
Chapter 3

The Helmholtz problem in a smooth

domain

In the preceding chapter, we built the theory of the Laplace transform of vector-valued

distributions. We shall apply this theory to the heat equation in the next chapter. This will

lead to the Helmholtz problem that will be considered in this chapter.

In section 3.1, we establish the well-posedness of the Helmholtz problem. In section 3.2,

we examine the regularity of the solution of the Helmholtz problem in a smooth domain.

3.1 Well-posedness of the problem

We consider the following Dirichlet problem for the Helmholtz operator: given a complex

number p = ξ + iη and a complex-valued function g on Ω, find w : Ω 7→ C, solution of

−∆w + p w = g in Ω (3.1.1)

and

w = 0 on ∂Ω. (3.1.2)

Here Ω ⊂ R2 is a bounded domain. Despite the title of the chapter, we assume in this

specific section that the boundary ∂Ω ≡ Γ is Lipschitz in the sense of Definition 2.1.1

because the results apply to the non-smooth case which is considered in the next chapter.

Actual smoothness requirements on Γ will be made in the next section.
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It is convenient to study problem (3.1.1)-(3.1.2) in the abstract setting of the following

theorem ([40], [38]).

Theorem 3.1.1. Let X be a Hilbert space with inner product and associated norm denoted

by (·, ·)X and ‖ · ‖X respectively. The conjugate dual of X is denoted by X ′ and its norm is

‖ · ‖X′. Let a(·, ·) be a sesquilinear form, l(·) be a (conjugate) linear form on X. We make

the following assumptions:

1. The linear form l(·) is continuous i.e. there exists a M > 0 such that,

|l(v)| ≤M‖v‖X , ∀ v ∈ X. (3.1.3)

2. The sesquilinear form a(·, ·) is continuous i.e there exists a constant K > 0

|a(s, v)| ≤ K||s‖X ‖v||X ∀ s v ∈ X. (3.1.4)

3. The sesquilinear form a(·, ·) is X-elliptic or X-coercive i.e there exists a constant α > 0

such that

Re a(v, v) ≥ α‖v‖2
X , ∀ v ∈ X. (3.1.5)

Then the abstract variational problem of finding

s ∈ X such that a(s, v) = l(v) ∀ v ∈ X (3.1.6)

is well-posed. In other words, there exists a unique s ∈ X, solution of (3.1.6) such that,

‖s‖X ≤ C‖l‖X′ (3.1.7)

for some constant C > 0.

Proof. With the sesquilinear form a(·, ·), we associate the operator

A : X −→ X ′,

defined by

〈Aw, v〉X′×X = a(w, v). (3.1.8)
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The variational problem (3.1.6) is then equivalent to the functional equation: find

s ∈ X such that As = l in X ′. (3.1.9)

It is clear from the sesquilinearity of a(·, ·) that A is linear. Likewise, A is bounded since

the continuity in (3.1.4) of a(·, ·) yields

‖Aw‖X′ := sup
v 6=0

|a(w, v)|
‖v‖X

≤ K‖w‖X . (3.1.10)

On the other hand, for w ∈ X, (3.1.5) and the boundedness of the form Aw ∈ X ′ lead to

α‖w‖2
X ≤ Re a(w,w) = Re 〈Aw,w〉

≤ | 〈Aw,w〉 |
≤ ‖Aw‖X′‖w‖X .

Thus

‖Aw‖X′ ≥ α‖w‖X ∀ w ∈ X. (3.1.11)

Let A? ∈ B(X,X ′) be the adjoint operator of A. In the present context, it should be noted

that,

〈A?w, v〉X′×X = a(v, w). (3.1.12)

Therefore, following the above argument that lead to (3.1.11), we obtain

‖A?w‖X′ ≥ α‖w‖X ∀ w ∈ X. (3.1.13)

To prove the theorem, it is equivalent to show that the mapping A : X 7→ X ′ in the operator

equation (3.1.9) is an isomorphism. We claim that the range R(A) of A is dense in X ′.

Indeed, let ϕ in the bi-dual space X ′′ of X be such that

ϕ(Aw) = 0 ∀ w ∈ X.

We show that ϕ = 0. The space X is reflexive, being a Hilbert space. Thus, there exists
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v ∈ X such that ϕ = C(v) where

C : X −→ X ′′

is the canonical mapping of X to X ′′. Now for w ∈ X,

0 = ϕ(Aw) (by assumption)

= C(v)(Aw)

= 〈Aw, v〉 (by definition of C)

= < A?v, w > by (3.1.8) and (3.1.12).

Hence A?v = 0. By (3.1.13), it follows that v = 0. Thus ϕ = C(v) = C(0) = 0.

We also claim that R(A) is closed in X ′. In fact, let (Awn) be a sequence in R(A) such

that

Awn −→ h in X ′ as n −→∞.

Then (Awn) is a Cauchy sequence in X ′. By (3.1.11) and the linearity of A, we have

α‖wn − wm‖X ≤ ‖Awn − Awm‖X′ ,

which implies that (wn) is a Cauchy sequence in X. Since X is complete, the sequence (wn)

converges to some w ∈ X. Continuity of the operator A leads to

Awn −→ Aw in X ′ as n→∞.

By uniqueness of limits, we have

h = Aw.

Hence R(A) is closed. The density and the closedness of R(A) in X ′ mean that the operator

A is surjective. Since A is injective by (3.1.11), the operator A is bijective. The Banach

open mapping theorem guarantees that A is an isomorphism.
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Remark 3.1.2. 1. Theorem 3.1.1 can be proved by the Banach contraction mapping the-

orem. It is indeed possible to choose ρ > 0 such that the map

v −→ v − ρτ(Aw − l);

is a contraction from X into X where

τ : X ′ −→ X;

is the Riesz-representation operator (see [16]).

2. In the case when the sesquilinear form a(·, ·) is hermitian i.e.

a(w, v) = a(v, w) so that A = A?,

Theorem 3.1.1 is the so-called Lax-Milgram lemma. Its proof is then a direct conse-

quence of Riesz-representation theorem. In this case a(·, ·) defines an inner product on

X the associated norm of which is equivalent to the norm ‖ · ‖X . Note also that in this

case, the variational problem (3.1.6) is equivalent to the minimization problem: find

s ∈ X such that J(s) = minv∈XJ(v) (3.1.14)

where J(v) := 1
2
a(v, v)− l(v) represents the total energy of the system under consider-

ation. (See [16] for more details).

We want to put problem (3.1.1)-(3.1.2) in the general variational setting discussed in

Theorem 3.1.1. The standard procedure to achieve this consists of four main steps described

in [40]. To this end, we assume once and for all that, g ∈ L2(Ω). We take X = H1
0 (Ω) and

we define a(·, ·) and l(·) as follows:

a(w, v) :=

∫
Ω

∇w∇v̄dx+

∫
Ω

pwv̄dx, (3.1.15)

and

l(v) :=

∫
Ω

g v̄dx. (3.1.16)
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We are therefore led to the following variational problem: find

w ∈ H1
0 (Ω) such that a(w, v) = l(v) ∀ v ∈ H1

0 (Ω). (3.1.17)

Clearly, a(·, ·) is a sesquilinear form and l(·) is a conjugate or antilinear form. By the

Cauchy-Schwarz inequality, the conjugate linear form in (3.1.16) is continuous on H1
0 (Ω)

since

|l(v)| ≤
(∫

Ω

|g|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2

≤ ‖g‖0,Ω‖v‖1,Ω. (3.1.18)

Similarly, for w, v ∈ H1
0 (Ω), we have

|a(w, v)| ≤
(∫

Ω

|∇w|2dx
) 1

2
(∫

Ω

|∇v|2dx
) 1

2

+ |p|
(∫

Ω

|w|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2

≤ ‖∇w‖0,Ω‖∇v‖0,Ω + |p|‖w‖0,Ω‖v‖0,Ω

≤ (1 + |p|)‖w‖1,Ω‖v‖1,Ω (3.1.19)

which show the continuity of the sesquilinear form. Regarding the H1
0 -ellipticity or H1

0 -

coercivity of a(·, ·), we assume that

Re(p) = ξ ≥ 0. (3.1.20)

Under this assumption, we have for w ∈ H1
0 (Ω) and Rep > 0

Re a(w,w) =

∫
Ω

|∇w|2dx+Re(p)

∫
Ω

|w|2dx

≥ min{1, Re(p)}‖w‖1,Ω. (3.1.21)

For Re(p) = 0, we have

Re a(w,w) ≥ C‖w‖2
1,Ω, (3.1.22)

by Poincaré Friedrichs inequality in Theorem 2.4.3. In summary, we have proved the follow-

ing theorem:
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Theorem 3.1.3. Under the condition (3.1.20), the problem (3.1.17) is well-posed in H1
0 (Ω).

More precisely, there exists a unique solution w ∈ H1
0 (Ω) of (3.1.17) and a constant K

depending on p (except for Re(p) = 0) such that

‖w‖1,Ω ≤ K‖g‖0,Ω. (3.1.23)

Notice that the constant K in (3.1.23) does indeed depend on p for Re(p) > 0 since, from

(3.1.17) and (3.1.21) we have

min{1, Re(p)}‖w‖2
1,Ω ≤

∫
Ω

|∇w|2dx+Re(p)

∫
Ω

|w|2dx

= Rea(w,w)

= Re

∫
Ω

gwdx

≤
(∫

Ω

|g|2dx
) 1

2
(∫

Ω

|w|2dx
) 1

2

by Cauchy-Schwarz’s inequality

≤ ‖g‖0,Ω‖w‖1,Ω. (3.1.24)

Thus

‖w‖1,Ω ≤
1

min{1, Re(p)}‖g‖0,Ω for Re(p) > 0.

