interested in applying the

same algorithm to other natural language processing tasks that exhibit similar behaviour.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 123

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

CHAPTER SEVEN CONCLUSION

7.4 CONCLUSION

This thesis has developed a number of tools in support of the bootstrapping process, and has demon-

strated the value of this approach for the practical and cost-effective development of pronunciation

dictionaries. Human language technologies have great potential value in the developing world, and

bootstrapping will undoubtedly play a significant role in accelerating the development of such tech-

nologies. We therefore hope that theoretical interest and practical importance will continue to drive

developments in this area.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 124

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX A

THE ARPABET PHONE SET

The ARPAbet phone set was developed as part of the ARPA SpeechUnderstanding project (1971-

1976), and is included with the TIMIT speech corpus [87].

Table A.1:ARPAbet phone set [87]
no example no example no example
1 iy beat 22 r red 43 zh measure
2 ih bit 23 y yet 44 sh shoe
3 eh bet 24 w wet 45 v very
4 ae bat 25 m mom 46 f fief
5 ix roses 26 em buttom 47 dh they
6 ax the 27 n non 48 th thief
7 ah butt 28 nx flapped n 49 hh hay
8 uw boot 29 en button 50 hv Leheigh
9 uh book 30 ng sing 51 dcl d closure
10 ao about 31 eng Washington 52 bcl b closure
11 aa cot 32 ch church 53 gcl g closure
12 er bird 33 jh judge 54 tcl t closure
13 axr diner 34 b bob 55 pcl p closure
14 ey bait 35 p pop 56 kcl k closure
15 ay bite 36 d dad 57 q glottal stop
16 oy boy 37 dx butter 58 epi epinthetic

closure
17 aw bought 38 t tot 59 qcl d closure
18 ow boat 39 g gag 60 h# begin silence
19 ux beauty 40 k kick 61 #h end silence
20 l led 41 z zoo 62 pau between silence
21 el bottle 42 s sis

125

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B

SOME THEOREMS REGARDINGM INIMAL

REPRESENTATIONGRAPHS

This appendix contains a number of proofs supporting the arguments in Chapter 5.

B.1 WORD SETS

Statement 1 (contextimplies matchwords)

∀r, s ∈ Z ′, Z ′ ⊆ Zcombined :

context(r) ⊃ context(s) =⇒

matchwords(r) ⊆ matchwords(s). (B.1)

Consider any wordw ∈ matchwords(r), thenmatch(w, r) = 1 (eq. 5.34), and thencontext(w) ⊇

context(r) (eq. 5.11). Now alsocontext(w) ⊇ context(r) ⊃ context(s), somatch(w, s) = 1

(eq. 5.34), and thenw ∈ matchwords(s). Since this holds for allw ∈ matchwords(r),

matchwords(r) ⊆ matchwords(s).

Statement 2 (subsettransitive)

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

path(subset(Z ′, Ze, oset(Z
′), v, r, s)) = 1 =⇒

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1. (B.2)

126

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

If path(subset(Z ′, Ze, oset(Z
′), v, r, s)) = 1, then there existsn ≥ 2 rules t1 = r, t2, ..., tn =

s such that for eachti, ti+1 pair it holds thatsubset(Z ′, Ze, oset(Z
′), v, ti, ti+1) = 1. Then

possible words(Z ′, Ze, oset(Z
′), v, ti = r) ⊂ ... ⊂ possible words(Z ′, Ze, oset(Z

′), v, ti) ⊂

possible words(Z ′, Ze, oset(Z
′), v, ti+1) ⊂ ... ⊂ possible words(Z ′, Ze, oset(Z

′), v, tn = s),

and thensubset(Z ′, Ze, oset(Z
′), v, r, s) = 1 (from eq, 5.51).

Statement 3 (possiblewords rulewords)

∀r, s ∈ Ze, Ze ⊆ Zcombined,∀oset(Ze) ⊆ allset(Ze) :

w ∈ possible words(Ze, Ze, oset(Ze), r, r) ⇐⇒

w ∈ rulewords(Ze, oset(Ze), r). (B.3)

If w ∈ possible words(Ze, Ze, oset(Ze), r, r), thenmatch(w, r) = 1 and there exists no rules ∈

Ze such thatmatch(w, s) = 1 and (s, r) ∈ oset(Ze) (eq. 5.36). Thenr ∈ winningrule(Z ′,

oset(Z ′), w) (eq. 5.12), and thenw ∈ rulewords(Ze, oset(Ze), r) (eq. 5.35); and vice versa.

Statement 4 (wordsrelations)

∀r ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

∀v ∈ Ze, v = r or (v, r) ∈ oset(Z ′) :

rulewords(Z ′, oset(Z ′), r) ⊆

possible words(Z ′, Ze, oset(Z
′), v, r) ⊆

matchwords(r). (B.4)

If w ∈ rulewords(Z ′, oset(Z ′), r), thenmatch(w, r) = 1 and there exists nos ∈ Z ′ such that

match(w, s) = 1 and(s, r) ∈ oset(Z ′) (eq. 5.35 and eq. 5.12). Then, sinceZe ⊆ Z ′, there also

exists no suchs ∈ Ze, and thenw ∈ possible words(Z ′, Ze, oset(Z
′), v, r) with v = r the only

valid value forv (eq. 5.36). For anyw′ in possible words(Z ′, Ze, oset(Z
′), v, r) it also holds by

definition thatmatch(w′, r) = 1 (eq. 5.36), sow′ in matchwords(r) (eq. 5.34).

Statement 5 (complementdirectpath)

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ allset(Z ′) :

complement(Z ′, Ze, oset(Z
′), r, s) = 1 =⇒

mincomp(Z ′, Ze, oset(Z
′), r, s)) = 1

or path(containpat(Z ′, r, s)) = ±1. (B.5)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 127

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Let r, s ∈ Z ′ be any two rules such thatcomplement(Z ′, Ze, oset(Z
′), r, s) = 1; and consider all the

options for acontainpat path betweenr ands. If path(containpat(Z ′, r, s)) = ±1 the statement

holds. If neitherpath(containpat(Z ′, r, s)) = 1 nor path(containpat(Z ′, r, s)) = −1, then, since

complement(Z ′, Ze, oset(Z
′), r, s) = 1, it follows that mincomp(Z ′, Ze, oset(Z

′), r, s) = 1 by

definition (eq. 5.49).

Statement 6 (rulewordssub rulewords)

∀r ∈ Z ′, Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ oset′(Z ′) ⊆ allset(Z ′) :

rulewords(Z ′, oset′(Z ′), r) ⊆ rulewords(Z ′, oset(Z ′), r). (B.6)

Let w be any word such thatw ∈ rulewords(Z ′, oset′(Z ′), r). By definition (eq 5.35 and eq.

5.12) it follows thatmatch(w, r) = 1 and there exists nos such thatmatch(w, s) = 1 and

(s, r) ∈ oset′(Z ′). Now oset(Z ′) ⊆ oset′(Z ′), which means thatoset(Z ′) has fewer restric-

tions thanoset′(Z ′) and if (s, r) 6∈ oset′(Z ′) for an s as above, then also(s, r) 6∈ oset(Z ′), and

thenw ∈ rulewords(Z ′, oset(Z ′), r). Since this holds for anyw ∈ rulewords(Z ′, oset′(Z ′), r),

rulewords(Z ′, oset′(Z ′), r) ⊆ rulewords(Z ′, oset(Z ′), r).

Statement 7 (rulewordsredundant)

∀r ∈ Z ′, Z ′ ⊆ Zcombined,∀oset′(Z ′) ⊆ allset(Z ′) :

∃oset(Z ′) ⊆ oset′(Z ′) : rulewords(Z ′, oset(Z ′), r) = φ ⇐⇒

r is a redundant rule inZ ′, oset′(Z ′). (B.7)

For any oset′(Z ′) ⊇ oset(Z ′), it follows directly from statement 6 that ifrulewords(Z ′,

oset(Z ′), r) = φ also rulewords(Z ′, oset′(Z ′), r) = φ (since rulewords(Z ′, oset′(Z ′), r) ⊆

rulewords(Z ′, oset′(Z ′), r)). In all orderings that includeoset(Z ′), rule r will never be invoked

to predict a word. Also, ifr is a redundant rule inoset′(Z ′) thenrulewords(Z ′, oset′(Z ′), r) = φ.

For at leastoset(Z ′) = oset′(Z ′), but possibly also for other sets of orderings, it then holdsthat

rulewords(Z ′, oset(Z ′), r) = φ.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 128

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

B.2 CHARACTERISTICS OF ZM

Statement 8 (possiblyminimal single)

∀r ∈ Zm, Zm ⊆ Zcombined :

possibly minimal(Zm) = 1 =⇒ r ∈ Zsingle (B.8)

Consider anyr ∈ Zm ⊆ Zcombined. Thenr ∈ Zconflict−resolved ∪ Zno−conflict ∪ Zconflict−combined

(eq. 5.21). Sincepossibly minimal(Zm) = 1, there exists an orderingoset(Zm) such that

minimal(Zm, oset(Zm)) = 1 (eq. 5.26). According to this ordering, ruler will be invoked by at

least one wordw in TD, otherwiser would be a redundant rule in aminimal rule set, which is im-

possible. Ifr ∈ Zconflict−combined, r would predictw with at least two different outcomes depending

on which of the specific alternative outcomes are selected (eq. 5.19). Since this is not possible in an

accurate set of rule orderings,minimal(Zm, oset(Zm)) 6= 1, and then it is not possible to find the

requiredoset(Zm), andZm cannot be apossibly minimal rule set. Forpossibly minimal(Zm) =

1 to hold,r 6∈ Zconflict−combined, and thenr ∈ Zconflict−resolved ∪ Zno−conflict, which is the same

as stating thatr ∈ Zsingle (eq. 5.22). Note that anypossibly minimal rule setZm can therefore be

assumed to be a subset ofZsingle.

