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 II 

Summary 

 

Individual-based simulation modelling is an excellent method for testing hypotheses, 

while including realistic and stochastic population parameters. This thesis considers 

the evolution of dispersal or inbreeding through individual-based simulation 

modelling. 

The occurrence of exclusive inbreeding and exclusive outbreeding is found in a 

number of organisms and are referred to as mixed mating. Mixed mating is suggested 

to be in response to low levels of inbreeding depression as well as simultaneous 

inbreeding- and outbreeding depression while intermediately related mating partners 

are not available. The results of this thesis show that stable mixed mating strategies 

evolve in the presence of both inbreeding and outbreeding depression, as well as, 

under conditions where low levels of inbreeding depression are present. Also, 

inclusive fitness allows higher levels of inbreeding in genetic systems where the 

mating partners are more related to each other.  

Dispersal evidently evolves in response to inbreeding depression. A number of 

other factors, such as local mate competition and the cost of dispersal also influence 

the rate of dispersal. In addition to these factors, it is shown in this thesis that male 

dispersal evolves when there is variation in patch sex ratios. Simulation data also 

supports parent offspring conflict models, as males have reduced dispersal rates when 

they, rather than their parents, determine the dispersal rate.  

Population structure is affected by dispersal rates. Using individual-based 

simulation modelling and various sampling strategies, reveals that few molecular 

markers, for a few individuals, are sufficient to accurately detect population 

subdivision, especially when the sub-populations are large. It is, however, indicated 

that planning prior to sampling are important for proper assessment of population 

structure.  

 Lastly, molecular data from the pollinating fig wasp Platyscapa awekei reveals 

that this species suffers from low levels of inbreeding depression. However, when this 

data are simulated, stable mixed mating did not evolve although it is observed in P. 

awekei. Sex ratio variation, high local mate competitions and male only broods are 

therefore suggested to drive male dispersal. It is consequently advantageous to use 

various techniques to unravel the evolution of a trait and gain insight into the system.  
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Preface 

 

Each chapter in this thesis, except for the introduction and conclusion, is written as a 

journal article and is either submitted or in preparation for submission and as such 

includes its own introduction, and discussion section. In chapters 2 and 3 the results 

and discussion sections are combined respectively as a discussion naturally follows a 

description of the generated data.  

Jaco Greeff, my supervisor, is included as co-author for the submitted 

manuscripts for chapters 2, 3 and 4. The reasons for this are twofold. First, the models 

were developed with suggestions from him, although the underlying ideas as well as 

the simulation models themselves are my own. Secondly, all of the financing and 

facilities required to complete these studies were provided through funding secured by 

him. 

In this thesis I extend a number of existing ideas with the use of individual-

based simulation modelling within the Delphi environment, compiled for the 

Windows operating system. As such, these programs and source code are available in 

the electronic appendix submitted with this thesis. Although these programs are 

merely the tools used to test ideas, the following can be mentioned regarding the code 

itself: the program discussed in chapter 4 was created first, followed by the program 

for chapter 2 and lastly the program for chapter 3. Starting with no formal education 

in programming and no experience with the Delphi environment the program code 

may be somewhat informal. Therefore, the code for the last program is more efficient 

than the first. Additionally, in the general introduction, I deal with individual-based 

simulation modelling as a tool to study evolutionary processes to avoid repetition in 

the chapters where it was employed.  

Lastly, to keep all the theory and models grounded in reality, much of the 

research in this thesis refer to pollinating fig wasp biology. While the simulation 

models are not exclusive for the pollinating fig wasp system they are applicable to 

them. Furthermore, chapter 5 deals with empirical data from this system and for these 

reasons I introduce the pollinating fig wasp system in the in general introduction. 
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1. Introduction 

 

In nature, organisms display a broad range of variation in their morphology and 

behaviour. Darwin (1859) recognised that natural selection acts upon this phenotypic 

variation. This means that individuals that are better adapted to their environmental 

conditions have a higher probability to reproduce, passing their genes (and traits), on 

to the next generation. It is, however, naïve to think that all organisms are optimised 

for their respective environments. Various constraints may cause individuals to 

express phenotypes that are slightly maladapted and unable to reach their optimal 

state. In addition, some traits may be maladapted due to the relatively small effects 

that they have on the fitness of an individual. Looking at evolution through 

optimization is not a new concept and has been refined to make it more appropriate to 

unravelling evolutionary concepts (Maynard Smith, 1978b; Mitchell & Valone, 1990; 

Orzack & Sober, 2001; Stearns & Schmid-Hempel, 1987). One aim of studying 

evolution is thus to identify factors under selection that may influence specific traits. 

In this thesis I focus mostly on two traits: dispersal and inbreeding. I aim to 

unravel which factors affect dispersal and inbreeding, how dispersal and inbreeding 

affect population structure and how this influences sampling schemes. I further 

empirically examine how dispersal and inbreeding affect the fitness in a model 

organism. 

I use the introduction to describe the primary tool used, namely, individual-

based simulation modelling, to investigate these traits and why it is ideal for 

optimisation studies. All the simulations are, however, grounded in reality and I 

introduce pollinating fig wasps as model organisms, which inspired most of these 

simulations. The brief description of their life history is also applicable to chapter 5, 

where molecular tools were used to investigate inbreeding and dispersal. Lastly, I 

provide an overview of the aims of each chapter.  
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Individual-based simulation modelling 

 

“In short, it shows what the world would look like, if it really did work the 

way in which we think it does.”  

 Peck (2004)  

 

Individual-based simulation (also called individual-based modelling or agent-based 

modelling) is where organisms are created in silico and their interactions with each 

other and the simulated environment investigated. Individuals, as discrete units within 

a population or ecological systems, define these models. Each of these individuals is, 

in turn, defined by at least one parameter that varies between individuals, and is 

tracked during the history of interactions with the environment and other individuals. 

In the last four decades, individual-based simulation modelling has increased 

substantially (in part reflecting the advancements in computer processing power) and 

include models of ecological and evolutionary processes (DeAngelis & Mooij, 2005; 

Grimm, 1999; Grimm et al., 2006; Łomnicki, 1999; Mitchell, 1998; Peck, 2004; 

Prescott et al., 2007). These processes are complex and individual-based simulation is 

an extremely powerful tool with which biological systems may be mimicked and 

experimented on, to unravel questions in ecology and evolution (DeAngelis & Mooij, 

2005; Grimm, 1999; Grimm et al., 2006; Kokko, 2007; Mitchell, 1998; Peck, 2004; 

Winsberg, 2003). Simulation modelling has a number of advantages over analytical 

models, especially when the system under investigation is complex. However, this 

method of investigation also has its disadvantages and limitations and is open to 

misuse as is the case for other research tools. Subsequently I will elaborate all these 

points, and the reasons why I used simulation modelling, starting with a description of 

how a basic simulation model works. 

 

A simple simulation model 

  

Individual-based simulations have a simple structure and it is immediately apparent 

that it is similar to natural processes driving evolution (figure 1.1). For brevity, I shall 

refer to “individual-based simulations” simply as “simulations”. Each individual in 
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these simulations is characterised by a few traits. During the simulation, these traits 

are tracked for each individual organism throughout the life cycle of their digitised 

life history. Depending on the question addressed, offspring production of each 

individual is constrained by a number of factors including, the other individuals 

competing for mating and reproduction, simulated physical constraints on individuals, 

simulated environmental constraints, or a combination of some or all of these factors. 

After many generations the traits under investigation should be adapted to the 

enforced and emerging constraints.  

The steps depicted in figure 1.1 are followed in all the models (bar the fitness 

calculation when fitness emerges as a consequence of different reproductive 

capabilities, chapter 3, or when loci under investigation are neutral, chapter 4):  

1. A population of organisms is initialised and alleles are distributed to all 

individuals. Alleles can be assigned either randomly to the individuals, 

or all individuals can receive the same allele (necessary when local 

optima need to be identified, see stochasticity in simulation modelling).  

2. If fitness values are implicitly stated (chapter 2), each individual’s 

fitness is calculated. 

3. Individuals are selected to mate. This is performed either at random 

(chapter 3, where fitness is an emerging property; chapter 4, where loci 

are neutral) or using a specific selection method when individuals have 

assigned fitness values (the selection method employed in this thesis is 

fitness proportional selection with “Roulette wheel” sampling, see 

stochasticity in simulation modelling and chapter 2). 

4. Offspring are created and receive their alleles from their parents via 

normal Mendelian inheritance.  

5. Each offspring is mutated at each locus with a predetermined 

probability (see stochasticity in simulation modelling). 

6. Once the number of offspring reaches the number of individuals in the 

parental population the new population replaces the old. Steps 2 to 6 are 

iterated for a number of generations. 
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Figure 1.1. Steps in a simple individual-based simulation model. *Explicit fitness 

determination is often excluded if it is an emerging property of the simulation. 
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The number of generations depends on how fast the traits of interest stabilise, and 

preliminary runs are performed to determine this. Data is collected at the end of the 

simulation or sometimes averaged over the latter part of the simulation (once stability 

is reached). Normally, simulations are repeated multiple times with slight adjustments 

to one parameter. In turn, each parameter set (i.e. each simulation with a change to 

any parameter) is repeated multiple times. Comparison between the adjustments and 

the trait of interest are investigated and analysed. If the trait is influenced by the 

adjusted parameter conclusions about this relationship, and its influence on the 

evolution of the system can be made. 

 

Stochasticity in simulation modelling 

 

A key feature of simulation modelling is its inherent demographic stochasticity and 

individual variation (DeAngelis & Mooij, 2005; Grimm, 1999). Including stochastic 

parameters and their effects are becoming increasingly important if we want to extend 

our knowledge of evolutionary theory (DeAngelis & Mooij, 2005; Housten & 

McNamara, 1985; Lenormand et al., 2009; Yoshimura & Shields, 1987). Individual-

based simulations are therefore well suited to expand classical models, resulting in 

better prediction of population and ecosystem evolution (DeAngelis & Mooij, 2005; 

Judson, 1994; Peck, 2004). It is, however, important to note that the variation within 

the simulation models in this thesis is strictly constrained by the model parameters. 

This means that the trait being optimised has a finite number of solutions and that de 

novo development of a new trait to increase fitness and offspring production is 

impossible. These constraints are in agreement with Darwinian theory of evolution 

where phylogenetic inertia often limit better forms of adaptation, and optimisation is 

mostly from current individual variation (Darwin, 1859; Orzack & Sober, 2001). 

Variation in natural populations is often lost due to drift or selection. During 

modelling, the aim is to create a realistic representation of these processes (drift and 

selection) while producing and maintaining enough variation in finite population sizes 

for a trait to be optimised (DeAngelis & Mooij, 2005). I will address two components, 

used by the models in this thesis, which maintain variation in a similar manner to 

natural systems, namely fitness proportion selection and mutation. This is by no 

means a complete account of the incorporation of stochastic variation in simulation 
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models, but is of importance because these two components force the maintenance of 

some variation (rather than emerging spontaneously from the model). It is therefore 

important that these components are an accurate reflection of natural systems.  

In nature, fitter individuals are identified by their ability to produce more 

offspring. This does not mean that only the fittest individuals reproduce, but that they 

will, on average, produce proportionally more offspring. In simulation modelling 

there are various ways of selecting who should mate (Mitchell, 1998). It is, therefore, 

important to choose a selection method where sufficient variation is maintained to 

move away from local optima yet strong enough to optimise the traits under 

investigation (Mitchell, 1998). Fitness proportion selection with “roulette wheel” 

sampling (used in chapter 2) is well suited for simulations of biological systems 

because it enables fitter individuals to mate more often, while weaker individuals are 

not completely excluded. Briefly, each individual’s fitness value is divided by the 

total fitness of the population (i.e. sum of all the individual’s fitness values). This is 

the proportional fitness of each individual. Individuals are then assigned a slice of a 

“roulette wheel” according to their proportional fitness. To select an individual to 

mate, “the wheel is spun” (i.e. a random number is drawn). Whoever owns that 

number on the “roulette wheel” will mate. This is repeated for each mating event, 

leading to fitter individual being selected more often than weaker individuals 

(Mitchell, 1998). 

 In biological systems phenotypic variation is largely created by mutations. 

Unfortunately, the stochastic effects of mutations are often excluded from 

evolutionary models (Lenormand et al., 2009; Orr, 2005). In the simulations in this 

thesis, two types of mutational models are used; firstly jumping mutations (chapters 2 

and 3, electronic appendix), where an allele can mutate to any of the possible alleles. 

Jumping mutations enable a population to search through large fitness landscapes, 

reducing the risk of getting stuck on a local optimum (Lenormand et al., 2009). It is 

however known that, when a population approaches the phenotypic optimum, 

mutations with large phenotypic effects will be more deleterious than mutations with 

small phenotypic effects. Therefore, if a trait is to be optimised completely, 

infinitesimally small mutations must occur (Fisher, 1930; Lenormand et al., 2009; 

Orr, 2005). For this reason a second mutational model is used, namely, stepwise 

mutations (chapters 2-4, see electronic appendix). When an allele mutates via 

stepwise mutation it changes to the next possible sequential value. In other words if 
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there are 11 possible alleles, determining dispersal probability, ranging from 0 to 1, an 

allele with the value 0.3 will change to 0.2 or 0.4 with equal probability.  

In all the models the number of alleles can be changed (chapters 2-4, see 

electronic appendix), and if increased, the mutational steps become smaller (this 

unfortunately enlarges the parameter space, which requires more generations to 

explore). The mutations in simulation modelling are obviously not infinitely small, 

but the stepwise mutations model is a practical solution to enable the population to 

approach the optimum more efficiently than with random jumping mutations only. It 

should be noted that in all the simulations, where both mutational models were used, 

the probability of a stepwise mutation was four times that of a jumping mutation. 

Figure 1.2, from experiment 3.3 in chapter 3, is an example of where both mutational 

models in the simulation enable individuals to approach the optimal behaviour and 

encapsulate the mutational step-size decrease of Fisher's (1930) geometrical model of 

adaptation. 

With increasing computing power, we are able to study evolutionary processes, 

including demographic stochasticity in more detail. Current commercial computers 

are often powerful enough to search through extremely large parameter spaces using 

large population sizes, thousands of alleles and many generations. The problem of 

local optima in studies of adaptation is therefore becoming less of a concern. We 

should however guard against exploiting current computing power and remember that 

simulations should reflect realistic conditions, as organisms in nature may get stuck 

on local optima. Depending on the biological question, comparison of multiple 

simulations, with realistic parameters may be more informative, including the 

dynamics of stochasticity in nature. 
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Figure 1.2. The optimal probability of dispersal under the simulated conditions (1 

foundress mother dispersal cost of 0.5) is expected to be approximately 0.49 (see 

chapter 3). The population is initialised with a 0 probability of dispersal. Two large 

mutational steps can be seen early in the simulation but as the optimal phenotype is 

approached only small mutation steps are selected for. 

 

A short note on inclusive fitness in simulation modelling 

 

The concept of inclusive fitness, developed by Hamilton (1963, 1964), deals with the 

additional fitness advantage genes obtain by helping relatives of their bearers to mate. 

Using analytical models to track inclusive fitness is often difficult (Kokko, 2007). 

Inclusive fitness is, however, an emerging property of simulation modelling (Gros et 

al., 2008; Poethke et al., 2007), irrespective of the selection model employed. It is 

therefore not necessary for any formal statement in the model to deal with inclusive 

fitness. This property of simulation modelling is unfortunately easy to overlook. 

To ensure that the inclusive fitness in the simulation model reflects the 

biological system, the same genetic setup must be used in the simulation. This is of 

utmost importance if the trait under investigation has an effect on the mating 

opportunities of related individuals, because the kin value of different family 
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members differs between these systems. The three genetic systems in this thesis are 

haploids, diploids and haplodiploids. A brief description of the relatedness within 

these genetic systems (without prior inbreeding) is as follows: Any individual is 

related to him/herself by 1 (applicable where selfing takes place, see chapter 2). The 

average relatedness of a haploid individual to any sibling or either parent is 0.5. It is 

the same for any diploid individual. In haplodiploids the average relatedness between 

brothers as well as mothers to daughters is 0.5. The relatedness of sisters to each other 

is 0.75. The relatedness of haploid males to their mothers is 1 (Crozier, 1970), and to 

their sisters 0.5, however they have a reduced reproductive value (Price, 1970). 

Intuitively we know that inbreeding will increase the relatedness of siblings. 

However, in haplodiploids the reproductive value of females increases more relative 

to their male counterparts in inbred populations (Hamilton, 1979; Taylor & Bulmer, 

1980). In chapter 2 some of the effects of different inclusive benefits, due to different 

average relatedness, can be seen. 

The point of this section, however, is the emerging property of inclusive fitness 

in simulation modelling. Therefore it needs to be stressed that, all other things being 

equal, individuals who have more offspring, nephews or nieces will have more of 

their genes in the next generation. If this is achieved by helping your relatives 

reproduce, the trait having this effect will be selected for without it being stated 

formally in the simulation model. 

 

Advantages of simulation modelling 

 

Using simulation modelling to study evolution has many advantages. I have already 

alluded to some of the advantages, such as, the allowance of greater variation 

(especially individual variation) than analytical models (DeAngelis & Mooij, 2005; 

Grimm, 1999) and the natural inclusion of inclusive fitness has also been dealt with. I 

will mention a number of other advantages of simulation modelling, all of which, to 

some degree motivated its use, in this thesis: 

Individuals are discrete units in individual-based simulation. The system is thus 

investigated, using a ‘bottom-up’ approach where population characteristics emerge 

from the interactions of the individuals. This approach enables the investigator to 
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track the behaviour of individual organisms (Grimm, 1999), which could aid in 

unravelling the system dynamics. 

When a researcher builds a simulation model, they usually tailor it to suit their 

research needs. In these models, we therefore have access to all the parameters, which 

we think are important in the system. Included are parameters that we cannot 

manipulate in natural systems due to logistic, physiological, budget or ethical 

constraints (Grimm, 1999; Peck, 2004; Winsberg, 2003). With all the parameters 

under our control, it should be clear that an experimental approach may help a great 

deal in understanding the system. In spite of this, modellers often fail to perform 

methodical experiments (DeAngelis & Mooij, 2005; Grimm, 1999).  Additional 

advantages of the customisability and flexibility of these models are that different data 

input formats can be handled, specific data output formats can be created (DeAngelis 

& Mooij, 2005) and it becomes easy to integrate empirical data into the models 

(Grimm, 1999). 

