
CHAPTER FIVE

M INIMAL REPRESENTATIONGRAPHS

5.1 INTRODUCTION

In Chapter 4 we analysed the grapheme-to-phoneme conversion task and developed an algorithm

suitable for bootstrapping. During the development of thisalgorithm (Default&Refine) an interesting

trend was observed: if different rule sets that all provide complete recovery of a set of training data

are extracted, the smaller rule sets tend to generalise better on an unseen test set. This is not an atyp-

ical situation when addressing machine learning problems,but leads us to an interesting theoretical

question: is it possible to define an algorithm that extractsthe smallest possible rule set within the

rewrite rule framework studied in the previous chapter, from any given set of training data? All the

algorithms discussed in Chapter 4 use heuristic information to attempt to obtain such a rule set; we

are interested in understanding the exact options available when attempting to obtain a minimal rule

set given a set of training data.

In Section 5.2 we describe a conceptual approach that allowsus to analyse the interdependencies

among words in the training data in a rigorous fashion. This framework provides us both with a

basis for analysing current rule extraction algorithms, and points towards a method for the extraction

of a provably minimal rule set. In Section 5.3 we define the discussed framework in more detail,

and demonstrate how this framework can be used to extract rule sets. In Section 5.6 we discuss the

implications of our results.

5.2 CONCEPTUAL APPROACH

In this section we provide a conceptual overview of the suggested approach, referred to asminimal

representation graphsin the remainder of this thesis. We use the same rewrite rule formalism as
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utilised in Chapter 4; that is, each rule describes the mapping of a single grapheme to a single phoneme

using the format:

x1..xm − g − y1..yn → p (5.1)

Hereg indicates the focal grapheme,xi andyj the graphemic context, andp the phonemic realisation

of the graphemeg. The rule set is accompanied by an explicit rule applicationorder. A pronunciation

prediction for any specific word is generated one focal grapheme at a time, by applying the first

matching rule found when searching through the rule set according to the rule application order.

Initially we focus on a training data set that does not contain any variants, that is, every word is

associated with a single unique pronunciation1.

The goal of the approach is to obtain the smallest possible rule set that describes a set of training

data completely, as an indirect approach to obtaining optimal accuracy on an unseen test set. In

order to better analyse the options available when attempting to extract such a rule set, we define a

framework that relies on four main observations:

1. If, for every training word, we extract all the sub-patterns of that word (as illustrated in Table

5.1), we obtain a list of all the rules that can possibly be extracted from the training data. Some

of these rules will conflict with one another with regard to phonemic outcome, and we refer to

these rules asconflictedrules. By choosing any subset of the full set of rules, and assigning

a specific outcome to each rule, all possible rule sets can be generated, whether accurate in

predicting the training data, or not.

Table 5.1:The relationship between a word and its sub-pattern rules.
Example grapheme e to phoneme E in word ’test’
Word pattern #t-e-st#→ E
Sub-patterns -e-→ E,-e-s→ E,t-e-→ E,t-e-s→ E

t-e-st→ E, #t-e-s→ E,-e-st#→ E
#t-e-st→ E,t-e-st#→ E,#t-e-st#→ E

2. If all the orderings among the full set of possible rules (sayZ) that may be required by a subset

of Z to be accurate in predicting the training data can be defined,then it becomes possible to

construct a rule graph of the full rule set according to all the orderings possible, and to define

appropriate operations that can manipulate this rule graphin well defined ways. During graph

manipulation, specific outcomes can be assigned to rules andrules identified asrequired or

superfluous. Superfluous rules can consequently be deleted,until only a minimal rule set is

retained.

3. During rule prediction, the relative rule application order of two rules that occur in an extracted

rule set is only of importance if the two rules conflict with regard to outcome, and if both can

1We discuss options for dealing with pronunciation variantsin Section 5.5
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apply to a single word. During rule extraction, the order in which two rules occur in an interim

rule set is only of importance if both can apply to a single word in the training data, and that

word has not yet been ‘caught’ by any required rule occurringearlier in the rule set. For each

rule, we refer to the latter set of words as thepossible wordsassociated with that rule.

4. The full set of possible rulesZ cannot occur in any order. It is possible to restrict the allowable

orderings between any two rules for two reasons: (1) if one rule is more specific than another,

the first rule must occur earlier in the rule set than the second in any minimal rule set. If not,

the second (more general) rule will always be invoked when predicting a word that applies to

both rules, and the first rule will be redundant (which is impossible if the rule set is minimal);

and (2) if two rules are applicable to the same word in the training data but conflict with regard

to outcome. For such rules the words shared in thepossible wordssets of each rule dictate the

orderings that are valid.

Using the above observations, we can analyse a set of training data in order to understand the

interdependencies among words in the training data, and theoptions for extracting a minimal rule set.

We illustrate the concepts using a simple 3-word example, consisting of the words ‘test’,‘ten’ and

’tea’ and consider the steps required to extract a rule set for the letter ‘e’. As the software that we

developed to implement this approach uses a single character representation of each grapheme and

phoneme, we do the same in this example.

Prior to rule extraction, aword patternis generated from each aligned word-pronunciation pair in

the training data, as shown in Table 5.2. Hashes denote word boundaries.

Table 5.2:Word patterns associated with the words ‘test’,‘ten’ and ‘tea’.
aligned ARPAbet example single character representation

Words t e s t→ t eh s t t e s t→ t e s t
t e n→ t eh n t e n→ t e n
t e a→ t iy φ t e a→ t i φ

Word patterns #t-e-st#→ eh #t-e-st#→ e
#t-e-n#→ eh #t-e-n#→ e
#t-e-a#→ iy #t-e-a#→ i

For each of the word patterns, we generate a set of sub-patterns (as listed in Table 5.1 for the word

pattern #t-e-st#→ e). These sub-patterns are arranged in a graph structure according to specificity,

with the more general rules later in the graph (closer to the root), and more specialised rule earlier

(higher up in the graph). Initially, an ordering is only added between two rules where the context

of one rule contains the context of another, and we refer to these orderings ascontain patternre-

lationships. A topological sort of this graph will result ina rule set that is accurate, but contains a

large number of superfluous rules. From the outset, the process assumes that any of the rules may be

deleted in future. As it becomes clear that certain rules arerequired in order to retain accuracy over

the training data (irrespective of further allowed changesto the rule set), these rules are marked as

requiredrules.
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Figure 5.1:An example rule graph, corresponding to the word patterns inTable 5.2

This process is illustrated in Fig. 5.1. Word nodes (one per word pattern) are indicated in green.

Clear nodes indicate rule nodes that can only predict a single outcome. For these nodes, different

coloured outlines indicate different outcomes. Orange nodes are associated with more than one pos-

sible outcome: different choices with regard to outcome will result in different rule sets. Black edges

indicate that an ordering between two rules is required, irrespective of further rule graph manipula-

tion. In the initial graph these edges representcontain patternrelationships. Currently no rules are

marked as required; if there were, these would be marked in yellow.

Orderings are transitive. If all the orderings implied by the current set of edges are considered,

then the only additional orderings that can possibly occur in the full rule set are between rules that

share a word in their respectivepossible wordsset, and have not already been assigned a fixed order-

ing. We refer to these rules asminimal complements. Theseminimal complementrelationships are

added and utilised during rule extraction. We do not indicate them explicitly on all the graphs used to

illustrate the current example, as the addition of minimal complement relationships results in visually

complex graphs. For illustration, we mark the minimal complements related to a single rule ‘-e-st’

for the initial graph of Fig. 5.1 and display the result in Fig. 5.2. Minimal complement relationships

are marked as orange edges.
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Figure 5.2:Marking the minimal complement relationships associated with the rule ‘-e-st’ for the
rule graph of Fig. 5.1.

