University of Pretoria etd — Davel M H (2005)

CHAPTER SIX

BOOTSTRAPPING PRONUNCIATION MODELS

6.1 INTRODUCTION

In this chapter we apply the grapheme-to-phoneme rule idramechanisms developed earlier
in order to bootstrap pronunciation models. We analyse th@strapping process by developing
pronunciation models in Afrikaans, a Germanic languagé witairly regular grapheme-to-phoneme
relationship, and describe a number of experiments coaduotevaluate specific aspects of the boot-
strapping process. In Section 6.5.4 we analyse the effigiehthe bootstrapping process according
to the framework defined in Chapter 3. The completed systegrsimae been used for the develop-
ment of dictionaries in a number of additional language& s, Sepedi and Setswahpand these
dictionaries integrated in speech technology systemsesmithed in Section 6.6.

6.2 BOOTSTRAPPING SYSTEM

Two bootstrapping systems were developed:

e System A: The bootstrapping approach as described in 8e8#fbwas implemented in Perl,
to run within a Web browser [72]. This prototype provided apeximental platform for the
evaluation of the various algorithms described in Chaptand} allowed initial measurements
with regard to developer efficiency and accuracy. The erpants described in Sections 6.3
and 6.4 utilised this system.

e System B: Components of System A were re-implemented in ifagader to provide more
user-friendly interaction. The new system does not implenadl the algorithms evaluated in

Three more of South Africa’s official languages, from the Baiamily.

98

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

this thesis, but provides a more robust platform for dicigndevelopmert System B was
used in the experiment described in Section 6.5.

Both systems implement the bootstrapping approach destiibSection 3.4, as described in more
detail from both the user and system perspective in the mgxséctions.

6.2.1 USER PERSPECTIVE

% - G2P run experiment - Mozilla . o . o =)=
_ File Edit View Go Bookmarks Tools Window Help
i @0@ @ G _\% http://127.0.0.1/cgi-bin/g2 p/intro_run.cgi | I"G?LSe'archJ ‘:540
. ® Home =Bookmarks % The Mozilla Org... % Latest Builds
DictionaryMaker
ggz;ifgglem Verify pronunciation:
Synchronise experiment
Show dictionary status innoverend > — | n| u| f| e | r| 2| n| t|[Crw]
Verify
Display dictionary .
Redo one of pravious i‘ il ﬂ ﬂ j nich
Listen | u| a| g aul[Delete
[= [[[o] e a| v | uif
b p E| d
o ﬂ a g ui —I —‘ _I J
— [¥] & =]
®y | ai o iu @i il iI ﬂ i‘
o = =1 = =EE &l
5 o [[B
s z & Correct
[) © Unecertain Donel!
© Ambi
] 0 [[oo Cance
Le] Lo JCw In] [
= @4 B | Playing MD6 sound http://127.0.0.1/g2 pdocs/sound/Afrikaans/tmp/mareliel/finno... | |ﬂ:‘é€_‘é

Figure 6.1:Correcting the predicted pronunciations (System A).

The dictionary development task as presented toénifier is depicted in Fig. 6.1. The verifier is
presented with each word/pronunciation pair in turn, arkgeéso provide a verdict of pronunciation
accuracy. The verifier is required to verify all new prediog — none are assumed to be cofrect

2This system will be released as Open Source Software in thefoeure — see http://www.csir.co.za/hlt for more
information.
3In an alternative approach, Maskey al [68] utilised a confidence metric to assume the correctnbssroe of the

words. We preferred to verify all new predictions, giventimpredictability of some exceptions in pronunciation jcgdn
tasks.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 99

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

External data
A
Predicted A -3 Werify -3 (User-readabl
representation)

Conversion Current B A O S Base data: full current Conversion
it hase data set base A model
maodel
B (Interim
representation)

m
=

External data

Figure 6.2:The bootstrapping system concept.

Once the word list and phoneme set have been loaded and tieensgsepared, no further exper-
tise is required from the verifier apart from being able tdetdléntiate between correct and incorrect
pronunciations.

The verifier is presented with two representations of thaymeiation, namely a visual transcrip-
tion and an audio version. The audio version is created bgatenating pre-recorded samples of each
phoneme (i.e. the word is ‘sounded’ rather than synthekiSduk verifier specifies a verdict: whether
the pronunciation isorrectas predicted, whether the word itselfimgalid, ambiguousdepending on
context, or whether the verifier isncertainabout the status of the word. If the pronunciation is
wrong, the verifier specifies the correct pronunciation lmgaeing, adding or replacing phonemes in
the presented pronunciation. Once the verifier is certath@fccuracy of a specific pronunciation,
he or she is encouraged to listen to the audio version of tlaé gimnunciation, and so identify po-
tential errors. At any stage the verifier cRedoa word, in order to correct a previous mistake. The
verifier can alsd.ist possible errorsvhich provides a list of exceptional pronunciations, asused
in more detail in Section 6.4.

6.2.2 SYSTEM PERSPECTIVE

Fig. 6.2 illustrates the bootstrapping concept from a sygterspective. The bootstrapping system is
initialised with a grapheme and phoneme set, and a large gb(dontaining no pronunciation infor-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 100

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

mation). Each phoneme is associated with a pre-recorded aathple. The system can be primed
with an existing rule set or dictionary, if available. If tiegr is available, the system will predict
empty pronunciations initially, which, when correctedinfiothe basis for further bootstrapping.