Statement 9 (rulewordseq invalid)

∀r, s ∈ Zm, Zm ⊆ Zsingle, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) : valid(oset(Zm)) = 1 =⇒

rulewords(Zm, oset(Zm), r) 6= rulewords(Zm, oset(Zm), s). (B.9)

Consider any rulesr and s ordered according to thevalid orderingoset(Zm), and letoset′(Zm)

be the final ordering used during word prediction, whereoset′(Zm) ⊇ oset(Zm). Irrespective of

whether there is arule order(.) relation between rulesr ands or not, or the existence of any ad-

ditional rules; in the final rule numbering assignment basedon oset′(Zm), eitherrulenum(r) <

rulenum(s) or rulenum(s) < rulenum(r). Chooser to be the rule such thatrulenum(r) <

rulenum(s), and letrulewords(Zm, oset(Zm), r) = rulewords(Zm, oset(Zm), s). Let w be any

word pattern inTD such thatw ∈ rulewords(Zm, oset′(Zm), s). At least one such a word pat-

tern must exist, otherwise (from statement 7)s is a redundant rule in apossibly minimal rule

set. Since, from statement 6,rulewords(Zm, oset′(Zm), s) ⊆ rulewords(Zm, oset(Zm), s) =

rulewords(Zm, oset(Zm), r), it follows that match(w, r) = 1 = match(w, s) (eq. 5.35). For

any additionalt such thatmatch(w, t) = 1, one of the following situations can occur: (1) no

such t exists, (2)(t, r) 6∈ oset′(Zm), (t, s) 6∈ oset′(Zm), (3) {(t, r), (t, s)} ∈ oset′(Zm), (4)

(t, r) ∈ oset′(Zm)), (t, s) 6∈ oset(Zm), or (5) (t, r) 6∈ oset(Zm), (t, s) ∈ oset(Zm). If (1) or

(2) occurs, thenw ∈ rulewords(Zm, oset′(Zm), r) andw ∈ rulewords(Zm, oset′(Zm), s) (eq.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 129

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

5.35), but sincerulenum(r) < rulenum(s), rule s will never be invoked to predict word pattern

w. If (3) occurs, then rulet will always be invoked to predict word patternw, and neither ruler

or s will be invoked for this purpose. If (4) occurs, then eithert or s can be invoked, but since

rulenum(t) < rulenum(r) < rulenum(s) only t will be invoked. If (5) occurs, either rulet or r

can be invoked, but again rules will not be invoked to predict word patternw. Rules will therefore

never be invoked to predict word patternw, irrespective of the option that occurs. Since this holds

for all w ∈ rulewords(Zm, oset′(Zm), s), rule s is a redundant rule in apossibly minimal rule

set, sovalid(oset′(Zm)) 6= 1. But oset′(Zm) was not restricted in any other way than by requiring

thatoset′(Zm) ⊇ oset(Zm) whererulewords(Zm, oset(Zm), r) = rulewords(Zm, oset(Zm), s).

It is therefore not possible thatrulewords(Zm, oset(Zm), r) = rulewords(Zm, oset(Zm), s).

If rulewords(Zm, oset(Zm), r) 6= rulewords(Zm, oset(Zm), s) then it is possible that a word

w′ ∈ rulewords(Zm, oset(Zm), s) exists such thatmatch(w′, s) = 1,match(w′, r) 6= 1, and that

s can be invoked to predictw′ irrespective of whetherrulenum(r) < rulenum(s); and a similar

contradiction does not occur. Exactly the same argument holds if s is chosen to be the rule such that

rulenum(s) < rulenum(r).

Statement 10 (poswordsredundant)

∀r, s ∈ Zm, r 6= s, Zm ⊆ Zcombined,∀oset(Zm) ⊆ allset(Zm) :

minimal(Zm, osetm(Zm)) = 1 =⇒

∀s ∈ Zm : possible words(Zm, Zm, osetm(Zm), r, r) 6≡

possible words(Zm, Zm, osetm(Zm), r, s). (B.10)

From statement 3 and 7 it follows that ifminimal(Zm, osetm(Zm)) = 1, then

possible words(Zm, Zm, osetm(Zm), r, r) = rulewords(Zm, osetm(Zm), r) 6= φ . If

(r, s) 6∈ osetm(Zm), then (sincer 6= s) possible words(Zm, Zm, osetm(Zm), r, s) = φ

(eq. 5.36), and then the statement holds. Now consider the situation if (r, s) ∈ osetm(Zm):

possible words(Zm, Zm, osetm(Zm), r, r) ≡ possible words(Zm, Zm, osetm(Zm), r, s)

implies that for each word patternw ∈ possible words(Zm, Zm, osetm(Zm), r, s) also

match(w, r) = 1. Then, if (r, s) ∈ osetm(Zm), possible words(Zm, Zm, osetm(Zm), s, s) = φ

(eq. 5.36). But thenrulewords(Zm, osetm(Zm), s) = φ (statement 3) and thens

becomes a redundant rule (statement 7), which is impossiblesince s ∈ Zm. Then

possible words(Zm, Zm, osetm(Zm), r, r) 6≡ possible words(Zm, Zm, osetm(Zm), r, s), and

the statement again holds.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 130

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

B.3 ZM AS A SUBSET OFZCOMBINED

Statement 11 (poswordssub poswords)

∀r ∈ ZB, v ∈ Zb,∀Za ⊆ Zb ⊆ ZB ⊆ ZA ⊆ Zcombined,

∀osetA(ZA) ⊆ allset(ZA),∀osetB(ZB) ⊆ allset(ZB),

order subset(osetA(ZA), osetB(ZB)) = 1 :

possible words(ZB , Zb, osetB(ZB), v, r) ⊆

possible words(ZA, Za, osetA(ZA), v, r). (B.11)

Let w be any word such thatw ∈ possible words(ZB , Zb, osetB(ZB), v, r). By definition (eq

5.36) it follows thatmatch(w, r) = 1 and that there exists nos ∈ Zb such thatmatch(w, s) = 1

and {(s, r), (s, v)} ∈ osetB(ZB). Now order subset(osetA(ZA), osetB(ZB)) = 1, which

means thatosetA(ZA) has fewer restrictions thanosetB(ZB) and, if for no such match-

ing s ∈ Zb it holds that (s, r) ∈ osetB(ZB), there also exists no suchs ∈ Zb such

that {(s, r), (s, v)} ∈ osetA(ZA) (eq. 5.27). And sinceZa ⊆ Zb, there also exists

no such s ∈ Za, and then w ∈ possible words(ZA, Za, osetA(ZA), v, r) (eq. 5.36).

Since this holds for all w in possible words(ZB , Zb, osetB(ZB), v, r), it follows that

possible words(ZB , Zb, osetB(ZB), v, r) ⊆ possible words(ZA, Za, osetA(ZA), v, r).

Statement 12 (sharedwordssub sharedwords)

∀r ∈ ZB, v ∈ Zb,∀Za ⊆ Zb ⊆ ZB ⊆ ZA ⊆ Zcombined,

∀osetA(ZA) ⊆ allset(ZA),∀osetB(ZB) ⊆ allset(ZB),

order subset(osetA(ZA), osetB(ZB)) = 1 :

shared words(ZB , Zb, osetB(ZB), v, r, s) ⊆

shared words(ZA, Za, osetA(ZA), v, r, s). (B.12)

Let w be any word pattern such thatw ∈ shared words(ZB , Zb, osetB(ZB), v, r, s). Then

w ∈ possible words(ZB , Zb, osetB(ZB), v, r) andw ∈ possible words(ZB , Zb, osetB(ZB), v, s)

(eq. 5.42). Sinceorder subset(osetA(ZA), osetB(ZB)) = 1, it follows from statement 11 that also

w ∈ possible words(ZA, Za, osetA(ZA), v, r) andw ∈ possible words(ZA, Za, osetA(ZA), v, s),

and thenw ∈ shared words(ZA, Za, osetA(ZA), v, r, s) (eq. 5.42). As this holds for all

w ∈ shared words(ZB , Zb, osetB(ZB), v, r, s), shared words(ZB , Zb, osetB(ZB), v, r, s) ⊆

shared words(ZA, Za, osetA(ZA), v, r, s).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 131

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Statement 13 (poswordssub poswords later v)

∀r ∈ Z ′, Za ⊆ Zb ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

∀v ∈ Za, v = r or (v, r) ∈ oset(Z ′),

∀t ∈ Zb, t = v or {(v, t), (t, r)} ∈ oset′(Z ′) :

possible words(Z ′, Zb, oset(Z
′), t, r) ⊆

possible words(Z ′, Za, oset(Z
′), v, r). (B.13)

Consider any word patternw ∈ possible words(Z ′, Zb, oset(Z
′), t, r). Thenmatch(w, r) = 1

and there exists noq ∈ Zb such thatmatch(w, q) = 1 and q = t or (q, t) ∈ oset(Z ′). Since

t = v or (v, t) ∈ oset(Z ′), there therefore also exists no such matchingq ∈ Zb such thatq = v

or (q, v) ∈ oset(Z ′). SinceZa ⊆ Zb, there also exists no suchq ∈ Za. By definition then

w ∈ possible words(Z ′, Za, oset(Z
′), v, r) (eq. 5.36). Since this holds for all word patternsw ∈

possible words(Z ′, Zb, oset(Z
′), t, r), it follows that possible words(Z ′, Za, oset(Z

′), t, r) ⊆

possible words(Z ′, Zb, oset
′(Z ′), v, r).

