
Chapter 5

The heat equation

The material collected in the previous chapters enable us now to study the heat equation

∂u

∂t
−∆u = f in Ω (5.0.1)

appended with the initial condition

u(x, 0) = 0, x ∈ Ω (5.0.2)

and the boundary condition

u(x, t) = 0 on ∂Ω× (0,+∞). (5.0.3)

The investigation deals with two main steps. The first step is the quantitative and some

particular qualitative analysis (section 5.1). The second step deals exclusively with the

qualitative analysis regarding the regularity and the corner singularity of the solution (section

5.2).

5.1 Well-posedness and tangential regularity

In the heat equation and generally in parabolic problems, the time variable ”t” plays a special

role compared to the space variable ”x”. We will reflect the different roles of these variables

by separating them as follows in the Sobolev spaces where the solution lives. For a function

v : (x, t) ∈ Ω × (0,+∞) → v(x, t) ∈ R, we write v(t) ≡ v(·, t) : Ω → R, v(t)(x) = v(x, t)

and v(x) ≡ v(x, ·) : (0,+∞) → R, v(x)(t) = v(x, t) when the variables t and x are fixed,
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respectively. The definitions and the comments below can be found in Lions and Magenes

[39] though Ω is a polygon in our case.

Definition 5.1.1. Given two integers r ≥ 0 and s ≥ 0, we denote by Hr,s(Ω× (0,+∞)) the

anisotropic Sobolev space defined by

Hr,s(Ω× (0,+∞)) := L2 ((0,+∞), Hr(Ω)) ∩Hs
(
(0,+∞), L2(Ω)

)
and equipped with the Hilbert structure via the norm

‖v‖Hr,s(Ω×(0,+∞)) :=

[∫ +∞

0

(
‖v(·, t)‖2

r,Ω +
s∑
j=0

‖∂
jv(·, t)
∂tj

‖2
0,Ω

)
dt

] 1
2

.

Remark 5.1.2. Notice that H0,0(Ω× (0,+∞)) = L2(Ω× (0,+∞)) = L2((0,+∞), L2(Ω)).

The following subspaces of Hr,s(Ω× (0,+∞)) will be used from time to time:

•
Hr,s

0, (Ω× (0,+∞)) := L2 ((0,+∞), Hr
0(Ω)) ∩Hs

(
(0,+∞), L2(Ω)

)
;

This is characterized as the closure in Hr,s(Ω× (0,+∞)) of the subspace of functions

which are equal to zero in a neighborhood of the set Γ× (0,+∞);

•
Hr,s
,0 (Ω× (0,+∞)) := L2 ((0,+∞), Hr(Ω)) ∩Hs

0

(
(0,+∞), L2(Ω)

)
,

which is also the closure in Hr,s(Ω × (0,+∞)) of the subspace of functions that are

equal to zero near t = 0 and t =∞;

•
Hr,s

0,0(Ω× (0,+∞)) := Hr,s
0, (Ω× (0,+∞)) ∩Hr,s

,0 (Ω× (0,+∞)) ,

which is the closure in Hr,s(Ω×(0,+∞)) of the space D(Ω×(0,+∞)) of test functions;

•
H̃r,s(Ω× (0,+∞) := L2 ((0,+∞), Hr(Ω)) ∩ H̃s

(
(0,+∞), L2(Ω)

)
,

where H̃s ((0,+∞), L2(Ω)) is the space of functions v ∈ Hs ((0,+∞), L2(Ω)) such that

their extension ṽ by zero outside (0,+∞) belong to Hs(R, L2(Ω)). Notice that

Hr,s
,0 (Ω× (0,+∞)) ⊂ H̃r,s(Ω× (0,+∞)).
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In what follows in this section, we consider the well-posedness of the boundary value

problem associated with the heat operator and the tangential regularity of its solution.

Though these results are classical, we give the proofs in detail for convenience. (See Lions

and Magenes [38]).

Theorem 5.1.3. Under the assumption f ∈ L2 [(0,+∞), L2(Ω)] ≡ L2((0,+∞) × Ω), there

exists a unique variational solution

u ∈ H̃1,1
0, (Ω× (0,+∞)) (5.1.1)

of the heat equation (5.0.1)-(5.0.3) such that

‖u‖H̃1,1
0, (Ω×(0,+∞)) ≤ C‖f‖0,Ω×(0,+∞). (5.1.2)

In other words, the solution

u ∈ L2
[
(0,+∞), H1

0 (Ω)
]

(5.1.3)

satisfying

‖u‖L2[(0,+∞),H1
0 (Ω)] ≤ C‖f‖0,Ω×(0,+∞). (5.1.4)

is also tangentially regular in the sense that

u ∈ H̃1
[
(0,+∞), L2(Ω)

]
which is the optimal differentiability smoothness in the time variable ”t”, such that

‖u‖H̃1(0,+∞),L2(Ω) ≤ C‖f‖0,Ω×(0,+∞). (5.1.5)

Proof. The fact that f ∈ L2 [(0,+∞), L2(Ω)] implies that f is a vector-valued distribution,

f ∈ D′(L2(Ω)), such that, for ξ ≥ 0, e−ξtf̃ ∈ S ′(L2(Ω)) is a vector-valued tempered distri-

bution. (see Definition 2.5.14 and 2.5.23). Therefore, it is natural to look for a solution u of

(5.0.1)-(5.0.3) which is a vector-valued distributions u ∈ D′(L2(Ω)). We proceed by necessary

conditions and assume that a solution u ∈ D′(L2(Ω)) exists such that for p = ξ + iη ξ ≥ 0,

we have e−ξtu ∈ S ′(L2(Ω)).

Since f ∈ L2 [Ω× (0,+∞)] = L2 [(0,+∞), L2(Ω)], Proposition 2.5.36 implies that its
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Laplace transform f̂(·, p) exists for Re(p) ≥ 0, with more precisely f̂(·, p) belonging to the

Hardy-Lebesgue space: f̂(p) ∈ H2 [0;L2(Ω)].

For the class of solutions we are interested in, Definition 2.5.32 guarantees the existence

of the Laplace transform û(p). Therefore, taking the Laplace transform of the distributional

equation (5.0.1)-(5.0.3) leads to the Helmholtz problem

−∆û+ p û = f̂ in Ω (5.1.6)

û = 0 on ∂Ω. (5.1.7)

We now make use of the results established in chapters 3 and 4 about the Helmholtz problem.

Firstly, since f̂(p) ∈ L2(Ω) for Re(p) ≥ 0, Theorem 3.1.7 guarantees that there exists a

unique variational solution

û ∈ H1
0 (Ω, 1 + |p|)

of (5.1.6)-(5.1.7) satisfying the relation

‖û(p)‖1,Ω,1+|p| ≤ C‖f̂(p)‖2
0,Ω (5.1.8)

From (5.1.8) and the fact that f̂(p) ∈ H2 [0;L2(Ω)], we deduce

sup
ξ>0

(∫ ∞
−∞
‖û(·, ξ + iη)‖2

1,Ω,1+|p|dη

)
≤ C sup

ξ>0

(∫ ∞
−∞
‖f̂(·, ξ + iη)‖2

0,Ωdη

)
< +∞. (5.1.9)

Secondly, the function p  û(p) is holomorphic in the complex region Re(p) ≥ 0 since

f̂(p) enjoys this property and the operator −∆+p, is analytic hypo-elliptic (Theorem 2.5.38).

Thus

û(p) ∈ H2
[
0;H1

0 (Ω)
]
.

In the third step, we use the conclusion of the second step, which enables us to apply the

Paley-Wiener theorem (Theorem 2.5.37): there exists a function

v ∈ L2
[
(−∞,+∞);H1

0 (Ω)
]
, with v(·, t) = 0 for t < 0

94

 
 
 



and

v̂(p) = û(p) for ξ = Re(p) ≥ 0.

By injectivity of the Laplace transform, we have u = v. This proves (5.1.3).

In the fourth step, we take p = iη in (5.1.8) and integrate both sides, to obtain∫ ∞
−∞

[
‖∇û(iη)‖2

0,Ω + (1 + |η|)2‖û(iη)‖2
0,Ω

]
dη ≤ C

∫ ∞
−∞
‖f̂(iη)‖2

0,Ωdη. (5.1.10)

Using the Plancherel-Parseval theorem, the relation (5.1.10) leads to∫ ∞
−∞

[
‖∇u(t)‖2

0,Ω + ‖u(t)‖2
0,Ω + ‖∂u(t)

∂t
‖2

0,Ω

]
dt ≤ C

∫ ∞
−∞
‖f(t)‖2

0,Ωdt. (5.1.11)

The relation (5.1.11) implies in particular that

u ∈ H1
[
(−∞,+∞);L2(Ω)

]
.

By the Sobolev embedding theorem, valid for vector-valued Sobolev spaces, the space

H1
[
(−∞,+∞);L2(Ω)

]
is continuously embedding in C0 [(−∞,+∞);L2(Ω)]. Therefore u(0) = 0 because u(t) = 0

for t < 0. Consequently u satisfies the inclusion (5.1.1) and the relation (5.1.11) leads to

(5.1.2), (5.1.4), (5.1.5).

Conversely, if we do not start from a solution u ∈ D′(L2(Ω)) such that e−ξtu ∈ S ′(L2(Ω))

for ξ ≥ 0, we consider the Helmholtz problem in (5.1.6)-(5.1.7) where û is unknown. All

the arguments following (5.1.7) remain valid and lead to the existence of a unique solution

satisfying (5.1.1)-(5.1.5). The theorem is proved.

