
CHAPTER TWO

BACKGROUND

2.1 INTRODUCTION

This chapter provides background information with regard to the main topics discussed in subsequent

chapters:

• Section 2.2 provides an overview of various approaches to pronunciation modelling;

• Section 2.3 describes the use of bootstrapping for the development of HLT resources in general;

and

• Section 2.4 discusses current approaches to the creation ofpronunciation dictionaries in a semi-

automated fashion.

In this chapter, as in the remainder of this thesis, we use theARPAbet symbol set (included in Ap-

pendix A) to demonstrate phonemic concepts.

2.2 PRONUNCIATION MODELLING

A pronunciation model for a specific language provides an accurate mechanism for letter-to-sound

conversion, also referred to as grapheme-to-phoneme (g-to-p) conversion. Given the orthography

of a word, grapheme-to-phoneme conversion provides a prediction of the phonemic realisation of

that word. Where additional pronunciation characteristics such as stress or tone are predicted, this

process is referred to as grapheme-to-phoneme conversion with stress and/or tone assignment. This

can be the first of a two-phase process in pronunciation prediction: the first task being grapheme-

to-phoneme conversion, the second phoneme-to-allophone conversion. The rules utilised in the latter

phase are typically referred to as phonological rules, and are not always required explicitly, depending
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on the specific type of speech technology that will be utilising the dictionary. For example, a speech

recognition system may either model phonological effects explicitly, or utilise a phonemic lexicon

and rely on the context-dependent acoustic models to capture many of the phonological effects [26].

As the distinction between phonemes and phones is often blurred, we approach this differentiation in

a pragmatic fashion in this thesis.

Pronunciations can be idiosyncratic, and not all pronunciation phenomena are regular to the ex-

tent of being predictable. Also, letter-to-sound conversion does not only depend on orthography: the

phonemic outcome can (and does) depend on other linguistic features such as word part-of-speech,

word morphology or word etymology. From a bootstrapping perspective, we are interested in ap-

proaches to the pronunciation prediction problem where additional linguistic resources are not avail-

able (or can be bootstrapped easily), and therefore we focusour attention on grapheme-to-phoneme

conversion based mainly on orthography.

The remainder of this section provides an overview of current approaches to pronunciation mod-

elling: Section 2.2.1 describes the manual development of pronunciation models, both the develop-

ment of explicit pronunciation dictionaries and the handcrafting of grapheme-to-phoneme conversion

rules, and Section 2.2.2 provides an overview of different approaches to the data-driven extraction of

grapheme-to-phoneme conversion rules. As many of the data-driven approaches require grapheme-

to-phoneme alignment prior to grapheme-to-phoneme rule extraction, approaches to grapheme-to-

phoneme alignment are discussed separately in Section 2.2.3. Section 2.2.4 discusses an alternative

speech processing approach that circumvents the need for explicit pronunciation modelling.

2.2.1 MANUAL DEVELOPMENT OF PRONUNCIATION MODELS

2.2.1.1 PRONUNCIATION DICTIONARIES

Many electronic pronunciation dictionaries (such as NETtalk [20] or OALD [18]) were created as

digital versions of similar printed dictionaries. Classical printed pronunciation dictionaries typically

only list word base forms, and for each word base form its ‘standard’ pronunciation. Pronunciation

variants are only included when more than one distinct pronunciation exists for a single word (e.g.

the past tense and present tense variants of the English word‘read’: r iy d and r eh d). Electronic

dictionaries that are frequently utilised in speech applications (such as CMUdict [17]) soon grow to

include additional word forms (plurals and other derivatives), and multiple pronunciation variants, as

required by the applications utilising the dictionary. Pronunciation variants can be generated auto-

matically using phonological rule sets1 or added according to a manual process.

Task-designed electronic pronunciation dictionaries, such asFONILEX, developed by Mertens

and Vercammen [19], include systematic mechanisms to derive word variants from base forms.