The realism of simulation models is another advantage. Analytical models are 

unmanageable when they become too complex (Judson, 1994; Łomnicki, 1999; 

Prescott et al., 2007), and cannot always capture all the fine scale life cycle detail 

necessary to explain processes in ecological systems (DeAngelis & Mooij, 2005; 

Łomnicki, 1999; Peck, 2004). Simulation modelling also automatically incorporates 

subtle interactions often left out from mathematical modelling. It is therefore possible 

to simulate the parameters from analytical models and compare results (Kokko, 

2007), followed by adding more parameters to the simulation models. These 

additional parameters add more realism to the model (e.g. variation in behaviour and 

environmental conditions, realistic and finite population sizes, multiple fitness classes 

etc.), and may lead to the revision and extensions of current theories (Grimm, 1999, 

see chapters 2 and 3). 

When realistic parameters are used, direct comparisons between the model 

system and the natural system can be made. As a result, simulation modelling can be 

used to guide planning of empirical experiments (Judson, 1994; Łomnicki, 1999; 

Peck, 2004; Winsberg, 2003). This was done in chapter 4, where realistic parameters 

were used to predict optimal sampling schemes in natural populations. 
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Disadvantages of simulation modelling 

 

It is important to be realistic about the capabilities of any research tool. This section is 

therefore important to highlight potential pitfalls of individual-based simulation 

models and when their use is inappropriate. Strangely enough, many of the 

advantages simulation models have, also border on being reasons for not using it. 

Foremost is the detail that can be added to a simulation model. It is possible to create 

a simulation so realistic that it does, not only encapsulate the parameters and 

processes necessary to address the biological question, but to also have many 

additional factors which influence the system in a small or unimportant way 

(DeAngelis & Mooij, 2005; Kokko, 2007). This could result in a simulation that is as 

complex as the natural system from which no additional understanding of it may be 

gained (DeAngelis & Mooij, 2005; Kokko, 2007; Peck, 2004; Prescott et al., 2007), 

and is the reason that some biologists reject the use of simulation models (Judson, 

1994; Mitchell, 1998). 

The freedom to tailor simulation models also comes at a cost. It is often difficult 

to create and maintain simulation models, as the model structure is inherently more 

complex than that of analytical models (DeAngelis & Mooij, 2005; Grimm, 1999; 

Grimm et al., 2006; Peck, 2004). There is thus no standard way to create a simulation 

model, and this, together with the complexity, makes it difficult to document and 

communicate these models (Grimm et al., 2006; Judson, 1994). It is therefore clear 

that, if an analytical model can be used it should (Kokko, 2007; Peck, 2004), as they 

are simpler and clearer, and easy to communicate in the general language of 

mathematics (Grimm et al., 2006). 

 

Assessment of simulation models 

 

From the last two sections it is evident that, before individual-based simulation is used 

in a study, its possible contribution to unravelling the biological system under 

investigation should be assessed. Once completed, a useful simulation model would 

be poised between the last two sections where the benefits are maximised and the 

costs minimised. There are a number of ways to determine if a simulation model is 
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adequate, but before this is done it is essential to ensure that there are no functional 

problems (Grimm, 1999; Winsberg, 2003). It is usual to perform a barrage of trials, 

checking and rechecking the reaction when each parameter is changed or set to its 

extremes. This is probably the most tedious part of simulation modelling, and only 

after proper evaluation of the functioning, can experiments be designed from which 

understanding may be derived (Winsberg, 2003). 

To assess the appropriateness of the model the following should be considered 

(summarised from: Grimm, 1999; Judson, 1994; Peck, 2004; Prescott et al., 2007; 

Winsberg, 2003): 1) Does the model represent the biological system adequately? The 

model must accurately capture the biological system and yet be simple enough to be 

used as a model from which insight into the system can be gained. 2) Do 

manipulations of the parameters and processes result in expected reactions? 

Simulations are created to mimic a biological system that has often been studied 

empirically and or analytically. The simulation model is therefore expected to respond 

in a similar fashion to changes in parameters, as the natural system or analytical 

models would. 3) Does the model make predictions? When multiple parameters are 

changed to encapsulate the complexities of the system, the simulation model should 

provide an estimate of how the system will react over a number of generations.  

The power of simulation modelling does not lie in our ability to simulate natural 

or theoretical systems. Rather, by systematic manipulation and experimentation on 

these virtual representations, we attempt to gain insight in the modelled system and 

apply this knowledge to understanding how the world works (Grimm, 1999; Peck, 

2004). Individual-based simulations are therefore very useful research tools when 

used in conjunction with empirical data. The biological system under investigation 

should be well studied and specific research questions defined. Once this is done it is 

important to plan the simulation in as much detail as possible before the actual 

modelling begins (this reduces the chance of requiring large changes once the model 

is developed). In addition to individual-based simulations, a “top-down” approach, 

using analytical models (often done before simulation modelling), improves 

knowledge of the system processes (Grimm, 1999). It is therefore necessary for 

biologists using various approaches to collaborate with each other to create a cohesive 

explanation of natural selection and evolution (Prescott et al., 2007). 

 

 
 
 



 13 

Pollinating fig wasps 

 

All of the simulation models in this thesis are grounded in reality, and were mostly 

inspired by the pollinating fig wasp system. Furthermore, the empirical data used in 

chapter 5 was obtained from the pollinating wasp species, Platyscapa awekei. A short 

description of their life history and interaction with their hosts is therefore justified.  

The pollinating fig wasp and fig tree system is well studied in evolutionary 

biology and much is known about their life history and mating ecology (Greeff et al., 

2003; Hamilton, 1979; Herre et al., 1997; Zammit & Schwarz, 2000). Consequently, 

the association between specific wasp and tree species is well documented (Cook & 

Rasplus, 2003; Cook & West, 2005; Corner, 1985; Janzen, 1979; Ramirez, 1970; 

Wiebes, 1979, but see Michaloud et al., 1996; Molbo et al., 2004; Rasplus, 1996 for 

exceptions). The role of the wasp in this mutualism is to transfer pollen from the 

generally inaccessible flowers of one tree to another receptive tree. In return, the 

wasps are provided with an environment to develop and mate in. During the 

development of a single crop of figs, pollinating wasps complete their whole life 

cycle. These events are similar in all pollinating wasp and fig species, and are 

depicted in figure 1.3 (the deviations from the general pollinating fig wasp life history 

observed in P. awekei are noted below). The development of figs are often 

categorised into 5 phases, A to E (Galil & Eisikowitch, 1968). During A-phase the fig 

syconium structure develops. The syconia can be seen as buds on the tree and are 

completely filled throughout most of this phase (Verkerke, 1989).  

During-B phase the flowers inside the syconium becomes receptive to 

pollination. Volatile compounds released by the figs attract pollinating female wasps 

(Hossaert-McKey et al., 1994; Van Noort et al., 1989). The foundress females enter 

the syconium through a small opening, called an ostiole, losing their wings and 

antennae in the narrow passage (Wiebes, 1979). It is common for a single female or a 

small number of females to enter a syconium. Once inside, they lay their eggs in some 

of the flowers and simultaneously pollinate others (Herre, 1989; Kjellberg et al., 

2001). A foundress mother is able to control the sex ratio of her 
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Figure 1.3. The life cycle of pollinating fig wasps and developmental stages of a fig. 

*P. awekei are one of only a few species, of pollinating fig wasps, where the males 

are documented to disperse; see text for details. 
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offspring by selective fertilisation of her eggs. Fertilised eggs develop into diploid 

daughters while the unfertilised eggs develop into haploid males (Werren, 1987). 

Unable to exit from the syconium, a foundress female lays all her eggs in a single 

syconium and dies (but see Moore et al., 2006). 

During C-phase the wasp larvae develop in individually galled flowers by 

feeding on the endosperm (Verkerke, 1989). At the same time the seeds develop in the 

flowers without wasp larvae.  

D-phase begins when the males emerge from their galls. Pollinator males are 

wingless and are morphologically dissimilar to their female counterparts (Murray, 

1990; Wiebes, 1979). After the males emerge they mate with the females that are still 

within their galls (Berg & Wiebes, 1992; Zammit & Schwarz, 2000). Since females 

are receptive only whilst still in their galls, males need to crawl between the galls to 

reach, and mate with the females (Galil, 1977; Hamilton, 1979; Herre et al., 1997). 

After mating, the females leave their galls and exit the syconium through a hole 

chewed by the males. Often the males complete their whole life cycle in their native 

fig. In a number of species, including P. awekei, males have been recorded to disperse 

from their native syconium and enter into other syconia (Greeff et al., 2003), where 

they will probably try to find additional mating opportunities. P. awekei is also one of 

a few species where the males engage in contest competition for mating opportunities 

(Greeff et al., 2003) and a strong association has been found between higher average 

sex ratios in fighting and dispersing species (Nelson & Greeff, 2009). Females leaving 

the syconium disperse to new receptive B-phase syconia and start the cycle anew.  

Lastly, the syconium ripens, signalling E-phase. During this phase the syconium 

often swells, changes colour, and is consumed by a number of different animals, 

which disperse the seeds (Berg & Wiebes, 1992; Burrows & Burrows, 2003).  

The life history of pollinating fig wasps have a number of features, which make 

the system ideal for testing evolutionary theories empirically, analytically and with 

simulation modelling. An important factor is the low number of foundress mothers 

per patch. The population is therefore extremely structured and most of the matings 

are with relatives. This leads to high levels of inbreeding in pollinating fig wasps, 

which is promoted by purging via the haploid males (Antolin, 1999; Herre et al., 

1997; Werren, 1993). However, the observation of dispersing males in some species 

raises questions on optimal mating strategies and inbreeding depression, which is 

addressed in chapters 2 and 5. Another effect of the low foundress numbers is the high 
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levels of local mate competition, which is often reduced by female biased sex ratios or 

male dispersal (see below). These three factors are addressed in chapter 3. A last 

feature of pollinating fig wasp life history is the absence of overlapping generations, 

which make their system a pleasure to simulate.  

 

Aims of this thesis 

 

The aims of this thesis are to extend theories on the evolution of inbreeding and 

dispersal. Four specific questions are addressed, three using individual-based 

simulation modelling (chapters 2-4) and one with empirical data obtained from 

pollinating fig wasps (chapter 5). Following, is a short introduction to each question 

(due to their diverse nature each chapter is preceded with a complete account of the 

relevant background from the literature). 

 

1. When should mixed mating evolve?  

 

In nature we see a rich variety of mating systems. At the extremes are exclusive 

inbreeding and exclusive outbreeding, and in-between is a continuum of various 

levels of both (Thornhill, 1993). In this thesis, I investigate the conditions necessary 

for the evolution of stable mixed mating, defined as: a strategy where individual 

sometimes mate with close individuals (or self in the case of hermaphrodites) while at 

other times they mate with completely unrelated individuals. In other words, a 

strategy where individuals employ either of the extreme mating options on a regular 

basis. Mixed mating strategies are found in a number of organisms where individuals 

do not have access to intermediate related mating partners (Godfray & Cook, 1997; 

Goodwillie et al., 2005; Greeff et al., 2009; Hardy, 1994; Jain, 1976). 

The default choice of all organisms should be inbreeding, due to the kin 

advantage gained by mating with relatives (Bateson, 1983; Bengtsson, 1978; Fisher, 

1941; Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et 

al., 1986; Wolf, 2000; see also section: ‘A short note on inclusive fitness in simulation 

modelling’). This decision is however offset by the possible fitness losses due to 

inbreeding depression (Bengtsson, 1978; Fisher, 1941; Pusey & Wolf, 1996; Waser et 
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al., 1986). Conversely, outbreeding depression would shift the strategy towards 

inbreeding (Charlesworth & Charlesworth, 1987; Knight, 1799; Mather, 1955; 

Williams, 1975). In some circumstances both inbreeding and outbreeding depression 

may be present simultaneously and matings with distantly related individuals may be 

optimal (Bateson, 1983; Price & Waser, 1979). As mentioned, in some organisms, 

this is not an option.  

When investigating mating systems it is therefore necessary to explore the 

fitness level of offspring resulting from inbreeding or outbreeding. A number of 

models have laid the foundation for predicting, when inbreeding, outbreeding or 

mixed mating should occur, from the ensuing offspring fitness levels (Campbell, 

1986; Charlesworth & Charlesworth, 1987; Damgaard et al., 1992; Feldman & 

Christianson, 1984; Holsinger, 1988; Holsinger et al., 1984; Lande & Schemske, 

1985; Latta & Ritland, 1993; Lloyd, 1979; Maynard Smith, 1977; Maynard Smith, 

1978a; Taylor & Getz, 1994; Uyenoyama & Waller, 1991a; Uyenoyama & Waller, 

1991b; Waser et al., 1986). In chapter 2, a simulation approach is used to extend 

current analytical models. This is done by exploring: optimal mating strategies 

ranging from inbreeding depression to outbreeding depression (including where 

intermediate inbreeding has the highest fitness); stochastic demographic variables; 

multiple fitness values for serially inbred individuals; sibmating diploids and 

haplodiploids, in addition to, selfing diploids.  

 

2. Does the sex ratio affect dispersal? 

 

In 1871, Darwin noted the equal proportions of males and females in many species. 

He proposed the first theory of the adaptive nature of sex ratios (Darwin, 1871), but 

being unable to convince himself, he retracted it (Darwin, 1874). Fisher (1930) 

showed that natural selection would promote the under-represented sex, which would 

lead to equal sex ratios. The theory of sex ratios was, however, vastly extended by 

Hamilton (1967), who included non-equal reproductive values of males and females 

and structured populations to his models. He showed that, in a number of organisms, 

only one or a few females contribute offspring to discrete patches in a population. If 

mating took place in these patches, without prior dispersal, competition for mating 

opportunities was mostly between relatives. This phenomenon is termed Local Mate 
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Competition (LMC), and females often bias their sex ratios to limit its occurrence (for 

examples in fig wasps see: Frank, 1985; Herre, 1985; Herre et al., 1997).  

Simultaneously, theories on when dispersal should evolve were also advanced. 

Once again, LMC was recognised early on as an important factor, in this case, driving 

the evolution of dispersal (Hamilton & May, 1977; Van Valen, 1971; see for reviews: 

Clobert et al., 2001; Ronce, 2007). Two other factors, eminent in the evolution of 

dispersal and usually included in dispersal models, are inbreeding depression and the 

cost of dispersal (Bengtsson, 1978; Clobert et al., 2001; Frank, 1986; Gandon, 1999; 

Hamilton & May, 1977; Motro, 1983; Motro, 1991; Perrin & Mazalov, 2000; Ronce, 

2007; Taylor, 1988). It is apparent that, while low foundress numbers (i.e. high LMC) 

and the occurrence of inbreeding depression will increase the rate of dispersal, high 

cost of dispersal will oppose the evolution thereof.   

Theories of dispersal and sex ratio evolution often overlap and a number of 

models have investigated the co-evolution of these factors (Hamilton, 1967; Perrin & 

Mazalov, 2000; Taylor, 1994; Taylor & Bulmer, 1980; Wild & Taylor, 2004). While 

these models show that the sex ratio is affected by the rate of dispersal, dispersal is 

often not affected by the sex ratio. In chapter 3, the effect of sex ratios on dispersal is 

explored. This is done with simulation modelling where: binomially distributed sex 

ratios are produced; males decide to disperse in response to their native patch sex 

ratio; different foundress mothers per patch are allocated. All this is done in the 

absence of inbreeding depression.  

 

3. How many samples are necessary to accurately detect population 

structure?  

 

Original ideas for measuring genetic distance between populations were developed by 

Wright (1931). With the advent of molecular genetics a number of practical methods 

were derived to estimate population differentiation. Collectively called summary 

statistics, they differ from Wright’s Fst and include: Gst, where heterozygosity is used 

to estimate population subdivision (Nei, 1987); θ, where variance components are 

used to determine population structure (Weir & Cockerham, 1984); and Rst, where 

rare alleles are used, taking a stepwise mutation model of microsatellites into account, 
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to determine if there is population structure (Slatkin, 1995). (It should be noted that 

the method described by Weir & Cockerham (1984) is commonly used in analysis of 

population subdivision. Their estimate will be referred to as the default Fst from here 

onwards).  

New generation programs have changed the way in which population structure 

is determined (Neigel, 2002; Pearse & Crandall, 2004). These programs, of which 

STRUCTURE is currently the most popular, uses likelihood methods to infer 

population subdivision (Falush et al., 2003; Kaeuffer et al., 2007; Neigel, 2002; 

Pearse & Crandall, 2004; Pritchard et al., 2000). In spite of this, summary statistics 

are still routinely used in combination with newer techniques (Pearse & Crandall, 

2004; Neigel, 2002; Balloux & Lugon-Moulin, 2002). The power of all these methods 

is, however, still dependent on the number of loci and individuals sampled. 

The aim of chapter 4 is to provide simple guidelines when planning a sampling 

scheme. The program used was originally developed to simulate a large population 

that split, which were then used to investigate how drift, stepwise mutation and low 

migration rates between the two populations increase their genetic distance. The 

program was later amended by adding an extensive sampling scheme generator. This 

allowed multiple different samplings (i.e. different sample sizes and or different 

number of loci) from the simulated population. The output generated comprises of 

summary statistics, which can be compared and analysed to determine the minimum 

sampling requirements. Alternatively, the allele values of the sampled individual can 

be obtained, that can be analysed independently using current genetic programs. In 

chapter 4 a number of sampling schemes are investigated and general sampling 

guidelines are presented. 

 

4. Are mixed mating and male dispersal in Platyscapa awekei, due to 

intermediate inbred individuals having the highest fitness?  

 

Pollinating fig wasps are famous for being extremely inbred (Herre et al., 1997; 

Molbo et al., 2002; Molbo et al., 2004), but a few including P. awekei, have been 

noted to display mixed mating strategies (Greeff, 2002; Greeff et al., 2009; Greeff et 

al., 2003; Herre et al., 1997; Jansen van Vuuren et al., 2006; Molbo et al., 2002; 
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Molbo et al., 2004; Moore et al., 2006; Zavodna et al., 2005). A number of studies 

suggest possible reasons for the dispersal phenotype in P. awekei and these include 

less female biased sex ratios (Nelson & Greeff, 2009) and reduced LMC between 

brothers (Moore et al., 2006; Nelson & Greeff, 2009), a consequence of fighting 

morphology (Greeff et al., 2003; Nelson & Greeff, 2009) and simultaneous inbreeding 

and outbreeding depression (Greeff et al., 2009). The last study however had 

ambiguous results and it is not clear if P. awekei suffers from outbreeding depression 

only, or a combination of both inbreeding and outbreeding depression (Greeff et al., 

2009). 

In chapter 5, I examine the fitness of various levels of inbred P. awekei females. 

