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Abstract 

Title: A general discrete-time arbitrage theorem 

Candidate: Augustinus Johannes van Zyl 

Supervisor: Prof. 1. Swart 

Department: Mathematics and Applied Mathematics 

Degree: MSc Mathematics 

We study discrete-time stocha..c;tic processes a..c; if they represent financial prices. 

The thesis comprises the development of one major result, the discrete-time arbitrage 

theorem. 

It states that a given discrete time stochastic process (on a general probability space) 

has the no-arbitrage property if and only if there is an equivalent mea..c;ure under which 

the process is a martingale. The sufficiency part of this statement is easy to show, 

but proving the necessity part requires that a certain set K - L~, which represents 

the possible final values of the portfolio less a random nonnegative amount, be shown 

to be closed in probability. 

The space LO(0" F, P; ~d) of all ~d-valued mea..c;urable functions is decomposed into 

two subspaces. These spaces are analysed by Hilbert space orthogonality techniques 

(applied to subspace..c; of L2(0" F, P; ~d)), to get conclusions which can be extended 

to LO. Finally, to show that the above-mentioned set is closed, a substitute for the 

"sequential compactness of the unit ball" (which is unavailable here since LO is not 

reflexive) is given. 

The proof presented here follows that of W. Schachermayer [Sch]. 
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Samevatting 

Titel: A general discrete-time arbitrage theorem 

Kandidaat: Augustinus Johannes van Zyl 

Stlldieleier: Prof. J. Swart 

Departement: Wiskunde en Toegepaste Wiskunde 

Graad: MSc Wiskunde 

Ons bestlldeer diskrete-tyd stoga..c;tiese prosesse onder 'n finansiele interpreta..c;ie. 

Die skripsie behels die ontwikkeling van een belangrike resultaat, die diskrete-tyd 

arbritage stelling. 

Hierdie stelling se dat 'n gegewe stoga..c;tiese proses (op 'n algemene maatruimte) die 

geen-arbitrage eienskap het a..c; en slegs as daar 'n ekwivalente maat bestaan waaronder 

die proses 'n martingale is. Dat die bestaan van 'n ekwivalente martingalemaat 

voldoende is, is maklik om aan te toon. Om die noodwendigheid van die bestaan 

van hierdie maat te bewys verg egter dat 'n sekere versameling K - £~, wat 'n 

voorstelling is van die moontlike finale waardes van die portefellije minus 'n ewekansige 

nie-negatiewe bedrag, aangetoon moet word a..c; geslote in waarskynlikheid. 

Die rllimte £0(0., F, P; JRd) van aile JRd-waardige meetbare fllnksies word ontbind 

a..c; die direkte som van twee deelruimtes. Hierdie ruimtes word ontleed deur Hilbert­

ruimtetegnieke (ortogonaliteitstegnieke toegepas op deelruimtes van £2(0., F, P; JRd)), 

om gevolgtrekkings te kry wat uitgebrei kan word na £0. Laastens, om aan te toon dat 

die versameling hierbo vermeld geslote is, word 'n substituut vir die "rykompakheid 

van die eenheidsbal" (wat ongeldig is in hierdie nie-refleksiewe rllimte) gegee. 

Die bewys wat hier gevolg word is die van W. Schachermayer [Sch]. 
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Chapter 1 

The model and some basic facts 

Historical remarks 

An "arbitrage" opportunity is a situation where it is possible to construct a risk-less 

profitable investment strategy. That is, it is a case where there is a portfolio which 

does not suffer any losses under any contingency, and ha..s a strictly positive probability 

that the strategy will yield something. A simple example of this [DybRo] is the 

opportunity to lend and borrow at two different interest rates without any further 

costs. In this case the "strategy" to borrow money at the lower interest rate and 

simultaneously lend the same amount at the higher rate will always yield something 

positive - the difference of the two interest rates times the amount borrowed. 