Remark 5.1.4. It can be shown that u ∈ H̃1,1
0, (Ω× (0,+∞)) obtained in Theorem 5.1.3 is

the only function of this class such that, for t > 0,∫
Ω

[
∂u

∂t
(x, t)v(x) +∇xu(x, t)∇xv(x)

]
dx =

∫
Ω

f(x, t)v(x)dx, ∀v ∈ H1
0 (Ω). (5.1.12)

Equation (5.1.12) is the variational formulation of the heat problem (5.0.1)-(5.0.3). For the
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study of the variational problem (5.1.12), we refer the reader to [37].

5.2 Regularity and singularities of the solution

In section 5.2, we assumed that the domain Ω has a boundary ∂Ω ≡ Γ of class C2 in the

sense of Definition 2.1.1. For the problem (5.1.6)-(5.1.7), the relation (5.1.8) combined with

Theorem 3.2.2 regarding the regularity of the solution of this problem implies that we have

the estimate ∑
|α|=2

‖Dαû(iη)‖2
0,Ω + ‖∇û(iη)‖2

0,Ω + ‖û(iη)‖2
0,Ω ≤ C‖f̂(iη)‖2

0,Ω. (5.2.1)

By the Plancherel-Parseval theorem and the fact that u(t) = 0 for t ≤ 0, we have

∫ +∞

0

∑
|α|=2

‖Dαu(t)‖2
0,Ω + ‖∇u(t)‖2

0,Ω + ‖u(t)‖2
0,Ω

 dt ≤ C

∫ +∞

0

‖f(t)‖2
0,Ωdt. (5.2.2)

Consequently, we have proved the following regularity result:

Theorem 5.2.1. Under the assumption that the domain Ω has a boundary of class C2, the

solution u of the heat equation obtained in Theorem 5.1.3 is regular in the sense that

u ∈ H̃2,1 (Ω× (0,+∞))

such that

‖u‖H̃2,1(Ω×(0,+∞)) ≤ C‖f‖0,Ω×(0,+∞).

The non-smooth case addresses the study of the regularity and singularity of the solution

of the heat equation specifically in the polygonal domain. The result reads as follows:

Theorem 5.2.2. Let Ω be a bounded open polygonal subset of R2 with only one non-convex

vertex of interior angle ω > π, f ∈ L2 (Ω× (0,+∞)) and u the solution of the heat equation

given in Theorem 5.1.3. Then there holds the singular decomposition

u = uR + [K ∗t φ(r, t)] r
π
ω sin

π

ω
θ (5.2.3)
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where:

• The function

uR ∈ H̃1,1
0, (Ω× (0,+∞)) ∩ H̃2,1 (Ω× (0,+∞))

is the regular part;

• The function

K ∈ H̃ 1
2
− π

2ω (0,+∞)

is the ”coefficient” of singularity;

• The function φ(r, t) is a regularizing kernel family to be specified shortly in the proof;

• The symbol ∗t represents the convolution in the variable t.

Moreover, we have the estimate

‖uR‖H̃2,1(Ω×(0,+∞)) + ‖K‖
H̃

1
2−

π
2ω (0,+∞)

≤ C‖f‖0,Ω×(0,+∞). (5.2.4)

Proof. By performing the Laplace transform of vector-valued distributions, (5.0.1)-(5.0.3)

becomes the Helmholtz problem (4.1.1) or (5.1.6)-(5.1.7) where w(p) = û(p) and g(p) = f̂(p).

We use extensively the notation in Theorem 4.3.4. Let δ0 > 0 be as in Theorem 4.3.4 where

we take ξ = 0 i.e. p = iη. From this theorem we define

wR(iη) :=


w1
R(iη) if |η| ≤ δ0

w2
R(iη) if |η| > δ0,

B(iη) :=


B1(iη) if |η| ≤ δ0

B2(iη) if |η| > δ0,

and

M(r, iη) :=


ψ(r) if |η| ≤ δ0

ψ(r
√
|η|) if |η| > δ0.
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Here and after, for the purpose of Remark 5.2.3 below, the cut-off function ψ is considered

to be slightly different from the previous one in (4.1.3) in the sense that ψ ≡ ψ(r) ∈ C∞0 (R)

is an even function satisfying ψ(r) = 1 if r ≤ δ0 and
∫
Rt F

−1{ψ(
√
|η|)}(t)dt = 1, where F−1

is the inverse Fourier transform.

Since the function η !
√

1 + |η| is equivalent to the function η !
√
|η| for |η| > δ0

and to the constant function η → 1 for |η| ≤ δ0, then the two parts of Theorem 4.3.4 can be

combined as

w(iη) = wR(iη) +B(iη)M(r, iη)r
π
ω sin

π

ω
θ (5.2.5)

with

‖wR(iη)‖
2, Ω,
√

1+|η| + |B(iη)|(1 + |η|) 1
2
− π

2ω ≤ C‖g(iη)‖0,Ω. (5.2.6)

Notice that the estimate (5.2.6) is valid if iη is replaced by p = ξ + iη with ξ ≥ 0

in the reasoning above. This shows that in terms of the Hardy-Lebesgue space wR(p) ∈
H2(0, L2(Ω)) and B(p) ∈ H2(0). Denote by uR(t), K(t) and φ(r, t) the inverse Fourier

transform of wR(iη), B(η) and M(r, iη), respectively. From (5.2.6), the Plancherel-Parseval

theorem and Paley-Wiener Theorem 2.5.37 yield

uR ∈ H̃2,1 ((Ω× (0 +∞)) and K ∈ H̃ 1
2
− π

2ω (0,+∞)

with the decomposition (5.2.3) as well as the estimate (5.2.4).

Remark 5.2.3. The function

φ(r, t) =
1√
2π

∫ +∞

−∞
eitηM(r, iη)dη

is a regularizing kernel family in the following sense ([46] Lemma 2.20, [19] and [54]). If

K(t) ∈ Hs(R), then:

• φ(r, t)∗tK(t) ∈ C∞(R) such that φ(r, t)∗tK(t) ∈ C∞0 (R) if K(t) has a compact support,

• φ(r, t) ∗t K(t) converges to K(t) in Hs(R) as r → 0.

An alternative proof of Theorem 5.2.2 can be found in [30] and [31] where the kernel

φ(r, t) is replaced by φ(r, t) = 1√
t
e
−r2
4t t > 0.
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For the function w(p) ≡ û(p), which is the solution of the problem (5.1.6)-(5.1.7) and

which admits the singular decomposition (5.2.5) and (5.2.6), Theorem 4.4.4 applies. Thus

û(p) ∈ H2,β(Ω), for 0 < β < 1− π
ω

, such that

‖û(iη)‖H2,β(Ω) ≤ C‖f̂(iη)‖0,Ω. (5.2.7)

Applying the Plancherel-Parseval Theorem, combined with the tangential regularity in The-

orem 5.1.3, we obtain the following global regularity result for the heat equation, which as

mentioned earlier, is one of our main contributions in which the numerical approach is based.

The result was announced in [14] and [13].

Theorem 5.2.4. Let Ω and f be as in Theorem 5.2.2. For 0 < β < 1− π
ω

and the solution

u in Theorem 5.1.3, we have the inclusion

u ∈ H̃2(β),1 (Ω× (0,+∞)) ∩ H̃1,1
0, (Ω× (0,+∞))

such that

‖u‖H̃2(β),1(Ω×(0,+∞)) ≤ C‖f‖0,Ω×(0,+∞),

where

H̃2(β),1 (Ω× (0,+∞)) := L2
(
(0,+∞), H2,β(Ω)

)
∩ H̃1

(
(0,+∞), L2(Ω)

)
.

Remark 5.2.5. More tangential regularity can be achieved on the solution u by assuming

such regularity on the datum f . More precisely, if f ∈ H̃s [(0,+∞);L2(Ω)], s ≥ 0 an integer,

then

u ∈ H̃s+1
[
(0,+∞);L2(Ω)

]
∩ L2

[
(0,+∞);H2,β(Ω) ∩H1

0 (Ω)
]
.

In [39] and [46] the datum is taken such that f ∈ H̃s−1, s−1
2 (Ω × (0,+∞)) in order to have

u ∈ H̃1, s+1
2 (Ω× (0,+∞)) and uR ∈ H̃s+1, s+1

2 (Ω× (0,+∞)) for the regular part in Theorem

5.2.2. In this case, we need to consider a weighted Sobolev space Hs+1,β(Ω) of higher order

like in [42] for the global regularity.

Remark 5.2.6. If Ω is convex i.e. ω < π in Theorem 5.2.2, then we take β = 0 in Theorem

5.2.4, which means that u has the classical optimal smoothness property.

99

 
 
 



Chapter 6

Some numerical approximations

In the previous chapters, we obtained the solution u ∈ L2 [(0,+∞);H1
0 (Ω)] of the heat

equation (5.0.1)-(5.0.3) as the inverse Fourier transform of the variational solution û ≡ û(p)

of the Helmholtz problem (5.1.6)-(5.1.7), which satisfies: û ∈ H1
0 (Ω)∫

Ω

[∇û ∇v̄ + p û v̄] dx =

∫
Ω

f̂ v̄ dx, p = ξ + iη, ξ ≥ 0, ∀v ∈ H1
0 (Ω). (6.0.1)

In this chapter, we consider the discrete counterpart of this procedure. More precisely,

to the discrete solution of (6.0.1), we apply the inverse Fourier transform to generate an

approximate solution of the heat equation. This is done in three steps each of which deals

specifically with two cases: smooth and non-smooth solutions. The first step (section 6.1)

is a semi-discrete method where the finite element method is used in the space variable,

while the time variable remains continuous. The second step (section 6.2) is a fully discrete

method with Fourier discretization in time and finite element approximation in space. For

the next step (section 6.3), the finite element approximation in space is maintained while

the standard and non-standard finite difference methods are used in the time variable. The

last part, (section 6.4) provides numerical experiments.