This is accomplished by comparing the number of offspring (as a proxy for fitness) to 

the number of homozygous microsatellite loci for each mother. The results are used in 

the simulation model “SibMate” (chapter 2) and the predicted mating system of P. 

awekei is compared and discussed. 
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2. Evolutionary stable mixed mating in a variety of genetic 

systems 

 

 

Abstract  

 

In nature, individuals often have to choose between mating with close relatives and 

unrelated individuals. In some species however, a mixture of close inbreeding and 

outbreeding co-exists and is referred to as mixed mating. A number of theoretical 

models can explain the existence of mixed mating. We simulate the evolution of 

mating preferences for three genetic systems, diploid selfing, diploid sibmating and 

haplodiploid sibmating. Mating preferences are determined by a single locus, while 

the fitness of an individual depends on the level of inbreeding. Fitness combinations 

that allow stable mixed mating strategies to evolve include low levels of inbreeding 

depression and almost all scenarios where intermediate inbreeding is optimal. We find 

that stable mixed mating readily evolves when a minimum of at least three fitness 

levels are specified (in contrast to two fitness levels: one for inbreeding and one for 

outbreeding). We also find that stable mixed mating can evolve for selfing diploids, 

sibmating diploids and sibmating haplodiploids. The high relatedness of the selfing 

individuals lead to lower levels of inbreeding followed by sibmating diploids and 

lastly sibmating haplodiploids. Comparing our results with empirical data give an 

indication of when mixed mating can be expected.  
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Introduction 

 

When individuals choose a mate they often have to decide between a close relative or 

an unrelated individual. In plants and simultaneous hermaphrodites, selfing is an 

additional option. Various mating strategies could therefore evolve, ranging from 

exclusive inbreeding to exclusive outbreeding, and a myriad of mating strategies are 

indeed found in nature (see: Keller & Waller, 2002; Thornhill, 1993; for reviews). 

The optimal mating strategy is dependent on genetic and environmental pressures 

acting on an individual, as well as, the dynamics and breeding strategy of the 

population (Keller & Waller, 2002).  

 The fitness of an individual with a specific mating strategy is affected by 

inclusive fitness benefits, outbreeding depression and inbreeding depression. Inclusive 

fitness benefits are gained from extra mating opportunities to related individuals and 

favours the evolution of inbreeding (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; 

Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 

1986; Wolf, 2000). Outbreeding can be detrimental due to the break-up of co-adapted 

gene complexes or the loss of adaptation to local environments (Bengtsson, 1978; 

Fisher, 1941; Pusey & Wolf, 1996; Waser et al., 1986). Inbreeding depression and its 

causes, such as overdominance, are well documented (Charlesworth & Charlesworth, 

1987; Knight, 1799; Mather, 1955; Williams, 1975). If inbreeding depression is 

severe it will lead to inbreeding avoidance (see Kokko & Ots, 2006). Conversely, 

outbreeding depression should lead to exclusive inbreeding (Lynch, 1991).  

It has been suggested that if inbreeding and outbreeding depression are present 

simultaneously, these two factors will oppose each other and an intermediate level of 

inbreeding could be the optimal mating strategy (Bateson, 1983; Price & Waser, 

1979). In these circumstances, matings with close kin are avoided but so are matings 

with completely unrelated individuals (Bateson, 1983). However, individuals often 

only have full sibs or unrelated individuals available and not individuals of the 

optimal intermediate genetic distance. Here, a mixed mating strategy, consisting of 

close inbreeding or complete outbreeding of individuals, may be a “frustrated” way to 

solve the evolutionary puzzle (Greeff et al., 2009). Under these conditions, a 

population should have both inbreeding and outbreeding as mating strategies, each 

occurring at a stable frequency.  
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A number of models did not find equilibria where mixed mating was stable. 

Rather, they showed that if inbreeding depression became too severe the equilibrium 

switched from complete inbreeding to complete outbreeding. For instance, it is well 

known that self compatible diploids species should switch from outbreeding to 

inbreeding if the fitness of inbred individuals are more than half that of the outbred 

individuals, and vice versa (Charlesworth & Charlesworth, 1987; Feldman & 

Christianson, 1984; Holsinger et al., 1984; Lande & Schemske, 1985; Lloyd, 1979; 

Maynard Smith, 1977; Maynard Smith, 1978a; Waser et al., 1986). Taylor & Getz, 

(1994) explored sibmating in diploid and haplodiploid individuals with two fitness 

classes, namely inbred and outbred. They found no fitness combination where mixed 

mating was stable for sibmating diploids. For sibmating haplodiploids they found that 

stable mixed mating may occur under very specific conditions. Stable mixed mating 

occur when inbreeding reduces the fitness of the offspring between 30% and 33%, 

and when the population starts as mostly outbreeding individuals (Taylor & Getz, 

1994). 

Maynard Smith (1977) explored models where serial inbreeding led to a 

continuous reduction in fitness. He showed that mixed mating systems could evolve 

as pure inbreeding or outbreeding populations were not resistant against opposite 

strategies invading. In support, Latta & Ritland (1993) showed, using recursive 

equations for multiple loci, that a decline in fitness of serial inbred individuals led to 

stable mixed mating. They found that mixed mating evolved at higher frequencies 

when controlled by increasing numbers of genes. In addition, they showed that mixed 

mating remained stable in the face of purging if inbreeding depression was 

sufficiently small (Latta & Ritland, 1994). In a similar study Damgaard et al. (1992) 

also found stable mixed mating for selfing individuals at different levels of inbreeding 

depression. In these studies (as in ours) a fixed relationship between fitness and the 

level of inbreeding was assumed. This allows for easy comparison to experimental 

data, but ignores the potential coevolution between fitness and inbreeding. Genotypes 

for inbreeding and genotypes that tolerate inbreeding becomes linked and may 

determine the direction in which the mating system evolves (Campbell, 1986; 

Holsinger, 1988; Uyenoyama & Waller, 1991a; Uyenoyama & Waller, 1991b). 

However, empirical data should include these dynamic effects and may then easily be 

combined with the fixed relationship models, such as we will develop below. 
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 By considering serial classes of inbreeding Campbell (1986) also found that 

mixed mating could be maintained, even in systems where inbreeding depression 

coevolves with the mating preference loci. Campbell’s models, however, only 

explored serial inbreeding for selfing diploids and it would be difficult to adjust for 

sibmating diploids or haplodiploids, as their fitness needs to take into account the 

inbred status of individuals two generations prior.  

In this study we investigate the optimal mating strategy that emerges in three 

genetic systems (selfing diploids, sibmating diploids and sibmating haplodiploids) 

with different fitness levels for each class of serially inbred individuals. These genetic 

systems have different inclusive fitness benefits to inbreeding: A female is related to 

herself by 1 and to her diploid brother by 0.5. In haplodiploids, a male related to this 

sister by 0.5, but this value needs to be discounted by the reduced reproductive value 

of haplodiploid males (Price, 1970), giving a kin value of 0.25. We should thus expect 

that inbreeding should evolve less readily in sibmating haplodiploids than in 

sibmating diploids than in selfing diploids. 

We used individual-based simulation modelling to determine the optimal mating 

strategy for individuals of three genetic systems over a range of fitness values. Note 

that fitness values were not allowed to co-evolve with the mating strategy. Fitness 

values were chosen to reflect inbreeding depression, outbreeding depression, 

inbreeding depression with purging, and situations where intermediate inbreeding has 

the highest fitness. 

 

Model description  

 

The purpose of this model is to understand when mixed mating will evolve in the 

context of different fitness specifications for individuals. To test the effects of 

inclusive fitness we consider three genetic systems that differ in kin benefits when 

inbreeding occurs: selfing diploids, sibmating diploids and sibmating haplodiploids. 

The fitness values used were different for a range of successive inbred individuals 

rather than having only one fitness value for inbred individuals which is irrespective 

of the number of times inbred.  
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State variables 

 

The model consists of two structural levels: individuals and populations. Each 

individual has the following state variables: allele-A, allele-B, ancestry and fitness. 

The allele-variables are memory allocations for two alleles at a single locus and are 

only defined as A and B to distinguish between the two assigned values. Each allele 

allocated to an individual has a value from 0 to 1 that defines the probability that the 

individual will sibmate (for diploids the phenotype is the average of the two alleles, 

i.e. additive). This phenotype is expressed in the females (i.e. the females decide if 

they want to sibmate or outbreed). In cases where the individuals are haplodiploid, the 

B-allele for the males is not defined. The ancestry variable records the breeding 

history and it is reset to 0 when an individual is mated with an unrelated individual. 

Each successive sibmating, or selfing, increases the ancestry variable by 1 and is 

inherited by the offspring. The fitness of each individual is dependant on the ancestry 

variable and is thus a function of the organism’s degree of inbreeding. This is a key 

component in this study as it allows individuals that have different degrees of 

inbreeding to have different fitness values. In each simulation the fitness level for 

each inbred class is explicitly defined in the experimental procedure (see below).  

When the population is sibmating it is composed of two arrays of individuals 

(male and female). When the population is selfing the arrays collapse into one. The 

population is furthermore characterised by mutation rate (for the locus determining 

selfing or sibmating), number of generations, ploidy of individuals, number of evenly 

spaced alleles (e.g. for 11 alleles their values would be: 0; 0.1; 0.2; …; 1) and fitness 

of the inbreeding classes. 

 

Simulation process and scheduling 

 

The model proceeds in generation time steps (figure 2.1). In each generation step the 

events are processed as follows: Fitness is assigned for all individuals in the 

population, mating commences and the newly created population replaces the old 

population (i.e. no overlapping generations). The following sub-steps are followed 

during mating until the new population is equal in size to the old population: selection  
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Figure 2.1. Process sequence of model. *If the population is selfing rather than 

sibmating the first mate will also be the second mate when inbreeding. 
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of an individual to mate, selection of a mate, creating two offspring from parental 

genotypes and mutation of the offspring.  

 

Design concepts 

 

Optimal mating strategies emerge from the population dynamics but the population 

dynamics are entirely characterized by rules specifying an individual’s behaviour. As 

mentioned, the fitness of each inbreeding class is specified explicitly and does not 

change during the simulation. The fitness of individuals more inbred than the last 

defined class have the same fitness as the individuals in last defined class. A fitness 

proportion scale with “roulette wheel” sampling is used to obtain the mating 

individual (Mitchell, 1998). In brief, this means that the fitness of each individual is 

weighted, relative to the total fitness of the population, and assigned a proportion of 

the total fitness (i.e. fitter individuals have more numbers on the roulette wheel 

assigned to them). A random value is drawn between 0 and the total fitness of the 

population and the individual whose assigned proportion includes this value is 

selected to mate. Note that the fitness of haploid males was unaffected by their 

ancestry as all their loci are hemizygous and homozygosity is unaffected by their 

inbreeding history. 

Data gathered for analysis included the probability of inbreeding (α) in the 

population (calculated as the average inbreeding of the last 500 generations) as 

specified by the alleles of the individuals.  

It is important to note that inclusive fitness does not have to be introduced 

explicitly since kin-advantage will emerge by default in any individual-based 

simulation (Gros et al., 2008; Poethke et al., 2007).  

 

Initialisation and input 

 

The population input values are given in table 2.1. The initial inbreeding frequency of 

the population was established by assigning two alleles to each individual at the first 

generation. These values were from a uniform distribution ranging from 0 to 1 (in this 

chapter we used values with a 0.1 interval or 0.01 interval, therefore providing 11 and  
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Table 2.1. State variables and default input values. 

  Initial input values 

Sate variable Experiment 2.1 Experiment 2.2 Experiment 2.3 

Population parameters     

Population size 10000 10000 10000 

# Generations 5000 5000 10000 

Mutation rate 0.001 0.001 0.0001 

# Possible alleles 11 11 101 

Individual parameters    

Allele-A from uniform distribution 0, 1 and uniform distribution from uniform distribution 

Allele-B from uniform distribution 0, 1 and uniform distribution from uniform distribution 

Ancestry 0 0 0 

Fitness derived from ancestry derived from ancestry derived from ancestry 

Fitness parameters    

W0 (Outbred) 1 1 1 

W1 (Once inbred) 0.01 to 2 (step size 0.01) 0.2 to 2 (step size 0.2) b, see figure 2.2 

W2 to W∞ 0.01 to 2 (step size 0.02)  0.2 to 2 (step size 0.2) b, see figure 2.2 
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101 possible allele values respectively, see table 2.1). In some experiments the initial 

inbreeding frequency was specified and here all the alleles in the population had the 

same value. The individual’s ancestry was set to 0 (i.e. initial population is outbred). 

The females’ genotype was used to determine if she would sibmate or not. 

 

Sub-models 

 

Mutations: The probability that an allele was selected to mutate was 0.0001 per 

individual per generation. The mutational model used was a combination of stepwise 

and jumping mutations. Once an allele was selected to undergo a mutation, there was 

a 20% chance for it to become any of the possible alleles. Alternatively, the allele 

mutated one step to either of the adjacent alleles with equal probability.  

Mating: When two individuals mated, each transferred one allele to the new 

offspring, if the offspring was diploid. The haploid offspring received an allele only 

from the diploid parent. In both cases the allele that each parent donated was chosen 

at random, i.e. normal Mendelian inheritance. Each mating pair always produced one 

male and one female offspring.  

The use of probability distributions during mutation, mate selection and the 

choice of females, causes noise in the model so that each run will reach a stable point 

along a different trajectory and may not reach the same equilibrium. Therefore the 

inbreeding optima have a rugged appearance across the parameter space. 

 

Experiments 

 

We first investigate the possibility of a stable mixed mating strategy evolving with 

three, rather than two inbred classes (outbred, once inbred, twice or more times 

inbred). This was done for all three genetic systems by simulation of many different 

fitness combinations (high resolution, 20000 parameter sets per genetic system). 

Second, we investigate the effect of the mating strategy of the initial population on the 

evolution of subsequent strategies. This was done for all three genetic systems 

simulations (low resolution, 100 parameter sets per genetic system) of the three 

fitness classes with specified initial mating strategies. Last, by simulating a population 
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with 21 fitness classes for all three genetic systems, we show that although stable 

mixed mating strategy requires at least 3 fitness classes, more classes will easily lead 

to stable mixed mating. These simulations also allow us to compare our simulations to 

empirical estimates of the inbreeding coefficient and the mating system. 

 

Experiment 2.1: Optimal mating strategies with three inbreeding classes  

 

All three genetic systems (selfing diploids, sibmating diploids and sibmating 

haplodiploids) had the following fitness parameters during simulation. The fitness of 

the outbred individuals (W0) was fixed at 1. Simulations were performed with 

stepwise increases of the fitness level of either the once-inbred individuals (W1) or 

twice-inbred individuals (W2). We explored the following fitness ranges 0.01 ≤ W1 ≤ 

2 and 0.01 ≤ W2 ≤ 2. The resolution for W1 was 0.01 for each successive simulation 

and 0.02 for W2 (larger increases were used due to computational time constraints). In 

the selfing diploid and the sibmating haplodiploid the following fitness combinations 

were not simulated: W1 = 0.01 to 2 and W2 = 1 to 2 only where W1 < W2 (these areas 

were however simulated at lower resolution in experiment 2.2, see results and 

discussion). All the individuals that had a higher inbreeding level than twice-inbred 

individuals had the same fitness as the twice-inbred individuals (i.e. W3 to W∞ = W2). 

 

Experiment 2.2: The importance of initial conditions on the final 

equilibria 

 

We simulated three inbreeding classes with different initial inbreeding frequencies for 

all three genetic systems. We fixed the fitness of outbred individuals (W0) at 1. The 

same fitness ranges for once- (W1) and twice- (W2) inbred individuals were explored 

as in experiment 2.1 (0.01 ≤ W1 ≤ 2 and 0.01 ≤ W2 ≤ 2) but the stepwise increase for 

both W1 and W2 were 0.2. For all three genetic systems all the simulations were 

repeated twice. Once with the initial inbreeding frequency of the population set to 0 

and once set to 1. 

 

 

 
 
 



 31 

Experiment 2.3: Optimal mating strategies with 21 inbreeding classes 

 

We assigned 21 fitness classes (W0 to W20) for all three genetic systems. The fitness 

for W0 was fixed at 1.00 for all the simulations. The fitness of each inbred class was 

calculated as: Wi = e
-bfi
, where -b is the slope of fitness decline on the inbreeding 

coefficient (f) (Charlesworth & Charlesworth, 1987). We then performed 8 

simulations, each with a greater level of inbreeding depression, i.e. a larger value of b 

(figure 2.2). The cost of inbreeding for each genetic system ranged from b = 0.1 to b = 

2 (figure 2.2, we explored slopes outside this range but the population fixed a single 

strategy at these points, see results and discussion). Since the fitness is calculated 

from the inbreeding coefficient, f, and not the number of times an individual is inbred, 

f needs to be calculated for each class of inbredness: for sibmating individuals f was 

calculated as: fi = fi-1/2 + fi-2/2 +1/4 and for selfing individuals as: fi = (1 + fi-1)/2, 

where  f-1 = f0 = 0 from Lynch & Walsh (1998). Note that the inbreeding coefficient 

for offspring of full sibmating in haplodiploids is equal to that of diploids (Wright, 

1969). The inbreeding coefficient was almost 1 after 20 serial sibmating events 

(figure 2.2a) and reached the same level after only 8 serial selfing events (figure 

2.2b). Each simulation was repeated four times.  

 

Program  

 

The code for the simulation program was written in Delphi Professional version 7.0. 

Although the code used in all the simulations is similar, minor alterations were made 

to enable repeated simulations with different fitness combinations or initial inbreeding 

strategies. The application “SibMate” (standard version for single simulations only 

and no automatic repeats) is available in the electronic appendix. It may be used to 

simulate populations with up to 21 breeding and fitness classes, which can be easily 

compared to empirical data.  
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Figure 2.2. The increase in the inbreeding coefficient, f, during 20 sequential 

inbreeding events (dotted lines) and the corresponding decrease in fitness (solid lines) 

for a) both sibmating systems and b) the selfing system. Values in italics indicate the 

cost of inbreeding, b, that relates the inbreeding coefficient to a fitness value  

(W = e
-bf
). 
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Results and Discussion 

 

Our results showed that mixed mating strategies can be stable for a range of fitness 

values, that the degree of inbreeding increases with the inclusive fitness benefits of 

inbreeding, that mixed mating is expected for realistic values of inbreeding depression 

and that the starting conditions have a minor influence on the final equilibria that are 

reached. 

From experiment 2.1 we produced the plots in figure 2.3. The contours present 

the probability of inbreeding (α), which was calculated for each simulation from the 

average value of the alleles in the whole population of the last 500 generations (i.e. 

generation 4500 to 5000, while stability was reached after approximately 1000 

generations). Each of the simulations had different fitness values for the once- (W1) 

and twice- (W2) inbred individuals as indicated on the y- and x-axes respectively, with 

a total of 10 000 simulations for each genetic system. Note that figure 2.3d indicates 

the general fitness trends within each parameter space as bar charts and may be used 

as a key for the other plots in figure 2.3. 