In the case when the unique solution w of (3.1.17) satisfies an estimate of the type (3.1.23)

where the constant K does not depend on p, we will say that the problem (3.1.17) is uniformly

well-posed. In order to achieve this, we work with weighted Sobolev spaces defined as follows:

Definition 3.1.4. Given ρ > 0 and an integer m ≥ 0, we denote by Hm(Ω, ρ), the Sobolev

space Hm(Ω) equipped with the weighted norm

‖s‖m, Ω, ρ :=

√√√√∫
Ω

∑
|α|≤m

ρ2(m−|α|)|Dαs(x)|2dx. (3.1.25)

Proposition 3.1.5. Let ρ > 0 be such that x
ρ
∈ Ω whenever x ∈ Ω. Then on Hm(Ω), m ≥ 1,

integer, the weighted norm ‖ · ‖m, Ω, ρ in Definition 3.1.4 is equivalent (with constants not
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depending on ρ) to the more economical weighted norm ‖| · ‖|m, Ω, ρ given by

‖|s‖|2m, Ω, ρ :=

∫
Ω

∑
|α|=m

|Dαs(y)|2 + ρ2m|s(y)|2
 dy. (3.1.26)

Proof. Let us consider the change of variable

y =
x

ρ
, so that dy = ρ−2dx.

Given s ∈ Hm(Ω), we introduce the function s 1
ρ

given by

s 1
ρ
(x) = s(

x

ρ
).

By the chain rule, we readily get

Dα
xs 1

ρ
(x) = ρ−|α|Dys(y), for |α| ≤ m.

This implies that we have

ρ1−m‖s‖m, Ω, ρ = ‖s 1
ρ
‖m, Ω and ρ1−m‖|s‖|m, Ω, ρ = ‖|s 1

ρ
‖|m, Ω (3.1.27)

where the economical norm ‖| · ‖|m, Ω is defined by

‖|v‖|2m, Ω =

∫
Ω

∑
|α|=m

|Dαv(y)|2 + |v(y)|2
 dy. (3.1.28)

But for Ω bounded (as in our case), the usual norm ‖ · ‖m, Ω on Hm(Ω) is equivalent to

‖| · ‖|m,Ω. (see Theorem 1.8 in [54]). This combined with (3.1.27) proves the proposition.

Remark 3.1.6. From Proposition 3.1.5, it follows that one can either work with the norm

(3.1.25) or (3.1.26). The latter weighted norm is the one adopted in [19] and [46]. Note

that the equivalence of norms stated in Proposition 3.1.5 holds for bounded domains. That

is why in the case of G an infinite sector we will work with (3.1.25).
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Theorem 3.1.7. Under the condition (3.1.20), the problem (3.1.17) is uniformly well-posed

in the sense that its unique solution w obtained in Theorem 3.1.3 is such that

‖w‖1,Ω,1+|p| ≤ C‖g‖0,Ω (3.1.29)

where C > 0 represents here and after in the thesis various constants that depend neither on

p nor on other parameters such as the space step size h = ∆x and the time step size k = ∆t

in the numerical part of the work.

Proof. We know from (3.1.15), (3.1.16) and (3.1.17) where v is replaced by the solution w

that ∫
Ω

(
|∇w|2 + p|w|2

)
dx =

∫
Ω

gw̄dx,

or ∫
Ω

|∇w|2dx+ ξ

∫
Ω

|w|2dx+ iη

∫
Ω

|w|2dx =

∫
Ω

gw̄dx. (3.1.30)

Taking the real parts of each side of (3.1.30), we have in view of (3.1.20)∫
Ω

ξ2|w|2dx ≤
∫

Ω

|g| |ξw|dx. (3.1.31)

By Cauchy-Schwarz inequality, (3.1.31) leads to

∫
Ω

ξ2|w|2dx ≤
(∫

Ω

|g|2dx
) 1

2
(∫

Ω

ξ2|w|2dx
) 1

2

,

which implies that ∫
Ω

ξ2|w|2dx ≤
∫

Ω

|g|2dx. (3.1.32)

Similarly, considering the imaginary parts of both sides of (3.1.30) yields∫
Ω

|η|2|w|2dx ≤
∫

Ω

|g|2dx. (3.1.33)
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Finally from the real part of (3.1.30) using Cauchy-Schwarz inequality, we have

∫
Ω

|∇w|2dx ≤
(∫

Ω

|g|2dx
) 1

2
(∫

Ω

|w|2dx
) 1

2

from where we have, in view of Poincaré Friedrichs inquality in Theorem 2.4.3

∫
Ω

(
|∇w|2 + |w|2

)
dx ≤ C

∫
Ω

|∇w|2dx ≤ C

(∫
Ω

|g|2dx
) 1

2
(∫

Ω

|∇w|2 + |w|2dx
) 1

2

.

Thus ∫
Ω

(
|∇w|2 + |w|2

)
dx ≤ C

∫
Ω

|g|2dx (3.1.34)

Adding (3.1.32), (3.1.33) and (3.1.34), we have∫
Ω

|∇w|2dx+ (1 + |p|)2

∫
Ω

|w|2dx ≤ 2(2 + C)

∫
Ω

|g|2dx, (3.1.35)

in view of the identity

(1 + |p|2) ≤ (1 + |p|)2 ≤ 2(1 + |p|2). (3.1.36)

Hence the theorem follows from (3.1.35).

Remark 3.1.8. The variational problem (3.1.17) solved in Theorem 3.1.3 is the distribu-

tional formulation of the Helmholtz problem (3.1.1)-(3.1.2) as explained below. Since the

two sides of (3.1.17) are continuous on H1
0 (Ω) and D(Ω) is dense in H1

0 (Ω), then the vari-

ational equation (3.1.17) is equivalent to the one obtained by replacing v ∈ H1
0 (Ω) with

v ∈ D(Ω). Furthermore, by the definition of the differentiation of distributions (Definition

2.3.8), (3.1.17) is equivalent to

〈−∆w + p w, v̄〉D′×D = 〈g, v̄〉 for all v ∈ D(Ω). (3.1.37)

Thus w is the solution of the distributional partial differential equation,

w ∈ H1
0 (Ω), −∆w + p w = g in D′(Ω). (3.1.38)

Remembering that H1
0 (Ω) = {w ∈ H1(Ω), γw = 0} where γ is the trace operator and that
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g ∈ L2(Ω) with L2(Ω) contained in L1
loc(Ω), which is continuously embedded in D′(Ω), we

deduce from (3.1.38) that w ∈ H1
0 (Ω) is the solution of the problem

−∆w + p w = g a.e in Ω, γw = 0.

Remark 3.1.9. We consider the Helmholtz problem (3.1.1)-(3.1.2) when the condition

(3.1.20) is not satisfied. Consider the linear operator −∆ acting from the subspace E =

{v ∈ H1
0 (Ω);−∆v ∈ L2(Ω)} equipped with the topology of L2(Ω) into L2(Ω):

−∆ : E ⊂ L2(Ω)→ L2(Ω).

By Green formula, the operator −∆ is self-adjoint and positive. Furthermore, Theorem

3.1.3 and Rellich-Kondrachov Theorem 2.4.5 guarantee that the operator −∆ has a bounded

compact inverse operator

(−∆)−1 : L2(Ω)→ E ↪→c L
2(Ω).

Consequently, Fredholm theory [67] guarantee that there exists a sequence (λj) of positive

eigenvalues of (−∆)−1 with associated eigenvectors wj in H1
0 (Ω) such that λj → +∞ as

j → +∞. Transposed to the operator −∆, we have −∆wj + ξjwj = 0 where ξj = −1
λj

.

Now if in (3.1.1) p 6= ξj < 0 for every j, then Fredholm theory guarantees that the Helmholtz

equation (3.1.1)-(3.1.2) has a unique solution in E ⊂ H1
0 (Ω). However if p = ξj < 0 for some

j, then Fredholm theory states that (3.1.1)-(3.1.2) has a solution (not unique) if and only if

the right-hand side g is orthogonal in L2(Ω) to any solution z ∈ H1
0 (Ω) of the homogeneous

equation

−∆z + ξjz = 0.

Notice that for the Helmholtz problem considered on unbounded domains, the unique solu-

tions can be achieved by imposing the so called Sommerfeld’s radiation condition at infinity

(see [20]).
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3.2 Regularity of the solution in a smooth domain

After the study of the variational solution of the Helmholtz problem in section 3.1, we study

in this section, the regularity of the solution of the said problem. We begin the section with

the definition of the regularity of the solution.

Definition 3.2.1. Let w be the variational solution of (3.1.17) given by Theorem 3.1.3.

Then the solution w is said to be regular, if w ∈ H2(Ω) with

‖w‖2,Ω ≤ K‖g‖0,Ω, (3.2.1)

for some constant K > 0 which depends on p and is independent of w. In other words, the

linear operator g  w is bounded from L2(Ω) into H2(Ω).The solution is uniformly regular

if K does not depend on p.

Theorem 3.2.2. We assume that the domain Ω has a boundary Γ of class C2. Then the

variational solution w of (3.1.17) is uniformly regular. More precisely, there exists a constant

C > 0 independent of p such that

‖w‖
2, Ω,
√

1+|p| ≤ C‖g‖0,Ω

The proof of Theorem 3.2.2 is presented in several auxiliary results stated below. Our

presentation is based on [12].

Lemma 3.2.3. We assume that Ω = R2, g ∈ L2(R2) and p ∈ C with condition (3.1.20)

satisfied.