Note that the minimal complements associated with any ruler can only occur in a restricted

range: the context of the earliest rule may not contain ruler, and the context of the latest rule may

not be contained byr itself. As this range is restricted, the number of additional orderings that may

be required is similarly restricted. Each additional minimal complement pair added to the graph

introduces two possible orderings. This increases the number of options to consider when making

any single decision (whether to resolve a conflicted node to asingle outcome, or whether a specific

rule is required or can be deleted.) We would like to remove asmany of the ‘double orderings’ as

possible, and replace these with orderings that indicate a single direction. In some cases additional

information is available to choose one of the orderings and discard the other:

• If the possible words associated with a ruler is a subset of the possible words of a second rule

s, ruler must always occur earlier in the rule extraction order thans. The reasoning is similar

to that followed when adding the initial contain pattern orderings, but now holds for minimal

complements that are not necessarily in a contain pattern relationship. We refer to these rela-

tionships assuper complements. While contain pattern relationships can be added to the graph

from the outset,super complementsemerge as the rule set extraction process progresses. As

more rules are marked asrequired, the possible words sets of later rules decrease, and su-

per complement relationships start to emerge. Once an ordering is added between two super
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complements, this relationship is not changed at a later stage during rule manipulation2

• If a ruler predicts a single outcome, and accurately matches all the words in the intersection of

the possible words of ruler and the possible words of another rules, and there is at least one

word in this set thats will mispredict given any of its allowed outcomes, then ruler has to occur

before rules for the rule set to be accurate. We refer to these relationships asorder required

relationships. If neither of the two rules matches the full set of shared words, the relationship

is still inconclusive. As with super complement relationships, order required relationships also

emerge as the rule set extraction process progresses.

In Fig. 5.3 we identify and add additional super complement relationships. The current rule graph

does not have any order required relationships among nodes.

Figure 5.3:Adding super complements to the rule graph of Fig. 5.1. (Minimal complements are not
shown.)

Since orderings are transitive, we can remove any definite orderings that are already implied by

others. For example, in Fig. 5.3 the relationship between rules ‘t-e-st’ and ‘#t-e- is already implied

2As more rules are marked as required, the possible words setsof all other rules become smaller. If a set of possible
words associated with a ruler is the subset of the possible words associated with a rules, this relationship will be maintained
unless both sets become equal. In the latter case, one of the two rules are redundant and will be deleted during rule
extraction, as discussed later. Since eitherr or s will be deleted, the ordering between these two rules becomeinsignificant,
and the prior ordering based on their previous super complement relationship may be retained without restricting rule graph
manipulation options.
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by the relationships between rules ‘t-e-st’ and ‘t-e-s’, and between rules ‘t-e-s’ and ‘#t-e-’. Such

redundant edges can be removed without losing any information currently captured in the rule graph.

This process is illustrated in Fig. 5.4. Note how the relationships become simpler and the graph

more loosely connected from Fig. 5.1 to Fig. 5.4.

Figure 5.4:Removing unnecessary edges from the rule graph of Fig. 5.3. (Minimal complements are
not shown.)

If we can be sure that we have added all the necessary orderings (caused by contain pattern, super

complement or order required relationships) and we keep track of all minimal complement relation-

ships that still have an uncertain ordering, we now have a rule graph that both contains all possible

rules, and specifies all possible orderings that may be required to define a valid rule application order.
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Figure 5.5:Removing unnecessary rules from the rule graph of Fig. 5.4.(Minimal complements are
not shown.)

We can now use this rule graph as basis to make decisions aboutwhich outcome to select where a

rule is conflicted (has more than one outcome), or even decidewhen a rule can be deleted or not.

When rules are deleted, it is possible that one of the rules required by a minimal rule set is deleted

unintentionally, and in order to compensate for this deletion, two or more additional rules may have

to be kept to retain accuracy over the training data. The finalrule set will then have more rules than

strictly required. To prevent this from happening, rules are eliminated by deleting redundant rules,

identifying required rules and resolving conflict rules viaa small set of allowed operations. The

state of rule extraction can always be described by a triple consisting of the possible rules that can

be included in the rule set (Z ′), the rules that have been marked as required (Ze), and the orderings

that are definite (oset(Z ′), the black edges in the graph). Additional orderings that are possible

can automatically be generated from such a state. Each allowed operation changes the state of rule

extraction, from oneallowed stateto another, with the initial allowed state as depicted in Fig. 5.1.

One example of such an allowed deletion operation can be illustrated as follows: The rule graph

in Fig. 5.4 clearly contains a number of superfluous rules. Whenever a ruler exists such that (1) it

is not conflicted, and (2) all the possible words associated with rule r can be caught by one or more
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immediate successors that agree with ruler with regard to outcome, and (3) ruler does not have any

immediate successors that can potentially disagree with regard to outcome, then ruler can safely be

deleted from the rule graph. All rules that meet these conditions, can be deleted from the rule graph,

as illustrated in Fig. 5.5. Since the rule graph is now significantly simpler, we start displaying the

remaining minimal complements from Fig. 5.6 onwards.

Figure 5.6:Removing unnecessary rules from the rule graph of Fig. 5.4.(Minimal complements are
shown.)

Where the possible words associated with ruler are exactly the same as the possible words of any

one of its successorss, rule r and rules are deemedrule variants. Either of two rule variants can be

generated at the same point in the rule extraction order, without influencing the number of rules in the

final rule set. The process keeps track of all deleted rules that are variants of retained rules. In this

way, while a rule node is physically deleted, the rules are ineffect merged, and either of the two rules

may be utilised in the final rule set, as discussed later.

Additional deletion operations identify rules that have anempty set of possible words, and rules

that are true variants of another, that is, two rules that areboth resolved to a single outcome, and have

identical relationships with identical predecessors and successors. While these deletion operations

create a rule graph that is significantly simpler, we have notyet made any decisions with regard to
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the best choice of outcome for any of the conflicted nodes. Prior to rule resolution, we first identify

any ruler assinglewhere – given the current state of rule extraction – at least one word can only be

predicted by either ruler or by another rule directly in the path ofr. In the remaining figures, these

single rules are marked ‘*S’.

There are various conditions under which a conflicted rule can be resolved, one of which we illus-

trate here. Conflicted nodes can be thought of as ‘default’ or‘fallback’ nodes. During pronunciation

prediction, a fallback node will only be invoked if a more specialised rule is not available that matches

the word being predicted. These nodes therefore only need tobe retained if, in some way or another,

the rule can generalise from its immediate predecessors. This requires that at least two predecessors

should predict a similar outcome. If this is not the case, thefallback node does not provide any further

advantage, and can be removed from the rule graph without constraining the rule set in a way that

does not allow final minimisation3. This process is illustrated in Fig. 5.7 and Fig. 5.8.

Figure 5.7:Resolving conflicted rule ‘t-e-’.

3This does not apply to the root node. The root node is handled as a special case, as discussed below.
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Figure 5.8:Resolving conflicted rule ‘#t-e-’.

Note that in the Fig. 5.8, none of the minimal complement relationships have been retained.

Additional resolution operations analyse the definite and possible predecessors and select a specific

outcome based on this analysis. When resolving a conflicted rule to a specific outcome, it is required

that at least one of the predecessors that has an outcome thatmatches the outcome selected for reso-

lution must be marked as asinglerule. If such a single rule exists, this implies that some rule with

the selected outcome will be generated at this point in the rule extraction order. While there is not

certainty that such a rule is required, the conflicted rule may not yet be resolved.
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Applying the same deletion operator discussed earlier, three additional rule nodes can be deleted,

as illustrated in Fig. 5.9.

Figure 5.9:Removing unnecessary rules ‘-e-st’, ‘-e-st#’ and ‘t-e-s’.
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If the resolution operator discussed previously were to be applied to the root node, the rule set

would remain valid. However, this would result in the root node being deleted, and it is easier in

practise to manipulate the graph assuming a single root node. Also, we would like to generate some

‘default rule’ that can be used to predict any word pattern not previously seen. Therefore the root

node is always resolved to a single outcome, once all its predecessors are resolved (and not deleted,

as would be the case if the standard resolution operator wereapplied). Resolving the root node

to a single outcome when standard application of a deletion operator indicated that it should have

been deleted, is similar to choosing one variant of a rule above another variant of the same rule. As

all variants are retained during rule extraction, and the final choice with regard to which variant to

choose is postponed until after graph minimisation, manipulating the root node as a special case does

not restrict the rule extraction process in any way. In Fig. 5.10 the root node is resolved to one of its

possible outcomes.

Figure 5.10:Resolving conflicted rule ‘-e-’.
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If for at least one word patternw in the possible words set of a ruler, there exists no other

rule than can possibly predict word patternw correctly, given the current state of rule extraction (the

remaining rule set, the required rule set and the decided orderings); then ruler is arequired rule and

can be marked as such. When a rule is identified as a required rule, all words in the possible words

set of ruler are removed from the possible words sets of rules occurring later in the rule graph. In

Fig 5.11 two rules are marked as required, with required nodes indicated in yellow. One final deletion

(using the standard deletion operator) and the minimal ruleset is obtained, as depicted in Fig. 5.12.