Statement 14 (poswordssub poswords later all)

∀r ∈ ZB, v ∈ Zb,∀Za ⊆ Zb ⊆ ZB ⊆ ZA ⊆ Zcombined,

∀osetA(ZA) ⊆ allset(ZA),∀osetB(ZB) ⊆ allset(ZB),

order subset(osetA(ZA), osetB(ZB)) = 1,

∀v ∈ Za, v = r or (v, r) ∈ oset(Z ′),

∀t ∈ Zb, t = v or {(v, t), (t, r)} ∈ oset′(Z ′) :

possible words(ZB , Zb, osetB(ZB), t, r) ⊆

possible words(ZA, Za, osetA(ZA), v, r). (B.14)

Sincepossible words(ZB , Zb, osetB(ZB), t, r) ⊆ possible words(ZA, Za, osetA(ZA), t, r) (state-

ment 11), andpossible words(ZA, Za, osetA(ZA), t, r) ⊆ possible words(ZA, Za, osetA(ZA), v, r)

(statement 13, choosingZa ≡ Zb), it follows that possible words(ZB , Zb, osetB(ZB), t, r) ⊆

possible words(ZA, Za, osetA(ZA), v, r).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 132

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Statement 15 (relationssupersetminset)

∀r, s, v ∈ Zm, Ze ⊆ Zm ⊆ Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ allset(Z ′), osetm(Zm) ⊆ allset(Zm),

allowed state(Z ′, Ze, oset(Z
′)) = 1

∀(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)) :

containpat(Z ′, r, s) = 1 =⇒ containpat(Zm, r, s) = 1. (B.15)

containpat(Z ′, r, s) = −1 =⇒ containpat(Zm, r, s) = −1. (B.16)

path(containpat(Zm, r, s)) = 1 ⇐⇒ path(containpat(Z ′, r, s)) = 1. (B.17)

complement(Zm, Zm, oset(Zm), v, r, s) = 1 =⇒

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1. (B.18)

mincomp(Zm, Zm, oset(Zm), v, r, s) = 1 =⇒

mincomp(Z ′, Ze, oset(Z
′), v, r, s) = 1. (B.19)

Consider each relationship separately, and note that this relates specifically tor, s, v ∈ Zm:

• Eq. B.15: If containpat(Z ′, r, s) = 1, thencontext(r) ⊃ context(s) and not ∈ Z ′ exists

such thatcontext(r) ⊃ context(t) ⊃ context(s) (eq. 5.47). SinceZe ⊆ Zm ⊆ Z ′, no sucht

can exist inZm either, and thencontainpat(Zm, r, s) = 1.

• Eq. B.16: If containpat(Z ′, r, s) = −1, then containpat(Z ′, s, r) = 1. Then

containpat(Zm, s, r) = 1 (from eq. B.15), and thencontainpat(Zm, r, s) = −1.

• Eq. B.17: Ifpath(containpat(Zm, r, s)) = 1, thencontext(r) ⊃ context(s) (eq. 5.48) and

thenpath(containpat(Z ′, r, s)) = 1; and vice versa.

• Eq. B.18: If complement(Zm, Zm, oset(Zm), v, r, s) = 1 then there exists a rulev ∈ Zm

and wordw such thatw ∈ shared words(Zm, Zm, oset(Zm), v, r, s) (eq 5.43). Since

order subset(oset(Z ′), oset(Zm)) = 1 and Ze ⊆ Zm ⊆ Z ′ by definition (eq. 5.29), it

follows from statement 12 that alsow ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s), and then

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1 (eq 5.43).

• Eq. B.19: Ifmincomp(Zm, Zm, oset(Zm), v, r, s) = 1 thencomplement(Zm, Zm, oset(Zm),

v, r, s) = 1 and path(containpat(Zm, r, s)) = 0 (eq. 5.49). Then also

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1 (eq. B.18) andpath(containpat(Z ′, r, s)) = 0

(eq. B.17), and thenmincomp(Z ′, Ze, oset(Z
′), r, s) = 1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 133

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

B.4 RULE ORDERING IN ZM

Statement 16 (redimplies acc)

∀r, s ∈ Zm, Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm), valid(oset(Zm)) = 1 :

orderred(Zm, oset(Zm), r, s) = 1 =⇒ orderacc(Zm, oset(Zm), r, s) = 1. (B.20)

If orderred(Zm, oset(Zm), r, s) = 1 then requirings to occur beforer causes some rulet to become

redundant given any state(Zm, Zm, oset′(Zm)), whereoset′(Zm) ⊇ oset(Zm) ∪ (s, r) (eq. 5.55).

If it were possible that for any suchoset′(Zm) it could hold thataccurate(Zm, oset′(Zm)) = 1,

then rulet could be removed from the rule set and the new rule set would still be accurate. However,

then the new rule set would have fewer rules thanZm, which is impossible, given thatZm is a

possibly minimal rule set (eq. 5.26 and eq. 5.25). This means that if bothr ands are inZm and

orderred(Zm, oset(Zm), r, s) = 1, then alsoorderacc(Zm, oset(Zm), r, s) = 1.

Statement 17 (orderimplies acc)

∀r, s ∈ Zm, Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm), valid(oset(Zm)) = 1 :

order(Zm, oset(Zm), r, s) = 1 =⇒ orderacc(Zm, oset(Zm), r, s) = 1. (B.21)

This follows directly from statement 16 and eq. 5.56.

Statement 18 (directorder implies complement)

∀r, s ∈ Zm, Zm,⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm), valid(oset(Zm)) = 1 :

direct order(Zm, oset(Zm), r, s)) = 1 =⇒

∀v ∈ Zm, (v, r), (v, s) ∈ oset(Zm) : complement(Zm, Zm, oset(Zm), v, r, s) = 1. (B.22)

Since Zm is a possibly minimal rule set, order(Zm, oset(Zm), r, s) = 1 implies that

orderacc(Zm, oset(Zm), r, s) = 1 (statement 17). The accuracy ordering between any two

rulesr ands can be caused in two ways: (1) A direct ordering requirement arises from one or more

word patterns that each create the need for such an ordering independently. (2) An indirect ordering

requirement is caused by a set of word patterns inTD predicted one after the other, each prediction

an independent event. Such a set of word patterns may requireruler to occur earlier than another rule

v, and again require rulev to to occur earlier than rules, creating an indirect ordering requirement

from rule r to rule s. If direct order(Zm, oset′(Zm), r, s) = 1, then by definition there exists no

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 134

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

rule t such thatorder(Zm, oset′(Zm), r, t) = 1 andorder(Zm, oset′(Zm), t, s) = 1, even though

order(Zm, oset′(Zm), r, s) = 1. It therefore follows that the ordering betweenr ands is a direct

ordering (as in (1) above) caused by at least one (single) word patternw. Such a word patternw will

be predicted incorrectly ifrulenum(s) < rulenum(r) (sinceorderacc(Zm, oset(Zm), r, s) = 1)

and predicted correctly for at least one ordering which requires thatrulenum(r) < rulenum(s)

(sincevalid(oset(Zm)) = 1). This is only possible if the word patternw is predicted accurately

by ruler and incorrectly by rules. Thenmatch(w, r) = 1 andmatch(w, s) = 1, and nov ∈ Zm

exists earlier in the rule set thanr such thatmatch(w, v) = 1. Since such aw exists, it follows that

complement(Zm, Zm, oset(Zm), v, r, s) = 1 for all v such that{(v, r), (v, s)} ∈ oset(Zm).

Statement 19 (ordercomplement order)

∀r, s ∈ Zm, Zm ⊆ Zsingle, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) :

orderacc(Zm, Zm, oset(Zm), r, s) = 1 =⇒ ∀v : {(v, r), (v, s)} ∈ oset(Zm) :

path(complement&direct order(Zm, Zm, oset(Zm), v, r, s)) = 1. (B.23)

If orderacc(Zm, oset(Zm), r, s) = 1 then by definition, order(Zm, oset(Zm), r, s) = 1

(eq. 5.56) andpath(direct order(Zm, oset(Zm), r, s)) = 1 (eq. 5.57). Now con-

sider any rules ti, ti+1 along the path fromr to s. Since for each ti, ti+1 pair it

holds that direct order(Zm, oset(Zm), ti, ti+1) = 1, it follows from statement 18 that

complement(Zm, oset(Zm), v, ti, ti+1) = 1 for a valid v. Since this holds for allti along

this path, it follows thatpath(complement&direct order(Zm, Zm, oset(Zm), v, r, s)) = 1.