Then any variational solution, w ∈ H1(R2) of the problem

−∆w + p w = g in R2 (3.2.2)

is such that w ∈ H2(R2) and

‖w‖
2,R2,
√
|p| ≤ 3‖g‖2

0,R2 . (3.2.3)

Proof. First of all the variational solution w ∈ H1(R2) of the Helmholtz problem (3.2.2)

satisfies the equation∫
R2

(∇w∇v + p wv)dx =

∫
R2

g v dx ∀ v ∈ H1(R2). (3.2.4)
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Take v = w in (3.2.4) to obtain∫
R2

(
|∇w|2 + p|w|2

)
dx =

∫
R2

gw̄dx

Taking separately the real and imaginal parts in this relation, we have for p 6= 0∫
R2

(
|∇w|2 + |p||w|2

)
dx ≤

∫
R2

|g||w|dx

≤ (

∫
R2

|g|2dx)
1
2 (

∫
R2

|w|2dx)
1
2 by Cauchy-Schwartz inequality

≤ 1√
|p|

(

∫
R2

|g|2dx)
1
2 (

∫
R2

(|∇w|2 + |p||w|2dx))
1
2

which implies that

(∫
R2

(
|∇w|2 + |p||w|2

)
dx

) 1
2

≤ 1√
|p|

(

∫
R2

|g|2dx)
1
2 .

Thus (∫
R2

(
|p||∇w|2 + |p|2|w|2

)
dx

) 1
2

≤ (

∫
R2

|g|2dx)
1
2 . (3.2.5)

We next use the technique of the difference quotient or the translation method due to Agmon,

Douglis and Nirenberg [2]. Given a real-valued function v defined almost every where on R2

and given a vector h 6= 0 in R2, the difference quotient of v by h is denoted and defined by

(Dhv)(x) =
(τhv)(x)− v(x)

|h| ,

where (τhv)(x) = v(x + h) is the translation of v in the direction of h. Fix h 6= 0 in R2.

Replacing v by D−h(Dhw) in (3.2.4) we have∫
R2

[∇w∇D−h(Dhw) + p w D−h(Dhw)] dx =

∫
R2

gD−h(Dhw)dx. (3.2.6)

In view of the property∫
R2

vD−hS̄dx =

∫
R2

(Dhv)S̄dx, fors ∈ H1(R2)
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we have from (3.2.6) that∫
R2

[|∇Dhw|2 + p|Dhw|2]dx =

∫
R2

gD−h(Dhw̄)dx.

Taking separately the real and imaginary parts in this identity, we obtain∫
R2

[
|∇Dhw|2 + p|Dhw|2

]
dx ≤ 2|

∫
R2

gD−h(Dhw)dx|, (3.2.7)

in view of the relation

(1/2)(|ξ|+ |η|) ≤ |p| ≤ |ξ|+ |η|. (3.2.8)

Application of Cauchy-Schwarz inequality in (3.2.7) yields

∫
R2

[
|∇Dhw|2 + |p||Dhw|2

]
dx ≤ 2

(∫
R2

|g|2dx
) 1

2
(∫

R2

|D−h(Dhw)|2dx
) 1

2

= 2‖g‖0,R2‖D−h(Dhw)‖0,R2 . (3.2.9)

At this stage, we use the following well-known property of H1(R2):

‖D−hv‖0,R2 ≤ ‖∇v‖0,R2 , ∀ v ∈ H1(R2). (3.2.10)

Moreover a function v ∈ L2(R2) is of class H1(R2) if and only if there exists a constant

C > 0 such that

‖Dhv‖0,R2 ≤ C, ∀ 0 6= h ∈ R2. (3.2.11)

In this case we have

‖∇v‖0,R2 ≤ C. (3.2.12)

Taking v := Dhw ∈ H1(R2) in (3.2.10), the relation (3.2.9) yields∫
R2

[
|∇Dhw|2 + |p||Dhw|2

]
dx ≤ 2‖g‖0,R2‖∇Dhw‖0,R2 . (3.2.13)
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Thus

‖∇Dhw‖0,R2 ≤ 2‖g‖0,R2 or ‖Dh
∂w

∂xj
‖0,R2 ≤ 2‖g‖0,R2 for j = 1, 2. (3.2.14)

In view of (3.2.11) and (3.2.12), we have from (3.2.14) that ∂w
∂xj
∈ H1(R2) ∀j, with

∥∥∥∥∇ ∂w∂xj
∥∥∥∥

0,R2

≤ 2‖g‖0,R2 ∀j.

Therefore ∂2w
∂xi∂xj

∈ L2(R2) for 1 ≤ i, j ≤ 2 and thus w ∈ H2(R2) such that

∑
|α|=2

‖Dαw‖2
0,R2

1/2

≤ 2‖g‖0,R2 . (3.2.15)

Combining (3.2.5) with (3.2.15), we obtain (3.2.3).

Lemma 3.2.4. Let g ∈ L2(R2
+) and p ∈ C such that condition (3.1.20) is satisfied. Then

any variational solution w ∈ H1
0 (R2

+) of the problem

−∆w + pw = g in R2
+ (3.2.16)

is such that w ∈ H2(R2
+) and

‖w‖
2,R2

+,
√
|p| ≤ 6‖g‖0,R2

+
(3.2.17)

Proof. The method as presented in the proof of Lemma 3.2.3 is still valid, but this time only

in the tangential direction. In other words, we choose 0 6= h ∈ R × {0}, which means that

h is parallel to the boundary ∂R2
+. We proceed by considering w ∈ H1

0 (R2
+), the variational

solution of (3.2.16). Thus∫
R2

+

(∇w∇v + p wv)dx =

∫
R2

+

g, v dx ∀v ∈ H1
0 (R2

+). (3.2.18)

Arguing as in the proof of Lemma 3.2.3, we obtain the analogue of the inequality (3.2.9),
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which is ∫
R2

+

[
|∇Dhw|2 + |p||Dhw|2

]
dx ≤ 2‖g‖0,R2

+
‖D−h(Dhw)‖0,R2

+
. (3.2.19)

Since w ∈ H1
0 (R2

+), its extension w̃ by zero outside R2
+ is such that w̃ ∈ H1(R2). Moreover,

we have

Dhw̃ = D̃hw and ∇w̃ = ∇̃w.

This then leads to

‖D−h(Dhw)‖0,R2
+

= ‖D−h(Dhw̃)‖0,R2

≤ ‖∇Dhw̃‖0,R2 by (3.2.10)since Dhw̃ ∈ H1(R2)

= ‖∇Dhw‖0,R2
+
.

Using (3.2.19), we have∫
R2

+

[
|∇Dhw|2 + |p||Dhw|2

]
dx ≤ 2‖g‖0,R2

+
‖∇Dhw‖0,R2

+
.

from where we in turn have(∫
R2

+

[
|∇Dhw|2 + |p||Dhw|2

]
dx

) 1
2

≤ 2‖g‖0,R2
+
, (3.2.20)

and thus (∫
R2

+

| ∂
∂xj

Dhw|2dx
) 1

2

≤ 2‖g‖0,R2
+
∀ 1 ≤ j ≤ 2.

Letting h tend to zero, we obtain

(∫
R2

+

∣∣∣∣ ∂2w

∂xj∂x1

∣∣∣∣2 dx
) 1

2

≤ 2‖g‖0,R2
+
, for 1 ≤ j ≤ 2. (3.2.21)

61

 
 
 



In order to show that ∂2w
∂x2

2
∈ L2(R2

+) we go back to (3.2.16), which yields

−∂
2w

∂x2
1

− ∂2w

∂x2
2

+ pw = g in R2
+.

We then have by (3.2.21), the triangular inequality and by considering the variational for-

mulation of (3.2.16) with w ∈ H1
0 (R2

+) as test function

‖∂
2w

∂x2
2

‖0,R2
+
≤ ‖g‖0,R2

+
+ |p|‖w‖

0,R2
+

+ ‖∂
2w

∂x2
1

‖0,R2
+

; (3.2.22)

≤ 5‖g‖0,R2
+
. (3.2.23)

Combining (3.2.22) and (3.2.21) with the analogue of (3.2.5) for R2
+, which is valid by the

same arguments we obtain Lemma 3.2.4.

To come back to the set Ω̄ itself, we make use of its open covering {Vj}kj=0 constructed

in chapter 2 (section 2.1) as well as of the C∞-partition of unity {θj}kj=0 given in formula

(2.1.5). According to this formula, the solution w ∈ H1
0 (Ω) of (3.1.17) can be represented as

w =
k∑
j=0

θjw ≡
k∑
j=0

wj. (3.2.24)

We deal with the cases j = 0 and 1 ≤ j ≤ k differently in the next two results.

Lemma 3.2.5. The variational solution w ∈ H1
0 (Ω) of the problem (3.1.1)-(3.1.2) is regular

in the interior of Ω in the more precise sense that θ0w ∈ H2(Ω) and

‖θ0w‖2,Ω,
√
|p| ≤ K‖g‖0,Ω, (3.2.25)

where K > 0 is independent of p.

Proof. The function θ0w ∈ H1
0 (Ω) because θ0 ∈ D(V0) where V̄0 ⊂ Ω. Thus θ̃0w ∈ H1(R2)

such that

−∆(θ̃0w) + pθ̃0w = θ̃0g − 2∇θ̃0∇w̃ − (∆θ̃0)w̃

=: g0 ∈ L2(R2).

62

 
 
 



By Lemma 3.2.3, we have

‖θ̃0w‖2,R2,
√
|p| ≤ 3‖g0‖0,R2 .

Thus

‖θ0w‖2,Ω,
√
|p| ≤ K(‖w‖1,Ω + ‖g‖0,Ω)

and

‖θ0w‖2,Ω,
√
|p| ≤ K‖g‖0,Ω (3.2.26)

since ‖w‖1,Ω ≤ K‖g‖0,Ω by Theorem 3.1.7 with K depending on p.