Mixed mating was stable over a large area of the parameter space: this included 

low levels of inbreeding depression, as well as, scenarios where intermediate 

inbreeding had the highest fitness. This result is in contrast to models with only two 

fitness values, one for inbreeding and one for outbreeding, where mixed mating is not 

stable. 

The three genetic systems are indicated in figure 2.3a-c. By comparing these 

graphs it is clear that inbreeding was more frequent in selfing than sibmating diploids, 

and that it was more common in diploid than haplodiploid sibmating individuals. This 

is as we expected and is because the kin benefits are the highest for the selfing 

diploids and the lowest for the sibmating haplodiploids.  

A number of published models explored only two classes of inbredness, i.e. 

exclusive inbreeding Winbred or exclusive outbreeding W0 for selfing diploids 

(Charlesworth & Charlesworth, 1987; Feldman & Christianson, 1984; Lloyd, 1979; 

Maynard Smith, 1977; Maynard Smith, 1978a; Taylor & Getz, 1994) and for 

sibmating diploids and haplodiploids (Taylor & Getz, 1994). The diagonal lines in the 

figure 2.3 correspond to these models as the fitness for inbreeding once, twice or more 

are the same (i.e. Winbred = W1 = W2 to W∞). We find that selfing diploids switch from 
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Figure 2.3. Contour plots of the probability of inbreeding (α) for a) Sibmating 

diploids b) selfing diploids and c) sibmating haplodiploids from simulations of 

different fitness values for once- (W1) or twice- (W2) inbred individuals. d) Key for 

plots a-c with bar charts in each area representing the general fitness trends of that 

parameters space. The diagonal line in each plot indicates where there is only one 

fitness level for all the inbreeding classes and one for the outbreeding class. White 

areas represents exclusive inbreeding (α = 1) while the darkest area represents 

exclusive outbreeding (α = 0). Shades of grey show different levels of mixed mating. 
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selfing diploids switch from exclusive inbreeding to exclusive outbreeding at Winbred = 

0.51 (figure 2.3b). This is similar to the aforementioned studies where the switch is 

found at an inbreeding depression of 50% for selfing diploids. 

Our results for sibmating also agreed with previous models where only two 

classes of inbredness were explored (Taylor & Getz, 1994) and we found the switch 

from exclusive inbreeding to outbreeding at levels of inbreeding depression close to 

that of Taylor & Getz (1994) (Winbred = 0.61 for sibmating diploids and at Winbred ≈ 

0.70 for the sibmating haplodiploids, along the diagonals of figures 2.3a and 2.3c 

respectively). The higher switch points for the selfing diploids than the sibmating 

haplodiploids than the sibmating diploids were due to the different inclusive fitness 

advantages as mentioned above. 

In the midpoint of each plot in figure 2.3 the fitness of all the inbreeding classes 

was the same (W0 = W1 = W2 = 1). Even though fitness values were equal the kin 

advantage favoured inbreeding for all three genetic systems.  

The area in the lower left quadrant above the diagonal is where different levels 

of inbreeding depression were simulated and outbreeding evolved (darkest areas in 

figure 2.3a-c), especially at more severe inbreeding depression. However, in all three 

genetic systems there were stable mixed mating strategies when inbreeding depression 

was reduced (shaded areas, figure 2.3a-c). The reason for mixed mating in this area is 

a high fitness value of the once-inbred individuals (W1), regardless of a low value for 

twice-inbred individuals (W2). However, as twice inbred individual’s fitness 

increased, inbreeding as a strategy could be maintained and exclusive inbreeding 

evolved.  

The contour lines for α at 0.01 and 0.02 were drawn to give an indication of the 

gradient of the switch from outbreeding to mixed mating. The selfing diploid system 

(figure 2.3b) had a sudden switch from outbreeding to mixed mating, and had the 

smallest area of exclusive outbreeding. Both the sibmating diploid and haplodiploid 

systems (figures 2.3a and 2.3c) had slightly less steep gradients. The sibmating 

models had larger areas of exclusive outbreeding with the haplodiploid having the 

largest (again the inclusive fitness differences between the genetic systems were the 

cause for the different results).  

Two areas were simulated where intermediate inbreeding was optimal (i.e. 

once-inbred individuals were the fittest; W1 higher than W0 and W2). First, the top left 

quadrant: here, in addition to the once-inbred individuals being the fittest, outbred 
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individuals had a higher fitness than the repeated inbred individuals (W1 > W0 > W2). 

A large part of the parameter space in this area led to the evolution of stable mixed 

mating (indicated by shades of grey, figure 2.3a-c). This result confirmed that stable 

mixed mating would evolve if intermediate inbreeding were optimal, given that 

intermediately related individuals are not available or recognisable. Again the high 

value of the once-inbred individuals (W1) favoured inbreeding, but a low value of the 

twice-inbred individuals (W2) prevented it from being fixed and mixed mating 

evolved as a stable strategy. However, where the twice-inbred individuals (W2) had 

high fitness, inbreeding was maintained in the population and mixed mating became 

more biased towards inbreeding. The different kin advantages again caused selfing 

populations to fix inbreeding at lower levels of W2, followed by sibmating diploids 

and then sibmating haplodiploids.  

The second area where once-inbred individuals had the highest fitness was the 

top right quadrant above the diagonal. Here, however, the twice-inbred individuals 

were fitter than outbred individuals (W1 > W2 > W0, see figure 2.3d) and inbreeding 

was the most prevalent strategy that evolved (figure 2.3a-c). In these circumstances 

the reduction in fitness associated with outbreeding in order to proceed to the highest 

fitness of the once-inbred class was too great to allow stable mixed mating. This is a 

special case of outbreeding depression within an area where intermediate inbreeding 

is specified as optimal, but never reached. The contour lines for α at 0.98 and 0.99 

were drawn to give an indication of the swiftness of the switch from exclusive 

outbreeding to mixed mating. The switch in all three genetic systems was rapid and 

relatively similar. 

Outbreeding depression was simulated in the parameter space at the top right 

quadrant below the diagonal (see figure 2.3d). For sibmating diploids we found, as 

expected, that only inbreeding evolved as a stable strategy (the same results are found 

for sibmating haplodiploids and selfing diploids at lower resolution, figure 2.4, and 

inferred for figure 2.3).  

Fitness values in the lower right quadrant are unlikely to be found in nature. 

Here, once inbred individuals had the lowest fitness while repeatedly inbred 

individuals had the highest fitness (W2 > W0 > W1, see figure 2.3d). Therefore, only 

the sibmating diploid system was simulated to include the lower right quadrant in 

experiment 2.1. We expected all three genetic systems to fix exclusive inbreeding as 
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the only stable strategy and verified it with low-resolution simulations of this fitness 

area for the two remaining genetic systems (experiment 2.2).  

Purging of recessive deleterious mutations is found in many natural situations 

(Crnokrak & Barrett, 2002), and this may lead to exclusive inbreeding. In the lower 

left quadrant below the diagonal, various levels of purging were simulated (i.e. once 

inbred individuals had the lowest fitness while outbred individuals had the highest W0 

> W2 > W1, see figure 2.3d) and we see there was a single switch from outbreeding to 

inbreeding without any stable mixed mating (figure 2.3). 

In natural populations we also expect that there should be some degree of 

purging and a loss of inbreeding depression (Lloyd, 1979), particularly if there are 

multiple serial inbreeding events. Purging is slow if the cost of inbreeding is low and 

inbreeding depression may be maintained (Charlesworth et al., 1990; Lande & 

Schemske, 1985; Latta & Ritland, 1994). Even lethal mutations, which will lead to a 

large decrease in fitness of the inbred individuals, may be maintained in moderately 

selfing populations (Latta & Ritland, 1994).  

The haplodiploid genetic system is very effective at purging deleterious alleles 

as these alleles are exposed to selection in the haploid males. This will mean that 

haplodiploid taxa will tend to be have less inbreeding depression (Antolin, 1999; 

Bruckner, 1978; Werren, 1993) and will be situated more to the right and above 

diploid populations in figure 2.3. This will agree with the observation that 

haplodiploids in natural populations often inbreed (Hamilton, 1967; Werren, 1993; 

but see chapter 5).  

By comparing figures 2.4a, c and e to figures 2.4b, d, and f respectively, it is 

clear that there is a small part of the parameter space where the final equilibrium was 

dependent on the initial conditions. This is where W1 was very low but the difference 

between W0 and W2 was not so big that an individual who are able to attain the 

optimum fitness will have an extreme advantage over the rest of the individuals in the 

population. This area was largest for selfing diploids, followed by sibmating diploids 

and then sibmating haplodiploids. Theory predicts that the initial mating strategies of 

the population could affect the evolution of subsequent mating strategies (Campbell, 

1986; Holsinger, 1988; Lande & Schemske, 1985; Uyenoyama, 1986; Waller, 1993). 

In these studies it was due to coevolution and linkage of alleles determining fitness 

and alleles determining mating strategy. 
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Figure 2.4. Comparison of optimal α (indicated by contours) when different initial mating strategies are specified. The initial inbreeding 

frequency of the population is 0 in plots a, c & e while it is 1 in plots b, d & f. Similar levels of mixed mating can be seen when comparing the 

same genetic system: sibmating diploids (a & b), selfing diploids (c & d) and sibmating haplodiploids (e & f). For all three genetic systems the 

final mating strategy is similar regardless of the starting α, except in the lower left quadrant below the diagonal. 
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Latta and Ritland (Latta & Ritland, 1993) showed that mixed mating can be 

stable for selfing diploids when there is a monotonical decline in fitness for serial 

inbreeding. We followed a similar strategy to Damgaard et al. (1992) to show mixed 

mating may be stable for selfing diploids. We simulated 21 breeding classes each with 

reduced fitness relative to the previous class (figure 2.5). We found stable mixed 

mating for sibmating diploids and sibmating haplodiploids at similar costs of 

inbreeding to the selfing individuals (figure 2.5). Specifically, selfing individuals 

switched from exclusive outbreeding to mixed mating when b became smaller than 

1.5 (figure 2.5), and this was not surprising that here the fitness of the inbred classes 

was slightly more than 50% of the outbred class (W1 = 0.53 at b = 1.25, see also 

figure 2.2b).  

The higher kin advantage that selfing diploids obtained from inbreeding as 

compared to sibmating individuals, led to the expectation that they will have higher 

levels of inbreeding. This apparent predisposition to inbreeding was, however, 

cancelled by the rapid increase of the inbreeding coefficient of selfing compared to 

sibmating (see figure 2.2). Comparing the sibmating genetic systems, haplodiploid 

individuals once more had a lower level of mixed mating than diploid individuals 

(figure 2.5) due to their lower inclusive benefits of inbreeding. All three genetic 

systems reached exclusive outbreeding at b = 2 and exclusive inbreeding at b = 0.1. 

Populations in nature show a wide range of inbreeding costs. In a meta-analysis, 

Crnokrak & Roff (1999) found that plants have an average b of 0.552 (SE ± 0.106). 

At this low inbreeding cost we would expect more than 85% of all matings to be 

selfing (figure 2.5), suggesting that the average plant will inbreed on a regular basis. 

Crnokrack and Roff found average b for homeotherms to be 0.818 (SE ± 0.472) and 

0.661 (SE ± 0.121) for poikilotherms, suggesting mixed mating to be common in 

animals (although a wide range of inbreeding costs is present in homeotherms). The 

cost of inbreeding in mammals is, however, much higher, with an average b of 1.98 

and with some species reaching values as high as 14 (Greeff & Bennett, 2000) and 

15.16 (Ralls et al., 1998). We found that inbreeding was prevented at b = 2 and 

expected, therefore, that although sibmating could occur in mammals it would be 

infrequent. Much lower inbreeding depression was found in insects with b = 0.29 for 

diploids and b = -0.014 for haplodiploids which would lead to chronic inbreeding as is 

often found in haplodiploids (Hamilton, 1967; Werren, 1993).  
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Figure 2.5. Probability of inbreeding (α), for different cost of inbreeding (b). For 

selfing diploids (triangles, dotted line), sibmating diploids (diamonds, dashed line), 

and sibmating haplodiploids (squares, solid line).  Error bars indicate standard 

deviation of the four repeats. 
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In conclusion, we showed that stable mixed mating readily evolves when 

intermediate inbreeding is optimal for a number of mating systems. We also find, in 

agreement with previous models, that mixed mating may be stable even with low 

levels of inbreeding depression but show that a minimum of three fitness classes are 

required. The benefits of inbreeding increases as the females’ relatedness to her mate 

increases. By comparing observed values of inbreeding depression in nature to our 

results it seems that some inbreeding should occur in a fair number of species, but that 

many species also lay close to the switch between outbreeding and a mixed mating 

system.  
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3. Sex ratio dependant dispersal when sex ratios vary 

between patches 

 

 

Abstract 

 

Theory predicts that sex ratio is affected by dispersal. In turn, individuals will disperse 

when the cost of dispersal is low or their relatedness is high. However, dispersal has 

been shown to be unaffected by sex ratio. This is most likely due to the assumption of 

identical sex ratios between patches in the whole population. In natural populations 

the sex ratios produced at different sites by different mothers are expected to be 

binomially distributed. We show, using individual-based simulations, realistic 

population sizes and variation in sex ratios between patches, that the dispersal of 

males increases when the sex ratio in their local environment increases. In addition, 

our results corroborate analytical models that show that relatedness and the cost of 

dispersal are important factors driving the evolution of dispersal. Lastly, we highlight 

the decrease in dispersal when offspring, rather than parents, determine when to 

disperse. 
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Introduction 

 

Several models consider the coevolution between sex ratios and dispersal (Hamilton, 

1967; Perrin & Mazalov, 2000; Taylor, 1994; Taylor & Bulmer, 1980; Wild & Taylor, 

2004). Interestingly, these models do not predict any feedback effect of sex ratio on 

dispersal. This means that while sex ratio evolves in response to kin conflict and 

dispersal, dispersal evolves in response to kin conflict only and not in response to sex 

ratio. This is most likely because these models assume a homogenous population 

where all patches have the same sex ratio. In reality however, sex ratios often vary 

between patches. Analytical models dealing with dispersal also assume all females 

will be mated, as well as, very large clutch sizes so that sex ratio may be treated as a 

continuous trait (Frank, 1986; Gandon, 1999; Gandon & Michalakis, 2001; Leturque 

& Rousett, 2003; Motro, 1982; Ronce, 2007; Taylor, 1988; Taylor, 1994). These three 

simplifying assumptions have good heuristic benefits but they may oversimplify the 

problem. To address these problems, we develop a simulation model that allows 

males to disperse conditionally, depending on their local sex ratio, with realistic 

clutch sizes, and with the additional requirement that females must mate to produce 

offspring. 

Analytical models clearly explain how dispersal is promoted by high relatedness 

of individuals competing for a resource, while being hindered by high costs of 

dispersal (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; 

Motro, 1983; Motro, 1991; Taylor, 1988). Here, individuals may increase their 

inclusive fitness by leaving their native patches, thereby providing their siblings with 

additional mating opportunities when the cost of dispersal is low. As the cost of 

dispersal increases, the advantage to remain in the native patch and to mate locally 

increases, due to the lower chance of dispersing successfully and finding a mate. In 

these models the mothers often determine the rate of dispersal.  

However, when dispersal is determined by the offspring, optimal dispersal rates 

are lower, indicating parent-offspring conflict (Gandon, 1999; Hamilton & May, 

1977; Motro, 1983; Taylor, 1988). This makes intuitive sense as parents gain more if 

enough offspring remain in the native patch to mate each other, while the remainder 

disperse (thereby reducing local mate competition and increasing the chance of 

finding additional mating opportunities). On the other hand, offspring would like to 
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remain in the native patch and not pay the cost of dispersal if mating opportunities are 

locally available.  

Inbreeding depression and a number of other environmental factors (such as 

variable environmental conditions, predation and parasitism), have also been proposed 

to affect dispersal (Bengtsson, 1978; Clobert et al., 2001; Perrin & Mazalov, 2000). 

Reduced dispersal could give rise to structured populations, which in turn will affect 

the sex ratio of the local patches (Hamilton, 1967). A number of studies have 

examined the effect of assortative mating on dispersal directly or its influence on sex 

biased dispersal (Greeff, 1995; Gros et al., 2008; Leturque & Rousett, 2003; Perrin & 

Mazalov, 2000; Wild et al., 2004; Wild & Taylor, 2004).  

To model complex natural processes, such as dispersal, phenotypic variation of 

a trait is often excluded (Mitchell & Valone, 1990). However, proper understanding of 

the mechanisms influencing dispersal requires refinement of these models by 

including realistic life history parameters with normal variation (Gros et al., 2008; 

Judson, 1994; see also: Lenormand et al., 2009; Ronce et al., 2001). In this chapter we 

use individual-based simulation modelling to explore how sex ratio variation may 

affect the evolution of dispersal. We also corroborate current models of dispersal 

where the cost of dispersal varies. We simulated offspring-determined dispersal in a 

haploid population where: males determine their dispersal and disperse before mating; 

all the females disperse from their natal patches after mating; and there are a finite 

number of males and females in the population and in each patch.    

 

Model description  

 

State variables and scales 

 

The model comprised three structural levels: individual, patch and population. Each 

individual is characterised by the following state variables: identity number, sex, 

mating status (mated or unmated), patch number (identity of the patch where the 

individual reside), dispersal genes (an array of genes each responding to a different 

range of sex ratios) and male sperm (genes obtained by the females after mating). It is 

important to note that each dispersal gene has a value from 0 to 1 indicating the 
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probability of dispersal. However, each dispersal gene responds to a different range of 

sex ratios, and therefore only one gene at a time determines if an individual disperses 

from a patch. For example: if the first gene of a male individual has a value of 0.1 and 

responds to a sex ratio from 0 to 0.33 the male will have a 10% chance of dispersing. 

If the sex ratio is not within this range another gene, with its own probability of 

dispersal, will affect the individual’s dispersal. This enables us to obtain optimal 

dispersal rates for a number of different sex ratios. In addition, the dispersal genes 

determine only male dispersal (all the females disperse after mating, irrespective of 

their dispersal genes). We assume that males have unlimited matings, while females 

can mate only once, and the mating status variable is therefore only utilised by female 

individuals.  

Each patch has the following variables: patch identity number, number of 

foundresses, foundress identity numbers, patch size (number of individuals within 

patch), number of males, offspring identity numbers, expected sex ratio, observed sex 

ratio and patch viability. Sex ratio is defined as: (males)/(males + females). Only 

offspring (i.e. the current generation) are considered as members of the patch, and 

used in the determination of the observed sex ratio or patch viability. The expected 

sex ratio is set before the start of each simulation. The observed sex ratio is 

determined after the offspring are created but before male dispersal takes place (figure 

3.1). Two modes of sex ratio production were simulated: In experiment 3.1, the sex of 

each offspring was assigned with a certain probability (i.e. the expected sex ratio). 