Statement 20 (subsetimplies red min)

∀r, s, v ∈ Zm, Zm ⊆ Zsingle, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm),

subset(Zm, oset(Zm), r, r, s) = 1 =⇒

orderred(Zm, oset(Zm), r, s) = 1. (B.24)

If subset(Zm, oset(Zm), r, r, s) = 1 it follows by definition that possible words(Zm, Zm,

oset(Zm), r, r) ⊂ possible words(Zm, Zm, oset(Zm), r, s) (eq. 5.51), and then it will hold for any

word patternw ∈ possible words(Zm, Zm, oset(Zm), r, r) that alsomatch(w, s) = 1 (eq. 5.36).

Sincepossible words(Zm, Zm, oset(Zm), r, r) = rulewords(Zm, oset(Zm), r) (statement 3), this

set provides a list of all the words inTD that may possibly invoke ruler during pronunciation predic-

tion (eq. 5.35). It therefore follows that, ifs occurred beforer, all words that could possibly matchr

would first be matched againsts andr would never be invoked. Ruler will then be a redundant rule

within a possibly minimal rule set, which contradicts the definition of apossibly minimal rule

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 135

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

set. Since ruler becomes redundant if rules occurs before ruler when enforcing all the restrictions

required byoset(Zm), it follows thatorderred(Zm, oset(Zm), r, s) = 1 (eq. 5.55).

Statement 21 (subsetimplies red)

∀r, s ∈ Zm, v ∈ Ze, Ze ⊆ Zm ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

∀(Zm, osetm(Zm) ∈ minrules(Z ′, Ze, oset(Z
′)) :

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1 =⇒

orderred(Zm, oset(Zm), r, s) = 1. (B.25)

Choose anyv ∈ Ze and r, s ∈ Zm such that subset(Z ′, Ze, oset(Z
′), v, r, s) = 1.

Then v = r or {(v, r), (v, s)} ∈ oset(Z ′) and possible words(Z ′, Ze, oset(Z
′), v, r) ⊂

possible words(Z ′, Ze, oset(Z
′), v, s) (eq. 5.51). Now consider any word pattern

w ∈ possible words(Zm, Zm, oset(Zm), r, r). Since order subset(oset(Z ′), osetm(Zm)) =

1 and Ze ⊆ Zm (eq. 5.29) it follows from statement 14 that alsow ∈

possible words(Z ′, Ze, oset(Z
′), v, r). Since possible words(Z ′, Ze, oset(Z

′), v, r) ⊂

possible words(Z ′, Ze, oset(Z
′), v, s) (as given above), it follows that alsow ∈

possible words(Z ′, Ze, oset(Z
′), v, s). This implies thatmatch(w, s) = 1 and no q ∈ Ze

exists such thatmatch(w, q) = 1 and q = v or (q, v) ∈ oset(Z ′). Now since v = r

or {(v, r), (v, s)} ∈ oset(Z ′) this means no such matchingq ∈ Ze exists such that

q = r or {(q, r), (q, s)} ∈ oset(Z ′). Then no q ∈ Zm exists such thatq = r or

{(q, r), (q, s)} ∈ osetm(Zm) (sinceZe ⊆ Zm and order subset(oset(Z ′), osetm(Zm)) = 1),

and then w ∈ possible words(Zm, Zm, osetm(Zm), r, s). Since this holds for allw ∈

possible words(Zm, Zm, oset(Zm), r, r), it follows that possible words(Zm, Zm, osetm(Zm),

r, r) ⊆ possible words(Zm, Zm, osetm(Zm), r, s). But from statement 10 it is not possible

that possible words(Zm, Zm, osetm(Zm), r, r) ≡ possible words(Zm, Zm, osetm(Zm), r, s),

so possible words(Zm, Zm, osetm(Zm), r, r) ⊂ possible words(Zm, Zm, osetm(Zm), r, s), and

thensubset(Zm, Zm, osetm(Zm), r, r, s) = 1 (eq. 5.51). Then it follows from statement 20 that

orderred(Zm, oset(Zm), r, s) = 1.

Statement 22 (containpat implies order min)

∀r, s ∈ Zm, Zm ⊆ Zcombined, possibly minimal(Zm) = 1, valid(oset(Zm)) = 1

path(containpat(Zm, r, s)) = 1 =⇒ orderred(Zm, oset(Zm), r, s) = 1. (B.26)

If path(containpat(Zm, r, s)) = 1 then context(r) ⊃ context(s) (eq. 5.47) and then

matchwords(r) ⊆ matchwords(s) (statement 1). Letoset′(Zm) be any ordering that includes

(s, r)∪ oset(Zm). Then for every word patternw such thatmatch(w, r) = 1 alsomatch(w, s) = 1,

and since(s, r) ∈ oset′(Zm) and boths andr in Zm, possible words(Zm, Zm, oset′(Zm), s, r) = φ

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 136

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

(eq. 5.36). Sincerulewords(Zm, oset′(Zm), r) ⊆ possible words(Zm, Zm, oset′(Zm), s, r)

(statement 4) alsorulewords(Zm, oset′(Zm), r) = φ, which means thatr has become a redun-

dant rule (statement 7). Since this holds for anyoset′(Zm) ⊇ oset(Zm) ∪ (s, r) it follows that

orderred(Zm, oset(Zm), r, s) = 1 (eq. 5.55).

B.5 RULE ORDERING IN ZM AS A SUBSET OFZCOMBINED

Statement 23 (pathorder min)

∀r, s ∈ Zm, Ze ⊆ Zm ⊆ Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ allset(Z ′), allowed state(Z ′, Ze, oset(Z
′)) = 1,

∀(Zm, osetm(Zm) ∈ minrules(Z ′, Ze, oset(Z
′)) :

containpat/supercomp/rule order(Z ′, Ze, oset(Z
′), r, s) = 1 =⇒

(r, s) ∈ osetm(Zm). (B.27)

Choose anyr, s ∈ Zm:

• If rule order(Z ′, Ze, oset(Z
′), r, s) = 1, then (r, s) ∈ oset(Z ′) (eq. 5.7). Since

allowed state(Z ′, Ze, oset(Z
′)) = 1, order subset(oset(Z ′), osetm(Zm)) = 1 (eq. 5.29)

and then(r, s) ∈ osetm(Zm).

• If supercomp(Z ′, Ze, oset(Z
′), r, s) = 1, thensubset(Z ′, Ze, oset(Z

′), r, s) = 1 by defini-

tion (eq. 5.52) and then, from statement 21 it follows thatorderred(Zm, osetm(Zm), r, s) = 1,

and again(r, s) ∈ osetm(Zm).

• If containpat(Z ′, r, s) = 1 thencontainpat(Zm, r, s) = 1 (eq. B.15) and then it follows from

statement 22 thatorderred(Zm, osetm(Zm), r, s) = 1. Again (r, s) ∈ osetm(Zm).

Statement 24 (ordernot order)

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ allset(Z ′), allowed state(Z ′, Ze, oset(Z
′)) = 1 :

order(Z ′, Ze, oset(Z
′), r, s) = 1 =⇒ order(Z ′, Ze, oset(Z

′), s, r) 6= 1. (B.28)

Consider any r, s ∈ Z ′ and first consider theorderacc relation specifically. If

orderacc(Z
′, Ze, oset(Z

′), r, s) = 1, then nooset′(Z ′) ⊇ oset(Z ′) ∪ (s, r) exists such that

allowed state(Z ′, Ze, oset
′(Z ′)) = 1 (eq. 5.54). But sinceallowed state(Z ′, Ze, oset(Z

′)) = 1,

at least oneZm, osetm(Zm) pair exists such that(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′))

(eq. 5.29), such thatminimal(Zm, osetm(Zm)) = 1 (eq. 5.28). Clearly(s, r) 6∈ osetm(Zm),

which means that either (1)(r, s) ∈ osetm(Zm) or (2) that the relationship betweenr and s is

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 137

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

indeterminate, that is, that eitherrulenum(r) < rulenum(s) or rulenum(s) < rulenum(r) is

allowed without affecting the value ofaccurate(Zm, osetm(Zm)), or that (3) either or both ofr

ands are not inZm. In all the above cases,(r, s) can be added toosetm(Zm), and it will still hold

that minimal(Zm, osetm(Zm)) = 1. Thenorderacc(Z
′, Ze, oset(Z

′), s, r) 6= 1. The same can

be shown to hold with regard toorderred(Z
′, Ze, oset(Z

′), r, s) using eq. 5.55 in the same way as

above, and therefore this statement also holds with regard to theorder relation in general.