Bootstrapping occurs in two phases. During the initial phéise grapheme-to-phoneme models
are updated whenever a word is verified as correct. In thenslggloase, a complete update (referred
to as a synchronisation event) only occurs after a set of svaad been verified as correct. In between
synchronisation events, learning can either be ceasedntinaed using an incremental algorithm
The dictionary developer chooses the number of words athwthie system progresses from the first
to the second phase, as well as the size of the set corredt@e Ipeodels are synchronised with the
new training data during the second phase. Once initigltbedfollowing steps are repeated:

1. The system analyses its current understanding of theatagkjenerates the next word to con-
sider, as described in Section 6.2.3.

2. For the chosen word, the system generates a new prorionaiging its current grapheme-to-
phoneme rule set.

3. The system creates a ‘sounded’ version of each word usm@redicted pronunciation and
associated sound samples, and records the verifier’s fisbnse.

4. If aword has been verified as correct, the system incré@seagdate synchronisation counter.
If an update event is due, the system updates its graphepigstteme rule set based on the
new set of pronunciations.

This process is repeated (with increasingly accurate giieds) until a pronunciation dictionary
of sufficient size is obtained.

6.2.3 ALGORITHMIC CHOICES

In the experiments conducted here we either DE€-minor Default&Refinefor rule extraction, as
stated per experiment. We also state whether incremeatalitg is utilised between synchronisation
events or not. A further algorithmic choice concerns the metsm whereby the next ‘best’ word
to add to the knowledge base is selected, as this can inflikapeed at which the system learns.
We utilise three different techniques in our experimentsyeferred to in the various experiment
descriptions:

e Evenly selected from corpus:
Here we order the available word list alphabetically, anéctesveryn'” word in order to
obtain a subset of the required size.

4Such as incremental Default&Refine, described in Sectiémi4.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 101

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

e Systematic growth in context:
The system grows its understanding of pronunciationssimaxt systematically. Contexts of
varying sizes are ordered according to occurrence frequi@ngeneral text, creating a list of
‘contexts in question’. A continuous process predicts thet iest word to verify based on
the current state of the system: the shortest word is chdsdrcontains the next context in
question. If so required, the system will attempt to obta&rtainty on as many contexts of size
n as possible, before continuing to a context of sizé.

e Random:
A subset is chosen at random.

An alternative approach is suggested in [68], where wordoetered according to frequency in
general text, and the most frequent words are processedTis provides the advantage that more
frequent words are automatically included in the dictignlmt can also decrease learning perfor-
mance if the more frequent words tend to have irregular proiations, as is possible, depending on
the specific language being considered.

6.2.4 SYSTEM CONFIGURATION

Fig. 6.3 depicts the options presented to the user prep#nmglictionary development process.
Displaying the current status, as shown here, is one tasknain experimental environment that
allows a user to manipulate and generate the various respimeolved (the rule set, word list and
pronunciation dictionary) as required. For each experintha system logs the history of all activities
and archives the intermediary data resources for furthelysis.

6.3 EXPERIMENT A: VALIDATION OF CONCEPT

In this section we report on a series of experiments conduaterder to analyse the bootstrapping
approach. The experiments are aimed at understanding aenwhissues, including the following:

1. Can the bootstrapping approach be used to develop priationcdictionaries more quickly
than conventional transcription?

2. How important is the linguistic background of the dicaoy developer? Is it possible for
a first language speaker without any phonetic training telbgvan accurate pronunciation
dictionary? (As mentioned in Section 1.1, this is highlyngfigant in the developing world.)

3. How long does it take for a developer to become proficiett thie bootstrapping system?

4. What are the practical issues that affect the speed andaagoof dictionary development using
the bootstrapping approach?

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 102

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

i} G2P Intro - Mozilla
. Ele Edit view Go Bookmarks Tools Window Help |

" @0 @ @ @ [crmizooiegs] [Eyseareh) Qigo :

- 48 Home FBookmarks % The Mozilla Org... % Latest Builds

[l
£}
¥

[CINm

DictionaryMaker

I

Experiment
Changs language Change language

Create new]
Show status & afrikaans
Load

Copy

Word List " Flemish
Import master list
View rnaster st
lon- o " isiZulu
Load
View Sepedi

¢ English

¢ German

Generats
Verify format
Dictionary
Import

Load Cancel
View

Generate

Correct

Verify format

Add eurrent to master dict
Add master to current dict
View master diot

Clean master

" Setswana

=l

Rules
Import
Load
Generate —|
View

Analvse
Verify format
Info

Sounds

Rule accuracy
D& e 8l I —‘wlﬁ;é‘_g/

ik

Figure 6.3:Preparing the bootstrapping system (System A).

In Section 6.3.1 we describe the experimental protocobfedid. Utilising the framework defined
in Chapter 3, we analyse the bootstrapping process fromdabtiman factors perspective (Section
6.3.2) and a machine learning perspective (Section 6.5138ection 6.3.4 we analyse the efficiency
of the overall system, and compare expected and measuneesyval

6.3.1 EXPERIMENTAL PROTOCOL

The first set of experiments involved three dictionary depets who created pronunciation dictio-
naries for Afrikaans. All three developers are first-largidfrikaans speakers; and in informal in-
terviews all three were found to employ a broadly similatetinof “standard” Afrikaans. Two of the

developers (whom we will refer to as A and B) have no formajuiistic training, whereas developer
C has significant linguistic expertise, and has previouseegpce in the creation of pronunciation

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 103

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

dictionaries.
The following protocol was used for all three developers:

1. A brief tutorial on the bootstrapping system, as well @&dhosen phonetic representation, was
presented by one of the experimenters.

