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For a given norm one vector {2 € & we define a state  on 2 by
P(A) = (0, AQ).
Next we construct a cyclic representation of (2, ¢). Let
T:A-L(B): A— A

then clearly 7 is linear with 7(1) = 1 and 7(AB) = 7{A)7(B). Note that for any
z,y € G we have (zQ®y)" =y Rz, hence (zRy)B C G and (z®yY)*'G C &, s0 (z®
Yle € A Now, 7 ((z @ Q)]e) Q = z {0, Q) = z, hence m(A)Q2 = &. Furthermore,
(m(A)Q, m(B)Y) = (AQ2, BQ) = (Q, A*BQ) = p(A*B). Thus (&,7,Q) is a cyclic
representation of (2, ). ,

Suppose we have a unitary operator U : $§ — §) such that U8 = & and UQ = Q.
Then U*® = U6 =6, 50 V := Ulg € A, and V* = U*ls. It follows that
VAV* € U for all A € 2, hence we can define a linear function 7: 2 — 2 by

7(A) = VAV,

Clearly V*V = 1 = VV* so 7(1) = 1 and ¢ (7(A)*7(A)) = p(VA*AV*) =
(U*Q, A*AUQ) = p(A*A), since U = U0 = Q. Therefore (A, p,7) is a *-
dynamical system. Note that Uls satisfies equation (3.1) of Section 2.3, namely
Un(A)Q = UAQ = UAU*Q = 7(A)Q = 7 (7(A)) Q, hence U is the operator which
appears in Proposition 2.3.3.

Assume {z € & : Uz =z} = CQ. If [|7(A) — 4, = 0, it then follows for z =
t(A), with ¢ given by equation (2.1) of Section 2.2, that [|[Uz — z|| = ||« ((4) — A)| =
[7(A) — All, =0, so z = o2 for some o € C. Therefore A —af, = (4 - a)| =
lz —afl] =0.

In other words, assuming that the fixed points of U in & form the one-dimensional
subspace CQ, it follows that ||7(A) — A| , = 0 implies that [|A — af| , = 0 for some
a € C.

It remains to construct an example of a U with all the properties mentioned
above, whose fixed point space in § has dimension greater than one. The following
example was constructed by L. Zsidé:

Let $ be a separable Hilbert space with an orthonormal basis of the form

{&, y}u{u : ke Z}

(that is to say, this is a total orthonormal set in $) and define the linear operator
U : 5 — % via bounded linear extension by

UQ =1,

Uy =y,
Uu}g = Ug41 k & Z.
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A.2 An example of an ergodic system

Here we give the proof that Example 2.5.7 is indeed ergodic. It is clear that 7 1s
linear and that 7(1) = 1. Let

and

be complex matrices. Then

and

while

and

8O

T(A)T(A) = < i 10»22!2 + chi?ziz 555?155122'}‘ Czamgu )
18312093 + A11C209] lcraia|” + f&ui

A — Q11 4z
Q13 Gg9

A*A = ( }0«1112 + IamI? G11012 + G91G92 )
= - 2 9
d1z011 + A1 |a12]” + |ase]

[

@ (T(A)rT(4) = = (loxnl” + leaam|’ + 101 + |ans [*)

[ I ]

(lage|® + laz1|® + lasa]® + |11 [?)

= @(4"A)

for all A, meaning that (2, ¢, 7) is a *-dynamical system, if and only if |¢;] < 1 and
lea] <1, which is what we will assume.
Next we prove that it is ergodic. For even k > 0 we have

b kb
k B) = 11 1V12
! ( ) ( C}fﬁbzl bas
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