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CHAPTER TWO

BACKGROUND

2.1 INTRODUCTION

This chapter provides background information with regarthe main topics discussed in subsequent

chapters:
e Section 2.2 provides an overview of various approachesaoyrciation modelling;

e Section 2.3 describes the use of bootstrapping for the derent of HLT resources in general;

and

e Section 2.4 discusses current approaches to the creatorainciation dictionaries in a semi-

automated fashion.

In this chapter, as in the remainder of this thesis, we usé@RIRAbet symbol set (included in Ap-
pendix A) to demonstrate phonemic concepts.

2.2 PRONUNCIATION MODELLING

A pronunciation model for a specific language provides amtate mechanism for letter-to-sound
conversion, also referred to as grapheme-to-phoneme-g§j-tonversion. Given the orthography
of a word, grapheme-to-phoneme conversion provides a giiedliof the phonemic realisation of
that word. Where additional pronunciation charactegstiach as stress or tone are predicted, this
process is referred to as grapheme-to-phoneme converdiorstness and/or tone assignment. This
can be the first of a two-phase process in pronunciation gtfedi the first task being grapheme-
to-phoneme conversion, the second phoneme-to-allophomesrsion. The rules utilised in the latter
phase are typically referred to as phonological rules, andat always required explicitly, depending
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on the specific type of speech technology that will be utiisihe dictionary. For example, a speech
recognition system may either model phonological effeggigtly, or utilise a phonemic lexicon
and rely on the context-dependent acoustic models to eaptany of the phonological effects [26].
As the distinction between phonemes and phones is ofterebluwve approach this differentiation in
a pragmatic fashion in this thesis.

Pronunciations can be idiosyncratic, and not all prondimrigphenomena are regular to the ex-
tent of being predictable. Also, letter-to-sound conwrsioes not only depend on orthography: the
phonemic outcome can (and does) depend on other linguesicres such as word part-of-speech,
word morphology or word etymology. From a bootstrappingspective, we are interested in ap-
proaches to the pronunciation prediction problem wherdtiaddl linguistic resources are not avail-
able (or can be bootstrapped easily), and therefore we fmauattention on grapheme-to-phoneme
conversion based mainly on orthography.

The remainder of this section provides an overview of cura@proaches to pronunciation mod-
elling: Section 2.2.1 describes the manual developmentasfymciation models, both the develop-
ment of explicit pronunciation dictionaries and the haaftang of grapheme-to-phoneme conversion
rules, and Section 2.2.2 provides an overview of differg@mraaches to the data-driven extraction of
grapheme-to-phoneme conversion rules. As many of thediatan approaches require grapheme-
to-phoneme alignment prior to grapheme-to-phoneme rueetion, approaches to grapheme-to-
phoneme alignment are discussed separately in Sectidh B2ction 2.2.4 discusses an alternative
speech processing approach that circumvents the needdiciegronunciation modelling.

2.21 MANUAL DEVELOPMENT OF PRONUNCIATION MODELS
2.2.1.1 PRONUNCIATION DICTIONARIES

Many electronic pronunciation dictionaries (such as NEKTf20] or OALD [18]) were created as
digital versions of similar printed dictionaries. Clasdiprinted pronunciation dictionaries typically
only list word base forms, and for each word base form itsxg#ad’ pronunciation. Pronunciation
variants are only included when more than one distinct proiation exists for a single word (e.g.
the past tense and present tense variants of the English‘vead: r iy d andr eh d). Electronic
dictionaries that are frequently utilised in speech ajpilims (such as CMUdict [17]) soon grow to
include additional word forms (plurals and other derivasiy and multiple pronunciation variants, as
required by the applications utilising the dictionary. Runciation variants can be generated auto-
matically using phonological rule sétsr added according to a manual process.

Task-designed electronic pronunciation dictionarieshsasFONILEX developed by Mertens
and Vercammen [19], include systematic mechanisms to eleviord variants from base forms.
FONILEX specifically is a full-form lexicon (it lists the various webbase forms separately) and

1The automatic extraction of phonological rules utiliségiques similar to those applied during grapheme-to-phnene
rule extraction, as described in Section 2.2.2.
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provides an ‘abstract’ representation of each word, as agethree ‘concrete’ pronunciations repre-
senting three different speaking styles. The concreteymrciations are derived automatically from
the abstract representation via a set of phonological tewries. In this way, regular variants are cap-
tured via phonological rules, rather than additional ditsiry entries. Irregular variants are included
as additional dictionary entries. A related approachpfedd independently by Alleat al [27] and
Cokeret al [28], utilises morphemes as the stored unit, and obtainsodery entries by combining
these morphemes using a set of morphological rules. Herphatmgical rules are used to generate
the word base form itself, which is not stored individually.is interesting to note thaEONILEX
was compiled semi-automatically using grapheme-to-pimeneonversion, and verified manually —
an approach that is related to the bootstrapping processtigated in this thesis.