Figure 5.11:Identifying required rules ‘-e-a’ and ‘-e-’.
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Figure 5.12:The final (minimal) rule graph.

The rule set that can now be extracted from the rule graph by performing a topological graph

traversal. This results in the rule set listed in Table 5.3. For each extracted rule, a number of possible

variants are listed. A rule can be replaced by any of its variants without affecting the accuracy of the

rule set, or requiring the inclusion of additional rules. Note that for any single word that gives rise to

a single rule (such as the word pattern #t-e-a# in this example), all word sub-patterns that have not

been identified as currently part of the rule set are includedas variants.

Table 5.3:The final rule set generated from the words in Table 5.2, including possible variants.
Rule number Extracted rule Possible variants

1 -e-a→ i #t-e-a #t-e-a# -e-a# t-e-a# t-e-a
2 -e-→ e -e-st# -e-s -e-st

At this stage, heuristic choices related to characteristics such as rule context size, rule context

symmetry, or variance with regard to the training data can beutilised to choose the most appropriate

rule set. In larger rule sets, many rules do not have variants, but a relatively large proportion of rules

retain one or more variants. The ability to make heuristic choices late in the rule extraction process,

provides significant flexibility in obtaining the appropriate rule set.
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5.3 THEORETICAL FRAMEWORK

In this section we describe the above framework in more detail, and provide a more rigorous definition

of the terminology used4. We provide proofs for the key statements in Appendix B. Whenwe refer to

a specific statement in the text, we are referring to the statement as found in Appendix B.

Firstly, we define the rule format and the various terms used during rule set analysis. We then

proceed to show how a relationship between two rules in a minimal rule set translates to a specific

relationship between the same two rules in a larger rule set,and describe the conditions and impli-

cations of a rule ordering between two rules occurring in either of these types of rule sets. Using

these conditions, we provide a formal definition of an allowed state of rule extraction. We analyse the

characteristics of an allowed state and define an initial state that can be shown to be allowable in these

terms. We then define the various allowed operations that, when applied, progress the rule graph from

one allowed state to another. In contrast to the overall framework, the set of allowed operations are

still somewhat experimental, as discussed in section 5.3.6. Finally, we discuss the minimality of the

extracted rule set and describe additional options for the improvement of generalisation ability.

5.3.1 RULE FORMAT

As discussed in Section 5.2, we use a set of rewrite rules to describe the mapping of a single grapheme

to a single phoneme.

If G is the set of possible graphemes andH the set of possible phonemes; theith rule for

graphemeg is formulated as

rule(g, i) = (x1..xm, g, y1..yn) → z;

x1..xm, g, y1..yn ∈ G; z ∈ H; (5.2)

alternatively written as:

x1..xm − g − y1..yn → z

wherex1..xm defines them-grapheme left context ofg, y1..yn defines then-grapheme

right context ofg, andz is the predicted phonemic realisation of graphemeg when found

within the given left and right word contexts.G includesφG, the null grapheme and# the

word boundary marker (with alwaysg 6= #). H includesφH , the null phoneme.

4Terms and definitions are presented in definition boxes, interspersed among more general comments.
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Theoutcome(r) function describes the phonemic outcome of the ruler:

outcome(rule(g, i)) = outcome(x1..xm − g − y1..yn → z) = z. (5.3)

Thecontext(r) function describes the application context of the rulea r directly:

context(rule(g, i)) = context(x1..xm − g − y1..yn → z) = x1..xm − g − y1..yn. (5.4)

acontext(.) can also be applied to word patterns, as defined in eq. 5.9

The rule application orderrule order(Z ′, r, s) specifies the order in which any two rules

r ands occurring in a rule setZ ′ are applied, where

∀r, s ∈ Z ′ : rule order(Z ′, r, s) = 1 =⇒ rulenum(r) < rulenum(s) (5.5)

and therulenum(r) function describes the rule number of a specific ruler directly:

rulenum(rule(g, i)) = i. (5.6)

The oset(Z ′) for a rule setZ ′ consists of the entire set of orderings specified by

rule order(.), i.e:

oset(Z ′) = closure(Z ′, rule order(.)) (5.7)

whererule order(.) defines the current set of orderings overZ ′ andclosure(.) consists of

the transitive closure of the set of rule pairs for which a specific relation is defined, i.e.:

closure(Z ′, relation(.)) = ∪i(r, s)∀r, s ∈ Z ′ :

relation(Z ′, r, s) = 1 or ∃t ∈ Z ′ : relation(Z ′, r, t) = 1,

relation(Z ′, t, s) = 1. (5.8)

Therule order(.) relation restricts therulenum(.) function to a set of options, and does not neces-

sarily specify an ordering between every two rules. If rulesare applied according to therule order(.)

relation and an ordering between two rules that both match a word is indeterminate, either of the rules

can potentially be invoked. It is possible to convert from animplicit rule order(.) to an explicit rule
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numbering via theassign(.) function:

Let the setassign(Z ′, oset(Z ′)) define all the possible rule number assignments that are

valid given the specified rule setZ ′ and rule orderingsoset(Z ′). Per assignment, a single

rule number is assigned to every rule, consistent withoset(Z ′).

Note that for a specific value ofassign(Z ′, oset(Z ′)), rulenum(r) < rulenum(s) does not imply

thatrule order(Z ′, r, s) = 1.

A word w consists of a sequence of graphemes inG. During pronunciation prediction of

a word of lengthn (also counting word boundaries), we createn word patterns that each

focus on a specific grapheme in the word. When focusing on graphemei, the word pattern

is described as:

∀w = x1..xn;xj ∈ G ;n ≥ 1; 1 ≤ i ≤ n :

word pattern(w, i) = x1..xi−1 − xi − xi+1..xn. (5.9)

(5.10)

The context(w) function can also be applied to word patterns, where thecontext of a

word patternw is simply the word pattern itself.

Thematch(w, r) function indicates that a ruler occurring in a rule setZ ′ can be applied

to predict a word patternw:

∀r ∈ Z ′ : match(w, r) = 1 ⇐⇒ context(w) ⊇ context(r). (5.11)

The winningrule(w, g) relation describes the first matching rule(s) found in rule set Z ′

for word patternw with regard to graphemeg, i.e

∀r ∈ Z ′ : r ∈ winningrule(Z ′, oset(Z ′), w, g) ⇐⇒ match(w, r) = 1,

6 ∃s : match(w, s) = 1, (s, r) ∈ oset(Z ′). (5.12)
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Rules with equivalent contexts and different outcomes are not allowed in the final rule set, i.e:

∀g ∈ G, i, j ∈ N : context(rule(g, i)) = context(rule(g, j)) =⇒

outcome(rule(g, i)) = outcome(rule(g, j)). (5.13)

Conflicting rules will however exist during the interim steps of rule extraction, as discussed below.

5.3.2 RULE SET ANALYSIS

5.3.2.1 TRAINING DATA, WORD PATTERNS AND SUB-PATTERNS

The rule set is derived from a set of training data. As in the previous chapters, a data set consisting

of aligned word-pronunciation pairs is used as input duringrule extraction. Word patterns and word

sub-patterns are extracted from this set, and form the basisfor further rule set construction.

Each word-pronunciation pair consists of two sequencesx1..xn and y1..yn, wheren ≥

1, xi ∈ G andyi ∈ H. Let TD(g) be the set of all word patterns in the training data

that describe a specific graphemeg, associated with a specific phonemic outcome per word

pattern. Then:

∀g ∈ G : w ∈ TD(g) ⇐⇒ w = x1..xi−1 − g − xi+1..xn → yi,

wherex1..xn andy1..yn an aligned word-pronunciation pair. (5.14)

In the remainder of this section, assumeg to simplify notation (for example letrule(i) be

equivalent torule(g, i) for the specificg being considered). TD does not contain word

variants (multiple pronunciations of a single word), that is:

6 ∃w1, w2 ∈ TD : context(w1) = context(w2) =⇒

outcome(w1) 6= outcome(w2). (5.15)

A word pattern is in effect the largest possible rule that describes the grapheme-to-phoneme mapping

accurately. The combined left and right contexts of the wordpattern therefore contains the full word,

including word boundaries. For each word pattern, a set of sub-pattern rules – describing all possible

sub-contexts of the word pattern – can be generated, as previously shown in Table 5.1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 73

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  DDaavveell  MM  HH    ((22000055))  



CHAPTER FIVE M INIMAL REPRESENTATIONGRAPHS

Let Z be the set of all possible word patterns and sub-patterns associated with the word

patterns inTD.