2. Atraining set of 1000 words was drawn from a corpus of Afaks words, and the developers
were given the opportunity to familiarise themselves with system (and the phoneme set)
by developing pronunciation rules for a subset of these svaging the bootstrapping system.
The process continued until the developers were satisfadhby were comfortable with the
software and phoneme set.

3. A new set of 1000 words was selected, and the developessag&ed to produce the most ac-
curate rules they could, by listening to the sounded vergioduced by the system, correcting
it if necessary, and repeating these two steps until satigfih the pronunciation.

4. Further sets of 1000 words were used to experiment wittowsrother factors, such as the
effect of giving developers the option not to use audio tesi®.

Each set of 1000 words was selected according to the ‘sysitegrawth in context’ word se-
lection technique from an independent 40,000-word subset of the full Afrikaavord list. The
DEC-minalgorithm was used for rule extraction, and all experimevdse conducted iphase lop-
eration, that is, the rule set was updated after every dedlemord. During these experiments we
measured several relevant variables, including: the takert to complete each verification; the num-
ber of phonemes changed per word verified; whether the desetihose to use the audio assistance;
whether a developer returned to a word to re-correct it aiea fage; and the amount of idle (resting)
time between sets of verifications.

6.3.2 HUMAN FACTORS
6.3.2.1 USER LEARNING CURVE

To measure a developer’s facility in using the bootstragoftware, it is useful to obtain separate
measurements of how long it takes (on average) to verify svordvhich no corrections are made,
words where one correction is made, words where two coorstire made, etc. This eliminates the
confounding effect of the system becoming more accuratélaarns more rules (thus accelerating
apparent developer performance). By this measure, ak tthegelopers reached a satisfactory level
of performance within approximately 400 words. For examplg. 6.4 depicts how the times for
developer C to correct zero through four errors convergdéd sstable values; similar tendencies
were seen for the other developers as well.

Sas described in Section 6.2.3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 104

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

60 T T T T . , : . .
Correcting 0 errors —+—
Correcting 1 errors --——x—--—-
Correcting 2 errors - o

50 Correcting 3 errors 8 7
w
< 40 -
S
5 * *D R
g 30 Frex e = 8 B
- '
2 o
© e R
-E 20 X‘X,xx\ KK g I

X\X&XX

10 - e I UNITITE I e S

O 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000 1100

Number of words verified

Figure 6.4: Average time taken by developer C to verify words requiriegp,zone, two or three
corrections, as a function of the number of words verifiece aherages were computed for blocks of
50 words each.

This is highly encouraging, since the initial 400 words wesenpleted in less than two hours in
every case. Even linguistically untrained users can tbezdiecome proficient at using bootstrapping
within this length of time.

6.3.2.2 EFFECT OF LINGUISTIC EXPERTISE

The ability of linguistically untrained users to becomefimient at using the bootstrapping system
does not necessarily imply that the users were using therayestcurately. Itis an interesting question
whether it is at all possible for a first language speakerauttany phonetic training to develop an
accurate pronunciation dictionary.

In order to analyse the effect of linguistic sophisticatitre performance of developers A and B
(who have had no linguistic training) was compared with tfadeveloper C along the dimensions
of speed and accuracy. Because there is unavoidable amyhilguiefining “correct” pronunciations
(even within a particular dialect), we measured accuracsnbgually comparing all cases where any
pair of developers chose different transcriptions for advém those cases, a transcription was flagged
as erroneous if (in the opinion of the author) it did not repré an accurate transcription of the word.

Table 6.1:Estimated transcription accuracies of three developera et of 1000 words.

Developer| Transcription experience Word accuracy|
A None 83.6%
B None 98.0%
C Substantial 99.0%

Table 6.1 summarises the accuracies of the three devel@segstimated using this process. Only
words marked as “valid” by a developer were included in thawation. As expected, developer C

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 105

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

was found to be highly accurate. Interestingly, develope&raB only slightly less accurate, whereas
developer A made significantly more errors than either ofothers. During analysis it was revealed
that developer A had not adhered to the protocol defined itid®e6.3.1: when confident of the
accuracy of a pronunciation, developer A had accepted pations without utilising the audio
assistance provided by the system. Two conclusions arestegiby these measurements:

e It is possible for a linguistically inexperienced develope use the bootstrapping system to
attain levels of speed and accuracy comparable to thoseighly Iproficient dictionary devel-

oper.

e Developers with limited linguistic experience should bguieed to listen to every transcription,
since it is easy to become over-confident about one’s altditgad phonetic transcriptions.

6.3.2.3 THE COST OF USING AUDIO ASSISTANCE

Since we found that the developer who did not sound words @aenmany more errors than those
who did, it is important to investigate how much this subegass delays the process of verification.
To this end, we asked developer C to verify an additional 8200 words, only choosing to sound out
those words where she considered it useful. In Fig. 6.5 the taken to verify words with various

numbers of corrections is compared with the times when thetiaudio assistance was compulsory.