6.1 Semi-discrete finite element method

We assume that Ω in (6.0.1) is a polygon. Throughout this section, we assume further that

the polygon Ω is convex. Let (Th)h>0 be a regular family of triangulations of Ω̄ consisting of

compatible triangles T with exterior diameter hT ≤ h and interior diameter ρT . Thus there
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exists a constant σ > 0 such that

hT
ρT
≤ σ, ∀ T ∈ ∪h>0 Th (6.1.1)

or equivalently, there exists θ0 > 0, such that

θT ≥ θ0, ∀ T ∈ ∪h>0 Th (6.1.2)

where θ is the smallest angle of the triangle T . With each Th, we associate the finite element

space Vh of continuous piecewise linear functions that are zero on the boundary:

Vh :=
{
vh ∈ C0(Ω̄); vh|∂Ω = 0, vh|T ∈ P1, ∀T ∈ Th

}
(6.1.3)

where P1 is the space of polynomials of degree less than or equal to 1. It is well-known that

Vh is a finite-dimensional subspace of the Sobolev space H1
0 (Ω).

The finite element method (FEM) for the problem (6.0.1) reads as follows: find ûh ≡
ûh(p) ∈ Vh, solution of∫

Ω

[∇ûh ∇v̄h + p ûh v̄h] dx =

∫
Ω

f̂ v̄h dx, ∀vh ∈ Vh. (6.1.4)

Our standard references for all concepts concerning the classical finite element method are

[16], [57].

By the generalized Lax-Milgram lemma (Theorem 3.1.1), there exists a unique solution

ûh ∈ Vh to (6.1.4). As in the continuous case (Theorem 3.1.7), this discrete solution satisfies

the estimate

‖ûh‖2

1,Ω,1+
√
|p|

:= ‖∇ûh‖2
0,Ω + (1 +

√
|p|)2‖ûh‖2

0,Ω ≤ C‖f̂‖2
0,Ω, (6.1.5)

where we recall that C > 0 represent, here and after, various constants that are independent

of the involved arguments and parameters (e.g Fourier arguments, step sizes, etc).

It should be noted that each finite element (T, PT ,ΣT ), where PT = P1(T ) and ΣT =

{ vertices of T}, is affine-equivalent to the reference finite element (T̃ , P̃ , Σ̃) where T̃ is the

unit triangle with vertices Σ̃ = {ã1 = (0, 0), ã2 = (1, 0), ã3 = (0, 1)}, P̃ = P1(T̃ ). This

means that for any T ∈ Th, there exists an invertible affine mapping

FT : x̃ ∈ R2  x = FT (x̃) = BT x̃+ bT ∈ R2 (6.1.6)
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such that

T = FT (T̃ ), ΣT = FT (Σ̃) and PT = {p = p̃ ◦ F−1
T , p̃ ∈ P̃}.

We shall constantly use the notation

ṽ = v ◦ FT and v = ṽ ◦ F−1
T (6.1.7)

relating a function v : x ∈ T  v(x) ∈ R and the associated function ṽ : x̃ ∈ T̃  ṽ(x̃) ∈ R
when considering the affine equivalent finite elements (T, PT ,ΣT ) and (T̃ , P̃ , Σ̃). For such

functions, we have v ∈ Hm(T ) if and only if ṽ ∈ Hm(T̃ ) and there hold the estimates

|v|m,T ≤ C‖B−1
T ‖m|detBT |

1
2 |ṽ|m,T̃ , (6.1.8)

and

|ṽ|m,T̃ ≤ C‖BT‖m|detBT |−
1
2 |v|m,T , (6.1.9)

where the Euclidean norms of the involved matrices are bounded as follows:

‖B−1
T ‖ ≤

√
2

ρT
and ‖BT‖ ≤

√
2hT . (6.1.10)

By Céa’s Lemma (Theorem 2.4.1 in Ciarlet [16]) we have the a priori estimate

‖û− ûh‖2

1, Ω, 1+
√
|p|
≤ C inf

vh∈Vh
‖û− vh‖2

1, Ω, 1+
√
|p|
. (6.1.11)

In what follows, Πh and ΠT denote suitable global and local interpolation operators that

satisfy the relation

(Πhv)|T = ΠTvT ∀T ∈ Th. (6.1.12)

Typically, we consider these to be the Lagrange interpolation operator when the argument

v is of class C0(Ω̄). When the domain of the operator consists of non-smooth functions such

as those in the space H1(Ω), we work with Πh and ΠT as Clément’s regularization operator

([16], [17] [28]). Using the latter operator and Theorem A4 in [28] or Exercise 3.2.3 in [16],
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we have

inf
vh∈Vh

‖û− vh‖2
0,Ω ≤ ‖û− Πhû‖2

0,Ω ≤ Ch2|û|21,Ω. (6.1.13)

Since Ω is convex, the solution û is of class H2(Ω), which by Sobolev embedding theorem

(Theorem 2.4.5) is embedded in C0(Ω̄) and so the Lagrange interpolation operator is used.

Therefore estimating infvh∈Vh ‖∇û−∇vh‖2
0,Ω is reduced to estimating the local interpolation

errors ‖∇û− ΠT û‖2
0,T

because

‖∇û−∇Πhû‖2
0,Ω =

∑
T∈τh

‖∇û−∇ΠT û‖2
0,T . (6.1.14)

We have the following result:

Lemma 6.1.1.

|û− ΠT û|2m,T ≤ Ch4−2m
T |û|22,T , 0 ≤ m ≤ 1.

Proof. The proof of this classical result is reproduced here because the argument will help

us to adjust the non-smooth case. We have

|û− ΠT û|2m,T ≤ C‖B−1
T ‖2m|detBT || ˜û− ΠT û|2m,T̃ by (6.1.8). (6.1.15)

Now for any polynomial p̃ ∈ P1(T̃ ), we have ΠT̃ p̃ = p̃. Thus, we have

| ˜û− ΠT û|2m,T̃ = |˜̂u− ΠT
˜̂u|2
m,T̃

= |(I − ΠT̃ )(˜̂u+ p̃)|2
m,T̃

≤ ‖I − ΠT̃‖2
L(H2(T̃ ),Hm(T̃ ))

‖˜̂u+ p̃‖2
H2(T̃ )

The last inequality is true because the linear operator ΠT̃ : H2(T̃ )→ Hm(T̃ ) is bounded for

0 ≤ m ≤ 1. This implies that

| ˜û− ΠT û|2m,T̃ ≤ C inf
p̃∈P1(T̃ )

‖˜̂u+ p̃‖2
2,T̃
. (6.1.16)

But the norm of the quotient space H2(T̃ )

P1(T̃ )
is equivalent to the associated semi-norm. This
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yields

| ˜û− ΠT û|2m,T̃ ≤ C|˜̂u|2
2,T̃

≤ C‖BT‖4|detBT |−1|û|22,T , (6.1.17)

owing to (6.1.9). Due to (6.1.15) and (6.1.17), we obtain

|û− ΠT û|2m,T ≤ C‖B−1
T ‖2m‖BT‖4|û|22,T . (6.1.18)

Now making use of (6.1.10) and the regularity (6.1.1) of the triangulation, we obtain from

(6.1.18) the desired estimate in the Lemma.

As a consequence of Lemma 6.1.1 as well as of the inequalities (6.1.5), (6.1.11) and (6.1.13)

we have proved the estimate

‖û− ûh‖2

1,Ω,1+
√
|p|
≤ Ch2{|û|22,Ω + (1 +

√
|p|)2|û|21,Ω}

≤ Ch2‖û‖2

2,Ω,1+
√
|p|

≤ Ch2‖f̂‖2
0,Ω, (6.1.19)

the latter inequality being obtained similarly to Theorem 3.2.2. Notice that the Aubin-

Nitsche duality argument (cf. Theorem 3.2.4 in [16]) yields the estimate

‖û− ûh‖2
0,Ω ≤ Ch4‖f̂‖2

0,Ω. (6.1.20)

Using Plancherel-Parseval theorem and the inverse Fourier transform (which works because

the various constants C are independent of the Fourier argument), we have the following

result:

Theorem 6.1.2. Assume that the polygon Ω is convex. Then the semi-discrete solution

uh(t) =
1√
2π

∫ +∞

−∞
eitηûh(iη)dη

of the heat equation (5.0.1)-(5.0.3) is convergent, with optimal error estimate

‖u− uh‖2
0,(Ω×(0,+∞)) + h2‖u− uh‖2

L2[(0,+∞), H1(Ω)] ≤ C h4‖f‖2
0,(Ω×(0,+∞)).
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To deal with the case β > 0, we need the analogue of the arguments used in the classical

case β = 0. The first result is related to that in [23] and reads as follows:

Lemma 6.1.3. On the quotient space H2,β(T̃ )

P1(T̃ )
, the semi-norm,

|v̇|H2,β(T̃ ) =

√∑
|α|=2

‖rβDαv‖2
0,T̃

v ∈ v̇,

is a norm equivalent to the usual norm

‖v̇‖H2,β(T̃ )

P1(T̃ )

= inf
p∈P1(T̃ )

‖v + p‖H2,β(T̃ ). (6.1.21)

Proof. Let {p1, p2, p3} be an orthonormal basis of the space P1(T̃ ) with respect to the inner

product of H2,β(T̃ ). For any p ∈ P1(T̃ ), we have

p =
3∑
i=1

(p; pi)H2,β(T̃ ) pi. (6.1.22)