For any two rule sets,ZA andZB , let ZA ⊆ ZB indicate that one set is equal to or a subset

of the other, both with regard to the context and outcome of rules. More specifically:

ZA ⊆ ZB ⇐⇒ r ∈ ZA =⇒ r′ ∈ ZB ,

context(r) = context(r′), outcome(r) ⊆ outcome(r′). (5.16)

Let |Z ′| indicate the number of rules in any rule setZ ′, whereZ ′ ⊆ Z.

Let allset(Z ′) consist of all possible orderings in a rule setZ ′, whether contradictory or

not:

∀Z ′ ⊆ Zcombined : allset(Z ′) = ∪i,j(vi, vj)∀vi, vj ∈ Z ′, i 6= j. (5.17)

A word patternw can be referred to either as a word patternw ∈ TD or as a rulew ∈ Z. The setZ

then consists of all possible rules that can potentially apply to the word patterns inTD.
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5.3.2.2 CONFLICT RULES AND CONFLICT RESOLUTION

As the setZ consists of all possible rules that can potentially apply tothe word patterns inTD, it

may include a number of conflicting rules. Under certain conditions, these rules can be resolved to a

specific outcome. Until a rule is resolved to a single outcome, a set of allowable outcomes is retained

per rule.

Let Zconflict consist of all the conflicting rules inZ, that is, rules that contradict eq. 5.13.

Let Zno−conflict be the set of remaining rules, when all conflicting rules inZconflict are

removed fromZ, i.e

Zconflict ∪ Zno−conflict = Z.

Zconflict ∩ Zno−conflict = φ. (5.18)

Define theconflictrule(rα1, rα2, .., rαn) for all n rules rαi ∈ Zconflict with equivalent

contexts as one rule with one ofn alternative outcomes, i.e:

∀rαi ∈ Zconflict, context(rαi) = context(rα)∀i = 1...n :

conflictrule(rα1, rα2, .., rαn) = context(rα) → z1‖z2‖...‖zn,

zj = outcome(rαj)∀j = 1...n,

wherezj ||zk indicate that eitherzj or zk is a possibleoutcome. (5.19)

Define the resolution of aconflictrule as a specific-outcome version of the rule, i.e let:

∀rα ∈ Zconflict, zx ∈ ∪rαi
outcome(rule(rαi)) :

resolve(conflictrule(rα1, rα2, .., rαn), zx) = context(rα) → zx. (5.20)

If a rule r with the same context is referred to with regard to differentrule sets in which

different resolved versions of the rule may occur, letoutcome(r|Z ′) indicateoutcome(r)

wherer ∈ Z ′.
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For each subset of all elements inZconflict with equivalent contexts, it is possible to

generate a singleconflictrule. Let the setZconflict−combined consist of all the conflict

rules generated fromZconflict according to eq. 5.19, which have not been resolved. Let

the setZconflict−resolved consist of all the resolved conflict rules, where a conflict rule

will move from Zconflict−combined to Zconflict−resolved upon resolution (according to eq.

5.20). LetZcombined consist of all elements inZno−conflict combined with the elements in

Zconflict−combined andZconflict−resolved, where

Zno−conflict ∪ Zconflict−resolved ∪ Zconflict−combined = Zcombined

Zconflict−combined ∩ Zno−conflict = φ

Zconflict−resolved ∩ Zconflict−combined = φ

Zconflict−resolved ∩ Zno−conflict = φ (5.21)

and let Zsingle = Zconflict−resolved ∪ Zno−conflict (5.22)

Figure 5.13:Examples of rules inZ, Zcombined and their subsets.

The relationships among the different sets are depicted in Fig. 5.13.
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5.3.2.3 COMPLETE, ACCURATE, MINIMAL AND POSSIBLYMINIMAL RULE SETS

Any subset ofZcombined, ordered according to a specific rule orderingrule order(.) will describe the

training data with a certain degree of accuracy. The ideal rule set will be one that is not only complete

but also accurate, and not only accurate but also minimal, asdefined below:

A complete rule set can predict all the words in the training data:

∀Z ′ ⊆ Zcombined : complete(Z ′) = 1 ⇐⇒

∀w ∈ TD,∃r ∈ Z ′ : match(w, r) = 1. (5.23)

An accurate rule set predicts all words in the training data accurately:

∀Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

accurate(Z ′, oset(Z ′)) = 1 ⇐⇒ complete(Z ′) = 1,

∀w ∈ TD,∀r ∈ winningrule(Z ′, oset(Z ′), w) : outcome(w) = outcome(r). (5.24)

A minimal rule set is an accurate rule set that contains the fewest rules possible:

∀Z ′ ⊆ Zcombined, oset(Z
′) ⊆ allset(Z ′) :

minimal(Z ′, oset(Z ′)) = 1 ⇐⇒ accurate(Z ′, oset(Z ′)) = 1,

6 ∃Z ′′ ⊆ Zcombined, oset(Z
′′) ⊆ allset(Z ′′) :

accurate(Z ′′, oset(Z ′′)) = 1, |Z ′′| < |Z ′|. (5.25)

A possibly minimal rule set is a set of rules that can be minimal, if ordered correctly:

∀Z ′ ⊆ Zcombined : possibly minimal(Z ′) = 1 ⇐⇒

∃oset(Z ′) ⊆ allset(Z ′) : minimal(Z ′, oset(Z ′)) = 1. (5.26)
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5.3.2.4 ALLOWED STATES AND ALLOWED OPERATIONS

The full set of rules inZcombined consists of all possible rules and is therefore a superset ofone or

moreminimal rule setsZm
5. We would like to delete the unnecessary rules until only aminimal

rule set is retained. When rules are deleted, it is possible that one of the rules required byZm is deleted

unintentionally, and in order to compensate for this deletion, two or more additional rules may have to

be kept to retain accuracy overTD. The final rule setZ ′ will then have a number of rules|Z ′| > |Zm|.

To prevent this from happening, rules are eliminated by adding orderings, deleting redundant rules,

identifying required rules and resolving conflict rules viaa set of allowed operations. Thestate of

rule extraction can always be described by the tripleZ ′, Ze, oset(Z
′) , whereZ ′ indicates the possible

rules that can still be included in the final rule set,Ze indicates required rules that have to be included

in the final rule set, andoset(Z ′) identifies some of the required rule orderings among elements of

Z ′. Each allowed operation changes thestate of rule extraction, from oneallowed state to another,

with allowed state as defined below (in eq 5.29).

Let theorder subset(osetA(ZA), osetB(ZB)) relation be true if a set of rule orderings

osetA(ZA) is equal to or a subset of another set of rule orderingsosetB(ZB) (possibly

defined on a different rule set) when the two sets of rule orderings are compared on their

rule set intersection. More specifically:

∀ZA ⊆ Zcombined, ZB ⊆ Zcombined,

∀osetA(ZA) ⊆ allset(ZA), osetB(ZB) ⊆ allset(ZB) :

order subset(osetA(ZA), osetB(ZB)) = 1 ⇐⇒

∀r, s ∈ ZA ∩ ZB : (r, s) ∈ oset(ZA) =⇒ (r, s) ∈ oset(ZB). (5.27)

Let minrules(Z ′, Ze, oset(Z
′)) identify all theminimal rule set and rule ordering set

pairs that can be derived fromZ ′, given the set of orderingsoset(Z ′) and a required rule

subsetZe. More specifically:

∀Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)) ⇐⇒

minimal(Zm, osetm(Zm)) = 1, Ze ⊆ Zm ⊆ Z ′,

order subset(oset(Z ′), osetm(Zm)) = 1. (5.28)

5By definition, at least onemiminal rule set will always exist.
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Let allowed state(Z ′, Ze, oset(Z
′)) indicate that for a given required subsetZe and re-

quired set of orderingsoset(Z ′), there exists aminimal rule setZm contained withinZ ′:

∀Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

allowed state(Z ′, Ze, oset(Z
′)) = 1 ⇐⇒

∃Zm, osetm(Zm) : (Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)). (5.29)

Define anallowed op as any operation that, when applied to any possibleallowed state

of a rule set and rule ordering set, will result in anotherallowed state.