The sex ratio’s produced at each patch were binomially distributed around the 

expected sex ratio. Consequently, the observed sex ratio for each patch was calculated 

as the proportion of males in that patch. In experiment 3.2, all the foundress females 

produced the expected sex ratio and the observed and expected sex ratio were 

therefore the same. A patch is considered as viable when at least one male and one 

female are present and is evaluated after offspring creation, male migration and each 

mating event.  

The population is composed of an array of individuals and an array of patches. 

The population is furthermore characterised by the following variables: population 

size (i.e. the size of the individual array), number of patches (i.e. the size of the patch 

array), clutch size, number of generations, number of genes, number of alleles,  
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Figure 3.1. Life history of individuals (process sequence of model). 
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mutation rate and cost of dispersal. From these variables the fraction of reproducing 

females are calculated as: population size/clutch size. Patch viability is determined at 

every generation and the simulation continues only if viable patches remain. 

 

Simulation process and scheduling (population life history)  

 

The model process sequence is depicted in figure 3.1. The simulation proceeds in 

discreet generational time steps (i.e. no overlapping generations). In each generation 

step the events are processed as follows: Females are selected at random from the 

population to mate. Each female mates once with a male from her local patch (chosen 

at random from that patch). After mating, the mated females disperse to colonize new 

patches where offspring are created. Females produce exactly the same clutch size. 

The offspring sex ratio of each patch is determined. Male offspring have a single 

chance to disperse from their natal patch in response to their natal patch’s sex ratio. 

Males that disperse are assigned a new patch at random. Finally, the offspring in the 

new patches replaces the old population and their patches and the whole process starts 

anew. The process is repeated a number of generations (see table 3.1). Mutation is a 

sub-step that proceeds mating (see below).  

 

Design Concepts 

 

Optimal male dispersal strategies emerge from the population dynamics and their 

stochastic nature since there is no direct fitness assessment of an individual (i.e. there 

is no fitness value assigned to the individuals, rather, their fitness becomes apparent 

through the amount of offspring they have). At each gene, an allele defines the 

probability that a male disperse. There are 101 possible alleles, each of which is a 

value from 0 to 1 at regular intervals. As mentioned, each dispersal gene only 

responds to a specific sex ratio range (see response intervals below). All genes are 

unlinked and new alleles arise in the population through mutation only. Therefore, 

each simulation needs to run for a number of generations to ensure that the mutational 

space is adequately searched and equilibrium reached. Ultimately, males should have 

a dispersal strategy in response to their local sex ratio that will maximise their 
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inclusive fitness. It should be noted that kin selection do not have to be introduced 

explicitly as kin-advantage will emerge by default in any individual-based simulation 

(Gros et al., 2008; Poethke et al., 2007). The probability of dispersal, mutation and the 

offspring sex ratio are all drawn from binomial distributions. Data gathered for 

analysis included the dispersal probability for each gene (averaged for all the 

individuals in the last generation). The complete genotype for each of the individuals 

in the last generation is also recorded to ensure each gene reached a single optimum 

(i.e. at each gene only one allele was found throughout the population). In addition, a 

graph displaying the average value for each gene at every generation is also saved 

from which stability of the strategies can be evaluated. All gene values stabilised long 

before data was recorded from the simulation.  

 

Initialization Input  

 

The simulation input values are given in table 3.1. The following variables were kept 

constant for all the simulations: The initial probability of dispersal (0), number of 

possible alleles per simulation (101), mutation rate (0.0005). During all the 

simulations the number of reproducing females (1000) was kept constant, irrespective 

of the population size or number of foundress per patch. Each set of variables in table 

3.1 was simulated 10 times. 

 

Sub models 

 

Mutation rate: The mutational model was a combination of stepwise and jumping 

mutations. Once an allele was selected to undergo a mutation there was an 80% 

chance of the allele to step to either of the adjacent alleles and a 20% chance for it to 

step to any of the other 101 possible alleles.  

Dispersal cost: Each male that dispersed had a probability of being excluded 

from the mating population given by the dispersal cost. All the settling costs and 

transit costs are subsumed in the single dispersal cost parameter. 
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Table 3.1. Population and patch parameters for each simulation. *Average number of males per patch when binomial variation was introduced. 

Each parameter set was simulated 10 times. 

    Population parameters   Patch parameters   

Experiments  Population size Patches Clutch size Generations Genes Cost  Foundresses Males/patch Offspring/patch Sex ratio 

 100000 1000 100 100000 5 0.2  1 25* 100 0.250 

 100000 500 100 100000 5 0.2  2 50* 200 0.250 Experiment 3.1 

 100000 333 100 100000 5 0.2  3 75* 300 0.250 

 30000 1000 30 30000 1 0.2  1 5 30 0.167 

 15000 1000 15 30000 1 0.2  1 5 15 0.333 

 10000 1000 10 30000 1 0.2  1 5 10 0.500 

 8000 1000 8 30000 1 0.2  1 5 8 0.625 

 7000 1000 7 30000 1 0.2  1 5 7 0.714 

 60000 1000 60 30000 1 0.2  1 10 60 0.167 

 30000 1000 30 30000 1 0.2  1 10 30 0.333 

 20000 1000 20 30000 1 0.2  1 10 20 0.500 

 15000 1000 15 30000 1 0.2  1 10 15 0.667 

 12000 1000 12 30000 1 0.2  1 10 12 0.833 

 90000 1000 90 30000 1 0.2  1 15 90 0.167 

 45000 1000 45 30000 1 0.2  1 15 45 0.333 

 30000 1000 30 30000 1 0.2  1 15 30 0.500 

 23000 1000 23 30000 1 0.2  1 15 23 0.652 

Experiment 3.2 
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Table 3.1. continued           

 30000 1000 30 30000 1 0  1 15 30 0.5 

 30000 1000 30 30000 1 0.1  1 15 30 0.5 

 30000 1000 30 30000 1 0.2  1 15 30 0.5 

 30000 1000 30 30000 1 0.3  1 15 30 0.5 

 30000 1000 30 30000 1 0.4  1 15 30 0.5 

 30000 1000 30 30000 1 0.5  1 15 30 0.5 

 30000 1000 30 30000 1 0.6  1 15 30 0.5 

 30000 1000 30 30000 1 0.7  1 15 30 0.5 

 30000 1000 30 30000 1 0.8  1 15 30 0.5 

 30000 1000 30 30000 1 0.9  1 15 30 0.5 

 30000 1000 30 30000 1 1  1 15 30 0.5 

 30000 500 30 30000 1 0  2 15 30 0.5 

 30000 500 30 30000 1 0.1  2 15 30 0.5 

 30000 500 30 30000 1 0.2  2 15 30 0.5 

 30000 500 30 30000 1 0.3  2 15 30 0.5 

 30000 500 30 30000 1 0.4  2 15 30 0.5 

 30000 500 30 30000 1 0.5  2 15 30 0.5 

 

Experiment 3.3 

  30000 500 30 30000 1 0.8   2 15 30 0.5 
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Mating: During mating only one of the parents, chosen at random, transferred an 

allele to the new offspring. This donating parent was selected separately for each of 

the genes enabling normal Mendelian inheritance for unlinked genes.  

Response intervals: For simulations where individuals had more than one gene 

(experiment 3.1) a response interval for each gene was calculated. These intervals 

were chosen so that the area under the binomial expectation roughly divided into 

equal parts (as many parts as there were genes). As a result each gene will be 

expressed with equal frequency and will be under equal selection strength. A specific 

gene will thus be “switched on” if the observed sex ratio is within the interval. The 

gene specifies the probability of dispersal for the individual. (Note that the intervals 

were not assigned from the median of the distribution but started from 0. This skewed 

the intervals but ensured that the area of each interval were exactly the same size). 

 

Experiments 

 

Experiment 3.1: Binomial sex ratios 

 

Variation in the sex ratio between the patches was caused by enabling the foundress 

females to produce binomial sex ratios with an average of 0.25 males. Male dispersal 

could therefore evolve to respond to a range of sex ratios. Five genes, each responding 

to a different sex ratio range, were optimised per simulation (see above for response 

interval). To change the number of foundress females per patch the number of 

reproducing females was kept constant while the number of available patches was 

reduced. To test the effect of kin selection, simulations were done for 1, 2 and 3 

foundress females (see table 3.1 for full parameter set). 

 

Experiment 3.2: Exact sex ratios 

 

To show that dispersal is not affected by the sex ratio when all the females in the 

population produce the same sex ratio, exact sex ratios were simulated. In each 

simulation all the foundress females produced the same sex ratio (the expected sex 

 
 
 



 52 

ratio) and no variation between patches was produced. We therefore had only one 

dispersal gene that was optimised per simulation. Sex ratios were however different 

between simulations (table 3.1). Three sets of simulations were performed where the 

sex ratio was different but the males per patch were kept constant (5, 10 and 15 males 

respectively for sex ratio range, table 3.1). The sex ratio within each set was therefore 

changed by keeping the number of sons constant and increasing the clutch size with 

extra daughters (see table 3.1 for full parameter set).   

 

Experiment 3.3: Different cost of dispersal 

 

To test the effect of dispersal cost when dispersal is under offspring control, we 

simulated different costs of dispersal (table 3.1). In each simulation all the foundress 

females produced the exact sex ratio (0.5), and therefore only a single dispersal gene 

was optimised per simulation. To test the effect of kin selection at different dispersal 

costs, simulations were performed for 1 and 2 foundress females (see table 3.1 for full 

parameter set). 

 

Statistics 

 

All statistics on the generated data were performed in R version 2.4.1. For each 

simulation we recorded the average allele value (i.e. the probability of dispersal) from 

all the individuals at the final generation for each of the sex ratio ranges. Most genes 

had only one, or a few similar alleles (e.g. 0.53 and 0.54), fixated throughout the 

population. The average would therefore reflect the common dispersal strategy.  

In experiment 3.1, dispersal was modelled with the following linear model: 

dispersal ~ foundress:sexratio
2 
+ foundress:sexratio + sexratio

2 
+foundress + sexratio; 

where foundress was a factor depicting the number of foundresses in each patch. All 

the higher order terms were tested for significance (see table 3.2). For each of the 5 

genes we used the weighted midpoint of the gene range, with weighting equal to the 

frequency of each class, (from the binomial distribution) as the explanatory variable.  

The following linear model was used to model the data from experiment 3.2: 

dispersal ~ sexratio
2 
+ sexratio + males

2 
+ males; where males indicated the number of 
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males in the patch (table 3.1). The model was reduced to the minimum adequate 

model by removing non-significant terms, starting with the higher order terms (table 

3.3).  

The following models were fitted to the data from experiment 3.3: dispersal ~ 

cost
2
 + cost; for the 1 foundress simulations and:  dispersal ~ cost

3 
+ cost

2
 + cost; for 

the 2 foundress simulations (see table 3.4). All the data was untransformed. 

 

Results and Discussion 

 

When variation between patches was present, our results indicated that males will 

disperse more from patches where there are more males (figure 3.2, table 3.2). The 

data was best explained by the following model, where each row represents the 

estimates for 1, 2 and 3 foundress simulations respectively: 
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7.049
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10.014-

dispersal 2  

 

It was also apparent that dispersal increased when the relatedness of the males in a 

patch was higher, as males from single foundress patches dispersed more readily than 

males from two foundress patches, followed by males from three foundress patches 

(figure 3.2, see also figure 3.4), as has been found in previous studies (Clobert et al., 

2001; Frank, 1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). In other 

words, when there are fewer founding mothers per patch the competing males have a 

higher average relatedness and will disperse more to reduce local mate competition.  

When the sex ratio variation between the patches was removed (experiment 

3.2), we found that sex ratio had no effect on the evolution of dispersal (figure 3.3, 

table 3.3, dispersal = -0.002males
2 
+ 0.045males + 0.373). In these circumstances 

emigration from the natal patch on account of sex ratio does not pay because, 1) the  
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Table 3.2. ANOVA table for model from experiment 3.1.  

  df F P 

Adjusted R
2
 = 0.946    

Retained terms    

# foundress:sexratio
2
 2 8.056 <0.001 

# foundress:sexratio 2 7.707 <0.001 

 

 

Table 3.3. ANOVA table for model from experiment 3.2. 

  df F P 

Adjusted R
2
 = 0.579    

Retained terms    

# males
2
 1 33.513 <0.001 

# males 1 57.930 <0.001 

Deleted terms    

sexratio
2
 1 1.510 0.2211 

sexratio  1 1.550 0.2151 

 

 

Table 3.4. ANOVA table for models from experiment 3.3. 

  df F P 

1 Foundress Model: Adjusted R
2
 = 0.861    

Retained terms    

cost
2
 1 120.743 <0.001 

cost 1 17.994 <0.001 

    

2 Foundress Model: Adjusted R
2
 =  0.975    

Retained terms    

cost
3
 1 50.278 <0.001 

cost
2
 1 127.822 <0.001 

cost 1 516.601 <0.001 
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Figure 3.2. Modelled relationships between dispersal and sex ratio with binomial 

variance (from experiment 3.1, see table 3.2). Diamonds and solid lines: 1-foundress 

simulations; circles and dashed lines: 2-foundress simulations; triangles and dotted 

lines: 3-foundress simulations. Dash-dot line indicates the binomial distributed sex 

ratio with an average of 0.25 males. The response intervals for each of the simulations 

are indicated above the graph. 
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Figure 3.3. Modelled relationships between dispersal and sex ratio with no variation 

between patches (from experiment 3.2, see table 3.3). Solid line: 5 males per patch; 

dashed line: 10 males per patch; dotted line: 15 males per patch. Dash-dot line 

indicates the predicted level of dispersal (0.833) at for one-foundress patches at 

dispersal cost of 0.2 (see text). 
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Figure 3.4. Modelled relationship between dispersal rate and cost of dispersal (from 

experiment 3.3, see table 3.4). Diamonds and solid lines: 1 foundress; circles and 

dashed lines: 2 foundresses. Bold lines indicate our results, thin lines from predicted 

dispersal if under maternal control (see text). 
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amount of competitors are exactly the same, 2) the amount of mating opportunities are 

exactly the same and 3) there is a cost to dispersal. However, here we found that the 

more males present per patch (irrespective of the sex ratio), the higher the dispersal 

rates (figure 3.3, table 3.3).  

Most models dealing with dispersal assume infinite clutch sizes and exact 

population-wide sex ratios (Frank, 1986; Gandon & Michalakis, 2001; Leturque & 

Rousett, 2003; Motro, 1982; Ronce, 2007; Taylor, 1988; Taylor, 1994) to make these 

models tractable (Greeff, 1998; Mitchell & Valone, 1990; Ronce, 2007). It is however 

known that stochastic demographic conditions may affect the evolution of many traits 

under selection (Lenormand et al., 2009), including dispersal strategies (Gros et al., 

2008; Ronce, 2007) and even that facultative dispersal may reduce the fitness impact 

due to inaccurate sex ratios (Greeff & Compton, 2002). When we included variation 

in our simulation, we found that males responded differently in populations where 

there was variation between patches compared to populations with homogenous patch 

sex ratios (compare figures 3.2 and 3.3). In figure 3.2 we observe that sex ratio had a 

significant, positive relationship, with increased dispersal, but was significantly 

different for each of the foundress treatments (table 3.2). In this experiment we had 

foundress mothers (irrespective of the amount of foundress mothers per patch) 

produce an average sex ratio of 0.25 males but with a binomial distribution as 

indicated by the dash-dot line in figure 3.2. Males had 5 dispersal genes, each 

responding to, and optimised for, one sex ratio range (indicated above the graph in 

figure 3.2).  

Our results are supported by field observations. Moore et al. (2006) showed that 

pollinating males had higher dispersal rates when fewer females were available in a 

patch. Similarly, Lawrence (1987) observed a significant increase in dispersal flights 

of male milkweed beetles as the sex ratio became less female biased.  

High levels of dispersal are observed in all our results in response to high levels 

of local mate competition (Perrin & Mazalov, 2000). The model from Wild & Taylor 

(2004) predicts the amount of dispersal for all our simulations in experiment 3.2 to be 

0.833 (where male dispersal = (C-1/N)/(C
2
 -1/N), with the cost (C = 0.2), the number 

of foundress (N = 1), and mothers determining the dispersal rate of their sons). There 

are two possible explanations for the lower dispersal rates relative to the predicted 

rate. First, as the number of males per patch decreased the chance that all the males 

disperse from that patch increased. When this happens the females from that patch 
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would either be unmated and die or be mated by a complete stranger thereby negating 

the possible advantage obtained from sibmating. For example, if the average dispersal 

rate is 0.833, the chance that all males will disperse away from a patch with 5 males is 

47%. In a patch with 10 males it is 16% and in a patch with 15 males it is only 6.5%. 

It is clear that this risk is much larger in patches with realistic numbers of males, and 

lower dispersal rates in these patches are expected.  

A second reason for lower dispersal rates than predicted is that mothers are 

often in control of the offspring dispersal rates in these models (Clobert et al., 2001; 

Frank, 1986; Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Motro, 1991; 

Taylor, 1988). This is sometimes justified when the mothers control the morphology 

and thus the dispersal tactic of her sons (Pienaar & Greeff, 2003). In our simulations 

the males ‘decided’ to disperse or not. From experiment 3.3 it is clear that females 

would want their sons to be more altruistic towards each other and disperse more than 

they are willing to (figures 3.4, table 3.4, one foundress model: dispersal = 0.337cost
2 

- 0.905cost + 0.859; two foundress model: dispersal = -3.869cost
3
 + 7.397cost

2
 - 

4.551cost + 0.893). This parent-offspring conflict has been noted before by several 

authors (Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Taylor, 1988).  

Our results from experiment 3.1 and 3.3 also confirm that higher relatedness 

increased the willingness to disperse from a natal patch (figures 3.2 and 3.4). From 

experiment 3.1 we observed that when the males were less related (i.e. more 

foundress mothers) they had a larger reaction to changes in the sex ratio (note also the 

steeper slopes of the models). In spite of this, less related males had a lower dispersal 

probability in general (figure 3.2). From experiment 3.3 we found that males from 2-

foundress patches had much lower dispersal rates than those of 1-foundress patches. 

As the cost of dispersal increased less related males rejected dispersal as a strategy 

completely (figure 3.4). This was in agreement with theory, mentioned previously, as 

related males do not only disperse to increase their own fitness directly but also their 

inclusive fitness from the extra matings their brothers may have by not competing 

with them (Frank, 1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). Note 

however, that if the cost of dispersal is 1, that males from 1-foundress patches vary 

highly in their dispersal rates (figure 3.4, cost = 1). At this high cost, no males from 

neighbouring patches can invade and only brothers compete for mating opportunities. 