Firstly, we prove that there exists a constant C > 0 such that for any v ∈ H2,β(T̃ ), we have

‖v‖2
H2,β(T̃ )

≤ C

∑
|α|=2

‖rβDαv‖2
0,T̃

+
3∑
i=1

|(v; pi)H2,β(T̃ )|2
 . (6.1.23)

Assume by contradiction that (6.1.23) is not true. Then for any integer n, there exists

vn ∈ H2,β(T̃ ) such that

‖vn‖H2,β(T̃ ) = 1 (6.1.24)

and

∑
|α|=2

‖rβDαvn‖2
0,T̃

+
3∑
i=1

|(vn; pi)H2,β(T̃ )|2 <
1

n
. (6.1.25)

By the compactness of the embedding H2,β(T̃ ) ↪→ H1(T̃ ) (Theorem 4.4.3) and (6.1.24),

there exists a subsequence (vnj) of (vn) such that (vnj) is convergent in H1(T̃ ), while (6.1.25)

implies that the sequence
(
rβDαvnj

)
, |α| = 2, converges to zero in L2(T̃ ).
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These two facts imply that (vnj) is a Cauchy-sequence in H2,β(T̃ ) and it converges there-

fore to some v ∈ H2,β(T̃ ), which in view of (6.1.24) and (6.1.25) satisfies

‖v‖H2,β(T̃ ) = 1, (6.1.26)

(v, pi)H2,β(T̃ ) = 0, (6.1.27)

‖rβDαv‖0,T̃ = 0 for |α| = 2 and v ∈ P1(T̃ ). (6.1.28)

Using (6.1.22) and (6.1.27), we have v = 0 which is a contradiction to (6.1.26). The estimate

(6.1.23) is therefore proved.

On the other hand, for v ∈ H2,β(T̃ ), let q ∈ P1(T̃ ) be such that

(v + q, pi)H2,β(T̃ ) = 0 for i = 1, 2, 3.

The inequality (6.1.23) applied to v + q yields

inf
p∈P1(T̃ )

‖v + p‖H2,β(T̃ ) ≤ ‖v + q‖H2,β(T̃ ) ≤ C

√∑
|α|=2

‖rβDαv‖L2(T̃ ).

This proves the equivalence of the norms.

The second result reads as follows:

Lemma 6.1.4. ṽ ∈ H2,β(T̃ ) if and only if v ∈ H2,β(T ) with

|ṽ|2
H2,β(T̃ )

≤ C‖BT‖4‖B−1
T ‖2β|detBT |−1|v|2H2,β(T )

and

|v|2H2,β(T ) ≤ C‖B−1
T ‖4‖BT‖2β|detBT ||ṽ|2H2,β(T̃ )

.

Proof. If ṽ ∈ H2,β(T̃ ), then by Definition 4.4.1 and setting from (6.1.7)
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v(x) = (ṽ ◦ F−1
T )(x), ṽ(x̃) = v(FT (x̃)), we have

|ṽ|2
H2,β(T̃ )

=
∑
|α|=2

∫
T̃

|rβ(x̃)Dα(ṽ(x̃))|2dx̃

=
∑
|α|=2

∫
T

|rβ(F−1
T (x))Dαv(FT (x̃))|2|detBT |−1dx

≤ ‖BT‖4|detBT |−1‖B−1
T ‖2β

∑
|α|=2

∫
T

|rβ(x)Dαv(x)|2dx.

The last inequality is due to the fact that
∂2v(FT (x̃))

∂x̃i∂x̃j
=

2∑
p=1, l=1

∂2v(x)

∂xp∂xl
Bl,i
T B

p,j
T

by the chain rule and for any vertex a of T , and x ∈ R2 we have from (6.1.6)

‖F−1
T (x)− F−1

T (a)‖ = ‖B−1
T (x− a)‖ ≤ ‖B−1

T ‖‖x− a‖

and

r(F−1
T (x)) ≤ ‖B−1

T ‖r(x).

Thus

|ṽ|2
H2,β(T̃ )

≤ ‖BT‖4|detBT |−1‖B−1
T ‖2β|v|2H2,β(T ). (6.1.29)

If on the other hand, v ∈ H2,β(T ) then in a similar way, setting ṽ(x̃) = v(FT (x̃)) we have

|v|2H2,β(T ) =
∑
|α|=2

∫
T

|rβ(x)Dαv(x)|2dx

=
∑
|α|=2

∫
T

|rβ(FT (x̃))Dαṽ(F−1
T (x))|2|detBT |dx̃

≤ C‖B−1
T ‖4|detBT |

∑
|α|=2

∫
T̃

|rβ(FT (x̃))Dαṽ(x̃)|2dx̃

because
∂2ṽ(F−1

T (x))

∂xi ∂xj
=

2∑
p=1,l=1

∂2ṽ(x̃)

∂x̃p ∂x̃l
(B−1

T )l,i(B−1
T )p,j by chain rule.

107

 
 
 



Since as above r(FT (x̃)) ≤ ‖BT‖r(x̃), we then have

|v|2H2,β(T ) ≤ C‖B−1
T ‖4‖BT‖2β|detBT ||ṽ|2H2,β(T̃ )

, (6.1.30)

which completes the proof of the Lemma.

We are now in a position to deal with the case when β > 0. Indeed, following the argument

of the classical case, that led to (6.1.16), we have

| ˜û− ΠT û|2m,T̃ ≤ C inf
p∈P1(T̃ )

‖˜̂u+ p‖2
H2.β(T̃ )

.

Then Lemma 6.1.3 implies that

| ˜û− ΠT û|2m,T̃ ≤ C|˜̂u|2
H2,β(T̃ )

. (6.1.31)

Although we are in the non-smooth case, we still use the Lagrange interpolation operator

because the solution belongs to the space H2,β(Ω) which is embedded in C0(Ω̄) (cf. Theorem

4.4.3). The right hand side of (6.1.31) is dealt with by using Lemma 6.1.4, which yields

|˜̂u|2
H2,β(T̃ )

≤ C‖BT‖4‖B−1
T ‖2β|detBT |−1|û|2H2,β(T ). (6.1.32)

Combining (6.1.15), (6.1.31), (6.1.32) and (6.1.10) yield

|û− ΠT û|2m,T ≤ C‖B−1
T ‖2m+2β‖BT‖4|û|2H2,β(T )

≤ Cρ−2m−2β
T h4

T |û|2H2,β(T ).

Using the regularity of the triangulation (6.1.1), we end up with

|û− ΠT û|2m,T ≤ Ch4−2m−2β
T |û|2H2,β(T ). (6.1.33)

The analysis covered so far is valid for the case when the critical vertex (0, 0) which is

responsible for the singularity belongs to T . In the case when (0, 0) /∈ T , we have û ∈ H2(T ).
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Therefore for 0 ≤ m ≤ 1 we have

|û− ΠT û|2m,T ≤ Ch4−2m
T

∑
|α|=2

∫
T

|Dαû|2dx by Lemma 6.1.1

= Ch4−2m
T

∑
|α|=2

∫
T

|rβ(x)Dαû|2r−2β(x)dx

≤ Ch4−2m
T sup

x∈T
r−2β(x)|û|2H2,β(T ). (6.1.34)

At this stage, we require the triangulation (Th) to satisfy the mesh requirement conditions:

hT ≤


Ch

1
1−β , if (0, 0) ∈ T

Ch infx∈T r
β(x), if (0, 0) /∈ T,

(6.1.35)

In view of (6.1.11), (6.1.13) and (6.1.14) which are valid for the non-smooth case, the relations

(6.1.33), (6.1.34) and (6.1.35) imply that

‖û− ûh‖2

1, Ω, 1+
√
|p|
≤ Ch2

{
|û|2H2,β(Ω) + (1 +

√
|p|)2|û|21,Ω

}
≤ Ch2‖û‖2

H2,β(Ω, 1+
√
|p|)

≤ Ch2‖f̂‖2
0,Ω

where the norm of the weighted Sobolev space H2,β(Ω, ρ) is defined in (4.4.2). It should be

noted that the inequality

‖û‖
H2,β(Ω, 1+

√
|p|) ≤ C‖f̂‖0,Ω

used here can be deduced from the proof of Theorem 4.4.4 where this weighted Sobolev space

appeared for the first time. Using the Plancherel-Parseval Theorem and the inverse Fourier

transform together with the Aubin-Nitsche duality argument yield the following result.

Theorem 6.1.5. Assume that the triangulations are refined according to (6.1.35). Then the

semi-discrete solution

uh(t) :=
1√
2π

∫ +∞

−∞
eitηûh(iη)dη
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is such that

‖u− uh‖2
L2[Ω×(0,+∞)] + h2‖u− uh‖2

L2[(0,+∞), H1(Ω)]∩H
1
2 [(0,+∞),L2(Ω)]

≤ C h4‖f‖2
L2[Ω×(0,+∞)].

Remark 6.1.6. The Mesh Refinement Method (MRM) (6.1.3), (6.1.4) and (6.1.35) was

introduced by Babuska [8]. An alternative approach to it is the so-called Singular Function

Method (SFM) introduced initially by Strang and Fix [63]. The SFM consists in replacing

Vh in (6.1.3) by the family of augemented finite element spaces V +
h (p), p = iη, defined by

V +
h (p) = Vh ⊕ span

{
M(r, p)r

π
ω sin

π

ω
θ
}

where M(r, p)r
π
ω sin π

ω
θ is the singular function given in (5.2.5) for the Helmholtz equation.

The SFM for problems with edge singularities is investigated in [43] and [44]. Further con-

tributions on the MRM and SFM can be found in [10].

