
Chapter 1 

...4. C*-algebraic formulation of 
mechanics 

In this chapter we formulate quantum mechanics and classical mechanics in the lan­
guage of C*-algebras. The exposition is based on [D2] and [D3]' but contains some 
additional material. AB we shall see, the general structure of quantum mechan­
ics and classical mechanics are identical, except for commutativity, when both are 
viewed purely in C*-algebraic terms. We therefore obtain a unified framework for 
mechanics which will be seen to be very natural for studying some ergodic properties 
of quantum and classical mechanics in Chapter 3. 

Sections l.1 to l.5 present general aspects of mechanics in a statistical frame­
work, and in Section l.6 an interpretation of quantum mechanics inspired by the 
mathematical setting is discussed. The physical concepts are introduced gradually 
in the sense that certain ideas are initially only used intuitively, since their for­
mal presentation can only be given once the framework has at least been partially 
erected. Sections 1. 7 to 1.9 treat specialized topics to be used in Chapter 3; these 
topics do not apply to mechanical systems in general. 

1.1 Yes/no experiments 

We start with two simple definitions that apply to both quantum mechanics and 
classical mechanics: 

1.1.1 Definition. An observable of a physical system is any attribute of the 
system which results in a real number when measured, where this measurement must 
be verifiable,in other words, if the measurement is repeated immediately (so no 
disturbance or time-evolution of the system occurs between the measurements) then it 
results in the same real number. We call this real number the value of the observable 
during the measurement. 
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10 CHAPTER 1. A C*-ALGEBRAIC FORMULATION OF MECHANICS 

If a measurement is not verifiable in the sense of Definition 1.1.1, then there is no 
well-defined value of whatever it is that we measured, and hence we do not consider 
it to be a measurement of an observable. 

1.1.2 Remark. By a measurement (or observation) we mean that an observer re­
ceives information regarding the physical system. The verifiability of a measurement 
essentially says that the information obtained in the measurement is correct, since it 
means that if we could repeat the measurement then we would with probability one 
get the same result. This is the type of measurement we will deal with in this thesis. 
VYe can therefore also refer to a measurement as a preparation. This is an idealiza­
tion of reality (also see [Om, p. 82] on defining an ideal measurement in terms of 
verifiability). In the worst cases a system might in practice even be destroyed by a 
measurement (for example a particle absorbed by a detector), and then a repetition 
of the measurement would not be possible. Without idealization however, it would 
be impossible to do physics. After an ideal framework has been set up, non-ideal 

. situations can be understood in terms of the idealization. See Sections 1.5 and 1.6 
for more on ideal measurements. It is very important to mention that we will view 
all (ideal) measurements as yes/no experiments, defined below, which means that 
an ideal measurement does not necessarily supply complete information, but only 
correct information (also see Section 1.4). The idea of a single value in Definition 
1.1.1 should therefore be viewed only as preliminary, to help us to build up the 
statistical ideas used later on.• 

1.1.3 Definition. Consider any observable of a physical system) and any Borel set 
S c IR.. We now perform an experiment on the system which results in a "yes" if 
the value of the observable lies in S during the experiment) and a "no " otherwise; 
the experiment gives no further information. We call this a yes/no experiment. 

Definition 1.1.3 seems justified, since in practice there are always experimental 
errors during measurements, in other words we always get a range of values (namely 
S in Definition 1.1.3) rather than a single value. 

1.1.4 Remark. In quantum mechanics one should be careful in interpreting Def- . 
inition 1.l.3. While in classical mechanics the mathematical framework allows us 
to assume (if we want to) that there is some objective single value of an observable 
at the time of a measurement (even though we only get a set of values), this view 
can not be held in quantum mechanics. In quantum mechanics the different values 
in the set correspond to orthogonal state vectors (for simplicity we assume for the · 
moment that the observable's spectrum is discrete), but the system need not be in 
any of these states, it can also be in a superposition of them, meaning that none of 
the values in the set is the "actual" objective value of the observable. 

 
 
 



11 1.1. YES/ NO EXPERIMENTS 

So, if in quantum mechanics a measurement returns a set of values, then we can­
not view anyone of these values as being the actual objective value of the observable. 
However, a series of measurements of the same observable (assuming there's no time­
evolution, measurements of other observables, or outside influences on the system) 
should at least be consistent with each other, in the sense that the intersection of 
the sets obtained in the measurements should be non-empty.• 

Typically a measurement gives an interval which contains the value ofthe observ­
able being measured. For example, a measuring instrument with a "digital" read-out 
possessing only four digits might read 1.520, which means that the value lies in the 
interval [1.5195 , 1.5205] . We now assume that this is then the only information we 
have concerning the value (for example, we do not have a non-constant probability 
distribution for where in the interval the value lies). The interval [1.5195 , 1.5205] 
here plays the role of S in Definition 1.1. 3. 

To clarify the interpretation of Definition 1.1.3, we give another example. Let's 
say we measure the x-coordinate of a given particle in some physical system (quan­
tum or classical) and we obtain the interval [a ,b] . Then we view this as the yes/no 
experiment "Does the x-coordinate of the given particle lie in [a, b]?" performed on 
the system, and that it resulted in a "yes". Similarly for any other observable of a 
system, and any Borel set S instead of [a, b]. Hence we can view a measurement of 
any observable as a yes/no experiment. 

. Since Definition 1.1.3 is stated for arbitrary Borel sets S, rather than just the 
special case of intervals, it covers a much wider class of situations than the examples 
above. For example, instead of an interval [a, b], an experiment might give us some 
union of possibly unbounded intervals. We can mention that since we will use 
measure theory in any case (especially when dealing with classical mechanics), the 
introduction of Borel sets at this stage does not cause any extra effort later on. 

We now want to show how the yes/no experiments can themselves be viewed 
as observables. Consider any property that the system mayor may not have that 
can be verified or negated by a verifiable measurement (in the sense of Definition 
1.1.1) which results in the value 1 if the system has this property, and the value 
o otherwise. Then we can view this property as an observable which can have the 
value 1 or O. Now consider the yes/no experiment resulting in a "yes" if the value of 
the observable is 1 (i.e. the value lies in some Borel set containing 1 but not 0, for 
example {I}), and a "no" otherwise. Then the observable and the yes/ no experiment 
are really one and the same thing, with the yes/no experiment merely relabelling 
the values 1 and 0 as "yes" and "no" respectively. An example of a property as 
discussed here is "The x-coordinate of the particle lies in [Xl, X2], the y-coordinate 
in [YI ,Y2] and the z-coordinate in [Zl' Z2]" for a given particle in a physical system 
(where in this example we use Cartesian coordinates). 

It should therefore now be clear that the observable in Definitions 1.1.1 and 
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1.1.3 may be some property (as above) comprising a combination of other observ­
abIes together with sets in which their values might lie, such as the three position 
coordinates (each an observable) and the three intervals in the last example. The 
point we are trying to make is that Definition 1.1.3 is very general, applying to any 
property as discussed above. It must be stressed though, that the verifiability of 
the measurement of such a property is essential here. Say for example we consider 
the property "The particle's position lies in [qI , q2], and its momentum in [PI ,P2]" 
of a system consisting of a single particle confined to a straight line. In the case 
of quantum mechanics this property is not an observable in the sense described 
above, since it turns out that if we measure the position and momentum, and then 
immediately measure them again, their values need not be the same as during the 
first measurement, that is to say the measurement of the property is not verifiable. 
This "odd" behaviour is the classic example of how quantum mechanics differs from 
classical mechanics , since in the latter this property is in fact an observable. It is 
usually expressed as saying that the position and the momentum can not be mea­
sured simultaneously (or that the two observables are not compatible). In principle 
we can study this type of behaviour for a property constructed from an arbitrary 
set of observables of a physical system. In ·Sections 1.2 to 1.6 we will see that the 
only real difference between quantum and classical mechanics is that the latter is 
commutative (or abelian) while the former is not (the meaning of this will become 
clear in Sections 1.2 to 1.6). Therefore the noncommutativity of quantum mechanics 
must be responsible for its "odd" behaviour as compared to classical mechanics. 

1.1.5 Remark. The idea of yes/no experiments (and their projections; refer to 
Section 1.2) can be traced back to [vNl], where yes/no experiments are viewed as 
"propositions" stating various possible properties of the system, a property being 
verified if we obtain a "yes" in the corresponding yes/no experiment. In classical 
mechanics the first hint at yes/no experiments seems to be [vN2] where von Neu­
mann asks the question "Does P belong to eor not?", P being the pure state of the 
system as a point in the phase space, and e a measurable set in the phase ·space. 
(We will return to this very question in Section 1.3, but in terms of Definition 1.1.3 
and its interpretation explained above.) The idea was further developed in [BvN] 
for both quantum and classical -mechanics.• 

1.2 Quantum mechanics 

Let's look at the C*-algebraic formulation of quantum mechanics (also see [HaJ). 
Consider any quantum mechanical system. We represent the observables of the 
system by a unital C*-algebra 21., called the observable algebra of the system, and 
the state of the system by a state w on 21., that is to say w is a normalized positive 
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linear functional on 21. (By normalized we mean that w(l) = 1, and by positive that 
w(A* A) for all A E 21.) At this stage we attach the intuitive meaning to the term "the 
state of the system"; we will return to this in Section 1.4. 21 contains the spectral 
projections of the system's observables rather than the observables themselves. By 
this we mean the following: To any yes/no experiment that we can perform on the 
system, there corresponds a projection P in 21 such that w(P) is the probability of 
getting a "yes" during the experiment for any state w of the system. We will refer 
to P as the projection of the yes/no experiment. 

We will only consider yes/no experiments for which the experimental setup is 
such that at least in the case of a "yes" the system survives the experiment (for 
example, it is not absorbed by a detector), so further experiments can be performed 
on it. "'.That does the system's state look like after such an experiment? Consider 
for the moment the Hilbert space setting for quantum mechanics. Here the (pure) 
states of a system are represented by non-zero vectors, called state vectors, in a 
Hilbert space 5), called the state space of the system. Suppose the state is given 
by the unit vector x in S). After a yes/no experiment the state is given by the 
projection of x on some Hilbert subspace of S). Denoting the projection operator 
onto the subspace in case of a "yes" by Q, we see that the system's state after 
the experiment would then be given by the unit vector Qx/IIQxll, according to 
the projection postulate ("collapse of the wave function"). It is clear that Q is the 
projection of the experiment, since IlQxl12 = (x, Qx) is exactly the probability of 
getting a "yes". (Here the state e on the C*-algebra £(5)) of all bounded linear 
operators on 5), given by e(A) = (x, Ax), is the C*-algebraic representation of the 
state x, in the sense of w above, with £(5)) serving as the observable algebra.) 

Returning to our system with observable algebra 21, we know by the GNS­
construction (see Section 2.2, or for example [BR, Section 2.3.3]) that there exists 
a (cyclic) representation of (21, w), namely a Hilbert space 5), a *-homomorphism 
7f : 21 -----+ £(5)) , and a unit vector D in 5), such that 

w(A) = (D,7f(A)D) (2.1 ) 

for all A in 21. This looks like the usual expression for the expectation value of an 
observable (here represented by 7f(A)) for a system in the state D in the Hilbert space 
setting (compare e above). On a heuristic level we therefore regard 5) as the state. 
space of the system, and D as its state. Say the result of the yes/no experiment 
with projection P is "yes". On the basis of the Hilbert space setting described 
above, it would now be natural to expect that after the experiment the state is 
represented by the unit vector D' = 7f(P)D/ 117f(P)DII, since 7f(P) is the projection 
of the experiment in the Hilbert space setting in the same way as Q above (and 
hence 7f (P) here plays the role of Q). Note that 117f(P)DI12 = w(P) > 0 since this is 
exactly the probability of getting the result "yes". We now replace Din (2.1) by D' 
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to get a new expectation functional w' defined by 

w'(A) = (D',7r(A)D') 

for all A in 2L Clearly w'(A) = w(PAP)/w(P), so w'(l) = 1, which implies that w' 
is a state on 2t. Based on these arguments we give the following postulate: 

1.2.1 Postulate. Consider a quantum mechanical system in the state w on its 
observable algebra 2t. Suppose we get a "yes" during a yes/no experiment performed 
on the system. After the experiment the state of the system is then given by the state 
w' on 2t defined by 

w'(A) = w(PAP) /w (P) (2.2) 

for all A in 2t, where P is the projection of the yes/no experiment. 

Suppose the state is expressed in terms of a density operator P on a Hilbert space 
.5), namely w(A) = Tr(pA) for any bounded linear operator A on the Hilbert space. 
(Here density operator refers to a positive operator P E £(.5)) with Tr(p) = 1.) From 
Postulate 1.2.1 it then follows that after the experiment the density operator is given 
by 

, PpP
P = (2.3)

Tr(pP) 

in the case of a "yes" . This is sometimes referred to as the Luders rule (see [Hu, p. 
274] or (Lu]) , and by the arguments above we see that this rule can be viewed as 
the projection postulate applied to a vector in a "bigger" Hilbert space, in which P 
is represented by this vector. The equivalence of (2.2) and (2.3) , assuming we only 
consider states given by density operators, follows from the fact that if Tr(Pl A) = 
Tr(p2A) for all A E £(.5)) for two density operators PI and P2 onS5, then setting 
A = PI - P2 gives 

where 11·111 denotes the trace-class norm; see (Mu, p. 63 and 65]. Hence (PI-P2)2 = 0 
and therefore IlpI - P211 2 = II(PI - P2)211 = 0, where 11·11 denotes the usual operator 
norm. So PI = P2' proving the equivalence, namely that P' is the unique density 
operator insuring that w'(A) = Tr(p'A) satisfies (2.2). 

Lastly we mention that the time-evolution of the system is described by a one­
parameter *-automorphism group T of 2t, so if the projection of a yes/no experiment 
is P at time 0, then at time t the projection of the same yes/no experiment will be 
Tt(P). 
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1.3 Classical mechanics 

Now we turn to the C*-algebraic formulation of classical mechanics. We can repre­
sent the pure state of a classical system by a point in its phase space JR.2n, where n of 
the entries are the generalized position coordinates, and the other n their conjugate 
momenta. This point is called the phase point of the system. This is somewhat 
restrictive since such a point represents exact knowledge of the state of the sys­
tem, which is impossible in practice. Therefore we rather represent the state of 
the system by a Borel measure p, on JR.2n such that p,(S) is the probability that the 
system's phase point is somewhere in the Borel set S C JR.2n . In particular we have 
p,(IR2n) = l. 

We view each observable of the system as a Borel function f : JR.2n -+ lR.. This 
simply means that if the system's phase point is x E JR.2n , then the value of the 
observable is f(x). If we perform a yes/no experiment to determine if 1's value lies 
in the Borel set V c JR., then the probability of getting "yes" is clearly 

where X denotes characteristic functions (i.e. for any set A, the function XA assumes 
the value 1 on A, and zero everywhere else). We can view Xf-I(V) as a spectral pro­
jection of the observable f, and we will refer to it as the projection of the yes/no 
experiment, just as in the quantum mechanical case. Note that Xrl(V) is a projec­
tion in the C*-algebra Boo (JR.2n) of all bounded complex-valued Borel functions on 
JR. 2n, where the norm of Boo(JR.2 ) is the sup-norm, its operations are defined point­
wise, and its involution is given by complex conjugation (we will use the *-algebraic 
notation g* = 9 for the complex conjugate of a complex-valued function g). We can 
define a state w on the C*-algebra Boo (JR.2n) by 

w(g) = Jgdp, (;U) 

for all 9 in Boo (JR.2n) . Then we see that the probability of getting a "yes" in the 
above mentioned yes/no experiment is w(Xf-I(V)). So we can view w as representing 
the state of the system in exactly the same way as in quantum mechanics, where 
now Boo (JR.2n) is the unital C*-algebra representing the observables of the system. 
.For this reason we call Boo (JR.2n) the observable algebra of the system. 

Postulate 1.2.1 then holds for the classical case as well, as we now explain. Let 
S C JR.2n be a Borel set. The probability for the system's phase point to be in 
both Sand f-l(V) is merely the probability for it to be in S n f- 1(V), which is 
p,(S n f-l(V)). A "yes" in the above mentioned yes/no experiment would mean 
that the system's phase point is in f- 1 (V), and the probability of this is p,(f-l(V)) . 
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Denote by fL' (S) the so-called conditional probability that the system's phase point 
is in S, given that the phase point is in f-l(V). Hence we should have 

(3.2) 

It follows that if a "yes" is obtained in the experiment, then we can describe the 
system's state after the experiment by the measure fL' given by 

for all Borel sets S C ]R2n. It is easily verified that fL' is indeed a Borel measure on 
]R2n. As for the case of fL and win (3.1), fL' corresponds to the state w' on B<XJ(]R2n) 
given by 

(the second equality follows using standard measure theoretic arguments, i.e. first 
prove it for g a characteristic function and then use Lebesgue convergence; refer to 
[Rud]). This is exactly what Postulate 1.2.1 says if we replace the word "quantum" 
by "classical". 

For the time-evolution of a classical system we need the concept of a flow. Con­
sider a measure space (X, 2:"fL), where fL is a measure defined on a o--algebra I: 
of subsets of the set X. A flow on (X, I:, fL) is a mapping t I-t Tt on ]R with the 
following properties: Tt is a function defined on X to itself, To is the identity on X 
(i.e. To(x) = x), Ts 0 Tt = Ts+t, and Tt(S) E 2:, and fL(Tt(S)) = fL(S) for all S in I:. 
We denote this flow simply by Tt . 

The time-evolution of our classical system is given by a flow Tt on (]R2n , B, A), 
where B is the o--algebra of Borel sets of ]R2n, and A is the Lebesgue measure on ]R2n. 

