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Samevatting 

Titel: Die a:lgemene struktuur en ergodiese eienskappe van kwantum en klassieke 
meganika: In Verenigde C*-algebrarese benadering 

Student: Rocco de Villiers Duvenhage 
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Kwantum meganika is in wese In statistiese teorie. Klassieke meganika word egter 
nonnaalweg rue as inherent statisties beskou nie. Tog kan laasgeneoemde ook statisties 
geforrnuleer word. Wat meer is, In statistiese formulering van albei kan in terrne van 
unitale C*-algebras uitgedruk word, in welke geval dit duidelik word dathulle dieselfde 
algemene struktuur het, met kwantum meganika In nie-kommutatiewe veralgemening van 
klassieke meganika. Suiwer wiskundig beteken dit bloot dat kwantum meganika In nie­
kommutatiewe veralgemening van waarskynlikheidsteorie is . Die belangrikste insig in 
die verb and is dat die projeksie postulaat van kwantum meganika In nie-kommutatiewe 
voorwaardelike waarskynlikheid is. Dit is die onderwerp van Hoofstuk 1. 

Soos ergodiese teorie (die teorie van langtermyn gedrag in In dinarniese stelsel) in 
klassieke waarskynlikheidsteorie gedoen word, word ergodiese teorie dan in Hoofstuk 2 
ook in nie-kommutatiewe waarskynlikheidsteorie gedoen. In besonder word 
veralgemenings van Khintchine se rekurrensie stelling en In variasie daarvan vir 
ergodiese stelsels bewys, asook verskeie karakteriserings van nie-kommutatiewe 
ergodisiteit. 

Laastens, in Hoofstuk 3, word rekurrensie en ergodisiteit dan vanuit In fisiese oogpunt 
in kwantum en klassieke meganika ondersoek, deur middel van In kwantum meganiese 
analogie van Liouville se Stelling in klassieke meganika wat in Hoofstuk 1 voorgestel is . 

 
 
 



Summary 

Title: The general structure and ergodic properties of quantum and classical mechanics: 
A unified C*-algebraic approach 

Student: Rocco de Villiers Duvenhage 
Promotor: Prof. Anton Stroh 
Department: Mathematics and Applied Mathematics 
Degl'ee: PhD . 

Quantum mechanics is essentially a statistical theory. Classical mechanics, however, 
is usually not viewed as being inherently statistical. Nevertheless, the latter can also be 
formulated statistically. Furthermore, a statistical formulation of both can be expressed in 
terms of unital C*-algebras, in which case it becomes clear that they have the same 
general structure, with quantum mechanics a noncommutative generalization of classical 
mechanics. Purely mathematically this merely means that quantum mechanics is a 
noncommutative generalization of probability theory. The most important insight in this 
respect is that the projection postulate of quantum mechanics is a nortcommutative 
conditional probability. This is the subject of Chapter 1. 

As ergodic theory (the theory of long term behaviour of a dynamical system) is done 
in classical probability theory, ergodic theory is then done in Chapter 2 also in 
noncommutative probability theory . In particular generalizations of Khintchine's 
recurrence theorem and a variation thereof for ergodic systems is proved, as well as 
various characterizations ofnoncom mutative ergodicity. 

Lastly, in Chapter 3, recurrence and ergodicity is then investigated from a physical 
perspective in quantum and classical mechanics, by means of a quantum mechanical 
analogue of Liouville's Theorem in classical mechanics which was suggested in Chapter 
1. 
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4 CONTENTS 

0.1 List of symbols and terms 

General symbols 
o is the empty set. 

A c B means that the set A is contained in the set B , with A = B allowed. 

S is the closure of a set S in a topological space. 

C is the set of complex numbers. 

N= {1,2,3 , ... }. 

JR is the set of real numbers . 


1* = fls the complex-conjugate of a complex-valued function f. 

A is the Lebesgue measure on lR(2n. 


£(V) is the space of bounded linear operators V -t V on a normed space V. 

Tr denotes the trace of a bounded linear operator on a Hilbert space (see [Mu]). 