FONILEX specifically is a full-form lexicon (it lists the various word base forms separately) and

1The automatic extraction of phonological rules utilise techniques similar to those applied during grapheme-to-phoneme
rule extraction, as described in Section 2.2.2.
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provides an ‘abstract’ representation of each word, as wellas three ‘concrete’ pronunciations repre-

senting three different speaking styles. The concrete pronunciations are derived automatically from

the abstract representation via a set of phonological rewrite rules. In this way, regular variants are cap-

tured via phonological rules, rather than additional dictionary entries. Irregular variants are included

as additional dictionary entries. A related approach, followed independently by Allenet al [27] and

Cokeret al [28], utilises morphemes as the stored unit, and obtains dictionary entries by combining

these morphemes using a set of morphological rules. Here morphological rules are used to generate

the word base form itself, which is not stored individually.It is interesting to note thatFONILEX

was compiled semi-automatically using grapheme-to-phoneme conversion, and verified manually –

an approach that is related to the bootstrapping process investigated in this thesis.

2.2.1.2 PRONUNCIATION RULES

Manual pronunciation rules are typically developed according to the two-stage process described in

Section 2.2; that is, two rule sets are created: one set of grapheme-to-phoneme rules, and a second

set of phonological rules that generate the appropriate allophone (or allophones) per phoneme. Both

rule sets are often augmented by a set of exceptions. These rule sets can be described according to

different formalisms, a general formalism for a multi-level rewrite rule being:

{a}∗g{b}∗ → {c}∗p{d}∗ (2.1)

which, more typically, is simplified as:{a}∗g{b}∗ → p, whereg indicates the grapheme being con-

sidered andp the specific phonemic realisation ofg. {a}∗ and{b}∗ represent zero or more contextual

elements to the left and the right of the grapheme (respectively) of words that this rule can be applied

to, and{c}∗ and{d}∗ indicate how the word is amended (or not) during the application of this spe-

cific rule. Depending on the exact formalism, the left and/orright contexts of the left-hand side can

either consist of graphemes only, or a combination of graphemes and phonemes, and similarly, the

right-hand side can either be defined in terms of phonemes only, or a combination of graphemes and

phonemes. A null (or empty) phoneme or grapheme may be utilised explicitly within the formalism.

Furthermore, a single contextual element can also be used torepresent a class of such graphemes or

phonemes. Formalisms differ based on the order in which rules are applied, the direction in which

rules are parsed, and whether a single rule or a sequence of all matching rules are applied when pre-

dicting a single word. Manually developed rewrite rules exist for a number of languages, including

languages as diverse as English [29], Arabic [30] and isiXhosa [31].

Typically, the more modern the writing system of a language,the stronger the connection between

the spoken and written form of a language, and the more regular the spelling system of the language2.

Languages with a fairly recent spelling system (such as Swahili) have an almost direct correspondence

between the orthography and the pronunciation of a word, while a language such as English or French

2As discussed further in Section 4.6.
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includes significant historical ‘baggage’ in its spelling system. For languages with highly regular

spelling systems, the manual development of a set of pronunciation rules can be a manageable task

for a skilled linguist. For languages with less regular spelling systems this task becomes particularly

arduous, with the set of words that that can be predicted correctly using the manually developed rule

set only achieving larger sizes if amended by a sizeable exceptions dictionary. For example, the rule

set developed by Elovitzet al [29], consisting of 329 rules for English, achieved only25.7% word

accuracy when evaluated by Damperet al[25] and19.3% word accuracy when a modified version was

evaluated by Bagshaw [32] (using different corpora). Semi-manually developed finite state transducer

systems can achieve better performance [26], but require significant expertise to develop.

2.2.2 DATA-DRIVEN APPROACHES TO G-TO-P RULE EXTRACTION

Data-driven approaches to grapheme-to-phoneme rule extraction can be used to generalise from ex-

isting pronunciation dictionaries when handling out-of-vocabulary words in speech systems, and to

compress information when requiring a pronunciation modelin a memory-constrained environment.

Such applications require a balance between the need for small rule sets, fast computation and optimal

accuracy, and various approaches to pronunciation modelling have been defined to meet these require-

ments. Approaches include the application of neural networks [20, 33], decision trees [22–24, 34],

Pronunciation by Analogy (PbA) models [32,35–38], instance-based learning algorithms such as Dy-

namically Expanding Context (DEC) [21,36] and IB1-IG [24],finite state transducers [39], Bayesian

networks [40], and the combination of methods and additional information sources through meta-

classifiers [41]. Many of these algorithms require grapheme-to-phoneme alignment prior to rule ex-

traction, as discussed in Section 2.2.3.