2.2.1.2 PRONUNCIATION RULES

Manual pronunciation rules are typically developed acicgydo the two-stage process described in
Section 2.2; that is, two rule sets are created: one set phgrae-to-phoneme rules, and a second
set of phonological rules that generate the appropriatpladine (or allophones) per phoneme. Both
rule sets are often augmented by a set of exceptions. Thiessats can be described according to
different formalisms, a general formalism for a multi-lex@write rule being:

{a} g{b}" — {c}'p{d}” (2.1)

which, more typically, is simplified asfa}*g{b}* — p, whereg indicates the grapheme being con-
sidered angh the specific phonemic realisation @f {a}* and{b}* represent zero or more contextual
elements to the left and the right of the grapheme (respg}iof words that this rule can be applied
to, and{c}* and{d}* indicate how the word is amended (or not) during the appticadf this spe-
cific rule. Depending on the exact formalism, the left andight contexts of the left-hand side can
either consist of graphemes only, or a combination of gray@seand phonemes, and similarly, the
right-hand side can either be defined in terms of phonemes anh combination of graphemes and
phonemes. A null (or empty) phoneme or grapheme may beadilixplicitly within the formalism.
Furthermore, a single contextual element can also be usegtesent a class of such graphemes or
phonemes. Formalisms differ based on the order in whiclsraite applied, the direction in which
rules are parsed, and whether a single rule or a sequendentditehing rules are applied when pre-
dicting a single word. Manually developed rewrite rulessexor a number of languages, including
languages as diverse as English [29], Arabic [30] and isg&ah81].

Typically, the more modern the writing system of a languaige stronger the connection between
the spoken and written form of a language, and the more rethdapelling system of the langu&ge
Languages with a fairly recent spelling system (such as 8ijvasave an almost direct correspondence
between the orthography and the pronunciation of a wordevelienguage such as English or French

2As discussed further in Section 4.6.
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includes significant historical ‘baggage’ in its spellingstem. For languages with highly regular
spelling systems, the manual development of a set of praatiow rules can be a manageable task
for a skilled linguist. For languages with less regular kpglsystems this task becomes particularly
arduous, with the set of words that that can be predictec@ctyrusing the manually developed rule
set only achieving larger sizes if amended by a sizeableptiree dictionary. For example, the rule
set developed by Elovitet al [29], consisting of 329 rules for English, achieved ogly7% word
accuracy when evaluated by Dampeéal[25] and19.3% word accuracy when a modified version was
evaluated by Bagshaw [32] (using different corpora). Seraiually developed finite state transducer
systems can achieve better performance [26], but requjréfisiant expertise to develop.

2.2.2 DATA-DRIVEN APPROACHES TO G-TO-P RULE EXTRACTION

Data-driven approaches to grapheme-to-phoneme rulecértiecan be used to generalise from ex-
isting pronunciation dictionaries when handling out-otabulary words in speech systems, and to
compress information when requiring a pronunciation madal memory-constrained environment.
Such applications require a balance between the need fdirrsiteasets, fast computation and optimal
accuracy, and various approaches to pronunciation moddiive been defined to meet these require-
ments. Approaches include the application of neural nétsv{20, 33], decision trees [22—-24, 34],
Pronunciation by Analogy (PbA) models [32,35-38], instbased learning algorithms such as Dy-
namically Expanding Context (DEC) [21, 36] and IB1-1G [2flihite state transducers [39], Bayesian
networks [40], and the combination of methods and additiarfarmation sources through meta-
classifiers [41]. Many of these algorithms require graphésrghoneme alignment prior to rule ex-
traction, as discussed in Section 2.2.3.