Statement 25 (ordercomplement options)

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z) :

complement&order(Z ′, Ze, oset(Z
′), r, s) = 1 =⇒

path(containpat(Z ′, Ze, oset(Z
′), r, s))) = 1

or mincomp(Z ′, Ze, oset(Z
′), r, s) = 1. (B.29)

If complement&order(Z ′, Ze, oset(Z
′), r, s) = 1 then bothcomplement(Z ′, Ze, oset(Z

′), r, s) =

1 andorder(Z ′, Ze, oset(Z
′), r, s) = 1 (eq. 5.44). Sincecomplement(Z ′, Ze, oset(Z

′), r, s) = 1

it follows from statement 5 that eithermincomp(Z ′, Ze, oset(Z
′), r, s)) = 1 or that

path(containpat(Z ′, r, s)) = ±1. However, if path(containpat(Z ′, r, s)) = −1, then

path(containpat(Z ′, s, r)) = 1 (eq. 5.47 and eq. 5.44) and thenorderred(Z
′, Ze, oset(Z

′), s, r) =

1 (statement 22). Since it is not possible that bothorder(Z ′, Ze, oset(Z
′), s, r) = 1

and order(Z ′, Ze, oset(Z
′), r, s) = 1 (statement 24), it is therefore impossible that

path(containpat(Z ′, r, s)) = −1. So either mincomp(Z ′, Ze, oset(Z
′), r, s)) = 1 or

path(containpat(Z ′, r, s)) = 1.

Statement 26 (oreqimplies acc)

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,

∀oset(Z ′) ⊆ allset(Z ′), allowed state(Z ′, Ze, oset(Z
′)) = 1 :

∃v ∈ Ze : order req(Z ′, Ze, oset(Z
′), v, r, s) = 1,

orderred(Z
′, Ze, oset(Z

′), r, s) = 0 =⇒

direct order(Z ′, Ze, oset(Z
′), r, s) 6= −1. (B.30)

If order req(Z ′, Ze, oset(Z
′), v, r, s) = 1, then by definition (eq. 5.58) it follows that

direct order(Z ′, Ze, oset(Z
′), r, s) = 1, shared words(Z ′, Ze, oset(Z

′), v, r, s) 6= φ, and

for all wi ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s) it holds thatoutcome(wi) = outcome(r).

Furthermore, there exists at least onew′ in shared words(Z ′, Ze, oset(Z
′), v, r, s) such that

outcome(w′) 6∈ outcome(s). The value ofdirect order(Z ′, Ze, oset(Z
′), r, s) can be0, 1 or −1.

Since orderred(Z
′, Ze, oset(Z

′), r, s) = 0 the value of direct order(Z ′, Ze, oset(Z
′), r, s)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 138

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

depends on the value oforderacc(Z
′, Ze, oset(Z

′), r, s), which also can be0, 1 or −1

(eq. 5.57). Now consider any(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)). Since

allowed state(Z ′, Ze, oset(Z
′)) = 1, at least one such aZm, osetm(Zm) pair exists. Since

shared words(Zm, Zm, osetm(Zm), v, r, s) ⊆ shared words(Z ′, Ze, oset(Z
′), v, r, s) (statement

12) it still holds that for all thexi ∈ shared words(Zm, Zm, osetm(Zm), v, r, s) outcome(xi) =

outcome(r). If it were possible thatdirect order/orderacc(Z
′, Ze, oset(Z

′), s, r) = 1, then

there would exist at least one word patterny such thats would predicty accurately, andr would

predict y incorrectly. But since for all thexi aboveoutcome(xi) = outcome(r), no suchy

can exist, and thereforedirect order/orderacc(Z
′, Ze, oset(Z

′), s, r) 6= 1 which implies that

direct order(Z ′, Ze, oset(Z
′), r, s) 6= −1.

B.6 CHARACTERISTICS OF AN ALLOWED STATE

Statement 27 (allowedstate decided)

∀Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

allowed state(Z ′, Ze, oset(Z
′)) = 1,

∀(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)) :

order subset(decided set(Z ′, Ze, oset(Z
′)), osetm(Zm)) = 1. (B.31)

Choose any(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)). Thenminimal(Zm, osetm(Zm)) =

1, Ze ⊆ Zm ⊆ Z ′ andorder subset(oset′(Z ′), osetm(Zm)) = 1, by definition (eq. 5.28). Now

consider anyr, s ∈ Zm ∩ Z ′ such that(r, s) ∈ decided set(Z ′, Ze, oset
′(Z ′)). Thenr, s ∈ Zm and

path(order decided(Z ′, Ze, oset′(Z ′), r, s)) = 1 (eq. 5.60). From the definition oforder decided,

this implies that there exists a pathv1 = r, v2, ..., vn = s, all vi ∈ Z ′, such that either (1)

containpat(Z ′, vi, vi+1) = 1, or (2) supercomp(Z ′, Ze, oset(Z
′), vi, vi+1) = 1 or (3) (vi, vi+1) ∈

oset(Z ′). Now letti be only thosevj such thatvj ∈ Zm. Then there exists a patht1 = r, t2, ..., tn = s

such that for eachti, path(containpat/supercomp/rule order(Z ′, Ze, oset(Z
′), ti, ti+1)) = 1,

with all ti ∈ Zm. From statement 23 it then follows that for eachti, ti+1 pair it holds that

order(Z ′, Ze, oset(Z
′), ti, ti+1) = 1, and then(ti, ti+1) ∈ osetm(Zm). Since theseti form a path

from r to s, it follows that also(r, s) ∈ osetm(Zm) (eq. 5.7). Since it holds for anyr, s ∈ Zm ∩ Z ′

that if (r, s) ∈ decided set(Z ′, Ze, oset
′(Z ′)) then also(r, s) ∈ osetm(Zm), it follows (from eq.

5.27) thatorder subset(decided set(Z ′, Ze, oset(Z
′)), osetm(Zm)) = 1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 139

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Statement 28 (allowedstate possible)

∀Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

allowed state(Z ′, Ze, oset(Z
′)) = 1 =⇒

∀(Zm, osetm) ∈ minrules(Z ′, Ze, oset(Z
′)) :

order subset(osetm(Zm), possible set(Z ′, Ze, oset(Z
′))) = 1. (B.32)

Choose any(Zm, osetm) ∈ minrules(Z ′, Ze, oset(Z
′)), and anyr, s ∈ Zm such that(r, s) ∈

osetm(Zm). Since (r, s) ∈ osetm(Zm), it follows that orderacc(Zm, Zm, oset(Zm), r, s) =

1 (statement 17) and thenpath(direct order&complement(Zm, Zm, osetm(Zm), v, r, s)) = 1

for all v such that{(v, r), (v, s)} ∈ osetm(Zm) (statement 19). This means that a path of

n ≥ 2 rules exist with t1 = r, t2, t3, . . . , tn = s, all the ti ∈ Zm. For each of these

ti, ti+1 pairs bothdirect order(Zm, Zm, osetm(Zm), ti, ti+1) = 1 and complement(Zm, Zm,

osetm(Zm), v, ti, ti+1) = 1. Since complement(Zm, Zm, osetm(Zm), v, ti, ti+1) = 1, it

follows that complement(Z ′, Ze, oset(Z
′), v, ti, ti+1) = 1 (eq. B.18), and then either (1)

path(containpat(Z ′, ti, ti+1) = 1 or (2)mincomp(Z ′, Ze, oset(Z
′), v, ti, ti+1) = 1 (statement 25).

In both casesshared words(Z ′, Ze, oset(Z
′), v, ti, ti+1) 6= φ (eq. 5.43).

• If (1) path(containpat(Z ′, ti, ti+1)) = 1, then path(order decided(Z ′, Ze, oset(Z
′),

ti, ti+1)) = 1 (eq. 5.59), and then(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)) (eq. 5.63).

• If (2) mincomp(Z ′, Ze, oset(Z
′), v, ti, ti+1) = 1 then (sinceshared words(Z ′, Ze, oset(Z

′),

v, ti, ti+1) 6= φ) it follows that the value oforder possible(Z ′, Ze, oset(Z
′), v, ti, ti+1),

depends on the values of (a)order decided(Z ′, Ze, oset(Z
′), ti, ti+1), and (b)

order possible1(Z ′, Ze, oset(Z
′), ti, ti+1) (eq. 5.62).

First consider the possible values for (a), and assumeorder possible1(Z ′, Ze, oset(Z
′),

ti, ti+1) 6= −1, the least restrictive choice. Iforder decided(Z ′, Ze, oset(Z
′), ti, ti+1) =

0, then the value oforder possible(Z ′, Ze, oset(Z
′), ti, ti+1) = 1 (eq. 5.62), and then

(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)). If order decided(Z ′, Ze, oset(Z

′), ti+1, ti) = 1,

then also(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)) (eq. 5.63). Since(ti, ti+1) ∈ Zm

and direct order(Zm, Zm, osetm(Zm), ti, ti+1) = 1 it follows from statement 27 that

direct order(Z ′, Ze, oset
′(Z ′), ti, ti+1) 6= −1. For the two valid options it then holds that

(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)).

