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CHAPTER FIVE

MINIMAL REPRESENTATIONGRAPHS

5.1 INTRODUCTION

In Chapter 4 we analysed the grapheme-to-phoneme commetesi®@ and developed an algorithm
suitable for bootstrapping. During the development of #igorithm Oefault&Refing an interesting
trend was observed: if different rule sets that all providenplete recovery of a set of training data
are extracted, the smaller rule sets tend to generaliser lmettan unseen test set. This is not an atyp-
ical situation when addressing machine learning probldéms|eads us to an interesting theoretical
question: is it possible to define an algorithm that extréwessmallest possible rule set within the
rewrite rule framework studied in the previous chaptenrfrany given set of training data? All the
algorithms discussed in Chapter 4 use heuristic informattioattempt to obtain such a rule set; we
are interested in understanding the exact options availahken attempting to obtain a minimal rule
set given a set of training data.

In Section 5.2 we describe a conceptual approach that allevis analyse the interdependencies
among words in the training data in a rigorous fashion. Thasnework provides us both with a
basis for analysing current rule extraction algorithmsl paoints towards a method for the extraction
of a provably minimal rule set. In Section 5.3 we define thewuksed framework in more detail,
and demonstrate how this framework can be used to extrazsats. In Section 5.6 we discuss the
implications of our results.

5.2 CONCEPTUAL APPROACH

In this section we provide a conceptual overview of the satggeapproach, referred to asnimal
representation graphg the remainder of this thesis. We use the same rewrite artadlism as
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utilised in Chapter 4; that is, each rule describes the nmagpgpiia single grapheme to a single phoneme

using the format:
T1.-Tm — G — Y1--Yn — P (5.1)

Hereg indicates the focal grapheme;, andy; the graphemic context, anpdhe phonemic realisation
of the grapheme. The rule set is accompanied by an explicit rule applicatiater. A pronunciation
prediction for any specific word is generated one focal geapd at a time, by applying the first
matching rule found when searching through the rule setrdoup to the rule application order.
Initially we focus on a training data set that does not contiy variants, that is, every word is
associated with a single unique pronunciation

The goal of the approach is to obtain the smallest possilidesat that describes a set of training
data completely, as an indirect approach to obtaining agtmecuracy on an unseen test set. In
order to better analyse the options available when attegppti extract such a rule set, we define a

framework that relies on four main observations:

1. If, for every training word, we extract all the sub-patteiof that word (as illustrated in Table
5.1), we obtain a list of all the rules that can possibly beasted from the training data. Some
of these rules will conflict with one another with regard t@pbmic outcome, and we refer to
these rules asonflictedrules. By choosing any subset of the full set of rules, anthass
a specific outcome to each rule, all possible rule sets carebergted, whether accurate in
predicting the training data, or not.

Table 5.1:The relationship between a word and its sub-pattern rules.
Example grapheme e to phoneme E in word 'test’
Word pattern| #t-e-st#— E

Sub-patterns| -e- — E,-e-s— Et-e-— E,t-e-s— E
t-e-st— E, #t-e-s— E,-e-st#— E
#t-e-st— E t-e-st#— E #t-e-st#— E

2. If all the orderings among the full set of possible rules/(8) that may be required by a subset
of Z to be accurate in predicting the training data can be defithed, it becomes possible to
construct a rule graph of the full rule set according to adl dinderings possible, and to define
appropriate operations that can manipulate this rule gimptell defined ways. During graph
manipulation, specific outcomes can be assigned to ruleswdes identified asequiredor
superfluous. Superfluous rules can consequently be delaétpnly a minimal rule set is
retained.

3. During rule prediction, the relative rule applicatiorder of two rules that occur in an extracted
rule set is only of importance if the two rules conflict witlgeed to outcome, and if both can

We discuss options for dealing with pronunciation variantSection 5.5
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apply to a single word. During rule extraction, the order imiet two rules occur in an interim
rule set is only of importance if both can apply to a single dvior the training data, and that
word has not yet been ‘caught’ by any required rule occureadier in the rule set. For each
rule, we refer to the latter set of words as tfessible wordsssociated with that rule.

4. The full set of possible ruleg cannot occur in any order. It is possible to restrict thevediole
orderings between any two rules for two reasons: (1) if oteisumore specific than another,
the first rule must occur earlier in the rule set than the sgéoemny minimal rule set. If not,
the second (more general) rule will always be invoked whexlipting a word that applies to
both rules, and the first rule will be redundant (which is igible if the rule set is minimal);
and (2) if two rules are applicable to the same word in thaingi data but conflict with regard
to outcome. For such rules the words shared impibssible wordsets of each rule dictate the
orderings that are valid.

Using the above observations, we can analyse a set of tgadtdta in order to understand the
interdependencies among words in the training data, anottiens for extracting a minimal rule set.
We illustrate the concepts using a simple 3-word examplasisting of the words ‘test’,'ten’ and
‘tea’ and consider the steps required to extract a rule sah#oletter ‘e’. As the software that we
developed to implement this approach uses a single charagesentation of each grapheme and
phoneme, we do the same in this example.

Prior to rule extraction, sord patternis generated from each aligned word-pronunciation pair in
the training data, as shown in Table 5.2. Hashes denote veanadaries.

Table 5.2:Word patterns associated with the words ‘test’,'ten’ areh't

aligned ARPAbet example single character representation
Words test—tehst test—test

ten—tehn ten—ten

tea—tiy o tea—tio
Word patterns| #t-e-st#— eh #t-e-stt— e

#t-e-n#— eh #t-e-n#— e

#t-e-att— iy #t-e-att— i

For each of the word patterns, we generate a set of submatiEs listed in Table 5.1 for the word
pattern #t-e-st#—~ e). These sub-patterns are arranged in a graph structusedang to specificity,
with the more general rules later in the graph (closer to tiot)y and more specialised rule earlier
(higher up in the graph). Initially, an ordering is only addeetween two rules where the context
of one rule contains the context of another, and we refer égdtorderings asontain patternre-
lationships. A topological sort of this graph will result énrule set that is accurate, but contains a
large number of superfluous rules. From the outset, the psaagsumes that any of the rules may be
deleted in future. As it becomes clear that certain rulesegired in order to retain accuracy over
the training data (irrespective of further allowed changethe rule set), these rules are marked as

requiredrules.
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#t-e-stie(1) Hw-e-stie(1)

~e-:i(1)e(2)

initial tree

Figure 5.1:An example rule graph, corresponding to the word patterrEaible 5.2

This process is illustrated in Fig. 5.1. Word nodes (one pandvpattern) are indicated in green.
Clear nodes indicate rule nodes that can only predict aesiogtcome. For these nodes, different
coloured outlines indicate different outcomes. Orangeesate associated with more than one pos-
sible outcome: different choices with regard to outcomé regult in different rule sets. Black edges
indicate that an ordering between two rules is requiredspective of further rule graph manipula-
tion. In the initial graph these edges represgntain patternrelationships. Currently no rules are
marked as required,; if there were, these would be markedlliowe

Orderings are transitive. If all the orderings implied b tturrent set of edges are considered,
then the only additional orderings that can possibly ocouhe full rule set are between rules that
share a word in their respectip@ssible wordset, and have not already been assigned a fixed order-
ing. We refer to these rules asinimal complementsTheseminimal complementelationships are
added and utilised during rule extraction. We do not indichem explicitly on all the graphs used to
illustrate the current example, as the addition of mininmathplement relationships results in visually
complex graphs. For illustration, we mark the minimal coempénts related to a single rule ‘-e-st’
for the initial graph of Fig. 5.1 and display the result in Fig2. Minimal complement relationships
are marked as orange edges.
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t-e-s:e(l)

te=i(L)e(l)

\

-e-:i(1)e(2)

aditional orderings added

Figure 5.2: Marking the minimal complement relationships associatéti e rule ‘-e-st’ for the
rule graph of Fig. 5.1

Note that the minimal complements associated with any ruban only occur in a restricted
range: the context of the earliest rule may not contain rulend the context of the latest rule may
not be contained by itself. As this range is restricted, the number of additiarderings that may
be required is similarly restricted. Each additional miainscomplement pair added to the graph
introduces two possible orderings. This increases the pumboptions to consider when making
any single decision (whether to resolve a conflicted nodedingle outcome, or whether a specific
rule is required or can be deleted.) We would like to removenasy of the ‘double orderings’ as
possible, and replace these with orderings that indicategéesdirection. In some cases additional
information is available to choose one of the orderings asckdd the other:

e If the possible words associated with a ruls a subset of the possible words of a second rule

s, ruler must always occur earlier in the rule extraction order thahhe reasoning is similar

to that followed when adding the initial contain patternandgs, but now holds for minimal
complements that are not necessarily in a contain pattéatiamship. We refer to these rela-
tionships asuper complement§Vhile contain pattern relationships can be added to thehgra
from the outsetsuper complemen®smerge as the rule set extraction process progresses. As
more rules are marked asquired, the possible words sets of later rules decrease, and su-
per complement relationships start to emerge. Once aningdsradded between two super
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complements, this relationship is not changed at a latgesdaring rule manipulaticn

e If aruler predicts a single outcome, and accurately matches all thdsao the intersection of
the possible words of rule and the possible words of another ruleand there is at least one
word in this set that will mispredict given any of its allowed outcomes, then ruleas to occur
before rules for the rule set to be accurate. We refer to these relatipesdorder required
relationships. If neither of the two rules matches the fatlaf shared words, the relationship
is still inconclusive. As with super complement relatioipsh order required relationships also
emerge as the rule set extraction process progresses.