Regarding the case when 1 ≤ j ≤ k in (3.2.24), we have the following result:

Lemma 3.2.6. The variational solution w ∈ H1
0 (Ω) of (3.1.1)-(3.1.2) is regular near the

boundary of Ω in the sense that θjw ∈ H2(V +
j ), V +

j = Vj ∩ Ω, and

‖θjw‖2,Ω,
√
|p| ≤ K‖g‖0,Ω,

where K > 0 is independent of p.

Proof. For a fixed 1 ≤ j ≤ k, we have

−∆(θjw) + pθjw = θjg − 2∇θj∇w − (∆θj)w := gj ∈ L2(V +
j ). (3.2.27)

For simplicity, we use the notation wj = θjw ∈ H1
0 (V +

j ). From (2.1.3), we use the C2-

diffeomorphism Tj that transforms x ∈ V +
j into y = Tj(x) ∈ Q+ and we set

vj(y) = wj ◦ T−1
j (y) ∈ H1

0 (Q+)

where T−1
j is defined in (2.1.4). In short the idea of the rest of the proof is as follows: The

equation (3.2.27) is transformed to the analogue in Q+ of the form

Ljvj + p vj = fj ∈ L2(Q+) (3.2.28)

where Lj is a strongly elliptic operator of order 2. We then apply the analogue of Lemma

3.2.4 to problem (3.2.28) to obtain an estimate similar to (3.2.17). We come back to the
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desired estimate on V +
j by using the transformation

Tj : V +
j −→ Q+.

The details are provided below. By the chain rule, we have

∂vj(y)

∂y1

=
2∑

k=1

∂wj(T
−1
j (y))

∂xk

∂xk
∂y1

=
∂wj
∂x1

∂x1

∂y1

+
∂wj
∂x2

∂x2

∂y1

= α
∂wj
∂x1

+ αϕ′(x1)
∂wj
∂x2

because

T−1
j (y) = (αy1, ϕ(αy1)− βy2) ≡ (x1, x2) and

∂x1

∂y1

= α while
∂x2

∂y1

= αϕ′(x1).

Similarly

∂vj(y)

∂y2

=
∂wj
∂x1

∂x1

∂y2

+
∂wj
∂x2

∂x2

∂y2

= −β∂wj
∂x2

since

∂x1

∂y2

= 0 and
∂x2

∂y2

= −β.

In the variational formulation of (3.2.27), the contribution of −∆wj is the following integral,

which is transformed on Q+ by change of variable: For ψ a test function, we have

∫
V +
j

∇wj∇ψdx =

∫
Q+

[(
1
α

ϕ′(x1)

0 −1
β

)(
∂vj
∂y1
∂vj
∂y2

)(
1
α

ϕ′(x1)

0 −1
β

)(
∂ψ
∂y1

∂ψ
∂y2

)]
αβdy (3.2.29)

Evaluating equation (3.2.29) leads to the following relation∫
V +
j

∇wj∇ψdx

=

∫
Q+

[
1

α2

∂vj
∂y1

∂ψ

∂y1

+
1

αβ

∂vj
∂y1

∂ψ

∂y2

ϕ′(x1) +
1

αβ
ϕ′(x1)

∂vj
∂y2

∂ψ

∂y1

+ (
1

β2
ϕ′(x1)2 + 1)

∂vj
∂y2

∂ψ

∂y2

]
αβdy.
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By Green formula the operator Lj is explicitly given by the following relation:

Lj := − ∂2

∂y2
1

− ∂

∂y2

(
ϕ′(x1)

∂

∂y1

)
− ∂

∂y1

(
ϕ′(x1)

∂

∂y2

)
− ∂

∂y2

(
1 + (ϕ′(x1))2 ∂

∂y2

)
.

Lemma 3.2.7. The operator

Lj := − ∂2

∂y2
1

− ∂

∂y2

(
ϕ′(x1)

∂

∂y1

)
− ∂

∂y1

(
ϕ′(x1)

∂

∂y2

)
− ∂

∂y2

(
1 + (ϕ′(x1))2 ∂

∂y2

)
is strongly uniformly elliptic in Q+. That is, there exists a real number α > 0 and a complex

number γ such that

Re
[
−γ
(
ξ2

1 + 2ξ1ξ2ϕ
′(x1) + (1 + (ϕ′(x1)))2ξ2

2

)]
≥ α|ξ|2, ∀ξ ∈ R2, y ∈ Q+.

Proof. We take γ = −1 and 0 < α < 1/2. Then we have consecutively

Re
[
−γ
(
ξ2

1 + 2ξ1ξ2ϕ
′(x1) + (1 + (ϕ′(x1)))2ξ2

2

)]
− α|ξ|2 = ξ2

1(1− α) + ξ2
2(1− α + (ϕ′(x1))2)

+ 2ρ′(x1)ξ1ξ2

≥ 1/2ξ2
1 + 1/2(ϕ′(x1))2ξ2

2 + ϕ′(x1)ξ1ξ2

= (

√
2

2
ξ1 +

√
2

2
ϕ′(x1)ξ2)2

≥ 0.

Hence the proof of the Lemma.

Applying the analogue of the Lemma 3.2.4 to (3.2.29) we obtain

∑
|α|=2

‖Dαvj‖2
0,Q+

 1
2

≤ Kj‖fj‖0,Q+ (3.2.30)

which is the analogue of (3.2.17) in Q+. Making the change of variables y = Tj(x) and

θjw = vj ◦ Tj, gj = fj ◦ Tj in (3.2.30) we obtain

∑
|α|=2

‖Dαθjw‖2
0,V +

j

 1
2

≤ Kj‖g‖0,V +
j

(3.2.31)
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together with

‖θjw‖2
1,V +

j
≤ Kj‖g‖0,V +

j
(By Theorem 3.1.3) (3.2.32)

Adding (3.2.31) and (3.2.32) proves Lemma 3.2.6.

Remark 3.2.8. The underlying point in the proofs of Lemma 3.2.6 and 3.2.7 is that the

ellipticity property is preserved by translation.

Proof. of Theorem 3.2.2

We prove Theorem 3.2.2 by adding (3.2.26), (3.2.31) and (3.2.32) with (3.1.24) through j = 0

to j = k.

Remark 3.2.9. The inequality in the Theorem 3.2.2 is the particular case of some more

general inequalities established in Agronovitch and Vishik [3].
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Chapter 4

The Helmholtz problem in a

non-smooth domain

In the preceding chapter we study the regularity of the solution of Helmholtz problem in

a smooth domain. In this chapter we study the same problem in the non-smooth domain

specifically the polygonal domain. We begin the chapter with section 4.1 where we study the

regularity of the solution of the Helmholtz problem far away from the corner. In section 4.2

and 4.3, we study the regularity of the solution of the problem at the corner for p = 0 and

for p 6= 0 respectively. Finally, we show in section 4.4, that the solution of the Helmholtz

problem attains its global regularity in a weighted Sobolev space H2,β(Ω) to be defined.

4.1 Regularity far away from corners and reduction to

a sector

The results of section 3.2 show that the solution of the Helmholtz problem is regular far away

from the vertices (corners) of the polygonal domain. More precisely, we have the following

result:

Theorem 4.1.1. Let E be an open subset of the polygonal domain Ω such that the distance

from E to the vertices of Γ is strictly positive. Then, the variational solution of the Helmholtz

problem

w ∈ H1
0 (Ω), −∆w + p w = g, (4.1.1)
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corresponding to g ∈ L2(Ω), Re(p) ≥ 0 is such that

w ∈ H2(E).

Proof. We proceed by partition of unity as in section 3.2, observing that either Ē ∩ Γ = φ

or Ē ∩ Γ 6= φ. The first case corresponds to the interior regularity stated in Lemmas 3.2.3

and 3.2.5. The second case include the situation where the arc-length of Ē ∩Γ is positive, in

which case Ē ∩Γ is locally represented as the graph of C∞ functions. This then corresponds

to the regularity near the boundary stated in Lemmas 3.2.4 and 3.2.6.

In view of Theorem 4.1.1, the singular behavior of the solution of (4.1.1) is a local problem

which is related to each corner. Thus we focus on one corner of Ω and assume for convenience

that this corner is at the origin of R2. In the neighborhood of this corner, we assume that Ω

coincides with the sector G defined by

G = {(r cos θ, r sin θ); r > 0, 0 < θ < ω} , (4.1.2)

in the usual polar co-ordinate (r, θ) where ω is the size of the interior angle at the corner. It

is further assumed that this is the only non-convex corner i.e ω > π of Ω as seen in Figure

4.1.

(r, θ)

0
ω

Ω

θ

Figure 4.1: Model Polygonal domain

To be more specific on the local nature of the problem, we consider once and for all a
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cut-off function ψ ≡ ψ(r) ∈ D(R2) such that

ψ(r) =


1 for 0 ≤ r ≤ r0

2

0 for r ≥ r0,

(4.1.3)

where the number r0 > 0 is so small that no other corner point of Ω lies in the disk |x| < r0.

With w̃ ∈ H1
0 (R2) being the extension of w by zero outside Ω, the solution of the local

problem we will deal with is w̃ψ. The right hand side is ψg̃−w̃∆ψ−2∇ψ∇w̃. For simplicity,

we write w̃ψ as w. Equally ψg̃− w̃∆ψ−2∇ψ∇w̃ will be written as g. In summary, the local

problem we deal with reads as follows: w ∈ H1
0 (G) is solution of

−∆w + p w = g ∈ L2(G) (4.1.4)

where the involved functions have bounded supports in the following specific way:

w(r, θ) = 0 for r ≥ r0, (4.1.5)

g(r, θ) = 0 for r ≥ r0. (4.1.6)

Remark 4.1.2. When there is no risk of confusion, a real-valued function v on the sector

G will be written indistinctly by v(x), v(x1, x2), v(r sin θ, r cos θ) or v(r, θ).