Note that this statement contains Liouville's theorem, namely A(Tt(S)) = A(S) for 
all S in B. '\file call Tt the Hamiltonian flow. It simply means that if at time 0 the 
system's phase point is x E ]R2n , then at time t its phase point is Tt(x). 

As in the C* -algebraic approach ·to quantum mechanics, we want the time­
evolution to act on the observable algebra rather than on the states. Suppose the 
system's phase point is x at time O. Consider an observable given by the function f 
at time O. Then the value ofthe observable at time 0 is f(x), and hence at time tits 
value must be f(Tt(x)) = (fo Yt)(x), where on the left hand side ofthe equation the 
time-evolution is applied to the phase point, and on the right hand side it is applied 
to the observable. So it is clear that an observable given by f at time 0, will be 
given by f 0 Tt at time t if the time-evolution acts on the observables rather than on 
the states (this is the well-known Koopman construction, [Ko]). This is equivalent 
to the action of Tt on the spectral projections of f, since X(joTt)-l(V) = Xf-l(V) 0 Tt 
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for all Borel sets V c lR. We explain the meaning of this in more detail: Suppose 
the state ofthe system is described as in (3.1) . At time t we perform the yes/no ex­
periment "Does the value of the given observable lie in V?" . Let's say that x E ffi.2n 
is the phase point of the system at time O. The value of the observable is in V at 
time t if and only if j(Tt(x)) E V, in other words if and only if x E (j 0 Tttl(V). 
The probability for this being the case (in other words, the probability of getting a 
"yes" _in the experiment) is 

as explained at the beginning of this section. This means that at time t the projection 
of the yes/no experiment is given by Xf-l(V) 0 Tt . It is easily seen that if we define 
T by 

(3.3) 

for all 9 in Boo(ffi.2n ), then T is a one-parameter *-automorphism group of the C*­
algebra Boo(ffi.2n). So the time-evolution is described in exactly the same way as in 
quantum mechanics when viewed in C* -algebraic terms. 

We have now obtained a C*-algebraic formulation of classical mechanics. Note 
that Boo (ffi.2n) is an abelian C*-algebra. Replacing Boo (ffi.2n) by an arbitrary abelian 
unital C*-algebra would give us an abstract C*-algebraic formulation of classical me­
chanics. From our discussion above it is clear that if in the C* -alge braic formulation 
of quantum mechanics described in Section l.2 we assume that 2( is abelian, then 
we get exactly this abstract C*-algebraic formulation of classical mechanics. Setting 
2( = Boo (ffi.2n) would make it concrete. In this sense the C* -algebraic formulation of 
quantum mechanics actually contains classical mechanics as a special case. 

1.3.1 Remark. Here we used Boo(ffi.2n ) as the classical observable algebra. Other 
choices are possible in ' certain approaches to statistical mechanics. For example 
some C*-algebra of continuous functions on the phase space (see for example [Rue, 
Section 7.1]), but in general this precludes projections and will therefore not do for 
our purposes.• 

1.4 The general structure of mechanics 

We now summarize our work thus far to gain some perspective. 
In a mathematical description of a physical system (quantum or classical), we 

need to describe four things: 

(a) The observables of the system (as defined in l.1.1). 
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(b) The state of the system, by which we mean the observer's information re­
garding the system. (We assume that the observer knows what the system is, i.e. he 
knows what the observables are.) The case of maximal information is called a pure 
state. We can say that by definition the state ofthe system is a mathematical object 
which for each possible outcome of each measurement that can be performed on the 
system, provides the observer with the probability for obtaining that outcome when 
performing that measurement. We can then also say that the observer 's information 
about the system is by definition this state. (Note that the state of the system is 
not an objective property of the system, but depends on the observer.) The state of 
the system must be constructed from data gained during measurements previously 
performed on the system. Of course, we have to assume that the measurements are 
accurate (i.e. the data is correct , also see Remark 1.1.2), even though they may not 
be precise (i.e. the data is incomplete), for example when we measure the position 
of a classical particle we get a set of possible values rather than a single value, but 
the value of the position during the measurement is contained in this set . 

(c) The measuring process. This is clearly closely connected to (a) and (b), 
since the observables are exactly that which is measured, while the result of a mea­
surement gives the observer new information regarding the system, that is to say a 
measurement changes the state. We can view all measurements of the observables 
as yes/no experiments, as explained in Section 1.1. 

(d) The time-evolution ofthe system (dynamics) . In other words, how the prob­
abilities mentioned in (b) change as we move forward (or backward) in time. 

The results of Sections 1.2 and 1.3 (for a quantum or classical mechanical system) 
are: 

(i) We describe the observables by an observable algebra 21 which for each point 
in time contains a projection corresponding to each yes/no experiment that can be 
performed on the system (at that point in time). (These projections are referred to 
as spectral projections.) 21 is taken as a unital C* -algebra. 

(ii) The state of the system is described by a state w on 21 (in the C*-algebraic 
sense defined in Section 1.2), such that for every yes/no experiment, w(P) is the 
probability of getting "yes", where P is the projection of the yes/no experiment at 
the time at which it is performed. (Obviously this implies that the probability of 
getting "no" is 1 - w(P) = w(1- P).) 

(iii) Regarding the measurement process we just have to describe how the state 
is changed by a yes/no experiment. This is given by Postulate 1.2.1 , which also 
holds for a classical mechanical system as explained in Section 1.3. That is to say, 
if a "yes" is obtained in the yes/no experiment, then after the experiment the state 
of the system is given by the state w' on 21 defined by 

w'(A) = w(PAP)/w(P) 
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for all A in 2L, where P is the projection of the yes/no experiment. (We will have 
more to say about the measuring process in the next two sections.) 

(iv) The time-evolution is given by a one-parameter *-automorphism group T of 
2L, such that if at time 0 the projection of a given yes/no experiment is P, then at 
time t the projection of the same yes/no experiment will be Tt(P ). (The choice of 
when time 0 is, is arbitrary, since T is a group.) 

This is the general structure of mechanics. As will be discussed in more detail in 
the next two sections, this general structure is nothing more than probability theory 
(actually, it is a noncommutative generalization of classical probability theory). It is 
a mathematical framework for dealing with information. When applied to a physical 
system, this information is the observer's information regarding the system, in other 
words, the system's state. 

1.4.1 Remark on hidden variables. We have now seen that quantum and 
classical mechanics have the same general structure, from a probabilistic point of 
view, with classical mechanics being the special case where the observable algebra is 
abelian. Suppose that there is some classical theory underlying quantum mechanics 
(a hidden variable theory) and that quantum behaviour is the result of our igno­
rance of these "hidden variables" . A good guess would then be that this underlying 
theory has the general structure given above, the observable algebra being abelian, 

. where we lack precise information 	about the physical system being studied (also 
see [Ma, pp. 180-184] and references therein). But this fails to explain the non­
commutative behaviour of quantum mechanics in a simple way. It would therefore 
seem that a hidden variable theory would be a complicated way of "explaining" the 
fac~ that quantum mechanics is simply a noncommutative generalization of classical 
probability theory. Hidden variables are then excised by Occam's razor.• 

1.4.2 Remark on spectral projections. For a quantum mechanical observable 
represented by a (possibly unbounded) self-adjoint linear operator A in the state 
space SJ, the projection of the yes/no experiment "Is the value of A in V?)) can 
be taken as the spectral projection Xv(A) in terms of the Borel functional calculus 
on self-adjoint operators; refer to [SZ, 9.9 to 9.13, and 9.32] for the construction 
and properties of this calculus. Loosely speaking, this projection represents the part 
of A whose spectrum is contained in the Borel subset. V of lR. It is interesting to 
note that this is very similar to the classical case in Section 1.3, where we used 
Xf-1(V) = Xv 0 f instead of Xv(A). We can write Xv(J) := Xv 0 f to complete the 
analogy, where more generally g(J) := go f defines a !30rel functional calculus on the 
measurable functions f : F --+ IR. for Borel measurable g : IR. --+ C. Here the classical 
observable f is also self-adjoint, namely 1* := 7= f since it is real-valued .• 
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1.5 Measurements and conditional probabilities 

The quantum mechanical projection postulate for the state vectors, which we used 
in Section 1.2, often seems somewhat mysterious. However, within the general 
structure of mechanics it is quite natural, as we now explain. 

In Section 1.2 we extended this projection postulate to arbitrary states on an 
abstract observable algebra to obtain Postulate 1.2.1. This was done using a very ' 
natural heuristic argument based on the projection postulate for state vectors . In 
Section 1.3 we motivated Postulate 1.2.1 for a classical mechanical system by using 
the idea of a conditional probability. 

By a conditional probability we mean the probability for some event A to occur, 
given the information that some event B has occurred. Denote this probability by 
p(AIB). Denote by p(A) the probability for an event A to occur if no information 
regarding occurrences of other events are available. Denote by AnB the event where 
the events A and B both occur. Then it is intuitively clear for any two events A 
and B that 

p(B)p(AIB) = p(A n B). (5.1) 

This is exactly what we used in equation (3.2). 
To understand the intuition behind this, consider for example the case of a finite 

number (of equally probable) sample points, say the six faces of a fair die. Let S be 
the set of sample points (we call it the sample space), then events are represented 
by subsets of S. (Hence the notation An B above; it is just the usual intersection 
of sets.) Suppose S contains n points, and let A and B be events containing a and 
b sample points respectively, while An B contains c sample points. Then 

a b c 
p(A) =-, p(B) = - and p(An B) =-. (5.2) 

n n n 

If we have the information that B occurred, then our sample space collapses to the 
set B. Event A now consists of its sample points in B, in other words it is given by 
A n B. Hence the probability of A is now 

c 
' p(AIB) = b· (5.3) 

From (5 .2) and (5.3) we obtain (5.1). 
The same argument can be applied to the case where the sample space S is a fiat 

bounded surface with one of its point marked in some way, but we don't know which 
point. Then the probability for a subset A c S to contain the marked point is given 
by (area of A) / (area of S), and hence A and B should be Lebesgue measurable. 
So, the probability of an event is the "size" of the set representing the event. It is 
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essentially this measure theoretic idea that is used in Section 1.3, where the phase 
point is the marked point. 

Refer to [Fe] for more on probability, including sample spaces and conditional 
probabilities. 

In Section 1.3 we saw that in the case of classical mechanics, Postulate 1.2.1 is 
simply another way of expressing (5.1) in the measure theoretic setting for prob­
ability theory. Hence, in quantum mechanics, Postulate 1.2 .1 can be viewed as a 
"noncommutative conditional probability". (Also see [Bu].) So the "mysterious" 
projection postulate of quantum mechanics is mathematically merely a noncommu­
tative extension of the conditional probability encountered in classical mechanics. 
(Also see [Petz] for a short survey of the closely related idea of noncommutative 
conditional expectations, or refer to [OP].) It should of course be kept in mind that 
the physical consequences of the quantum projection postulate differs surprisingly 
from that of classical mechanics, with the Uncertainty Principle as the archetypical 
example (it essentially states that the position and momentum of a particle in one 
dimension can not be measured simultaneously, as was also mentioned in Section 
1.1) . 

We can now formalize the idea of an ideal measurement (see Remark 1.1.2) : 

1.5.1 Ideal measurements. Postulate 1.2.1 can be viewed as the definition of an 
ideal measurement in quantum mechanics. Replacing the word "quantum" by "clas­
sical" , Postulate 1.2.1 defines an ideal measurement in classical mechanics. In short 
one can say that an ideal measurement in mechanics is defined by (iii) in Section 
1.4. So an ideal measurement is a change in the observer's information regarding 
the system, via a (possibly noncommutative) conditional probability. (Note that by 
"ideal" we do not mean "precise". In classical mechanics "ideal" means that the 
system is not disturbed by the measurement. The same interpretation can be used 
in quantum mechanics, as will be seen in Section 1.6.). 

1.6 An interpretation of quantum mechanics 

There are several problems surrounding the interpretation of quantum mechanics, 
mainly involving the measuring process. What does the collapse of the wave func­
tion mean? What causes it? And so on. In this section we argue that these prob­
lems are essentially present in classical mechanics as well. In classical mechanics a 
measurement is nothing strange. It is merely an event where the observer obtains 
information about the system (we consider the case of an ideal measurement as in 
1.5.1) . A measurement therefore changes the observer's information. One can then 
ask: What does the change in the observer's information mean? What causes it? 
And so on. These questions correspond to the questions above, but now they seem 
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tautological rather than mysterious, since our intuitive idea of information tells us 
that the change in the observer's information simply means that he has received 
new information, and the change is caused by the reception of the new information. 
\7iJe will see that the quantum case is no different, except that the nature of infor­
mation in quantum mechanics differs from that in classical mechanics. We now first 
describe the basic idea, and afterwards we show how it is actually an outgrowth of 
the mathematical framework we've been developing. 

Let's sayan observer has information regarding the phase point of a classical sys­
tem, but not necessarily complete information (this is the typical case, as discussed 
in Sections 1.1 and 1.3). This information ,;vas of course obtained by measurements 
the observer performed on the system (remember, by definition a measurement is 
t.hp rpr~ptiQn of information by the obEJervcr). Now the observer perful'll1t> a mea­

surement on the system to obtain new information (for example he might have infor­
mation regarding a particle's position, now he measures the particle's momentum). 
The observer's information after this measurement then differs from his information 
before the measurement. In other words, a measurement "disturbs" the observer's 
information. 

In classical mechanics we know that an observer's information isn't merely dis­
turbed, but is actually increased by a measurement (assuming the measurement 
provides new information). We will view this as an assumption regarding the na­
ture of information which does not hold in quantum mechanics. On an operational 
level, this can be seen as the essential difference between quantum mechanics and 
classical mechanics: In both quantum and classical mechanics the observer's infor­
mation is disturbed (changed) by a measurement if the measurement provides new 
information, but in classical mechanics the observer's information before the mea­
surement is still valid after the measurement, while in quantum mechanics this is 
not necessarily the case. 

In Section 1.5 we saw that the projection postulate of quantum mechanics is 
essentially a noncommutative conditional probability . which contains the classical 
conditional probability as a special case. In fact, the general structure of classi­

. cal mechanics described in Sections l.3 and 1.4 is nothing more than probability 
theory (together with a time-evolution). One can shift the perspective somewhat 
by saying that this general structure is a probabilistic description of information. 
Since quantum mechanics has exactly the same the general structure, except that 
it is noncommutative, the mathematics seem to tell us that the general structure 
of quantum mechanics is a probabilistic description of noncommutative informa­
tion. This noncommutative nature of information in quantum mechanics is what 
causes the essential difference between quantum mechanics and classical mechanics 
mentioned above. (Also see [D3]' on which this section is based.) 

1.6.1 Information. We can view (i)-(iv) of Section 1.4 as the abstract axioms for 
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a probabilistic description of information, where the information can be noncommu­
tative. Axiom (iii) is then a (noncommutative) conditional probability describing 
how information changes when new data (the result of a measurement in the case 
of physics) is received. Here we define information as being a state on an observ­
able algebra (or as the probabilities given by the state), with the information called 
noncommutative if it changes via the noncommutative conditional probability. If we 
were to add the assumption that the observable algebra is commutative, then we 
get an abstract formulation of classical probability theory with the usual conditional 
probability. The algebras Boo (JR.2n) (or more generally Boo (F) for a phase space F; 
see Remark 1.7.2) and £(5)) are nothing more than convenient representations (of 
the commutative and noncommutative cases respectively), suitable for doing physics 
(in the way explained in Sections 1.2 and l.3) .• 

Interpreting quantum mechanics in this way implies that an (ideal) measurement 
disturbs the information regarding a system's state, rather than disturbing the sys­
tem itself as is often argued (see for example [Sc, Section 1.6J). (In [I] a similar 
remark is made: "a measurement produces an uncontrollable disturbance in the po­
tentiality for different results to be obtained in later measurements" (p. 165), but 
this remark becomes much clearer in the present setting in terms of information.) 
This then renders many problems surrounding measurements in quantum mechan­
ics no more difficult than in classical mechanics. The answer to both question at 
the beginning of this section is simply that the observer received new information 
(i.e., the observer made a measurement), exactly as for the corresponding classical 
questions. (In particular this means that consciousness has no role to play in the 
measuring process. The observer could be a computer connected to a measuring 
instrument, or the measuring instrument itself, as long as it can receive information 
from the system.) We give a few more examples: 

1.6.2 The Heisenberg cut. This refers to an imaginary dividing line between the 
observer and the system being observed (see for example [vNl] and [HaJ). It can 
seen as the place where information crosses from the system to the observer, but it 
leads to the question of where exactly it should be ; where does the observer begin? 
In practice it's not really a problem: It doesn't matter where the cut is. It is merely 
a philosophical question which is already present in classical mechanics, since in 
the classical case information also passes from the system to the observer and one 
could again ask where the observer begins. The Heisenberg cut is therefore no more 
problematic in quantum mechanics than in classical mechanics .• 

1.6.3 When does the collapse of the wave function take place and how long does 
it take? (See for example [Su, p. 212].) This is essentially the Heisenberg cut 
with space replaced by time. One can pose the question as follows: When does an 
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observer "absorb" the information received from a measurement (i.e. , when does the 
measurement take place), and how long does it take? Again the quantum case is no 
different from the classical case, and moreover, in practice it is no more of a problem 
than in the classical case .• 

1.6.4 Continuous observation (see [Su] and [HoD. The ideal measurement dis­
cussed in Remarks 1.1.2 and 1.5.1 refers to a single measurement made at some 
point in time. It can therefore not be applied directly to continuous observation, 
i.e. when the observer's information is continually changing. However, in classical 
mechanics this is not considered a conceptual problem, since one could in princi­
ple describe such a situation as a continual change in the probability distribution 
(probability measure) describing the information, even though it might be a difficult 
technical problem in practice. The same is true in quantum mechanics, with the 
probability distribution replaced by a state representing noncommutative informa­
tion. (In quantum mechanics however, the idea of continuous observation is probably 
an idealization, for example watching something without blinking your eyes is not a 
continuous measurement, since the photons registered by your retina are discrete.) 