There is thus no selection on the trait and drift is the only evolutionary force in 
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operation. The only motivation for reduced dispersal is the risk of all males dispersing 

from the patch and that none of the sisters are mated. 

In conclusion, most models show that dispersal is mainly affected by the cost of 

dispersal and the relatedness of the competing individuals (Clobert et al., 2001; Frank, 

1986; Hamilton & May, 1977; Motro, 1982; Taylor, 1988). Additionally we know 

that inbreeding depression increases the rate of dispersal (Bengtsson, 1978; Clobert et 

al., 2001; May, 1979; Motro, 1991; Perrin & Goudet, 2001; Perrin & Mazalov, 2000). 

However, in our simulations the cost of dispersal is kept constant, and there are no 

negative fitness effects due to inbreeding. Lastly, sex ratios in natural populations are 

often binomially distributed (Hardy, 1992), and we highlight the feedback of this 

variation on the evolution of dispersal. We show that if males are able to estimate the 

sex ratio in their own patch that they will disperse if the sex ratio is high, but only if 

there is sex ratio variation between the patches.  
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4. Adequate sample sizes for accurate detection of 

population subdivision: a simulation based exploration of 

summary statistics 

 

 

Abstract 

 

Accurate estimates of genetic population subdivision are of importance, not only for 

the understanding of population dynamics in biological systems, but also for 

identification of unique populations that need to be conserved. Various factors affect 

the accuracy of these estimations including the sampling scheme employed. Here 

simulation modelling of microsatellite loci in diploid individuals for a structured 

population has been used to estimate the optimal number of loci and individuals 

necessary for accurate estimation of population subdivision. A surprising finding is 

that more individuals and loci need to be sampled in smaller populations than for 

larger populations to obtain the same accuracy. I also show that the actual genetic 

structure of the population does not affect the accuracy of the estimation except when 

there are very low levels of population subdivision. In these cases fewer individuals 

are necessary to obtain the same level of accuracy. Lastly, sampling different numbers 

of loci and individuals showed that a few of each might be adequate to accurately 

determine population subdivision. 
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Introduction 

 

Genetic population structure inferences have developed significantly in recent years. 

It is relatively inexpensive to develop molecular markers for most organisms and 

obtain data to be used for assigning genetic population structure (Sunnucks, 2000). In 

addition, analysis of molecular data has become easier through the development of 

programs that cluster a population into various subpopulations or that test 

differentiation amongst predefined subpopulations (Luikart & England, 1999; Pearse 

& Crandall, 2004). Notwithstanding the development of molecular and analysis tools, 

there is still a shortage of user-friendly experimental design programs. Using the 

wrong experimental design results in an excess of time and money spent on obtaining 

redundant samples or genotyping a surplus of loci per sample while the accuracy of 

the population inferences remains unchanged. Additionally, obtaining high quality 

DNA often requires invasive sampling of wild animals, while both invasive and non-

invasive sampling are labour intensive (Taberlet et al., 1999). Accurate estimation of 

population structure using the minimum number of individuals and loci is not only 

beneficial in reducing the cost of excessive data collection but is also important in 

conservation genetics as these estimates are often used in management and 

conservation strategies. 

Population structure and gene flow estimated from molecular data are routinely 

used to identify distinct subpopulations (Palsbøll et al., 2006; Waples, 1998; Waples 

& Gaggiotti, 2006). A classical and often used method to detect population structure 

is through the use of summary statistics, such as Fst. Fst, as defined by Weir and 

Cockerham (1984). Although more powerful methods of estimating population 

substructure are available, summary statistics are still often used as initial indicators 

of structure, to supplement other indicators or even as a comparative benchmark for 

other methods (Balloux & Lugon-Moulin, 2002; Neigel, 2002; Pearse & Crandall, 

2004). Previous studies found that more loci, rather than more individuals, will 

increase the accuracy of the estimated population structure (Felsenstein, 2006; 

Pluzhnikov & Donnelly, 1996). Both Felsenstein’s (2006) and Pluzhnikov & 

Donnelly’s (1996) studies used sequence data and showed that 8 individuals (long 

sequence reads of only one locus) were sufficient for accurate population structure 

estimation. It is ideal to provide the minimum requirements (i.e. the least number of 
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loci and individuals necessary, to accurately detect the presence or absence of 

population structure). These minimum sampling requirements would therefore 

indicate the optimal sampling strategy by reducing cost and effort in obtaining and 

typing individuals. They are also likely to be sufficient for more advanced methods 

(Luikart & England, 1999; Pearse & Crandall, 2004). 

I developed the program POPSTAT, which uses individual-based simulation 

modelling to construct a population from user specifications. The unique feature of 

POPSTAT, however, is the implementation of repeated sampling from the simulated 

populations. From the simulated population the repeated sampling schemes may then 

be tested by the user determine the number of molecular markers and individuals 

needed to obtain an accurate estimate of population subdivision.  In this chapter I 

describe how different sampling schemes from simulated populations affects the 

detection of accurate population structure and provide general guidelines for 

developing a sampling schemes. I found that simulations of different population sizes 

show that more individuals, or more loci, are necessary for accurate population 

structure estimates in small populations compared to large populations. This finding is 

counterintuitive and it is very important to devise appropriate sampling schemes for 

small populations, as these are often required for conservation purposes of endangered 

species. In addition there is a trade-off between the minimum number of individuals 

and the minimum number of loci necessary to obtain accurate estimates of population 

structure.  

General conclusions on optimal sampling schemes, from this study, do not 

necessarily apply equally to all populations. It would therefore be advisable to 

estimate adequate sample sizes individually for each study population. The program 

POPSTAT (version 2) is freely available for this purpose at: 

http://www.bi.up.ac.za/software/popstatwin.zip (also available in the electronic 

appendix). 
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Materials and methods 

 

Model description 

 

The program POPSTAT (version2) was designed to investigate how different 

sampling schemes affect accurate detections of population structure from two 

subpopulations. The program is able to simulate the subpopulations as well as 

importing data from populations simulated by other applications. A detailed 

description the program can be found in the POPSTAT help file, available in 

appendix A. However, a brief description of key of the features of the program 

follows. 

The model has two hierarchical levels, namely individual and population. Each 

individual is diploid and is therefore characterised by two arrays of loci variables, and 

also an identity number. All loci are unlinked and the user defines the number of loci. 

The program is a forward-time simulation program that simulates a single, panmictic 

population for a user-defined number of generations. The population is then separated 

into two subpopulations and simulated for a number of generations that is also defined 

by the user (it should be noted that the population homogeneity can be evaluated 

before it is divided into two subpopulations and the simulation extended to reach 

equilibrium if necessary, see also appendix A). The population has the following 

variables that can be defined by the user: population size of each subpopulation, 

migration rate and mutation rate. 

After the simulation of two subpopulations, different sampling schemes can be 

employed, which allows the user to vary the number of individuals sampled as well as 

the number of loci used. From these sampling schemes the Gst (Nei, 1987), Fst (Weir 

& Cockerham, 1984) and Rst (Slatkin, 1995) are calculated. The sampling from each 

subpopulation is completely random. Any sampling scheme can automatically be 

repeated from which the accuracy of the summary statistics for that population may be 

determined.  
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General parameters 

 

As the aim of this study is to investigate the number of individuals and loci necessary 

to accurately detect population structure between subpopulations, it is important to 

create populations with a known structure. For this reason all the individuals and all 

the loci were used in calculation of the summary statistics after every run. In all the 

simulations the number of generations since the population split were varied to obtain 

the desired level of population structure. However, required levels of population 

structure may also be obtained by changing the migration or mutation rate. In this 

study all the simulations were performed with no migrants between the two 

subpopulations, a mutation rate of 0.0001 per gamete per locus per generation (all 

mutations were stepwise) and 50 loci for each individual in the population. In some 

cases sampling per subpopulation may indicate a non-integer number of individuals 

sampled (i.e. 32.5 individuals per subpopulation sampled). This means that a total of 

65 individuals were sampled from both populations and one population (chosen at 

random) contributed 32 while the other contributed 33 individuals to the whole 

sample.  

 

Experiments 

 

Experiment 4.1: Simulation of different Fst values 

 

To obtain a dataset with increasing Fst values the following simulation parameters 

were used. A single, random mating population of 20,000 individuals was divided 

after 5,000 generations into two equal subpopulations and simulated for another 

10,000 generations. The subpopulations were sampled at the 5,000-generation interval 

and at each following 500 generations thereafter.  

The following sampling schemes were used: each time 500 re-samplings of 10, 

32.5, 55, 77.5 individuals per subpopulation were performed. For each sample the Fst 

for the population was calculated (using all 50 loci in each case). For the different 

sample sizes the 500 calculated Fst values were used to determine the standard 
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deviation at each sample size. In addition, to obtain the actual genetic differentiation 

for comparison, all the individuals in the two subpopulations were sampled at every 

500-generation interval and the actual Fst, Gst and Rst calculated.  

 

Experiment 4.2: Simulation of different population sizes 

 

To investigate the effect of population size on the accuracy of Fst estimation 

populations of different sizes were simulated. The details of the parameters used for 

each simulation are given in table 4.1 as well as the Fst calculated using all the 

individuals and all the loci. 

Although the Fst value itself should not have an effect on the accuracy of 

estimation (see Discussion), all the populations were simulated until a similar Fst 

value was reached. An exception was however the largest population (population size 

100,000) simulated to a final Fst of only 0.2 due to computing time constraints. A 

high level of subdivision was chosen to reduce the effects produced on the standard 

deviation when most of the sampled Fst values are 0. 

The following sampling scheme was used for all the different population sizes 

simulated: 500 re-samplings of 5 individuals per subpopulation, increasing stepwise 

with 5 individuals up to 100 individuals at the final generation. The Fst per sampling 

was calculated separately for an increasing number of loci from 1 to 50. A standard 

deviation of the Fst was calculated for each of the 500 repeats per number of 

individuals sampled per number of loci used. To obtain the actual genetic 

differentiation, all the individuals were sampled, and all the loci used to calculate the 

final Fst of the population (table 4.1). 

 

Experiment 4.3: Simulation of a single population for estimates of 

optimal sampling 

 

A final simulation was performed to demonstrate the effect of number of individuals 

and loci number sampled on the accuracy of the Fst measure. A total population size 

of 5000 individuals was simulated as one population for 5000 generations and then as 

two equal subpopulations for another 1000 generations. The same sampling scheme  
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Table 4.1. Parameters used for each simulated population in experiment 4.2. The Fst 

value for all the simulations at the separation of the single population into two sub 

populations was 0. Final Fst was calculated using all individuals and loci.  

Population size Number of generations Final Fst 

(total) Before separation After separation  

1000 5000 100 0.323 

2000 5000 200 0.334 

10000 5000 1200 0.326 

20000 10000 10000 0.322 

100000 15000 50000 0.200 
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as for the 5 populations from experiment 4.2 was used. The final Fst for this 

population was 0.428. 

 

Results 

 

Experiment 4.1: Effect of the Fst values on the standard deviation of the 

Fst 

 

The actual Fst value of the population did not have an influence on the standard 

deviation of the Fst (figure 4.1). An exception of course was when the Fst is 0 or very 

small (figure 4.1). The Fst values (as well as the Gst and Rst) increased in successive 

generations between the two separated subpopulations (figure 4.2). This can be seen 

at generation 5000 where the population was still un-separated and the Fst was 0, and 

to some degree at generation 5500 (Fst 0.0933, compare figures 4.1 and 4.2). The Fst 

values for the repeated samplings were not normally distributed at very low levels of 

population structure and as most values were 0 or close to 0, the standard deviation 

was also lower. A similar effect will be observable at Fst values that are 1 or very 

close to it. 

It could also be observed that there was less variation in the standard deviation 

of larger sample sizes as well as a lower standard deviation in general than for small 

sample sizes (figure 4.1). 

From figure 4.2 it was interesting to note that there was a marked difference 

between the different summary statistics as the two subpopulations became more 

different.  Both the Gst and Fst plateau earlier and at a lower level than the Rst even 

after long separation times. All the summary statistics at their respective plateaus in 

this experiment were however indicative of genetic structure in the subpopulations.  
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Figure 4.1. Standard deviation of Fst over a number of generations (calculated using 

repeated sampling of different sample sizes, from 10 to 100). It can be seen that the 

variation over generations was very small except at generation 5000, where the 

populations were separated (also figure 4.2 for actual Fst values). 
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Figure 4.2. The increase in summary statistics when a population was separated into 

two subpopulations. The summary statistics were calculated using all the loci from all 

the individuals at different generations and a clear increase in the population structure 

can be seen. 
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Experiment 4.2: Effect of population size on the standard deviation of the 

Fst 

 

The standard deviation of the Fst decreased as the population size increased, as 

observed in figure 4.3 (reported only a subset of the data, i.e. for 5, 10, 25 and 50 

loci). This trend was observed at all sample sizes and different numbers of loci 

genotyped except in a few cases when only 1 or 2 loci were used in the determination 

of the Fst value. From this we can see that accurately estimating the Fst in large 

populations require smaller sample sizes, while small populations require larger 

sample sizes to obtain the same accuracy (figure 4.3).  

 

Experiment 4.3: Effect of sample size vs. number of loci on the accuracy 

of the Fst 

 

The accuracy of the estimated Fst increased with an increase in either the sample size 

or number of loci used (figure 4.4). It is clear that every additional locus used in the 

determination of the Fst decreased the standard deviation of the Fst and that this 

decrease was larger when sample sizes were very small (figure 4.4). Similarly, a large 

decrease in the standard deviation of the Fst was seen with every additional sample 

used, with a larger decrease when only a few loci were typed (figure 4.4). Using the 

standard deviation of the Fst, plotted against the number of loci and individuals 

sampled (as in figure 4.4) provided a quick and easy way to determine the optimal 

sampling scheme. For example, if an adequate level of accuracy is where the standard 

deviation of the Fst is less than 0.02 (figure 4.4) then for 20 loci typed, one can read 

from the graph that 15 individuals per subpopulation would be sufficient to get that 

accuracy.  
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Figure 4.3. Decrease in standard deviation of the Fst as the number of individuals sampled increases for an increasing number of loci sampled 

for different sized populations (subpopulation size indicated in the legend from 1000 to 10000 with the Fst of the population when all individuals 

and loci are used). Larger populations have a lower standard deviation for all combinations of loci and individuals sampled. 
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Figure 4.4. Contour plot of the standard deviation of the Fst. The standard deviation decreases when either the number of loci genotyped or the 

number of individuals sampled increases. 
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Discussion 

 

Investigation of the simulated data led to inferences of four factors that may affect the 

accuracy of the Fst value. First, smaller populations require larger sample sizes to 

have the same accuracy as large populations. Second, the degree of structure itself (or 

the actual value of the Fst) does not seem to influence the accuracy of the inferred 

structure. The last two factors are the number of loci and the number of individuals 

sampled. Increasing both these factors increases the accuracy of the estimated 

population structure.  

 

 

Effect of population size on accuracy 

 

A general trend in statistics is to increase sample size as the study population size 

increases. However, from figure 4.3 we see that the standard deviation of the Fst is 

smaller in large populations at the same sample size used for small populations. This 

leads to the counterintuitive argument that we need fewer individuals from large 

populations to accurately detect population structure. 

The reason for the inverse in adequate sample size vs. population size is because 

there is a larger probability of sampling unique genotypes when the population and 

sample size is small (see also Paetkau et al., 2004). Because big subpopulations have 

many individuals, who we expect to be randomly distributed, average genotypes are 

expected to be sampled more often. If this is not the case the subpopulation may need 

to be sub-structured even further and the sampling scheme re-evaluated. The 

resampling experiments in this chapter support this result (figure 4.3). This has the 

following implications for once-off sampling schemes in field experiments: small 

populations need more samples than large populations to get an accurate estimate of 

population substructure.  

In the simulations the subpopulations were always equal in size, but the same 

reasoning as above can provide some guidelines to unequal subpopulations. Sampling 

from a small subpopulation may provide a skewed view of the uniqueness of the 

subpopulation, and enough samples should be obtained to circumvent this. The same 
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number of individuals, sampled from the larger subpopulation (assuming the large 

subpopulation to be truly panmictic), should then be sufficient to accurately detect 

population subdivision.  

All the arguments used for sample sizes also hold for the number of loci used in 

calculating the Fst value, i.e. smaller populations need more loci per individual to 

reduce the bias that may arise from, by chance, sampling only the unique loci in the 

population.  

 

Effect of the Fst on the accuracy  

 

We do not expect the true population Fst to affect the accuracy of its estimation 

(figure 4.1). It is however important to verify this as general inferences on the 

sampling scheme may be affected if there is an effect. From figure 4.1 we see that the 

standard deviation of the Fst was lower only when the Fst value itself was still very 

small (also shown by Ryman et al., 2006). This effect was seen because the 

subpopulations were still very similar and even with repeated sampling the calculated 

Fst values will mostly be very small or 0. However, as soon as the Fst value 

approaches 0.1, the level at which the application STRUCTURE (Pritchard et al., 

2000) can detect population subdivision (personal observation), the standard deviation 

stabilises.  

The Fst value or actual subdivision of the population therefore has a number of 

implications on the sampling scheme. If the population is structured, large sample 

sizes will detect this structure, irrespective of the degree of structuring in the 

population. If, on the other hand, the population is not structured, fewer samples are 

necessary to accurately predict the Fst. It is, however, extremely important to have 

enough samples to accurately estimate high population subdivision even if the 

population is suspected to be unstructured, otherwise hidden structure may remain 

undetected. 

Mention must be made of the different rate of change between some of the 

summary statistics as observed in figure 4.2. All three statistics are indicating 

population subdivision at the end of the simulation, even though the respective values 

are different. To put this in context however, the Gst and Fst values are both 

calculated through the genotype frequencies in the population while the Rst also takes 
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into account the actual genotype. This specifically refers to stepwise mutation of 

microsatellite loci, (Slatkin, 1995). The Rst values are therefore more sensitive to any 

changes in the genotypes and will increase quicker than frequency-based methods, 

such as Gst and Fst. Furthermore, the Fst is almost always double the Gst in all the 

simulations performed (personal observation). Inferences of population subdivision 

should be made by also taking into account the method used to detect this structure. 

For instance, if an Fst value of 0.3 will be used as an indication of strong population 

structure, the corresponding Rst value will be much higher. Rst, however has the 

disadvantage of being specifically applicable only to microsatellites under the 

generalised stepwise mutation model (Slatkin, 1995).  It is therefore advisable to use 

various methods to infer population structure. 

 

Effect of sample size and loci number on accuracy 

 

When formulating a sampling scheme it is important to consider what would be a 

sufficient level of accuracy. There are various ways to test the accuracy of different 

statistical methods or sampling schemes. For this study I chose to use the standard 

deviation of the Fst from repeated sampling as a measurement of accuracy as it is 

straightforward to compare and can be readily determined from the data generated by 

the simulation output. The required level of accuracy of Fst may of course be vary 

between different species or different populations and sampling schemes with more 

accuracy can be devised using the same principles and software if necessary.  