By Hardy inequality [29], it follows that the local solution w ∈ H1
0 (G) satisfies the inclu-

sion

r|α|−1Dαw ∈ L2(G) for all |α| ≤ 1. (4.1.7)

This leads us to consider the so-called weighted Sobolev spaces introduced first by Kondratiev

[36].

69

 
 
 



Definition 4.1.3. ([29], [36])

We denote by P k
2 (G) the space of all distributions v 0n G such that,

r|α|−kDαv ∈ L2(G) for all |α| ≤ k,

where k is a non-negative integer. We equip P k
2 (G) with the natural norm defined by

‖v‖2
Pk2 (G) :=

∑
|α|≤k

‖r|α|−kDαv‖2
0,G. (4.1.8)

By using the chain rule and the change of variables in integrals via the Euler transforma-

tion

r = et, (4.1.9)

the weighted Sobolev space on the sector G is linked to the usual Sobolev space on the strip

B = R× (0, ω) as specified in the next Lemma.

Lemma 4.1.4. ([29])

Assume that u ∈ P k
2 (G) with k a positive integer and define v by,

v(t, θ) = u(et cos θ, et sin θ)e(−k+1)t. (4.1.10)

Then, v(t, θ) ∈ Hk(B).

4.2 Regularity and singularities when p = 0

We consider (4.1.4) in the particular case when p = 0. We are then dealing with the Dirichlet

problem for the Laplace operator:

w ∈ H1
0 (G),−∆w = g ∈ L2(G), (4.2.1)

where w and g satisfy (4.1.5)-(4.1.6).

Theorem 4.2.1. For the solution w ∈ H1
0 (G) of the problem (4.2.1), we have the following

singular decomposition : there exists a scalar A such that

wR := w − Ar πω sin
π

ω
θ ∈ P 2

2 (G) ∩H1
0 (G),
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w1
R := w − Aψ(r)r

π
ω sin

π

ω
θ ∈ H2(G) ∩H1

0 (G),

and

‖wR‖P 2
2 (G) + ‖w1

R‖2,G + |A| ≤ C‖g‖0,G, (4.2.2)

where ψ ≡ ψ(r) is the cut-off function in (4.1.3), wR or w1
R is the regular part, r

π
ω sin π

ω
θ or

ψ(r)r
π
ω sin π

ω
θ is the singular function and A is the coefficient of the singular function.

The method used in proving Theorem 4.2.1 was developed by Kondratiev [36] and it

demands a lot of theoretical knowledge. We shall essentially quote the important steps. For

more details see for instance [29]. In polar co-ordinate, equation (4.2.1) takes the form

−
(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
= g(r, θ) in G. (4.2.3)

Now, we use the Euler transformation (4.1.9) and make a change of dependent variable

s(t, θ) = w(et, θ) = w(r, θ). (4.2.4)

Since

∂w

∂r
= e−t

∂s

∂t
and

∂2w

∂r2
= e−2t∂

2s

∂t2
− e−2t∂s

∂t
,

(4.2.3) becomes

−
(
∂2s

∂t2
+
∂2s

∂θ2

)
= e2tg(t, θ) in B (4.2.5)

with boundary conditions

s(t, ω) = s(t, 0) = 0, (4.2.6)

where s ∈ H1
0 (B) and g(et cos θ, et sin θ)et ∈ L2(B) in view of Lemma 4.1.4.

Taking the Fourier transform, the problem (4.2.5)-(4.2.6) becomes the following family of

ordinary differential equation that depend on the parameter λ:

−d
2ŝ(iλ, θ)

dθ2
+ λ2ŝ(iλ, θ) = êtg(−λ2 − 1 + iλ1, θ) ≡ êtg(iλ− 1, θ) 0 < θ < ω (4.2.7)
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ŝ(iλ, 0) = ŝ(iλ, ω) = 0. (4.2.8)

Remark 4.2.2. For a function h : r → h(r), the composition of the Euler transformation

(4.1.9) and the Fourier transform is called the Mellin transform of h see [29]. Formally we

have:

(Mh)(λ) =
1√
2π

∫ +∞

0

r−iλ−1h(r)dr.

We apply Proposition 2.5.36 (corresponding to the scalar Theorem 2.5.1) to the L2 vector-

valued functions

t ∈ (−∞,+∞) 
∂βs(t, θ)

∂β1t∂β2θ
, |β| ≤ 1 and t ∈ (−∞,+∞) etg(t, θ) ∈ L2(−∞,+∞),

observing that the support of all these functions are contained in Iα = (−∞, α) where

α = ln r0.

We obtain that ŝ(iλ, θ) is holomorphic in the region λ2 > 0 and êtg(iλ−1, θ) is holomorphic

in the region λ2 > −1 such that the following estimates hold:

1∑
j=0

∫ +∞

−∞

∫ ω

0

|λ1 + iλ2|2j|
∂1−j ŝ

∂θ1−j (iλ, θ)|2dλ1dθ ≤ r2λ2
0

∑
|β|≤1

∫ +∞

−∞

∫ ω

0

|∂
βs(t, θ)

∂tβ1∂θβ2
|2dtdθ

∫ +∞

−∞

∫ ω

0

|êtg(iλ− 1, θ)|2dλ1dθ ≤ r
2(λ2+1)
0

∫ +∞

−∞

∫ ω

0

|etg(t, θ)|2dtdθ.

In view of the above holomorphic property of ŝ(iλ, θ) and êtg(iλ + 1, θ), Theorem 2.5.38

implies that the solution ŝ(iλ, θ) of (4.2.7)-(4.2.8) admits a meromorphic extension (which

we denote in the same way) to the complex strip

−∞ < λ1 < +∞, −1 < λ2 < 0.

We want to say a bit more about this meromorphic extension. Firstly, the considerations in

Remark 3.1.9 can be made more precise in this one-dimensional case. Indeed, it is well-known

that the operator u −u′′ with boundary conditions u(0) = u(ω) = 0 has the eigenvalues

λ2
k = (

kπ

ω
)2, k ∈ N, k 6= 0,
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with, for each k, the associated eigenvector

vk = sin
kπ

ω
θ.

Now in the extension ŝ(iλ, θ) of the solution, if we take

iλ =
√
λk =

kπ

ω
, i.e. λ =

−ikπ
ω

,

then it is clear that the only possible pole of the meromorphic function ŝ(iλ, θ) in the strip

−∞ < λ1 < +∞, −1 < λ2 < 0 is λ = kπ
ω

. We distinguish two cases: if ω < π, there is no

pole in the said strip. However, there is indeed a unique pole in the non convex case ω > π.

Secondly, we introduce the Green function N ≡ N(iλ, θ, γ) of the operator

v ∈ C2(0, ω) −d
2v

dθ2
+ λ2v, λ =

−ikπ
ω

, −1 < λ2 < 0

with homogeneous Dirichlet boundary conditions v(0) = v(ω) = 0.

By definition [66], the Green function satisfies the following properties:

1. The function (θ, γ) N ≡ N(iλ, θ, γ) is continuous on the square (0, ω)× (0, ω);

2. The partial derivatives ∂N
∂θ
, ∂2N

∂θ2 exist and are continuous on the triangles 0 ≤ θ ≤ γ ≤ ω

and 0 ≤ γ ≤ θ ≤ ω;

3. For each fixed γ ∈ [0, ω], d2N
∂θ2 + λ2N = 0 for 0 ≤ θ ≤ ω, θ 6= γ;

4. On the diagonal θ = γ, the first derivative makes a jump such that

∂N(0+, θ)

∂θ
− ∂N(0−, θ)

∂θ
= −1 for 0 < θ < ω;

5. N(iλ, 0, γ) = N(iλ, ω, γ) = 0 for each γ ∈ (0, ω).

Following the classical procedure (see [66]), it can be shown that the Green function is given

by the formula

N(iλ, θ, γ) =
−1

ωλ


γ sinhλ(θ − ω) , if 0 ≤ γ ≤ θ ≤ ω

θ sinhλ(θ − ω) , if 0 ≤ θ ≤ γ ≤ ω.

(4.2.9)
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Notice that

N(0, θ, γ) =


γ (θ − 1) , for 0 ≤ γ ≤ θ ≤ ω

θ (γ − 1) , for 0 ≤ θ ≤ γ ≤ ω

which is in agreement with the Green function given in Walter [66] and Gustafson [33]. In

view of the expression of N(iλ, θ, γ), the solution of (4.2.7)-(4.2.8) admits the representation

ŝ(iλ, θ) =

∫ ω

0

N(iλ, θ, γ)êtg(iλ− 1, γ)dγ; when λ 6= −ikπ
ω

, λ2 > −1. (4.2.10)

The regularity of this extended solution of (4.2.7)-(4.2.8) is described in the next result.

Lemma 4.2.3. There exist constants C > 0 and K > 0, such that

2∑
j=0

|λ1|2−j‖ŝ(iλ, θ)‖j,(0,ω) ≤ C‖êtg(iλ− 1, ·)‖0,(0,ω), for |λ1| ≥ K, −1 ≤ λ2 ≤ 0.

Proof. For general problems, the proof of Lemma 4.2.3 is given in Grisvard [29] and Kon-

dratiev [36]. For the case under consideration, the proof can be obtained explicitly either

by using the Green function N(iλ, θ, γ) in (4.2.9) and the representation (4.2.10), which is

valid or by simple arguments. We prefer the latter approach.