The "paradox of the watched pot that never boils" (called Zeno's paradox by 
[MS]) is resolved by noting that if an observer continuously measures a certain ob­
servable, then the system can still evolve in time to produce other values for the 
observable if the measurement is not precise (as is typically the case). Say the ob­
server measures an observable A which has a discrete spectrum, and he can only 
determine its value up to some interval containing (at a point in time) a number of 
eigenvalues of the observable, say aI , ... , an . Then the state vector is projected onto 
the subspace spanned by the eigenstates (at that point in time) corresponding to 
aI , "', an, in other words, onto the subspace which at that point in time corresponds 
to the interval (keep in mind that time-evolution acts on the observable algebra, and 
hence on the eigenstates of the observable). This happens according to postulate 
(iii); see for example [CDL, Section IILE.2.b]. To clarify our argument, we assume 
here that before the continuous measurement starts, the observer has maximal in­
formation, i.e. his information is a state vector [the general case does not differ 
significantly, since it is still handled with the same projection postulate (iii)]. Note 
that the state is now still a state vector, and not a mixture of the eigenstates cor­
responding to aI , ... , an. The interval which is measured (and hence the eigenvalues 
of A contained in it) can change in the course of time (for example it can drift up 
and down the real line) , simply because of the lack of precision in the continuous 
measurement. Therefore the value of A can change within this drifting interval, in 
turn allowing the drifting interval's average location to change accordingly, which is 
what the observer sees. In the mathematics this looks as follows: The continuous 
measurement confines the state vector via the projection postulate to the "drifting" 
subspace corresponding to the drifting interval. The observable's eigenstates are 
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evolving in time, but since this drifting subspace contains many eigenstates of the 
observable at any point in time, the projection postulate does not cause the state 
vector to be "dragged along" by one of the time-evolving eigenstates. Also, since 
the interval is drifting, eigenstates are moving in and out of the subspace. Therefore 
the state vector can be projected onto subspaces containing new eigenstates (cor­
responding to new eigenvalues), with eigenstates brought closer to the state vector 
by time-evolution having higher probability. (This argument becomes somewhat 
clearer in the Schrodinger picture, where the eigenstates are fixed, but the subspace 
is still drifting.) 

If the continuous measurement is precise enough, then quantum mechanics in­
deed predict that "a watched pot never boils" if the observable's eigenvalues are 
discrete (precise measurement of a continuous observable is impossible in practice). 
This happens because a quantum measurement can invalidate previous informa- ' 
tion (i .e. the state vector can change by projection) which then "cancels out" the 
changes due to time-evolution acting on the observable algebra (and thus on the 
observable's eigenvectors onto which projection of the state vector occurs). In effect 
the state vector is dragged along by the time-evolving eigenstate corresponding to 
the measured value. In classical mechanics on the other hand, previous information 
is not invalidated by measurement, hence the values of observables can change as 
time-evolution acts on the observable algebra while the pure state of the system 
stays put. Note that this is true even if the classical observable being -observed is 
discrete (for exampie "number of particles in the left half of the container"). So no 
matter how closely we watch a classical pot , it can still boil.. 

1.6.5 The EPR "paradox." Einstein, Podolsky and Rosen [EPR] described a now 
famous experiment in which two particles are created together (or interact) and 
then move away from each other (which ends any interaction between them) before 
a measurement is performed on one of the particles. This measurement then gives 
corresponding information about the other particle as well. [This is the result of an 
entanglement of the two particles' states (for example due to a conservation law) , 
which can occur since the state space is the tensor product of the two particles' 
state spaces.] EPR argued that this means that the second particle simultaneously 
has values for two noncommuting observables like position and momentum, since 
only the first particle is measured (either its position or its momentum is measured, 
but not both) , and hence quantum mechanics must be incomplete, since it says that 
a particle does not simultaneously have values for position and momentum. They 
based this on the idea that a measurement on the first particle does not disturb the 
second. However, we have viewed a measurement as the reception of information 
by the observer; it has nothing to do with the observer "directly" observing (and 
disturbing) the system. Measuring the first particle gives the observer information 
regarding the second particle as well (and hence is a measurement of the second 
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particle), which is mathematically described by the second particle's state vector 
(representing the observer's noncommutative information about this particle) now 
being in an eigenspace of the observable which was measured. This is no different 
from the analogous situation in classical mechanics where for example conservation 
of momentum can give the second particle's momentum when the first particle's 
momentum is measured, except that in this case information is commutative. 

We can even have two observers A and B measuring the same observable of the 
two particles respectively (as in [1] for example). A's measurement is then also 
a measurement of the value B will get (A receives information about what B 's 
result will be) and so there's nothing strange in them getting correlated results (say 
opposite values for momentum; or opposite values for spin z, where the particles 
have spin half as in Bohm's version of the EPR experiment, [Bo]). No signal need 
travel faster than the speed of light to B's particle to "tell" it to have the opposite 
value to A's result, in the same way that no such signal is needed in the classical 
case. From A's point of view, B is part of the system along with the two particles, 
and so this experiment is really no different from the original one observer EPR 
experiment above. The particles along with B are in a superposition of states from 
A's point of view until A measures his particle, which reduces (by projection) the 
state vector of the combined system of particles and B, with B then in the eigenspace 
"B gets the opposite value" .• 

1.6.6 System and observer as a combined system (see [I] for a clear exposition). 
Here the time-evolution of the combined system is supposed to account for the pro­
jection postulate of quantum mechanics. This is not possible in a natural way, since 
time-evolution is the result of a one-parameter *-automorphism group. In classical 
mechanics the combined system evolves according to classical dynamics (the 0 bserver 
being thought of as a classical system in this case) , and this then similarly would 
have to account for the change in the observer's information via a conditional prob­
ability due to a measurement he performs on the system. Again this is not possible 
in a natural way, since here too we have the same projection postulate, namely the 
conditional probability (iii) in Section 1.4 acting on the state (of the system without 
observer), while the time-evolution acts as a one-parameter *-automorphism group 
on the observable algebra. The solution is that the state of the combined system 
has to contain from the start the fact that the observer will perform a measurement 
on the system at a given point in time and will subsequently experience a change 
of information (this change is a physical process in the observer, described by the 
combined system's time-evolution, for example some neural activity in a human ob­
server's brain) , otherwise such a measurement and the change of information would 
not take place. This is clear, since time-evolution does not act on the state, but on 
the observable algebra, hence the state of the combined system is the state "for all 
time" and does not change when the observer performs a measurement. Exactly the 
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same is true for quantum mechanics (where the observer is then also viewed as a 
quantum system). The (noncommutative) conditional probability, that is to say the 
projection postulate, is only relevant when the observer is not considered to be part 
of the system, in which case the conditional probability says what the change in the 
observer's information will be, it does not describe the physical process taking place 
in the observer to accommodate (or store) the new information .• 

In connection with the two-slit experiment we mention the following: 

1.6.7 The two-slit experiment. Assume that the probability distribution for the 
position of detection of a particle on the screen in the two-slit experiment is given 
by an interference pattern when no measurement is performed at the two open slits 
(this is due to the wave nature of quantum particles, which is not accounted for 
by the abstract concept of noncommutative information (in 1.6.1) by itself, but 
rather follows from the specific form of dynamics of quantum mechanics). Tills 
distribution represents the observer's information about where on the screen the 
particle will be detected. In the light of our discussion thus far, it should then 
not be too surprising that this distribution (i.e. the observer's information) can be 
invalidated via the noncommutative conditional probability (iii) in Section 1.4, if 
the observer does measure through which slit the particle goes (i.e. if the observer 
receives new information), giving a completely different probability distribution at 
the screen. This is unlike the classical case where a measurement at the slits gives 
the observer more information, rather than invalidating previous information. (Also 
see [Bu].). 

The point we attempt to make with examples 1.6.2 to 1.6.6 is that, even though 
there might be certain problems surrounding the measuring process, quantum me­
chanics does not introduce any new conceptual problems not already present in 
classical mechanics when one considers a single observer performing measurements 
on a physical system, as long as we assume that information is noncommutative in 
quantum mechanics. 

We can also consider the case of more than one observer touched upon in 1.6.5: 

1.6.8 Thought experiment. Say three observers A, Band C are observing the 
same system, but Band C are not aware of each other or of A. Band C measure two 
noncommuting observables P and Q respectively, in the order P, Q, P, and A in 
turn measures Band C's results in this order ( he "sees" each of their results at the 
time they obtain them). We ignore the time-evolution ofthe system. Say the results 
are PI, q, P2 (in this order), then clearly PI and P2 need not be the same since P and 
Q do not commute. So from B's point of view it seems that something disturbed 
the system between his two measurements of P. However, in our interpretation it is 
actually B's information that has been invalidated by A and C's measurement of Q. 
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This is not too strange, since Band C are merely A's measuring instruments. One 
could ask what would happen if A wasn't there. Would B then get PI = P2 with 
probability one? In the absence of A, does it even make sense to talk of the time order 
P, Q, P if Band C are not aware of each other? In our interpretation time ordering 
should probably be viewed as in some way defined by information received by an 
observer, and in this case it seems possible that B would get PI = P2 with probability 
one in the absence of A and no other way to define the time ordering. (Note that 
in the two-slit experiment, for example, there is a time ordering in the sense that 
a measurement on a particle at the slits is performed before a measurement on the 
same particle at the screen, even if the measurements are performed by two different 
observers not aware of each other, so the interference pattern at the screen can still 
be destroyed in this setup.) The idea of defining time ordering in terms of a series 
of events (an event in our case being the reception of information by an observer) 
was introduced in [Fi1] .• 

Vle have now seen that the general structure of quantum mechanics as presented 
in Section l.4 is essentially a mathematical framework for handling noncommutative 
information. Based on this, we make the following two remarks: 

1.6.9 The structure of spacetime. If we assume that information in our phys­
ical world is described by quantum mechanics,. then we are lead to conclude that 
information is actually a noncommutative phenomenon. Perhaps this means that 
since information "lives" in spacetime (and possibly in some way defines spacetime 
structure as was alluded to in 1.6.8), spacetime itself is noncommutative, as has 
been suggested in attempts to construct quantum spacetime and quantum gravity; 
see for example [DFR]. (This opens the possibility that spacetime is discrete like 
many other quantum phenomena; see for example [Sm] for a popular account.) On 
the other extreme) the term "noncommutative information" may be a "purely gram­
matical trick" of the sort [Ma) p. 188] mused might "be the ultimate solution of the 
quantum measurement problem"; this possibility seems somewhat less interesting 
however.• 

1.6.10 The linear structure of quantum mechanics. The general structure of 
classical mechanics in Sections 1.3 and 1.4 is linear since it is nothing more than 
probability theory) even though it can be applied to physical systems where nonlinear 
aspects might be involved. It is the statistical point of view that makes everything 
linear (essentially this boils down to the use of averages) which are integrals and 
hence linear) . The same goes for quantum mechanics. Its linear structure should 
not be viewed as an approximation to an underlying nonlinear world, but simply as 
a result of the fact that it is a mathematical framework for probability theory (i.e. 
statistics, averages), where the information involved happens to be noncommutative. 
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The appearance of a Hilbert space as the state space is simply a mathematical way 
of representing the algebraic structure in Section 1.4. So the linearity of (and hence 
superpositions in) the state space is just a convenient way to express the fact that 
a measurement can invalidate the information the observer had before the measure­
ment, or more precisely, to express noncommutative conditional probabilities. (Also 
see [Fi2, p. 175] and [Ha, p. 309] for similar remarks concerning the linearity of 
quantum mechanics.). 

Fuchs and others have also argued convincingly that information theoretic ideas 
are of great importance for the foundations of quantum mechanics, in particular 
that a quantum state represents an observer's information rather than having an 
objective reality (see [FuP]' [Fu] and [CFS]). Refer to [St] for a review of quantum 
mechanics viewed as a generalization of classical probability theory. 

We cannot claim that this "noncommutative information interpretation" solves 
all of the conceptual problems of quantum mechanics, but for the case of a physical 
system being observed by an observer not considered to be part of the system, it 
does seem to clarify many issues without causing any new problems (except if you 
consider the idea of noncommutative information itself to be a problem). 

1.7 A quantum analogue of Liouville's Theorem 

In Section l.2 to 1.4 we saw that in purely C*-algebraic terms, quantum mechanics 
and classical mechanics are identical, except of course for the fact that the classical 
observable algebra is abelian while this is not in general true for quantum mechanics. 
This suggests that it might be possible to find a quantum mechanical analogue of 
Liouville's Theorem, a search we pursue in this section for reasons explained in the 
Introduction, and simply because it is an interesting possibility in its own right 
(see Proposition l.7.5 for the final result). Our first clue in this direction is the 
following simple proposition (where for a o--algebra in a set X, we denote by BooC~) 
the C*-algebra of all bounded complex-valued ~-measurable functions on X, with 
the sup-norm, its operations defined pointwise) and its involution given by complex 
conjugation, as for the special case Boo(JR.2n) in Section l.3): 

1.7.1 Proposition. Let (X,~, p) be a measure space with p(X) < 00, and let 
T : X ~ X be a mapping such that T-l(S) E ~ for all S E ~. Define rand r.p 
by r(g) = goT and r.p(g) = Jgdp for all 9 E Boo(~). Then p(T-l(S)) S; p(S) 
for all S E ~ if and only if r.p(r(g)*r(g))) S; r.p(g*g) for all 9 E Boo(~). Also) 
p(T-l(S)) = p(S) for all S E ~ if and only if r.p(r(g)) = r.p(g) for all 9 E Boo(~). 

Proof. We use standard measure theoretic arguments (refer to [Rud]) . 
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Suppose cp(T(g)*T(g)) ::; cp (g*g) for all g E Boo (2::;) , then it holds in particular 
for g = Xs, where S E 2::;, and so 

J-L (T-1(S)) - cp (XT-l(S)) = cP ((XT-l(S))* XT-l(S)) 
cP ((Xs 0 T) * Xs 0 T) = cP (T (Xs) * T (Xs) ) 

< cP ((Xs)* Xs) = cP (Xs) 
J-L( 5). 

Similarly for the case of equality. 
Conversely, suppose J-L (T-l(5)) ::; J-L(5) for all 5 E 2::;. This is equivalent to 

having JXs 0 TdJ-L ::; JXsdJ-L for all 5 E 2::;. By Lebesgue's Monotone Convergence 
Theorem this extends to all positive measurable functions, namely 

Jj 0 TdJ-L::; Jj dJ-L 

for positive j E Boo (2::;) by considering an increasing sequence Un) of positive simple 
measurab~e functions converging pointwise to j, since then Un 0 T) is an increasing 
sequence of positive simple measurable functions converging pointwise to joT. 
Setting j = g*g for any g E Boo (2::;) , 'we obtain 

cP (T(g)*T(g)) = J(g*g) 0 TdJ-L::; Jg*gdJ-L = cP (g*g). 

Similarly for the case of equality, and this then extends by linearity to cP (T(g)) = 
cP (g) for all gEBco (2::;) .• 

Consider a classical system whose phase point is confined to a Borel set F of 
finite volume in the phase space IR2n. That is to say >-.(F) < 00, where >-. is the 
Lebesgue measure on IR2n. 

1.7.2 Remark. If the phase point is confined to a set F C IR2n , then we can view 
F as the phase space of the system (whether F has finite volume or not), taking 
the (J-algebra 2::; of measurable sets in F as the intersections of the Borel sets of 
~2n with F. (In Section 1.3 we simply used the Borel sets of IR2n as the (J-algebra 
of measurable sets in the phase space.) We then replace the Lebesgue measure by 
its restriction to F (assuming F is Lebesgue measurable) , and we use probability 
measures on F, instead of on IR2n. Also, the observables will be represented by 
2::;-measurable functions on F, and the observable algebra will be Boo(F) := Boo(2::;) . 
The whole of Section 1.3 can then be repeated with F in the place of IR2n .• 

We define a measure v on the Borel sets of IR2n by 

v(5) = >-'(5 n F). 
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Using Proposition 1.7.1we see that Liouville's theorem for this system can then be 
expressed in C* -algebraic terms by stating that 

(7.1 ) 

for all gin Boo (JR.2n ), where T is given by equation (3.3), and cp(g) = Jgdv (so cp is a 
positive linear functional on Boo(JR.2n)). This is because v(T_t(S)) = A(T_t(S)nF) = 

A(T_t(S) nT_t(F)) = A(T_t(SnF)) = A(SnF) = v(S), since we have Tt(F) C F for 
all t E JR. (the phase point is confined to F) and so F C (T_ttl(F) = Tt(F), which 
means that Tt(F) = F. Note that the condition p(X) < 00 in Proposition 1.7.1 
can be dropped if we only consider positive elements of BooC~). Hence (7.1) would 
express Liouville's Theorem for systems not necessarily bounded in phase space if 
we were to use A instead of v, and only consider positive elements 9 of BCXJ(JR.2n). (In 
this case cp could assume infinite values, and it would not be a linear mapping on 
B CXJ (JR.2n) any more.) We will only work with the bounded case though , since then 
the measure can be normalized to give a probability measure, which is what we will 
use when studying recurrence and ergodicity.. 