In Fig. 5.3 we identify and add additional super complemefdtionships. The current rule graph
does not have any order required relationships among nodes.

-e-s:e(2)

ei(l)e(2)

supercomp relations and order_req identified

Figure 5.3:Adding super complements to the rule graph of Fig. 5.1. (Malicomplements are not
shown.)

Since orderings are transitive, we can remove any definderimgs that are already implied by
others. For example, in Fig. 5.3 the relationship betwedasritre-st’ and #t-e- is already implied

2As more rules are marked as required, the possible wordogatkother rules become smaller. If a set of possible
words associated with a rutgs the subset of the possible words associated with asrtifes relationship will be maintained
unless both sets become equal. In the latter case, one ofvtheutes are redundant and will be deleted during rule
extraction, as discussed later. Since either s will be deleted, the ordering between these two rules bedosignificant,

and the prior ordering based on their previous super cormgriénelationship may be retained without restricting rutspp
manipulation options.
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by the relationships between rules ‘t-e-st’ and ‘t-e-s'd doetween rules ‘t-e-s’ and#t-e-". Such
redundant edges can be removed without losing any infoomatirrently captured in the rule graph.

This process is illustrated in Fig. 5.4. Note how the rel&®tips become simpler and the graph
more loosely connected from Fig. 5.1 to Fig. 5.4.

#w-e-stite(l)

w-e-ze(l)

#t-e;:i(l-)_e(l)

tee-ti(1)e(1).
i)

redundant edges removed

Figure 5.4:Removing unnecessary edges from the rule graph of Fig. BliBirbal complements are
not shown.)

If we can be sure that we have added all the necessary ordédagsed by contain pattern, super
complement or order required relationships) and we ke whall minimal complement relation-
ships that still have an uncertain ordering, we now have e graph that both contains all possible
rules, and specifies all possible orderings that may be medjtp define a valid rule application order.
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tei(ie(l)

/

ﬁe-1(l )(2)

leaves trimmed

Figure 5.5:Removing unnecessary rules from the rule graph of Fig. Bii(nal complements are
not shown.)

We can now use this rule graph as basis to make decisions alhich outcome to select where a
rule is conflicted (has more than one outcome), or even dedigs a rule can be deleted or not.

When rules are deleted, it is possible that one of the rulpsined by a minimal rule set is deleted
unintentionally, and in order to compensate for this defetiwo or more additional rules may have
to be kept to retain accuracy over the training data. The firalset will then have more rules than
strictly required. To prevent this from happening, rules eliminated by deleting redundant rules,
identifying required rules and resolving conflict rules @amall set of allowed operations. The
state of rule extraction can always be described by a triple ctingiof the possible rules that can
be included in the rule sef(), the rules that have been marked as requited, (and the orderings
that are definitedset(Z’), the black edges in the graph). Additional orderings that @ossible
can automatically be generated from such a state. Eacheatlloperation changes the state of rule
extraction, from onallowed statedo another, with the initial allowed state as depicted in Bid..

One example of such an allowed deletion operation can bsridited as follows: The rule graph
in Fig. 5.4 clearly contains a number of superfluous ruleseki¢hier a rule: exists such that (1) it
is not conflicted, and (2) all the possible words associatithl mule » can be caught by one or more
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immediate successors that agree with rulith regard to outcome, and (3) rutedoes not have any
immediate successors that can potentially disagree wgrdeto outcome, then rulecan safely be
deleted from the rule graph. All rules that meet these cadit can be deleted from the rule graph,
as illustrated in Fig. 5.5. Since the rule graph is now sigaiitly simpler, we start displaying the
remaining minimal complements from Fig. 5.6 onwards.

#te-i(De(l)

te-i(l)e(1)

o

Se-i(1e(2)

leaves trimmed

Figure 5.6:Removing unnecessary rules from the rule graph of Fig. Bii(nal complements are
shown.)

Where the possible words associated with ruee exactly the same as the possible words of any
one of its successors rule r and rules are deemedule variants Either of two rule variants can be
generated at the same point in the rule extraction ordenpwitinfluencing the number of rules in the
final rule set. The process keeps track of all deleted rulaisate variants of retained rules. In this
way, while a rule node is physically deleted, the rules aeffiect merged, and either of the two rules
may be utilised in the final rule set, as discussed later.

Additional deletion operations identify rules that haveeampty set of possible words, and rules
that are true variants of another, that is, two rules thabatk resolved to a single outcome, and have
identical relationships with identical predecessors amtassors. While these deletion operations
create a rule graph that is significantly simpler, we haveyebimade any decisions with regard to
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the best choice of outcome for any of the conflicted nodesr Ruirule resolution, we first identify

any ruler assinglewhere — given the current state of rule extraction — at leastveord can only be

predicted by either rule or by another rule directly in the path ef In the remaining figures, these
single rules are marked “*S’.

There are various conditions under which a conflicted rutebearesolved, one of which we illus-
trate here. Conflicted nodes can be thought of as ‘defaulfatiback’ nodes. During pronunciation
prediction, a fallback node will only be invoked if a more sjadised rule is not available that matches
the word being predicted. These nodes therefore only neled tetained if, in some way or another,
the rule can generalise from its immediate predecessolis.r@tuires that at least two predecessors
should predict a similar outcome. If this is not the casefdliback node does not provide any further
advantage, and can be removed from the rule graph withowtredmng the rule set in a way that
does not allow final minimisation This process is illustrated in Fig. 5.7 and Fig. 5.8.

(et iese

_ei(1%e(2)

internal: 1 conflict node resolved - t-e- (conflict lost)

Figure 5.7:Resolving conflicted rule ‘t-e-'.

3This does not apply to the root node. The root node is handiedspecial case, as discussed below.
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-e-=zi(l )f;(Z)

internal: 1 conflict node resolved - #t-e- (contlict lost)

Figure 5.8:Resolving conflicted rule#t-e-'.

Note that in the Fig. 5.8, none of the minimal complementtiefships have been retained.
Additional resolution operations analyse the definite apskjble predecessors and select a specific
outcome based on this analysis. When resolving a conflictedo a specific outcome, it is required
that at least one of the predecessors that has an outcomuaatekies the outcome selected for reso-
lution must be marked assinglerule. If such a single rule exists, this implies that some mith
the selected outcome will be generated at this point in tlee@xtraction order. While there is not
certainty that such a rule is required, the conflicted rulg nat yet be resolved.
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Applying the same deletion operator discussed earliezetadditional rule nodes can be deleted,
as illustrated in Fig. 5.9.

leaves trimmed

Figure 5.9:Removing unnecessary rules ‘-e-st’, ‘-gf5and ‘t-e-s'.
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If the resolution operator discussed previously were todmied to the root node, the rule set
would remain valid. However, this would result in the roodedeing deleted, and it is easier in
practise to manipulate the graph assuming a single root. nbide, we would like to generate some
‘default rule’ that can be used to predict any word patterhpreviously seen. Therefore the root
node is always resolved to a single outcome, once all itsgoesbors are resolved (and not deleted,
as would be the case if the standard resolution operator agpied). Resolving the root node
to a single outcome when standard application of a deletf@rator indicated that it should have
been deleted, is similar to choosing one variant of a rules@lamother variant of the same rule. As
all variants are retained during rule extraction, and thal famoice with regard to which variant to
choose is postponed until after graph minimisation, mdatg the root node as a special case does
not restrict the rule extraction process in any way. In Fig03he root node is resolved to one of its
possible outcomes.

teatli Meswle Bwestte

@

internal: 1 conflict node resolved - -e- (conflict lost - root)

Figure 5.10:Resolving conflicted rule ‘-e-'.
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If for at least one word pattertv in the possible words set of a rule there exists no other
rule than can possibly predict word patterrcorrectly, given the current state of rule extraction (the
remaining rule set, the required rule set and the decidegtiogk); then rule: is arequired rule and
can be marked as such. When a rule is identified as a requiledatbwords in the possible words
set of ruler are removed from the possible words sets of rules occurateg In the rule graph. In
Fig 5.11 two rules are marked as required, with required siotiiicated in yellow. One final deletion
(using the standard deletion operator) and the minimalgetés obtained, as depicted in Fig. 5.12.