Symbols defined in the text 
A::; B in a *-algebra, 2.7 
Boo(F), l. 7.2 
Boo(JR2n 

), l.3 
Boo C~), l.7, 2.1 
L(V),2.2 
tr, l.6 
XA, l.3 
x @y, 2.3 
11'11", where <p is a state on a unital *-algebra, 2.2 
[.J, 2.3 

Terms 
accurate, precise, 1.4 

bounded quantum system, l.7.3 

Cauchy-Schwarz inequality for states, 2.2.2, 2.5.6 (in the proofs) 

conditional probability, l.3, l.5, l.6.1 

constant energy surface, 3.2.8 

density operator, l.2 

ergodic, 2.3.2 

factor, finite factor, l.8.2 

finite von Neumann algebra, l. 7 

faithful, l.7, l.7.4, 2.7.1 

flow, 1.3 

Hamiltonian flow, 1.3 

ideal measurement, 1.5.1 


 
 
 



5 0.1. LIST OF SYMBOLS AND TERMS 

information, 1.4(b), 1.6.1 

measurement, 1.1.2, l.6 

noncommutative information, 1.6, l.6.1 

normal state, l.7.4 

phase space, phase point, l.3 

pure state, 1.3, 1.4(b), 1.7.4, 1.9.2 

*-dynamical system, 2.3.1 

spectral projection, 1.4.2, 1.2, 1.3 

state, l.2, 1.4, 2.2 

unital *-algebra, 2.1 


All Hilbert spaces are assumed complex. 

We will use units in which Ii = h/27r = I, where h here denotes Planck's constant. 
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0.2 Introduction 

The main motivation for this thesis is to gain a deeper understanding of the struc­
ture and nature of quantum mechanics. This will be achieved by a careful analysis 
of the relationship between quantum mechanics and classical mechanics. Quantum 
mechanics is inherently a statistical theory, while classical mechanics is not. The 
essential idea is therefore to study the general structure of statistical mechanics in 
a mathematical framework that applies to both quantum mechanics and classical 
mechanics. The language of abstract C*-algebras is ideally suited for this, since 
it provides a unified formulation of quantum mechanics and classical mechanics, 
with classical mechanics then viewed as a special case of quantum mechanics where 
we have commutativity. The concrete realizations of the C*-algebras in quantum 
mechanics consist of linear operators on Hilbert spaces, which are mathematical ob­
jects that differ very much from the measurable functions that make up the concrete 
realizations of the C* -algebras in classical mechanics. For this reason the abstract 
approach clarifies the general structure of mechanics (quantum and classical), en­
abling the above mentioned unified formulation of mechanics. This is discussed in 
detail in Sections 1.1 to 1.5 of Chapter 1. 

From a mathematical point of view the general structure of classical mechan'ics to 
be presented is nothing more than probability theory (or, a probabilistic description 
of information) with dynamics, while the general structure of quantum mechanics is 
noncommutative probability theory (or, a probabilistic description of "noncommu­
tative information") with dynamics. From a physical point of view the information 
referred to here is the information an observer has regarding the state of the physical 
system in question, while the dynamics describes the time-evolution of the system. 
The mathematics then suggests an interpretation of quantum mechanics in terms of 
the idea of noncommutative information, which clarifies several conceptual problems 
surrounding the measuring process. This interpretation is discussed in Section 1.6. 

As is implied above, our view of statistical mechanics is as a description of situ­
ations where we have incomplete information about the state of a physical system 
(quantum or classical). In practice this is generally the case) since exact measure­
ments are impossible, except for some simple quantum systems whose observables _ 
have discrete values which are separated enough to be distinguished by our measure­
ments. If ~n observable has a continuous spectrum of values, then the best we can 
hope for when measuring the observable, is to obtain an interval of values containing 
the "actual" value of the observable ( if we do not measure an observable of a quan­
tum system exactly, then it does not really make sense to say that the observable 
has an actual precise value, unlike in classical mechanics where it is possible to think 
of an observable as having an exact value, even if we did not measure it exactly). 
For classical mechanics the most important observables (like energy, momentum and 
position) are not discrete but continuous, the major exception being the "number 