Since quantum mechanics has the same C* -algebraic structure as classical me­
chanics, we now suspect that a quantum mechanical analogue of Liouville's Theorem 
should have the same form as (7.1). Let's look at this from a different angle. In the 
Hilbert space setting for quantum mechanics, the state space 5) can be viewed as the 
analogue of the classical phase space JR.2n. 5) is a Hilbert space while we view JR.2n 
purely as a measurable space. Apart from dynamics, we saw in Sections 1.2 to 1.4 
that the central objects in both quantum and classical mechanics are the projections. 
A projection defined on 5) is equivalent to a Hilbert subspace of 5) (namely the range 
of the projection). A projection defined on JR.2n is a Borel measurable characteristic 
function, and is therefore equivalent to a Borel set in JR.2n . Liouville's Theorem is 
based on the existence of a natural way of measuring the size of a Borel set in JR.2n) 
namely the Lebesgue measure A. 'ATe would therefore like to have a natural way of 
measuring the size of a Hilbert subspace of 5) in order to get a quantum analogue 
of Liouville's Theorem. An obvious candidate is the (Hilbert) dimension dim. For 
the Hamiltonian flow Tt, Liouville's Theorem states that A(T_;(S)) = A(S) for every 
Borel set S. (We use T_t(S) instead of Tt(S), since this corresponds to the action 
ofTt on the observable algebra rather than on the states, namely Xs oTt = XT_t(S) .) 

In the state space time-evolution is given by a one-parameter unitary group Ut on 
5) , and for any Hilbert subspace R of 5) we have dim(UtR) = dim(U_tR) = dim(R) . 
This is clearly similar to Liouville's theorem. For a finite dimensional state space we 
will in fact view this as a quantum analogue of Liouville's Theorem. (This remark 
is also made on p. 83-84 of [Ba].) However, since state spaces are usually infinite 
dimensional, we would like to work with something similar to dim which does not 
assume infinite values. 
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This leads us naturally to the C*-algebras known as finite von Neumann algebras 
(see for example [KR2]) since for such an algebra there is a dimension function) 
defined on the projections of the algebra) which does not assume infinite values. This 
function is in fact the restriction of a so-called trace defined on the whole algebra) 
so we might as well work with this trace. We now explain this in more detail. 

Let 9J1 denote a finite von Neumann algebra on a Hilbert space Sj1 and let 9J1' 
be its commutant. Then there is a unique positive linear mapping tr: 9J1 -7 9J1 n 9J1' 
such that tr(AB) = tr(BA) and tr(C) = C for all A, B E 9J1 and C E 9J1 n 9J1'. We 
call tr the trace of 9J1. This trace is faithful ) that is to say tr(A* A) > 0 for A =I- O. 
(Conversely) if such a faithful trace exists on a von Neumann algebra SJ1:, then SJ1: is 
finite [KR2) Section 8.1]) and hence this could be taken as the definition of a finite 
von Neumann algebra.) We mention that in the special case where 9J1 = £(Sj) with 
Sj finite dimensional) tr is just the usual trace (sum of eigenvalues) normalized such 
that tr(l) = 1. 

For a projection P E 9J1 of Sj onto the Hilbert subspace it) we see that Ut PUt 
is the projection of Sj onto Ut it) where Ut is a one-parameter unitary group on Sj. 

So in the framework of finite von Neumann algebras we would like to replace the 
equation dim(Ut it) = dim(it) mentioned above by tr(Ut PUt) = tr(P) as a quantum 
analogue of Liouville's Theorem. 

If a self-adjoint (possibly unbounded) operator A in Sj is an observable and 9J1 
an observable algebra of a physical system) then we want the spectral projections 
Xv (A) of A to be contained in 9J1) where V is any Borel set in JR) since these 
projections are the projections of the yes/no experiments that can be performed on 
the system. But then f(A) E 9J1 for any bounded complex-valued Borel function 
f on R (Our argument here is roughly that there is a bounded sequence of bounded 
simple functions Sn converging pointwise to f) which implies that sn(A)x -7 f(A)x 
for all x E Sj ) i.e. sn(A) converges strongly to f(A). Since a von Neumann algebra 
is strongly closed) it follows that f(A) E 9J1. See [SZ) 9.10) 9.11 and 9.32].) In 
particular e-iAt E 9J1 for all real t. 

For these reasons we will consider physical systems of the following nature: 

1.7.3 Definition. A bounded quantum system is a quantum mechanical system 
for which we can take the observable algebra as a finite von Neumann algebra 9J1 on 
a Hilbert space Sj such that the Hamiltonian H of the system can be represented as 
a self-adjoint (possibly unbounded) linear operator in Sj with e- iHt E 9J1 for real t. 
We denote this system by (ry}[ , .Y)H). 

The reason for the term "bounded" will become clear in Section 1.9. 

1. 7.4 Remark. If for a bounded quantum system (9J1, Sj , H) the unit vectors of 
x E Sj are pure states of the system) that is to say (x) .x) is a pure state on 9J1 for 
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such x, then f) can be viewed as the state space of the system (this happens for 
example when 9J1 = £(f)) with f) finite dimensional). However, the unit elements of 
f) need not be pure states of the system, as we will now show, in which case f) is 
not the state space of the system, but merely acts as a "carrier" for the observable · 
algebra 9J1. 

Let <8 be a finite dimensional Hilbert space, and consider a mixed (i .e. not pure) 
faithful normal state w on £(<8), for example a Gibbs state w(A) = Tr(pA) where 
p = e- f3G /Tr(e- f3G ) with G E £(<8) the Hamiltonian of some system with state 
space <8, and f3 the inverse temperature of the system (see [Dl, Proposition 2.3.9] 
for example). Here normal refers to the form Tr(p·) ofthe state, where p is a density 
operator, while faithful means that w(A* A) > 0 if A =1= o. 

Let (f) , 7r, 0) be a cyclic representation of (£( (8), w) as in Section 1.2. Let 9J1 := 

7r(£(<8)) and H := 7r(G), then we prove that (9J1 , f),H) is a bounded quantum 
system. 

First , 9J1 is a von Neumann algebra, since £(<8) is a von Neumann algebra and 
w is normal [BR, Theorem 2.4.24] . Furthermore, 7r is a *-isomorphism since w is 
faithful [BR, Proposition 2.5.6] . (Also see [Dl, Proposition 4.4.9]' for the same 
results.) It is known that £(<8)' = C (see [Dl, Proposition 1.4.7]), and since 9J1 is 
*-isomorphic to £( (8), this means that the elements of 9J1 which commute with 9J1 
are also just the multiples of unity, that is to say 9J1 n 9J1' = C. Since 7r is injective 
and 7r(1) = 1, we can therefore define a trace 9J1--+ 9J1 n 9J1' (in the sense described 
above) by tr(7r(A)) := tr(A), where tr on the right is the (normalized) trace of £(<8). 
This trace is faithful on 9J1 since the trace on £( (8) is faithful. Hence 9J1 is finite (see 
above). Since 7r is a *-homomorphism from a Banach *-algebra to a C*-algebra, it 
is continuous [Mu, Theorem 2.1. 7]. Hence 

This proves that (9J1,f) ,H) is a bounded quantum system. (As an example of the 
situation in Proposition 1.7.5 below, note that e-iHt gives the time-evolution of the 
system in terms of 9J1 rather than £( (8), namely 

for A E £( (8) .) 
However, the state (0 , .0) = w a 7r- 1 is not pure on 9J1, since w is not pure (see 

[BR, Definition 2.3.14] for the formal mathematical definition of a pure state on a 
C*-algebra). In other words 0 is not a pure state of the system, and therefore f) is 
not the state space of the system.• 

We now propose a quantum analogue of Liouville's Theorem based on the in­
tuitive arguments in terms of dimension given above. We give it in the form of a 
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proposition (its proof is easy; the work went into finding a sensible candidate for 
such an analogue): 

1.7.5 Proposition. Consider a bounded quantum system (9Jl,Sj, H). By Stone's 
Theorem Ut = e- iHt is a one-parameter unitary group on Sj. Let T be the time­
evolution of the system, i.e. Tt(A) = Ut AUt for all A E 9Jl. Then 

tr(Tt(A)) = tr(A) (7.2) 

for all A in 9Jl, where tr is the trace of 9Jl. (This last statement is our quantum 
analogue of Liouville's theorem.) 

Proof. Since Ut E 9Jl, we have tr(Tt(A)) = tr(Ut AUt) = tr(UtUt A) = tr(A).• 

As we suspected, our quantum analogue of Liouville 's theorem, expressed by 
(7.2), is of the same form as the C*-algebraic formulation of the classical Liouville 

. . 
Theorem as given by (7.1), with cp replaced by tr. Remember that cp and tr are both 
positive linear mappings on the respective observable algebras. 

A somewhat different approach to a quantum analogue of Liouville's Theorem is 
described in [AM]. 

1.7.6 Remark. The classical Liouville Theorem can also be expressed in terms of 
the Liouville equation 

apat = {p,H} 

where p : ~2n X ~ ~ ~ is the density function, H the classical Hamiltonian , and 
{', .} the Poisson bracket. This equation can be seen as describing the flow of a fluid 
in phase space such that at any point moving along with the fluid, the density of 
the fluid remains constant. So besides giving the time-evolution, this equation also 
states a property of the time-evolution, namely that it conserves volume in phase 
space. In quantum mechanics we have the analogous von Neumann equation 

dp
dt = i[p, H] 

where p : lR ~£(Sj) is the density operator as a function of time (note that here 
the derivative with respect to time is total instead of partial). This equation merely 
gives the time-evolution p(t) = T -t(p(O)) ofthe density operator, where T is the time­
evolution on the observable algebra here viewed as acting on the state instead of the 
observables. Von Neumann's equation by itself should therefore not be regarded as 
a quantum mechanical analogue of Liouville's Theorem.• 
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1.8 The state of no information 

In (b) of Section 1.4, we said that the state of a system is constructed from in­
formation gained during measurements previously performed on the system. If the 
observer hasn't performed any measurements on the system, then he has no in­
formation regarding the system (however, the observable algebra is assumed to be 
known, i.e. the observer knows what the system is). Can we describe this situation 
by a state on the observable algebra of the system? It turns out that we can in the 
framework of Section 1.7 (namely for bounded quantum systems and for classical 
systems with phase space F C ffi.2n of finite volume). Such a state on the observable 
algebra can then be called a state of no information. 

1.8.1 Classical mechanics. Let's first consider a classical system. Assume that 
its phase point is confined to a (Borel) set F of finite volume in the phase space ffi.2n , 

i.e. >-..(F) < 00. (So we can view F as the system's phase space; see Remark 1.7.2.) 
We now argue that practical matters force us to assume >-..(F) > 0: In practice 
it is impossible to measure any of the position or momentum coordinates of the 
system precisely, so it is safe to assume that each of these coordinates can at best be 
determined only up to some interval of positive length, and hence F must contain 
the product of these intervals, which. implies >-"(F) > O. If F did not contain this 
product, it would not make sense for us to use F as the phase space of the system, 
since we would not even know if the system's phase point is contained in F. 

We can therefore normalize >-.. on F by defining a probability measure X on the 
Borel sets of ffi.2n by 

X(5) = >-"(5 n F)/>-..(F) . 

If we now view X as describing a state of the system (as explained in Section 1. 3), 
then it essentially says that every part of F is equally likely to contain the phase 
point of the system. Mathematically this boils down to the fact that the Lebesgue 
measure >-.. is translation invariant, which means that it is the same everywhere, so 
X can be viewed as a uniform probability distribution. In other words, when the 
observer knows nothing about where the phase point of the system is (aside from 
the fact that it is in ·F), then we can describe the observer's information by X, or 
in C* -algebraic terms by the state <p on Boo(ffi.2n ) defined by 

<p(g) = JgdX. 

Since Lebesgue measure is the unique (up to some normalization factor) translation 
invariant Borel measure on ffi.2n assuming finite values on compact sets (which are 
bounded and therefore should have finite volumes), we can view <p as the state of 
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no information. (Refer to [Rud] for an exposition of the properties of the Lebesgue 
measure.) 

For this state of no information to make sense, it has to be compatible with 
the time-evolution of the system in the following sense: If the observer has no 
information regarding the system at time 0, and he performs no measurements on 
the system up to some later time t, then at time t he still has no information 
regarding the system. This means that if we apply the time-evolution T of the 
system to the state <p instead of to the observable algebra, to obtain the state <p 0 Tt 
at time t, then this state still has to represent the state of no information. That is 
to say, we must have <p 0 Tt = <p ' But this is exactly what Liouville's Theorem states 
(see equation (7.1)) . So we see that Liouville's Theorem is intimately related to the 
idea of information, in the sense that it ensures that the state of no information is 
compatible with the system's time-evolution. We can say that Liouville's Theorem 
makes the state of no information dynamically sensible. We can also view this as 
a special case of a group invariance defining a probability distribution, in this case 
invariance under time-evolution defining the state of no information (see [J] for more 
on this idea). 

1.8.2 Quantum mechanics. Now we turn to a bounded quantum system as 
defined in 1.7.3, namely (9)1,5) , H) where we assume that 9)1 is a factor (that is to 
say 9)1 n 9)1' = ([:1), which means that we can take tr to be complex-valued. (In 
general we will refer to a finite von Neumann algebra which is a factor, as a .finite 
factor.) The reason for assuming 9)1 to be a factor is that tr is then a state on 9)1, 
since we know that tr is positive and normalized. This means that tr can in principle 
represent a physical state as described in Section 1.2. 

In Section 1.7 we saw that tr can be viewed as a quantum analogue of integration 
over a bounded set in phase space with respect to Lebesgue measure A, in other 
words, as a quantum analogue of <p in 1.8.1. The basic intuition here is that our 
quantum analogue of Liouville's Theorem is expressed in terms of tr in precisely the 
same form as that in which Liouville's Theorem is expressed in terms of <p, namely 
tr(Tt(A)) =tr(A) as compared to <p(Tt(g)) = <p(g) . By this analogy between trand<p 
we would expect tr to be the state of the bounded quantum system when the observer 
knows nothing about the system, in other words that tr is a state of no information. 
This is indeed true in the special case where 5) is finite dimensional and 9)1 = £(5)) , 
since for any rank one projection Q in 9)1 we then have tr(Q) = 1/ dim(5)) which 
tells us that if the state is tr, then all eigenvalues are equally probable when an 
observable is measured (assuming the observable has no degenerate eigenvalues). 

As mentioned in Section 1.7, tr is the unique state on 9)1 such that tr(AB) = 

tr(BA) for all A, B E 9)1, but this is in fact equivalent to the condition that 
tr(U* PU) = tr(P) for all unitary U E 9)1 and all projections P E 9)1 (see [KR2, 
Proposition 8.1.1 and its proof]) . V'le can view unitary operators as rotations in 
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the state space of the quantum system, so tr(AB) = tr(BA) tells us that rotations 
of the state space preserve the "size" of Hilbert subspaces (which correspond to 
projections), where "size" here refers to the dimension function on the projections 
of 9J1, mentioned in Section 1. 7. This is the quantum mechanical equivalent of the 
classical situation where translations preserve Lebesgue measure, since as described 
in Section 1.7, the dimension of Hilbert subspaces of the state space should corre­
spond to Lebesgue measure as a measure of the size of Borel sets (which correspond 
to projections in the classical case). In the same way as in the classical case in 
1.8.1, we can therefore view tr as the state of no information of a bounded quantum 
system. 

As explained in 1.8.1, Liouville's Theorem is central in the concept of a state of no 
information, since it makes such a state dynamically sensible. The same argument 
applies to our quantum analogue of Liouville's Theorem (Proposition 1.7.5) to see 
that it ensures that the state of no information tr is compatible with the system's 
time evolution, namely trOTt = tr. 

Furthermore, since tr is ultraweakly continuous, it is a normal state and hence it 
is given by a density operator (see [KR2, Theorem 8.2.8, Proposition 7.4.5, Theorem 
7.1.12] and [BR, Theorem 2.4.21]), as one might expect for a physically meaningful 
state (keep in mind, however, that this density operator is defined on 5), which is not 
necessarily the state space of the system; see Remark 1.7.4) . We therefore suggest 
the following hypothesis: 

1.8.3 Postulate. Consider a bounded quantum system (9J1, 5), H), where 9J1 is a 
factor. If the observer has no information regarding the system, then the state of 
the system is given by the trace tr of 9]1. 

1.9 Bounded quantum systems 

In this section we discuss the possible physical significance of bounded quantum 
systems, using the analogy with classical systems built up in Sections 1. 7 and 1.8. 
What we want to know is which physical systems can be mathematically described 
as bounded quantum systems with the observable algebras being factors, since this 
is the type of system considered in Postulate 1.8.3. 

In Sections 1.7 and 1.8 we considered the case of a classical system whose phase 
point is confined to a set F of finite volume, which meant that we could view F as the 
phase space of the system. A special case of this is where the phase space is bounded 
(i.e. contained in some ball in IR2n). Bounded sets are indeed less general than sets of 
finite volume, as witnessed for the set F = {(x ,y) E IR2 : 0:5. y:5. e- x ,O:5. x < oo} 
which is an unbounded closed (and hence Borel) set which has a part of positive 
measure lying outside any ball in IR2 (we might call this set Lebesgue unbounded, 
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since the part that goes to infinity does not have zero Lebesgue measure), but 
even so F has a finite Lebesgue measure of 1. (We will not pursue the question of 
whether a Lebesgue unbounded phase space of finite volume actually occurs in any 
physical system, since our arguments here will be heuristic and based on the idea of 
boundedness. ) 

From a physical standpoint the phase space is bounded if the system itself is 
confined to a finite volume in space, and it is isolated from outside influences (which 
could increase its energy content), to prevent any of its momentum components to 
go to infinity. To see that this is the case, use Cartesian coordinates. Here we 
assume that each potential of the form -l/r or the like has some "cut-off" at small 
values of r, since for example particles are of finite size and collide when they get too 
close. The point of this is that there is not an infinite amount of potential energy 
available in the system (potentials do not go to -(0). See Fig. 1 for an example 
of what such a potential with cut-off might look like (for this illustration, the curve 
-l/r + O.0015/r4 was plotted.) 