Now consider the possible values for (b), and assume thatorder decided(Z ′, Ze, oset(Z
′),

ti, ti+1) = 0, again the least restrictive choice. Iforder possible1(Z ′, Ze, oset(Z
′), ti, ti+1) 6=

−1, then order possible(Z ′, Ze, oset(Z
′), ti, ti+1) = 1. If it were possible that

order possible1(Z ′, Ze, oset(Z
′), ti, ti+1) = −1, then order possible(Z ′, Ze, oset(Z

′),

ti+1, ti) = 1 (eq. 5.62) and then it would hold thatorder req(Z ′, Ze, oset(Z
′), v, ti+1, ti) = 1

for a valid v (eq. 5.61), and thendirect order(Z ′, Ze, oset(Z
′), ti+1, ti) 6= −1 (state-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 140

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

ment 26), or stated differently,direct order(Z ′, Ze, oset(Z
′), ti, ti+1) 6= 1. But

since direct order(Zm, Zm, osetm(Zm), ti, ti+1) = 1, this causes a contradiction.

Then it must hold thatorder possible1(Z ′, Ze, oset(Z ′), ti, ti+1) 6= −1, and then

(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)).

Since it holds for all(ti, ti+1) along a path fromr tos that(ti, ti+1) ∈ possible set(Z ′, Ze, oset(Z
′)),

it follows that (r, s) ∈ possible set(Z ′, Ze, oset(Z
′)) (eq. 5.63). Since this holds for any

(r, s) ∈ osetm(Zm), it follows thatorder subset(osetm(Zm), possible set(Z ′, Ze, oset(Z ′)) = 1

(eq. 5.27).

B.7 INITIAL ALLOWED STATE

Statement 29

∀w ∈ TD, r,w′ ∈ Z ′, w′ a word pattern matching wordw,Z ′ ⊆ Zcombined :

match(w, r) = 1 ⇐⇒ path(containpat(w′, r)) = 1. (B.33)

Letw be any word pattern inZcombined andw′ its associated word pattern inTD. If match(w, r) = 1,

then,context(w) ⊇ context(r) by definition (eq. 5.11). Given the construction ofZcombined, the

only rule s that can exist such thatcontext(w) = context(s) is thats which is the word pattern

w′, socontext(w) = context(w′) ⊃ context(r). Sincecontext(w′) ⊃ context(r) it follows from

eq. 5.48 thatpath(containpat(Z ′, w′, r)) = 1. Similarly, if path(containpat(Z ′, w′, r)) = 1,

then (again from eq. 5.48)context(w′) ⊃ context(r), and thencontext(w) = context(w′) ⊃

context(r), and thenmatch(w, r) = 1 (eq. 5.11).

Statement 30 (onlyword patterns) If, prior to any rule resolution, all rules inZcombined are or-

dered according to the set of relationshipsdecided set(Zcombined, φ, φ), then predicting any word

w ∈ TD will only invoke the word patternw′ ∈ Zno−conflict .

Sinceoset(Zcombined) = φ does not contain any orderings whatsoever, it follows directly from the

definition ofrulewords (eq. 5.35 and eq. 5.12) andmatchwords (eq. 5.34) thatmatchwords(r) =

rulewords(Zcombined, φ, r). Let w ∈ TD be any word to be predicted, andw′ ∈ Zcombined be

each associated word pattern. Given the way in whichZcombined has been constructed,w′ exists

for each wordw, match(w,w′) = 1, and furthermore there may exist a set of rules{ri} such

that alsomatch(w′, ri) = 1. From statement 29 it follows that for each of theseri there exists

a path(containpat(Zcombined, w
′, ri)) = 1. Sincepath(containpat(Zcombined, w

′, ri)) = 1, then

alsopath(order decided(Zcombined, φ, φ,w′, ri)) = 1 (eq.5.59) and even if suchri exist, none will

be invoked – onlyw′. Since word variants are not allowed,w′ ∈ Zno−conflict.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 141

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Statement 31 (complete)The set of rulesZno−conflict describes the training data accurately and

completely.

Consider any training word patternw. If any sub-patterns existed inZ that matched both this word

pattern and a conflicting one, it would have been removed fromZno−conflict. Therefore, if a rule

in Zno−conflict is applicable, it will be accurate. There are no word variants in TD; therefore, for

each grapheme in each word pattern there exists at least one sub-pattern (the word pattern itself)

that describes the grapheme in a way that does not conflict with any other pattern, implying that an

applicable rule will always be found.

Statement 32 (initial superpath implies subset)

∀r, s ∈ Zm, Zm ⊆ Z ′ ⊆ Zcombined, possibly minimal(Zm) = 1 :

path(containpat/supercomp(Z ′, φ, φ, v0, r, s)) = 1 =⇒

subset(Zm, Zm, φ, v0, r, s) = 1. (B.34)

Consider anyw ∈ possible words(Z ′, φ, φ, v0, r), Zm ⊆ Z ′. Since φ contains no order-

ings whatsoever, then any setpossible words(A,B, φ, v0, x) will consist of all the words

in TD matched byx, irrespective of the constitution ofA or B, except thatA and B

should meet the requirements specified by eq. 5.36 forpossible words(A,B, φ, v0, x) to

be defined. Thenmatchwords(x) = possible words(A,B, φ, v0, x) for all valid val-

ues of A,B and x; and then it also holds that for ally ∈ Zm: matchwords(y) ≡

possible words(Z ′, φ, φ, v0, y) ≡ possible words(Zm, Zm, φ, v0, y) ≡ rulewords(Zm, φ, y). For

anyr, s ∈ Zm, if path(containpat/supercomp(Z ′, φ, φ, r, s)) = 1 then there exists a set of rules

v1 = r, v2, .., vn = s such that for each(vi, vi+1), either (1)containpat(Z ′, vi, vi+1) = 1 or (2)

supercomp(Z ′, φ, φ, v0, vi, vi+1) = 1. If (1) containpat(Z ′, vi, vi+1) = 1 then context(vi) ⊃

context(vi+1) (eq. 5.47) and thenmatchwords(vi) ⊆ matchwords(vi+1) (statement 1); and then

rulewords(Zm, φ, vi) ⊆ rulewords(Zm, φ, vi+1). If (2) supercomp(Z ′, φ, φ, , v0, vi, vi+1) = 1,

then possible words(Z ′, φ, φ, vi) ⊂ possible words(Z ′, φ, φ, vi+1) by definition (eq. 5.51),

and then alsorulewords(Zm, φ, vi) ⊂ rulewords(Zm, φ, vi+1). Then it holds for allvi that

rulewords(Zm, φ, v1 = r) ⊆ rulewords(Zm, φ, v2) ⊆ . . . ⊆ rulewords(Zm, φ, vn = s); and

then rulewords(Zm, φ, r) ⊆ rulewords(Zm, φ, s). But since bothr and s in Zm, and since

valid(φ) = 1, it is not possible thatrulewords(Zm, φ, r) = rulewords(Zm, φ, s) (statement

9). So rulewords(Zm, φ, r) ⊂ rulewords(Zm, φ, s), and thenpossible words(Z ′, φ, φ, r) ⊂

possible words(Z ′, φ, φ, s), and thensubset(Z ′, φ, φ, r, s) = 1 (eq. 5.51).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 142

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

APPENDIX B SOME THEOREMS REGARDINGM INIMAL REPRESENTATIONGRAPHS

Statement 33 (Initial allowed state) If the rule setZcombined is ordered according to the rule set

orderings generated bydecided set(Zcombined, φ, φ), then the rule set is accurate, complete and in

anallowed state, i.e:

Z ′ ≡ Zcombined, Ze = φ, oset(Z ′) = decided set(Z ′, φ, φ) =⇒

accurate(Z ′, oset(Z ′)) = 1, allowed state(Z ′, Ze, oset(Z
′)) = 1. (B.35)

Let w be any word inTD andw′ its associated word pattern inZno−conflict. It follows from state-

ment 30 that predicting wordw according toZ ′, oset(Z ′) will always invoke the word patternw′ ∈

Zno−conflict, which always exists. Since there is always such a word pattern, the new rule set will be

complete. Since only rules inZno−conflict will be invoked, and the rule setZno−conflict is accurate

(from statement 31), the new rule set will also be accurate; and thenaccurate(Z ′, oset(Z ′)) = 1.

From the definition ofminimal (eq. 5.25), if a rule set can be accurate and complete, at least

one rule set and rule ordering set will always exist such thatminimal(Zm, osetm(Zm)) = 1.

SinceZcombined consists of all possible rules, all suchZm will be a subset ofZcombined, and then

φ = Ze ⊆ Zm ⊆ Z ′ ≡ Zcombined. Now consider anyr, s ∈ Zm such that also(r, s) ∈ oset(Z ′),

i.e. (r, s) ∈ decided set(Z ′, φ, φ). Thenpath(order decided(Z ′, φ, φ, r, s)) = 1 (eq. 5.60), and

thenpath(containpat/supercomp/rule order(Z ′, φ, φ, v0, r, s)) = 1 (eq. 5.59). Sinceφ contains

no orderings whatsoever, this is only possible ifpath(containpat/supercomp(Z ′, φ, φ, r, s)) = 1.

Then subset(Z ′, φ, φ, r, s) = 1 (statement 32),orderred(Zm, Zm, osetm(Zm), r, s) = 1 (state-

ment 21), and then(r, s) ∈ osetm(Zm) (eq. 5.56 and eq. 5.7). Since this holds for all

(r, s) ∈ Zm it follows that order subset(decided set(Z ′, φ, φ), osetm(Zm)) = 1 (eq. 5.27), and

thenorder subset(oset(Z ′), osetm(Zm)) = 1, and thenallowed state(Z ′, Ze, oset(Z ′)) = 1 (eq.