40
Compulsory audio assistance +—+— ‘
Optional audio assistance ----x----
30
o S
= 20 b
¥
i) o
& Y 2} !
@ v
o 1
o 10 3
E i
|_
0
Uncertain Invalid Correct Edit1 Edit 2 Edit 3
-10

Verdict

Figure 6.5:Average time taken by developer C to verify words, with artdoui compulsory use of
audio assistance.

We found that this choice did not cause the developer to coamyierrors; however, the reduction
in verification time was also relatively small (3.6 secondsagerage). This confirms the suggestion
in Section 6.3.2.2 that it is generally better not to makeube of audio assistance optional.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 106

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.2.4 THE COST OF PHONEME CORRECTIONS

The number of phoneme corrections required is the domiratoifin determining verification time.
For example, analysis shows that the length of the words t@bifed correlates with the verification
time if no corrections are required, but not if one corratti® required, and that word length is the
less important of these two factors. (Word length similades not predict verification time if two or
more corrections are required.) Developers take compadabhtions to perform their verifications,
as shown in Fig. 6.6.

50
Developer A —+—
Developer B +----- § |
40 Developer C - | i

30

10 +

Time per action (in s)
N
o

Uncertain Invalid Correct Editl Edit2 Edit3 Edit4
Verdict

-10

Figure 6.6: Average time taken by three developers to verify words regudifferent numbers of
corrections (or to mark words as invalid or ambiguous/utaer). The averages were computed for
the same set of 1000 words as above.

6.3.2.5 RELATED FACTORS

Our experiments have underlined a number of practical fadttat need to be taken into account
when developing pronunciation dictionaries using boafgimng:

e Relatively informal instruction of the developers is suéit, if they are given the opportunity
to learn by using the system.

e The appropriate definition and usage of the phoneme setresgeome care. When a new lan-
guage is being developed, it is advisable to do this in aatiter fashion: developers develop
a small dictionary, and their comments as well as transoriptare reviewed to determine
whether any phonemes are absent from the set being usedsartd determine what conven-
tions are required to ensure consistency of the dictionary.

e For a linguistically inexperienced dictionary develogbe audio samples used should ideally
match the developer’s regional accent.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 107

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

e When developers have limited linguistic experience, theyufd be required to listen to every
word prior to final acceptance of a transcription.

6.3.3 MACHINE LEARNING FACTORS
6.3.3.1 SYSTEM CONTINUITY

The faster the system learns, the fewer corrections areregjof the human verifier, and the more
efficient the bootstrapping process becomes. The most taniaaspect that influences the speed at
which the system learns relates to the continuity with whiahsystem updates its knowledge base.
A continuous process was chosen, whereby the system regesés prediction models after every
single word verified. This has a significant effect on systeximing responsiveness, especially during
the initial stages of dictionary development when the sydtas access to very little information on
which to base its predictions.

6.3.3.2 PREDICTIVE ACCURACY

The increasing likelihood that the system will correcthegict pronunciations as more words are
verified is depicted in Fig. 6.7, which shows the average ramab phoneme corrections required
as a function of the number of words verified by developer Be imber of corrections decreases
steadily as more words are verified, producing an increfsicrurate dictionary and enabling the
developer to process subsequent words more rapidly.

2.2

2

o
1.4 \
1.2 \
N

0.8
\M\\www

0.6 ————

Number of phoneme corrections per word

0.4

0 100 200 300 400 500 600 700
Number of words verified

Figure 6.7:Expected number of phonemes that required correction bgldeer B as a function of
the number of words verified.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 108

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.3.3 VALIDITY OF BASE DATA

A final factor that influences the speed of dictionary develept concerns the validity of the initial
word lists. In this set of experiments word lists were oledifrom Internet text and contained up to

15% invalid words.

6.3.4 SYSTEM ANALYSIS

We can combine the information in Figs. 6.7 and 6.6 to deriwmdel of how long it will take system
users such as developers B and C to create pronunciatioorgidges of various sizes. To do this, we
fit an exponential curve through the smooth part of the grag¥id. 6.7 (i.e., for 100 or more words
verified), and estimate a linear model for the expected eatifin time as a function of the required
number of corrections. Fig. 6.8 shows how machine learnnoglyzes slower-than-linear growth
in development time, and that a fairly sizeable dictionaam be created in fewer than 20 hours of
developer time. The bootstrapping approach is comparedatwuai verification at 19.2s and 30s
per word. (19.2s was the fastest average time observed ilalooiratory using a proficient phonetic
transcriber, and represents an optimistic time estimate.)

Also note that the model of expected development time, wiviahibased on measurements of the
time taken by Developer B, predicts Developer C’'s measunésnegith reasonable accuracy.

35 T T T T T T
Manual transcription: 30s per word ———
Manual transcription: 19.2s per word -
30 | Bootstrapping: predicted time -----------
Bootstrapping: measured time (Dev C) +

25
B
3 20
ey
£
3]
£ 15
'_

10

+
+N”+ + 0t oo
5 S ET
g ’
0 i
0 500 1000 1500 2000 2500 3000 3500 4000

Number of words verified

Figure 6.8:Expected time (in hours) required to compile an Afrikaarenpinciation dictionary, as a
function of dictionary size.

