
Appendix A 

Examples concerning ergodicity 

A.I On the definition of ergodicity 

This section is devoted to the construction of a *-dynamical system (21. , rp, T) with 
the property that if IIT(A) - AII<p = 0, then IIA - all<p = 0 for some a E te , but 
for which the fixed points of the operator U defined in Proposition 2.3.3 in terms 
of some cyclic representation, form a vector subspace of 5) with dimension greater 
than one. This will prove the necessity of a sequence, rather than a single element, 
in Definition 2.3.2, in order for Proposition 2.3.3 to hold. 

First some general considerations. Consider a dense vector subspace ® of a 
Hilbert space 5), and let £(5)) be the bounded linear operators 5) ---t 5). Set 

ill :={AI~: A E £(5)), A® c ® and A*® C ®} 

where AI~ denotes the restriction of A to ®, then 21. is clearly a vector subspace of 
£(® ) . For any A E ill, denote by A the (unique) bounded linear extension of A to 
5). Now define an involution on 2l. by 

. A* := A*I~ 

for all A E 21., then it is easily verified that 21. becomes a unital *-algebra. (For 
A, B E 21. it is clear that AB is a bounded linear operator ® ---t ® which therefore 
has the extension A.B E £(5)) for which A.B® c ® and (A.Br ® = B*A*® C ® 
by the definition of 2l.. Hence AB E ill, which means that 2l. is a subalgebra of £(®). 

Also, (ABr = (A.Br I~ = (B* A*) I~ = B* (A*I~) = B*A* = B* A*. Similarly for 

the other defining properties of an involution.) Note that for A E 2l. and x , y E ® 
we have 

(x ,Ay) = (x,Ay) = (A*x,y) = (A*x,y). 
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A. CONCERNING 

a norm one vector n E <B we U'-'~~H~ a state rp on 21 by 

rp(A) = Afl). 

we construct a (21, . Let 

7r: 21 ~L(<B): i--7 A 

then clearly 7r is 7r(AB) = 7r(A)7r(B). Note that 
X,y E <B we (x y)* = y (x y)<B C <B and y)*<B C <B, so 
y)liB E 21. Now,7r((x fl)liB)fl = x (n,fl) = x, 7r(21)n = <B. 
(n(A)fl,7r(B)n) = (An,Bn) = (n,A* - (<B,7r,n) is a 

of (21, 
r.r..~OQ we have aU: fJ ~ fJ U<B = <B and un 

Then U*<B - 1(5 <B, so V := UliB E 21, and V* - U*liB. 
V AV* E 2l for all A E 2l, we can a linear U,",""VH r : 2l ~ by 

r(A) V AV*, 

V*V 1 VV*, 1 rp (r(A)*r(A)) rp (VA*AV*) 
(u*n, A*AU*n) = u*n = In n. (21, rp, r) is a *­.oroY'"..-"" 

dynamical system. UliB of Section 2.3, namelyOu,V"-""U'vO 

UAfl UAU*n = r(A)fl U is 
2.3.3. 

0, it x 
Ux - xii = II/, (r(A) - A)II 

IIA 0011'1' = II/'(A II = 

IIA 0011'1' = 0 for some 
aE 

vH,H»U.lO to construct an 
point space 

was by 
Hilbert space with an orthonormal the 

{n, y} U {Uk : k E 

(that is to say, fJ) ~'-'"-UA'-' the linear 
U:fJ--t 

un=n, 
Uy y, 

UUk Uk+l, k E 
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75 A.l. ON THE DEFINITION OF ERGODICITY 

Clearly U is isometric, while Uf) is dense in f), hence U is surjective, since f) is 
complete. Since U is a surjective isometry, it is unitary. Let <B be the linear span of 

{D} U {y + Uk : k E Z} . 

Then U <B = <B. Furthermore, <B is dense in f). Indeed, 

implies that y E <B , the closure of <B, hence also 

for 	k E Z. 

Next we show that 

{x 	E <B U x = x} = CD. (1.1) 

If aD + L 
n 

f3k(Y + Uk) E <B is left fixed by U, then 
k=-n 

n n 	 n n 

k=-n k=-n k=-n k=-n 

and it follows that f3-n = 0, and that f3k+l = 13k for k = -n, ... ,n -1. Thus 

aD + L
n 

13k (y + Uk) = aD 
k=-n 

proving (1.1). 

On the other hand, 

{xEf):Ux=x} 

clearly contains the twtrdimensional vector space spanned by D and y . 

 
 
 



A.2 example of ergodic system 

we the proof 7 is HJ.U.'''''''U IS T IS 

and that I, 

and 

* ( ) 

2 2 
la221 + IC2a 211T(.4.)*T(.4.) = ( 

+ 

( ) 
and 

so 

'P (T(.4.)*T(.4.)) f + 12+ 

lad 2 + lanl2
) 

all .4., H'~'kUH'r, that (21, T) is a if only if ICII S 1 
Ic21 S 1) which is we will assume. 

we it is pro-""" even k 2:: 0 we 

) 

 
 
 



77 A.2. AN EXAMPLE OF AN ERGODIC SYSTEM 

and therefore 

which means 

For odd k > 0 we then get 

by switching bll and b22 . For C E C it is clear that U : C -7 C : x ~ cx is a linear 
operator with IIUII ~ 1 if and only if Icl ~ 1, and for c=I- 1 the only fixed point of U 
is 0, in which case 

for all x E <C as n -7 00, by the Mean Ergodic Theorem 2.4.1. Hence, for Cl =I- 1 and 
C2 =I- 1 it follows that 

which means that (ill, <p ,T) is ergodic, by Proposition 2.5.6(ii). 
On the other hand, if Cl = 1 and C2 =I- 1, then we have by a similar calculation 

that 

n-l 

-1 L <p (ATk (B) ) = a21 b12
lim <p(A)<p(B) + -2-' 

n-->oo n 
k=O 

Likewise for the other cases where either Cl or C2 or both are equal to 1. So (ill, <p, T) 
is ergodic if and only if Cl =I- 1 and C2 =I- 1. 
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A.2.1 Remark. It is easily seen that T is not a homomorphism, namely 

while 

In fact , unless CIC2= I, it follmvs that ,ve don't even have T(A2) = T(A)2 for all 
A. Nor, for that matter, do we have T(A*) = T(A)* for all A, unless C2 = Cl. This 
is opposed to the situation for a measure theoretic dynamical system as defined in 
Section 2.1, where T in equation (l.1) of that section is always a *-homomorphism. 
It therefore makes sense not to assume that T is a *-homomorphism in Definition 
2.3.1, since we now have an example where it isn't .• 

A.2.2 Remark. We note that <p(T(A)) = <p(A) , i.e. <p is T-invariant, but this fact in 
itself does not imply that <p(T(A)*T(A)) ::; <p(A* A), since T is not a *-homomorphism, 
by Remark A.2.l. 

Furthermore, <p(AB) = <p(BA) for all A, BE2£., so <p is commutative (so to 
speak) even though 2£. is not. Also, while T(AB) =1= T(BA) for some A, BE2£., we 
still have <p(T(AB)) = <p(AB) = <p(BA) = <p(T(BA)), so T is noncommutative (so 
to speak), but with respect to <p it is again commutative. We conclude that while 2£. 
is noncommutative, (2£., <p, T) is still in many respects commutative simply because 
<p(AB) = <p(BA) for all A and B .• 

A.2.3 Question. Is there an example of an ergodic *-dynamical system (2£., <p ,T) 
in which <p (AB) =1= <p(BA) for some A, B E 2£.? 
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