Benchmarking these pronunciation prediction algorithms is difficult: There are few standardised

pronunciation prediction tasks that are widely used, and the task itself is very sensitive to training/test

set distributions. A strict evaluation of three of the data-driven approaches (a neural network, IB1-IG

and PbA) can be found in [25]. Results obtained when applyingdifferent algorithms are discussed

in further detail in Section 4.6.1; the remainder of this section provides an overview of the various

approaches to grapheme-to-phoneme rule extraction mentioned above.

The automatic extraction of phonological rules utilise similiar techniques as those described here.

Such rule sets are used to generate an allophonic representation for a phonemic pronunciation, as

demonstrated by Ellison [42], Tajchmanet al [43] and others, or to assign additional pronunciation

characteristics such as stress to the pronunciation of the word [44]. The application of data driven

techniques for the development of phonological rule sets isnot discussed further: we rather focus our

attention on the grapheme-to-phoneme conversion process specifically.

2.2.2.1 NEURAL NETWORKS AND DECISION TREES

A neural network was one of the first data-driven approaches to grapheme-to-phoneme rule set ex-

traction demonstrated. A neural network was trained by Sejnowski and Rosenberg [20] using the
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English NETtalk corpus, and later re-implemented by McCulloch and others as the NETspeak [33]

system. Words were windowed with a fixed number of graphemes (between 3 and 11 graphemes)

per window, and a feed-forward neural network was trained toassociate each letter, surrounded by

its graphemic window, with a specific phoneme outcome. A similar system was later evaluated by

Damperet al [25].

Various decision tree based approaches have been demonstrated, including systems developed by

Andersenet al [22, 45], Blacket al [23] and Hakkinenet al [34], obtaining comparable results. The

detail implementations differed based on various aspects,including the type of questions generated,

the pruning method, the splitting criteria and detailed parameter choices. The algorithms were applied

to different languages and corpora, and different evaluation processes used. Andersenet alcompared

a binary decision tree with Trie structures using both an English (NETtalk and CMUdict) and a French

(ONOMASTICA) database [22]. Blacket alutilised Classification and Regression Trees (CART) and

English (OALD and CMUdict), French (BRULEX) and German (CELEX) dictionaries [23]. Hakki-

nenet al explicitly compared the performance of neural networks anddecision trees for the English

CMUdict task. Hakkinenet al found that neural networks provide better generalisation than deci-

sion trees when limited training data is available, and perform more consistently across mismatched

test sets, while decision trees typically outperform neural networks where training and test data are

closely matched [34].

2.2.2.2 PRONUNCIATION BY ANALOGY

Pronunciation by Analogy (PbA) models predict the pronunciation of a new word by searching

through known words for matching sub-word parts. This set ofalgorithms was designed specifically

for the task of grapheme-to-phoneme prediction. Originally suggested by Dedina and Nusbaum [46],

the approach was further developed by Sullivan and Damper [35], Yvon [36, 47], Damper and East-

mond [37], Bagshaw [32], and Marchand and Damper [38].

Languages with irregular spelling systems such as English and French perform well within

analogy-based frameworks, and for English, the best asymptotic results to date have been achieved

with PbA [25]. Unfortunately, current versions of these algorithms can be ‘slow learners’, only ap-

proaching asymptotic accuracy for larger training dictionary sizes, as discussed further in Section 4.2.

Depending on the amount of prior manipulation of the training data employed by PbA algorithms,

these algorithms can be seen as a form of instance-based learning.

2.2.2.3 INSTANCE-BASED LEARNING

We use the terminstance-based learningas used by Ahaet al [48] to describe algorithms that gen-

erate classification predictions using specific instances from a set of training data, rather than using

a generalised abstraction created from the training set, and do not differentiate among instance-based

learning, memory-based learning or case-based reasoning.These algorithms all utilise ‘lazy learn-

ing’: rather than generalising from a training set, the entire training set is typically retained (in some
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form or another) and predictions are based on reasoning about these retained exemplars, analogous to

the process of nearest neighbour classification3.