6.2 Fourier finite element method

From the practical point of view, the semi-discrete finite element method in the previous

section must be coupled with some discretization in the time-variable t, so that we have

a fully discrete method. In this section, we use for the time variable t, the Fourier series

method, which is the backbone of many modern techniques such as the spectral method and

the wavelets method; see for instance [9, 11, 41, 51].

The Fourier-Finite Element method presented here is along the lines of [34] and has been

extensively used in the literature for elliptic problems. (See for instance [35, 44, 41, 50]).

Here, we implement this method for the heat equation, which is a parabolic problem.

The starting point is to consider the Fourier series of the solution u(x, t) and of the datum

f(x, t) for the heat equation (5.0.1)-(5.0.3). More precisely, for x ∈ Ω and t ∈ (0, 2π), we

have the expansions

u(x, t) =
∑
k∈Z

eiktuk(x) and f(x, t) =
∑
k∈Z

eiktfk(x) (6.2.1)

which mean that

lim
N→+∞

‖u− uN‖L2[(0,2π),H1(Ω)] = 0 = lim
N→+∞

‖f − fN‖L2[(0,2π),L2(Ω)]. (6.2.2)
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Here, for N ∈ N,

uN(x, t) :=
∑
|k|≤N

eiktuk(x) and fN(x, t) :=
∑
|k|≤N

eiktfk(x) (6.2.3)

are truncated Fourier series, whereas each uk, k ∈ Z, is the unique variational solution (see

Theorems 3.1.3 and 3.1.7) of the Helmholtz problem (3.1.1)-(3.1.2) with right side fk and

p = ik.

The following estimate between Fourier series and truncated Fourier series is useful (the

beneath properties are available in [11]).

Lemma 6.2.1.

‖u− uN‖0,(Ω×(0,2π)) ≤ C N−1‖u‖H1[(0,2π),L2(Ω)] ≤ C N−1‖f‖0,(Ω×(0,2π)).

Furthermore, we have

‖u− uN‖L2((0,2π),H1(Ω)) ≤ C N−1‖u‖H1((0,2π), H1(Ω))

whenever u ∈ H1 ((0, 2π), H1(Ω)).

Proof. We have

‖u− uN‖2
L2[(0,2π),L2(Ω)] = ‖

∑
|k|≥N

eiktuk(x)‖2
L2[(0,2π),L2(Ω)] by (6.2.1)− (6.2.3)

≤ 1

N2
‖
∑
|k|≥N

eiktikuk(x)‖2
L2[(0,2π),L2(Ω)]

≤ C

N2

∑
|k|≥N

‖ikuk‖2
0,Ω by Plancherel-Parseval theorem

≤ C

N2

∑
k∈Z

‖ikuk‖2
0,Ω

≤ C

N2
‖u‖2

H1[(0,2π),L2(Ω)]

≤ C

N2
‖f‖L2((0,2π), L2(Ω)) by (5.1.4).

The second but the last inequality is due to Plancherel-Parseval Theorem and the fact that

the solution has the tangential regularity H1 [(0, 2π), L2(Ω)].
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Fix N ∈ N. For each k ∈ Z with |k| ≤ N , let uk,h ∈ Vh be the unique solution of the

finite element method (6.1.3)-(6.1.4) in which p = ik. Notice that uk,h is an approximation

of the solution uk of the Helmholtz problem (3.1.1)-(3.1.2) with f̂ inline of g.

The fully discrete solution of interest to us is uNh (x, t) defined as follows:

uNh (x, t) :=
∑
|k|≤N

eiktuk,h(x), x ∈ Ω, t ∈ (0, 2π). (6.2.4)

The quality of the discrete solutions uNh is described in the following result.

Theorem 6.2.2. The discrete solution uNh converges to the exact solution u in L2 [(0, 2π), H1(Ω)]

as N → +∞ and h→ 0.

Proof. The theorem is proved without making use of any smoothness property in the x-

variable of the exact solution u. Let ε > 0 be given. By the convergence of the Fourier

expansion (6.2.2), there exists N0 ∈ N such that for N ≥ N0 we have

‖u− uN‖2
L2[(0,2π),H1(Ω)] <

ε2

2
. (6.2.5)

On the other hand, we have for each N ∈ N

‖uN − uNh ‖2
L2[(0,2π),H1(Ω)] =

∑
|k|≤N

‖uk − uk.h‖2
1,Ω by Plancherel-Parseval Theorem

≤ C
∑
|k|≤N

inf
vh∈Vh

‖uk − vh‖2

1,Ω,
√
|k|

by Cea’s Lemma

≤ C
∑
|k|≤N

‖uk − Πhvk‖1,Ω,
√
|k|

for any v ∈ D (Ω× (0, 2π)) such that vk are Fourier coefficients of v. Thus, using triangular

inequality, interpolation theory in Sobolev spaces and Plancherel-Parseval Theorem, we have

‖uN − uNh ‖2
L2[(0,2π),H1(Ω)] ≤ C

∑
|k|≤N

{
‖uk − vk‖2

1,Ω,
√
|k|

+ ‖vk − Πhvk‖2

1,Ω,
√
|k|

}
≤ C

{
‖u− v‖2

L2[(0,2π),H1(Ω)] + h2‖v‖2
L2[(0,2π),H2(Ω)]

}
.

Since D (Ω× (0, 2π)) is dense in L2 [(0, 2π), H1
0 (Ω)], we can choose

v ∈ D (Ω× (0, 2π)) such that ‖v − u‖L2[(0,2π),H1(Ω)] <
ε

2
√
C
.
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This implies that for every N

‖uN − uNh ‖2
L2[(0,2π),H1(Ω)] ≤ C

(
ε2

4C
+ h2‖v‖2

L2[(0,2π),H2(Ω)]

)
.

Furthermore, there exists h0 > 0 such that for h ≤ h0 we have

h2‖v‖2
L2[(0,2π),H2(Ω)] <

ε2

4C

and thus

‖uN − uNh ‖2
L2[(0,2π),H1(Ω)] <

ε2

2
for h ≤ h0 and for any N.

Combining this with (6.2.5) and the triangle inequality, we have

‖u− uNh ‖2
L2[(0,2π),H1(Ω)] < ε2 for N ≥ N0 and h ≤ h0.

Further qualities of the discrete solution uNh are specified in the next result.

Theorem 6.2.3. If the polygon Ω is convex, there holds the error estimate

‖uNh − u‖0,Ω×(0,2π) ≤ C
(
h2 +N−1

)
(6.2.6)

for the coupled Fourier series method (6.2.4) and classical FEM (6.1.3)-(6.1.4). When Ω

is not convex, the same error estimate holds provided that the triangulations meet the mesh

refinement conditions (6.1.35). Moreover, in the two cases, we have the error estimate

‖uNh − u‖L2[(0,2π),H1(Ω)] ≤ C
(
h+N−1

)
(6.2.7)

whenever u has the tangential regularity u ∈ H1 [(0, 2π), H1(Ω)].

Proof. The proof is done in two parts: the convex and non-convex cases. We start with the

first result by using the triangular inequality on the error as follows:

‖u− uNh ‖2
0,Ω×(0,2π) ≤ ‖u− uN‖2

0,Ω×(0,2π) + ‖uN − uNh ‖2
0,Ω×(0,2π).
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Using Lemma 6.2.1 on the first term and the Plancherel-Parseval theorem on the other term

we have

‖u− uNh ‖2
0,Ω×(0,2π) ≤ C

N−2‖u‖2
H1[(0,2π), L2(Ω)] +

∑
|k|≤N

‖uk − uk,h‖2
0,Ω


≤ C

N−2‖f‖2
L2[(0,2π), L2(Ω)] +

∑
|k|≤N

‖uk − uk,h‖2
0,Ω

 . (6.2.8)

By Aubin-Nitsche duality argument, we have since uk ∈ H2(Ω,
√
|k|), that∑

|k|≤N

‖uk − uk,h‖2
0,Ω ≤ Ch4

∑
|k|≤N

‖uk‖2

2,Ω,
√
|k|

≤ Ch4
∑
|k|≤N

‖fk‖2
0,Ω.

This yields ∑
|k|≤N

‖uk − uk,h‖2
0,Ω ≤ Ch4‖f‖2

0,Ω×(0,2π). (6.2.9)

The proof for the convex case is now followed from (6.2.8)-(6.2.9).

For the non-convex case, the same method works provided that after (6.2.8), we use

the inclusion uk ∈ H2,β(Ω,
√
|k|) and the mesh refinement conditions (6.1.35) instead of

uk ∈ H2(Ω,
√
|k|).

The proof of the second part is based on the second estimate in Lemma 6.2.1. Using this

estimate, the method of proof is the same. Basically from,

‖u− uNh ‖2
L2[(0,2π), H1(Ω)] ≤ ‖u− uN‖2

L2[(0,2π), H1(Ω)] + ‖uN − uNh ‖2
L2[(0,2π), H1(Ω)],

we use the estimates

‖u− uN‖2
L2[(0,2π), H1(Ω)] ≤ CN−2‖u‖2

H1[(0,2π), H1(Ω)].
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and

‖uN − uNh ‖2
L2[(0,2π), H1(Ω)] ≤

∑
|k|≤N

‖uk − uk,h‖2

1,Ω,
√
|k|

≤ Ch2
∑
|k|≤N

‖uk‖2

2,Ω,
√
|k|

≤ Ch2‖f‖2
0,Ω×(0,2π).

In view of the Plancherel-Parseval Theorem, we deduce that

‖u− uNh ‖L2[(0,2π), H1(Ω)] ≤ CN−1‖u‖H1((0,2π), H1(Ω)) + Ch‖f‖0,Ω×(0,2π)

The case when Ω is non-convex is dealt with similarly, on replacing the inclusion uk ∈
H2(Ω,

√
|k|) with uk ∈ H2,β(Ω,

√
|k|) and using the mesh refinement conditions (6.1.35).