I find that an increase in either the number of loci or the number of individuals 

sampled will increase the accuracy of the Fst (figure 4.4). Figure 4.4 also reveals that 

after the rapid decrease in the Fst, when loci and sample numbers increase, there is a 

stabilization of the standard deviation. Once the standard deviation has stabilised in 

this way, increasing the number of loci or individuals would contribute very little to 

the accuracy of the estimates. The optimal number of individuals used in any 

sampling scheme is, however, mostly dependent on the number of loci used and vice 

versa. As these two factors are inversely correlated, both need to be estimated 

simultaneously as in figure 4.4. From this figure it is easy to determine the optimal 

number of individuals to sample once the loci to be used are developed to obtain 
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accurate estimates of population subdivision. It is however important to estimate this 

specifically for the different population sizes that will be sampled.  

 

Guidelines on sampling 

 

According to the results obtained from the simulations in this study, it is important to 

keep the following in mind when planning a sampling scheme. The program 

POPSTAT simulates only two populations from which sampling are performed and 

inferences made. In field studies there are often more than two subpopulations and to 

reconcile this with the simulation data, the two most diverged subpopulations need to 

be used for an estimation of the sample size and the number of loci that are necessary 

to obtain accurate results. Using the sub-populations that are assumed to be most 

divergent prevents sample size estimates based on an unstructured population, which 

is the only case where the actual Fst values have an effect on the accuracy of the 

estimates. Pair-wise comparison of subpopulations is routinely performed in 

population studies (Kitada et al., 2007) and there are a number of programs used to 

estimate pair-wise Fst values from genotypic data (Excoffier et al., 2005; Goudet, 

1995; Raymond & Rousset, 1995). Starting with a complex simulation model with 

more than two subpopulations require more assumptions about the population such as 

differential migration rates and sub population sizes. Moreover the minimum adequate 

sample size required to differentiate between the most diverged subpopulations would 

be adequate to reveal any other substructure regardless of the complexity of the 

population structure. Once the minimum number of samples is determined to 

accurately detect population structure for the two most unrelated subpopulations, the 

same number of samples from each of the other assumed subpopulations should be 

obtained (see Goudet et al., 1996 on balanced sampling). This would provide accurate 

estimates for differentiation between all pair-wise comparisons of the subpopulations. 

In conclusion, when sampling from different populations, the actual population 

structure does not play a role in the accuracy of the estimations, except when the 

population is almost completely unstructured. However, smaller sample sizes are 

required for these populations and the same sampling scheme as for more structured 

populations would therefore be sufficient. If the population is small, slightly more loci 

and individuals should be used in determining population structure. The number of 
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loci to be used depends on the number of individuals that would be sampled and vice 

versa. As a general rule (even for small populations, e.g. 5000 individuals), 20 loci 

(which are easily obtainable with current molecular tools) and 15 individuals per 

subpopulation are sufficient to accurately determine population subdivision. It is still 

extremely important to know the population biology of the study organism. This will 

determine the assumed population divergence (from isolation by distance or other 

environmental factors) that will be used in the simulation, the accuracy of simulations 

as well as the resultant sampling schemes. 
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5. Inbreeding depression does not promote mixed mating 

and dispersal in a male pollinating fig wasp, Platyscapa 

awekei 

 

 

Abstract 

 

Theory predicts that high levels of inbreeding depression or kin competition will 

promote the evolution of dispersal. Species with mixed mating systems (sibmating as 

well as random mating) provide strong evidence for the importance of inbreeding 

depression in determining the mating system. Using the pollinating wasps Platyscapa 

awekei as a model system we investigate the recent evolution of male dispersal in 

relation to their level of inbreeding depression. Previous work suggested that P. 

awekei suffers from inbreeding depression but possibly also from outbreeding 

depression. With a much larger sample size we show that P. awekei females have low 

levels of inbreeding depression. We used the program SibMate to determine if this 

low inbreeding depression could be sufficient to select for male dispersal and mixed 

mating. We find that the level of inbreeding depression alone is not severe enough in 

P. awekei to cause male dispersal and that other factors, such as the high proportion of 

male-only broods, kin competition and sex ratio, may be necessary to bring about the 

evolution of male dispersal. 
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Introduction 

 

When an individual is faced with the option of mating with a relative, a number of 

factors play a role in the mating decision. Ultimately, the mating strategy depends on 

the number of genes (identical to your own), which are successfully transferred to the 

next generation. In nature, a multitude of different mating strategies are found (Keller 

& Waller, 2002; Thornhill, 1993) and include inbreeding, outbreeding or a strategy 

that lies somewhere in-between. Focusing on mixed mating, where individuals 

frequently outbreed with unrelated individuals, as well as, inbreed with close 

relatives, leads to the following question: What would cause individuals to stay close 

to their relatives and mate with them and at other times cause them to migrate and 

mate with non-relatives?  

Due to the chronic inbreeding that occurs in many haplodiploid species 

(Godfray & Cook, 1997; Hardy, 1994; Werren, 1993), including pollinating fig wasps 

(Greeff, 2002; Greeff et al., 2003; Herre et al., 1997; Molbo et al., 2002; Molbo et al., 

2004; Zavodna et al., 2005), alongside purging in the haploid males (Bruckner, 1978; 

Werren, 1993), it is expected that haplodiploids suffer less from inbreeding depression 

(Antolin, 1999; Henter, 2003; Werren, 1993). Despite this expectation, considerable 

inbreeding depression in haplodiploids has been observed (Antolin, 1999; Henter, 

2003).  

Inbreeding depression may lead to the evolution of male dispersal (Bengtsson, 

1978; Gandon, 1999; Motro, 1991; Perrin & Mazalov, 2000; Ronce, 2007; Waser et 

al., 1986). Male dispersal, in turn, could lead to mixed mating, if intermediately 

related individuals are not available, and if the inbreeding depression is not too severe 

(chapter 2).    

In addition to inbreeding depression, a number of other factors may induce male 

dispersal: Dispersal is often a solution to high levels of local mate competition 

(Clobert et al., 2001; Frank, 1986; Hamilton & May, 1977; Perrin & Mazalov, 2000; 

Ronce, 2007; Van Valen, 1971). Moore et al. (2006), have proposed this as the cause 

of dispersal in Platyscapa awekei males. It has also been shown that the sex ratio in P. 

awekei (which is less female biased than those of other pollinating wasps) could 

trigger male dispersal (Moore et al., 2006; Nelson & Greeff, 2009; but see also 

chapter 3). 
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The presence of mixed mating as a breeding strategy is difficult to explain as 

factors causing the inbreeding would normally oppose outbreeding and vice versa. In 

addition to factors that cause male dispersal, a number of factors that cause inbreeding 

have been identified. An obvious motive for inbreeding is outbreeding depression, 

which has been observed in P. awekei (Greeff et al., 2009). However, the study by 

Greeff et al. (2009) was based on a small sample and the results were somewhat 

ambiguous and failed to explain the mixed mating system. Additional factors that 

might reduce male dispersal and therefore mixed mating include the high cost of 

dispersal (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & May, 1977; 

Motro, 1983; Motro, 1991; Taylor, 1988) and the kin advantage of inbreeding 

(Bateson, 1983; Bengtsson, 1978; Fisher, 1941; Kokko & Ots, 2006; Parker, 1979; 

Pusey & Wolf, 1996; Waller, 1993; Waser et al., 1986; Wolf, 2000; see also chapter 

2).  

The life history of pollinating fig wasps provides us with an opportunity to test 

hypotheses that could explain the evolution of mixed mating. The relevant life history 

details, of the study species P. awekei, are as follows: A single or a few mated females 

enter receptive figs, lay their eggs and die. The larvae develop by feeding on the 

galled flowers inside the fig. It has been suggested that the success of development 

depends on the quality of the egg and gall, both of which may be determined by the 

mother’s genotype (Greeff et al., 2009). After development, the males eclose first and 

mate with the females, who are receptive only whilst in their respective galls. 

Platyscapa awekei males regularly engage in contest competition (Greeff et al., 2003; 

Nelson, 2005) and dispersal to other figs (Greeff et al., 2003), often before the 

depletion of receptive females in their native fig (Moore et al., 2006). Once a female 

ecloses from her gall she leaves the fig in order to start the cycle anew. This species 

enable us to investigate three key aspects that may affect the mating strategy: the level 

of inbreeding depression, the kin advantage to sibmating, and the advantages to male 

dispersal. 

The aim of this study is to determine if there is an optimum between inbreeding 

depression and outbreeding depression in P. awekei, which may lead to mixed mating 

(Bateson, 1983; Greeff et al., 2009; Price & Waser, 1979; chapter 2). This is done by: 

1) Determining the effect of the mother’s inbredness on her ability to produce mature 

offspring. We find, by using a larger sample than Greeff et al. (2009), that only 

inbreeding depression is present in P. awekei. 2) Using the program SibMate (chapter 
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2), we simulate the empirical results for P. awekei and predict the optimal mating 

strategy. Our results indicate that inbreeding depression is too low to cause 

outbreeding and male dispersal is probably not an adaptation to reduce inbreeding 

depression.  

 

Materials and Methods 

 

Sample collection 

 

Sampling was performed at the National Botanical Gardens in Pretoria during the 

summer (February and December) over 2 years (table 5.1). We carried out single 

foundress introductions of the pollinating fig wasp Platyscapa awekei into their 

natural host Ficus salicifolia. Single foundress introductions ensure that the data were 

from a single mother. This permitted the reconstruction of the mother’s genotype from 

her offspring. In addition, the clutch-sizes of each mother, which is equal to her total 

lifetime reproductive success, could be used as a good proxy for her fitness. 

Material bags were placed around figs 2-3 weeks prior to becoming receptive 

for pollination. The bags prevented non-experimental pollinator females from entering 

the figs as they developed. Once the bagged figs became receptive single wasps were 

allowed to enter each fig after which the figs were again bagged and allowed to 

develop. Females used for introductions were obtained one day prior to introduction 

by collecting releasing figs (from the botanical gardens in Pretoria) and placing each 

fig in a single glass vial stopped with cotton wool. The next morning females released 

during the night were placed on a fig (only one female from each vial) and left to 

enter (manual introduction). Alternatively, bags were removed from the experimental 

figs as they became receptive and female wasps, arriving naturally, were allowed to 

enter the figs (one female per fig only, natural introduction). This occurred when trees 

with releasing figs were hard to obtain. Again bags were placed around the figs and 

left to develop. The type of introduction (manual or natural) for each tree is indicated 

in table 5.1. 

Once the figs were almost ready to release, the bags were removed and traps 

were placed on each fig. The traps were constructed from eppendorf tubes with both  
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Table 5.1. Population source data with averages and standard deviation (SD) for the clutch size and number of underdeveloped individuals as 

well as the percentage of virgin females (i.e. male only broods) and average homozygosity per tree. 

Population 
Introduction 

date 

Introduction 

method 

# Genotypes 

reconstructed 
Clutch size (SD) 

Underdeveloped 

(SD) 
% Unmated 

Average loci 

homozygous 

Tree 1 February 2006 manual 37 46.946 (10.724) 0.541  (1.070) 29.730 2.135 

Tree 2 December 2006 manual 22 61.045 (9.105) 0.409  (1.333) 4.454 1.864 

Tree 3 December 2006 natural 50 54.48 (13.380) 0.100  (0.303) 4.000 1.940 

Tree 4 February 2007 natural 29 43.172 (12.048) 0.517  (1.122) 24.138 2.517 

Tree 5 February 2007 mixed 42 51.095 (12.060) 0.952  (1.710) 0.000 2.571 

 

 

 

 

 

 

 

 

 

 
 
 



 84 

ends removed. This formed a hollow, tapering, tube and a small piece of mesh 

material was melted to one side (figure 5.1a). A whole range of different sized traps 

was obtained, depending on where an eppendorf tube was cut (figure 5.1a), to suit the 

common fig size range of the host species. As the figs ripen, they expand, fitting 

tightly into the traps and none of the released offspring could escape (the species P. 

awekei only emerge through the ostiole and traps were placed to cover this area). 

Traps were checked once a day and the figs were picked if any offspring were 

observed. Each fig was left for two days to release while the offspring were 

continuously collected and placed in 96% ethanol. After 2 days the remaining wasps 

were dissected from each fig with the aid of a dissecting microscope. Some of the 

dissected individuals were considered as under-developed. The criteria for denoting 

an individual as under-developed were that these individuals were in the larval stage, 

had less developed features such as reduced wings or legs, or were, in general, too 

immature to live independent from their galls. Data on the clutch-size, the number of 

under-developed wasps and mating status of the mother were recorded for each fig 

(table 5.1). (Note that if only sons were produced the mother was assumed to be 

unmated as unfertilised eggs develop into males). 

 

Genotype reconstruction  

 

The mothers’ genotypes were reconstructed from the genotypes of her offspring. At 

least 7 males were typed to reconstruct their mother’s genotype. As the males are 

haploid they receive their genotype solely from their mother. If the allele for each 

male (per locus) was the same, the mother was deemed homozygous for that locus. 

When there were two alleles, the mother’s genotype consisted of the two alleles 

observed in her sons. The probability of wrongly assigning a mother as homozygous 

when she is in fact heterozygous is (1/2)
n
, where n is the number of males typed. The 

probability of a wrong reconstruction of the mother’s genotype, using 7 males, is 

therefore 0.0078. In cases where clutches contained less than 7 males, females were 

used instead of the males. Here a mother was considered homozygous if all the 

genotyped daughters had at least one copy of the allele found in their brothers and 

provided the same confidence. 
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Figure 5.1. a) Range of traps, constructed from eppendorf tubes, used on different 

sized fruits. b) Traps fitted on figs of Tree 2. Scale = 1 cm. 
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Genotyping 

 

DNA extractions of all the individuals to be genotyped were performed using the 

protocol as described by Estoup et al. (1996). Two males (from one clutch) or one 

female were placed in an eppendorf tube and grounded using a sterile pestle. 500µl 

Chelex (10% Chelex in Sabax water), at 60°C was added to the grounded wasps using 

a wide bore tip. The samples were incubated at 100°C for 15 minutes after which 

7.5µl Proteinase K (Fermentas, 20mg/µl) was added. The samples were incubated for 

1.5 hours at 55°C (shaken at 15-minute intervals). Incubating the samples at 100°C 

for 15 minutes stopped protein digestion. PCR reactions were performed directly from 

these solutions.  

Each individual was genotyped at 6 polymorphic microsatellites designed for P. 

awekei (Jansen van Vuuren, 2005), using fluorescently labelled forward primers (table 

5.2). (Note that, no null alleles were observed in this study or from a previous study 

where wasps were individually typed at the six microsatellite loci developed for this 

species (Jansen van Vuuren, 2005; Newman, 2007)). Table 5.3 provides the PCR 

conditions for the four reactions necessary to amplify the 6 microsatellite loci. Product 

amplification was confirmed on 1% agarose gels. PCR products were diluted 1:10 and 

mixed in the following ratios 2:2:1:1 from pool 1, pool 2, pool 3 and pool 4 

respectively. LIZ
TM 

size standard was diluted with formamide (1:10). For each 

sample, 1µl of the pooled and diluted PCR product was added to 10µl of the 

formamide-size standard solution and denatured at 95˚C for 5 minutes. Samples were 

subsequently run on a Genetic Analyzer 3100 (Applied Biosystems) and results 

analysed with GeneMapper v3.5 (Applied Biosystems).  
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Table 5.2. Primer sequences, label colour, size and number of alleles of the 6 microsatellites loci used to determine foundress genotypes. 

Reaction pools indicate the combinations of primers amplified together, with their respective annealing temperatures.  

Primer name Primer sequence (5'-3') 
Label 

colour 
Size (bp) # Alleles 

Reaction 

pool 

Annealing 

temperature 

Pa 1 F: GTA GCG CCG TAT CAA ATT GCA A Green 215-266 30 1 50 

 R: GGG AGGG CTT GGG ATC TTT AAC GA      

Pa 4 F: GGG TGT TGT CGG TTT GTG AGA Yellow 188-238 27 2 65 

 R: GGC AAA CAT CCA TCG GAG TGA      

Pa 7 F: CTG CCG GTC AGA GGA GGA G Blue 277-347 45 3 60 

 R: TAT GAC GTC ATC GGT TTG GCA A      

Pa 8 F: GAG GAA GTC CGA TGA ATG AAC GA Blue  190-225 17 3  

 R: GCG AAC AGG AGA CAA AGA CAG A      

Pa 21 F: GCT GTC GAG GCG AAA CAC A Green 147-215 32 3  

 R: GCG CGA GGC ATT GGC AA      

Pa 32 F: CGG TGT TCA ATT GCC AAG TGA Yellow 107-192 32 4 60 

  R: TCG TGT TCT TCG TAA TCG CGT A           
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Table 5.3. PCR conditions, and reagents. The denaturing, annealing and elongation 

steps were repeated 30 times. *quantity for each primer in the pool 3. 

  Conditions 

Step Temperature ˚C Time 

Hotstart 95 10 min 

Denature 95 40 sec 

Annealing  see table 2 1 min 

Elongation 72 2 min 

Hold 4 - 

  Quantity 

Reagent  Pool 1 Pool 2 Pool 3 Pool 4 

Genomic DNA 1 µl 0.5 µl 0.5 µl 0.5 µl 

Buffer 1 mM 1 mM 1 mM 1 mM 

MgCl2 2 mM 1.8 mM 2 mM 1.6 mM 

Primer 0.6 µl 0.3 µl 0.3 µl* 0.3 µl 

dNTPs 0.16 mM 0.16 mM 0.16 mM 0.16 mM 

Taq DNA Polymerase 0.1 u/µl 0.05 u/µl 0.05 u/µl 0.05 u/µl 

Reaction volume 10 µl 10 µl 10 µl 10 µl 
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Statistics 

 

All statistics were performed in R, version 2.4.1. Linear regressions were used to test 

the effect of the following variables on the clutch-size, mating status, number of 

under-developed wasps, tree, number of homozygous loci and number of homozygous 

loci squared. All models were reduced by deleting non-significant terms, starting with 

the interactions.  

We also tested if any of the measured variables explained the absolute number 

under-developed individuals with a linear model. Additionally we tested the measured 

variables against the proportion of under-developed individuals per clutch with a 

generalised liner model with binomial distribution.  