In [24], Daelemanset alprovide a strong argument for the utility of memory-based approaches for

language processing tasks, noting that in many of these tasks exceptions tend to occur in ‘groups or

pockets in instance space’. As it is difficult to differentiate between actual noise inherent to language

data4 and small regular families of exceptions (that provide useful predictive information), Daele-

mans argues that exceptions should preferably be retained,as is inherent to standard instance-based

learning. Two specific approaches that have been applied successfully to grapheme-to-phoneme con-

version are (1) variations ofIB1-IG [49], as developed and applied to the grapheme-to-phoneme task

by Daelemanset al [24]; and (2) Kohonen’s Dynamically Expanding Context (DEC) [50], initially

applied by Torkkola [21] to the grapheme-to-phoneme task:

1. IB1-IG

IB1-IG [24, 49] is in essence a k-nearest neighbour classifier that utilises as distance measure

a weighted version of graphemic context overlap. Appropriate weighting of the graphemic

context is an important aspect of the algorithm, and is attained through information gain tech-

niques. Given a grapheme-to-phoneme aligned training dictionary, words are windowed, and a

learning instance is generated per window (each instance focussing on a specific letter within

the context of the rest of the window) and associated with a specific phonemic classification

of that letter. Weights are associated with each feature based on a normalised measure of the

amount of information the specific feature contributes to knowledge about the specific phone-

mic class (over the entire instance base). New words are predicted by finding the instances

that are closest to the target word, using the weighted distance measure. Ties are resolved by

considering frequency of outcome, and frequency of occurrence of the specific feature (where

a feature defines both a letter and its position).

Daelemanset al [24] evaluated this algorithm on the task of grapheme-to-phoneme conver-

sion with stress assignment, using the CELEX database (as one of a set of language learning

tasks considered), and found comparable accuracy rates between IB1-IG and a decision tree

approach. The IB1-IG algorithm performed better than the C5.0 decision tree used for com-

parison: the difference in performance was slight (but significant) if the number of instances

required for a decision tree node to be retained was chosen as1 (similar to the IB1-IG ap-

proach); a larger number of required instances caused greater pruning of the decision tree, and

decreased its performance. Damperet al [25] found that IB1-IG obtained higher accuracy than

a neural network, but not the same level of asymptotic accuracy as PbA. Further results are

provided by Hosteet al [41] in an evaluation of meta-classification techniques.

3It should be noted that the differentiation among techniques described in this section is not strict: for example, a
decision tree learning algorithm that does not allow any pruning can also be seen as a form of instance-based learning.

4For example, as caused by true exceptions, or discrepanciesin the way in which the lexicon was developed.
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2. DEC

Kohonen’s Dynamically Expanding Context (DEC) [50], initially applied by Torkkola to the

grapheme-to-phoneme problem [21], is another instance-based learning algorithm that predicts

phoneme realisation based solely on graphemic context. In DEC, each rule specifies a mapping

of a single grapheme to a single phoneme for a given left and right graphemic context, i.e is of

the form:(left-context,grapheme,right-context)→ phoneme.

Rules are extracted by finding the smallest context that provides a unique mapping of grapheme

to phoneme. If ann−letter context is not sufficient, the context is expanded to either the right

or the left. This ‘specificity order’ influences the performance of the algorithm. The set of

extracted rules are stored as a hierarchical tree, with moregeneral rules at the root, and more

specific rules at the leaves. The tree is traversed from the root to the leaves, and the rule at

the first matching leaf (the rule describing the largest matching context) is used to predict the

specific grapheme-to-phoneme realisation. If no leaf is matched, the most probable outcome of

the last matching leaf is used, as can be estimated from the training data. If the extracted ‘rule

set’ is allowed to contain contexts of an arbitrary size, no training words are discarded, and the

tree structure is simply used to arrange the set of all training instances in an efficient structure.

2.2.2.4 ALTERNATIVE APPROACHES

A number of further approaches to pronuncation modelling exist, including:

1. Finite state transduction, as demonstrated by Luk and Damper [39], and more recently by

Hazenet al [26]. Finite state transduction as used in [26] requires significant linguistic specifi-

cation, while Luk and Damper’s approach requires less linguistic input but makes a number of

(restrictive) assumptions in order to create a trainable system.

2. The application of Bayesian networks for grapheme-to-phoneme conversion [40]. Bayesian

networks are more typically used for pronunciation variation modelling, rather than phonemic

base form generation.

3. The use of hierarchical systems of meta-classifiers, and even meta-meta-classifiers as investi-

gated by Hosteet al [41].

Various of these approaches can be utilised during bootstrapping, as discussed further in Section 4.2.