We assume that λ1 ≥ K > 0 for a constant to be determined shortly and we assume that

−1 ≤ λ2 ≤ 0. Then λ 6= −ikπ
ω

. The arguments used below are similar to those that led to the

proof of the inequality (3.1.29). Multiply both sides of (4.2.7) by λ2
1
¯̂s(iλ, θ) and integrate by

parts to obtain the following after using (4.2.8):∫ ω

0

[
λ2

1|
dŝ(iλ, θ)

dθ
|2 + (λ2

1 − λ2
2 + 2iλ1λ2)|ŝ(iλ, θ)|2

]
dθ =

∫ ω

0

êtg(iλ− 1, θ)λ2
1
¯̂s(iλ, θ)dθ.

Using the real part of this identity and Cauchy-Schwarz inequality, we obtain:∫ ω

0

[
λ2

1|
dŝ(iλ, θ)

dθ
|2 + λ4

1(1− λ2
2

λ2
1

)|ŝ(iλ, θ)|2
]
dθ

≤
(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2
(∫ ω

0

λ4
1|ŝ(iλ, θ)|2dθ

) 1
2

.

(4.2.11)
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Notice that 0 ≤ λ2
2 ≤ 1. We assume at this point in time that

K ≥ 2, and
λ2

2

λ2
1

<
1

2
so that

1

2
< (1− λ2

2

λ2
1

).

Then, with |λ1| ≥ K and so |λ1| ≥ 2, we obtain from (4.2.11)

1

2

∫ ω

0

[
λ2

1|
dŝ(iλ, θ)

dθ
|2 + λ4

1|ŝ(iλ, θ)|2
]
dθ ≤(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2
(∫ ω

0

[
λ2

1|
dŝ(iλ, θ)

dθ
|2 + λ4

1|ŝ(iλ, θ)|2
]
dθ

) 1
2

.

Thus(∫ ω

0

[
λ2

1|
dŝ(iλ, θ)

dθ
|2 + λ4

1|ŝ(iλ, θ)|2
]
dθ

) 1
2

≤ 2

(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2

. (4.2.12)

On the other hand, from (4.2.7) we have

(∫ ω

0

|d
2ŝ(iλ, θ)

dθ2
|2dθ

) 1
2

≤ |λ|2
(∫ ω

0

|ŝ(iλ, θ)|2dθ
) 1

2

+

(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2

≤ 2λ2
1

(∫ ω

0

|ŝ(iλ, θ)|2dθ
) 1

2

+

(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2

because

|λ|2 = λ2
1 + λ2

2 ≤ λ2
1 + 4 ≤ 2λ2

1 and |λ1| ≥ 2.

Using then (4.2.12), we have

(∫ ω

0

|d
2ŝ(iλ, θ)

dθ2
|2dθ

) 1
2

≤ 5

(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2

(4.2.13)

Since |λ1| ≥ 2, it follows from (4.2.12) that

(∫ ω

0

[
|dŝ(iλ, θ)

dθ
|2 + |ŝ(iλ, θ)|2

]
dθ

) 1
2

≤ 2

(∫ ω

0

|êtg(iλ− 1, θ)|2dθ
) 1

2

. (4.2.14)

Taking the squares of (4.2.12), (4.2.13), (4.2.14) and adding these inequalities, we obtain the
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Lemma 4.2.3 for the specific choice K ≥ 2.

Remark 4.2.4. In terms of the weighted Sobolev space Hm((0, ω), ρ) introduced in Definition

3.1.4, the proof of Lemma 4.2.3 shows that

‖ŝ(iλ, ·)‖2,(0,ω),|λ1| ≤ C‖êtg(iλ− 1, ·)‖0,(0,ω) for |λ1| ≥ 2, −1 ≤ λ2 ≤ 0.

Once again, this inequality is as mentioned in the proof of Theorem 3.2.2, a particular case

of the results of Agranovitch and Vishik [3].

Corollary 4.2.5. There exists a sequence (Nm) of integers such that

Nm ≥ K, ∀m lim
m→+∞

∫ 0

−1

|ŝ(±iNm − λ2, θ)|dλ2 = 0

for almost every 0 < θ < ω.

Proof. From Lemma 4.2.3, we have∫ ω

0

∫ 0

−1

|ŝ(iλ1 − λ2, θ)|dλ2dθ ≤
C

|λ1|2
for |λ1| ≥ K.

This implies that

lim
K≤|N |→+∞

∫ ω

0

∫ 0

−1

|ŝ(±iN − λ2, θ)|dλ2dθ = 0.

By the fact that a Cauchy sequence in LP (0, ω) admits a point-wise convergent subsequence

(see Adams [1], Corollary 2.11), we can find a sequence (Nm)m≥1 of integers which have the

desired property.

Proof. (Theorem 4.2.1)

At this point, we make use of the fact that the polygonal domain is non-convex, i.e ω >

π. This implies as observed earlier that no pole of the meromorphic function ŝ(iλ, θ) or

eigenvalue λ = −iπ
ω

of the problem (4.2.7)-(4.2.8) belongs to the line

λ2 = −1.

Under this condition, the Plancherel-Parseval Theorem, implies that the function

λ1  ŝ(iλ1 + 1, θ),
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has the inverse Fourier transform

sR(t, θ) =
1√
2π

∫ +∞

−∞
eiλ1tŝ(iλ1 + 1, θ)dλ1,

that belongs to the Sobolev space H2(B) such that

‖sR‖2,B ≤ C‖etg‖0,B. (4.2.15)

Notice that the inverse Fourier transform of the function λ1  ŝ(iλ1, θ) i.e λ2 = 0, given

by

s(t, θ) =
1√
2π

∫ +∞

−∞
eiλ1tŝ(iλ1, θ)dλ1 (4.2.16)

is of class L2(B) (in fact of class H1
0 (B)).

In order to link sR(t, θ) to s(t, θ), we use the sequence (Nm) in the Corollary 4.2.5, ob-

serving that

s(t, θ) = lim
Nm→∞

1√
2π

∫ Nm

−Nm
eiλtŝ(iλ, θ)dλ

= lim
Nm→∞

1√
2π

[∫ −Nm−i
−Nm+0i

+

∫ Nm−i

−Nm−i
+

∫ Nm+0i

Nm−i
+

∫
Qm

]
eiλtŝ(iλ, θ)dλ (4.2.17)

where Qm is the rectangle with vertices −Nm + 0i,−Nm− i, Nm− i and Nm + 0i illustrated

in Figure 4.2.
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λ1

λ2

- Nm + 0i Nm + 0i

- Nm - i Nm - i

Qm

0

Figure 4.2: Application of the Residue theorem

By Corollary 4.2.5, we know that the limits corresponding to the first and the third

integrals are zero. Recall that we are in the non-convex case for the sector G i.e. ω > π. The

only pole of ŝ(iλ, θ) in the region Qm being then −iπ
ω

, the Laurent expansion of this function

has the form

ŝ(iλ, θ) =
P1(θ)

λ+ iπ
ω

+ α(λ, θ), (4.2.18)

with α(λ, θ) being analytic. Applying to (4.2.18) the operator u u′′ + λ2u with boundary

conditions u(0) = u(ω) = 0, it is easy to show in terms of the eigenvalues and associated

eigenvectors of this operator that

P1(θ) = A1 sin
π

ω
θ, for some scalar A1. (4.2.19)

By the Residue Theorem, the fourth integral in (4.2.17) is given by

1

2π

∫
Qm

i
√

2π eiλtŝ(iλ, θ)dλ = Res
(
i
√

2π eiλtŝ(iλ, θ)
)
λ=−iπ

ω

.

Now considering the Taylor’s expansion of eiλt about λ = −iπ
ω

and the expression of P1(θ) in
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(4.2.19), we obtain

Res
(
i
√

2π eiλtŝ(iλ, θ)
)
λ=−iπ

ω

= Ae
π
ω
t sin

π

ω
θ.

Therefore (4.2.17) leads to

s(t, θ) = sR + A e
π
ω
t sin

π

ω
θ. (4.2.20)

where sR satisfies (4.2.15).

In terms of the Euler transformation (4.1.9), the decomposition (4.2.20) becomes

w(r, θ) = wR(r, θ) + A r
π
ω sin

π

ω
θ (4.2.21)

where in view of (4.2.4), we have

w(r, θ) ≡ w(et, θ) = s(t, θ) and wR(r, θ) ≡ wR(et, θ) = sR(t, θ).

Furthermore, by a simple change of variables, we have (see Lemma 4.1.4) wR ∈ P 2
2 (G) ∩

H1
0 (G), with the inequality (4.2.15) becoming

‖wR‖P 2
2 (G) ≤ C‖g‖0,G. (4.2.22)

Finally, we use the cut-off function ψ ≡ ψ(r) in (4.1.3) to rewrite (4.2.21) in the form

w(r, θ) = w1
R(r, θ) + Aψ(r)r

π
ω sin

π

ω
θ (4.2.23)

where

w1
R(r, θ) := (1− ψ(r))w(r, θ) + ψ(r)wR(r, θ) ∈ H2(G) ∩H1

0 (G)

such that

‖w1
R‖2,G ≤ C‖g‖0,G (4.2.24)

because w is regular far away from the corner (0, 0) (see Theorem 4.1.1). Thus (4.2.23) and
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(4.2.24) yield

|A|‖ψ(r)r
π
ω sin

π

ω
θ‖1,G ≤ ‖w1

R‖2,G + ‖w‖1,G ≤ ‖g‖0,G

from where we have

|A| ≤ C‖g‖0,G. (4.2.25)

This completes the proof of Theorem 4.2.1.

4.3 Regularity and singularities when p 6= 0

In the case p 6= 0, we proceed by first drawing a consequence of Theorem 4.2.1.