 
 
 



7 0.2. INTRODUCTION 

of particles" which is important in the statistical mechanics of large systems, but 
usually not exactly determinable, simply because in this case there is typically a 
huge number of very small particles involved. For this reason we view the statistical 
nature of physics as fundamental, even for classical mechanics. Mathematically, the 
case where we do have complete information is simply a special case of statistical 
mechanics , and hence is covered by our work. We will therefore usually refer simply 
to "mechanics" (quantum or classical), rather than "statistical mechanics". When 
we do use the term "statistical mechanics" , it will be in the traditional sense, namely 
to refer to large systems where there are too many parts (usually small particles) 
for each to be measured individually (so we do not know the position, momentum 
and so on of each particle). In this case only a small number of parameters referring 
to the system as a whole (or to pieces of the system much larger than its individual 
parts) can in practice be measured , for example the temperature, volume, mass and 
pressure of a gas confined to some container. 

Having set up a unified framework for quantum and classical mechanics, we pro­
ceed to consider recurrence and ergodicity. These concepts originated respectively in 
Poincare's work on celestial mechanics and in Boltzmann's work on classical statis­
tical mechanics, and now form part of what is known as ergodic theory. We want to 
study recurrence and ergodicity in our unified framework for mechanics to gain some 
insight into the properties of quantum mechanics as opposed to classical mechanics. 

The notion of Poincare recurrence in classical mechanics is quite well-known. 
Roughly it means that within experimental error a classical system confined to a 
finite volume in phase space will eventually return to its initial state. This happens 
because of Liouville's Theorem, which states that Lebesgue measure is invariant un­
der the Hamiltonian flow in the phase space ]R2n . Ergodicity in classical mechanics 
refers to the situation where for every observable and (almost) every pure state of a 
system, the time mean of the observable (for that pure state) is equal to its average 
value on the constant energy surface containing the pure state, in which case the 
system is called ergodic. Again Liouville's Theorem is an implicit ingredient , since it 
induces a time-invariant measure on the constant energy surface (see Remark 3.2.8 
for a b;ief discussion). It should be noted that ergodicity is of some importance in 
physics, since it forms the starting point of many developments of statistical me­
chanics (see for example [Rue, Section l.1]). To study recurrence and ergodicity in 
quantum mechanics, we can expect from these remarks that we will need a quan­
tum mechanical analogue of Liouville's Theorem. V\,Te propose such an analogue in 
Section l.7 of Chapter I, and in the process we are naturally led to consider finite 
von Neumann algebras. 

Recurrence does in fact occur in quantum mechanics. One approach to recurrence 
in quantum mechanics has been through the theory of almost periodic functions (see 
for example [BL], [HH] and [Perc]). Another line of research, involving coherent 
states, along with possible applications of quantum recurrence, can be traced in 
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[SLB] and references therein. However, these methods differ considerably from the 
measure theoretic techniques employed to study recurrence in classical mechanics. 
In Section 3.1 of Chapter 3 we will see how recurrence (in a probabilistic sense) 
in quantum mechanics can be cast in a mathematical form that looks the same as 
the classical case, using our unified formulation of mechanics. More precisely, the 
quantum case is a noncommutative extension of the classical case. 

The mathematical aspects ofrecurrence and ergodicity is the subject of Chapter 
2, where one clearly sees that these concepts are not really measure theoretic in 
nature, as it might seem from numerous books (for example [Pet] and [WaD, but 
rather *-algebraic, with the basic tools being some Hilbert space techniques. The 
idea is to study recurrence and ergodicity in the most general mathematical setting 
possible. This then includes our unified framework for mechanics as a special case. 
In Chapter 3 we look at a few physical aspects of recurrence and ergodicity, including 
some speculation on the relevance of these ideas in quantum mechanics. 

The original inspiration for this thesis came from [NSZ], where recurrence is 
studied in a C* -algebraic framework from a purely mathematical point of view. The 
work presented here is for the most part based on [D2], [D3] and [DS]. 
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