05 15 
o 

Fig. 1. A -1/r potential with cut-off. 

Based on the analogy between bounded quantum systems and classical systems 
with bounded phase space presented in Sections 1. 7 and 1.8, we might now guess 
that quantum systems bounded in space and isolated from outside influences can 
be described as bounded quantum systems in the sense of Definition 1.7.3 with 9Jl 
a factor. 

Of course, the analogy actually extends to the more general case of classical sys­
tems with phase space of finite volume, but since we have no hard evidence apart 
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from this analogy, it is probably best not to push it to its limits. (We will find 
some additional indirect evidence supporting our guess when we discuss recurrence 
for quantum systems in Section 3.1.) Also, it is not exactly clear how the idea of 
a finite volume of phase space should be translated to quantum mechanics; possi­
bly one could approach this problem by considering a quantum system which is a 
quantization of a classical system whose phase space has finite volume, however, the 
argument by analogy that this system too is a bounded quantum system, is becom­
ing more and more tenuous. This seems to be related to the nuclearity requirement 
in quantum field theory (see [HaD, where a finite volume in classical phase space is 
intuitively thought of as corresponding to a finite dimensional subspace of quantum 
state space. Since a quantum system whose state space 55 is finite dimensional is 
clearly a bounded quantum system (the observable algebra £(55) is a finite factor in 
this case), our guess certainly does not seem too far-fetched from this point of view. 

We state our guesswork as a conjecture: 

1.9.1 Conjecture. A quantum mechanical system bounded in space, and isolated 
from outside influences, can be mathematically described as a bounded quantum sys­
tem in the sense of Definition 1.7.3, with the observable algebra 9J1 a factor. 

1.9.2 Remark. A bounded quantum system (9J1, 55, H) as defined in 1.7.3, with 
9J1 a factor, deviates from the usual "type I" quantum mechanics (see [Ha, Section 
VII. 2]) , in that the former does not necessarily have "finest" yes/no experiments. 
This refers to the fact that the range of the dimension function (on the projections 
of 9J1) can be the whole interval [0, 1] which has no minimum non-zero value, in 
which case 9J1 is called a type III factor. It should be noted though, that a bounded 
quantum system always has pure states (states of maximal information), since any 
non-zero C*-algebra (and in particular a finite factor ) has pure states (see [Mu, 
Theorem 5.1.11]), as is physically required, since nonmaximal information is a result 
of the observer's lack of precision rather than a property of the system. Loosely this 
means that although an observer can always do a finer measurement than the ones 
he already did , such a measurement will not necessarily improve his information, it 
might simply give new information invalidating his old information (noncommuting 
observables), but giving a "smaller" subspace in the state space, not contained in 
the subspace corresponding to his old information, since dim(P2) ~ dim(Pd does 
not imply P2 ~ Pl in the C* -algebraic partial order. (Keep in mind that 55 is not 
necessarily the state space, it just acts as a "carrier" for 9J1; see Remark 1. 7.4.) 

In type I quantum mechanics the observable algebra is simply taken as the type 
I factor £(55) where a separable Hilbert space 55 is the state space of the system. 
The dimension function on the projections of £(55) is simply the dimension of the 
range of a projection, and hence it has the minimum non-zero value 1; see [Co, p. 
455] for example. The projections with dimension one represent the finest yes/no 
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experiments that can be performed on the system.• 

1.9.3 Example. A one-dimensional quantum harmonic oscillator has a discrete 
unbounded energy spectrum consisting of equally spaced values 

En = (2n + l)Eo 

for n = 0,1 , 2, ... where Eo > 0 is the lowest energy value (see [CDL, Section V.B] or 
[Kre, Example 11 .3-1]). In the state of no information each of these energy values 
should be equally likely, but that would mean that all of them have probability zero, 
which doesn't make physical sense, since if the oscillator's energy is measured, some 
value must be obtained, and so this value does not have zero probability. Therefore 
the state of no information does not exist as a state on the observable algebra in 
this case, which means that the oscillator is not a bounded quantum system. This 
makes sense, since the energy eigenstate in L2(IR) corresponding to En is a "Gaussian 
tapered" Hermite polynomial of the form 

(where x is the position, and, a constant deriving from the physical properties of 
the oscillator, namely mass and frequency), which has a steadily increasing non­
negligible spatial extension as n increases , corresponding to the classical situation 
where the amplitude in space increases as the energy increases ([CDL, Section 
V.C.2] or [Kre, Example 11.3-1]). So if all the energy values are allowed, then the 
system is not bounded in space. 

An approximate description of a quantum harmonic oscillator bounded in space 
as a bounded quantum system, could be to take the state space S) as the finite dimen­
sional subspace of L2(IR) spanned by energy eigenstates corresponding to Eo , ... , EN 
for some N, and then using the finite factor £(5)) as the observable algebra. However, 
a careful analysis from the ground up would be necessary to see if an isolated quan­
tum harmonic oscillator bounded in space is indeed a bounded quantum system.• 

 
 
 



Chapter 2 

•Recurrence clnd ergodicity In 

*-algebras 

In this chapter (based on [DS]) , results concerning recurrence and ergodicity are 
proved in an abstract Hilbert space setting. based on the proof of Khintchine's re­
currence theorem for sets, and on the Hilbert space characterization of ergodicity. 
These results are carried over to a noncommutative *-algebraic setting using the 
GNS-construction. This generalizes the corresponding measure theoretic results, in 
particular a variation of Khintchine's Theorem for ergodic systems, where the image 
of one set overlaps with another set, instead of with itself. 

2.1 Introduction 

The inspiration for this chapter is the following theorem of Khintchine dating from 
1934 (see [Pete] for a proof): 

2.1.1 Khintchine's Theorem. Let (X,.E, p,) be a probability space (that is to say, 
p, is a measure on a O'-algebra .E of subsets of a set X, with p,(X) = 1), and consider 
a mapping T : X ---7 X such that T-l (S) E .E and p,(T-l (S)) :::; p,(S) for all S E .E. 
Then for any A E .E and £ > 0, the set 

is relatively dense in N = {I, 2, 3, ... }. 

We will call (X , .E, p" T), as given above, a measure theoretic dynamical system. 
Recall that the relatively denseness of E in N means that there exists an n E N 
such that E n {j, j + 1, ... , j + n - I} is non-empty for every j EN. Khintchine's 
Theorem is an example of a recurrence result. It tells us that for every k E E, the 
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set A contains a set An T-k(A) of measure larger than ,u(A)2 - E which is mapped 
back into A by Tk. 

A question that arises from Khintchine's Theorem is whether, given A , B E ~ 

and E > 0, the set 

F = {k EN:,u (AnT-k(B)) > ,u(A),u(B) - E} 

is relatively dense in N. This is clearly not true in general, for example if T is the 
identity and A, Band E are chosen such that ,u(A),u(B) > E while An B is empty, 
then F is empty. T has to "mix" the measure space sufficiently for F to be non­
empty. In (Wa] it is shown for the case where ,u(T- 1 (S)) = ,u(S) for all S E 2::, that 
if for every pair A , B E ~ of positive measure there exists some kEN such that 
,u (A n T-k(B)) > 0, then the dynamical system is ergodic. Ergodicity therefore 
seems like the natural concept to use when considering the question posed above. 
This is indeed what we will do. 

The notion of ergodicity originally developed as a way to characterize systems 
in classical statistical mechanics for which the time mean and the phase space mean 
of any observable are equal. For our purposes it will be most convenient to define 
ergodicity of a measure theoretic dynamical system (X ,~ , ,u, T) as follows (refer to 
[Pete], for example): (X, ~ , ,u , T) is called ergodic if the fixed points of the linear 
Hilbert space operator U : L2(,u) - L2(,u) : f f 0 T form a one-dimensional f--; 

subspace of L2(,u). Keep in mind that L2(,u) consists of equivalence classes of func­
tions, with two functions equivalent if they are equal almost everywhere, but it is 
easy to see that U is well-defined on L2 (,u), that is to say, if f and g are measurable 
functions equal almost everywhere, then f oT and goT are equal almost everywhere. 
Also, for f E L2 (,u) we have 

JIf 0 TI2 d,u = JIfl2 0 Td,u = JIfl2 d(,u 0 T- 1
) ~ JIfl2 d,u < 00 

and so f 0 T E L2(,u). Furthermore this inequality says that IIUII ~ l. Here,u 0 T-l 
is the measure on ~ defined by (,u 0 T- 1

) (S) := ,u (T- 1 (S)) ~ ,u(S) . 
. As we shall see, the ideas we have discussed so far are not really measure theoretic 

in nature. This is in large part due to the fact that the proof of Khintchine's Theorem 
is essentially a Hilbert space proof using the Mean Ergodic Theorem. This proof can 
for the most part be written purely in Hilbert space terms, hence giving an abstract 
Hilbert space result. Along with the Hilbert space characterization of ergodicity 
given above, this means that a fair amount of ergodic theory can be done purely in 
an abstract Hilbert space setting. This is the approach taken in Section 2.4, using 
the Mean Ergodic Theorem as the basic tool. 

Having built up some ergodic theory in abstract Hilbert spaces, nothing is to 
stop us from applying the results to mathematical structures other than measure 

 
 
 



43 2.1. INTRODUCTION 

theoretic dynamical systems. The mathematical structure we will consider is much 
more general than measure theoretic dynamical systems and can easily be motivated 
as follows: From a measure theoretic dynamical system (X,~, fh, T) we obtain the 
unital *-algebra Boo(~) of all bounded complex-valued measurable functions defined 
on X, and two linear mappings 

and 

(1.1) 

with the following properties: <p(1) = I, <p(J* 1) 2: 0, T(l) = 1 and <p(T(J)*T(J)) ~ 
<p(J*1) for all f E Boo(~) by Proposition 1.7.1, where 1* = 7 defines the involution 
on Boo(~), making it a *-algebra. We can view this abstractly by replacing Boo(~) 
with any unital *-algebra and considering linear mappings <p and T on it with the 
properties mentioned above. (A unital *-algebra mis an algebra with an involution, 
and a unit element denoted by I, that is to say lA = A = Al for all A E m. We 
will only work with the case of complex scalars.) The most obvious generalization 
this brings is that the unital *-algebra need not be commutative, for example the 
bounded linear operators on a Hilbert space. Also note that T in (1.1) is a *­
homomorphism of Boo(~), but we will not need this property of T in the abstract 
*-algebraic setting. We describe the *-algebraic setting in more detail in Section 2.3, 
and in Section 2.5 the Hilbert space results are applied to this setting using the GNS­
construction (treated in Section 2.2). In Section 2.6 we obtain the measure theoretic 
results as a special case, and also briefly discuss another special case, namely von 
Neumann algebras. 

In Section 2.7 an alternative approach to recurrence is described where <p is not 
required to be linear (which precludes the use of the GNS-construction), and can 
even assume values in a unital C*-algebra. Section 2.7 is independent from the rest 
of the work in this chapter. 

2.1.2 Remark. In Chapter 1 the observable algebra of a physical system was 
assumed to be a unital C* -algebra, rather than merely a unital *-algebra. This 
assumption is not restrictive, since the representations £;(fJ) and Boo (~), and also 
any von Neumann algebra, are indeed C*-algebras. In the general structure of 
mechanics given by (i)-(iv) of Section 1.4 (in other words the abstract probabilistic 
description of noncommutative information; see 1.6.1) we can take the observable 
algebra mas merely a unital *-algebra without losing any of the ideas involved. But 
for more specific topics we need more structure, for example in the quantum analogue 
of Liouville's Theorem described in Section 1.7, where a finite von Neumann algebra 
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is used as the observable algebra. Also, in the GNS-construction, used in Section 

1.2, a C*-algebra delivers more than a mere *-algebra (see Remark 2.2.3) . However, 


. in this chapter we will use as few assumptions as possible to build the theory, and 

in Sections 2.2 to 2.5 we only need unital *-algebras.• 

2.2 Cyclic representations 

By a state on a unital *-algebra 2I. we mean a linear functional <p on 2I. which is 
positive (i.e. <p(A* A) 2: 0 for all A E 2I.) with <p(l) = 1. Let L(V) denote the 
algebra of all linear operators V -7 Von the vector space V . 

2.2.1 Definition. Let <p be a state on a unital *-algebra 2I.. A cyclic repre­
sentation of (2I.,<p) is a triple (<5,n,D), where <5 is an inner product space, n: 
2I. -7 L(<5) is linear with n(l) = 1, n(AB) = n(A)n(B), D E <5, n(2I.)D = <5, and 
(n(A)D,n(B)D) = <p(A*B), for all A,B E 2I.. 

A cyclic representation as in Definition 2.2.1 exists by the GNS-construction 
(given below), but we will not actually need the property n(AB) = n(A)n(B) in 
this chapter. The term "cyclic" refers to the fact that n(2I.)D = <5. Note that 

I, : 2I. -7 <5 : A f--7 n(A)D (2.1 ) 

is a linear surjection such that 1,(1) = D. Also, IIDI12 = <p(I*I) = l. We define a 
seminorm 11·llcp on 2I. by 

for all A E 2I.. 

2.2.2 The GNS-construction. Let <p : 2I. -7 C be a positive linear functional on 
a *-algebra 2I.. 

(i) Then there exists a inner product space <5, a linear surjection I, : 2I. -7 <5 , 
and a linear mapping n : 2I. -7 L((5), such that 

and 

n(AB) = n(A)n(B) 
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for all A, B E 21. 
(ii) Now assume that 21 is unital, and set 0, = L(l). From (i) it then follows 

that 

n(A)o' = L(A) 

n(l) = 1 

n(21)o' =(B 

and 

(n(A)o' , n(B)o') = <p(A* B) = (0" n(A* B)o') 

for all A, B E 21. In particular 

<p(A) = (0" n(A)o') 

for all A E 21. 

Proof. We have to construct (B, Land n . This construction is called the Gelfand­
Naimark-Segal (GNS) construction. 

(i) Consider the vector subspace J = {A E 21 : IIAII<p = O} of 21. Note that J is 
indeed a vector space, since for A, B E J we have 

IIA + BII~ IIAII~ + <p(A* B) + <p(B* A) + IIBII~ 
< 1<p(A*B)I+I<p(B*A)1 

< I/A/I<p IIBII<p + //BII<p IIAII<p 
- 0 

by the Cauchy-Schwarz inequality ([BR, Lemma 2.3.10]). Then (B := 21/J is also a 
vector space, on which we can define an inner product by 

(L(A), L(B)) := <p(A*B) 

where L : 21 --t (B is defined by 

L(A):=A+J 

for all A E 21. Note that L is a surjection by definition, and that it is linear. We 
show that this inner product is well-defined: 
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i(D) = i(B), and set I C and J D B. 

= ip(A*B) + 

product is well-defined. 
(-, .) is an on 6 

and the 

A) , i(A)) 

7r(A) is a 

i(B), 

II II! lip ((A* AI) *I)I S; IIA*Alii\" II\" 0 

J is a left ideal of 21,and this turn implies that 
+ J = i(AB), J is the zero V;'VUJ.vuv 

that any A, ,C E 

so 7r(AB) 
(ii) /'(1 ) /'(A1) = /'(A) and )/'(A) = i(lA) 

i(A) 7r(21) [2 = 6 and ) L 
Furthermore, 

,i(B)) = 

- ip(1*(A*B)) 

J i(A* B)) 
B)[2) . 

particular, setting AI) we )D).• 

2.2.3 Remark. 21 IS a 

7r(A) can 
£(5)), where 5) is of 6. This is 
[BR, 2. 
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2.3 *-dynamical systems and ergodicity 

Motivated by our remarks in Section 2.1, we give the following definition: 

2.3.1 Definition. Let cp be a state on a unital *-algebra 2L. Consider any linear 
function T : 2L ---+ 2L such that 

T(l) = 1 

and 

for all A E 2L. Then we call (2L, cp ,T) a *-dynamical system. 

Note that for T as in Definition 2.3.1 and & given by equation (2.1), 

(3.1 ) 

is a well-defined linear operator with IIUol1 :::; 1, since 11&(T(A))112 = cp(T(A)*T(A)) :::; 
cp(A* A) :- 1I&(A)1I2. 

We now want to define the concept of ergodicity for a *-dynamical system. 

2.3.2 Definition. A *-dynamical system (2L, cp ,T) is called ergodic if it has the 
following properly: For any sequence (An) in 2L such that IIT(An) - An 11<p ---+ 0 and 
such that for any E > 0 there exists an N E N for which II Am - An II <p :::; E if m > N 
and n > N, it follows that IIAn - all<p ---+ 0 for some a E C. 

In Section 2.5 we will give a simple example of an ergodic *-dynamical system 
whose *-algebra is noncommutative. Recall that for any vectors x and y in a Hilbert 
space SJ, we denote by x0y the bounded linear operator SJ ---+ SJ defined by (x0y)z = 

x (y, z). The motivation for Definition 2.3.2 is the following proposition: 

2.3.3 Proposition. Consider a *-dynamical system (2L, cp, T) and let Uo be given by 
(3.1) in terms of any cyclicrepresentation of (2L, cp). Let U : SJ ---+ SJ be the bounded 
linear extension of Uo to the completion SJ of ®, and let P be the projection of 
SJ onto the subspace of fixed points of U. Then (2L ,cp, T) is ergodic if and only if 
P = n®n, that is to say, if and only if the fixed points of U form a one-dimensional 
subspace of SJ. 

Proof. Since IInll 2 = cp(l *1) = 1, we know that n ® n is the projection of SJ onto 
the one-dimensional subspace en. Also note that un = n, since n = &(1), hence 
en c PSJ. 