Needed rules marked

Figure 5.11:dentifying required rules ‘-e-a’ and ‘-e-'.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 68



University of Pretoria etd — Davel M H (2005)
CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

peatti

-e-e(2) *8§

leaves trimmed

Figure 5.12:The final (minimal) rule graph.

The rule set that can now be extracted from the rule graph Hipnpeing a topological graph
traversal. This results in the rule set listed in Table 5@&. dach extracted rule, a number of possible
variants are listed. A rule can be replaced by any of its wésiavithout affecting the accuracy of the
rule set, or requiring the inclusion of additional rules.t&lthat for any single word that gives rise to
a single rule (such as the word pattern #t-e-a# in this ex@mall word sub-patterns that have not
been identified as currently part of the rule set are inclutedariants.

Table 5.3:The final rule set generated from the words in Table 5.2, olioly possible variants.
Rule number| Extracted rule| Possible variants
1 -e-a— i #t-e-a #t-e-a# -e-a#t t-e-a# t-eta
2 -e-—e -e-st# -e-s -e-st

At this stage, heuristic choices related to charactesistiecch as rule context size, rule context
symmetry, or variance with regard to the training data cantised to choose the most appropriate
rule set. In larger rule sets, many rules do not have varidatsa relatively large proportion of rules
retain one or more variants. The ability to make heuristicios late in the rule extraction process,
provides significant flexibility in obtaining the approfggaule set.
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5.3 THEORETICAL FRAMEWORK

In this section we describe the above framework in more ldetad provide a more rigorous definition
of the terminology used We provide proofs for the key statements in Appendix B. Wiverrefer to
a specific statement in the text, we are referring to therseate as found in Appendix B.

Firstly, we define the rule format and the various terms usethd rule set analysis. We then
proceed to show how a relationship between two rules in amahrule set translates to a specific
relationship between the same two rules in a larger ruleaset,describe the conditions and impli-
cations of a rule ordering between two rules occurring ihegitof these types of rule sets. Using
these conditions, we provide a formal definition of an alldwtate of rule extraction. We analyse the
characteristics of an allowed state and define an initité $keat can be shown to be allowable in these
terms. We then define the various allowed operations thanvalpplied, progress the rule graph from
one allowed state to another. In contrast to the overall ésaank, the set of allowed operations are
still somewhat experimental, as discussed in section 5Rrt@lly, we discuss the minimality of the
extracted rule set and describe additional options forrtigrevement of generalisation ability.

5.3.1 RULE FORMAT

As discussed in Section 5.2, we use a set of rewrite rulessierithe the mapping of a single grapheme
to a single phoneme.

If G is the set of possible graphemes didhe set of possible phonemes; e rule for
graphemg is formulated as

rule(g,i) = (x1..Tm, ¢, Y1--Yn) — 2;
T1.-Tm,g,Y1--Yn € G; 2 € H; (5.2)

alternatively written as:

I1--Im — 9 —Y1--Yn — 2

wherez..x,, defines then-grapheme left context of, v1..y, defines then-grapheme
right context ofg, andz is the predicted phonemic realisation of graphenvwehen found
within the given left and right word contexté& includesg¢, the null grapheme ang the
word boundary marker (with always= #). H includes¢, the null phoneme.

4Terms and definitions are presented in definition boxes;spegsed among more general comments.
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Theoutcome(r) function describes the phonemic outcome of the rule
outcome(rule(g,i)) = outcome(x1.. Ty — g — Y1..Yp — 2) = 2. (5.3)
The context(r) function describes the application context of the tulelirectly:

context(rule(g,i)) = context(r1..Tm — g — Y1-Yn — 2) = T1-- Ty — § — Y1--Yn- (5.4)

acontext(.) can also be applied to word patterns, as defined in eq. 5.9

The rule application orderule_order(Z’,r, s) specifies the order in which any two rules
r ands occurring in a rule se’ are applied, where

Vr,s € Z' i rule_order(Z',r,s) =1 = rulenum(r) < rulenum(s) (5.5)
and therulenum(r) function describes the rule number of a specific rutérectly:
rulenum(rule(g,i)) = i. (5.6)

The oset(Z') for a rule setZ’ consists of the entire set of orderings specified by

rule_order(.), i.e:
oset(Z') = closure(Z', rule_order(.)) (5.7)

whererule_order(.) defines the current set of orderings oZ#randclosure(.) consists of
the transitive closure of the set of rule pairs for which acéferelation is defined, i.e.:

closure(Z', relation(.)) = U;(r, s)Vr,s € Z' :
relation(Z',r,s) =1 or3t € Z' : relation(Z',r,t) = 1,
relation(Z',t,s) = 1. (5.8)

Therule_order(.) relation restricts theulenum(.) function to a set of options, and does not neces-
sarily specify an ordering between every two rules. If ralesapplied according to thele_order(.)
relation and an ordering between two rules that both matcbrd i8 indeterminate, either of the rules
can potentially be invoked. It is possible to convert fromraplicit rule_order(.) to an explicit rule
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numbering via theissign(.) function:

Let the setussign(Z’, oset(Z")) define all the possible rule number assignments that are
valid given the specified rule s&t and rule orderingsset(Z’). Per assignment, a single
rule number is assigned to every rule, consistent wsti(Z’).

Note that for a specific value afssign(Z’, oset(Z')), rulenum(r) < rulenum(s) does not imply
thatrule_order(Z’,r,s) = 1.

A word w consists of a sequence of graphemeé&;inDuring pronunciation prediction of
a word of lengthn (also counting word boundaries), we creatgord patterns that each
focus on a specific grapheme in the word. When focusing orhgrapi, the word pattern
is described as:

Vw=x1.2p2; €Gin>11<i<n:
word_pattern(w,i) = x1..2;—1 — T; — Tj+1..Tp. (5.9)

(5.10)

The context(w) function can also be applied to word patterns, wherectheezt of a
word patternw is simply the word pattern itself.

The match(w, r) function indicates that a rule occurring in a rule seZ’ can be applied
to predict a word patterw:

Vr € Z' : match(w,r) =1 <= context(w) 2D context(r). (5.11)

The winningrule(w, g) relation describes the first matching rule(s) found in rgdes&
for word patterrw with regard to grapheme, i.e

Vr e Z':r € winningrule(Z', oset(Z'),w,g) <= match(w,r) = 1,

As : match(w, s) =1, (s,r) € oset(Z').  (5.12)
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Rules with equivalent contexts and different outcomes ataltiowed in the final rule set, i.e:

Vg € G,i,j € N : context(rule(g,i)) = context(rule(g,j)) =

outcome(rule(g,1)) = outcome(rule(g, j)). (5.13)

Conflicting rules will however exist during the interim ssegf rule extraction, as discussed below.

5.3.2 RULE SET ANALYSIS
5.3.2.1 TRAINING DATA, WORD PATTERNS AND SUB-PATTERNS

The rule set is derived from a set of training data. As in thevjaus chapters, a data set consisting
of aligned word-pronunciation pairs is used as input durirlg extraction. Word patterns and word
sub-patterns are extracted from this set, and form the Basisrther rule set construction.

Each word-pronunciation pair consists of two sequences:,, andy;..y,, wheren >

1l,z; € Gandy; € H. LetTD(g) be the set of all word patterns in the training data
that describe a specific graphemessociated with a specific phonemic outcome per word
pattern. Then:

VgeG:weTD(g) < w=2x1..2i—1 — § — Tjt1.-Tn, — Y,

wherezx; ..x,, andy;..y, an aligned word-pronunciation pair (5.14)

In the remainder of this section, assum® simplify notation (for example letule(i) be
equivalent torule(g, i) for the specificg being considered). TD does not contain word
variants (multiple pronunciations of a single word), ttsat i

Awi,we € T'D : context(w;) = context(ws) =

outcome(wy ) # outcome(ws). (5.15)

A word pattern is in effect the largest possible rule thatdbss the grapheme-to-phoneme mapping
accurately. The combined left and right contexts of the waattern therefore contains the full word,
including word boundaries. For each word pattern, a setlofositern rules — describing all possible
sub-contexts of the word pattern — can be generated, aopstyishown in Table 5.1.
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Let Z be the set of all possible word patterns and sub-pattermiassd with the word
patterns ifl’D.