From this set of experiments we conclude that a bootstrgpgiproach can be used to generate
pronunciation dictionaries efficiently. Encouraginglynsar estimates are found for an experienced
creator of pronunciation dictionaries (with significamduistic training), and a developer with no

prior exposure to formal linguistics.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 109

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.4 EXPERIMENT B: SEMI-AUTOMATIC DETECTION OF VERIFIER
ERRORS

Dictionary developers are typically required to enter it predictions for several thousand words
in order to develop dictionaries of sufficient accuracyhaligh our interface attempts to assist devel-
opers in this task (e.g. by audibly sounding out the chosenuprciations and by providing automatic
predictions for every word), it is inevitable that errordharise from time to time.

Fortunately, theDefault&Refineapproach is well suited to assist in the detection of suabr&rr
Since every rule in the hierarchy is selected to describetecpkar set of words, and errors are likely
toresultin rules that are applicable to few words besidegttoneous one, one expects that erroneous
transcriptions will tend to show up as rules which suppont ¥eords. Of course, there may also be
valid pronunciation rules which are not supported by marangples; it therefore is an experimental
issue to determine how useful this guideline is in pradicaétecting transcription errors. Different
languages will differ in this regard — a highly “regular” Bumge such as Spani§hwill generally
have many examples of each valid rule, whereas the idioagies of English pronunciation will
produce a large number of valid special cases. As a conseguenr approach is expected to be
more successful for languages such as Spanish.

To investigate the utility of the proposed method for detectranscription errors, we conduct a
number of simulation experiments with Afrikaans. Heudaliy, we expect Afrikaans to lie some-
where in the middle of the continuum between regular anglee languages. Our experiments use
a verified dictionary with 4 923 valid word#\frikaans A. Based on earlier experience with dictio-
nary developers who are error prone (see Section 6.3.2e&grtificially corrupt a fraction of these
transcriptions and then measure the efficiency of the nuobeords guideline to indicate the words
with corrupted transcriptions. This is the similar to theqass followed in Section 4.7.4 where we
evaluated the effect of noise on the predictive ability efilefault&RefineandDEC-growalgorithms.

As in Section 4.7.4 we introduce two types of corruptions tiie transcriptions:

e Systematic corruption®flect the fact that users are prone to making certain trgntien errors
- for example, in the DARPA phone sety is often used whereyis intended. We allow a
number of such substitutions, to reflect observed confgdigrAfrikaans transcribers.

e Random corruptionsimulate the less systematic errors that also occur inipegaéh our sim-
ulations, random insertions, substitutions and deletamhonemes are introduced.

We generate four corrupted data sets (systematic submtgyutrandom insertions, substitutions and
deletions), where 1% of the words are randomly selecteddisuption. Default&Refinerule sets are
then generated for each case, and the percentage of ersoweods that are matched by the most
specific rules are determinédIn Fig. 6.9 we show the fraction of errors that remain unclet

®That is, a language with a very regular mapping between phesand graphemes.
’SinceDefault&Refinealways applies rules in the order most to least specific,uteeardering used for prediction was

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 110

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

against the fraction of words examined, as this thresholdpetificity is adjusted. Note that this
depiction is closely related, but not identical, to that lie well known Detection Error Tradeoff
(DET) curves [73].

100 — 100 —
g0 b] g b]
60 L 60 _—_ -

40 40

20 - 20

0

100 ' ! ! ! 100 J ! !
BO [| | |

0 20 40 60 80 100
(© (d)

Figure 6.9: Fraction of erroneous words that are not detected as a fonctf the fraction of all
words examined, when words are examined in the order of thest specific rules, for various
types of corruptions: (a) random substitutions (b) randarsertions (c) random deletions and (d)
systematic substitutions.

These results suggest that this method has significant uaecilerating the process of error
detection. For all three types of random errors, more th& 80the errors can be identified after
inspecting fewer than 20% of the transcriptions. As far assiystematic errors are concerned, about
half the errors occur in the first 5% of the words inspectedthiay time, the systematic patterns are
obvious, and can be used to select other candidate worde wiege same errors may have occurred.

In practice, the error-detection process can be combintidtiag synchronisation event, with pos-
sible errors flagged by the bootstrapping system and cedeghere necessary by a human verifier,
prior to continuing with the next session. This then becoasisnple and efficient way of identifying
errors during bootstrapping. Alternatively, the errotei#ion process can be used as a stand-alone
technique, in order to identify possible errors in a pronati@n dictionary developed via different
means.

used as measure of specificity. The specificity of a word isrtads the specificity of its most specific grapheme, since a
transcription error may result in one or more rules becorhighly specific to that word.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 111

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.5 EXPERIMENT C: BUILDING A MEDIUM-SIZED DICTIONARY

In the final controlled experiment we build a medium-sizedilisfans dictionary utilising the new
techniques developed in this thesis. In section 6.5.1 waelelur experimental protocol and in the
remainder of this section we analyse the efficiency of thegss according to the framework defined
in Section 3.

6.5.1 EXPERIMENTAL PROTOCOL

Up to this point, the various dictionaries developed dugrgerimentation were fairly small (approx-
imately 1000 to 2000 words). In this experiment, we verify difectiveness of the various techniques
when building a medium-sized dictionary in a continuouscpss. Since we are growing the dictio-
nary from a previous baseline we are specifically interestdde extent to which the bootstrapping
process supports the extension of an existing dictionary.