A formal definition of the concept will be given later. Let it be noted that the 

no-arbitrage condition (the requirement that there be no arbitrage opportunities) is 

a property of the stochastic process which represents the prices of the a..ssets under 

different states and in different time periods. For example, the stochastic process of 

Brownian motion satisfies the no-arbitrage condition while the discrete-time process 

(1,2, 3, ... ) does not, as will be clear later on. The arbitrage theorem, also called 

the fundamental theorem of a..sset pricing [DybRo], essentially states the following: A 

given stochastic process satisfies the no-arbitrage condition if and only if there exists 

an equivalent mea..sure which makes the process a martingale. This ba..sic result has 

1 
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many different forms, depending on whether the probability space is finite or not, and 

on whether the time is discrete or continuous. This dissertation concerns itself with 

the case of a general probability space but discrete ( and finite) time. 

Even in the more simple setting, that of a stocha..c;tic process (80 ,81) and a finite­

state probability space, this result is not totally trivial: If (Xi);~l is a vector, define 

"x > > 0" to mean Xi 2. 0 for all i and there exists an i such that Xi > o. Let 

Sij denote the payoff of the ith a..c;set (1 ::; i ::; d) in state .j (1 ::; j ::; m). Let 

8 = (Sij h :S; i::;d, l :S; j::;m. The form of the no-arbitrage condition in this setting is that 

there exists no y E ]Rd such that L:1=1 YiSij > > o. The arbitrage theorem for one time 

step and a finite probability space says that 8 satisfies the no-arbitrage condition if 

and only if there exists a q E ]Rm, every qj > 0, such that L:7=1 qj.'!ij = 0 for every i. 

Now it is clear that this q can be chosen such that Lj qj = I, i.e. it can be interpreted 

a..c; a probability measure. And in discrete probability spaces the equivalence of q to 

the original probability mea..c;ure - that they have the same null sets - reduces to the 

statement that for every j E {I, 2, ... ,m}, qj > o. The arbitrage theorem given here 

is proved in [DybRo] who uses notation similar to what we will use in the text (this 

reference should also be consulted by anyone interested in more background on the 

concept of "arbitrage" and connections with the ideas of equilibrium, linear pricing 

rules and the "law of one price"). 

In the ca..c;e where the state space is infinite (the situation which will be treated 

in the text), instead of {I, 2, . .. ,m}, the situation becomes more difficult. However, 

R.C. Dalang, A. Morton and W. Willinger [DMW] showed that in this case the no­

arbitrage theorem can still be given a clear-cut formulation: A stocha..c;tic process 

satisfies the no-arbitrage condition if and only if there exists an equivalent martingale 

mea..c;ure. This thesis follows another proof of that result, that of W. Schachermayer 

[Sch]. Another discussion of his paper, a..c; well a..c; other proofs of the same theorem, 

is by F. Delbaen [Delb]. The latter author has also, together with Schachermayer, 

proved what must be termed the no-arbitrage theorem in the most general case, for 

continuous-time stocha..c;tic processes (in general probability spaces). Here it is not 

exactly the no-arbitrage condition which is equivalent to the existence of an equivalent 

martingale measure, but a closely related concept, "no free lunch with vanishing risk". 
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But a discus::;ion of the continuous-time arbitrage concepts is beyond the scope of the 

present text; the interested reader is referred to [DeSc]. 

Mathematics 

1.1. Unless otherwise stated, we work in the probability space (n, F , P). 

We use the standard notation and abbreviations of measure theory: If A is an 

event, i.e. A E F, the set {w E nl wE A} will sometimes be written just {w E A}. 

For example, the notation {f(w) > O} or even just {f > O} will stand for the set 

{w E nl f(w) > O} . And with P(w E A) , or sometimes with square brackets like 

P[w E A], we mean P({w E nl wE A}). 

1.2. The mathematical description of the price process is as follows. Time is indexed 

by the set T = {l,2, ... , N}, i.e. there are N time steps, where N E N. There are 

d financial assets (or "stocks"). The ith financial asset (1 S; i S; d) has, at a given 

time t E T and state of the world wEn, one price denoted S;(w), at which it can be 

bought and sold. So the price process S := (St)~-:l is a d-dimensional discrete time 

stochastic process defined in the probability space (n, F, P). 

This probability space possesses a filtration of (i-fields (Ft )f:,l' and we a..c;sume 

that S is adapted to that filtration, i.e. St is Frmeasurable for every t E T. 