For any two rule setsf 4 andZp, let Z4 C Zp indicate that one set is equal to or a subset
of the other, both with regard to the context and outcome lekruMore specifically:

IaC g <= rcZy = r' € Zp,

context(r) = context(r'), outcome(r) C outcome(r’). (5.16)

Let |Z’| indicate the number of rules in any rule s&t whereZ’ C Z.

Let allset(Z’") consist of all possible orderings in a rule s&t whether contradictory or
not:

vz’ C Zeombined - allset(Z’) = UZ'J'(’UZ‘,U]')VUZ‘, vj € Z/,i % j. (5.17)

A word pattermo can be referred to either as a word pattere T'D or as arulew € Z. The setZ
then consists of all possible rules that can potentiallyhafgpthe word patterns ifi’ D.
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5.3.2.2 CONFLICT RULES AND CONFLICT RESOLUTION

As the setZ consists of all possible rules that can potentially applyh®word patterns i’ D, it
may include a number of conflicting rules. Under certain dios, these rules can be resolved to a
specific outcome. Until a rule is resolved to a single outcoarset of allowable outcomes is retained

per rule.

Let Z.onr1:c¢ CONsist of all the conflicting rules i, that is, rules that contradict eq. 5.13.
Let Z,0—confiict D€ the set of remaining rules, when all conflicting ruleszip,, s, are
removed fromZ, i.e

Zconflict U Znofconflict = Z.
Zconflict N Zno—conflict = Qb (518)

Define thecon flictrule(ra1,ra2; .-, Tan) for all n rulesry; € Zeon i With equivalent
contexts as one rule with one ofalternative outcomes, i.e:

VTai € Zeon flict, context(rq;) = context(rq)Vi = 1..n :
conflictrule(rot, a2, -, Tan) = context(ry) — z1]|22]|.--||2n,
z; = outcome(rq;)Vj = 1...n,

wherez;||z; indicate that eitheg; or z;, is a possibleutcome. (5.19)
Define the resolution of eon flictrule as a specific-outcome version of the rule, i.e let:

V7o € Zeonflict; 2e € Upyoutcome(rule(ra;)) :

resolve(con flictrule(ro1,Ta2, - Tan ), 2z) = context(ry) — 2. (5.20)

If a rule » with the same context is referred to with regard to diffene¢ sets in which
different resolved versions of the rule may occur,detcome(r|Z’) indicateoutcome(r)
wherer € Z'.
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For each subset of all elements if),, ;. With equivalent contexts, it is possible to
generate a singleon flictrule. Let the SetZ..p fiict—combinea CONSist of all the conflict

rules generated fron#,,,, 1;: according to eq. 5.19, which have not been resolved. Leg
the setZ o, fiict—resolvea CONSist of all the resolved conflict rules, where a conflide ru
will move from Z..,, fiict—combined 10 Zeon flict—resolved UPON resolution (according to eq.
5.20). LetZ ompinea CONsist of all elements ii,,,_ .., r1ic: COMbined with the elements in

Zconflictfcombined and Zconflictfresolveda where

Znofconflict U Zconflictfresolved U Zconflictfcombined = Zcombined
Zconflict—combined N Zno—conflict = ¢

Zconflictfresolved N Zconflictfcombined = ¢

Zconflict—resolved N Zno—conflict = Qb (521)
and let Zsingle = Zcon flict—resolved U Znofconflict (522)
Z Zcombined
Zno-conflict Z conflict no-conflict
X1=g-X; = Yy X5gXs = ¥s X1=g-Xz = Y
Xs0-Xs = Y
X3-0-%4 = ¥z X g% =Y Zconflict-resolved
XX =Ys
X% = Vi X 0% = VYg

Figure 5.13:Examples of rules it, Z.,mpineq @nd their subsets.

The relationships among the different sets are depicteding=13.
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5.3.2.3 COMPLETE, ACCURATE, MINIMAL AND POSSIBUMIMAL RULE SETS

Any subset 0Z.,,.pineq, Ordered according to a specific rule orderinge_order(.) will describe the
training data with a certain degree of accuracy. The iddalget will be one that is not only complete
but also accurate, and not only accurate but also minimalefised below:

A complete rule set can predict all the words in the training data:

VZ' C Zeombined : complete(Z') =1 <

Yw e TD,3r € Z': match(w,r) = 1. (5.23)
An accurate rule set predicts all words in the training data accurately:

VZ' C Zeombined, Voset(Z') C allset(Z') :
accurate(Z'0set(Z')) =1 <= complete(Z') = 1,

Vw € TD,Vr € winningrule(Z',oset(Z"),w) : outcome(w) = outcome(r). (5.24)
A minimal rule set is an accurate rule set that contains the fewest polssible:

VZ' C Zeombined, 0set(Z") C allset(Z') :
minimal(Z',0set(Z')) =1 < accurate(Z',oset(Z')) =1,
BZ" C Zeompined, 0set(Z") C allset(Z") :

accurate(Z" 0set(Z")) = 1,12"| < |Z'|. (5.25)

A possibly_minimal rule set is a set of rules that can be minimal, if ordered ctigre

VZ' C Zeombined : possibly minimal(Z') =1 <

Joset(Z') C allset(Z') : minimal(Z', oset(Z')) = 1. (5.26)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 77



University of Pretoria etd — Davel M H (2005)
CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.2.4 ALLOWED STATES AND ALLOWED OPERATIONS

The full set of rules INZ....pimeq CONSists of all possible rules and is therefore a superseh@for
moreminimal rule setsZ,,°. We would like to delete the unnecessary rules until ontyiaimal
rule setis retained. When rules are deleted, it is posdiblieoine of the rules required b, is deleted
unintentionally, and in order to compensate for this detettwo or more additional rules may have to
be kept to retain accuracy ovED. The final rule seZ’ will then have a number of ruleg’| > |Z,,,|.

To prevent this from happening, rules are eliminated byragldrderings, deleting redundant rules,
identifying required rules and resolving conflict rules gigzet of allowed operations. Theéate of
rule extraction can always be described by the triflleZ. , oset(Z') , whereZ' indicates the possible
rules that can still be included in the final rule sgt,indicates required rules that have to be included
in the final rule set, andset(Z') identifies some of the required rule orderings among elesnaft
Z'. Each allowed operation changes #ete of rule extraction, from onellowed_state to another,
with allowed_state as defined below (in eq 5.29).

Let the order_subset(oset 4(Z 4), 0setp(Zp)) relation be true if a set of rule orderings
oset4(Z4) is equal to or a subset of another set of rule orderingsz(Zp) (possibly
defined on a different rule set) when the two sets of rule angerare compared on their
rule set intersection. More specifically:

VZA C Zcombined7 ZB C Zcombineda
Voseta(Z4) C allset(Z4),o0setp(Zp) C allset(Zp) :
order_subset(oseta(Z a),0setp(Zp)) =1 —

Vr,s € ZaNZp: (r,s) € oset(Zy4) = (r,s) € oset(Zp). (5.27)

Let minrules(Z', Z.,0set(Z')) identify all the minimal rule set and rule ordering set
pairs that can be derived froid, given the set of orderingsset(Z’) and a required rule
subsetZ.. More specifically:

VZo C Z' C Zeombined, Voset(Z') C allset(Z') :
(Zm, 0s€ty (Zy)) € minrules(Z', Ze, 0set(Z')) <=
minimal(Zpy,, 0sety (Zp)) =1, Ze C Zy C Z/,

order_subset(oset(Z'), osety,(Zm)) = 1. (5.28)

®By definition, at least oneviminal rule set will always exist.
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Let allowed_state(Z', Z.,0set(Z')) indicate that for a given required subsét and re-
quired set of orderingsset(Z’), there exists aninimal rule setZ,, contained withinZ’:

VZ' C Zeombined, Voset(Z') C allset(Z') :
allowed_state(Z', Z,0set(Z')) =1 <=
3Zm, 08€ti (Zm) + (Zm, 08€tm(Zym)) € minrules(Z', Ze, 0set(Z')). (5.29)

Define anallowed_op as any operation that, when applied to any possiblewed_state
of a rule set and rule ordering set, will result in anothBbwed_state.