Let each element inminset(Zm, oset(Zm)) consist of all and only those orderings required

for a possibly minimal rule setZm to be minimal, given some prior set of orderings

oset(Zm):

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) :

osetm(Zm) ∈ minset(Zm, oset(Zm)) ⇐⇒

oset(Zm) ⊆ osetm(Zm),minimal(Zm, osetm(Zm)) = 1. (5.30)

It follows directly from the definition ofminrules (eq. 5.28) andminset (eq. 5.30) that:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,∀oset(Zm) ⊆ allset(Zm) :

osetm(Zm) ∈ minset(Zm, oset(Zm)) ⇐⇒

(Zm, osetm(Zm)) ∈ minrules(Zm, Zm, osetm(Zm)). (5.31)
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Such a minset(.) ordering does not exist for all prior orderingsoset(.). The

valid(Zm, oset(Zm)) relation indicates that a specificoset(Zm) defined with regard to

apossibly minimal rule setZm consists of a subset of the restrictions required by at least

oneminset(Zm, oset(Zm)). Specifically:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,

∀oset(Zm) ⊆ allset(Zm) : valid(Zm, oset(Zm)) = 1 ⇐⇒

∃osetm(Zm) ⊆ allset(Zm) : osetm(Zm) ∈ minset(Zm, oset(Zm)). (5.32)

It follows directly from the definition ofallowed state (eq. 5.29) andvalid (eq. 5.32) that:

∀Zm ⊆ Zcombined, possibly minimal(Zm) = 1,∀oset(Zm) ⊆ allset(Zm) :

valid(Zm, oset(Zm)) = 1 ⇐⇒ allowed state(Zm, Zm, oset(Zm)) = 1. (5.33)

If Zm is a minimal rule set describing the training dataTD, then some of the rules inZm will each

be a single unique rule, while other rules will each be one of aset of possible options – any one of

which could have been generated at a specific point in the ruleapplication order without influencing

the number of rules required to predict the training set accurately and completely. Such a combination

of rules is referred to as arule variant set.

5.3.2.5 MATCHWORDS, POSSIBLEWORDS, RULEWORDS AND SHAREDWORDS

Throughout rule extraction, we keep track of the set of wordsthat may influence our decisions with

regard to a specific rule. In this way we identify words that match a specific rule (matchwords),

words that will invoke a specific rule during prediction (rulewords), and the set of possible words

that may result in rulewords in the final ordering (possible words). We also identify the possible

words that any two rules share (shared words).
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Let the setmatchwords(r) consist of all words matched by a specific ruler:

∀r ∈ Zcombined, w ∈ TD :

w ∈ matchwords(r) ⇐⇒ match(w, r) = 1. (5.34)

Let the setrulewords(Z ′, oset(Z ′), r) consist of all words that can cause a specific ruler

to be invoked (where the actual rule invoked will depend on the actual rule number assign-

ment), given the current set of rule orderingsoset(Z ′):

∀r ∈ Z ′, Z ′ ⊆ Zcombined, w ∈ TD :

w ∈ rulewords(Z ′, oset(Z ′), r) ⇐⇒

r ∈ winningrule(Z ′, oset(Z ′), w) (5.35)

Not all rules can necessarily be invoked when predicting thewords in TD - for rules that

cannot be invoked given the current rule set, the set ofrulewords(.) is empty. Note also

that the actual words that will invoke ruler in the final ordered rule set consists of the set

rulewords(Zm,minset(oset(Zm)), r) not the setrulewords(Zm, oset(Zm), r).

As the rule set is manipulated, additional rules are added tothe required subsetZe, which can

affect thepossible words sets of all rules later in the rule graph. When comparing two rulesr ands,

it is possible that rule set extraction has progressed further in a section of the rule graph leading up to

one rule than in the section of the rule graph leading up to theother. In order to be able to obtain a

clear comparison of the two rules, we choose a shared point inthe rule graph (rulev in the definition

below) and only allow rules defined prior to this point to influence thepossible words(.) sets of both

rules, resulting in a stable basis for rule comparison.
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Let the setpossible words(Z ′, Ze, oset(Z
′), v, r) consist of all words that match a specific

rule r, and have not yet been caught by rulev or an earlier rule thanv, wherev in Ze, the

required subset of rule setZ ′ when rule extraction is in stateZ ′, Ze, oset(Z
′):

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

w ∈ possible words(Z ′, Ze, oset(Z
′), v, r) ⇐⇒

v = r or (v, r) ∈ oset(Z ′),match(w, r) = 1,

6 ∃s ∈ Ze : match(w, s) = 1, s = v or (s, v) ∈ oset(Z ′)a. (5.36)

aNote that ifv 6= r and(v, r) 6∈ oset(Z′) thenpossible words(Z′, Ze, oset(Z
′), v, r) = φ

Let v0 be an imaginary rule that matches no words, is always the firstrule to occur in any

rule set, and does not contribute to the rule count of a rule set. The rulev0 has the following

characteristics:

v0 ∈ Zcombined. (5.37)

|{v0}| = 0. (5.38)

∀w ∈ TD : match(w, v0) = 0. (5.39)

∀vi ∈ Z ′, Z ′ ⊆ Zcombined, vi 6= v0,∀oset(Z ′) ⊆ allset(Z ′) :

(v0, vi) ∈ oset(Z ′). (5.40)

Sincev0 does not affect further rule set orderings directly, and cannot affect any word-rule relation-

ship, such a rule can be added without causing any side effects in the rule set. We use rulev0 as a

stable point for rule comparison when two rules do not share identical predecessors inZe when eval-

uatingpossible words sets with regard to some stable pointv, as defined in eq. 5.36. An alternative

stable point that can be used is the last shared parent of the two rules inZe, as defined below.
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Let last parent(Z ′, Ze, oset(Z
′), r, s) be the latest possible rule or rules inZe that occur

earlier than both rulesr ands according tooset(Z ′), or the earliest ofr ands, if r, s ∈ Ze:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

v ∈ last parent(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

{(v, r), (v, s)} ∈ oset(Z ′); 6 ∃t ∈ Ze : {(v, t), (t, r), (t, s)} ∈ oset(Z ′). (5.41)

Let shared words(Z ′, Ze, oset(Z
′), r, s, v) identify those words that are in the

possible words sets of two different rulesr ands with regard to some rulev:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset′(Z ′) ⊆ allset(Z ′) :

shared words(Z ′, Ze, oset(Z
′), v, r, s) ≡

possible words(Z ′, Ze, oset(Z
′), v, r) ∩ possible words(Z ′, Ze, oset(Z

′), v, s). (5.42)

5.3.2.6 COMPLEMENTING RULES: CONTAINPAT, MINCOMP AND SUPERCOMP

We now introduce a number of relationships that may exist between pairs of rules. These relation-

ships are crucial in understanding how rules may substitutefor one another, and therefore form the

foundation for the derivation of minimal rule sets.

Let complement(Z ′, Ze, oset(Z
′), v, r, s) indicate that rulesr and s have overlapping

possible words sets, i.e.

∀r, s ∈ Z ′, r 6= s, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

∃w ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s). (5.43)
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Let thepath(relation(r, s)) indicate that a path of relations of a specific type exists be-

tween rulesr ands in a rule setZ ′, i.e

∀r, s ∈ Z ′ : path(relation(r, s)) = 1 ⇐⇒ ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) = 1. (5.44)

∀r, s ∈ Z ′ : path(relation(r, s)) = −1 ⇐⇒ ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) = −1. (5.45)

∀r, s ∈ Z ′ : path(relation(r, s)) = 0 ⇐⇒ 6 ∃ x1 = r, x2, ..., xn = s ∈ Z ′ :

relation(x1, x2) = relation(x2, x3) = ... = relation(xn−1, xn) 6= 0. (5.46)

wherer, s andxi in the domain of the specific relation.

Let thepath(relation1/relation2(r, s)) = −1|0|1 indicate that a path exists betweenr

ands as defined above, but with edges of either typerelation1(.) or typerelation2(.).

Let thepath(relation1&relation2(r, s)) = −1|0|1 indicate that a path exists betweenr

ands as defined above, but with edges such that bothrelation1(.) andrelation2(.) hold.

Let the relationcontainpat(Z ′, r, s) indicate that ruler is a rule with the smallest possible

context that contains the context of rules, i.e.:

∀r, s ∈ Z ′, Z ′ ⊆ Zcombined :

containpat(Z ′, r, s) = 1 ⇐⇒ context(r) ⊃ context(s)

and 6 ∃t ∈ Z ′ : context(r) ⊃ context(t) ⊃ context(s). (5.47)

Let containpat(Z ′, r, s) = −1 if and only if containpat(Z ′, s, r) = 1; and let

containpat(Z ′, r, s) = 0 if and only if no containpat(.) relationship exists betweenr

ands in Z ′.