 
 
 



48 CHAPTER 2. RECURRENCE AND ERGODICITY IN *-ALGEBRAS 

Suppose (21., cp, T) is ergodic and let x be a fixed point of U. Consider any 
sequence (Xn) in 6 such that Xn -t x, say Xn = &(An). Then IIT(An) - An 11<p = 
IIUxn - xnll -t 0, since U is continuous, while for any G > 0 there exists some N 
for which IIAm - Anll <p = Il xm- Xnll < G if m > Nand n > N. Since (21., cp, T) is 
ergodic, it follows that Ilxn- &(a)11 = IIAn - all <p -t 0 for some a E C, but then 
x = &(a) = an. Therefore P.f) = cn which means that P = n 0 n. 

Conversely, suppose P = n 0 n and consider any sequence (An) in 21. such that 
IIT(An) - Anll<p -t 0 and such that for any G > 0 there exists some N for which 
IIAm - Anll<p < G if m > Nand n > N. Then Xn = &(An) is a Cauchy sequence 
and hence convergent in JJ, since Ilxm- Xn II = IIAm - Anll<p' Say Xn -t x, then 
UXn -t Ux since U is continuous. Since IIUxn - xnll = IIT(An) - Anll <p -t 0, it 
follows that UXn -t x, hence U x = x. This means that x E P.f) which implies 
that x = an for some a E C Therefore IIAn - all<p = Ilxn - anll -t 0, and so we 
conclude that (21., cp, T) is ergodic.• 

Proposition 2.3.3 tells us that Definition 2.3.2 includes the measure theoretic 
definition as a special case. This can be seen as follows: From a measure theo­
retic dynamical system (X , I:, p" T) we obtain the *-dynamical system (Boo (I:), cp ,T), 
where cpU) = J fdp, and T(f) = f 0 T for all f E Boo(I:). A cyclic representation 
of (B oo (I:), cp ,T) is (6,7r,n) with 6 = {[g]: 9 E Boo (I:)}, 7r(f)[g] = [fg] for all 
f,g E Bex>(I:), and n = [1], where [g] denotes the equivalence class of all measurable 
complex-valued functions on the measure space that are almost everywhere equal to 
g. Note that & defined by equation (2.1), now becomes &(f) = [fl. The completion 
of 6 is L2 (p,) by the following: 

2.3.4 Proposition. Let p, be a measure on a O'-algebra I: of subsets of a set X. 
Then 6 := {[g] : 9 E Bex>(I:)} is dense in L2(p,). 

Proof. For any I:-measurable 9 : X -t C with 9 ~ 0, we know that a sequence 
of simple I:-measurable functions Sn exist such that 0 :::; Sl :::; S2 :::; ... :::; 9 and 
sn(x) -t g(x) for all x E X (see [Rud, Theorem 1.17]). So ISn(x) - g(X)12 -t 0 
for all x E X , while of course Sn E Bex>(I:), and so [sn] E 6, for all n. Clearly 
ISn - gl2 :::; Igl2, so if we assume that [g] E L2(p,), then Igl2 E L1(p,), and we 
conclude by Lebesgue's Dominated Convergence Theorem [Rud, 1.34] that 

which means that [g] is contained in the closure of 6 in L2(p,). For an arbi­
trary [g] E L2(p,), we have the standard representation 9 = u+ - u- + iv+ - iv­
where u+,u- ,v+,v- ~ 0 are I:-measurable ([Rud, 1.9(b) and 1. 14(b)]). Note that 
[u+], [u-], [v+], [v-] E L2(p,), for example lu+1 = u+ :::; u+ + u- = lui:::; Igl where 
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u = u+ - U-. Since [u+],[u-],[v+],[v-] are then contained in (8's closure, so IS 

[g] = [u+]- [u-] + i[v+]- i[v - ].• 

The operator U in Proposition 2.3.3 is now given by U[j] = [f 0 TJ or, dropping 
the [.J notation as is standard for L2-spaces , 

Uf = foT 

for all f E L2(1-") , where f and f 0 T now denote equivalence classes of functions. 
Proposition 2.3.3 tells us that (Boc(~) i.p ,T) is ergodic if and only if the fixed points of 
U form a one dimensional subspace of L2 (I-") , in other words if and only if (X,~, 1-", T) 
is ergodic, as was mentioned in Section 2.l. 

Finally we remark that we use Definition 2.3.2 as the definition of ergodicity, 
since it is formulated purely in terms of the objects 2i, i.p and T appearing in the 
*-dynamical system (2i,i.p ,T), unlike Proposition 2.3.3 which involves a cyclic rep­
resentation of these objects. However, as a characterization of ergodicity, Propo-­
sition 2.3.3 is generally easier to use. Of course, one might wonder if Definition 
2.3.2 could not be simplified by using a single element rather than a sequence. 
With U as in Proposition 2.3.3, and x = /'(A) for some A E 2i, we have Ux = x 
if and only if IIUx - xii = 0, which is equivalent to IIT(A) - All cp = O. For er­
godicity we need this to imply that x = aD for some a E te , which is equiv­
alent to IIA - allcp = Ilx - aD11 = O. However, we cannot define ergodicity as 
"IIT(A) - All cp = 0 implies that IIA - all cp = 0 for some a E C', since Proposi­
tion 2.3.3 would no longer hold: There would be examples of ergodic *-dynamical 
systems for which the fixed points of U do not form a one-dimensional subspace of jJ. 

(In Appendix A.l we give such an example.) Our theory would then fall apart, since 
much of our later work is based on the fact that for ergodic systems the fixed point 
space of U is one-dimensional. For example, the characterization of ergodicity in 
terms of the equality of means of the sort mentioned in Section 2.1 (but extended to 
*-dynamical systems), implies this one-dimensionality. Also, this one-dimensionality 
is used in our proof of the variation of Khintchine's Theorem mentioned in Section 
2.1. (See Sections 2.4 and 2.5 for details.) The use of a sequence rather than a single 
element is therefore necessary in Definition 2.3.2. 

2.4 Some ergodic theory in Hilbert spaces 

Our main tool in this section is the following: 

2.4.1 The Mean Ergodic Theorem. Consider a linear operator U .: fj ---t jJ with 
II U II ::::: 1 on a Hilbert space jJ . Let P be the projection of fj onto the subspace of 
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fixed points of U. For any x E SJ we then have 

as n --t 00 . 

Refer to [Pete] for a proof. We now state and prove a generalized Hilbert space 
version of Khintchine's Theorem: 

2.4.2 Theorem. Let SJ , U and P be as in the Mean Ergodic Theorem above. Con­
sider any X,y E SJ and c > o. Then the set 

E = {k EN: l(x ,Uky)1 > l(x , Py)l- c} 

is relatively dense in N. 

Proof. The proof is essentially the same as that of Khintchine's Theorem. By the 
Mean Ergodic Theorem there exists an n E N such that 

n-l1" k-;; f:o U y - Py < IIxll 
c+ 1· 

Since UPy = Py and IIUII ::; 1, it follows for any j EN that 

1 j+n-l n - l
1 

-n " Uky - Py < -n " Uky _ Py < .,..,------:-,-c_
D D IIxll+lk=j k=O 

and therefore 

1 j+n-l 

< c.::; IIxll -;; L Uky - Py 
k=j 

Hence 

1 j+n-l 1 j+n-l 

l(x ,Py)l-c < - L (x , Uky) ::; - L l(x ,Uky)1
n k=j n k=j 

and so I(x , Uky) I > I(x , Py)l- c for some k E {j, j + I , ... ,j +n -I} , in other words 
E is relatively dense in N.. 

Khintchine's Theorem corresponds to the case where y = x (see Theorem 2.5.1). 
The following two propositions are the Hilbert space building blocks for two char­
acterizations of ergodicity to be considered in the next section. 
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2.4.3 Proposition. Let f), U and P be as in the Mean Ergodic Theorem above. 
Consider an n E f) and let ':t be any total set in f). Then the following hold: 

(i) If P = n Q9 n, then 

1 n-l 

-:;; "'£ Uky - n (n,y) --70 (4.1) 
k=O 

as n --700, for every y E f). 

(ii) If (4 .1) holds for every y E ':t, then P = n 129 n. 

Proof. By the Mean Ergodic Theorem we know that 

n - l 

1 '"' k;;; D U Y - Py --7 0 (4.2) 
k=O 

for every y E f) as n --7 00, but for P = n 129 n we have Py = n (n, y) and this 
proves (i). 

To prove (ii), consider any y E ':to From (4.1) and (4.2) it then follows that 
Py = n (n, y) = (n Q9 n)y. Since by definition the linear span of ':t is dense in S), 

and since P and n Q9 n are bounded (and hence continuous) linear operators on S), 

we conclude that P = n Q9 n.• 

2.4.4 Proposition. Let 5J , U and P be as in the Mean Ergodic Theorem above. 
Consider an n E f) and let <5 and ':t be total sets in f). Then the following hold: 

(i) If P = n Q9 n, then 

1 n-l 

- "'£ (x ,Uky) --7 (x,n) (n , y) (4.3) 
n 

k=O 

as n --7 00, for all x, y E f). 

(ii) If (4.3) holds for all x E <5 and y E ':t, then P = n Q9 n. 

Proof. Statement (i) follows immediately from Proposition 2.4.3(i) by simply taking 
the inner product of x with the expression inside the norm in (4.1). 

To prove (ii), consider any x E <5 and y E ':to From the Mean Ergodic Theorem 
it follows that 

as n --7 00. Combining this with (4.3) we see that (x, Py) = (x, n) (n, y) = 
(x, (n Q9 n)y). Since the linear span of <5 is dense in f), this implies that Py = 
(n 129 n)y., Hence P = n Q9 n as in the proof of Proposition 2.4.3(ii) .• 

The reason for using total sets will become clear in Sections 2.5 and 2.6. 
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2.5 Ergodic results for *-dynamical systems 

In this section we carry the results of Section 2.4 over to *-dynamical systems using 
cyclic representations. Firstly we give a *-dynamical generalization of Khintchine's 
Theorem which follows from Theorem 2.4.2: 

2.5.1 Theorem. Let (21. , tp, T) be a *-dynamical system, and consider any A E 21. 
and c > O. Then the set 

is relatively dense in N. 

Proof. Let U and P be defined as in Proposition 2.3.3 in terms of any cyclic repre­
sentation of (21., tp). Set x = /'(A). From equation (3.1) it is clear that S1 = /'(1) is a 
fixed point ofU, so (S1,x) = (PS1,x) = (S1,Px). It follows that Itp(A)1 = 1<p(l*A)1 = 
1(S1,x)1 s 11 S1 llllpxll = IIPxll· We also have tp(A*Tk(A)) = (x,Ukx). Hence by 
Theorem 2.4.2, with y = x, the set E is relatively dense in N .• 

A C*-algebraic version of Theorem 2.5.1 was previously obtained in [NSZ]. Next 
we use Theorem 2.4.2 to prove a variant of Theorem 2.5.1: 

2.5.2 Theorem. Let (21.,tp, T) be an ergodic *-dynamical system, and consider any 
A ,B E 21. and c > O. Then the set 

E = {k EN: Itp (ATk(B)) I > Itp(A)<p(B) 1- c} 

is relatively dense in N. 

Proof. Let U and P be defined as in Proposition 2.3.3 in terms of any cyclic rep­
resentation of (21., tp). Set x = /'(A*) and y = /'(B). By Proposition 2.3.3 we have · 
Px = aS1 and Py = j3S1 where a = (S1, x) = (x, S1) = tp(A**l) = tp(A) and similarly 
j3 = <p(B). Therefore l(x , Py)1 = I(Px , Py)1 = laj3IIIS111 

2 
= Itp(A)tp(B)I. Further­

more, tp(ATk(B)) = (x, Uky). Hence E is relatively dense in N by Theorem 2.4.2.• 

We are now going to prove two characterizations of ergodicity using Propositions 
2.4.3 and 2.4.4 respectively. But first we need to consider a notion of totality of a set 
in a unital *-algebra. (Remember that an abstract unital *-algebra has no norm.) 

2.5.3 Definition. Let tp be a state on a unital *-algebra 21.. A subset 'I oj 21. is 
called <p-dense in 21. iJ it is dense in the seminormed space (21., 11·IIIp)' A subset 'I 
oj 21. is called tp-total in 21. iJ the linear span oj 'I is <p-dense in 21.. 

Trivially, a unital *-algebra is tp-total in itself for any state tp. 
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2.5.4 Lemma. Let <p be a state on a unital *-algebra ill, and consider any subset 
'I of ill. Let" be given by (2.1) in terms of any cyclic representation of (ill, <p), and 
let .51 be the completion of <B. Then 'I is tp-total in ill if and only if ,,('I) is total in 
.51. 

Proof. Suppose 'I is <p-total in ill, that is to say the linear span ~ of 'I is <p-dense in 
2L Then ,,(~) is dense in <B = "(ill), since for any A E ill there exists a sequence (An) 
in ~ such that 1I,,(An) - ,,(A)II = IIAn - All", -t O. But by definition <B is dense in 
.51, hence ,,(~) is dense in .51. Since" is linear, this means that "('I) is total in .fj. 

Conversely, suppose ,,('I) is total in .51 , then ,,(~) is dense in 5). It follows that 
s:B is <p-dense in ill, since for any A E ill there exists a sequence (An) in ~ such that 
IIA" - All", - 11£'(An) - £'(A.) II - ) O. In other words , 'I' is cp-total ill Qt.• 

2.5.5 Proposition. Let (ill, <p, T) be a *-dynamical system, and consider any <p -total 
set 'I in ill. Then the following hold: 

(i) If (ill, <p, T) is ergodic, then 

1 n-l 

- LTk(A) ­ <p (A) -to (5.1) 
n k=O ' 

'" 
as n -t 00, for every A E ill. 

(ii) If (5.1) holds for every A E 'I, then (ill , tp, T) is ergodic. 

Proof. Let U and P be defined as in Proposition 2.3.3 in terms of any cyclic repre­
sentation of (ill ,<p). Suppose (ill, tp , T) is ergodic. For any A E ill we then have 

1 n - l 


- LTk(A) - <p(A) 

n 

k=O 

'" 
as n -t 00, by Proposition 2.4.3(i) and Proposition 2.3.3, since" (<p(A)) = "(l)<p(A) = 
.o<p (l *A) = .0 (.0, ,,(A)) . This proves (i). 

Now suppose (5.1) , and therefore (5.2), hold for every A E 'I. Since ,,('I) is total 
. in .51 according to Lemma 2.5.4, it follows from Proposition 2.4.3(ii) and the identity 
,,(<p(A)) = .0 (.0, ,,(A)), that P = .0 0 .0. So (ill, <p, T) is ergodic by Proposition 2.3.3, 
confirming (ii) .• 

In the spirit of the original motivation behind the concept of ergodicity, this 
proposition characterizes ergodic *-dynamical systems as those for which the time 
m ean of each element A of the *-algebra converges in the seminorm 11'11", to the 
"phase space" mean <p(A). A better name for the latter would be the system mean in 
this case, since there is no phase space involved. For a measure theoretic dynamical 

(5.2) 
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system (X , '5:" T , p,), the state cp is given by cpU) = J fdp, which is indeed the phase 
space mean of f E Boo('5:,), where X is the phase space. We will come back to this 
in Section 2.6. 

For any subset <5 of a *-algebra, we write <5* = {A*: A E <5}. 

2.5.6 Proposition. Let (2t, cp ,T) be a *-dynamical system, and consider any cp-total 
sets <5 and 'I in 2t. Then the following hold: 

(i) If (2t, cp, T) is ergodic, then . 

(5.3) 

as n ---T 00, for all A, B E 2t. 
(ii) If {5.3} holds for all A E <5* and B E'I, then (2t, cp, T) is ergodic. 

Proof. Let U and P be defined as in Proposition 2.3.3 in terms of any cyclic repre­
sentation of (2t, cp). Suppose (2t, cp ,T) is ergodic. Then P = D @ n by Proposition 
2.3.3, and so by Proposition 2.4.4(i) it follows that 

as n ---T 00, since (L(A*), D) = cp(A) and (D , L(B)) = cp(B) , as in the proof of 
Theorem 2.5.2 . .This proves (i). (Alternatively, (i) can be derived from Proposition 
2.5.5(i) using the Cauchy-Schwarz inequality Icp(AG)1 :::; IIA*II'P IIGII 'P with G = 

~ I:~:~ Tk(B) - cp (B ). This is essentially how Proposition 2.4.4(i) was derived from 
Proposition 2.4.3(i) .) 

Now suppose (5.3), and therefore (5.4) , hold for all A E <5* and B E 'I. Since 
L(<5) and L('I) are total in 5) according to Lemma 2.5.4, it follows from Proposition 
2.4.4(ii) and the identities (L(A*), D) = cp(A) and (D, L(B)) = cp(B), that P = D @D . 
.so (2t, cp, T) is ergodic by Proposition 2.3.3, confirming (ii) .• 

This characterizes ergodicity in terms of mixing. We now give a simple example 
of an ergodic *-dynamical system whose *-algebra is noncommutative: 

2.5.7 Example. Let 2t be the unital *-algebra of 2 x 2-matrices with entries in te, 
the involution being the conjugate transpose. Let cp be the normalized trace on 2t, 
that is to say cp = ~Tr. Define T : 2t ---T 2t by 
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for some fixed CI, C2 E C with ICli ::; 1, Ic21 ::; 1, Cl =J- 1 and C2 =J- 1. The conditions 
ICII ::; 1 and IC21 ::; 1 are necessary and sufficient for (21., cp, T) to be a *-dynamical 
system. Note that for any C E C with Ici ::; 1, it follows from the Mean Ergodic 
Theorem 2.4.1 that 

converges to 0 if C =J- 1, and to 1 otherwise. Using this fact and Proposition 2.5.6(ii) 
with 6 = ':I = 21. (and some calculations), it can be verified that the conditions 
Cl =J- 1 and C2 =J- 1 are necessary and sufficient for (21., cp, T) to be ergodic, assuming 
that ICII ::; 1 and IC21 ::; 1. See Appendix A.2 for more details.• 

2.5.8 Open Problem. As mentioned in Section 2.1, the converse of Theorem 2.5.2 
holds in the measure theoretic case. In general the question is as follows (also see 
Proposition 2.5.6(ii)): Consider a *-dynamical system (21., cp, T), and cp-total sets 6 
and ':I in 21., such that for every A E 6* and B E ':I with cp(A) =J- 0 and cp(B) =J- 0, 
there exists a kEN for which cp(ATk(B)) =J- O. Is (21. ,cp,T) necessarily ergodic? 