6.3 Coupled non-standard finite difference and finite

element methods

Unlike section 6.2, where the time variable was discretized by Fourier series, we now discretize

it using the non-standard Finite Difference (NSFD) method. The NSFD approach was

initiated more than two decades ago by Mickens [52] as a powerful tool that replicates

the dynamics of the differential system under consideration. Major contributions to the

mathematics foundation of the NSFD method are due to Anguelov and Lubuma [5, 6, 7]

(see [56] for and overview). Since then, the NSFD method has been extensively applied to

many concrete problems in engineering and science (see for example [32], [53]).

To understand the relevance of the NSFD method in this thesis, we consider the heat

equation in the following specific form:

∂u

∂t
−∆u+ λu = f, λ > 0, on Ω× (0,+∞) (6.3.1)

u = 0 on ∂Ω× (0,+∞) (6.3.2)

u(x, 0) = u0(x), for x ∈ Ω. (6.3.3)
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An appropriate trace theorem (see [39]) can reduce (6.3.1)-(6.3.3) to our standard model

(5.0.1)-(5.0.3).

When f = 0, the space independent case of (6.3.1)-(6.3.3) is the decay ordinary differential

equation

∂u

∂t
= −λu, (6.3.4)

u(0) = u0, (6.3.5)

which has the unique solution

u(t) = u0e−λt. (6.3.6)

Let tk := k4t, k = 0, 1, 2, · · · be the discrete time variable with 4t representing the time

step size. At the time t = tk+1, the solution

u(tk+1) = u0e−λtk+1 , (6.3.7)

given by (6.3.6) can be written as u(tk)e
−λ4t or

eλ4tu(tk+1) = u(tk) (6.3.8)

in view of the semi-group property of solutions of ordinary differential equations. By adding

and subtracting u(tk+1) from (6.3.8), we obtain the following equivalent formulation of (6.3.7)

where the notation uk := u(tk) is used:

uk+1 − uk
eλ4t−1

λ

+ λuk+1 = 0. (6.3.9)

By definition, (6.3.9) is called the exact scheme for the decay equation (6.3.4) (see Mickens

[52]). The terminology is self-explanatory: at the time t = tk, the difference equation (6.3.9)

has the same general solution as the differential equation (6.3.4).

Clearly, the exact scheme (6.3.9) is dynamically consistent with any property of the initial

value problem (6.3.4)-(6.3.5) irrespective of the value of the step size 4t. In particular the

discrete scheme (6.3.9) replicates the positivity and the decay to zero which are the main
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features of the solution (6.3.6) of (6.3.4)-(6.3.5).

Equation (6.3.9) is a typical non-standard finite difference scheme in the following sense

(cf [4]):

Definition 6.3.1. A difference equation

uk+1 = g(uk, uk+1)

for approximating a differential equation

du

dt
= g(u)

is called a non-standard finite difference method, if at least one of the following conditions

is met:

1. In the first order discrete derivative

uk+1 − uk
∆t

the traditional denominator ∆t is replaced by a positive function φ(∆t) satisfying the

property

φ(∆t) = ∆t+O((∆t)2) as ∆t→ 0. (6.3.10)

2. Non-local term in g(u) are approximated in a non-local way, i.e. by a suitable function

of several points of the mesh.

Remark 6.3.2. Condition 2 in the Definition 6.3.1 is not necessary in our case since we are

dealing with a linear problem. However, the condition is very useful in non-linear problems.

For more on non-standard finite difference schemes, we refer the reader to [45, 56] and

edited volumes [32] and [53].

Our aim is to design for (6.3.1)-(6.3.3) a fully discrete method, which will preserve the

properties in the limit case of space independent equation and f = 0. To this end, we

approximate (6.3.1)-(6.3.3) by coupling the FEM in space and the NSFD scheme in time as

follows: With the initial guess u0
h := Πhu

0 ∈ Vh via the interpolation operator Πh, let (ukh)k≥1
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be the sequence in the finite element space Vh defined recursively as unique solution of

∫
Ω

[
ukh − uk−1

h
eλ∆t−1

λ

vh +∇ukh ∇vh + λukh vh

]
dx =

∫
Ω

f(tk) vh dx ∀ vh ∈ Vh, (6.3.11)

u0
h = Πhu

0, k = 1, 2, 3, .... (6.3.12)

The idea of coupling the NSFD method with the FEM and their implementation presented

here are new. The results are published in [14] and [13].

Let φ(∆t) denote the function eλ∆t−1
λ

that satisfies (6.3.10). It is clear that (6.3.11) can

be written as follows for any vh ∈ Vh:(
ukh, vh

)
0,Ω

+ φ(∆t)
(
∇ukh,∇vh

)
0,Ω

+ λφ(∆t)
(
ukh, vh

)
0,Ω

= φ(∆t) (f(th), vh)0,Ω

+
(
uk−1
h , vh

)
0,Ω
. (6.3.13)

Equation (6.3.13) will be considered in conjunction with the continuous relation below, which

in view of (5.1.12) is the variational formulation of (6.3.1)-(6.3.3): u ∈ H1,1
0, (Ω× (0,+∞))

satisfying (6.3.3) is the unique solution of(
∂u(t)

∂t
, v

)
0,Ω

+ (∇xu(t),∇xv)0,Ω + λ (u(t), v)0,Ω = (f(t), v)0,Ω , t > 0, ∀v ∈ H1
0 (Ω).

(6.3.14)

We let ph be the elliptic or Ritz projection onto Vh defined with respect to the energy inner

product

(∇v, ∇w)0,Ω + λ (v w)0,Ω

associated with the elliptic problem, which is the following stationary problem of (6.3.1)-

(6.3.3):

−∆u+ λu = f in Ω (6.3.15)

u = 0 on ∂Ω. (6.3.16)
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More precisely, for u ∈ H1
0 (Ω), its Ritz projection phu ∈ Vh is the unique solution, for all

vh ∈ Vh, of the problem

(∇phu,∇vh)0,Ω + λ (phu, vh)0,Ω = (∇u,∇vh)0,Ω + λ (u, vh)0,Ω . (6.3.17)

Thus phu is the finite element approximation of the solution of the elliptic problem (6.3.15)-

(6.3.16). This Ritz projection is used to rewrite the global error in the form below, which is

convenient in what follows:

ukh − u(tk) =
(
ukh − phu(tk)

)
+ (phu(tk)− u(tk)) ≡ θk + ρk. (6.3.18)

With these highlights, we have the following result:

Theorem 6.3.3. Let the polygon Ω be convex. We assume that u0 and u, are smoother to

the extent that u0 ∈ H2(Ω) and u ∈ H2 ((0,+∞), H2(Ω)). Fix a time t? that can be written

in several ways as t? = k∆t. Then, there exists a constant C? ≡ C(t?), depending on t? and

there holds the error estimate

‖ukh − u(tk)‖0,Ω ≤ C?(∆t+ h2),

for the coupled NSFD method and classical FEM (6.3.11)-(6.3.12). When Ω is not convex,

the same error estimate holds provided that H2(Ω) is replaced with H2,β(Ω), 0 < β < 1− π
ω

,

in the regularity assumption of u with however u0 ∈ H2(Ω) and the triangulations, meeting

the mesh refinement conditions (6.1.35).

Under the assumptions of the two cases above, we have the error estimate

‖ukh − u(tk)‖1,Ω ≤ C?(
√

∆t+ h),

whenever h is proportional to
√

∆t.

Proof. The proof in the case when Ω is convex follows from the arguments in Thomée [65],

which work because u(tk) ∈ H2(Ω) in this case. In what follows, we adapt and give details to

these arguments of [65] for the non-convex case. If Ω is not convex, then u(tk) ∈ H2,β(Ω) and

from the interpolation theory discussed in section 5.1, we have, under the mesh refinement
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conditions (6.1.35),

‖ρk‖0,Ω ≤ Ch2‖u(tk)‖H2,β(Ω)

≤ Ch2

[
‖u0‖2,Ω +

∫ tk

0

‖∂u
∂s
‖H2,β(Ω)ds

]
(6.3.19)

since u(tk) = u0 +
∫ tk

0
∂u
∂s
ds, u0 ∈ H2(Ω) and u ∈ H1

[
(0,+∞), H2,β(Ω)

]
.

Given a sequence (γk)k≥1 in H1
0 (Ω), we denote by ∂̄γk

∂t
the non-standard backward finite

difference of γk defined by

∂̄γk

∂t
=
γk − γk−1

φ(∆t)
. (6.3.20)

Fix vh ∈ Vh and consider the sequence (θk) in H1
0 (Ω) defined in (6.3.18). Having the discrete

and continuous variational problems (6.3.11) or (6.3.13) and (6.3.14) in mind, we have:(
∂̄θk

∂t
, vh

)
0,Ω

+
(
∇θk,∇vh

)
0,Ω

+ λ
(
θk, vh

)
0,Ω

=

(
∂̄(ukh − phu(tk))

∂t
, vh

)
0,Ω

+
(
∇(ukh − phu(tk)),∇vh

)
0,Ω

+λ
(
(ukh − phu(tk)), vh

)
0,Ω
, by (6.3.18)

=−
(
ph
∂̄u(ttk)

∂t
, vh

)
0,Ω

+ (f(tk), vk)0,Ω − (∇u(tk),∇vh)0,Ω

−λ (u(tk), vh)0,Ω , by (6.3.17)

=−
(
ph
∂̄u(tk)

∂t
, vh

)
0,Ω

+

(
∂u(tk)

∂t
, vh

)
0,Ω

, by (6.3.14)

=

(
(I − ph)

∂̄u(tk)

∂t
, vh

)
0,Ω

+

(
∂u(tk)

∂t
− ∂̄u(tk)

∂t
, vh

)
0,Ω

≡
(
wk, vh

)
0,Ω

≡
(
wk1 , vh

)
0,Ω

+
(
wk2 , vh

)
0,Ω

(6.3.21)

where wk1 = (I − ph) ∂̄u(tk)
∂t

and wk2 = ∂u(tk)
∂t
− ∂̄u(tk)

∂t
.