Let each element iminset(Z,,, oset(Z,,)) consist of all and only those orderings required
for a possibly_minimal rule setZ,, to be minimal, given some prior set of orderings
oset(Zy,):

VZm C Zeombined, Possibly_minimal(Z,,) = 1,
Voset(Zy,) C allset(Zy,) :
osety(Zym) € minset(Zy, oset(Z,y,)) <=

oset(Zy) C osety,(Zy,), minimal(Zy,, 0sety,(Zy,)) = 1. (5.30)

It follows directly from the definition ofninrules (eq. 5.28) andninset (eq. 5.30) that:

VZm C Zeombined, Possibly_minimal(Z,,) = 1,Yoset(Z,,) C allset(Zy,) :
osety(Zy) € minset(Zy, oset(Z,y,)) <~

(Zm, 0s€tm(Zp,)) € minrules(Zpy,, Zm, 0s€tm(Zm)). (5.31)
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Such aminset(.) ordering does not exist for all prior orderingsset(.). The

valid(Z,, oset(Z,,)) relation indicates that a specifiget(Z,,) defined with regard to
apossibly_minimal rule setZ,,, consists of a subset of the restrictions required by at least
oneminset(Zy,, oset(Zy,,)). Specifically:

VZm C Zcombined7pOSSibly—minimal(Zm) =1,
Voset(Zy,) C allset(Zy,) : valid(Zy,, 0set(Zy,)) =1 <~
Jdosetm (Zm) C allset(Zy,) : 0sety(Zy,) € minset(Zy,, oset(Zy,)). (5.32)

It follows directly from the definition otillowed_state (eq. 5.29) andalid (eq. 5.32) that:

VZm C Zeombined, Possibly_minimal(Z,,) = 1,Yoset(Z,,) C allset(Zy,) :
valid(Zy,,0set(Zy,)) =1 <= allowed_state(Zy,, Zp,, 0set(Zy,)) = 1. (5.33)

If Z,, is a minimal rule set describing the training dat&, then some of the rules i,,, will each
be a single unique rule, while other rules will each be one $éteof possible options — any one of
which could have been generated at a specific point in theappécation order without influencing
the number of rules required to predict the training set ately and completely. Such a combination

of rules is referred to asmaule_variant set.

5.3.2.5 MATCHWORDS, POSSIBMEORDS, RULEWORDS AND SHARBVIDRDS

Throughout rule extraction, we keep track of the set of wdinds may influence our decisions with
regard to a specific rule. In this way we identify words thatehaa specific ruler@atchwords),
words that will invoke a specific rule during predictioru{cwords), and the set of possible words
that may result in rulewords in the final orderingp§sible words). We also identify the possible
words that any two rules sharehared_words).
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Let the setnatchwords(r) consist of all words matched by a specific rule

V1 € Zeombined,w € TD :

w € matchwords(r) <= match(w,r) = 1. (5.34)

Let the setrulewords(Z’, oset(Z'),r) consist of all words that can cause a specific rule
to be invoked (where the actual rule invoked will depend @nabtual rule number assign-
ment), given the current set of rule orderingst(Z’):

Vr e Z/, A C Zcompined,w € T'D :
w € rulewords(Z',oset(Z'),r) <=

r € winningrule(Z', oset(Z"), w) (5.35)

Not all rules can necessarily be invoked when predicting weeds in TD - for rules that
cannot be invoked given the current rule set, the setwdbwords(.) is empty. Note also

that the actual words that will invoke rule in the final ordered rule set consists of the set

rulewords(Z,,, minset(oset(Z,,)), r) not the setulewords(Z,,, oset(Zy,),r).
As the rule set is manipulated, additional rules are adddtigéaequired subsef., which can
affect thepossible_words sets of all rules later in the rule graph. When comparing twesr ands,

it is possible that rule set extraction has progressedduitha section of the rule graph leading up to

one rule than in the section of the rule graph leading up tmther. In order to be able to obtain a

clear comparison of the two rules, we choose a shared poiheirule graph (rule in the definition
below) and only allow rules defined prior to this point to iffice thepossible_words(.) sets of both
rules, resulting in a stable basis for rule comparison.
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Let the sepossible words(Z', Z., 0set(Z"), v, r) consist of all words that match a specific
rule r, and have not yet been caught by ruler an earlier rule tham, wherev in Z,, the
required subset of rule st when rule extraction is in staté’, 7., oset(Z'):

Vr,s € Z'v € Ze, Ze C 7' C Zeompined, Yoset(Z') C allset(Z')
w € possible_words(Z', Z,,0set(Z'),v,r) <
v=ror(v,r) € oset(Z'), match(w,r) =1,

As € Z, : match(w,s) =1,s = v or (s,v) € oset(Z')2. (5.36)

2Note that ifv # r and(v, r) & oset(Z’) thenpossible_words(Z', Z., 0set(Z'),v,r) = ¢

Let vy be an imaginary rule that matches no words, is always therfitstto occur in any
rule set, and does not contribute to the rule count of a rulel$e rulevy has the following

characteristics:
Vo € Zcombined- (537)
[{vo}| = 0. (5.38)
Vw € TD : match(w,vy) = 0. (5.39)

Vo, € Z',Z' C Zeompined, Vi 7 Vo, Voset(Z') C allset(Z')
(vo,v;) € oset(Z'). (5.40)

Sincevy does not affect further rule set orderings directly, anchcamffect any word-rule relation-
ship, such a rule can be added without causing any side ®fiethe rule set. We use rulg as a
stable point for rule comparison when two rules do not shdeatical predecessors i when eval-

uatingpossible_words sets with regard to some stable pointas defined in eq. 5.36. An alternative

stable point that can be used is the last shared parent ofitheutes inZ,., as defined below.
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Let last_parent(Z', Z.,0set(Z'),r, s) be the latest possible rule or rules4 that occur
earlier than both rulesands according twset(Z’), or the earliest of ands, if r, s € Z,:

Vr,s € Z'v € Zey Ze C 7' C Zeompined, Voset(Z') C allset(Z') :
v € last_parent(Z', Z.,0set(Z'),r,s) =1 <=

{(v,7), (v,8)} € oset(Z"); At € Z : {(v,1), (t,r),(t,s)} € oset(Z"). (5.41)

Let shared_words(Z',Z.,oset(Z"),r,s,v) identify those words that are in the
possible_words sets of two different rules ands with regard to some rule:

Vr,s € 2! v € Ze, Ze € Z' C Zpombined, Voset' (Z') C allset(Z')
shared_words(Z', Z,0set(Z'),v,r,s) =
possible_words(Z', Z.,0set(Z"),v,r) N possible words(Z', Z,, oset(Z'),v, s). (5.42)

5.3.2.6 COMPLEMENTING RULES: CONTAINPAT, MINCOMP AND SHEBEMP

We now introduce a number of relationships that may exisveeh pairs of rules. These relation-

ships are crucial in understanding how rules may substititene another, and therefore form the
foundation for the derivation of minimal rule sets.

Let complement(Z', Z.,0set(Z'),v,r, s) indicate that rules: and s have overlapping
possible_words sets, i.e.

Vr, s € Z/7T 7é 8,0 € Zey Ze C Z' C Zeombined
complement(Z', Z.,0set(Z'),v,r,8) =1 <=

Jw € shared-words(Z', Z.,o0set(Z'),v,r, s). (5.43)
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Let the path(relation(r, s)) indicate that a path of relations of a specific type exists
tween rules- ands in arule setZ’, i.e
Vr,s € Z': path(relation(r,s)) =1 < Iz =r,29,....0, =5 € Z':
relation(x1,x2) = relation(xg, x3) = ... = relation(xy—1,x,) = 1. (5.44)
Vr,s € Z': path(relation(r,s)) = —1 <= Jz; =129, ...c,mp =8 € 7 :
relation(x1,xe) = relation(xq, x3) = ... = relation(xy—1,x,) = —1. (5.45)
Vr,s € Z': path(relation(r,s)) =0 <= Az =r,x9,....0, =S € Z':
relation(x1, xe) = relation(za, x3) = ... = relation(zp—_1,x,) # 0. (5.46)
wherer, s andz; in the domain of the specific relation.
Let thepath(relation; /relationy(r,s)) = —1|0|1 indicate that a path exists between
ands as defined above, but with edges of either typkition, (.) or typerelations(.).
Let thepath(relation,&relations(r,s)) = —1|0|1 indicate that a path exists between

ands as defined above, but with edges such that bethition (.) andrelations(.) hold.

bet

Let the relatiorcontainpat(Z’, r, s) indicate that rule is a rule with the smallest possible

context that contains the context of rulg.e.:

Vr,s € Zlu Z' C Zcombined
containpat(Z',r,s) =1 <= context(r) D context(s)

and At € Z' : context(r) D context(t) D context(s). (5.47)

Let containpat(Z',r,s) = —1 if and only if containpat(Z’,s,r) = 1; and let
containpat(Z',r,s) = 0 if and only if no containpat(.) relationship exists between
andsin Z'.