Benchmarking these pronunciation prediction algorithsndifficult: There are few standardised
pronunciation prediction tasks that are widely used, aaddhk itself is very sensitive to training/test
set distributions. A strict evaluation of three of the ddtaxen approaches (a neural network, IB1-I1G
and PbA) can be found in [25]. Results obtained when appldiffgrent algorithms are discussed
in further detail in Section 4.6.1; the remainder of thisteecprovides an overview of the various
approaches to grapheme-to-phoneme rule extraction nmextiabove.

The automatic extraction of phonological rules utiliseiiantechniques as those described here.
Such rule sets are used to generate an allophonic reprégerfiar a phonemic pronunciation, as
demonstrated by Ellison [42], Tajchmat al [43] and others, or to assign additional pronunciation
characteristics such as stress to the pronunciation of trd 4]. The application of data driven
techniques for the development of phonological rule setgisliscussed further: we rather focus our
attention on the grapheme-to-phoneme conversion propestfisally.

2.2.2.1 NEURAL NETWORKS AND DECISION TREES

A neural network was one of the first data-driven approachagapheme-to-phoneme rule set ex-
traction demonstrated. A neural network was trained by @&egki and Rosenberg [20] using the
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English NETtalk corpus, and later re-implemented by Mc@ulil and others as the NETspeak [33]
system. Words were windowed with a fixed number of grapherbesvéen 3 and 11 graphemes)
per window, and a feed-forward neural network was trainedstmciate each letter, surrounded by
its graphemic window, with a specific phoneme outcome. Alsingystem was later evaluated by
Damperet al [25].

Various decision tree based approaches have been dentedsingluding systems developed by
Anderseret al[22, 45], Blacket al [23] and Hakkineret al [34], obtaining comparable results. The
detail implementations differed based on various aspeuthkjding the type of questions generated,
the pruning method, the splitting criteria and detailechpaeter choices. The algorithms were applied
to different languages and corpora, and different evalngtrocesses used. Andersdral compared
a binary decision tree with Trie structures using both aniEngNETtalk and CMUdict) and a French
(ONOMASTICA) database [22]. Bladht alutilised Classification and Regression Trees (CART) and
English (OALD and CMUdict), French (BRULEX) and German ((EX) dictionaries [23]. Hakki-
nenet al explicitly compared the performance of neural networks @ecision trees for the English
CMuUdict task. Hakkineret al found that neural networks provide better generalisati@an tdeci-
sion trees when limited training data is available, andgrerfmore consistently across mismatched
test sets, while decision trees typically outperform nkenesworks where training and test data are
closely matched [34].

2.2.2.2 PRONUNCIATION BY ANALOGY

Pronunciation by Analogy (PbA) models predict the pronatich of a new word by searching
through known words for matching sub-word parts. This setlgbrithms was designed specifically
for the task of grapheme-to-phoneme prediction. Origynsliggested by Dedina and Nusbaum [46],
the approach was further developed by Sullivan and Damg&y ¥3/on [36, 47], Damper and East-
mond [37], Bagshaw [32], and Marchand and Damper [38].

Languages with irregular spelling systems such as Engligh French perform well within
analogy-based frameworks, and for English, the best astioptsults to date have been achieved
with PbA [25]. Unfortunately, current versions of theseaaithms can be ‘slow learners’, only ap-
proaching asymptotic accuracy for larger training dictionsizes, as discussed further in Section 4.2.
Depending on the amount of prior manipulation of the trainitata employed by PbA algorithms,
these algorithms can be seen as a form of instance-baseéhpar

2.2.2.3 INSTANCE-BASED LEARNING

We use the ternnstance-based learnings used by Ahat al [48] to describe algorithms that gen-
erate classification predictions using specific instanoa® fa set of training data, rather than using
a generalised abstraction created from the training sdtdamot differentiate among instance-based
learning, memory-based learning or case-based reasomimgse algorithms all utilise ‘lazy learn-
ing’: rather than generalising from a training set, thererttiaining set is typically retained (in some
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form or another) and predictions are based on reasoning #imse retained exemplars, analogous to
the process of nearest neighbour classificdtion

In [24], Daelemanst al provide a strong argument for the utility of memory-baseprapches for
language processing tasks, noting that in many of these &gieptions tend to occur in ‘groups or
pockets in instance space’. As it is difficult to differettidetween actual noise inherent to language
datd and small regular families of exceptions (that provide uspfedictive information), Daele-
mans argues that exceptions should preferably be reta@sed,inherent to standard instance-based
learning. Two specific approaches that have been appliegtssitilly to grapheme-to-phoneme con-
version are (1) variations dB1-1G [49], as developed and applied to the grapheme-to-phonashke t
by Daelemangt al [24]; and (2) Kohonen’s Dynamically Expanding Context (DHB0], initially
applied by Torkkola [21] to the grapheme-to-phoneme task:

1. IB1-IG

IB1-IG [24,49] is in essence a k-nearest neighbour classti utilises as distance measure
a weighted version of graphemic context overlap. Appragriaeighting of the graphemic
context is an important aspect of the algorithm, and isrataihrough information gain tech-
niques. Given a grapheme-to-phoneme aligned trainingpdity, words are windowed, and a
learning instance is generated per window (each instarmes$ing on a specific letter within
the context of the rest of the window) and associated withezifip phonemic classification
of that letter. Weights are associated with each featurecbas a normalised measure of the
amount of information the specific feature contributes tovikdedge about the specific phone-
mic class (over the entire instance base). New words ardcpeddby finding the instances
that are closest to the target word, using the weightedrdistaneasure. Ties are resolved by
considering frequency of outcome, and frequency of ocoge®f the specific feature (where
a feature defines both a letter and its position).

Daelemanset al [24] evaluated this algorithm on the task of grapheme-tongime conver-
sion with stress assignment, using the CELEX database @efoa set of language learning
tasks considered), and found comparable accuracy rateed®tiB1-1G and a decision tree
approach. The IB1-IG algorithm performed better than thed@&cision tree used for com-
parison: the difference in performance was slight (butificant) if the number of instances
required for a decision tree node to be retained was chosédn(similar to the IB1-IG ap-
proach); a larger number of required instances causedegneaiing of the decision tree, and
decreased its performance. Damptal [25] found that IB1-1G obtained higher accuracy than
a neural network, but not the same level of asymptotic acguaa PbA. Further results are
provided by Hostet al[41] in an evaluation of meta-classification techniques.

%It should be noted that the differentiation among techrsqdescribed in this section is not strict: for example, a
decision tree learning algorithm that does not allow anyjmgi can also be seen as a form of instance-based learning.
“For example, as caused by true exceptions, or discrepandies way in which the lexicon was developed.
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2. DEC

Kohonen’s Dynamically Expanding Context (DEC) [50], ialty applied by Torkkola to the
grapheme-to-phoneme problem [21], is another instanseeblearning algorithm that predicts
phoneme realisation based solely on graphemic contextEl@,[@ach rule specifies a mapping
of a single grapheme to a single phoneme for a given left ayid graphemic context, i.e is of
the form: (left-context,grapheme,right-context} phoneme

Rules are extracted by finding the smallest context thatigeswva unique mapping of grapheme
to phoneme. If am—letter context is not sufficient, the context is expandedttmee the right
or the left. This ‘specificity order’ influences the performea of the algorithm. The set of
extracted rules are stored as a hierarchical tree, with gemeral rules at the root, and more
specific rules at the leaves. The tree is traversed from thietoothe leaves, and the rule at
the first matching leaf (the rule describing the largest tiatg context) is used to predict the
specific grapheme-to-phoneme realisation. If no leaf ishet, the most probable outcome of
the last matching leaf is used, as can be estimated fromaimeng data. If the extracted ‘rule
set’ is allowed to contain contexts of an arbitrary size,maming words are discarded, and the
tree structure is simply used to arrange the set of all tngiimistances in an efficient structure.

2.2.2.4 ALTERNATIVE APPROACHES

A number of further approaches to pronuncation modellirigteicluding:

1. Finite state transduction, as demonstrated by Luk andpearf89], and more recently by
Hazenet al[26]. Finite state transduction as used in [26] requirerifiitant linguistic specifi-
cation, while Luk and Damper’s approach requires less Istguinput but makes a number of
(restrictive) assumptions in order to create a trainabitesy.

2. The application of Bayesian networks for grapheme-torgime conversion [40]. Bayesian
networks are more typically used for pronunciation vaoiatmodelling, rather than phonemic
base form generation.

3. The use of hierarchical systems of meta-classifiers, aed meta-meta-classifiers as investi-
gated by Hostet al [41].

Various of these approaches can be utilised during bopfsitrg, as discussed further in Section 4.2.