2.2.3 GRAPHEME-TO-PHONEME ALIGNMENT

The majority of data-driven approaches to grapheme-to-phoneme rule extraction first require that the

training dictionary be aligned on a grapheme-to-phoneme basis. For languages with alphabetic writ-

ing systems5, each grapheme is mapped to its corresponding phoneme, and phonemic or graphemic

5For ideographic, pictographic, syllabic or even moraic languages, a more complex process is required – see for example
[51] for a comparison of alignment approaches for Japanese.
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nulls inserted where required: A phonemic null is inserted where a single phoneme is produced

from more than one grapheme; a graphemic null where a single grapheme results in more than one

phoneme. In languages where graphemic nulls are rare, graphemic exceptions that can map to more

that one phoneme (such asx → k s) can be replaced with two pseudo-graphemes (e.g. replacingx

with x X) and only phonemic nulls inserted. This technique, suggested by Pagelet al [52], results in

fewer alignment errors.

Initial data sets used for grapheme-to-phoneme benchmarking (such asNETtalk[20]) were hand

aligned. Dalsgaard, Andersen and others [53, 54] applied forced Viterbi alignment [55] to create

automatic grapheme-to-phoneme alignments, based on the probabilitiesP(grapheme i| phoneme j).

Initial probabilities were obtained from words and pronunciations that have equal length. This ap-

proach provides fairly accurate alignments: when benchmarked against theNETtalkhand alignments,

Andersenet al achieved a word alignment accuracy of83.7% and a phoneme alignment accuracy of

93.2% [22]. It should be noted that theNETtalkhand alignments may not be the ideal benchmark to

use for measuring alignment accuracy, as discussed in more detail in Section 4.4. Blacket al [23]

used a similar alignment approach but defined a candidate setto restrict misalignments. In Black’s

approach the possible grapheme-to-phoneme mappings are specified prior to alignment, and used to

restrict the alignment options during Viterbi alignment.

2.2.4 GRAPHEME-BASED SYSTEMS

The discussion up to this point has assumed that a pronunciation model is a required component for

a variety of speech processing systems, including automatic speech recognition systems. Schilloet

al [56] demonstrated an alternative approach by introducing the concept of grapheme-based speech

recognition: rather than using a pronunciation dictionary, graphemes are used directly as basis for the

acoustic sub-units modelled. This grapheme-based approach results in surprisingly accurate systems.

Since the perplexity of the language model has a significant effect on the accuracy of the system,

a strong language model compensates well for an inaccurate pronunciation model. The results ob-

tained by Schilloet alwere independently confirmed by Kanthak and Ney [57] and Killer [58]. While

grapheme-based systems are conceptually less complete than system that incorporate an explicit pro-

nunciation dictionary, grapheme-based systems for languages with fairly regular spelling systems

(such as Italian, Spanish or Dutch) do not seem to be significantly less accurate than phoneme-based

systems, especially in the presence of a strong language model, exhibiting a less than2% relative de-

crease in accuracy in [57]. For languages with less regular systems, the decrease in accuracy becomes

more noticeable: In [57] a25.7% relative decrease in accuracy was observed for an English system

with a word trigram perplexity of124.5.
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2.3 BOOTSTRAPPING OF HLT RESOURCES

We use the term ‘bootstrapping’ to describe an iterative process whereby a model of some form is

improved via a controlled series of increments, at each stage utilising the previous model to generate

the next one. This is a broader definition than often employedin machine learning, where boot-

strapping typically indicates a semi-supervised approachto learning, where a small set of labelled

instances is used to seed a classifier, label unclassified data, and retrain the classifier [59, 60]. Both

the above interpretations should not be confused with the use of this term in the field of Statistics,

where it can also indicate a statistical method for estimating the sampling distribution of an estimator

by resampling with replacement from the original sample [61].

Bootstrapping can be a useful technique during language resource development, and has been

used extensively in the creation of resources required by automatic speech recognition systems [3,9–

11]. In speech recognition, a bootstrapping technique is often combined with some form of cross-

language information sharing. For example, when acoustic models are developed for a new target

language, an automatic speech recognition system can be initialised with pre-developed models from

an acoustically similar source language, and these initialmodels improved through an iterative process

whereby audio data in the target language is automatically segmented using the current set of acoustic

models, the models retrained and the target data re-segmented via a set of incremental updates.