From the definition otontainpat it follows immediately that

VT,S S ZI, Zl, - Zcombined :

path(containpat(Z',r,s)) =1 <= context(r) D context(s). (5.48)
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Let the bidirectional relatiomincomp(Z’, Z., oset(Z'),v,r, s) be true for all rules: and
s that are minimal complements of each other, i.e.

Vr,s €2/ v € Zey Ze € 7' C Zeombined :

mincomp(Z', Z.,0set(Z'),v,r,5) =1 <=

complement(Z', Z., oset(Z'),v,r,s) = 1,
path(containpat(Z',r,s)) = 0. (5.49)

Let the bidirectional relatiodirect(.) be true for rules that have either a directncomp(.)
or a directcontainpat(.) relationship, i.e.

VT,S S ZI,U < Ze,Ze - A - Zcombined :
direct(Z', Z.,0set(Z"),r,5) =1 <

containpat(Z',r,s) = £1 or mincomp(Z', Z, 0set(Z'),r,s) = 1. (5.50)

Let thesubset(Z', Z., 0set(Z'), v, r, s) relation indicate that theossible_words that can
be caught by a rule is a strict subset of theossible words that can be caught by another
rule s, with respect to a rule that occurs earlier in the rule set than either s, for a given
rule extraction stat¢’, Z., oset(Z'):

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z'),
v € Ze,{(v,7), (v,8)} € oset(Z') :
subset(Z', Z,0set(Z'),v,r,8) =1 <=
shared_words(Z', Z.,o0set(Z'),v,7,s) # ¢,
possible_words(Z', Z., 0set(Z'),v,r) C possible_words(Z', Z.,oset(Z'), v, s).(5.51)
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Let the supercomp(Z', Z., oset(Z'),v,r, s) relation be true when two rulesand s are
both in asubset(Z', Z,, 0set(Z"),v,r,s) and amincomp(Z’', Z.,0set(Z'),v,r, s) rela-
tion:

Vr,s € Z'v € Zoy Zoe C 7' C Zeompined, Voset(Z') C allset(Z'),
supercomp(Z', Z.,0set(Z'),v,1,8) =1 < (5.52)
mincomp(Z', Z,0set(Z'),v,r,s) = 1,

subset(Z', Z.,0set(Z"),v,1,8) = 1. (5.53)

Forallr,s € Z', Z' C Zeompined, 0set'(Z') C allset(Z'): Let anyset(Z', oset(Z"),r, s)
be an alternative naming convention feryset(Z', Z', oset(Z'),r, s), whereanyset can
be thesubset (eq. 5.51) possible words (eq. 5.36), obrder_req (eq. 5.58).

5.3.2.7 Zy AS ASUBSET OFconmBINED

As mentioned in section 5.3.2.4, the full set of rulesZi,.»ineq CONsists of all possible rules and is
therefore a superset of one or mengnimal rule setsZ,,,. During rule extraction eactlowed rule
state is defined by a triplg’, Z., oset(Z'), and each allowed state can can give rise to one or more
minimal rule setsZ,,, oset(Z,,), where(Z,,, oset,,(Zy,)) € minrules(Z', Ze, oset(Z")).

If any two rulesr ands in Z,,, have a specific relationship in one such state, this impligbér
relationships in prior and ensuing states (as shown inre&te15). For any two rulesands in 7,
it holds that ifr ands have acontainpat relationship with regard to an appropriateodev when the
rule extraction process is in sta#é, Z., oset(Z’) , rulesr ands will have a similar relationship when
rule extraction reaches the stdlg,, Z,,, oset,,,(Z,,). It can also be shown that, for any two rutes
ands in Z,,, it holds that ifr ands have acomplement relationship with regard to an appropriate
nodev when the rule extraction process is in the final stdte Z,,, oset,,,(Z,,), then rules- and
s will have a similar relationship for eactllowed_state Z', Z., oset(Z') leading up to the final
state. Forcontainpat path relations, the statement is stronger: Any two rulesds in Z,, will
have apath(containpat(.)) relationship when the rule extraction process is in SEte, , oset(Z’)
if and only if rulesr and s will have a similar relationship when rule extraction reeghhe state
Zimy Zon,y 08€tm (Zm).

®This v acts as the stable comparison point previously describagw/such that botljv, ) and(v, s) are included in
the set of established orderings would be valid.
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5.3.3 RULE ORDERING

In this section, we analyse the conditions and implicatiohan ordering relationship between two
rules in a rule sef’ whereZ’ C Z.,mpinea- We first define what we mean by ordering requirements,
and then show how these requirements can be translatedrigdbienships defined in section 5.3.2.6.

Let orderqe.(Z', Ze, 0set(Zy,),r, s) indicate that ifr does not occur before, no state
7', Z.,o0set'(Z') can result in amllowed_state, whereoset’(Z') is a superset of the
oset(Z') orderings:

Vr,s € 2", Ze C 7' C Zeompined, Yoset(Z') C allset(Z') :
orderaec(Z', Ze,08et(Z'),r,8) =1 <=

Aoset’ (Z') D oset(Z') U (s, 1) : allowed_state(Z', Z.,0set' (Z')) = 1. (5.54)

Letorder,.q(Z', 0set(Z'),r, s) indicate that if rules occurs before rule, at least one rule
in the rule setZ’ will become redundant, irrespective of any further ordgsiadded:

Vr,s € 2", Ze C 7' C Zeompined, Voset(Z") C allset(Z') :
orderyed(Z', Ze, 0set(Z'),1,5) =1 +—
at least one rule ¢ Z’' becomes redundant given any state

(Z',Z., 0set' (Z")), 0set' (Z') D oset(Z') U (s,7), Z. D Z,. (5.55)
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Letorder(Z', Z.,0set(Z'),r, s) indicate that either aorder,..(Z', Z.,0set(Z'),r, s) or
anorder..q(Z', Z.,0set(Z'), r, s) relationship holds between any two ruleands:

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z') :
order(Z', Z,0set(Z'),r,s) =1 <= ordergec(Z', Ze,0set(Z'),r,s) = 1,
ororderyeq(Z', Z.,0set(Z'),r,s) = 1. (5.56)

Let direct_order(Z', Z.,o0set(Z'),r,s) = 1 indicate that a direct ordering requirement
exists between rulesands:

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z')
direct_order(Z', Z¢,0set(Z'),r,s) =1 <= order(Z', Z.,o0set(Z'),r,s) = 1;
At : direct_order(Z', Z.,0set(Z'),r,t) = 1,

direct_order(Z', Z,o0set(Z'),t,s) = 1.(5.57)

As before, for each of therder* relations ¢rder, order e, order,.q anddirect_order),
let order*(Z', Z,0set(Z'),r,s) = —1 indicate thatorder*(Z', Z,, oset(Z'),s,r) = 1,
and letorder*(Z', Z.,0set(Z'),r,s) = 0 indicate thatorder*(Z’, Z.,oset(Z'),r,s) #
+1.

Using the above definitions it can be shown that ifeader,.. relationship exists between any two
rulesr ands in Z,,, then a path ofomplement anddirect_order relations exist between these two
rules (statement 19). That is, under appropriate conditiorder,..(Zm, , Zm, 0set(Zy,),r,s) =
1 = path(direct_order&complement(Zy,, Zm,oset(Zy,),v,r,s)) = 1, wherev is arule earlier
thanr or s (and in practice typically th&ust_parent of these two rules). This means that any two rules
in Z,,, can only have an accuracy ordering requirement if therasaipath of such complementing
direct orderings from one to the other.

