
Chapter 5

Design and Implementation

This Chapter discusses the implementation of the Expressive Texture theoretical

approach described in chapter 3. An avatar creation tool and an interactive virtual pub

environment for these avatars are implemented. The interactive virtual environment

simulates a real-world social environment, which allows the user to observe the social

interaction between avatars, and the emotional changes of avatars caused by the social

interaction. Section 5.1 discusses the implementation and section 5.2 discusses the

creation process of the virtual pub environment. Section 5.3 discusses the modification

of the expressive texture tool into the avatar creation tool. Later in Section 5.4, the

implementation of the social interaction application will be discussed and determined

how the avatar creation tool was linked to it. The chapter is summarised in section 5.5.

5.1. Avatar Generation

An avatar can be generated by importing the prototyped-avatar models from the

modelling tools into the application or obtained the geometric data of the prototypes and

implement the avatar based on these data. The application was developed using C++

and OpenGL. Because the existing importing plug-ins for does not support complex

texture mapping on the models, the avatar models were not importing.

91

5.1.1. Body Creation

The avatar data model (the position of all vertices) was created in a 3D modelling

application. Based on the data of the proto typed avatar, the avatar model was

implemented in OpenGL by constructing each body part as a polygon object. Each body

part of the avatar model was created using the vertex data of the corresponding body

part of the proto typed model. Therefore, the avatar model in OpenGL had the same

scale as the prototyped model and the positioning of each body part remained in the

correct position as the body parts in the prototyped model. Each body part can be

coloured individually. However, the hierarchy structure of the body and the adjusted

pivot positions at the joints of the upper limbs were not preserved in the vertex data.

Therefore, the body parts are regenerated in a bottom-up manner in OpenGL. The pivot

points at the joints between the upper body limbs are also adjusted.

In OpenGL, the hierarchical body structure was created using the Matrix

Transformation Stack, the objects were pushed into the matrix stack using a method

"gIPushMatrixO" and they were popped by calling the method "gIPopMatrixO". The

Higher level objects (e.g. body) were pushed into the stack before the lower level

objects (e.g. arms, legs, etc.) were pushed into the Matrix stack. Because the Matrix

stack has LIFO (Last in, first out) properties, the lower level objects were drawn first.

Any transformation and rotation applied on the lower level objects will not affected the

higher level objects, because the transformation and rotation occurred before the higher

level objects were drawn. However, the rotation of the higher-level object causes the

lower level objects to rotate as the higher level rotation is applied after the lower level

object was drawn.

Apart from ensuring that the correct rotation and transformations are applied to the

specific levels of objects, the matrix transformation stack also preserved the root co­

ordinate position.

92

Figure 5.1, shows a simple example of the code of the method drawing the female

avatar body using the matrix transformation stack. The structure was based on the tree

representation of the female avatar model in the previous chapter.

The male avatar's drawing method is coded similar to the female avatar, but the

difference is that the male avatar has a hierarchy coding with "draw _ RightThighO",

"draw _RightLowerLegO", "draw _ LeftThighO" and "draw _LeftLowerLeg()" instead of

the "draw _Dress(lower)" method.
----~-=-~:--~ ~------~---

Public void draw jemaleAvatar(){

glPushMatrixO;

draw _ neck();

draw_Body(shtGender, top);

glPushMatrixO;

drawjace(avaNum);

draw _ backHead(avaNum);

glPopMatrixO;

glPushMatrixO;

draw _ RightShoulder(top);

draw _ RightUpperArmO;

glPushMatrixO;

draw_ RightLowerArmO;

glPushMatrixO;

draw _ RightHandO;

glPopMatrixO;

glPopMatrixO;

giPopMatrixO;

gIPushMatrixO;

draw_LeftShoulder(top);

draw _ LeftUpperArmO;

gIPushMatrixO;

draw_ LeftLower Arm();

gIPushMatrixO;

draw _ LefiHandO;

giPopMatrixO;

glPopMatrixO;

glPopMatrixO;

93

glPushMartixO;

draw _Dress(lower);

gIPushMartix();

draw_RightFoot(shoe);

draw_LeftFoot(shoe);

glPopMatrixO;

glPopMatrixO;

glPopMatrixO;

glPopMatrixO;

Figure 5.1 A simple method using matrix transformation stack to perform the
drawing of the female avatar.