From the definition ofcontainpat it follows immediately that

∀r, s ∈ Z ′, Z ′,⊆ Zcombined :

path(containpat(Z ′, r, s)) = 1 ⇐⇒ context(r) ⊃ context(s). (5.48)
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Let the bidirectional relationmincomp(Z ′, Ze, oset(Z
′), v, r, s) be true for all rulesr and

s that are minimal complements of each other, i.e.

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

mincomp(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

complement(Z ′, Ze, oset(Z
′), v, r, s) = 1,

path(containpat(Z ′, r, s)) = 0. (5.49)

Let the bidirectional relationdirect(.) be true for rules that have either a directmincomp(.)

or a directcontainpat(.) relationship, i.e.

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined :

direct(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

containpat(Z ′, r, s) = ±1 or mincomp(Z ′, Ze, oset(Z
′), r, s) = 1. (5.50)

Let thesubset(Z ′, Ze, oset(Z
′), v, r, s) relation indicate that thepossible words that can

be caught by a ruler is a strict subset of thepossible words that can be caught by another

rules, with respect to a rulev that occurs earlier in the rule set than eitherr or s, for a given

rule extraction stateZ ′, Ze, oset(Z
′):

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

v ∈ Ze, {(v, r), (v, s)} ∈ oset(Z ′) :

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

shared words(Z ′, Ze, oset(Z
′), v, r, s) 6= φ,

possible words(Z ′, Ze, oset(Z
′), v, r) ⊂ possible words(Z ′, Ze, oset(Z

′), v, s).(5.51)
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Let thesupercomp(Z ′, Ze, oset(Z
′), v, r, s) relation be true when two rulesr ands are

both in asubset(Z ′, Ze, oset(Z
′), v, r, s) and amincomp(Z ′, Ze, oset(Z

′), v, r, s) rela-

tion:

∀r, s ∈ Z ′, v ∈ Ze, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′),

supercomp(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒ (5.52)

mincomp(Z ′, Ze, oset(Z
′), v, r, s) = 1,

subset(Z ′, Ze, oset(Z
′), v, r, s) = 1. (5.53)

For all r, s ∈ Z ′, Z ′ ⊆ Zcombined, oset′(Z ′) ⊆ allset(Z ′): Let anyset(Z ′, oset(Z ′), r, s)

be an alternative naming convention foranyset(Z ′, Z ′, oset(Z ′), r, s), whereanyset can

be thesubset (eq. 5.51),possible words (eq. 5.36), ororder req (eq. 5.58).

5.3.2.7 ZM AS A SUBSET OFZCOMBINED

As mentioned in section 5.3.2.4, the full set of rules inZcombined consists of all possible rules and is

therefore a superset of one or moreminimal rule setsZm. During rule extraction eachallowed rule

state is defined by a tripleZ ′, Ze, oset(Z
′), and each allowed state can can give rise to one or more

minimal rule setsZm, oset(Zm), where(Zm, osetm(Zm)) ∈ minrules(Z ′, Ze, oset(Z
′)).

If any two rulesr ands in Zm have a specific relationship in one such state, this implies further

relationships in prior and ensuing states (as shown in statement 15). For any two rulesr ands in Zm

it holds that ifr ands have acontainpat relationship with regard to an appropriate6 nodev when the

rule extraction process is in stateZ ′, Ze, oset(Z
′) , rulesr ands will have a similar relationship when

rule extraction reaches the stateZm, Zm, osetm(Zm). It can also be shown that, for any two rulesr

ands in Zm, it holds that ifr ands have acomplement relationship with regard to an appropriate

nodev when the rule extraction process is in the final stateZm, Zm, osetm(Zm), then rulesr and

s will have a similar relationship for eachallowed state Z ′, Ze, oset(Z
′) leading up to the final

state. Forcontainpat path relations, the statement is stronger: Any two rulesr ands in Zm will

have apath(containpat(.)) relationship when the rule extraction process is in stateZ ′, Ze, oset(Z
′)

if and only if rulesr and s will have a similar relationship when rule extraction reaches the state

Zm, Zm, osetm(Zm).

6Thisv acts as the stable comparison point previously described. Any v such that both(v, r) and(v, s) are included in
the set of established orderings would be valid.
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5.3.3 RULE ORDERING

In this section, we analyse the conditions and implicationsof an ordering relationship between two

rules in a rule setZ ′ whereZ ′ ⊆ Zcombined. We first define what we mean by ordering requirements,

and then show how these requirements can be translated to therelationships defined in section 5.3.2.6.

Let orderacc(Z
′, Ze, oset(Zm), r, s) indicate that ifr does not occur befores, no state

Z ′, Ze, oset
′(Z ′) can result in anallowed state, whereoset′(Z ′) is a superset of the

oset(Z ′) orderings:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

orderacc(Z
′, Ze, oset(Z

′), r, s) = 1 ⇐⇒

6 ∃oset′(Z ′) ⊇ oset(Z ′) ∪ (s, r) : allowed state(Z ′, Ze, oset
′(Z ′)) = 1. (5.54)

Let orderred(Z
′, oset(Z ′), r, s) indicate that if rules occurs before ruler, at least one rule

in the rule setZ ′ will become redundant, irrespective of any further orderings added:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

orderred(Z
′, Ze, oset(Z

′), r, s) = 1 ⇐⇒

at least one rulet ∈ Z ′ becomes redundant given any state

(Z ′, Z ′

e, oset
′(Z ′)), oset′(Z ′) ⊇ oset(Z ′) ∪ (s, r), Z ′

e ⊇ Ze. (5.55)
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Let order(Z ′, Ze, oset(Z
′), r, s) indicate that either anorderacc(Z

′, Ze, oset(Z
′), r, s) or

anorderred(Z
′, Ze, oset(Z

′), r, s) relationship holds between any two rulesr ands:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ orderacc(Z

′, Ze, oset(Z
′), r, s) = 1,

or orderred(Z
′, Ze, oset(Z

′), r, s) = 1. (5.56)

Let direct order(Z ′, Ze, oset(Z
′), r, s) = 1 indicate that a direct ordering requirement

exists between rulesr ands:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

direct order(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ order(Z ′, Ze, oset(Z

′), r, s) = 1;

6 ∃t : direct order(Z ′, Ze, oset(Z
′), r, t) = 1,

direct order(Z ′, Ze, oset(Z
′), t, s) = 1.(5.57)

As before, for each of theorder∗ relations (order, orderacc, orderred anddirect order),

let order∗(Z ′, Ze, oset(Z
′), r, s) = −1 indicate thatorder∗(Z ′, Ze, oset(Z

′), s, r) = 1,

and letorder∗(Z ′, Ze, oset(Z
′), r, s) = 0 indicate thatorder∗(Z ′, Ze, oset(Z

′), r, s) 6=

±1.

Using the above definitions it can be shown that if anorderacc relationship exists between any two

rulesr ands in Zm, then a path ofcomplement anddirect order relations exist between these two

rules (statement 19). That is, under appropriate conditions, orderacc(Zm, , Zm, oset(Zm), r, s) =

1 =⇒ path(direct order&complement(Zm, Zm, oset(Zm), v, r, s)) = 1, wherev is a rule earlier

thanr ors (and in practice typically thelast parent of these two rules). This means that any two rules

in Zm can only have an accuracy ordering requirement if there exists a path of such complementing

direct orderings from one to the other.

Once aminimal rule setZm has been obtained, then, iforderred(Zm, Zm, oset(Zm), r, s) = 1

it also follows thatorderacc(Zm, Zm, oset(Zm), r, s) = 1 (statement 16). The redundancy ordering

requirement therefore does not introduce any additional ordering requirements in the final rule graph,

but does provide a way to restrict the set of rule orderings early on in the rule extraction process.

If any two rulesZ ′ are in asubset relationship with regard to some rulev as above, then it can

be shown that these two rules are also in anorderred(Zm, Zm, oset(Zm), r, s) relationship with re-

gard to anyZm, osetm(Zm) pair that can be reached from the currentallowed state (statement 21).

Identifiedsubset relationships can therefore be used to define initial orderings prior to further graph

manipulation.
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The process of applying allowed operations (as discussed insection 5.3.6) leads to further or-

dering requirements becoming visible. Below we define the conditions under which anorder req

relationship can be enforced between two rules. It can be shown that if two rulesr ands are in an

order req(Z ′, Ze, oset(Z
′), v, r, s) relationship with regard to a rulev as above, then these two rules

are also in anorderacc(Z
′, Ze, oset(Z

′), r, s) relationship (statement 26). Theorder req relation-

ships therefore provide an indication of accuracy orderingrequirements that emerge during rule set

extraction.