5.29).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 143

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[1] E.Barnard, J.P.L Cloete, and H. Patel, “Language and technology literacy barriers to accessing

government services,”Lecture notes in Computer Science, vol. 2739, pp. 37–42, 2003.

[2] Ethnologue, Languages of the World, http://www.ethnologue.com, 1 April 2005.

[3] B. Wheatley, K. Kondo, W. Anderson, and Y. Muthusumy, “Anevaluation of cross-language

adaptation for rapid HMM development in a new language,” inProceedings of the International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Adelaide, 1994, pp. 237–

240.

[4] A. Constantinescu and G. Chollet, “On cross-language experiments and data-driven units for

ALISP,” in Proceedings Automatic Speech Recognition and Understanding, 1997, pp. 606–613.

[5] Rita Singh, Bhiksha Raj, and Richard M. Stern, “Automatic generation of phone sets and lexical

transcriptions,” inProceedings of the International Conference on Acoustics,Speech and Signal

Processing (ICASSP), Istanbul, Turkey, 2000, pp. 1691–1694.

[6] Rita Singh, Bhiksha Raj, and Richard M. Stern, “Automatic clustering and generation of con-

textual questions for tied states in hidden markov models,”in Proceedings of the International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Phoenix, Arizona, March

1999, vol. 1, pp. 117–120.

[7] Catherine Soanes,Compact Oxford English Dictionary of Current English, Oxford University

Press, 2003.

[8] “Wikipedia Public Encyclopaedia,” 14 April 2005,http://en.wikipedia.org/wiki/

Bootstrapping.

[9] L. Osterholtz, A. McNair, I. Rogina, H. Saito, T. Sloboda, J. Tebelskis, A. Waibel, and

M. Woszczyna, “Testing generality in JANUS: A multi-lingual speech to speech translation

system,” inProceedings of the International Conference on Acoustics,Speech and Signal Pro-

cessing (ICASSP), 1992, vol. 1, pp. 209–212.

[10] J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifroni, S. Sakai, S. Seneff, and V. Zue,

“Multilingual spoken-language understanding in the MIT Voyager system,”Speech Communi-

cation, vol. 17, pp. 1–18, 1995.

144

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[11] Tanja Schultz and Alex Waibel, “Fast bootstrapping of LVCSR systems with multilingual

phoneme sets,” inProceedings Eurospeech, Rhodes, Greece, 1997, pp. 371–374.

[12] T. Schultz and A. Waibel, “Language-independent and language-adaptive acoustic modeling for

speech recognition,”Speech Communication, vol. 35, pp. 31–51, Aug. 2001.

[13] C. Callison-Burch and M. Osborne, “Bootstrapping parallel corpora,” inNorth American Chap-

ter of the Association for Computational Linguists (NAACL)Workshop, Building and using par-

allel texts: data driven machine translation and beyond, Edmonton, Canada, 2003.

[14] Jan Daciuk, “Computer-assisted enlargement of morphological dictionaries,” inFinite State

Methods in Natural Language Processing, Workshop at 13th European Summer School in Logic,

Language and Information, Helsinki, Finland, August 2001.

[15] Kemal Oflazer and Sergei Nirenberg, “Practical bootstrapping of morphological analyzers,”

in Proceedings of Computational Natural Language Learning (CoNLL) Workshop at the An-

nual Meeting of the European Chapter of the Association for Computational Linguists (EACL),

Bergen, Norway, June 1999.

[16] J. Zavrel and W. Daelemans, “Bootstrapping a tagged corpus through combination of existing

heterogeneous taggers,” inProceedings of the Second International Conference on Language

Resources and Evaluation (LREC-2000), Athens, Greece, 2000, pp. 17–20.

[17] “The CMU pronunciation dictionary,” 1998, http://www.speech.cs.cmu.edu/

cgi-bin/cmudict.

[18] R. Mitten, “Computer-usable version of Oxford Advanced Learner’s Dictionary of Current

English,” Tech. Rep., Oxford Text Archive, 1992.

[19] P. Mertens and F. Vercammen, “Fonilex manual,” Tech. Rep., K.U.Leuven CCL, 1998.

[20] T.J. Sejnowski and C.R. Rosenberg, “Parallel networksthat learn to pronounce English text,”

Complex Systems, pp. 145–168, 1987.

[21] K. Torkkola, “An efficient way to learn English grapheme-to-phoneme rules automatically,”

in Proceedings of the International Conference on Acoustics,Speech and Signal Processing

(ICASSP), Minneapolis, USA, April 1993, vol. 2, pp. 199–202.

[22] O. Andersen, R. Kuhn, A. Lazarides, P. Dalsgaard, J. Haas, and E. Noth, “Comparison of

two tree-structured approaches for grapheme-to-phoneme conversion,” inProceedings of the

International Conference on Spoken Language Processing (ICSLP), Philadelphia, USA, 1996,

vol. 3, pp. 1700–1703.

[23] A. Black, K. Lenzo, and V. Pagel, “Issues in building general letter to sound rules,” in3rd ESCA

Workshop on Speech Synthesis, Jenolan Caves, Australia, November 1998, pp. 77–80.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 145

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[24] W. Daelemans, A. van den Bosch, and J. Zavrel, “Forgetting exceptions is harmful in language

learning,” Machine Learning, vol. 34, no. 1-3, pp. 11–41, 1999.

[25] R.I. Damper, Y. March, M.J. Adamson, and K. Gustafson, “Evaluating the pronunciation

component of text-to-speech systems for English: a performance comparison of different ap-

proaches,”Computer Speech and Language, vol. 13, pp. 155–176, April 1999.

[26] Timothy J. Hazen, I.Lee Hetherington, Han Shu, and Karen Livescu, “Pronunciation modelling

using a finite-state transducer representation,”Speech Communication, vol. (article in press),

2005.

[27] J. Allen, M.S. Hunnicut, and D. Klatt,From Text to Speech: The MITalk system, Cambridge

University Press, Cambridge, 1987.

[28] Cecil H. Coker, Kenneth W. Church, and Mark Y. Liberman,“Morphology and rhyming: two

powerful alternatives to letter-to-sound rules for speechsynthesis,” inProceedings of ESCA

Workshop on Speech Synthesis, Autrans, France, 1990.

[29] H.S. Elovitz, R. Johnson, A. McHugh, and J.E.Shore, “Letter-to-sound rules for automatic

translation of English text to phonetics,”IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 24, pp. 446–459, December 1976.

[30] Yousif A. El-Imam, “Phonetization of Arabic: rules andalgorithms,” Computer Speech and

Language, vol. 18, pp. 339–373, October 2004.

[31] J.C. Roux, “Grapheme-to-phoneme conversion in Xhosa,” South African Journal of African

Languages, vol. 9, pp. 74–78, 1989.

[32] P.C. Bagshaw, “Phonemic transcription by analogy in text-to-speech synthesis: novel word

pronunciation and lexicon compression,”Computer Speech and Language, vol. 12, pp. 119–

142, April 1990.

[33] Neil McCulloch, Mark Bedworth, and John Bridle, “NETspeak: A re-implementation of

NETtalk,” Computer Speech and Language, vol. 2, pp. 289–302, 1987.

[34] J. Hakkinen, J. Suontausta, S. Riis, and K Jensen, “Accessing text-to-phoneme mapping strate-

gies in speaker independent isolated word recognition,”Speech Communication, vol. 41, pp.

455–467, 2003.

[35] K.P.H. Sullivan and R.I. Damper, “Novel-word pronunciation: a cross-language study,”Speech

Communication, vol. 13, pp. 441–452, 1993.

[36] F. Yvon, “Grapheme-to-phoneme conversion using multiple unbounded overlapping chunks,”

in Proceedings of Conference on New Methods in Natural Language Processing (NeMLaP),

Ankara, Turkey, 1996, pp. 218–228.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 146

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[37] R.I. Damper and J.F.G. Eastmond, “Pronunciation by analogy: impact of implementational

choices on performance,”Language and Speech, vol. 40, pp. 1–23, 1997.

[38] Y. Marchand and R.I. Damper, “A multi-strategy apporach to improving pronunciation by anal-

ogy,” Computational Linguistics, vol. 26, pp. 195–219, 2000.

[39] R. Luk and R. Damper, “Stochastic phonographic transduction for English,” Computer Speech

and Language, vol. 10, pp. 133–153, 1996.

[40] C.X. Ma and M.A. Randolph, “An approach to automatic phonetic baseform generation based

on bayesian networks,” inProceedings of Eurospeech, Aalborg, Denmark, September 2001, pp.

1453–1456.

[41] V. Hoste, W. Daelemans, E.T.K. Sang, and S. Gillis, “Meta-learning for phonemic annotation of

corpora,” inProceedings of the International Conference on Machine Learning (ICML-2000),

Stanford University, USA, 2000.

[42] T. Mark Ellison, The machine learning of phonological structure, Ph.D. thesis, University of

Western Australia, 1992.