If vh = θk in (6.3.21), we have(
∂̄θk

∂t
, θk
)

0,Ω

+
(
∇θk,∇θk

)
0,Ω

+ λ
(
θk, θk

)
0,Ω

=
(
wk, θk

)
0,Ω
. (6.3.22)
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Using (6.3.20), we obtain(
∂̄θk

∂t
, θk
)

0,Ω

= φ−1(∆t)
(
θk − θk−1, θk

)
0,Ω

= φ−1(∆t)
(
θk, θk

)
0,Ω
− φ−1(∆t)

(
θk−1, θk

)
0,Ω
,

= φ−1(∆t)‖θk‖2
0,Ω − φ−1(∆t)

(
θk−1, θk

)
0,Ω
,

which combined with (6.3.22) yields

φ−1(∆t)
[
‖θk‖2

0,Ω −
(
θk−1, θk

)
0,Ω

]
≤
(
wk, θk

)
0,Ω
. (6.3.23)

Using Cauchy-Schwarz inequality we have

‖θk‖2
0,Ω ≤ φ(∆t)‖wk‖0,Ω‖θk‖0,Ω + ‖θk−1‖0,Ω‖θk‖0,Ω

and thus

‖θk‖0,Ω ≤ φ(∆t)‖wk‖0,Ω + ‖θk−1‖0,Ω. (6.3.24)

By mathematical induction, (6.3.24) becomes

‖θk‖0,Ω ≤ ‖θ0‖0,Ω + φ(∆t)
k∑
j=1

‖wj1‖0,Ω + φ(∆t)
k∑
j=1

‖wj2‖0,Ω. (6.3.25)

Notice that

‖θ0‖0,Ω = ‖u0
h − phu0‖0,Ω

= ‖Πhu
0 − phu0‖0,Ω by (6.3.12)

≤ ‖u0 − Πhu
0‖0,Ω + ‖u0 − phu0‖0,Ω

≤ Ch2‖u0‖2,Ω since u0 ∈ H2(Ω). (6.3.26)
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A bound for φ(∆t)
∑k

j ‖wj1‖0,Ω is obtained by using (6.3.20) and (6.3.21) as follows:

wj1 = (I − ph)
∂̄u(tj)

∂t
= (I − ph)φ−1(∆t) (u(tj − u(tj−1)))

= (I − ph)φ−1(∆t)

∫ tj

tj−1

∂u

∂s
ds.

Thus we have

φ(∆t)
k∑
j

‖wj1‖0,Ω ≤
k∑
j

∫ tj

tj−1

‖(I − ph)
∂u

∂s
‖0,Ωds

≤ Ch2

∫ tk

t0

‖∂u
∂s
‖H2,β(Ω)ds

≤ Ch2 since u ∈ H1
(
(0,+∞), H2,β(Ω)

)
. (6.3.27)

On the other hand, a bound for φ(∆t)
∑k

j ‖wj2‖0,Ω is obtained using (6.3.21) as follows:

wj2 =
∂̄u(tj)

∂t
− ∂u(tj)

∂t

= φ−1(∆t)(u(tj)− u(tj−1))− ∂u(tj)

∂t
.

This implies that

φ(∆t)
k∑
j

wj2 = u(tj)− u(tj−1)−∆t
∂u(tj)

∂t
+ ∆t

∂u(tj)

∂t
− φ(∆t)

∂u(tj)

∂t

= (u(tj)− u(tj−1))−∆t
∂u(tj)

∂t
+ (∆t− φ(∆t))

∂u(tj)

∂t

= −
∫ tj

tj−1

(s− tj−1)
∂2u(s)

∂s2
ds+ (∆t− φ(∆t))

∂u(tj)

∂t
.

by Taylor theorem with integral expression of the remainder term.
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Taking the norm in L2(Ω) and summing both sides of the equation, we have

φ(∆t)
k∑
j=1

‖wj2‖0,Ω ≤
k∑
j=1

‖
∫ tj

tj−1

(s− tj−1)
∂2u(s)

∂s2
ds‖0,Ω + C(∆t)2

k∑
j=1

‖∂u(tj)

∂t
‖0,Ω by (6.3.10)

≤∆t

∫ tk

0

‖∂
2u(s)

∂s2
‖2

0,Ωds+ C(∆t)2k sup
1≤j≤k

‖∂u(t)

∂t
‖0,Ω

≤∆t

(∫ tk

0

‖∂
2u(s)

∂s2
‖2

0,Ωds+ Ctk‖
∂u(s)

∂s
‖H1((0,+∞),L2(Ω))

)
because

t? ≡ tk = k∆t and u ∈ H2
(
(0,+∞), L2(Ω)

)
with H1

(
(0,+∞), L2(Ω)

)
being continuously embedded in C0

(
(0,+∞), L2(Ω)

)
,

≤C(t?)∆t. (6.3.28)

Combining (6.3.25), (6.3.26), (6.3.27) and (6.3.28) we have

‖θk‖0,Ω ≤ C(t?)
(
∆t+ h2

)
. (6.3.29)

Hence, in view of (6.3.19) and (6.3.29), we obtain the required estimate

‖ukh − u(tk)‖0,Ω ≤ C(t?)
(
∆t+ h2

)
. (6.3.30)

This proves the first part of the theorem.

The second part of the Theorem, is proved thanks to the relation (6.3.18) as follows:

‖∇(ukh − u(tk))‖0,Ω ≤ ‖∇(ukh − phu(tk))‖0,Ω + ‖∇(phu(tk)− u(tk))‖0,Ω

= ‖∇θk‖0,Ω + ‖∇ρk‖0,Ω. (6.3.31)

Again, we give details for the non-convex case only, the convex case being mere classical

due to the H2(Ω) smoothness of the solution at every time t > 0. For Ω non-convex, we

immediately bound ∇ρk by interpolation theory in section 5.1 as follows:

‖∇ρk‖0,Ω = ‖∇(phu(tk)− u(tk))‖0,Ω ≤ Ch‖u(tk)‖H2,β(Ω). (6.3.32)

123

 
 
 



Letting vh = θk in (6.3.21), we bound ∇θk as follows:

‖∇θk‖2
0,Ω ≤

(
wk, θk

)
0,Ω
−
(
∂̄θk

∂t
, θk
)

0,Ω

=

(
wk − ∂̄θk

∂t
, θk
)

0,Ω

=
(
wk, θk

)
0,Ω
−
(
θk, θk

)
0,Ω

φ(∆t)
+

(
θk−1, θk

)
0,Ω

φ(∆t)

≤
(
wk, θk

)
0,Ω

+

(
θk−1, θk

)
0,Ω

φ(∆t)
.

When Cauchy-Schwarz inequality is applied, we obtain

φ(∆t)‖∇θk‖2
0,Ω ≤ φ(∆t)‖wk‖0,Ω‖θk‖0,Ω + ‖θk−1‖0,Ω‖θk‖0,Ω

=
(
φ(∆t)‖wk‖0,Ω + ‖θk−1‖0,Ω

)
‖θk‖0,Ω

≤
(
φ(∆t)‖wk‖0,Ω + ‖θk−1‖0,Ω

)2
by (6.3.24).

Using (6.3.29), (6.3.27) and (6.3.28), we have

φ(∆t)‖∇θk‖2
0,Ω ≤ C?

(
h2 + ∆t

)2
.

In the previous inequality, we let ∆t be proportional to h2 (i.e h = C
√

∆t), we divide both

sides of the inequality by
√
φ(∆t) to obtain

‖∇θk‖0,Ω ≤ C?

(
h · h√

φ(∆t)
+
√

∆t

√
∆t

φ(∆t)

)

≤ C?(Ch+
√

∆t)

√
∆t

φ(∆t)

≤ C?
(
h+
√

∆t
)

in view of (6.3.10). (6.3.33)

Combining (6.3.32), (6.3.33) together with Poincaré Friedrichs inequality (2.4.3), we have

‖ukh − u(tk)‖1,Ω ≤ C?
(
h+
√

∆t
)
. (6.3.34)

This completes the proof of the theorem.
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By construction of the coupled NSFD scheme and FEM, we readily have the following

qualitative stability result, which gives an indication on the relevance of this coupling.

Theorem 6.3.4. The discrete method (6.3.11)-(6.3.12) reduces to a numerical procedure for

the space independent limit case of the boundary value problem (6.3.1)-(6.3.3). The latter

method corresponds to the exact scheme (6.3.9) of the decay equation (6.3.4)-(6.3.5) when

f ≡ 0.

Remark 6.3.5. In line with Theorem 6.3.4, the following comments are in order to under-

stand the good performance of the NSFD method in the numerical experiment in the next

section. The convergence (6.3.34) in H1 norm implies that there exists a subsequence of ukh
still denoted in the same way such that ukh converges point-wise to u as h→ 0 and k → +∞
(see [1], Corollary 2.11). Assume that ∆u = 0 near a point a ∈ Ω. Now if vh in (6.3.11) is

chosen in such a way that its support containing the point a, is very small and vh = 1 near

a, then we can use the approximation∫
Ω

gvhdx = g(a)K where K is the measure of the supp(vh).