Corollary 4.3.1. Let K ⊂ C be a compact set and let the complex parameter p with Re(p) ≥
0 vary in the set K. Then there exist a complex valued function p B1(p) and a constant C

not depending on p such that the solution of (4.1.4), (4.1.5) and (4.1.6) admits the singular

representation

w(x, p) = w1
R(x, p) +B1(p) ψ(r)r

π
ω sin

π

ω
θ (4.3.1)

with regular part w1
R ∈ H2(G)∩H1

0 (G) and coefficient B1(p) of the singular function satisfying

the estimate

‖w1
R‖2,G + |B1(p)| ≤ C‖g‖0,G. (4.3.2)

Proof. The decomposition into regular part and singular function stated in Theorem 4.2.1

above means that the bounded linear map −∆+p operating from H2∩H1
0 into L2 has closed

range with finite co-dimension 1 or that −∆ + p has index −1 (See [25], [38]). Notice that

(4.3.1) is valid from Theorem 4.2.1 if we re-write (4.1.4) as −∆w = g − p w.

Applying −∆ + p to both sides of equation (4.3.1), we have

g = (−∆ + p)w1
R(·, p) +B1(p)(−∆ + p)ψ(r)r

π
ω sin

π

ω
θ.

Now, letting (−∆+p)w1
R(·, p) =: gR and denoting by ‖(−∆+p)−1‖ the norm of the operator

(−∆ + p)−1 from L2(G) into H2(G) with domain D = {(−∆ + p)u : u ∈ H2(G) ∩H1(G)},

80

 
 
 



we have

‖w1
R(·, p)‖2,G = ‖(−∆ + p)−1 gR‖2,G

≤ ‖((−∆ + p))−1‖‖gR‖0,G

≤ C‖(−∆ + p)−1‖‖g‖0,G

≤ C sup
p∈K
‖((−∆ + p))−1‖‖g‖0,G

≤ C‖g‖0,G (4.3.3)

because the coefficients of the operator −∆ + p are continuous and K is compact.

Furthermore, by (4.3.1), (4.3.3) and the analogue of (3.1.29), we have

|B1(p)|‖ψ(r)r
π
ω sin

π

ω
θ‖1,G ≤ ‖w‖1,G + ‖w1

R‖2,G ≤ C‖g‖0,G,

which yields

|B1(p)| ≤ C‖g‖0,G.

Theorem 4.3.2. For |p| large enough, there exist a regular function wR(x, p) ∈ H2(G,
√
|p|)

and a complex valued-function p  B2(p) such that the solution of the problem (4.1.4),

(4.1.5) and (4.1.6) admits the singular decomposition

w(x, p) = wR(x, p) +B2(p) ψ(
√
|p|r)r πω sin

π

ω
θ.

Furthermore, we have the estimate

‖wR‖2, G,
√
|p| + |B2(p)||p|1− πω ≤ C‖g‖0,G,

where we recall that here and after C > 0 denotes various constants independent on p and

the weighted norm ‖ · ‖
2, G,
√
|p| is given in Definition 3.1.4.
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Proof. We perform the change of variable x ∈ G→ ρx ∈ G where ρ := 1√
|p|

and

ω = ρ2p = p
|p| . Problem (4.1.4) becomes

− 1

ρ2

(
∂2w(ρx)

∂x2
1

+
∂2w(ρx)

∂x2
2

)
+ p w(ρx) = g(ρx)

or equivalently

(−∆ + ω)wρ(x) = hρ(x) (4.3.4)

where hρ(x) = ρ2g(ρx) and wρ(x) = w(ρx). Since the complex parameter ω satisfies |ω| = 1,

Corollary 4.3.1 applies to (4.3.4). Thus wρ admits the singular decomposition

wρ = wR,ρ(x, ω) + ψ(r)B1(ω, ρ)ρ
π
ω r

π
ω sin

π

ω
θ (4.3.5)

or

wρ = wR,ρ(x, ω) + ψ(r)B2(p)r
π
ω sin

π

ω
θ (4.3.6)

where B1(ω, ρ) = B2(p)ρ
π
ω with uniform estimate:

‖wR,ρ‖2,G + |B2(p)|ρ πω ≤ C‖hρ‖0,G. (4.3.7)

Now from (4.3.7), we go back from the variable ρx in (4.3.4) to the initial variable x in

(4.1.4) as follows: Put

wR(x) = wR,ρ(
x

ρ
) and z =

x

ρ
so that dz = ρ−2dx,

∂wR
∂x1

(x) =
∂wR,ρ

∂z1

(z)
1

ρ
and

∂2wR
∂x2

1

(x) =
∂2wR,ρ

∂z2
1

(z)
1

ρ2
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Thus we have

‖wR,ρ‖2
2,G =

∫
G

(|wR,ρ(z)|2 + |∇wR,ρ(z)|2 +
∑
|α|=2

|DαwR,ρ(z)|2)dz

=

∫
G

(|wR(x)|2 + ρ2|∇xwR(x)|2 + ρ4
∑
|α|=2

|Dα
xwR(x)|2)ρ−2dx

=

∫
G

(ρ−2|wR(x)|2 + |∇xwR(x)|2 + ρ2
∑
|α|=2

|Dα
xwR(x)|2)dx

= ρ2

∫
G

(ρ−4|wR(x)|2 + ρ−2|∇wR(x)|2 +
∑
|α|=2

|DαwR(x)|2)dx

= |p|−1

∫
G

(
∑
|α|=2

|DαwR(x)|2 + |p||∇wR(x)|2 + |p|2|wR(x)|2)dx

= |p|−1‖wR‖2

2,G,
√
|p|
,

which implies that

1

ρ2
‖wR,ρ‖2

2,G = ‖wR‖2
2,G, 1

ρ
. (4.3.8)

Similarly, the right hand side of (4.3.7) yields

‖hρ(
x

ρ
)‖2

0,G =

∫
G

|hρ(z)|2dz =

∫
G

|ρ2g(ρz)|2dz = ρ2‖g‖2
0,G. (4.3.9)

Using (4.3.7), (4.3.8) and (4.3.9) we have the desired estimate

‖wR‖2,G,
√
|p| + |B2(p)||p| 12− π

2ω ≤ C‖g‖0,G,

together with the singular decomposition

w(x) = wR(x) +B2(p)ψ(
√
|p|r)r πω sin

π

ω
θ.

Remark 4.3.3. The second part of Theorem 4.3.2 (case |p| large) and its proof constitute a

particular case of the deep results stated and proved in [19], [46] and [47] for general elliptic

and parabolic problems with edge corners. An alternative approach is presented in [30]. The

nature of the Helmholtz operator −∆ + pI makes the above proof simple and explicit in the
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following manner compared to a general operator of the form p + L(x,Dx) investigated in

the above mentioned references with L(x,Dx) being a proper elliptic operator of order 2 with

principal part frozen at the origin denoted by L0(Dx). In making the change of variable

x→ ρx, the analogue of (4.3.4) has the form

Mρ(x,Dx)wρ = hρ (4.3.10)

where the operator Mρ tends to ω + L0 as ρ→ 0.

The analogue of (4.3.6) is neither explicit nor does it give a uniform estimate of the form

(4.3.7). Such an estimate is achieved provided that a perturbation argument together with

the convergence of Mρ to ω + L0 is used. On the contrary, for the Helmholtz operator, Mρ

is reduced to the constant operator −∆ + ω.

So far, the analysis of the regularity and the singularity of the solution of problem (4.1.1)

was done in two local steps: far away from vertices (Theorem 4.1.1) and near each vertex

(Theorem 4.2.1, Corollary 4.3.1 and Theorem 4.3.2). We now combine these steps to obtain

the following global result on Ω.

Theorem 4.3.4. There exists a positive number δ0 > 0 such that the solution of the problem

(4.1.1) admits the singular decomposition

w(x, p) = w1
R(x, p) +B1(p)ψ(r)r

π
ω sin

π

ω
θ

with regular part w1
R(x, p) ∈ H2(Ω) and coefficients of singularity B1(p) ∈ C satisfying the

estimate

‖w1
R‖2,Ω + |B1(p)| ≤ C‖g‖0,Ω

for |p| ≤ δ0. Furthermore, the singular decomposition becomes

w(x, p) = w2
R(x, p) +B2(p)ψ(r

√
|p|)r πω sin

π

ω
θ

where w2
R(x, p) ∈ H2(Ω,

√
|p|) and

‖w2
R‖2,Ω,

√
|p| + |B2(p)||p| 12− π

2ω ≤ C‖g‖0,Ω

for |p| > δ0.
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Proof. Notice that Ω was assumed to have only one non-convex vertex, which is localized

through the cut-off function ψ = ψ(r) used before.

The solution w of (4.1.1) can then be written as

w(x, p) = (1− ψ)w(x, p) + ψ w(x, p) on Ω.

Corollary 4.3.1 and Theorem 4.3.2 guarantee the existence of δ0 > 0 such that the singular

decompositions and the estimates in these two results apply to the local solution ψw of

(4.1.4) with right-hand side

ψ g − w∆ψ − 2∇w∇ψ.

More precisely, for |p| ≤ δ0, we have

w(x, p) = (1− ψ)w(x, p) + w1
R(x, p) +B1(p)ψ(r)r

π
ω sin

π

ω
θ (4.3.11)

with

‖w1
R‖2,Ω + |B1(p)| ≤ C‖ψ g − w∆ψ − 2∇w∇ψ‖0,Ω.

The desired regular part for w is

w1,1
R := (1− ψ)w + w1

R

which is indeed of class H2(Ω) due to the regularity far away from the vertex that guarantees

that (1− ψ)w ∈ H2(Ω). Then with

Ωr0 := {x ∈ Ω; r0/2 < |x| = r ≤ r0}

we have

‖w1,1
R ‖2,Ω + |B1(p)| ≤ ‖(1− ψ)w‖2,Ω + ‖w1

R‖2,Ω + |B1(p)|
≤ C‖w‖2,Ωr0

+ C‖ψg − w∆ψ − 2∇w∇ψ‖0,Ω

≤ C‖w‖2,Ωr0
+ C‖g‖0,Ω + C‖w‖1,Ωr0

≤ C‖g‖0,Ω,
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by the regularity of the solution far away from the origin and specifically on Ωr0 . Notice that

the various constants C above do not depend on p because p moves in the the compact set

B̄(0, δ0).