Let theorder req(Z ′, Ze, oset(Z
′), v, r, s) relation be true if two rulesr ands disagree

with regard to outcome, and have a non-empty set ofshared words, all of which agree

with rule r with regard to outcome, and at least one of which disagrees with rule s with

regard to outcome:

∀r ∈ Zsingle, s ∈ Z ′, v ∈ Ze, Ze ⊆ Zm ⊆ Z ′ ⊆ Zcombined,

∀oset′(Z ′) ⊆ allset(Z ′) :

order req(Z ′, Ze, oset(Z
′), v, r, s) = 1 ⇐⇒

direct order(Z ′, Ze, oset(Z
′), r, s) = 1,

shared words(Z ′, Ze, oset(Z
′), v, r, s) 6= φ,

∀wi ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s) : outcome(wi) = outcome(r),

∃w′ ∈ shared words(Z ′, Ze, oset(Z
′), v, r, s) : outcome(w′) 6∈ outcome(s). (5.58)
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5.3.4 CHARACTERISTICS OF AN ALLOWED STATE

Let order decided(Z ′, Ze, oset(Z
′), r, s) indicate that the direction of rule ordering be-

tween two directly related rulesr ands in a rule setZ ′ has been established based on an

identifiedcontainpat or supercomp relationship, given some required subset of rulesZe

and some prior set of orderingsoset(Z ′). More specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset′(Z ′) ⊆ allset(Z ′) :

order decided(Z ′, Ze, oset
′(Z ′), r, s) = 1 ⇐⇒

containpat(Z ′, r, s) = 1;

or ∃v ∈ Ze : supercomp(Z ′, Ze, oset
′(Z ′), v, r, s) = 1;

or ∃oset(Z ′) ⊆ allset(Z ′) : order subset(oset(Z ′), oset′(Z ′)) = 1,

order decided(Z ′, Ze, oset(Z
′), r, s) = 1. (5.59)

Let decided set(Z ′, Ze, oset(Z
′)) take any rule setZ ′, required subsetZe and set of rule

orderingsoset(Z ′), and generate a set of all the currentorder decided relationships:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

(r, s) ∈ decided set(Z ′, Ze, oset(Z
′)) ⇐⇒

path(order decided(Z ′, Ze, oset(Z
′), r, s)) = 1. (5.60)

Note that anorder decided(Z ′, Ze, oset(Z
′), r, s) relationship does not imply that ruler ands will

either or both be retained inZm, but only that if both were retained,r would be ordered prior tos.
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Let order possible1(Z ′, Ze, oset(Z
′), r, s) indicate that, even though it has not yet been

established whether a rule ordering is required between tworulesr ands: if a rule ordering

is required, the direction of such an ordering will be from rule r to rule s because of the

existence of aorder req relationship between these two rules. More specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order possible1(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒

∃v ∈ Ze, {(v, r), (v, s)} ∈ oset(Z ′) : order req(Z ′, Ze, oset
′(Z ′), v, r, s) = 1. (5.61)

Let order possible(Z ′, Ze, oset(Z
′), r, s) indicate that the direction of rule ordering (if

any) has not yet been established between two minimal complementsr and s that have

remainingshared words when rule extraction is in stateZ ′, Ze, oset(Z
′). More specifi-

cally:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined,∀oset(Z ′) ⊆ allset(Z ′) :

order possible(Z ′, Ze, oset(Z
′), r, s) = 1 ⇐⇒ mincomp(Z ′, r, s) = 1,

shared words(Z ′, Ze, oset(Z
′), r, s) 6= φ,

order decided(Z ′, Ze, oset(Z
′), r, s) = 0.

order possible1(Z ′, Ze, oset(Z
′), r, s) 6= −1. (5.62)

Let possible set(Z ′, Ze, oset(Z
′)) take any rule setZ ′, required subsetZe and set of rule

orderingsoset(Z ′), and generate a set of all thedecided andpossible rule orderings. More

specifically:

∀r, s ∈ Z ′, Ze ⊆ Z ′ ⊆ Zcombined, oset(Z
′) ⊆ allset(Z ′) :

(r, s) ∈ possible set(Z ′, Ze, oset(Z
′)) ⇐⇒

path(order possible/order decided(Z ′, Ze, oset(Z
′), r, s)) = 1. (5.63)
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Consider anyZ ′, Ze, oset(Z
′) combination such thatallowed state(Z ′, Ze, oset(Z

′)) = 1. By defi-

nition (eq. 5.28 and eq. 5.29) it will always hold that:

Ze ⊆ Zm ⊆ Zcombined. (5.64)

Furthermore, it can be shown (statement 28 and 27) that:

order subset(decided set(Z ′, Ze, oset(Z
′)), osetm(Zm))) = 1. (5.65)

order subset(osetm(Zm), possible set(Z ′, Ze, oset(Z
′))) = 1. (5.66)

Now consider any two rulesr ands that will be retained in the minimal rule setZm. From the above

it follows that if rulesr ands are ordered according todecided set(Z ′, Ze, oset(Z
′)) then these two

rules will retain this ordering in the minimal rule set ordering osetm(Zm). Also, any rule ordering

that will eventually be required inosetm(Zm) is currently listed inpossible set(Z ′, Ze, oset(Z
′). For

any given stateZ ′, Ze, oset(Z
′), the definite and possible rule orderings can therefore be generated

automatically, and used to reason about further graph manipulation options.

5.3.5 INITIAL ALLOWED STATE

The rules inZcombined describe the training data completely, but not necessarilyaccurately. Since

all possible rules are included inZcombined, it follows that φ ⊆ Zm ⊆ Zcombined for all

minimal rule setsZm. Furthermore, it can been shown that if the rules inZcombined are or-

dered according tocontainpat andsupercomp relations, then no overly restrictive orderings will

be added. If the rule setZcombined is ordered according to the rule set orderings generated by

decided set(Zcombined, φ, φ), then the rule set is in anallowed state (statement 33). This state

is used as the initial state prior to application of the variousallowed ops, as described below.

5.3.6 ALLOWED OPERATIONS

Eachallowed op as defined in section 5.3.2.4 changes the state of the rule set, required rule subset

and rule ordering set, from oneallowed state to another, with the initialallowed state defined

in section 5.3.5. These operations are not unique, and both stronger and weaker versions can be

constructed. While the framework up to this point has been defined rigorously, we now discuss a

number of possible operations in order to demonstrate how this framework can be used during rule

extraction. We describe a number of operations that we have implemented and tested in our rule

extraction system. Specifically, we describe allowed operations that can be applied to (1) delete rules,

(2) remove unnecessary edges, (3) mark rules as required, and (4) resolve conflicted rules.

When applying any of these operations it is assumed that the rule graph is in anallowed state de-

fined by the tripleZ ′, Ze, oset(Z
′). Prior to discussing these operations in further detail, itshould be

noted that the rule graph edges added according to thedecided set andpossible set orderings have
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two functions: On the one hand, these edges define the order inwhich rules will occur, as discussed

up to this point. Secondly, these edges link any rule toall possible rulesthat may potentially replace

or be replaced by the current rule.Direct successorsor predecessorsare identified by following both

decided set andpossible set orderings and identifying rules that either have to or can occur directly

before or after the rule being considered. From these sets ofrules it is possible to define the total

number of rules that (1) will definitely and (2) may potentially (based on decisions made in other

sections of the rule graph) be deleted if a current rule is associated with a specific outcome.

5.3.6.1 DECREASING RULE SET SIZE

A rule r can only be deleted if it can be shown that the rule has become redundant, and will remain

redundant. This can occur for two reasons: (1) because of theposition of the specific ruler in the rule

graph, all words that match this rule are already caught by required rules (correctly identified as such)

that occur earlier in the rule set; or (2) because the rule canbe ‘merged’ with a second rule occurring

at the same point in the rule extraction order. We define threedifferent allowed operations with regard

to rule deletion:

1. A ruler may be deleted if some rules exists such that:

• Rulesr ands are resolved (r, s ∈ Zsingle) and agree with regard to outcome.

• Rulesr ands have identical relationships with identical predecessors(both possible and

definite).

• Rulesr ands have identical relationships with identical successors (both possible and

definite).

2. A ruler may be deleted if a set of rulesvi exists such that:

• Thevi constitute all the direct successors of ruler.

