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CHAPTER 8

GENERAL DISCUSSION

This investigation demonstrated that wheat cultivars differ in grain yield, components of yield,

grain nitrogen content, grain protein yield, grain protein content, flour yield, loaf volume and in

bread-making quality characteristics as a result of varying soil fertility situations.  The four

wheat cultivars tested generally reacted similarly across the range of soil nutrient regimes. 

However, significant interactions between cultivar and soil fertility were observed for grain

yield, number of grains, mean kernel mass, aboveground biomass, grain protein yield, grain

protein content, flour yield and mixograph water absorption, showing differential cultivar

reaction.

The effects of long-term NK, NP, PK, NPK and NPK with manure application on yield, yield

components and grain quality characteristics were quantified.  The hypothesis that wheat

cultivars differ in their ability to produce yield and quality under varying or limited soil

fertility situations was proven. The hypothesis that tillers affect grain protein content to a

greater degree than their contribution to grain yield was disproved.  The data indicated that

grain protein content of main stems and tillers, as well as grains in different floret positions in

the spikelet, did not differ significantly.   Fertilization, particularly of the macro-nutrients

nitrogen, phosphorus and potassium, is a major input in wheat production, affecting yield and

quality (Fischer, 1989; FAO, 1992; Bacon, 1995).  Exploiting differences in nutrient

utilization efficiency is a strategy  on which to focus in the future (Arnon, 1974; Clarkson &

Hannon, 1980; Fischer, O'Brien & Quail, 1989).  Wheat cultivars with the potential to utilize

limited soil nutrients may be important in South Africa and other areas with relatively
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infertile soils.  For example, the ability of Kariega to produce better than the other three

cultivars in the K limiting soil fertility situation deserves further investigation.  This may be

due to Kariega being able to obtain potassium more efficiently from the soil or to lower

requirements at the functional sites.  This observation may serve as a motivation for

deliberate selection of wheat cultivars efficient in nutrient utilization for sustained

productivity.

Several authors have reported differential responses for various nutrients in maize, rice, rye, oats

and barley (Roberts, Weaver & Phelps, 1972; Wilkes & Scarisbrick, 1974; Mullins & Coffey,

1975; Haag, Adams & Wiersman, 1978).  Rice cultivars with differential response to N, P and

K have been reported by Fageria, Wright & Baligar (1988) and Fageria (1989).  Rye is reported

to be more nutrient efficient than other cereals (Nuttonson, 1958; Graham, 1984). Different

responses of tomatoes and maize genotypes to N and K are inherited (Clark, 1982). Selection of

plants with improved P utilization may be due to plants with root systems capable of

intercepting more soil phosphorus, producing large quantities of dry matter and having low

metabolic P requirements (Goodwin & Wilson, 1976; Gabelman & Gerloff, 1982; Fageria,

1989). Heritabilty estimates for P or K nutrient utilization efficiency are high but vary with each

crop species (Epstein, 1972; Cooke, 1987; Gabelman & Gerloff, 1982). Data on genetics of

nutrient utilization variation are still scarce, but evidence exists of single-gene control of micro-

nutrient efficiency factors (Graham, 1984). Breeding for nutritional efficiencies is justified in

the context of reducing the cost of fertilizer application and environmental pollution

(Loneragan, Snowball & Robson, 1976; Graham, 1984).  In wheat and rice efficiency of

translocation  of N from vegetative to reproductive parts during maturation have been

responsible for a higher harvest index (Fischer, 1981; Graham, 1984). Identifying wheat

genotypes or cultivars, which are efficient in K utilization and uptake may increase yield and

quality.  This study has indicated that wheat cultivars differ in
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their utilization of P and K.  These differences point to the strategic importance in breeding and

selection for wheat genotypes efficient in nutrient utilization.

Data presented in this thesis indicated that the magnitude of compensation between yield

components was relatively small.  For example, a decrease in number of spikes per m2 was not

adequately compensated for by either grains per spike or kernel mass.  Each yield component

varied comparatively independently of the others, in agreement with results reported by other

researchers (Willey & Holliday, 1971; Gallagher & Biscoe, 1978; Gales, 1983; Hay & Walker,

1989).  While no single yield component was predominant in determining yield, number of

grains per unit area (a composite component) was highly correlated (r2 = 0.95) with grain yield. 

Evans (1989) argued that components of yield are inter-dependent to a greater or lesser degree,

and that greater number of spikes per unit area is counteracted by a smaller number of grains per

spike.  The polygon representation of yield and some yield component data (Figure 8.1) shows

that the higher grain yield of the cultivar Carina was associated with high number of ears per

unit area, spikelets per ear, grains per ear, aboveground biomass production and duration of

grain-filling period as indicated by time between anthesis and maturity.  The lower yield of SST

86 was due to the low number of ears, low number of spikelets, low grain number and low

biomass yield.

In general, results indicated that differences among cultivars in grain yield (Chapter 2), grain

protein content and bread-making quality (Chapter 5) occurred mainly in plots low in N, P or K.