We utilise one of the developers (Developer C) who has pusviexperience in using the boot-
strapping system. We perform bootstrapping using Systeam@jnitialise the bootstrapping system
using the dictionanAfrikaans &. We use increment@efault&Refinegfor active learning in between
synchronisation sessions, and standaedault&Refineduring synchronisation. We set the update
interval (number of words modified in between synchroniseg) to 50, and order words randomly
(in the list of new words to be predicted).

At the end of the bootstrapping session we perform errorctiete (No additional error detection
is performed during bootstrapping.) We first extract thedfsgraphemic nulls, and identify possible
word errors from the graphemic null generators. We theraekibefault&Refinerules from the full
dictionary with the purpose of utilising these rules to itifigrerrors, similar to the process described
in Section 6.4. We list all words from word sets that resulainew rule and contain fewer than five
words as possible errors, and verify these words martually

6.5.2 HUMAN FACTORS ANALYSIS

We measure the time taken by the verifier (developer C) toopmrfeach verification action, and
analyse the effectiveness of the verification process frdmraan factors perspective. Fig. 6.10
illustrates the verification process as the dictionary grénem 5500 to 7000 words. We plot the time
taken to verify each valid word, indicating whether 0,1 23@orrections are required, for each word
as it is added to the dictinary. (The number of training wardghe x-axis includes both valid and
invalid words.)

We note the following:

8As described in Section 4.3, we create #fekaans Adictionary by cross-analysing the dictionaries from theous
experiments run to date and manually verify discrepancies.

°A word set associated with a rule tends to have either onlyoomeo words associated with it, or a large set of words:
within an acceptable range, the error detection proces# isamsitive with regard to the exact cut-off point selected

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 112

University of Pretoria etd — Davel M H (2005)

CHAPTER SIX

BOOTSTRAPPING PRONUNCIATION MODELS

30 T T T

X
XXX T

X

o+ F
b o et Foht A At g
b L o i i

T T
0 corrections +
1 corrections x
2 corrections *
3 corrections o

X X

s +

o T
A e T
LA *1;5#} 4

ol

g
L L

o o
25
o 20
e o
o
o
Q
o 15 |
£
E I e
F 10t * %
XX x x x XX
L X x X
5rx .
tott gt +
i ity g TR
L L L
5600 5800 6000

6200 6400 6600 6800 7000

Number of words in training dictionary

Figure 6.10:Time taken to verify words requiring zero, one, two or thregections, as a function of

the number of words verified. For the first three measuresatieeages were computed for blocks of

5 words each.

e User learning curveDeveloper C was proficient in using the system prior to theerurboot-

strapping session, and further training was not reqéftted

e Cost of intervention:In this experiment we utilised two intervention mechaniswerifying

predictions, and verifying the list of possible errors. [€ah.2 provides the average verification

times observed for Developer C where the intervention ndshais a single verification of

a prediction {,c,; y(single,s)) fOr words that are in different statesprior to verification. Ver-

ification of the list of possible errors took approximately rdinutes (for approximately 3000

words).

Table 6.2:Statistics of the time taken to verify words requiring 0dr,3 errors, or to identify a word
as invalid or ambiguous(is the mean, and the standard deviation.).

Verdict Time in seconds
o o
correct 1.95 1.35
1 error 5.79 2.30
2 errors 10.74 3.19
3 errors 17.91 6.12
invalid 3.39 4.71
ambiguous| 8.92 5.08

e Task difficulty: During the bootstrapping process, 3019 words were addegetalittionary,

of which 181 were invalid or ambiguous. During error detaati9 errors were found in the

remaining 2838 valid words. Given our analysis in Sectighvée estimate that this represents

°The value oft;,.q:» during the initial session was 120 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

113

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

at least 50% of the errors, and therefore estimate the aetual rate to be).6%L. It is
interesting to note that, while our error detection proteesulted in a re-verification &.3% of
the full dictionary (1832 grapheme-specific patterns, aual300 words), the average position
of each error in the ordered error prediction list wa$.67% of the full training dictionary,
with the majority of errors found in the firét 1% of words, i.e. the first or second pattern on
the per-grapheme list of potential errors.

e Difficulty of manual taskerror_rate,,onuq 1S assumed to be 0.5%, which is an optimistic
estimate for the range of manual development speeds esdluat

¢ Manual development speeDifferent values ot 4., are used for comparison, ranging from
19.2s, again an optimistic estimate.

e Initial set-up cost: As this is an extension of an existing system, no furthemugetost was
incurred?,

6.5.3 ANALYSIS OF MACHINE LEARNING FACTORS

0.32

ol |

R
. W& / RM/\/

0.22

Average number of corrections required

5400 5600 5800 6000 6200 6400 6600
Number of words in training dictionary

Figure 6.11:The average number of corrections required as a functiom@ftumber of words veri-
fied. Averages were computed for blocks of 50 words each.

From a machine learning perspective, the following is olesdr

e Predictive accuracy of current bas®leasured directly during experimentation, the number of
corrections required per word added to the diction@ne_n(s,n)) is depicted in Fig. 6.11.
We plot the running average (per blocks of 50 words) of thelmemof corrections as a function
of the number of words verified.

1118 errors in 2838 valid words.
2In the previous experimemt.tup bootstrap - Lsctup.manual < 60 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 114

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

e On-line conversion speed:he average time taken for a synchronisation eventials$ sec-
onds ¢ = 7.72s). This value increased gradually frods during the initial cycle, tdh6s in
the final cycle.