• Ruler and all thevi are resolved (r, vi ∈ Zsingle) and agree with regard to outcome. (No

rule t with a potentially conflicting outcome can have an ordering that allows it to occur

between ruler and anyvi.)

3. A ruler may be deleted if for some allowedv, thepossible words(Z ′, Ze, oset(Z
′), v, r) = φ.

5.3.6.2 REMOVING UNNECESSARY EDGES

Since decided orderings are transitive, it is possible to remove any explicit ordering

rule order(Z ′, r, s) if it already holds thatrule order(Z ′, r, t) = 1 andrule order(Z ′, t, s) = 1

for somet ∈ Z ′. Note that this does not remove(r, s) from oset(Z ′).
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5.3.6.3 IDENTIFYING REQUIRED RULES

When a rule is identified asrequired, it is moved from the possible rule setZ ′ to the set of required

rulesZe. This is anallowed op for a ruler if the rule r itself has already been resolved (that is, it

can only predict a single outcome), and no further rules exist that may potentially agree with regard

to outcome.

5.3.6.4 RESOLVING CONFLICT RULES

We define four different operations that can be used to resolve conflicted rules. All of these operations

utilise the concept of asingle rule and aconflict count. A rules is identified as asingle rule if there

exists at least one wordw such that(w, s) ∈ oset(Z ′) and not exists such thatmatch(w, t) = 1, un-

less(s, t) ∈ oset(Z ′). This means that wordw can only be predicted by rules, or by a later rule that

has a decided path from wordw via rules. For each possible outcome we count the number of prede-

cessors that will definitely be deleted if ruler is resolved to that specific outcome (definite count),

as well as the number of predecessors that may possibly be deleted (possible count). These counts

are not calculated per predecessor, but rather per word set that a predecessor represents. For a prede-

cessors to contribute to a (definite count), the predecessor must be resolved (that is,s ∈ Zsingle),

be identified as asingle rule, and have only one successor (the conflicted ruler itself).

1. If it is clear that ruler will provide an advantage if resolved to a specific outcome, resolution is

performed, and the conflicted rule is replaced with a normal rule with the selected outcome. A

rule may only be resolved in this way, if thedefinite count for a specific outcome dominates

the sum of thedefinite count and possible count for all alternative outcomes. It is also

required that at least one of the predecessors with a outcomematching the outcome selected

for rule resolution be asingle rule. This prevents an unnecessary rule from being generated at

this point in the rule application order. (In a later step, the resolved conflict node will merge

with thesingle predecessor.)

2. If a conflicted ruler has no predecessors that can potentially agree with each other with regard

to a specific outcome, the ruler may be deleted. (We refer to this process as alost conflict). A

rule may be resolved in this way if the sum of thedefinite count andpossible count is less

than or equal to one, for all possible outcomes.

3. If for any of the outcomes the sum of thedefinite count andpossible count is less than or

equal to one, that outcome may be removed from the possible outcomes of the conflicted rule,

even though the rule remains a conflicted rule. If all except one outcome are removed in this

way, then at least one predecessor must be asingle rule that agrees with regard to the final

outcome, as discussed with regard to the previous operator.
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4. The root node is not allowed to be resolved via operator (2)or (3). If operator (1) is not

applicable, the root node is resolved to the outcome that occurs most in the training data. This

operation is only allowed when all predecessors have been resolved.

5.3.7 BREAKING TIES

Once all the possible operations have been applied to the rule graph, and no further simplification is

possible, it does not necessarily mean that all conflicted rules have been resolved. The extent to which

the rule graph is resolved, depends on the strength of the various allowed operations defined. Note

that the set difference between the increasing rule setZe, and the decreasing rule setZ ′ provides a

clear indication of the extent to which the current solutionstill falls short of the minimal rule setZm.

If Ze equalsZ ′, a minimal rule set has been obtained.

The remaining conflicted nodes can be solved by viewing the rule graph as a constraint satisfaction

problem (CSP). By assigning the various remaining (node-specific) outcome values to each of the

remaining conflicted nodes, and searching through the resulting search space, the final solution can

be obtained. During the CSP search process, all conflicted nodes are solved simultaneously, and

the rule minimisation process proceeds rapidly using the various deletion operations. By searching

through all the remaining allowed rule sets, the smallest possible set can be obtained.

The magnitude of this CSP is determined by the coverage of theoperations employed. If only

trivial operations were employed, and all conflicts were left to the CSP to resolve, a huge CSP would

result for even very small problems. The stronger the allowed operations defined, the smaller the

CSP to solve. Our current implementation has been used to solve small tasks ofn = 100 words,

and we have been able to extract rule sets that are smaller than that extracted byDefault&Refine.

Various CSP-specific techniques can be applied to improve the computational tractability of the task.

However, this is not the focus of the current chapter, which aims to define a solid theoretical basis for

further experimentation: computational tractability will be addressed in future work.

5.3.8 OPTIMISING GENERALISATION ABILITY

Once all conflicted rules have been solved, and the minimal rule set obtained, it is possible to refine

the rule set by choosing the best rule option among the various variants available. Possible selection

criteria include smallest rule context, most symmetric rule context, best coverage of the training data,

best fallback given the following set of rules in the specificity hierarchy, and various others. Since

the choice of variant does not influence the number of rules generated, this provides flexibility in the

construction of the final rule set. When heuristics are employed during rule extraction, choices are

limited earlier on: this framework allows heuristic choices to be postponed as late as possible during

rule extraction, and makes those choices explicit.
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5.4 ALTERNATIVE ALGORITHMS AS SPECIALISATION OF GENERAL

FRAMEWORK

It is interesting to note that the rule extraction algorithms discussed in Chapter 4 can be viewed

within the minimal representation graphframework. In the case of DEC the full set of rules in

Z is not constructed: only the rules that match the DEC format are generated. The rule graph is

not constructed prior to rule extraction but is grown duringrule extraction according tocontainpat

relationships. Each additional conflicting word results inanother leaf being added to the graph.

Default&Refinealso grows the graph from the root outwards, ordering rules according to rule

extraction order. At each level, a decision is made with regard to the rule and associated outcome

that best predicts the set of words that must be caught at thatlevel in the rule graph (that will not be

predicted correctly by a later rule). This is conceptually similar to generating a full rule graph prior

to rule extraction, and resolving rules strictly from the root outwards according to a greedy heuristic

at each level. Since neither algorithm proceeds with allowed operations from an allowed initial state,

both will in general produce larger-than-minimal rule sets.

5.5 EXTENSIONS

The current framework provides a solid theoretical base forreasoning about the choices made during

grapheme-to-phoneme rule extraction. We are interested inhow this framework can be extended to

incorporate additional techniques, and this will be addressed in future work. Specific extensions that

may fit well within this framework include:

• Pronunciation variants: currently pronunciation variants are not allowed (See eq. 5.13). If

a single pseudo-phoneme is generated for each alternating sound, the same framework can

be used to process pronunciation variants, with variants expected to drift towards the top of

the graph, unless clearly systematic. Further choices ensue with regard to resolving conflict

between a single phoneme and a matching pseudo-phoneme, andextensions to the current

framework may assist in resolving such issues.

• Class-based groupings: It is clear from rule set analysis that groups of graphemes tend to

influence neighbouring graphemes in systematic ways. It should be possible to accelerate the

learning process by extracting such graphemic groups during rule set extraction. This may

require the interlinking of a number of minimal memory graphs in a single structure.

• Combining phonemic and graphemic context: The same rule setcan be generated in terms of

either graphemic or phonemic context. We are interested in the advantages and disadvantages

of combining both approaches in a single rule set.

• Graphemic chunks: As all possible word sub-components are generated during rule set extrac-

tion, the extent to which the rule graph is manipulated brings this approach closer or removes
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it further from pronunciation-by-analogy techniques. We are interested in the similarities and

differences between these two approaches.

5.6 CONCLUSION

In this chapter we described a theoretical framework that can be used to analyse the grapheme-to-

phoneme prediction problem in a rigorous fashion. Using this framework, it is possible to define a

number of ‘allowed operations’ that attempt to extract the smallest possible rule set from any given

set of training data. By making the various options available at each stage of rule extraction explicit,

we obtain a better understanding of the grapheme-to-phoneme prediction task itself. Furthermore, the

new framework provides a solid foundation for further research in pronunciation prediction, including

the potential incorporation of pronunciation variants, class-based groupings and/or graphemic chunks

within a rewrite-rule based framework.
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