Using this approximation in (6.3.11), it follows that ukh(a) is a discrete solution of the ordi-

nary differential equation associated with (6.3.1) and (6.3.3) when we fix x = a. Of course

ukh(a) is the solution of the exact scheme (6.3.9) if we also have f(a, t) = 0.

More generally, the above reasoning could be used without considering a subsequence of

ukh. Indeed, the practical implementation of the method (6.3.11) amounts to considering

what Strang and Fix [63] call ”variational crimes”. That is using numerical integration in

(6.3.11). In this regard, assume that a is the barycenter of a fixed triangle T of triangulation

of Ω̄ and let us assume as above that ∆u = 0 near the point a. We take vh in (6.3.11) having

its support in such that vh = 1 near a and we use the approximation∫
Ω

gvhdx = g(a) measure (T ).

We then proceed as before to conclude that ukh(a) is a discrete solution of the associated

ordinary differential equation.
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6.4 Numerical experiment

This section is devoted to demonstrate computationally the optimal convergence of some of

the numerical schemes presented in the preceding sections of this chapter.

Before we proceed with the numerical experiments that support the theory, we want to

show that triangulations (Th) of the polygonal domain Ω̄ that are refined according to the

condition (6.1.35) exist in practice. To this end, we follow the procedure proposed by Raugel

[59] and summarized in [30].

More precisely, observing that the vertex that is responsible for singularities is placed at

the origin (0, 0), we consider the following steps:

1. Divide the polygon Ω into big triangles;

2. Divide each side of each of the big triangles that has no vertex at (0, 0) into n = 1
h

subsegments of equal length and proceed, following the usual triangulation technique

(See Ciarlet [16], Raviart and Thomas [57]);

3. Divide each of the big triangles that has a vertex at (0, 0), according to the ratios

(
i

n

) 1
1−β

, 1 ≤ i ≤ n,

along the sides that ends at (0, 0); divide the third side in the usual way and proceed

as usual.

Figure 6.1 illustrates this case, for n = 4, with one of the sides that ends at the vertex (0, 0)

lying on the 0x1 axis.
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Figure 6.1: Refined Triangulation

The mesh refinement conditions (6.1.35) in this case reduce to

hi ≤


C
(

1
n

) 1
1−β , if i = 0

C 1
n

infTi r
β, if i 6= 0

(6.4.1)

where

hi =

(
i+ 1

n

) 1
1−β

−
(
i

n

) 1
1−β

and h =
1

n

and C > 0 is a constant independent of n.

Let us prove (6.4.1). The proof for i = 0 is obvious by the definition of hi.

In the case when i 6= 0, we have

hi =
1

1− β (ξ)
β

1−β
1

n
, with

i

n
< ξ <

i+ 1

n
, by the Mean-Value Theorem.

≤ 1

1− β

(
i+ 1

n

) β
1−β 1

n
since 0 < β < 1.
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On the other hand, we have

(
i+1
n

) β
1−β(

i
n

) β
1−β

=

(
i+ 1

i

) β
1−β

=

(
1 +

1

i

) β
1−β

≤ (2)
β

1−β because i ≥ 1.

Therefore

hi ≤ C(
i

n
)

β
1−β

1

n
and hi ≤ C

1

n
inf
Ti
rβ.

This proves (6.4.1).

After this justification of the existence of the mesh refined triangulations, we proceed

by considering Ω to be an L-shaped domain as shown in Figure 6.2. This consists of the

re-entrant angle ω = 3π
2

that is responsible for singularities at the origin of the plane. The

Ω

(r, θ)

ω
(0, 0)

(−1,1)

(−1,−1) (0,−1)

(1,0)

(1,1)

Figure 6.2: L-shaped domain
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right-hand side f of equation (6.3.1) is taken in such a way that

u(x, t) = te−tψ(r)r
2
3 sin

2

3
θ. (6.4.2)

is the exact solution of the problem (6.3.1)-(6.3.3) where ψ(r) is a smooth cut-off function

such that ψ = 1 for r ≤ 1/4 and ψ = 0 for r ≥ 1/2. We use a uniform mesh for β = 0 and

a refined mesh for β = 1/3 on the method (6.3.11)-(6.3.12). A similar construction is done

when the denominator of the first term of (6.3.11) is replaced by ∆t. The pictures resulting

from these techniques are illustrated in Figures 6.3 and 6.4 for n = 10.
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Figure 6.3: Uniform mesh for n = 10
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Figure 6.4: Refined mesh for n = 10

In Figure 6.3, the domain Ω is filled with a uniform mesh of identical triangles in the

classical manner. This is followed by Figure 6.4, where the domain Ω is refined following the

procedure of Raugel [59] presented above and illustrated in Figure 6.1.
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For our numerical experiments, we take n = 10, 50, 100, 125. The refinement parameter

β is taken to be β = 0 for a uniform mesh and β = 1/3 for a refined mesh. A similar

approach to this choice of n values was done for the Laplace equation in a polygon in [24].

We approach the numerical solution to the problem using two techniques. The first technique

is by coupling the standard finite difference method (SFDM) and finite element method. The

second technique is by combining the non-standard finite difference and the finite element

methods. In both cases we keep once and for all, the time fixed.

For the numerical solution obtained by coupling the SFDM and FEM, the error ‖u−uh‖1,Ω

was computed. Table 6.1 shows the rates of convergence for the uniform mesh (β = 0) and

the refined mesh (β = 1/3). Figure 6.5 shows in logarithm scale the slope of the curves that

correspond to the approximate rates of convergence, which are 0.27 (poor) for the uniform

and 0.8123 for the refined mesh.

Similarly, for the numerical solution obtained by combining the NSFD method and FEM,

the error ‖u−uh‖0,Ω was computed. Table 6.2 shows the rates of convergence for the uniform

mesh and the refined mesh whereas Figure 6.6 shows in logarithm scale that the approximate

rates are 0.5 (poor) and 1.95 for the uniform mesh and the refined mesh, respectively.

We have therefore proved computationally that the refined mesh provides better (optimal)

rates of convergence than the classical uniform mesh.
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Table 6.1: Error in the H1-norm for both uniform and refined meshes

n Uniform Mesh Refined Mesh
||u− uh||1,Ω ||u− uh||1,Ω

10 3.0854E-3 2.9221E-3
50 1.2875E-3 5.8442E-4
100 9.0016E-4 2.9110E-4
125 8.1009E-4 2.3288E-4

Table 6.2: Error in the L2-norm for both uniform and refined meshes

n Uniform Mesh Refined Mesh
||u− uh||0,Ω ||u− uh||0,Ω

10 1.2469E-3 1.3411E-6
50 2.4939E-4 5.5372E-8
100 1.3027E-4 1.3860E-8
125 1.0457E-4 8.8717E-9
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Figure 6.5: Rate of convergence for H1-norm
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Figure 6.6: Rate of convergence for L2-norm

We conclude this section by studying the impact and the power of the non-standard finite

difference method. Let f in (6.3.1) be such that

u(x, t) = αe−λtψ(r)r2/3 sin 2/3θ (6.4.3)

is the solution of (6.3.1)-(6.3.3) for the parameters λ and α. We fix once and for all, x =

(−0.0316, 0.0554), λ = 3 and α = ±0.5. Since |x| ≤ 1
4
, then u(t) ≡ u(x, t) is a solution

of the decay equation (6.3.4)-(6.3.6); u(t) is plotted against the time on Fig 6.7(a) and (b).

For the same fixed x, Fig 6.7(c) and (d) depict ukh ≡ ukh(x) obtained from the NSFDM-FEM

(6.3.1) as well as from the classical finite difference method with ∆t = 0.5. For the latter

method, there is no restriction on the value of ∆t since it is implicit [65]. The figures speak

for themselves.
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Figure 6.7: Impact of non-standard and Standard approaches
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Chapter 7

Conclusion

This work was initially motivated by the Ph.D thesis of Maghnouji [46] where the singularities

of a parabolic equation for a strongly elliptic operator on a polygonal domain are studied.

The initial aim was to provide the numerical analysis counterpart of [46]. However, given

the complexity and level of generality of [46], we opted to work with the heat equation

in order to better understand the difficulties and to obtain explicit results in which the

geometry of the domain is clearly reflected. Some results for the heat equation are obtained

in Grisvard [29] and [31]; but the approach used here is different as we are mostly concerned

with the Laplace transform of vector-valued distributions.

The main results we obtained can be summarized as follows:

• We established the singular decomposition of the solution of the heat equation with

an explicit representation of the singular part;

• We established the tangential regularity of the solution in the time variable;

• We showed that the solution is globally regular in a weighted Sobolev space in which

the weight depends on the corners of the domain Ω;

• The mesh size being suitably refined in the triangulations of the space domain Ω̄, we

implemented two optimally convergent numerical methods: the coupled Fourier-finite

element method and the coupled Nonstandard finite difference method-finite element

method. The latter method has the advantage of replicating some intrinsic properties

of the exact solution.

Possible extensions of this thesis that we will consider in future include:
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• The numerical study of parabolic problems in the general framework of [46]. For elliptic

problems, this is done for instance in [43].

• The study of the heat equation with more regular right hand side. This would require

the introduction and better understanding of anisotropic Sobolev spaces as in [46].

• The extension of the study to domains with both edge and vertex singularities such as

polyhedrons. This is done in [42, 44] for elliptic problems as well as in [18, 19], [48, 49].

• Extension to nonlinear reaction diffusion equations and construction of suitable nu-

merical methods. Reliable NSFD schemes in this case were considered in [4].
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