Once aminimal rule setZ,, has been obtained, thenoifder;,.q(Zm, Zm, oset(Zy,),r,s) = 1
it also follows thatorderqcc(Zm, Zm, oset(Zy,),r,s) = 1 (statement 16). The redundancy ordering
requirement therefore does not introduce any additiordgrimg requirements in the final rule graph,
but does provide a way to restrict the set of rule orderingy e in the rule extraction process.
If any two rulesZ’ are in asubset relationship with regard to some ruleas above, then it can
be shown that these two rules are also irvadier,.q(Z,, Zm, oset(Z,,),r, s) relationship with re-
gard to anyZ,,, oset,,(Z,,) pair that can be reached from the curretibwed_state (Statement 21).
Identified subset relationships can therefore be used to define initial ongsrprior to further graph
manipulation.
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The process of applying allowed operations (as discussegédtion 5.3.6) leads to further or-
dering requirements becoming visible. Below we define thaditions under which awnrder _req
relationship can be enforced between two rules. It can beshioat if two rulesr ands are in an
order_req(Z', Z.,oset(Z'),v, r, s) relationship with regard to a ruleas above, then these two rules
are also in awrder,..(Z', Z.,0set(Z'),r, s) relationship (statement 26). Theder_req relation-
ships therefore provide an indication of accuracy ordergguirements that emerge during rule set

extraction.

Let theorder_req(Z’, Z., 0set(Z'),v,r, s) relation be true if two ruleg and s disagree
with regard to outcome, and have a non-empty sethafred_words, all of which agree
with rule » with regard to outcome, and at least one of which disagre#s nwie s with

regard to outcome:

Vr € Zsingle;s € Z',0 € Ze, Ze € Zim © Z' € Zeombineds

Voset'(Z') C allset(Z') :

order req(Z', Z.,o0set(Z'),v,r,8) =1 <=

direct_order(Z', Z,0set(Z'),r,s) = 1,

shared_words(Z', Z., 0set(Z'),v,1,s) # ¢,

Vw; € shared_words(Z', Z,o0set(Z"),v,r,s) : outcome(w;) = outcome(r),

Jw' € shared_words(Z', Z.,o0set(Z'),v,r,s) : outcome(w’) & outcome(s). (5.58)
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5.3.4 CHARACTERISTICS OF AN ALLOWED STATE

Let order_decided(Z', Z.,0set(Z"),r, s) indicate that the direction of rule ordering be-
tween two directly related rulesands in a rule setZ’ has been established based on an
identified containpat or supercomp relationship, given some required subset of rifes
and some prior set of orderingset(Z’). More specifically:

Vr,s € Z',Ze C Z' C Zeompined, Voset' (Z') C allset(Z') :
order_decided(Z', Z.,0set' (Z'),r,s) =1 <=

containpat(Z',r, s)

or v € Z, : supercomp(Z', Ze,0set' (Z'),v,r,s) =

orJoset(Z') C allset(Z') : order_subset(oset(Z'), oset' (Z"))
order_decided(Z', Z.,0set(Z'),r,s) = (5.59)

Let decided_set(Z', Z.,0set(Z")) take any rule sef’, required subsef, and set of rule
orderingsoset(Z'), and generate a set of all the currentler_decided relationships:

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z') :
(r,s) € decided_set(Z', Z,,0set(Z')) <
path(order_decided(Z', Z.,0set(Z'),r,s)) = 1. (5.60)

Note that arorder_decided(Z’, Z., 0set(Z'),r, s) relationship does not imply that ruteand s will
either or both be retained id,,, but only that if both were retained,would be ordered prior te.
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Let order_possiblel(Z', Z., 0oset(Z'),r, s) indicate that, even though it has not yet been
established whether a rule ordering is required betweemuigsr ands: if a rule ordering

is required, the direction of such an ordering will be fronteru to rule s because of the
existence of arder_req relationship between these two rules. More specifically:

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z')
order_possible\(Z', Z.,o0set(Z'),r,s) =1 <
Jv € Ze,{(v,7), (v,s)} € oset(Z") : order_req(Z’, Z.,o0set'(Z"),v,r,s) = 1. (5.61)

Let order_possible(Z', Z.,0set(Z'),r, s) indicate that the direction of rule ordering (if
any) has not yet been established between two minimal congpits and s that have
remainingshared_words when rule extraction is in staté’, Z., oset(Z'). More specifi-
cally:

Vr,s € 2", Ze CZ' C Zeompined, Yoset(Z') C allset(Z') :
order_possible(Z', Z.,0set(Z'),r,5) =1 <= mincomp(Z',r,s) =1,
sharedwords(Z', Z., oset(Z'),r, s) # ¢,
order _decided(Z', Z,,0set(Z"),r,s) = 0.

order _possible\(Z', Z.,o0set(Z'),r,s) # —1.  (5.62)

Let possible_set(Z', Z.,0set(Z')) take any rule sef’, required subsef, and set of rule
orderingsoset(Z'), and generate a set of all tHecided andpossible rule orderings. More

specifically:
Vr,s € Z',Ze C Z' C Zeompined, 0set(Z') C allset(Z') :
(r,8) € possible_set(Z', Z,,0set(Z")) <
path(order_possible/order_decided(Z', Z.,oset(Z'),r,s)) = 1. (5.63)
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Consider any?’, Z., oset(Z') combination such thatllowed_state(Z', Z.,0set(Z')) = 1. By defi-
nition (eq. 5.28 and eq. 5.29) it will always hold that:

Ze g Zm g Zcombined- (564)
Furthermore, it can be shown (statement 28 and 27) that:

order_subset(decided_set(Z', Z.,0set(Z")), 0setm(Zm))) = 1. (5.65)
order_subset(oset,,(Zy,), possible_set(Z', Z,, 0set(Z'))) = 1. (5.66)

Now consider any two rulesands that will be retained in the minimal rule sgt,,. From the above
it follows that if rulesr ands are ordered according tiecided_set(Z’, Z., oset(Z')) then these two
rules will retain this ordering in the minimal rule set oriahey oset,,,(Z,,). Also, any rule ordering
that will eventually be required inset,,, (Z,,) is currently listed irpossible_set(Z', Z., oset(Z'). For

any given stateZ’, Z., oset(Z'), the definite and possible rule orderings can therefore hergeed
automatically, and used to reason about further graph rakatipn options.

5.3.5 INITIAL ALLOWED STATE

The rules inZ....uineq describe the training data completely, but not necessadburately. Since

all possible rules are included @ ompineq, it follows that ¢ C Z,, C Z.ompinea for all
minimal rule setsZ,,. Furthermore, it can been shown that if the rulesZn,, pineq are or-
dered according teontainpat and supercomp relations, then no overly restrictive orderings will
be added. If the rule se¥.,nineq IS Ordered according to the rule set orderings generated by
decided_set(Zeompined, @, ¢), then the rule set is in aallowed_state (Statement 33). This state

is used as the initial state prior to application of the vasiellowed_ops, as described below.

5.3.6 ALLOWED OPERATIONS

Eachallowed_op as defined in section 5.3.2.4 changes the state of the ryleegeired rule subset
and rule ordering set, from onélowed_state to another, with the initiahllowed_state defined
in section 5.3.5. These operations are not unique, and tathger and weaker versions can be
constructed. While the framework up to this point has bedime rigorously, we now discuss a
number of possible operations in order to demonstrate hsmrdimework can be used during rule
extraction. We describe a number of operations that we hapdemented and tested in our rule
extraction system. Specifically, we describe allowed djmsra that can be applied to (1) delete rules,
(2) remove unnecessary edges, (3) mark rules as requiréd4aresolve conflicted rules.

When applying any of these operations it is assumed thatitegraph is in amllowed_state de-
fined by the tripleZ’, Z., oset(Z'). Prior to discussing these operations in further detashdéuld be
noted that the rule graph edges added according tddhided_set andpossible_set orderings have
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two functions: On the one hand, these edges define the oradriam rules will occur, as discussed
up to this point. Secondly, these edges link any ruleltpossible ruleghat may potentially replace
or be replaced by the current rulgirect successorsr predecessorare identified by following both
decided_set andpossible_set orderings and identifying rules that either have to or cazuodirectly
before or after the rule being considered. From these satsles it is possible to define the total
number of rules that (1) will definitely and (2) may poterjiglbased on decisions made in other
sections of the rule graph) be deleted if a current rule is@ated with a specific outcome.

5.3.6.1 DECREASING RULE SET SIZE

A rule r can only be deleted if it can be shown that the rule has becethendant, and will remain
redundant. This can occur for two reasons: (1) because giaiton of the specific rule in the rule
graph, all words that match this rule are already caught twyired rules (correctly identified as such)
that occur earlier in the rule set; or (2) because the ruldbegmerged’ with a second rule occurring
at the same point in the rule extraction order. We define ttifeerent allowed operations with regard
to rule deletion:

1. Aruler may be deleted if some rukeexists such that:

¢ Rulesr ands are resolveds( s € Z;,4) and agree with regard to outcome.

e Rulesr ands have identical relationships with identical predecessgboth possible and
definite).

e Rulesr ands have identical relationships with identical successomh(lpossible and
definite).