2.2.3 GRAPHEME-TO-PHONEME ALIGNMENT

The majority of data-driven approaches to grapheme-tawpime rule extraction first require that the
training dictionary be aligned on a grapheme-to-phonensésb&or languages with alphabetic writ-
ing systemg, each grapheme is mapped to its corresponding phoneme hanerpic or graphemic

SFor ideographic, pictographic, syllabic or even moraiglamges, a more complex process is required — see for example
[51] for a comparison of alignment approaches for Japanese.
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nulls inserted where required: A phonemic null is insertduere a single phoneme is produced
from more than one grapheme; a graphemic null where a simgfghgme results in more than one
phoneme. In languages where graphemic nulls are rare, graplexceptions that can map to more
that one phoneme (such as— k s) can be replaced with two pseudo-graphemes (e.g. replacing
with 2 X) and only phonemic nulls inserted. This technique, suggelsy Pageét al[52], results in
fewer alignment errors.

Initial data sets used for grapheme-to-phoneme benchnta(kiich adNETtalk[20]) were hand
aligned. Dalsgaard, Andersen and others [53, 54] appliecktbViterbi alignment [55] to create
automatic grapheme-to-phoneme alignments, based ondbalglitiesP(grapheme | phoneme j)
Initial probabilities were obtained from words and proniations that have equal length. This ap-
proach provides fairly accurate alignments: when bencketbagainst th&lETtalkhand alignments,
Anderseret al achieved a word alignment accuracy83t7% and a phoneme alignment accuracy of
93.2% [22]. It should be noted that théETtalkhand alignments may not be the ideal benchmark to
use for measuring alignment accuracy, as discussed in netad th Section 4.4. Blaclet al [23]
used a similar alignment approach but defined a candidat® sestrict misalignments. In Black’s
approach the possible grapheme-to-phoneme mappingseuiieg prior to alignment, and used to
restrict the alignment options during Viterbi alignment.

2.2.4 GRAPHEME-BASED SYSTEMS

The discussion up to this point has assumed that a pronigrciaiodel is a required component for
a variety of speech processing systems, including autorspéech recognition systems. Schio

al [56] demonstrated an alternative approach by introdudiegconcept of grapheme-based speech
recognition: rather than using a pronunciation dictiongrgphemes are used directly as basis for the
acoustic sub-units modelled. This grapheme-based agpreaalts in surprisingly accurate systems.
Since the perplexity of the language model has a significHiatteon the accuracy of the system,
a strong language model compensates well for an inaccurateipciation model. The results ob-
tained by Schilleet alwere independently confirmed by Kanthak and Ney [57] anceK[B8]. While
grapheme-based systems are conceptually less complateytstem that incorporate an explicit pro-
nunciation dictionary, grapheme-based systems for lagegiavith fairly regular spelling systems
(such as ltalian, Spanish or Dutch) do not seem to be significkess accurate than phoneme-based
systems, especially in the presence of a strong languagelneodhibiting a less thad% relative de-
crease in accuracy in [57]. For languages with less regysdems, the decrease in accuracy becomes
more noticeable: In [57] @5.7% relative decrease in accuracy was observed for an Englstkray
with a word trigram perplexity of 24.5.
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2.3 BOOTSTRAPPING OF HLT RESOURCES

We use the term ‘bootstrapping’ to describe an iterativegse whereby a model of some form is
improved via a controlled series of increments, at eachestiéitising the previous model to generate
the next one. This is a broader definition than often empldpeshachine learning, where boot-
strapping typically indicates a semi-supervised apprdadearning, where a small set of labelled
instances is used to seed a classifier, label unclassifieg alad retrain the classifier [59, 60]. Both
the above interpretations should not be confused with tkeeofishis term in the field of Statistics,
where it can also indicate a statistical method for estinggtthe sampling distribution of an estimator
by resampling with replacement from the original samplg.[61

Bootstrapping can be a useful technique during languagrires development, and has been
used extensively in the creation of resources required ynaatic speech recognition systems [3,9—
11]. In speech recognition, a bootstrapping techniquetenofombined with some form of cross-
language information sharing. For example, when acoustidats are developed for a new target
language, an automatic speech recognition system cantiadised with pre-developed models from
an acoustically similar source language, and these initiaels improved through an iterative process
whereby audio data in the target language is automaticadjynented using the current set of acoustic
models, the models retrained and the target data re-segtheiata set of incremental updates.