Significant cultivar x soil fertility interactions were observed for grain yield and some

components of yield, biomass and harvest index showing differential cultivar reaction.  These

results show that in breeding, selection and evaluation the soil fertility conditions should be

borne in mind.
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The cultivars studied differed in aboveground biomass, harvest index and in ear:vegetative dry-

mass ratio with varying soil fertility situations (Chapters 2 and 6).  Yield increases have been

attributed to genotypic improvements of dry-mass distribution, ear growth rates and

phenological developmental pattern from studies comparing old and modern wheat and barley

varieties (Austin, Bingham, Blackwell, Evans, Ford, Morgan & Taylor, 1980; Hucl & Baker,

1987; Loss, Kirby, Siddique & Perry, 1989; Perry & D�Antuono, 1995; Siddique, Kirby &

Perry, 1995).  My data indicated cultivar differences in dry-matter allocation to the ear, and that

ear dry weight was positively correlated (r2 = 0.65) to cultivar grain yield.  Other studies have

shown that increases in potential grain yield have resulted from improvement of the harvest

index (Donald & Hamblin, 1976; Austin et al., 1980; Blum, 1989).  My study extended the

concept of harvest index to the individual shoots of a wheat plant.  The data indicated that

individual wheat ears differ in source-sink potential and partitioning of assimilates to the grain. 

This may be important in the identification of cultivars efficient in nutrient utilization and

improved grain yield.

Few studies have been specifically focused on individual kernel mass and grain protein content

by relative floret positions in the spikelet (Briggs, 1991;  Gan & Stobbe, 1995).  Data obtained

during this study is rarely available because data collection is tedious.  Nevertheless such

information is valuable in crop yield modelling, and may have future benefits in management

strategies for maximum yield and quality.  Bulman & Smith (1993) reported on the stable nature

of main stem ear yield components, and on the relatively small contribution of tillers to grain

yield of spring barley.  Gan & Stobbe (1995) reported that main stem grain yield was relatively

uniform, but tiller yield was highly variable in spring wheat. Briggs (1991) reported that

approximately 50% of a plant's productivity in total grains and kernel biomass was produced by

the first spike (MS) and 80-90% by the first two spikes (MS and T1).  Our data indicated that
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main stems (MS) contributed 69%, first tillers (T1) 25%, second tillers (T2) 4% and the

remaining tillers 2% of the mean yield per unit area, depending on cultivar and growing

situation.  On average, main stems accounted for 52% of the total fertile ear number per unit

area, first tillers 30% and the second tillers 14%, and lower order tillers 4%.

Increasing soil fertility status increased number of main stems, first tillers and second tillers,

grain number and hence grain yield and grain protein content.  The relative kernel size and grain

protein content in the spikelet was not affected by varying fertility.  Variability in soil fertility

and type are known to have a greater impact on crop yield and quality than other production

factors (Carr, Jacobsen, Carlson & Nielsen, 1992).

The four South African wheat cultivars varied significantly in grain quality characteristics.  A

correlation analysis showed that grain protein content accounted for 65% of the variation in

bread-making potential.  Positive correlations between grain protein content and loaf volume

have been reported (Payne, Holt, Jackson & Law, 1984; Blechl & Anderson, 1998).

Evidence from this study shows that grain protein yield, grain protein content and loaf volume

increased with increasing soil fertility and was affected by both wheat cultivar and soil fertility. 

Several workers have reported increased grain protein content by applying N fertilizer (Dubetz,

1972; Moss, 1973; Laubscher, 1981; Strong, 1986; Carr et al., 1992), and breeding and

selection for nutrient use efficiency (Noaman, Taylor & McGuire, 1987; Fischer, 1989).  In

addition, the interface between actual field nutrient status, cultivar productivity and product

characteristics as affected by soil fertility situations were demonstrated (Metho, Taylor,

Hammes & Randall, 1999; Chapter 5).

The good performance by the cultivar Kariega in the K and P limiting soil fertility situations
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(Chapters 3 and 6) and its high loaf volume potential is probably genetic.  It is concluded that

wheat genotypes and varying soil fertility situations affect bread-making quality characteristics.

Further investigation focusing on the variability in loaf volume between cultivars is suggested. 

For example, information on the relative amounts and quality of the HMW-GS and end-use

quality may contribute to the understanding of the variability that exist in loaf volume between

wheat genotypes not attributed to grain protein content.

Temperature, photoperiod and vernalization responses of the four wheat cultivars were

investigated in the growth chamber experiment.  Long, cool days (13:11 hr/15-5 0C treatment)

produced higher grain yield, grain number, larger mean kernel mass and higher grain protein

content.  In contrast, the short, warm days (11:13 hr/20-15 0C) resulted in poor performance.

Understanding the effects of photoperiod, temperature and vernalization on local wheat

cultivars is important for selection, climatic adaptation and yield improvement.

The quantitative information obtained in this study should be of value for crop modelling,

especially in wheat yield and quality modelling.  In the future, growth models based on the

plant�s physiological responses will have universal applicability compared to statistical models

which are largely site-specific (Sinclair & Amir, 1992; Aggarwal et al., 1994). Modelling offers

the opportunity to integrate and account for different factors, in addition to acting as a tool for

greater understanding of the responses observed experimentally (Sinclair & Amir, 1992;

Aggarwal et al., 1994).  This is illustrated by the Crop Environmental Resource Synthesis,

CERES-Wheat model which forms the basis of the International Benchmark Sites Network for

Agrotechnology Transfer, IBSNAT (Uahera, 1985; Ibsnat, 1989).

In my view, and supported by the experience of this research project a wheat plant is able to
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sense its environment and to adapt its growth and development accordingly, on a continuous

basis not yet fully understood.  The unravelling or unlocking of this wheat-environment sensor

mechanism may be key to accurate modelling of wheat growth, development, yield and grain

quality in future.
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