The potential saving in resource requirements achieved through such a process was well demon-

strated by Schultz and Waibel [12]. For example, in a set of experiments conducted on a Portuguese

system, Schultz and Waibel obtained near-equal performance using either a fairly large amount (16.5

hours) of target data, or adapting multilingual models through a combination of bootstrapping and

adaptation, using 90 minutes of target data. The increase inperformance using different techniques

is illustrated in Figure 2.1. Here,Data refers to the amount of target language data used andQuality

refers to the quality of the alignments:initial alignments are generated by the multilingual system,

while good alignments are updated based on improving systems.Methodrefers to the adaptation

method used: using the unadapted initial system in a cross-language transfer approach (CL), Viterbi

training using the alignments from the initial system (Vit), Maximum Likelihood Linear Regression

adaptation of the initial system using the target data (MLLR), or bootstrapping (Boot). Bootstrapping

consists of the following phases per bootstrapping cycle: creating initial alignments, Viterbi training,

model clustering, retraining and writing improved alignments.Treerefers to the decision tree used for

clustering: the original multi-lingual language independent tree (LI), a Portuguese language depen-

dent tree (LD) or a tree built using the Polyphone Decision Tree Specialisation (PDTS) process6 [12].

This example illustrates both the cross-language re-use ofinformation – seeding the acoustic models

using a related language – and the essence of a bootstrappingapproach: iteratively improving acous-

6A standard context modelling technique is to cluster modelsusing a CART-based clustering technique and a splitting
criterion based on maximum entropy gain. The Polyphone Decision Tree Specialisation (PDTS) technique was proposed
by Schultz as a mechanism to adapt the context modelling based on the target data, by restarting the decision tree growing
process according to the target data available, resulting in significant improvements [62].
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Figure 2.1:Experimental results when applying cross-language re-useof acoustic information tech-
niques in the bootstrapping of a Portuguese system, from [12].

tic models by utilising the models developed during the previous bootstrapping cycle to re-align the

data, and retrain the models.

Additional language resource development tasks that have been shown to benefit from some form

of bootstrapping include the development of parallel corpora [13], morphological dictionaries [14],

text categorization [63], automatic audio alignments [64], grammar parsers [65], morphological anal-

ysers [15], linguistically tagged corpora [16], and the development of pronunciation lexicons, as

discussed in Section 2.4.

2.4 THE AUTOMATED GENERATION OF PRONUNCIATION DICTIONARIE S

In this section, we consider automated and semi-automated approaches to the generation of pronun-

ciation dictionaries in a new language, referring to two types of approaches: Stuker [66] investigated

ways in which existing phoneme recognisers can be used to generate a pronunciation dictionary for

a new language, utilising audio data and word-level transcriptions in the target language. Using nine

mono-lingual and a multi-lingual phoneme recogniser, phoneme recognition of the audio data is per-

formed, and different voting and normalisation techniquesare used to obtain a hypothesized pronun-

ciation (or pronunciations) per words. This technique doesnot currently result in usable dictionaries,

but further work is in progress.
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A demonstrably successful approach to the semi-automated generation of pronunciation dictionar-

ies, is the use of bootstrapping within the Festival Text-to-Speech System [67]. This system includes

a rule extraction component based on Classification and Regression Trees, which can be used to gen-

erate letter-to-sound rules from a small lexicon. This lexicon is then grown iteratively by submitting

additional words to the system, and having a human verify thecorrectness of the predictions. This

process was recently demonstrated by Maskeyet al [68], utilising an approach that is analogous to

the approach used in this thesis. Maskeyet al developed a Nepali pronunciation dictionary by iter-

atively extracting a grapheme-to-phoneme rule set, predicting a set of additional dictionary entries

(varying from 100 words per cycle initially to 5000 words percycle later in the process), identify-

ing a subset of these words based on a calculated confidence score, and having these corrected by

a Nepali speaker. In a related approach, theFONILEXdictionary was compiled semi-automatically

using grapheme-to-phoneme conversion, and verified manually [19].

2.5 CONCLUSION

This chapter provided background on the pronunciation modelling task, and described various ap-

proaches to pronunciation modelling, focussing on data-driven techniques. The pronunciation mod-

elling topic is addressed further in Chapter 4, where we define a grapheme-to-phoneme rule extrac-

tion mechanism suitable to bootstrapping. The current chapter also provided a brief overview of prior

work related to the bootstrapping of HLT resources; this discussion continues in Chapter 3 with the

definition of a general model for the bootstrapping of HLT resources.
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