The potential saving in resource requirements achievedigir such a process was well demon-
strated by Schultz and Waibel [12]. For example, in a set pEdrments conducted on a Portuguese
system, Schultz and Waibel obtained near-equal perforenasing either a fairly large amount (16.5
hours) of target data, or adapting multilingual models tigio a combination of bootstrapping and
adaptation, using 90 minutes of target data. The increaperformance using different techniques
is illustrated in Figure 2.1. Her®atarefers to the amount of target language data usedarality
refers to the quality of the alignmentsiitial alignments are generated by the multilingual system,
while good alignments are updated based on improving systelsthodrefers to the adaptation
method used: using the unadapted initial system in a ceoggdhge transfer approach (CL), Viterbi
training using the alignments from the initial system (VN)aximum Likelihood Linear Regression
adaptation of the initial system using the target data (M),LdR bootstrapping (Boot). Bootstrapping
consists of the following phases per bootstrapping cyaleating initial alignments, Viterbi training,
model clustering, retraining and writing improved aligmtwe Treerefers to the decision tree used for
clustering: the original multi-lingual language indepentltree (LI), a Portuguese language depen-
dent tree (LD) or a tree built using the Polyphone DecisicgeT8pecialisation (PDTS) proc&$s2].
This example illustrates both the cross-language re-usgafmation — seeding the acoustic models
using a related language — and the essence of a bootstraagmingach: iteratively improving acous-

®A standard context modelling technique is to cluster modsisg a CART-based clustering technique and a splitting
criterion based on maximum entropy gain. The Polyphone db@tiTree Specialisation (PDTS) technique was proposed
by Schultz as a mechanism to adapt the context modellinglmséhe target data, by restarting the decision tree growing
process according to the target data available, resulisgynificant improvements [62].
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Figure 2.1:Experimental results when applying cross-language reafiseoustic information tech-
nigues in the bootstrapping of a Portuguese system, frof [12

tic models by utilising the models developed during the joney bootstrapping cycle to re-align the
data, and retrain the models.

Additional language resource development tasks that hese shown to benefit from some form
of bootstrapping include the development of parallel coad@3], morphological dictionaries [14],
text categorization [63], automatic audio alignments [gdhmmar parsers [65], morphological anal-
ysers [15], linguistically tagged corpora [16], and the @lepment of pronunciation lexicons, as
discussed in Section 2.4.

2.4 THE AUTOMATED GENERATION OF PRONUNCIATION DICTIONARIE S

In this section, we consider automated and semi-automgteaches to the generation of pronun-
ciation dictionaries in a new language, referring to twoetypf approaches: Stuker [66] investigated
ways in which existing phoneme recognisers can be used &rgtena pronunciation dictionary for
a new language, utilising audio data and word-level trapsons in the target language. Using nine
mono-lingual and a multi-lingual phoneme recogniser, @moa recognition of the audio data is per-
formed, and different voting and normalisation technigaesused to obtain a hypothesized pronun-
ciation (or pronunciations) per words. This technique dusscurrently result in usable dictionaries,
but further work is in progress.
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A demonstrably successful approach to the semi-automateetgtion of pronunciation dictionar-
ies, is the use of bootstrapping within the Festival Tex&feeech System [67]. This system includes
a rule extraction component based on Classification andeRsigin Trees, which can be used to gen-
erate letter-to-sound rules from a small lexicon. Thisderiis then grown iteratively by submitting
additional words to the system, and having a human verifyctiveectness of the predictions. This
process was recently demonstrated by Masiegl [68], utilising an approach that is analogous to
the approach used in this thesis. Maskt\al developed a Nepali pronunciation dictionary by iter-
atively extracting a grapheme-to-phoneme rule set, piadi@ set of additional dictionary entries
(varying from 100 words per cycle initially to 5000 words msrcle later in the process), identify-
ing a subset of these words based on a calculated confideor® sod having these corrected by
a Nepali speaker. In a related approach, FGNILEX dictionary was compiled semi-automatically
using grapheme-to-phoneme conversion, and verified migria8l.

2.5 CONCLUSION

This chapter provided background on the pronunciation ftingetask, and described various ap-
proaches to pronunciation modelling, focussing on daiteedrtechniques. The pronunciation mod-
elling topic is addressed further in Chapter 4, where we dedigrapheme-to-phoneme rule extrac-
tion mechanism suitable to bootstrapping. The currenttematso provided a brief overview of prior
work related to the bootstrapping of HLT resources; thisuision continues in Chapter 3 with the
definition of a general model for the bootstrapping of HLTowEes.
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