5.1.2. Animating Body motion

When each body part was created in OpenGL, the origin of the local co-ordinate system

is initially positioned at the centre of the body part object. When adjusting the pivot of

the body limb for animating body motion correctly, appropriate modelling

transformations are applied to the body limb that is going to bend at a specific angle.

E.g. When animating the lower arm bending, 3 matrix is used to accumulated the

translation, rotation and scale of the avatar body parts (body, upper arm and lower arm).

The lower arm is animated based on the origin of the avatar, it is translated to the origin

of the avatar. Then rotation was applied to the lower arm, which it rotated around the

origin of the avatar and rotation is applied to the lower arm, before translated it back to

the position connected to the upper arm and draws the lower arm object (Figure 5.2).

These translations applied during the animation of lower arm model are apply quickly

between frames at run-time before drawing the lower arm, such that the user will not

noticed any flickering, when animating the lower arm rotation. This modelling

translation simulated the bending of the lower arm and similarly these translations can

be applied to the other body limbs to simulated limb movement.

94

is a closed environment. Therefore, the model of the virtual pub and the objects in the

virtual environment are modelled as simple geometric shapes.

5.2.1.1. Virtual Pub Environment

The virtual pub environment is generated as a room-like environment with SIX

rectangular faces that represented the walls, ceiling and floor of the pub. A large

rectangular opening is created in one of the wall to represent a door opening. The door

was created with the same size as this opening in the wall, which can translated

horizontally simulating a sliding door.

In the real environment, people, objects and wall structures were solid and had

properties occupied space, which prevented people walking through it. However, these

properties are not represented in the objects and wall structures in the virtual

environment. Therefore, some form of collusion detection method was required to

prevent this problem form appearing during the avatar movement.

Instead of computing the object surface for collusion detection, a simple grid approach

was implemented for collusion detection. The floor of the virtual pub environment was

sub-divided into a grid structure with square cells that had the width of the avatar

(Figure 5.6). The floor of the virtual pub environment is similar to a room plan that

contains the position of furniture, the position of the virtual objects and avatars are

marked on the cells in the grid. When the avatar walks in the virtual pub environment, it

can detected if other avatars or a virtual object occupied the adjacent cells and try to

move past that cell without walking through the virtual object or other avatar in that

cell.

98

perfonnance of the application also depends on the number of avatars in the virtual

environment and the system resources available for the social interaction application.

The detail functions of all controls in the social interaction ~UI will be further

discussed in the Appendix.

5.5. Summary

In this chapter, the avatars were generated according to the prototyped models and

animated based on the body motion cues defined during the theoretical design of the

avatar. Therefore, modelling transfonnations are applied to the avatar models in

OpenOL to achieve correct modelling and motion ofbody parts.

The theoretical designs of the virtual environment are further implemented into the

actual application. The floor of the virtual environment is divided into a grid, for

collusion detection and position detennination.

The expressive texture tool is modified into the avatar creation tool, instead of only

texture mapping a face image onto the face mesh, the dress colour of the avatar can be

selected by the user and previewed. The user can create the avatar in the avatar creation

tool and then send the data of the avatar into the virtual pub environment.

The social interaction application described in this chapter is one possible application of

the avatar and provides basic interaction between different avatars in the virtual pub

environment, as well as the user-avatar interaction. The interactions in the social

interaction application have a simple to use graphical interface. The selected avatar

perfonns actions selected by the user and interacts automatically with other avatars if

the action perfonned affects other avatars in the virtual environment.

The next chapter concludes the findings and results of this thesis, discusses future work

and possible improvements to the development of avatars and social interactive

application.

108

	Front

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	CHAPTER 5

	Chapter 6

	Appendix

	Bibliography