Lastly, we used the parameter estimated from model 5.1 (see below) as input to 

the program SibMate (see chapter 2). We also determined the 95% confidence 

intervals for the model 5.1 and derived the maximum and minimum inbreeding 

depression slopes as input. For each set of parameter estimates we ran 10 simulations 

to determine the optimal sibmating rate (in 5 simulations the females could decide to 

sibmate while in the other 5 the males could choose). It should be noted that each 

extra homozygous locus does not indicate an additional sibmating event directly. To 

be precise, more than a single locus extra should be homologous to indicate a 

sibmating event, and we assigned the fitness values in the simulations accordingly 

(Greeff et al., 2009). Table 5.4, contains the complete parameter sets of all the 

simulations.  

 

Results 

 

In total, 1260 individuals were successfully typed, and the genotypes of 180 foundress 

females reconstructed. The average clutch-size, percentage females unmated, average 

number of offspring under-developed and average heterozygosity per crop is 

summarised in table 5.1. From the table it is clear that many females are unmated and 

the average for the whole dataset is 13.207%.  
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Table 5.4. Parameters used for simulations. The maximum and minimum fitness 

values are from the 95% confidence intervals of model 5.1. Each parameter set was 

simulated 5 times. The number of homozygous loci for each successive sibmating was 

determined from Greeff et al. (2009). 

Fitness values 

Times Sibmated 
model 5.1 Maximum Minimum 

# loci 

homozygous 

0 55 59 51 0-1 

1 55 59 51 2 

2 53 57 50 3 

3 52 54 50 4 

4 52 54 50 4 

5 50 52 49 5 

6 50 52 49 5 

7 50 52 49 5 

8 50 52 49 5 

≥ 9 49 49 49 6 

General parameters     

Ploidy Haplodiploid   

Population size 10000   

Generations 10000   

Mutation rate 0.0001   

# alleles 101   

All inbreeding was via sibmating    

All simulations were repeated separately with both male and female choice 

 

 

 

 

 

 

 

 

 
 
 



 91 

Clutch-size was best explained, with the following minimum adequate linear 

model, as a function of tree and the number of homozygous loci (see table 5.5, figure 

5.2): 

 

Clutch-size ~ tree + homozygous loci     [model 5.1] 

 

There was a significant difference in the number of under-developed offspring 

between the different trees (table 5.6), as well as the proportion of under-developed 

offspring per tree (table 5.7). However, none of the other variables or any of the 

interactions had an effect on the number or the proportion of under-developed 

offspring (deleted terms in tables 5.6 and 5.7). 

Simulating the inbreeding depression from model 5.1 and the maximum and 

minimum inbreeding depression from the 95% confidence intervals, indicated that 

sibmating would not evolve when males could decide the mating strategy (table 5.8). 

However, when the females are able to choose the mating strategy, low levels of 

sibmating (α) may evolve for the higher levels of inbreeding depression (the slope of 

model 5.1 and the maximum inbreeding depression from the 95% confidence interval, 

table 5.8). 

  

Discussion 

 

We found that a mother’s ability to produce mature offspring decreased significantly 

as she became more inbred (for every additional pair of homozygous loci 1.5 or 3% 

fewer offspring are produced). Our results also indicated that the host tree was a major 

determinant in the number of offspring produced by a mother, accounting for the 

largest part of the variation in model 5.1. However, we showed that the inbreeding 

depression in P. awekei is probably not severe enough to cause mixed mating and 

male dispersal, which are common behaviours for this species. An alternative reason 

for male dispersal may be the high proportion of virgin mothers (table 5.1) that 

produce male-only clutches. These males will have no access to females if they are 

not able to disperse and could be a large driving factor in the evolution of male 

dispersal. 
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Table 5.5. ANOVA table and model estimates for model 5.1 (Adjusted R
2
 = 0.188) 

    

    
Estimates df F P 

Retained terms     

Homozygous loci -1.496 1 8.115 0.005 

Tree   4 8.580 <0.001 

constant:  Tree 1 50.141    

 Tree 2 63.834    

 Tree 3 57.383    

 Tree 4 46.939    

 Tree 5 54.943    

Deleted terms     

Mating status  1 0.051 0.822 

Under-developed  1 0.378 0.540 

(Homozygous loci)2  1 0.182 0.670 

Tree:homozygous loci  4 0.944 0.440 

Tree:under-developed   4 2.233 0.068 
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Figure 5.2. Relationship between clutch size and number of homozygous loci for 

each tree (model 5.1). Tree 1: dash-dot line, Tree 2: Long-dash line, Tree 3: short-

dash line, Tree 4: dotted line, Tree 5: solid line. 
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Table 5.6. ANOVA table and estimates for the linear model: Under-developed ~ tree 

(Adjusted R
2
 = 0.045).  

    

    
Estimates df F P 

Retained terms         

Tree   4 3.094 0.017 

constant:  Tree 1 0.517    

 Tree 2 0.409    

 Tree 3 0.100    

 Tree 4 0.517    

 Tree 5 0.952    

Deleted terms     

Homozygous loci  1 2.985 0.568 

Mating status  1 0.145 0.704 

Clutch-size   1 0.252 0.617 

(Homozygous loci)
2
  1 0.967 0.327 

Tree:homozygous loci   4 0.473 0.755 
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Table 5.7. ANOVA table and estimates for the generalised linear model: Proportion 

under-developed per clutch ~ tree (data transformed with logit transformation)  

    

    
Estimates df P

 

Retained terms       

Tree   4 <0.001 

constant:  Tree 1 -4.464   

 Tree 2 -5.006   

 Tree 3 -6.300   

 Tree 4 -4.425   

 Tree 5 -3.983   

Deleted terms    

Homozygous loci  1 0.960 

Mating status  1 0.509 

(Homozygous loci)2  1 0.077 

Tree:homozygous loci   4 0.058 

 

 

Table 5.8. Probability of sibmating from simulated parameter estimates (see table 

5.4). 

  Probability of sibmating (α) 

  Females (SD) Males (SD) 

Model 5.1 0.951  (0.009) 1.000 (0.000) 

Maximum 0.832 (0.017) 0.995(0.003) 

Minimum 1.000 (0.000) 0.999(0.001) 
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 A study by Greeff et al. (2009), showed that the number of homozygous loci in 

P. awekei was a good proxy for their inbreeding level, due to the high level of 

sibmating in this species (see also: Balloux et al., 2004; Pemberton, 2004). They 

found that P. awekei suffer from outbreeding depression and possibly inbreeding 

depression. However, their results (from 57 mothers and 3 trees), indicated that the 

effect of inbreeding depression was ambiguous, and they suggested that more data 

was required to resolve this uncertainty. Using a much larger dataset we clearly show 

that there is inbreeding depression in P. awekei, but in contrast to the study by Greeff 

et al., no outbreeding depression.  

 In our results we observed low levels of inbreeding depression in P. awekei as 

the clutch size significantly decreased with every one to two successive sibmatings. 

Persistence of low levels of inbreeding depression in the face of inbreeding is not 

uncommon (Antolin, 1999; Henter, 2003). However, to accurately detect low levels of 

inbreeding depression requires large sample sizes.  

The absolute number as well as the proportion of under-developed offspring 

were significantly different between the different trees. This, in addition to the results 

from model 5.1, showed that the host tree played an important role in how many 

offspring reach maturity. This means that the tree (i.e. the quality of the fruit) is able 

to directly affect the development of the wasps, irrespective of the mothers inbreeding 

level. Additionally, the size of the fruit may also be an indication of the number of 

flowers within (ovipositing sites), and smaller fruits may therefore reduce the amount 

of offspring a mother is able to produce. We therefore predict that inbreeding 

depression in P. awekei is more prominent when environmental conditions are harsher 

while the mortality of developing individuals increase as tree condition decreases. 

As an example, it could be mentioned that Tree 2, which had the largest clutch 

sizes, had the largest fruits (only the largest traps fitted on these figs, see figure 5.1a). 

In addition, the general status of the tree during wasp development was noted to be 

excellent, and probably led to the high quality fruit. (F. salicifolia are often shrub-like 

and vary widely in amount of foliage, cycles of fig production, amount of figs, fig size 

and even fig colour (Burrows & Burrows, 2003). Tree 2 is more tree-like and was 

covered with leaves and figs during the study (figure 5.3). Our sampling took place 

during the summer months as more trees produced figs during this season and access 

to fruiting trees and therefore pollinating wasps was easier. This may actually lead to 

an underestimate of inbreeding depression.  
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Figure 5.3. Different trees used in study: a) Tree 1; b) Tree 2; c) Tree 3; d) Tree 4 and 

e) Tree 5. Scale = 1 meter, measured from marker attached to each tree. 
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Once we established that P. awekei suffers from low levels of inbreeding 

depression, the obvious question was: does this inbreeding depression cause mixed 

mating and male dispersal in this species? When the measured inbreeding depression 

was simulated, we found that the females would benefit from low levels of 

outbreeding (~5%). However, it is the males of this species that decide whether to 

mate with the females in their native fig or to disperse. When we repeated the 

simulation with male choice, exclusive inbreeding evolved. Simulating the maximum 

and minimum inbreeding depression in the 95% confidence interval gave the same 

result for the males, as they would prefer to inbreed rather than disperse. The females, 

however, would prefer more outbreeding (~17%) when inbreeding depression 

increases but when the minimum inbreeding depression was simulated they too 

benefited more from inbreeding. Because P. awekei males (rather than the females) 

have the choice of sibmating and exclusive inbreeding is optimal under most 

simulated conditions, the level of inbreeding depression in P. awekei is probably not 

the main force driving the evolution of mixed mating and male dispersal.  

From the data we see that a factor that might influence the evolution of male 

dispersal is the high number of virgin females that produced male-only broods. Our 

results are varied between the different trees but are on average much higher than the 

published results for most other pollinating wasp species (often between 0-2% but 

higher numbers have been recorded, see Godfray, 1988; West et al., 1997). When 

males find themselves in a patch with no females we expect that this would be an 

incentive for them to disperse and if this occurs frequently may cause the evolution of 

dispersal.  

In conclusion, we show that for the pollinating fig wasp, P. awekei, maternal 

effects cause low levels of inbreeding depression, which is probably more prominent 

under poor environmental conditions. While inbreeding depression could play a role 

in the evolution of mixed mating and male dispersal, our simulation results show that 

the kin advantage to inbreeding, often outweighs the observed inbreeding depression. 

The level of inbreeding depression in P. awekei is on the border of making mixed 

mating a viable strategy. Factors that may influence the evolution of male dispersal 

(and provide the necessary additional incentives) are the high proportion of clutches 

that have male-only offspring, to reduce local mate competition (Moore et al., 2006), 

higher and varied sex ratios relative to other pollinating wasp species (Nelson & 
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Greeff, 2009; chapter 3), or as a syndrome coupled with fighting behaviour (Greeff et 

al., 2003). 
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6. Conclusions 

 

In this thesis I addressed a number of mating theories with the aid of simulation 

modelling. With this approach I explained some of the factors that may drive 

inbreeding or dispersal. Additionally, I investigated how detection of population 

structure is affected by different sampling schemes. Lastly, I used molecular data 

from the pollinating fig wasp P. awekei to determine how their level of inbreeding 

affects their mating system. This combinational approach together with analytical 

models and ecological data help to unravel systems with inbreeding and dispersal, and 

shows that individual-based simulation modelling plays an important role in 

evolutionary studies. 

 

Mixed mating 

 

The enigma of mixed mating, where individuals inbreed with close relatives or 

outbreed with unrelated individuals has been examined in a number of theoretical 

models (Campbell, 1986; Charlesworth & Charlesworth, 1987; Damgaard et al., 1992; 

Feldman & Christianson, 1984; Holsinger, 1988; Holsinger et al., 1984; Lande & 

Schemske, 1985; Latta & Ritland, 1993; Lloyd, 1979; Maynard Smith, 1977; 

Maynard Smith, 1978a; Taylor & Getz, 1994; Uyenoyama & Waller, 1991a; 

Uyenoyama & Waller, 1991b; Waser et al., 1986). Using individual-based simulation 

modelling and assigning different fitness values for different levels of inbreeding, it 

was possible to predict the optimal mating strategies for a number of genetic systems. 

I showed that mixed mating is stable when there are low levels of inbreeding 

depression and when intermediate inbred individuals have the highest fitness. A 

requirement for the evolution of mixed mating in these models is, however, the 

presence of at least three inbreeding classes. The evolutionary stable mating strategies 

for all the fitness levels investigated were stable and were not affected by the initial 

mating strategy of the population, except for situations that are comparable to purging 

in natural systems.  

The importance of inclusive fitness in the evolution of mating systems is clearly 

seen in chapter 2. When the fitness of inbred and outbred offspring are equal 
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exclusive inbreeding is expected to be the prevalent strategy due to the inclusive 

fitness advantage to inbreeding (Bateson, 1983; Bengtsson, 1978; Fisher, 1941; 

Kokko & Ots, 2006; Parker, 1979; Pusey & Wolf, 1996; Waller, 1993; Waser et al., 

1986; Wolf, 2000). This was found, as well as, exclusive inbreeding in situations 

where low levels of inbreeding depression are present, similar to previous studies 

(Maynard Smith, 1977; Taylor & Getz, 1994). In addition, as the relatedness of the 

mating partners increased, the benefit of inbreeding increased. This was seen when 

comparing different mating systems and is important to keep in mind when 

investigating fitness related traits. Here, however, simulation modelling has an 

advantage over analytical models, as the kin benefit is an emerging property of 

individual-based simulations. It was therefore possible to extend the model to include 

sibmating into the simulation model, in addition to selfing, with relative ease.   

It was also possible, using the simulation model, to use empirical data as input 

and predict when mixed mating will evolve. The results indicated that mixed mating 

found in a number of species may indeed be due to different fitness levels of serial 

inbred individuals. 

Preventing the co-evolution of fitness values with mating strategies allowed the 

investigation of possible mating strategies given fitness values while ignoring the 

effect of the fitness response on the mating strategies. This study is an initial step, 

using simulation modelling, to unravel how mating strategies evolve when optimal 

mating partners (i.e. intermediate relatives) are unavailable. An interesting follow-up 

study would be to compare the results in this thesis with a simulation model where co-

evolution of mating strategies and fitness values are allowed.  

 

Dispersal 

 

The occurrence of mixed mating and outbreeding often requires individuals to 

disperse for them to reach unrelated breeding partners. It can therefore be concluded 

that various levels of inbreeding depression may drive the evolution of dispersal to 

attain the optimal mating strategy (Bengtsson, 1978; Clobert et al., 2001; Perrin & 

Mazalov, 2000; Ronce, 2007). However, theory predicts that dispersal also evolves to 

reduce the competition of relatives competing for matings while it is inhibited if there 

is a cost to dispersing (Clobert et al., 2001; Frank, 1986; Gandon, 1999; Hamilton & 
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May, 1977; Motro, 1983; Motro, 1991; Taylor, 1988; Van Valen, 1971). The same 

results were found using simulation modelling, shown in chapter 3. 

Theory was further corroborated when using the simulation model for situations 

where dispersal rates were lower when offspring, rather than their parents, determined 

the rate of dispersal (Gandon, 1999; Hamilton & May, 1977; Motro, 1983; Taylor, 

1988). In other words, the parent-offspring conflict was revealed by the unwillingness 

of the sons to disperse as much as their mothers would want them to. 

The main conclusion from chapter 3, however, was that realistic population 

parameters yielded different results from analytical models, which require simplifying 

assumptions to make them tractable. It is not surprising that dispersal increased when 

the sex ratio was unfavourable for obtaining mating opportunities locally while other 

patches may have had readily available mating partners. However, this was only 

found when stochastic population dynamics were included in the simulation and sex 

ratios differed from patch to patch. Similarly, when realistic clutch sizes were used, 

effects that were found in natural situations emerged. For example, the threat that all 

the males disperse from a patch, leaving the females unmated decreased dispersal in 

natural conditions, as well as, in the simulation model, when the number of males per 

patch decreased. 

These results point to the necessity to extend current models by increasing their 

complexity or reducing their simplifying assumptions to obtain a better understanding 

of forces driving the evolution of certain traits.  

 

Sampling 

 

After any simulation has completed, the complete genotypes of all the individuals in 

the population (and if necessary, all the individuals from all the previous generations) 

are available. Unfortunately, this is not the case in empirical studies, and sampling 

schemes need to be developed to ensure sufficient individuals are sampled to obtain a 

valid signal. In chapter 4, I take advantage of the readily available data generated 

during simulation modelling to compare different sampling schemes.   

Large or structured populations require fewer samples than small or 

unstructured populations. This is important for investigations where there are 

constraints on the amount of samples obtainable. Current programs that calculate 
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population subdivision do not require prior information on population structure 

(Falush et al., 2003; Pritchard et al., 2000). However, when only limited sampling is 

possible it is easy to miss a population when the sampling scheme is not planned 

correctly. The application and guidelines developed in chapter 4 show that prior 

information on biology, ecology and population structure together with summary 

statistics is still valuable when sampling and typing of individuals are difficult or 

expensive. Even when sampling and typing of individuals is easy and cheap, careful 

planning may improve the results from current programs and reduce redundant work. 

 

Platyscapa awekei 

 

The molecular data from chapter 5 indicated that the pollinating fig wasp species, P. 

awekei, suffers from low levels of inbreeding depression. It is common to suppose 

that inbreeding depression leads to dispersal and outbreeding, which is often seen in 

this species (Bengtsson, 1978; Clobert et al., 2001; Perrin & Mazalov, 2000; Ronce, 

2007). However, before this conclusion is made, it is important to investigate the level 

of inbreeding while taking into account the kin advantage of inbreeding. By 

comparing the number of offspring a female was able to produce to her level of 

homozygosity it is shown that, P. awekei suffers from low levels of inbreeding 

depression. For every additional homozygous locus a mother is able to produce 1.5 

fewer offspring. Using this empirical data for P. awekei, as input in the simulation 

model, SibMate, it was found that the level of inbreeding depression is not severe 

enough to cause dispersal and facultative outbreeding (although a slight increase in 

inbreeding depression may cause mixed mating). On the other hand, the simulation 

model in chapter 3 indicated that variation in sex ratio between patches might also 

drive dispersal. It is therefore possible that low levels of inbreeding depression 

together with the high local mate competition, a high level of male-only broods found 

in this species and variation in sex ratio between the patches caused P. awekei males 

to evolve the ability to disperse. 

The combinational approach used in this thesis to unravel factors causing 

inbreeding and dispersal, indicated that various methods can be used to study 

evolution. I focused on the role of individual-based simulation modelling, and how it 

may be used to extend analytical models, many of which form the basis of our current 
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understanding of evolutionary processes. I also showed how empirical data could be 

used in combination with simulation modelling to clarify processes driving the 

evolution of traits. There is still much scope for refinement, and a cross-disciplinary 

approach may not only help but may also be essential to obtain a deeper 

understanding of natural processes.  
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Appendix A 

 

Document released with the program POPSTAT. Also available in electronic format 

as ‘POPSTAT help.pdf’. 

 
 
 