¢ Quality and cost of verification mechanisnie computational times required for both verifi-
cation mechanisms are included in the verification timesadliditional processing is required.

¢ Validity of base datavalid_ratio = 94%.

6.5.4 SYSTEM ANALYSIS

Based on our observations during this experiment, we cagraapproximate values to the different
costs and efficiencies involved during bootstrapping of &iikAans dictionary up to 10,000 words.
We list these values in Table 6.3.

Table 6.3:Typical observed values for various bootstrapping paramrset

Bootstrapping parameter Estimated value
Training cost tirain < 120 min
Verification cost for single words, with X t,c.; ty(single,s) (2 +4.5x) sec
corrections required for a word in state $:
Verification cost during error detectiont,c,;ty(error—det) < 10 min
(per 1000 words):
Verification cost during error detectiont,,;ty(crror—det) < 3 min
(per 400 words):
Task difficulty - bootstrapping, no errarerror_rateyootstrap 0% — 1%
detection
Task difficulty - bootstrapping, error dg-error_rateyootstrap 0% — 0.5%
tection
Task difficulty - manual error_ratemanual 0—-0.5%
Manual development speed Ldevelop 19.2 — 30 sec
Initial set-up cost tsetup_bootstrap - tsetup_manual < 60 min

We use eq. 3.4 to analyse our results, and for the single weniler we combine the values
Of Lauto(s,single) WIth tyerify(s,single) @S @ Single measurement, as discussed in the previousnsectio
We also combine the value fge With t,c.;fy(error—det), @S these two events both occur during
synchronisation. We then obtain the following expected 0b$v cycles of bootstrapping:

E[tbootstrap (N)] - E[tsetup_bootstrap] + E[ttr(zm] + E[titerate (N)] (61)
N-1
E[titerate (N)] = Z < Z (E(tverify(sa 3ingl€))'E(inc—n(Sa l’)))
r=1 “s€&status
N-1
+ Z <tidle (inc—n(validv T+ 1)) + tverify(errorfdet) (inc—n(valida T+ 1))) (62)
r=1

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 115

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

We assume an update event after every 100 errors (appr@yn¥i0 words verified.) A$;4.
is dominated by, ; ry (error—der) during the initial 10,000 words, we keep this value constenthe
number of words in the training dictionary increasesind estimate it at:

tverify(errorfdet) (400) + lidie (400) = 180 seconds (63)

From Table 6.3 we estimaté&(t,.,is, (s, single)) asty + t.x seconds, where: is an in-
dication of the number of corrections required, = 2 andt. = 4.5. In order to estimate
chv:_f E(tyerify(s, single))E(incn(s, x)) for different states (different numbers of corrections per
word) we smooth the number of errors across the training -dats if a word could only have one
error — and fit an exponential curve through the accuracy mneasents depicted in Fig. 6.11. That
is, we assume the probability that the system will prediceaor when the training dictionary is of
sized is given byp.(d), where:

pe(d) = Poef%
i.e. logpe(d) = logPy— — (6.4)

and Py andk are parameters to be estimated. The time required farrections?’(d) (excluding
synchronisation events) is then given by:

T
L

T(d) = (to + tePo)

N
Il
=)

d
_d

= dt0+tP

k-'

—1
=0

—_
m

|
e

= dtg+t. Py

(6.5)

—
(b
?rl»a

For the specific data depicted in Fig. 6.11 we obtain the edtim

logPy = —1.274
1
= —3.49 %107 (6.6)

We can combine eq. 6.2 and eq. 6.5 in order to estimate the & |t;;erqc (d/400)] for
various values of total dictionary sizk

|
£

1—
E[titerate(d/400)] = dty+ teFp
1

—e

d
+m * (tverify(error—det) (400) + tidle (400)) (67)

=

BThis value is influenced by the number of words corrected pelec- a number that remains constant per cycle.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 116

University of Pretoria etd — Davel M H (2005)
BOOTSTRAPPING PRONUNCIATION MODELS

CHAPTER SIX

90

80

70

ﬁootstralpping -
manual (19.2s) -

manual (30.0s) %

60

50

40

30

Development time in hours

20

X o

10

A

——
I

!
L———

et

]

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of words in training dictionary

Figure 6.12:Time estimates for creating different sized dictionari&&anual development is illus-
trated for values of j.,c10p(1) 0f 19.2 and 30 seconds, respectively.

In Fig. 6.12 we plot eq. 6.7 for different values @&f using the estimates from eq. 6.3 and eq.

6.6. On the same graph we plot the cost of manual dictionavgldement (again excluding setup

cost) using eq. 3.5 and estimates f@f,;,,(d) of 19.2 and30 seconds, both optimistic estimates.

For these estimates we assume that the same base data émt alda with a similiar validity ratio)

is used for both approaches. We also assume that the eresrfaatthe bootstrapping system with

error detection and the manual process are approximateli.etn Fig. 6.13 we plot the efficiency

estimates of the bootstrapping process as compared to aahdiotionary development process for

the same values as Fig.

10

9.5

9

8.5

8

7.5

Efficiency ratio

7

6.5

6

5.5
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

6.12.