2. Aruler may be deleted if a set of rules exists such that:

e Thew; constitute all the direct successors of rule

¢ Ruler and all thev; are resolvedi( v; € Zgnq.) and agree with regard to outcome. (No
rule ¢ with a potentially conflicting outcome can have an orderimat &llows it to occur
between rule- and anyv;.)

3. Aruler may be deleted if for some allowedthepossible_words(Z', Z., oset(Z'),v,r) = ¢.

5.3.6.2 REMOVING UNNECESSARY EDGES

Since decided orderings are transitive, it is possible to remove any ekpliordering
rule_order(Z',r, s) if it already holds that-ule_order(Z’,r,t) = 1 andrule_order(Z',t,s) = 1
for somet € Z'. Note that this does not remoye s) from oset(Z’).
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5.3.6.3 IDENTIFYING REQUIRED RULES

When a rule is identified agquired it is moved from the possible rule sgt to the set of required
rules Z.. This is anallowed_op for a ruler if the rule r itself has already been resolved (that is, it
can only predict a single outcome), and no further rulest éix& may potentially agree with regard
to outcome.

5.3.6.4 RESOLVING CONFLICT RULES

We define four different operations that can be used to resmnflicted rules. All of these operations
utilise the concept of aingle rule and acon flict_count. Arule s is identified as aingle rule if there
exists at least one word such thatw, s) € oset(Z’) and not exists such thatatch(w,t) = 1, un-
less(s, t) € oset(Z'). This means that word can only be predicted by rule or by a later rule that
has a decided path from wortdvia rule s. For each possible outcome we count the number of prede-
cessors that will definitely be deleted if rulés resolved to that specific outcomé(inite_count),

as well as the number of predecessors that may possibly beddlossible_count). These counts
are not calculated per predecessor, but rather per worliated predecessor represents. For a prede-
cessors to contribute to ade finite_count), the predecessor must be resolved (that is, Z,;,,4:¢),

be identified as aingle rule, and have only one successor (the conflictedritieelf).

1. Ifitis clear that rule- will provide an advantage if resolved to a specific outcorasglution is
performed, and the conflicted rule is replaced with a normial with the selected outcome. A
rule may only be resolved in this way, if thie finite_count for a specific outcome dominates
the sum of thede finite_count and possible_count for all alternative outcomes. It is also
required that at least one of the predecessors with a outooatehing the outcome selected
for rule resolution be aingle rule. This prevents an unnecessary rule from being genkaate
this point in the rule application order. (In a later steg tesolved conflict node will merge
with the single predecessor.)

2. If a conflicted rule- has no predecessors that can potentially agree with eaehwith regard
to a specific outcome, the rutlemay be deleted. (We refer to this process &ssaconflic). A
rule may be resolved in this way if the sum of #hefinite_count andpossible_count is less
than or equal to one, for all possible outcomes.

3. If for any of the outcomes the sum of thefinite_count andpossible_count is less than or
equal to one, that outcome may be removed from the possibéemes of the conflicted rule,
even though the rule remains a conflicted rule. If all excey@ outcome are removed in this
way, then at least one predecessor must bénale rule that agrees with regard to the final
outcome, as discussed with regard to the previous operator.
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4. The root node is not allowed to be resolved via operatorof2)3). If operator (1) is not
applicable, the root node is resolved to the outcome thatregmost in the training data. This
operation is only allowed when all predecessors have besatvesl.

5.3.7 BREAKING TIES

Once all the possible operations have been applied to thegraph, and no further simplification is
possible, it does not necessarily mean that all conflictls liave been resolved. The extent to which
the rule graph is resolved, depends on the strength of theugaallowed operations defined. Note
that the set difference between the increasing rul&Zsgaind the decreasing rule sét provides a
clear indication of the extent to which the current soluttifi falls short of the minimal rule sef,,,.

If Z. equalsZ’, a minimal rule set has been obtained.

The remaining conflicted nodes can be solved by viewing tlesgnaph as a constraint satisfaction
problem (CSP). By assigning the various remaining (nodsifip) outcome values to each of the
remaining conflicted nodes, and searching through thetimegidearch space, the final solution can
be obtained. During the CSP search process, all conflicteesare solved simultaneously, and
the rule minimisation process proceeds rapidly using tmiowa deletion operations. By searching
through all the remaining allowed rule sets, the smallessiinbe set can be obtained.

The magnitude of this CSP is determined by the coverage obpleeations employed. If only
trivial operations were employed, and all conflicts werétiethe CSP to resolve, a huge CSP would
result for even very small problems. The stronger the altbeperations defined, the smaller the
CSP to solve. Our current implementation has been used ¥e sahall tasks of, = 100 words,
and we have been able to extract rule sets that are smallerthba extracted bypefault&Refine
Various CSP-specific techniques can be applied to impravedmputational tractability of the task.
However, this is not the focus of the current chapter, whintsao define a solid theoretical basis for
further experimentation: computational tractability Maé addressed in future work.

5.3.8 OPTIMISING GENERALISATION ABILITY

Once all conflicted rules have been solved, and the minintalset obtained, it is possible to refine
the rule set by choosing the best rule option among the varatiants available. Possible selection
criteria include smallest rule context, most symmetrie mdntext, best coverage of the training data,
best fallback given the following set of rules in the spetifitiierarchy, and various others. Since
the choice of variant does not influence the number of rulesigeed, this provides flexibility in the
construction of the final rule set. When heuristics are eggaloduring rule extraction, choices are
limited earlier on: this framework allows heuristic cha@de be postponed as late as possible during
rule extraction, and makes those choices explicit.
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5.4 ALTERNATIVE ALGORITHMS AS SPECIALISATION OF GENERAL
FRAMEWORK

It is interesting to note that the rule extraction algorithatiscussed in Chapter 4 can be viewed
within the minimal representation grapframework. In the case of DEC the full set of rules in
Z is not constructed: only the rules that match the DEC formatgenerated. The rule graph is
not constructed prior to rule extraction but is grown duniobp extraction according teontainpat
relationships. Each additional conflicting word resultsumother leaf being added to the graph.

Default&Refinealso grows the graph from the root outwards, ordering ruteeming to rule
extraction order. At each level, a decision is made with mtda the rule and associated outcome
that best predicts the set of words that must be caught aketveldtin the rule graph (that will not be
predicted correctly by a later rule). This is conceptualiyir to generating a full rule graph prior
to rule extraction, and resolving rules strictly from thetroutwards according to a greedy heuristic
at each level. Since neither algorithm proceeds with altbegerations from an allowed initial state,
both will in general produce larger-than-minimal rule sets

5.5 EXTENSIONS

The current framework provides a solid theoretical basedasoning about the choices made during
grapheme-to-phoneme rule extraction. We are interestbdvinthis framework can be extended to
incorporate additional techniques, and this will be adslgdsn future work. Specific extensions that
may fit well within this framework include:

e Pronunciation variants: currently pronunciation varsaate not allowed (See eq. 5.13). If
a single pseudo-phoneme is generated for each alternaiingd sthe same framework can
be used to process pronunciation variants, with variantea®rd to drift towards the top of
the graph, unless clearly systematic. Further choiceseewdh regard to resolving conflict
between a single phoneme and a matching pseudo-phonemextms$ions to the current
framework may assist in resolving such issues.

e Class-based groupings: It is clear from rule set analysis ghoups of graphemes tend to
influence neighbouring graphemes in systematic ways. lildHze possible to accelerate the
learning process by extracting such graphemic groups glutite set extraction. This may
require the interlinking of a number of minimal memory grajia single structure.

e Combining phonemic and graphemic context: The same ruleasebe generated in terms of
either graphemic or phonemic context. We are interestedarativantages and disadvantages
of combining both approaches in a single rule set.

e Graphemic chunks: As all possible word sub-componentsemergted during rule set extrac-
tion, the extent to which the rule graph is manipulated kwitigs approach closer or removes
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it further from pronunciation-by-analogy techniques. W imterested in the similarities and
differences between these two approaches.

5.6 CONCLUSION

In this chapter we described a theoretical framework thatlmused to analyse the grapheme-to-
phoneme prediction problem in a rigorous fashion. Using framework, it is possible to define a
number of ‘allowed operations’ that attempt to extract thralest possible rule set from any given
set of training data. By making the various options avadaiileach stage of rule extraction explicit,
we obtain a better understanding of the grapheme-to-phemeediction task itself. Furthermore, the
new framework provides a solid foundation for further reskan pronunciation prediction, including
the potential incorporation of pronunciation variantssst-based groupings and/or graphemic chunks
within a rewrite-rule based framework.
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