Regarding the case when |p| > δ0, the singular decomposition to be used in place of

(4.3.11) is

w(x, p) = (1− ψ)w(x, p) + w2
R(x, p) +B2(p)ψ(r

√
|p|)r πω sin

π

ω
θ

with

‖w2
R‖2,Ω,

√
|p| + |B2(p)||p| 12− π

2ω ≤ C‖ψg − w∆ψ − 2∇w∇ψ‖0,Ω.

Take w2,2
R := (1 − ψ)w + w2

R ∈ H2(Ω) as the regular part. In view of the analogue of the

Theorem 3.2.2 we have

‖(1− ψ)w‖
2,Ω,
√
|p| ≤ C‖g‖0,Ω.

Therefore we have as in the previous case

‖w2,2
R ‖2,Ω,

√
|p| + |B2(p)||p| 12− π

2ω ≤ C‖g‖0,Ω.

4.4 Global regularity of the solution

We devote this section to show that the solution of the Helmholtz problem is regular in a

weighted Sobolev space. This result is fundamental to our study as the constructive analysis

to come is based on it. The weighted Sobolev space in question is defined as follows:

Definition 4.4.1. For β a non-negative real number, we denote by H2,β(Ω) the space of all

distributions v ∈ H1(Ω) such that

rβDαv ∈ L2(Ω) ∀ α such that |α| = 2

where r ≡ r(x) = d(x, vertices) is the distance to the vertices of the domain Ω.

The weighted Sobolev space H2,β(Ω) is equipped with its natural Hilbert structure given
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by the inner product

(w, v)H2,β(Ω) = (w, v)1,Ω +
∑
|α|=2

∫
Ω

rβDαw.Dαvdx.

The norm of the space H2,β(Ω) is written ‖·‖H2,β(Ω) while the following is simply a semi-norm:

|v|H2,β(Ω) :=

∑
|α|=2

∫
Ω

|rβDαv|2dx

 1
2

.

Remark 4.4.2. The usual Sobolev space H2(Ω) is continuously embedded in the weighted

Sobolev space H2,β(Ω):

H2(Ω) ↪→ H2,β(Ω).

Indeed, this is obvious for β = 0 since H2(Ω) = H2,0(Ω).

For β > 0 and for v ∈ H2(Ω), we have

∫
Ω

|v|2 + |∇v|2 +
∑
|α|=2

|Dαv|2
 dx =

∫
Ω

|v|2 + |∇v|2 +
∑
|α|=2

r2β|Dαv|2r−2β

 dx

≥ C

∫
Ω

|v|2 + |∇v|2 +
∑
|α|=2

r2β|Dαv|2
 dx

where C = min

{
1,
(

1

diameter(Ω)

)2β
}

, observing that supx∈Ω̄ d(x, vertices) ≤ diameter(Ω).

Theorem 4.4.3. The space H2,β(Ω) is continuously and compactly embedded in C0(Ω̄) for

0 ≤ β < 1:

H2,β(Ω) ↪→c C
0(Ω̄).

Furthermore, the embedding of H2,β(Ω) into H1(Ω) is compact: H2,β(Ω) ↪→c H
1(Ω)

Proof. The case when β = 0 is well-known because H2,0(Ω) = H2(Ω) (Sobolev and Rellich-

Kondrachov embeddings, Theorem 2.4.5). So we assume that β > 0. Let v be in H2,β(Ω) so
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that

v ∈ Lp(Ω), ∀ p ∈ [1,+∞) and Dαv = (rβDαv).r−β ∀ 1 ≤ |α| ≤ 2. (4.4.1)

The first inclusion in (4.4.1) is due to the fact that v ∈ H1(Ω), which is embedded in

Lp(Ω) ∀ p ∈ [1,+∞) by Theorem 2.4.5. We want to show that Dαv ∈ Lp(Ω) 1 ≤ |α| ≤ 2

for some p > 1 and p < 2. Take q1 = 2
p

with conjugate q2 = 2
2−p i.e. 1

q1
+ 1

q2
= 1. Then r−βp

is of class Lq2(Ω) iff 1 ≤ p < 2
1+β

. By Hölder’s inequality, we deduce from (4.4.1) and the

choice of p, q1 and q2 that

∫
Ω

|Dαv|pdx ≤
(∫

Ω

(|rβDαv|p)q1dx
) 1

q1

(∫
Ω

r−βpq2dx

) 1
q2

=

(∫
Ω

|rβDαv|2dx
) p

2
(∫

Ω

r
−2βp
2−p rdr

) 2−p
2

≤ C‖v‖p
H2,β(Ω)

.

Notice that if |α| = 0 and β = 0 in (4.4.1), we could show in a similar manner that v ∈ Lp(Ω)

for the specific choice of p made above. Thus H2,β(Ω) ↪→ W 2,p(Ω). But by the Sobolev and

Rellich Kondrachov imbeddings, Theorem 2.4.5, the Sobolev space W 2,p(Ω) is continuously

and compactly embedded into C0(Ω̄) and H1(Ω), respectively. This proves the first and the

second claims and hence the proof of the Theorem is completed.

We are now in a position to state one of our main contributions that will have an impact

on the heat equation and on its numerical approximation in the next chapter. This result is

announced in [14] and [13].

Theorem 4.4.4. Assume that 0 < β < 1− π
ω

. Then the solution w of the Helmholtz problem

(4.1.1) is of class H2,β(Ω) such that the following estimate holds for some constant C > 0

independent on p:

‖w‖H2,β(Ω) ≤ C‖g‖0,Ω.

Proof. The existence of a number δ0 > 0 in Theorem 4.3.4 is the rephrasing of the require-

ment that |p| is large enough in Theorem 4.3.2. From Remark 4.4.2, we have for the regular

part in Theorem 4.3.4:

‖w1
R‖H2,β(Ω) ≤ C‖w1

R‖2,Ω ≤ C‖g‖0,Ω
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‖w2
R‖H2,β(Ω,|p|) ≤ C‖w2

R‖2,Ω,|p| ≤ C‖g‖0,Ω

where the weighted norm onH2,β(Ω,
√
|p|) is defined in a similar manner as that ofH2(Ω,

√
|p|)

of Definition 3.1.4 by

‖v‖2

H2,β(Ω,
√
|p|)

=

∫
Ω

|p|2|v|2 + |p||∇v|2 +
∑
|α|=2

|rβDαv|2
 dx. (4.4.2)

Regarding the singular part, we proceed as follows. Firstly, the function ψ(r)r
π
ω sin π

ω
θ be-

longs to H2,β(Ω) because near the non-convex corner (0, 0), rβDαψ(r)r
π
ω sin π

ω
θ with |α| = 2,

behaves like rβ+ π
ω
−2 which is of class L2(Ω) in view of the condition 0 < β < 1− π

ω
.

Thus for |p| ≤ δ0, the estimate for |B1(p)| in Theorem 4.3.4 yields

‖ψ(r)B1(p)r
π
ω sin

π

ω
θ‖H2,β(Ω) ≤ C‖g‖0,Ω.

For |p| > δ0, the same argument as above shows that ψ(r|p|)r πω sin π
ω
θ is of class H2,β(Ω).

Now the estimate for B2(p) in Theorem 4.3.4 leads to

‖ψ(r
√
|p|)B2(p)r

π
ω sin

π

ω
θ‖H2,β(Ω) ≤ C|B2(p)|

≤ C|p| π2ω− 1
2‖g‖0,Ω

≤ C(δ0)
π
2ω
− 1

2‖g‖0,Ω.

Remark 4.4.5. The underlying point of our investigation is that the linear operator

g(., p) ∈ L2(Ω) w(., p) ∈ H2,β(Ω)

is bounded with norm independent on p ∈ C satisfying (3.1.20). Theorem 4.4.4 is proved in

Grisvard [29] in the particular case when p = 0. This originates from the study by Raugel

[58], [59] of the regularity in the general case where g is in the Sobolev space Hm(Ω), m > 0.

In this case weighted Sobolev spaces Hm+2,β(Ω) of higher order are essential as demonstrated

by Raugel.
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Remark 4.4.6. In this thesis we used three types of weighted Sobolev spaces which play

completely different roles:

• The weighted Sobolev space Hm(Ω, ρ) (cf. Definition 3.1.4 and Proposition 3.1.5),

which is exactly the usual Sobolev space Hm(Ω) equipped with a weighted norm. The

space Hm(Ω, ρ) arises generally when the (partial) Fourier transform with respect to t

is applied to functions (t, x) → v(x, t) in the usual Sobolev space Hm(Ω × R). In fact

the norm ‖v‖m,Ω×R is equivalent to
(∫

R ‖(Fv)(η)‖2
m,Ω,1+|η|dη

) 1
2

see Dauge [19].

• The Kondratiev weighted Sobolev space P k
2 (G) (cf Definition 4.1.3) serves to investigate

the regularity and the singularity for an elliptic problem localized in a sector G. The

space P k
2 (G) is not equal to the usual Sobolev space Hk(G). However, it is related to

Hk through Lemma 4.1.4 and we have P k
2 (G) ⊂ Hk

loc(G) i.e. v ∈ P k
2 (G) ⇒ ρv ∈

Hk(G) ∀ρ ∈ D(G).

• The weighted Sobolev space H2,β(Ω) is a replacement for H2(Ω) for the global regularity

of the solutions.
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