19.2s

30.0s

oo

Number of words in training dictionary

Figure 6.13:Estimates of the efficiency of bootstrapping, as comparédmanual development for
values 0ft ge,e10p (1) 0f 19.2 and 30 seconds, respectively.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

117

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.6 BUILDING SYSTEMS THAT UTILISE BOOTSTRAPPED DICTIONARI ES

In the work up to this point we have verified the bootstrapgimgcess through (1) simulated ex-
periments in which an actual pronunciation dictionary &ds and was utilised as a pseudo-verifier,
and (2) by creating multiple dictionaries using differentrian verifiers and comparing the results.
In this section we describe a number of speech technologgragsthat were developed using the
bootstrapped dictionaries.

6.6.1 ISIZULU TEXT-TO-SPEECH

The first system developed using a bootstrapped dictionay avgeneral purpose text-to-speech
(TTS) system developed in the Festival [74] framework as giathe Local Language Speech Tech-
nology Initiative (LLSTI) [75], a collaborative projectahaims to support the development of speech
technology systems in local languages. A small graphenpdrtmeme rule set was generated using
the bootstrapping system and converted to the Festivatttsound format. (ThBictionaryMaker
prototype can automatically export a developed dictioraeither a Festival-formatted lexicon or
Festival-formatted letter-to-sound rules.)

The TTS system used tiMdultisyn approach to synthesis and is described in more detail in [76]
and [77]. The completed system was evaluated for intelligikand naturalness by both technologi-
cally sophisticated and technologically unsophisticatsers, as described in [78].

Table 6.4:Parameters of the isiZulu text-to-speech dictionary

Number of graphemes in orthography 26
Number of phonemes in phoneme set 50
Number of words in dictionary 855
Number of derived rulesEC-min) 84

6.6.2 SEPEDI SPEECH RECOGNITION

During 2004, the University of Limpopo collected a first caspof Sepedi (Northern Sotho) speech
with the purpose of creating an automatic speech recognif&R) system, and required a pronun-
ciation dictionary in order to proceed with further devetmmnt. In collaboration with partners from
the University of Limpopo, a bootstrapped dictionary wasated. Again a fairly small number of
words were bootstrapped in order to develop a concise settefto-sound rules. These were then
used to develop a speech recognition system using the HTKrgi@ework, as described in [80].

6.6.3 AFRIKAANS TEXT-TO-SPEECH

Much of the initial experimentation with the bootstrappiagproach was performed for Afrikaans,
as described in previous sections of this thesis. The Adrikadictionary was used to develop a

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 118

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

Table 6.5:Parameters of the Sepedi speech recognition dictionary

~J

Number of graphemes in orthography 2
Number of phonemes in phoneme set 41
Number of words in dictionary 282y
Number of derived ruledEC-min) 90

Afrikaans TTS system for the South African Centre for Pulervice Innovation (CPSI), who are
using the voice to pilot a system that will allow citizens mbeiract with a governmental service that
deals with passport applications via a number of interactiechanisms not previously available.
One of the mechanisms tested includes the use of cellphmes l&hort Message Service (SMS) to
communicate, and converting such SMSs to voice when a usfarpra voice-based service — mainly
in order to ensure accessibility to all citizens, includilliterate system users, and system users with
specific disabilities. This system is currently being pbht

Table 6.6:Parameters of the Afrikaans text-to-speech dictionary

Number of graphemes in orthography 40
Number of phonemes in phoneme set 43
Number of words in dictionary 7782

Number of derived ruledefault&Refing 1471

6.6.4 OTHER SYSTEMS

The CPSI pilot project described above aims to provide sesviin four languages: English,
Afrikaans, isiZulu and Sepedi; a Sepedi voice similar tsthdescribed in Sections 6.6.1 and 6.6.3
was therefore developed, using the dictionary built asritestt in Section 6.6.2. Further development
on the Sepedi voice is currently under way, specifically dimeimproving the intonation contours
of the current voice.

Furthermore, an initial isiZulu ASR system and an Afrika&®&R system were developed, with
further optimisation currently in progress. A first Setsaalictionary was developed, and will be
refined and integrated in similar systems as part of the Opamd°[81] project, a project sponsored by
the International Development Research Centre (IDRC) lam®ipen Society Initiative (OSI), which
aims to make telephony services more accessible to infavmaervice providers in the developing
world.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 119

University of Pretoria etd — Davel M H (2005)
CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.7 CONCLUSION

In this section we demonstrated the practical applicatibthe bootstrapping system, evaluating

the efficiency of the approach from both a human factors anéehime learning perspective. We

found that, even with optimistic estimates for the time iegfito develop a single instance of a

pronunciation dictionary manually, the bootstrappinggess provides a significant cost saving, as
illustrated in Fig. 6.12. We also described a number of dpéechnology systems developed using
newly bootstrapped dictionaries. In the next chapter (&vap) we discuss the implications of our

results.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 120

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	CHAPTER 6
	6.1 INTRODUCTION
	6.2 BOOTSTRAPPING SYSTEM
	6.3 EXPERIMENT A: VALIDATION OF CONCEPT
	6.4 EXPERIMENT B: SEMI-AUTOMATIC DETECTION OF VERIFIER
	6.5 EXPERIMENT C: BUILDING A MEDIUM-SIZED DICTIONARY
	6.6 BUILDING SYSTEMS THAT UTILISE BOOTSTRAPPED DICTIONARIES
	6.7 CONCLUSION

	Chapter 7
	Back