2.6 Measure theory and von Neumann algebras 

As was mentioned in Section 2.3, from a measure theoretic dynamical system (X, 2:;, /-L , T) 
we obtain the *-dynami0l system (Boo (2:;) ,cp, T) , where cp(f) = J fd/-L and T(f) = 
f 0 T. This allows us to apply the results of Section 2.5 to measure theoretic dy­
namical systems. For example, if (X, 2:;, /-L, T) is ergodic, then we know from Section 
2.3 that (Boo (2:;) , cp, T) is ergodic. Hence for this *-dynamical system Theorem 2.5.2 
tells us that for any A , B E 2:; and c > 0, the set 

is relatively dense in N, but this set is exactly the set F from Section 2.1. (Here 
X denotes characteristic functions, as before.) So we have answered our original 
question: 

2.6.1 Corollary. Let (X, 2:;, /-L, T) be an ergodic measure theoretic dynamical system. 
Then for any A , B E 2:; and c > 0, the set 

is relatively dense in N. 
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This result says that for every kEF, the set A contains a set An T-k(B) of 
measure larger than f-L(A)f-L(B) - c:, which is mapped into B by Tk. Using a similar 
argument, Khintchine's Theorem follows from Theorem 2.5.1. 

Likewise, Propositions 2.5.5 and 2.5.6 can be applied to the measure theoretic 
case. For example, Proposition 2.5.5(i) tells us that if (X, 2:;, f-L, T) is ergodic, then 

df-L --t 0 (6.1) 

as n --t 00, for every f E Boo (2:;). Note that this result is not pointwise and is 
therefore not quite as strong as the usual measure theoretic statement of equality 
of the time mean and the phase space mean. This is of course where Birkhoff 's 
Pointwise Ergodic Theorem comes into play (see for example [Pete]). 

What about the converse? Well, in order to effectively apply Propositions 
2.5.5(ii) and 2.5.6(ii) to the measure theoretic case, we need to know what the 
measure theoretic significance of a cp-total set in Boo(2:;) is. The basic fact we will 
use is the following simple proposition: 

2.6.2 Proposition. Let (X , 2:;, f-L) be a probability space and set cpU) = J fdf-L for 
all f E Boo (2:;). Then the set ~ = {Xs : S E 2:;} is cp-total in Boo (2:;). 

Proof. The same argument as in the proof of Proposition 2.3.4, keeping in mind that 
IIfll lO = (J Ifl2 df-L) = II [1]112 for all f E Boo (2:;) , shows that for any g E .800 (2:;) there 
is a sequence simple functions Sn such that Iisn - glllO --t O. However, by definition 
a simple function is a linear combination of elements of ~, so we conclude that the 
linear span of '.I is cp-dense in Boo (2:;) , which completes the proof.. 

From this we see that if (6.1) holds for all measurable characteristic functions f, 
then (Boo (2:;) ,cp,T) is ergodic by Proposition 2.5.5(ii), hence (X, 2:;, f-L, T) is ergodic 
as mentioned in Section 2.3. 

Finally, with reference to Proposition 2.5 .6(ii), we note that '.I* = '.I for '.I as in 
Proposition 2.6.2. 

Next we briefly look at von Neumann algebras, as they are well-known examples 
of unital *-algebras. Consider a von Neumann algebra 9J1 and suppose (9J1, cp, T) 
is a *-dynamical system. For example, T might be a *-homomorphism leaving cp 
invariant, that is to say, cp(T(A)) = cp(A) for all A E 9)1. Then the results of Section 
2.5 can be applied directly to (9J1, cp, T) . As a more explicit (and ergodic) example, 
we note that 2L in Example 2.5.7 is a von Neumann algebra on the Hilbert space C2

• 

We can also mention that T in Example 4.7 is not a homomorphism (see Appendix 
A.2). 

We now describe one suitable choice for the cp-total sets appearing in Proposi­
tions 2.5.5 and 2.5.6. Let SlJ be the projections of 9)1. It is known that 9J1 is the 
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norm closure of the linear span of ~, as is mentioned for example on p. 326 of 
[KRl]. Since any state 'P on 9J1 is continuous by virtue of being positive (see [BR, 
Proposition 2.3.11]), it follows that ~ is 'P-total in 9J1. Note also , regarding Propo­
sition 2.5 .6(ii) , that ~* =~. This is all very similar to the measure theoretic case 
in Proposition 2.6.2, since the measurable characteristic functions on X are exactly 
the projections of Boo(~). This similarity should not be too surprising, since the 
theory of von Neumann algebras is often described as "noncommutative measure 
theory" because of the close analogy with measure theory. 

2.7 An alternative approach to recurrence 

In this section (which is based on work contained in [D2]) we discuss an alternative 
approach to recurrence which does not require 'P to be linear or complex-valued as 
in Definition 2.3.1. The lack of linearity in this approach however precludes the 
use of the GNS construction and Hilbert spaces, and because of this it does not 
give any quantitative result as in Khintchine's Theorem and its noncommutative 
generalization Theorem 2.5.1. 

As we shall see, the theory is surprisingly close to the usual measure theoretic 
setting. It therefore seems appropriate to briefly review a Poincare-like probabilistic 
recurrence result. Consider a measure space (X,~, /-L) with /-L(X) < 00, and let T : 
X -+ X be a mapping such that /-L(T- 1 (S)) = /-L(S) for all S in~. This is merely an 
abstraction of Liouville's theorem. For some S E ~, suppose that /-L(SnT-n(s)) = 0 
for all n E N. For all n , kEN we then have /-L(T-k(S) n T-(n+k)(S)) = /-L(T-k(S n 
T-n(S))) = /-L(S n T- n(s)) = O. So /-L(T-m(s) n T-n(s)) = 0 for all m, n EN with 
m i= n. It follows that 

",(X) 2> '" (Q rk(S)) = t, ",(rk(S)) = t, ",(S) = np(S) . (71) 

Note that the weaker condition /-L(T-1(S)) ~ /-L(S) appearing in Khintchine's The­
orem 2.1.1 would not be good enough to ensure this inequality. Letting n -+ 00 it 
follows that /-L(S) = O. This is a recurrence result, namely if /-L(S) > 0, then there 
exists a positive integer n such that /-L(SnT-n(s)) > o. It tells us that S contains a 
set S n T-n(s) of positive measure which is mapped back into S by Tn. From (7.1) 
it is clear that the intuitive idea is simply that we cannot fit an infinite number of 
sets the size of S into X without the sets overlapping, since X is of finite size (where 
the size of a set is its measure). This is similar to the pigeon hole principle. 

Note that the mapping g ~ T(g) = goT is a *-homomorphism of the *­
algebra Boo (~) into itself such that 'P(T(g)) = 'P(g) by Proposition 1.7.1, and 
/-L(SnT-n(s)) = 'P (XsTn(XS)) for S E ~, where 'P(g) = Jgd/-L for all g E B~(~). Us­
ing this notation the recurrence result above can be stated as follows: If 'P(Xs) > 0, 
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then there exists a positive integer n such that r.p (XSTn (XS)) > O. The general 
*-algebraic approach will now be modelled after this situation. We also get some 
inspiration from Postulate l.2.1, for reasons which will become clear in Section 3.l. 

For an element A of a *-algebra 21, we w~ite A 2: 0 if A = R* R for some R E 21. 
If also Ai=- 0, we write A > O. By A::; B we mean that B - A 2: O. 

2.7.1 Definition. Let 21 be a *-algebra, and ~ a unital *-algebra. Let r.p : 21 -+ ~ 

be a positive mapping (i.e . r.p(A* A) 2: 0 for all A E 21) . We call r.p additive if 

n 

for any projections PI, ... , Pn E 21 for which r.p(PkPIPk) = 0 if k < l. We call r.p 
faithful if it is linear, 21 is unital, r.p( 1) = 1, and r.p( A *A) > 0 for all non-zero A 
in 21 (note that this requires that A* Ai=- 0 for Ai=- 0, which is true for example in 
any C*-algebrCL). 

2.7.2 Proposition. If the positive mapping r.p given in Definition 2.7.1 is faithful, 
then it is also additive. 

Proof. Let PI" '" Pn E 21 be any projections for which r.p( PkPIPk) = 0 if k < l. 
For k < l we then have r.p ((PIPk)* PtPk) = 0, so PIPk = 0, and therefore PkPI 
(PtPk)* = O. This implies that 

n 

since the left-hand side is a projection in 21. Thus 

as promised .• 

2.7.3 Remark. In the measure theoretic setting described above, we can assume 
without loss of generality that f.L(X) = l. Then r.p : Boo C'B) -+ C is a linear additive 
mapping, since 

for any S1 , ... , Sn E Ij such that r.p (XskXsJ = f.L (Sk n SI) = 0 if k i=- l. However, r.p 
need not be faithful, since there can be a non-empty set S of measure zero (giving 
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t.p (XsXs) = 0 even though XS i= 0), which is why we introduced t he notion of 
additivity.• 

We now state and prove a *-algebraic version of the recurrence result described 
above: 

2.7.4 Theorem. Consider a *-algebra 21 and a unital C*-algebra s.B , and let t.p : 
21---+ s.B be an additive mapping. Let T : 21 ---+ 21 be a *-homomorphism such that 
t.p(T(PQP)) = t.p(PQP) for all projections P, Q E 21. Then, for any projection P E 

21. such that t.p(P) > 0, there exists a positive integer n such that t.p(PTn(P)P) > o. 

Proof. Note that t.p(PTn(P)P) = t.p ((Tn(p)p)*Tn(P)P) ~ 0 for all n E N, since T is 
a *-homomorphism. We now imitate the measure theoretic proof. 

Suppose t.p(PTn(P)P) = 0 for all n E N. For all k, n E N we then have 

since T is a homomorphism and P and therefore Tn(p) are projections. Since t.p is 
additive, it follows for any n E N that 

n

L t.p (Tk(P)) :::; 1. 
k = l 

Furthermore, 

n n 

since P = P P P, t.p is positive and P = P* P . Hence 0 :::; nt.p(P) :::; 1, and therefore 
n 11t.p(P) II :::; 1 since s.B is a C*-algebra (see [Mu, Theorem 2.2.5(3)]). Letting n ---+ 00, 
it follows that t.p (P) = 0.• 

It is clear that because of Remark 2.7.3, the measure theoretic recurrence result 
described above is just a special case of Theorem 2.7.4, since the projections of the 
*-algebra Boo(~) are exactly the characteristic functions Xs, where S E ~. 

Note that the trace tr: 9]1 ---+ 9]1 n 9]1'of a finite von Neumann algebra is faithful 
in the sense of Definition 2.7.1, hence we have the following corollary of Theorem 
2.7.4 and Proposition 2.7.2, which will be used in Section 3.1: 

2.7.5 Corollary. Consider a finite von Neumann algebra 9]1, and let tr be its trace. 
Let T : 9]1---+ 9]1 be a *-homomorphism such that tr(T(A)) = tr(A) for all A in 9]1. 

Then, for any projection P E 9]1 such that tr(P) > 0) there exists a positive integer 
n such that tr(PTn(p)) > o. 
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We conclude this chapter with an open problem inspired by Theorem 2.7.4: 

2.7.6 Open Problem. Does Theorem 2.5.1 still hold if we only assume that cp is 
SE-valued, instead of complex-valued, where.SE is any unital C*-algebra? In fact , we 
can ask if we can obtain the whole theory in Sections 2.3 and 2.5 if in Definition 
2.3.1 we generalized the framework to cp being SE-valued instead of complex-valued. 
A possible line of attack is to use Hilbert C*-modules (see [La]) .• 
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Chapter 3 

•Recurrence and ergodicity In 
mechanics 

In this chapter we discuss recurrence and ergodicity in certain physical systems 
(quantum and classical). In Section 3.1 (which is based on [D2]) it is shown that 
recurrence takes place in a probabilistic sense in exactly the same way in bounded 
quantum systems as in classical systems with finite volume phase space. In Section 
3.2 we show under physically reasonable assumptions that quantum and classical 
systems are not ergodic in the sense of Definition 2.3.2 (or, equivalently, in terms 
of the characterization in Proposition 2.5.5), if the state of the system allows more 
than one energy level to be obtained in a measurement (i.e. if more than one energy 
level has a nonzero probability). 

3.1 Recurrence 

Consider a bounded quantum system (SJJl, SJ ,H) and assume that SJJl is a factor. Let 
T be the system's time-evolution, as in Proposition 1.7.5. Fix any t > o. Since the 
trace tr of SJJl is faithful , Corollary 2.7.5 and Proposition 1.7.5 tell us that for any 
nonzero projection P E SJJl there exists an n(t) E N such that 

tr (PTn(t)t(P)) > O. (1.1 ) 

Note that tr(PTn(t)t (P)) = tr(PTn(t)t (P) P), which has the form of Wi in Postulate 
1.2.1, i.e. the state after a "yes" was obtained in ayes/no experiment with projection 
P when the initial state was tr. Also remember that according to Postulate 1.8.3, 
tr is the state of no information. 

So, to interpret (1.1), consider the case where we have no information about the 
state of our bounded quantum system. By Postulate 1.8.3 the state is then given 
by tr. At time 0 we perform a yes/no experiment with projection P E SJJl on the 
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system. Assuming the result is "yes" , the state of the system after the experiment 
is given by the state W on 9Jl defined by 

w(A) = tr(PA)/tr(P), 

according to Postulate 1.2.1. (Also recall from Section 1.2 that the probability of 
getting "yes" is tr(P), therefore tr(P) > 0 in this case.) By (1.1) we then have 

p(t) := W(Tn(t)t(P)) > O. (1.2) 

This simply tells us that if we were to repeat the above mentioned yes/no experiment 
exactly at the moment n(t )t, when its projection is given by Tn(t)t (P) according to 
Section 1.4 (iv), then there is a nonzero probability p(t) that we will I'lgain e;p.t. "Yf.'S" , 
By replacing t by t' = n(t)t + I, we see that there is in fact an unbounded set of 
moments n(t)t < n(t')t' < ... for which (1.2) holds. 

So we have obtained a quantum mechanical version of recurrence. Note that the 
measure theoretic recurrence result described in Section 2.7 will give exactly the 
same result as (1.2), with the same physical interpretation, when applied to a clas­
sical mechanical system whose phase space (see Remark 1.7.2) has finite Lebesgue 
measure; just replace w, tr, T and P by their classical analogues described in Sections 
1.3 and 1.8. In particular, tr is replaced by integration with respect to normalized 
Lebesgue measure, which then represents the state of no information. So we see that 
(probabilistic) recurrence in quantum mechanics and in Classical mechanics follow 
from the same general result, namely Theorem 2.7.4, since Corollary 2.7.5 and the 
measure theoretic recurrence result are both special cases of this theorem. 

A drawback of (1.2) is that it gives no indication as to how large W(Tn(t)t(P)) is, 
or how often it is positive. Theorem 2.5 .1 on the other hand, tells us that for any 
E > 0 there is in fact a relatively dense set M in N such that 

W(Tmt(P)) > tr(P) - E (1.3) 

for all m E M, which is a quantitative improvement over (1.2), since it says that 
W(Tmt(P)) is regularly (i.e. almost periodically) larger than tr(P)-E. Since tr(P) was 
the probability of getting a "yes" during the first execution of the yes/no experiment , 
we see from (1.3) that at the moments mt the probability of getting "yes" when doing 
the experiment a second time is larger or at least arbitrarily close to the original 
probability of getting "yes". Similar results concerning wave functions and density 
operators are presented in [HH] and [Perc]. If as before we replace w, tr, T and 
P by their classical counterparts, and then apply Theorem 2.5.1 again, we find the 
same result as (1.3) for classical mechanics, with exactly the same interpretation as 
in quantum mechanics. 

There is, however, a small technical problem: The probability of repeating the 
yes/no experiment exactly at the moment n(t)t is zero. The same goes for any of 
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the moments mt above. The next simple proposition remedies the situation in the 
quantum case: 

3.1.1 Proposition. Let T be as in Proposition 1. 7. 5, where we take 9)1 to be a 
finite factor. Then for any projection P in 9)1, the mapping 

is continuous, where tr is the trace of 9)1. 

Proof. By Stone's Theorem Ut in Proposition 1.7.5 is strongly continuous (i.e., 
t I---t Utx is continuous for every x E f)), so clearly the mapping t I---t Tt(A) is weakly 
continuous for every A E 9)1 (i.e., t I---t (x , Tt(A)y) = (Utx, AUty) is continuous 
for any x, y E f)). Hence t I---t PTt(P) is weakly continuous. We know that tr is 
ultraweakly continuous (see [KR2, Theorem 8.2.8], for example), and therefore it 
is weakly continuous on the unit ball of 9)1 by [KR2, Proposition 7.4.5]. Since 
IIPTt(P)11 :s; I, we conclude that t I---t tr(PTt(P)) is continuous .• 

So from (1.3) we see that for every m E M there exists a 8m > 0 such that 

W(Ts(P)) > tr(P) - E for mt - 8m < s < mt + 8m . 

