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 II 

Summary 

 

Individual-based simulation modelling is an excellent method for testing hypotheses, 

while including realistic and stochastic population parameters. This thesis considers 

the evolution of dispersal or inbreeding through individual-based simulation 

modelling. 

The occurrence of exclusive inbreeding and exclusive outbreeding is found in a 

number of organisms and are referred to as mixed mating. Mixed mating is suggested 

to be in response to low levels of inbreeding depression as well as simultaneous 

inbreeding- and outbreeding depression while intermediately related mating partners 

are not available. The results of this thesis show that stable mixed mating strategies 

evolve in the presence of both inbreeding and outbreeding depression, as well as, 

under conditions where low levels of inbreeding depression are present. Also, 

inclusive fitness allows higher levels of inbreeding in genetic systems where the 

mating partners are more related to each other.  

Dispersal evidently evolves in response to inbreeding depression. A number of 

other factors, such as local mate competition and the cost of dispersal also influence 

the rate of dispersal. In addition to these factors, it is shown in this thesis that male 

dispersal evolves when there is variation in patch sex ratios. Simulation data also 

supports parent offspring conflict models, as males have reduced dispersal rates when 

they, rather than their parents, determine the dispersal rate.  

Population structure is affected by dispersal rates. Using individual-based 

simulation modelling and various sampling strategies, reveals that few molecular 

markers, for a few individuals, are sufficient to accurately detect population 

subdivision, especially when the sub-populations are large. It is, however, indicated 

that planning prior to sampling are important for proper assessment of population 

structure.  

 Lastly, molecular data from the pollinating fig wasp Platyscapa awekei reveals 

that this species suffers from low levels of inbreeding depression. However, when this 

data are simulated, stable mixed mating did not evolve although it is observed in P. 

awekei. Sex ratio variation, high local mate competitions and male only broods are 

therefore suggested to drive male dispersal. It is consequently advantageous to use 

various techniques to unravel the evolution of a trait and gain insight into the system.  
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Preface 

 

Each chapter in this thesis, except for the introduction and conclusion, is written as a 

journal article and is either submitted or in preparation for submission and as such 

includes its own introduction, and discussion section. In chapters 2 and 3 the results 

and discussion sections are combined respectively as a discussion naturally follows a 

description of the generated data.  

Jaco Greeff, my supervisor, is included as co-author for the submitted 

manuscripts for chapters 2, 3 and 4. The reasons for this are twofold. First, the models 

were developed with suggestions from him, although the underlying ideas as well as 

the simulation models themselves are my own. Secondly, all of the financing and 

facilities required to complete these studies were provided through funding secured by 

him. 

In this thesis I extend a number of existing ideas with the use of individual-

based simulation modelling within the Delphi environment, compiled for the 

Windows operating system. As such, these programs and source code are available in 

the electronic appendix submitted with this thesis. Although these programs are 

merely the tools used to test ideas, the following can be mentioned regarding the code 

itself: the program discussed in chapter 4 was created first, followed by the program 

for chapter 2 and lastly the program for chapter 3. Starting with no formal education 

in programming and no experience with the Delphi environment the program code 

may be somewhat informal. Therefore, the code for the last program is more efficient 

than the first. Additionally, in the general introduction, I deal with individual-based 

simulation modelling as a tool to study evolutionary processes to avoid repetition in 

the chapters where it was employed.  

Lastly, to keep all the theory and models grounded in reality, much of the 

research in this thesis refer to pollinating fig wasp biology. While the simulation 

models are not exclusive for the pollinating fig wasp system they are applicable to 

them. Furthermore, chapter 5 deals with empirical data from this system and for these 

reasons I introduce the pollinating fig wasp system in the in general introduction. 
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