Remark. A decisi ve a..c;pect of the mathematical modeling of price processes 

is a..c; indicated above the representation of the flow of information by the sequence 

of (i-fields. (This is standard practice in the theory of stocha..c;tic processes.) Some 

basic comments on this: Suppose that X : n ~ lRd is a random variable and F is 

the collection of sets {X -1 (B) I B a Borel set in lRd} (i .e. F is the smallest (i-algebra 

such that X is F-measurable), then F represents all the events we can deduce from 

X(w). This is because given A E F with A = X- 1(B) we can decide the question 

"w E A" by inspecting whether "X(w) E B" holds (since wE X-1(B) <=? X(w) E B). 

So F can be interpreted as the information we have about w. If we have an adapted 

stochastic process instead of a single random variable, then under mild conditions 

of measurability, we can interpret the element F t of the filtration (Ft)tET to be the 
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information we have at our disposal at time t, obtained by observing Xs for B ~ t. 

F t is therefore often called the "history of the process up to time t" . 

It is usually also a..c;sumed that F o ~ Fl ~ ... ~ FN (which means that we do not 

forget information), but we do not need this a..c;sumption for the results in the sequel. 

It is also not a..c;sumed that F is complete (That is, we do not assume that it contains 

all the sets of mea..c;ure zero). 

1.3. Let B be a Banach space. The space of all F-mea..c;urable functions from D 

to B, with probability mea..c;ure P, will be denoted LO(D, F, P; B). (It will also be 

denoted LO or LO(F) or any other way in which the arguments which are clear from 

the context can be omitted). For the concept of measurability, and other versions 

of this condition, the reader may consult [DSj. In the dissertation, B will always be 

either JR. or JR.d. In the ca..c;e B = JR., L~ will refer to the set {x E LOI J; 2: 0 P - a.B.}, 

and L~ := {x E LOI x ~ 0 P - a.B.}. The space LO is given a topology, namely that 

induced by convergence in probability (also called convergence in measure). That is, 

a set A ~ LO is closed (in probability) if and only if A possesses all its probability 

convergence limits, a concept which will be defined next. A sequence (Jn)::'=l ~ 

LO(D, F, P; JR.d) converges to f in probability, or is a probability convergence limit of 

the sequence, if 

(\:fE > 0) (P[lIfn(w) - f(w)lI lRd 2: Ej ---.0 as n ---. (0) 

holds. 

Regarding the norm on JR.d, it is a consequence of the fact that all the norms on 

this finite-dimensional space generate the Euclidean topology, that we can use any 

such norm in the above definition. Let us fix it to be the f2 norm, II . 112 : lRd ---. 

lR+, x f-t VL1=1 IXiI2. We will use this convention in the rest of the manuscript. 

Importantly, all statements regarding mea..c;urable functions f should be taken a..c; 

statements about their equivalence cla..c;ses (those functions which differ from f only 

on a set of measure zero). For example, unless stated otherwise, {OJ should be read 

as {III = 0 P - a.s.}. 

Note that the space LO is metrizable, by the metric d(X, Y) = inf{a > 01 P(IIX(,)­

Y (- )112 2: a) < a}. (Ma.ny other metrics exist.) 
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LO is a complete metric space (for the completeness, see e.g. [DS III.6.5] ); however, 

it is not a locally convex space. In fact, its continuous dual is {o}. 

1.4. For 1 ::;, p < 00 , we define V(O, F, P; JRd) (or just V if the context is clear), as 

the set of all F-measurable functions f : 0 -+ JRd such that In II (f(w)II2)PdP(w) < 00. 
1 

Let !!fll p := [fn(llfOI12)PdPjP (This makes V a Banach space). 

We set DXl(O, F, P; JRd) to be the set of all F-measurable functions which are 

essentially bounded. In this space, we use the norm 

Ilflloo = inf{a E JR+I P(llf(w)112 ~ a) = o} = inf{a > 01 f::;, a a.s.}. 

When d=l, we will define L~ := L~ n V and L~ := L~ n V. 

The relationships between the different modes of convergence (e.g. that of LP­

convergence, convergence in probability and convergence almost surely) will be fre­

quently used. The main results are the following. They will not be proved here, but 

we will provide references. For the next three results see 

[DS, Theorems III.6.13(b), III.6.13(a) and III.3.6]. 