This tells us that quantum mechanical recurrence is possible in practice, assuming 
we are working with a bounded quantum system as above, since there is a non­
zero probability of repeating the yes/no experiment during one of the time-intervals 
(mt - 8m , mt + 8m ). It should be mentioned though, that the elements of M might 
be very far apart, so we might have to wait very long after the initial yes/no exper­
iment before the probability tr(P) ~ E is reached as in (1.3). 

According to Conjecture 1.9.1, a quantum mechanical system bounded in space, 
and isolated from outside influences, can be mathematically described as a bounded 
quantum system. So this is the physical situation for which we could expect recur­
rence as above. This guess is confirmed by [BL] and [Perc]. In classical mechanics 
we indeed have recurrence for systems with finite volume phase space, in particu­
lar for a system with bounded phase space in IR2n, which corresponds to a system 
bounded in space and isolated from outside influences (see Section 1.9). This fact 
constitutes some additional circumstantial evidence for Conjecture 1. 9.1. 

3.2 Ergodicity 

In Section 3.1 we saw how recurrence comes about in mechanics in terms of the state 
of no information (tr in the quantum case; integration with respect to normalized 
Lebesgue measure in the classical case). What is important here, is that when we 
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applied Theorem 2.5.1 (and Theorem 2.7.3) to mechanics, we took <p to be the state 
of no information. 

Say we also want to apply Theorem 2.5.2 to mechanics to find the following 
result: We consider two yes/no experiments with projections P and Q at time zero, 
for a given system. The P experiment is performed when we have no information 
regarding the systems state (i.e. we start with the state of no information <p), and 
a "yes" is obtained, changing the state to w defined by w(A) = <p(PA)/<p(P). We 
want to know if a subsequent execution ofthe Q experiment (at one ofthe points in 
time from the set E in Theorem 2.5.2) will give "yes" with probability <p(Q) - E or 
larger, where E depends on E > O. This is a simple extension of the recurrence result 
we found in Section 3.1 (see in particular equation (1.3)). However, for Theorem 
2.5.2 to be applicable, we need the system to be an ergodic *-dynamical system. In 
this section we show that under physically reasonable assumptions, we do not have 
ergodicity. (However, to prove that this implies that for any fixed t > 0 there is a 
pair P and Q as above with <p(P) > 0 and <p(Q) > 0, such that the probability for 
a "yes" in the Q experiment is zero at all discrete times kt, kEN, we would first 
have to solve Open Problem 2.5.8.) 

3.2.1 Definition. Consider a quantum or classical mechanical system (2l. , <p , Tt) 
where 2l. is the observable algebra of the system, <p is the state of no information (we 
assume that it exists) and :'t is the time-evolution. We call the system bounded if 
it is either a bounded quantum system (9J1,tr, Tt) where 9J1 is a finite factor with tr 
its trace and Tt defined as in Proposition 1.7.5, or a classical system (Boo(F), <p, Tt) 

whose phase space F C IR2 
n (see Remark 1.7.2) has finite Lebesgue measure, where 

<p (g) = (J gd)") /).. (F) with ).. the Lebesgue measure on IR2n 
, and T t is given by 

equation (3.3) in Section 1.3. 

Note that because of Liouville's Theorem (equation (7.1) in Section 1.7) and its 
quantum analogue , Proposition 1.7.5, a bounded mechanical system (2l. , <p, Tt) is a 
*-dynamical system as defined in Definition 2.3.1, for any fixed t. Our goal in this 
section is therefore to show that under physically reasonable assumptions, such a 
system is not ergodic. Actually we will prove the more general result that if the 
state of a system allows more than one energy level (in the sense of Definition 3.2.3), 
then we do not have ergodicity. 

We will work in the following general setting: 

3.2.2 General Setting. Let 2l. be the observable algebra of a physical system 
(quantum or classical), and H the system's Hamiltonian (remember that the Hamil­
tonian of a system gives the system's energy). 2l. is a unital *-algebra. In the classical 
case we assume 2l. to be an algebra of bounded complex-valued measurable functions 
on some measurable space F with g* = 9 the involution, and we assume H to be a 
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(possibly unbounded) measurable function F --t lR. In the quantum case we assume 
21 to be an algebra of bounded linear operators SJ --t SJ on some Hilbert space SJ 
with the involution being the Hilbert adjoint, and we assumeH to be a (possibly 
unbounded) self-adjoint linear operator in 5). Keep in mind that in the quantum 
case we allow the Hamiltonian to be represented in a Hilbert space which might 
not be the state space, as is the case in Definition 1.7.3 and Remark 1.7.4. That 
is to say, SJ is not necessarily the state space of the quantum system. For reasons 
of generality, we likewise do not assume that F is the phase space of the classical 
system. 

Furthermore, we assume that Xv(H) E 21 for all Borel 17 c lR, where Xv(l-I) is 
given by the Borel functional calculus (in the classical case Xv(H) := Xv 0 H as in 
Remark 1.4.2), and that Xv(H) is the projection of the yes/no experiment "Is the 
energy in 177" (Note that if we were to take 21 = Boo(F) for a classical system, or 
21 = ..e(5)) for a quantum system, then 21 would contain all these projections in any 
case. ) 

As always, we assume the time-evolution to be a one-parameter *-automorphism 
group T of 21 as in Section 1.4 (iv). In the quantum case it is given by 

and in the classical case by 

where Tt is an energy conserving (i.e. H 0 1't = H) flow depending on H. (If the 
time-evolution does not conserve energy, then it means that the system is interacting 
with other systems. We could consider these systems as part of our system to ensure 
conservation of energy. The time-evolution for a quantum system as given above 
automatically conserves energy, since we take H to be fixed, so it does not allow 
interactions with other systems; see the proof of Theorem 3.2.7.) 

We then call (21, H) a mechanical system. 
Where reference is made to an observable of the system, it will be assumed to 

have the same mathematical form as H above.• 

We will assume that a bounded mechanical system is nontrivial in the sense that 
it has more than one distinguishable energy level. We have to state more clearly 
what we mean by this however. A simple way to do this in our framework is as 
follows: 

3.2.3 Definition. Consider a state w of a mechanical system (21, H) in the general 
setting above. (So w is a state on 21.) We say that wallows more than one 
energy level if there are two open intervals J1 and J2 in lR such that J1 n J2 = 0, 
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W (XJr (H)) > 0 and W (Xh (H)) > 0, and a bounded interval J in IR. such that 
w(XAH)) > O. A bounded mechanical system (2l., <p, It) with Hamiltonian H 2S 

called nontrivial if <p allows more than one energy level .• 

3.2.4 Remark. Definition 3.2.3 says that if we have the state w for the system, and 
we measure the energy, then there is a nonzero probability of getting a value in J1 , 

and a nonzero probability of getting a value in J2 . In this sense then, more than one 
energy level of the system can be distinguished, since Jl and J2 are separated (i.e. 
J l n J2 = 0). The existence of the bounded interval J implies that the system has at 
least one finite energy level (this is a sensible assumption and not at all restrictive, 
since in practice one can generally assume that a physical system does not possess an 
infinite amount of energy; note that when modelling a physical system, some useful 
models might have an infinite amount of energy, for example in the thermodynamic 
limit [Rue], but in this thesis we consider the system, rather than a model which 
deviates from the system in such a nonphysical way). 

If the state of no information of a bounded mechanical system does not allow 
more than one energy level (in the technical sense given in Definition 3.2.3), then 
it effectively means that the system only has one energy level (i.e. it is physically 
trivial), since in the state of no information all energy levels should be equally 
likely.• 

3.2.5 Lemma. For Borel sets U, V c IR. with U c V we have 

where A is an observable of a mechanical system as in General Setting 3.2.2. 

Proof. In the classical case this is easy, namely 

Xu(A) = XA-l(U) ::; XA-l(V) = Xv(A) 

since A-l(U) c A-1(V). Alternatively (as harbinger to the quantum case below), 
one can note that 

Xu(A)Xv(A) = (XuXv) (A) = Xu(A) 

since U c V, hence Xu(A) ::; Xv(A). 
In the quantum case it follows from the properties of the Borel functional calculus 

[SZ, 9.11(v) , 9.13(iii) and 9.32] and the fact that a bounded linear operator on a 
Hilbert space is closed, that 

Xu(A)Xv(A) = (XuXv) (A) = Xu(A) 
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and hence Xu(A) :::; Xv(A), since Xu(A) and Xv(A) are projections (see [Mu, The­
orem 2.3.2] for properties of projections) .• 

3.2.6 Proposition. Consider a state w of a mechanical system (2.l, H) which allows 
more than one energy level in the sense of Definition 3.2.3. Then there exists a 
bounded interval J in lR such that 0 < w(XI(H)) < l. 

Proof. Write p(V) := w(Xv(H)) for all Borel sets V c lR. (p(V) is the probability 
for a "yes" in the yes/no experiment "Is the system's energy in V?") Suppose that 

p(I) E {O, I} (2.1 ) 

for all bounded intervals I in lR. By assumption there exists a bounded interval 
10 in lR such that p(Io) > 0, and hence p(Io) = 1. Because of Lemma 3.2.5, we 
can assume without loss that this interval is of the form 10 = lao, bo). V\Te now 
inductively construct a sequence 10 , h, 12 , . .. of intervals such that p(In) = 1 for all 
n: 

Divide In in its left and right halves (each of the form [c, d)), and let In+1 
[an+1' bn+1) be the half ~uch that p(In+1) = 1. 

Note that In+1 exists by induction, since if it did not, we would have p( L) 
p(R) = 0 by (2.1), where Land R are the left and right halves of In, and then by 
the properties of the Borel functional calculus (and arguments as in the proof of 
Lemma 3.2.5) 

0= p(L) + p(R) = w (XL(H) + XR(H)) = w ((XL + XR)(H)) = p(In) (2 .2) 

which contradicts p(Io) > o. The sequences (an) and (bn) are bounded, and increas­
ing and decreasing respectively, while bn - an = (bo - ao) /2n. This implies that they 
converge to the same value, say E. 

We can view E as the only energy level of the system that can be obtained 
in a measurement , since any open set V containing E contains an In , and hence 
1 = p(In) :::; p(V) :::; 1 by Lemma 3.2.5, so the probability for a "yes" in the yes/no 
experiment "Is the energy in V?" is one. The idea is therefore to get a contradiction 
with Definition 3.2.3, which says that there are at least two energy levels. So consider 
any open intervals 11 and 12 in lR with 11 n 12 = 0. 

Case 1. Say E E 11. Thenp(11 ) = 1 as for p(V) above. It follows that P(12) = 0, 
otherwise we would have 

similar to (2.2), which contradicts the definition of p. (Similarly if we had E E 12.) 
Case 2. Now suppose E ~ 11 U12. Since 11 n12 = 0, we can assume without loss 

that E t/. 11 , which implies that an In exists such that In C lR\11, as for V above. 
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So by Lemma 3.2.5 we then have p(JR.\JI ) = 1 and also p(JR.) = 1, and therefore (in 
the same way as (2.2)), 

p (h) = p(JR) - p (JR\JI ) = O. 

So, again by Lemma 3.2.5,0 ::::; p(JI ) ::::; p(JI ) = O. 
From these two cases we see that we either have p(JI ) = 0 or p(J2 ) = 0, con­

tradicting the assumptions. Therefore (2.1) must be wrong, which means that 
o< p(I) 	< 1 for some bounded interval 1.. 

3.2.7 Theorem. Consider a state w of a mechanical system (Qt ,H) which allows 
more than one energy level in the sense of Definition 3.2.3, and let T be the time­
evolution of the system as in General Setting 3.2.2. Fix any t E JR., and assume that 
(Qt,w, Tt) is a *-dynamical system (i. e. w(Tt(A* A)) ::::; w(A* A) for all A E Qt). Then 
(Qt, w, Tt) is not ergodic (in the sense of Definition 2.3.2). In particular, a nontrivial 
bounded mechanical system (as in Definitions 3.2.1 and 3.2.3) is not ergodic. 

Proof. By Proposition 3.2.6 there is a Borel set V c JR such that 0 < w(F) < 1 for 
P:= Xv(H). 

By conservation of energy in the classical case, we have H 0 Tt = H, hence 
Tt(P) = Xv 0 H 0 Tt = Xv 0 H = P. In the quantum mechanical case we have 
Tt(P) = eiHtXv(H)e-iHt = (eiOtXve- iOt) (H) = Xv(H) = P by the properties of 
the Borel functional calculus [SZ, 9. 11 (v)], which says that energy is conserved. So, 
in either case 

Tt(P) = 	P . (2.3) 

Consider any aI, a2 E C and set A := alP + a2(1- P). Now set 

and 	 Cn := En - w(A) 

then En 	= A by (2.3) since Tt(l) = 1. Write p := w(P), then it follows that . 

Cn 	 alP + a2(1 - P) - alP - a2(1 - p) 

(al - a2)(P - p) 

and therefore 

so 
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if we choose al i- a2, since °< p < 1. Therefore the system is not ergodic, by 
Proposition 2.5.5(i) .• 

The system in Example 2.5.7 is ergodic despite the fact that tr is the state of no 
information, simply because the "time-evolution" T behaves differently from that of 
a physical system as in Theorem 3.2.7. In the ergodic case, T in Example 2.5.7 only 
has fixed points of the form 

which is only a projection if a E {O, I}, hence a projection P as in (2.3) with °< 
tr(P) < 1 docs not exist. Olle C(;I,ll say that i does not preserve the various "energy 
levels" of the system, but only preserves the system as a whole. 

3.2.8 Remark. Essentially Theorem 3.2.7 says that if the state is a mixture of more 
than one energy state (so more than one value of energy has nonzero probability 
when the observer measures the energy), then the state is not ergodic (in this context 
it makes more sense to speak of an ergodic state, rather than an ergodic system, 
since the state describes the observer's information about the physical system as in 
Section 1. 6, rather than being a property of the system itself). From the statistical 
point of view that we have been using since Chapter 1, this should be the typical 
situation in practice, since normally an observer would not be able to measure the 
energy precisely enough to give a state allowing only one energy level. So if the 
observer does not have complete (or precise) information about the system's energy, 
then the state describing his information isn't ergodic. 

Intuitively Theorem 3.2.7 makes perfect sense. If more than one energy level 
is present in the state, then we can imagine decomposing it into its various energy 
"components" (for example, decompose the phase space into its constant energy 
surfaces in the case of a classical system; see below). By the conservation of energy, 
the time-evolution does not mix the various energy components with each other. 
But this clearly violates the basic intuition behind ergodicity, namely that in an 
ergodic system, any "part" is eventually mixed with every other part (see Corollary 
2.6.1 and the discussion following it , as well as Theorem 2.5.2 and Proposition 2.5.6, 
which all say that any part of an ergodic system eventually overlaps with every other 
part) . So it is also clear why conservation of energy plays a central role in the proof 
of Theorem 3.2.7. 

This result does not mean that the idea of ergodicity is in principle irrelevant in 
physics. Theoretically one can still consider states allowing only one energy level, 
and study whether they are ergodic or not. For example, a state given by any 
probability measure on a constant energy surface (given by H = E, where E is the 
energy of the surface) of a classical system, by definition allows only one energy level 

 
 
 



70 CHAPTER 3. RECURRENCE AND ERGODICITY IN MECHANICS 

E , while each energy eigenstate of a quantum system (assuming the Hamiltonian has 
eigenvectors) by definition corresponds to a single energy level. Ergodicity would 
then be a property of the system, rather than of the observer 's information, which in 
the light of Theorem 3.2.7 seems like the sensible approach to ergodicity in physics. 

In classical mechanics ergodicity arises in the sense that one would consider 
systems where for almost every pure state (point) x in a constant energy surface, 
the time average 

of any observable f converges to the average w(f) of the observable over the constant 
energy surface, for any fixed t > 0, where the state w of the system is given by a 
time-invariant probability measure on the constant energy surface (the existence of 
such a measure follows from Liouville's Theorem; see for example [Kh, Section 7] 
or [Pete, Chapter 1, Proposition 2.2], and also [Rue, Section l.1]). Since only 
one energy level is involved, this is not in conflict with Theorem 3.2.7. We can 
mention that in 1962-63 Sinai succeeded-in proving that a classical gas, consisting of 
hard spheres enclosed in a box and interacting through pair potentials, is ergodic in 
this sense (refer to [AA, Section 18] or [Rue, Section l.1] and references therein). 
Ergodicity as given by Definition 2.3.2, or equivalently by equation (6.1) in Section 
2.6, with <p = wand I-L the probability measure on the constant energy surface, is a 
slightly weaker form of ergodicity. Refer to [Rud, Theorem 3.12] for the connection 
of this with the almost everywhere convergence mentioned above, namely that it 
implies the existence of a su bsequence of the time-averages 

n-l 

~Lfont 

k=l 

converging pointwise almost everywhere to w(f), whereas for the case above the 
whole sequence converges pointwise almost everywhere to w(f). 

In quantum mechanics the idea is to study states that are ergodic in some sense, 
the simplest approach being to take the eigenstates of the Hamiltonian as ergodic, 
since for such an eigenstate x we have e-tHtx = e-iEtx where E is the corresponding 
eigenvalue (the energy), and hence 

n-l n-l n-l 

~ "w (T~(A)) = ~ L (x, T~(A)x) = ~ "(e-iHktx , Ae-iHktx) = (x, Ax) =: w(A)
n~ n n~

k=O k=O k=O 

which is an equality of a time average and a "state average)). (Also see [T, Remark 
(3.l. 23;1)] . ) This is a very primitive form of ergodicity of a state. For a deeper 
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approach, refer to [T, Sections 3.1 and 3.2], and in particular [T, Remarks (3.2.10;6) 
and (3.2.16;1)] for the relation between ergodicity and KMS states (equilibrium 
states) .• 
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