[43] Gary Tajchman, Eric Fosler, and Daniel Jurafsky, “Building multiple pronunciation models

for novel words using exploratory computational phonology,” in Proceedings of Eurospeech,

Madrid, Spain, September 1995.

[44] Walter Daelemans, Steven Gillis, and Gert Durieux, “The acquisition of stress: a data-oriented

approach,”Computational Linguistics, vol. 208, pp. 421–451, 1994.

[45] Ove Andersen and Paul Dalsgaard, “Multi-lingual testing of a self-learning approach to

phoneme transcription of orthography,” inProceedings of Eurospeech, Madrid, Spain, Septem-

ber 1995.

[46] M.J. Dedina and H.C. Nusbaum, “PRONOUNCE: A program forpronunciation by analogy,”

Computer Speech and Language, vol. 5, pp. 55–64, 1991.

[47] F. Yvon, “Self-learning techniques for grapheme-to-phoneme conversion,” 1994,http://

citeseer.ist.psu.edu/yvon94selflearning.html.

[48] D.W. Aha, D. Kibler, and M.K. Albert, “Instance-Based Learning algorithms,”Machine Learn-

ing, vol. 6, pp. 437–66, 1991.

[49] W. Daelemeans, A. van den Bosch, and T. Weijters, “IGTree: using trees for compression and

classification in lazy learning algorithms,”Artificial Intelligence Review, vol. 11, pp. 407–423,

1997.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 147

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[50] T. Kohonen, “Dynamically expanding context, with application to the correction of symbol

strings in the recognition of speech,” inProceedings of the 8th International Conference on

Pattern Recognition (8th ICPR), Paris, France, Oct 1986, pp. 1148–1151.

[51] Timothy Baldwin and Hozumi Tanaka, “A comparative study of unsupervised grapheme-

phoneme alignment methohds,” inThe 22nd Annual Meeting of the Cognitive Science Society

(CogSci2000, Philadelphia, 2000, pp. 597–602.

[52] V. Pagel, K. Lenzo, and A. Black, “Letter to sound rules for accented lexicon compressoin,”

in International Conference on Spoken Language Processing (ICSLP), Sidney, Australia, 1998,

vol. 5, pp. 2015–2018.

[53] P. Dalsgaard, O. Andersen, and A.V. Hanser, “Theory andapplication of two approaches to

grapheme-to-phoneme conversion,” Tech. Rep., ONOMASTICAproject, May 1995.

[54] O. Andersen and P. Dalsgaard, “Multilingual testing ofa self-learning approach to phonemic

transcription of orthography,” inProceedings of Eurospeech, Madrid, Spain, September 1995,

vol. 2, pp. 1117–1120.

[55] A.J. Viterbi, “Error bounds for convolutional codes and a asymptotically optimum decoding

algorithm,” IEEE Transactions on Information Theory, vol. 13, pp. 260–269, 1967.

[56] C. Schillo, G.A. Fink, and F. Kummert, “Grapheme based recognition for large vocabularies,” in

Proceedings of the International Conference on Spoken Language Processing (ICSLP), Beijing,

China, October 2000, pp. 129–132.

[57] Stephen Kanthak and Hermann Ney, “Context-dependent acoustic modelling using graphemes

for large vocabulary speech recognition,” inProceedings of the International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Orlando,Florida, 2002, pp. 845–848.

[58] Mirjam Killer, “Grapheme based speech recognition,” Tech. Rep., Interactive Systems Labo-

ratory: Carnegie Mellon University / Swiss Federal Institute of Technology, Pittsburgh, USA,

March 2003.

[59] M.A. Hearst, “Noun homograph disambiguation,” inProceedings of the 7th Annual Conference

of the University of Waterloo Centre for the New OED and Text Research, Oxford, 1991, pp.

1–19.

[60] D. Yarowsky, “Unsupervised word sense disambiguationrivaling supervised methods,” inACL-

95, Cambridge, 1995, pp. 88–95.

[61] B. Efron, “Bootstrap methods: another look at the jackknife,” The Annals of Statistics, vol. 7,

pp. 1–26, 1979.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 148

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[62] T. Schultz and A. Waibel, “Polyphone decision tree specialization for language adaptation,”

in Proceedings of the International Conference on Acoustics,Speech and Signal Processing

(ICASSP), Istanbul,Turkey, June 2000, vol. 3, pp. 1707–1710.

[63] Alberto Lavelli, Bernardo Magnini, and Fabrizio Sebastiani, “Building thematic lexical re-

sources by bootstrapping and machine learning,” inProceedings of the LREC Workshop on Lin-

guistic Knowledge Acquisition and Representation: Bootstrapping Annotated Language Data,

Las Palmas, Spain, 2002.

[64] Pedro J. Moreno, Chris Joerg, Jean-Manuel van Thong, and Oren Glickman, “A recursive algo-

rithm for the forced alignment of very long audio segments,”in Proceedings of the International

Conference on Spoken Language Processing (ICSLP), 1998.

[65] I. Aldezabal, K Gojemola, and K. Sarasola, “A bootstrapping approach to parser development,”

in Proceedings of the International Workshop on Parsing Technologies (IWPT), Trento, 2000.

[66] Sebastian Stuker, “Automatic creation of pronunciation dictionaries,” Tech. Rep., Interac-

tive Systems Laboratory: Carnegie Mellon University / Universitat Karlsruhe, Pittsburgh, USA,

April 2002.

[67] Alan W. Black and Kevin A. Lenzo, “Building synthetic voices,” Tech. Rep., Language Tech-

nology Institute, Carnegie Mellon University, Pittsburgh, USA, January 2003.

[68] S. Maskey, L. Tomokiyo, and A.Black, “Bootstrapping phonetic lexicons for new languages,”

in Proceedings of Interspeech, Jeju, Korea, October 2004, pp. 69–72.

[69] David Cohen, Zoubin Ghahramani, and Michael Jordan, “Active learning with statistical mod-

els,” Journal of Artificial Intelligence Research, vol. 4, pp. 129–145, 1990.

[70] Matthias Seeger, “Learning with labeled and unlabeleddata,” Tech. Rep., Institute for Adaptive

and Neural Computation, University of Edinburgh, Edinburgh, December 19 2002.

[71] Richard Sproat, Branimir Boquraev, Steven Bird, Don Hindle, Martin Kay, David McDonald,

Hans Uszkoreit, and Yorick Wilks,A Computational Theory of Writing Systems, Cambridge

University Press, Cambridge, 2000.

[72] M. Davel, “DictionaryMaker v1.0 manual,” Tech. Rep., CSIR, Pretoria, South Africa, 2004.

[73] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET curve in

assessment of detection task performance,” inProceedings of the European Conference on

Speech Communication and Technology, 1997, pp. 1895–1898.

[74] A. Black, P. Taylor, and R. Caley, “The festival speech synthesis system,” 1999,http:

//festvox.org/festival/.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 149

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

REFERENCES

[75] “Local language speech technology initiative (LLSTI),” 1 April 2005, http://www.llsti.

org.

[76] M. Davel and E. Barnard, “LLSTI isiZulu TTS project report,” Tech. Rep., CSIR, Pretoria,

South Africa, November 2004.

[77] J.A. Louw, M. Davel, and E. Barnard, “A general purpose isiZulu TTS system,” inSouth African

Journal of African Languages (submitted for publication), 2005.

[78] M. Davel and E. Barnard, “LLSTI isiZulu TTS evaluation report,” Tech. Rep., CSIR, Pretoria,

South Africa, September 2004.

[79] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,and P. Woodland, “The htk book.

revised for htk version 3.0,” July 2000,http://htk.eng.cam.ac.uk/.

[80] Tebogo M. Modiba, “Aspects of automatic speech recognition with respect to Northern Sotho,”

M.S. thesis, University of the North, South Africa, 2004.

[81] “The openphone project,” 1 April 2005,http://www.meraka.org.za/hlt/.

[82] M. Davel and E. Barnard, “Bootstrapping for language resource generation,” inProceedings of

the Symposium of the Pattern Recognition Association of South Africa, South Africa, 2003, pp.

97–100.

[83] M. Davel and E. Barnard, “The efficient creation of pronunication dictionaries: human factors

in bootstrapping,” inProceedings of Interspeech, Jeju, Korea, October 2004, pp. 2797–2800.

[84] M. Davel and E. Barnard, “The efficient creation of pronunciation dictionaries: machine learn-

ing factors in bootstrapping,” inProceedings of Interspeech, Jeju, Korea, October 2004, pp.

2781–2784.

[85] M. Davel and E.Barnard, “A default-and-refinement approach to pronunciation prediction,” in

Proceedings of the Symposium of the Pattern Recognition Association of South Africa, South

Africa, November 2004, pp. 119–123.

[86] M. Davel and E. Barnard, “Bootstrapping pronunciationdictionaries: practical issues,” in

Proceedings of Interspeech (accepted for publication), Lisboa, Portugal, September 2005.

[87] J. S. Garofolo, Lori F. Lamel, W. M. Fisher, J. G. Fiscus,D. S. Pallett, and N. L. Dahlgren,

“The DARPA TIMIT acoustic-phonetic continuous speech corpus, NIST order number PB91-

100354,” February 1993.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 150

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– DDaavveell MM HH ((22000055))