1.5. Theorem. Let (fn)':::=l be a sequence in LOCO, F, P; JRd). If fn -+ f a.s., then 

fn -+ f in probability. 

1.6. Theorem. 

probability, then there is a subsequence (fnr )~1 converging to f almost surely. 

1.7. Theorem. Convergence in mean [i.e. in £lj implies convergence in probability. 

1.8. From the last two results it is trivial that ... 

Theorem. Suppose (fn)~l converges to f in the Ll-norm. Then there exists a 

subsequence (fnr)~l which converges to f almost surely. 

1.9. Under certain special conditions we can do mote, due to the Vitali convergence 

theorem [DS, III.3.6]. (Note that condition (iii) in [DS] is superfluous in the context 

of finite measure spaces.) 

Theorem. We have fELl and !!fn - fllL1 -+ 0 if and only if fn -+ f in measure 

and (fn)':=l is uniformly integrable. 
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It is also important to realise that, if the spaces are defined on the same probability 

space, we have £00 s:;;; £2 s:;;; £l (and also s:;;; £0). It is actually easy to show that if 

p > q then V(P) s:;;; U(P). Keeping this in mind, it is not difficult to see that (in 

probability spaces) the following result holds. 

1.10. Theorem. Convergence in £2 implies convergence in V. 

1.11. Suppose that the economic agent has at each time step t and state w the d­

tuple of asset holdings (called a portfolio) ht(w) . h is a d-dimensional random variable: 

hl(w) is the investment (amount of stock) in the ith asset, under these circumstances. 

This amount is real-valued, and the case if h~(w) < 0 can be interpreted as the result 

of "short selling" of the ith asset. 

The value of the portfolio is defined to be (h(w), S(w)) := ;:1=1 hi(W)Si (W). (The 

notation (.,.) will be the only one used for this inner product). The sequence of 

portfolios, (ht)~l ' is called a strategy if every ht is Ft_1-measurable (i.e. h is a so­

called predictable process). The rationale of this definition is that we want to allow 

portfolio selections that do not look into the future, but only use information which 

can be deduced from the history of S up till now, i.e. Su for u :s; t. 

To state the no-arbitrage condition, we define the subspace of random variables 

K:= {f:)hk' Sk - Sk-l) Ihi E £0(0" Fk-I, P; JRd) for all kE {I, 2, ... , N}} . 
k=l 

K is a set of random variables which represents the possible final portfolio values under 

"self-financing" strategies: At time k the trader can invest hk, using the information 

Fk- 1 ; this costs him (hk, Sk-l) . After time step k his portfolio is worth (hkl Sk), 

so his gain from this time step is (hk, Sk - Sk-l). Now we say that the process 

(St)~o satisfies the no-arbitrage condition if the total gain, which is an element of K, 

cannot be strictly positive with strictly positive probability without risking a negative 

outcome with strictly positive probability: (the no-arbitrage condition) Kn£~ = {O}. 

(For continuous-time stochastic processes, which are not needed in the text, the no­

arbitrage condition is defined similarly, by replacing, under suitable assumptions, the 

sums in K by stochastic integrals.) 
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Most of modern finance is based on either the intuitive or the (The weak topology 

can be defined for more general spaces, but here we only need the Hilbert space 

case) mathematical theory of the absence of arbitrage, cf. [DybRoJ. There are good 

economical arguments behind this assumption, here we mention two. Firstly in a 

"rational" and liquid market the arbitrage opportunities will tend to vanish. Secondly 

it is natural to require that a pricing model assign prices to commodities in a way 

that does not depend on the intermediary transactions which are made to obtain that 

commodity, shortly that the model is consistent. 

Recall that two probability measures P and Q are called equivalent if for every A 

in the associated O'-field we have "P(A) = 0 {:} Q(A) = 0". The significance of this 

is that then P and Q have mutual Radon-Nikodym derivatives. If Q is a measure 

which is equivalent to P, then if the no-arbitrage condition holds for P, it holds for 

Q as well. 

1.12. As an example of a process that does not have an equivalent martingale 

mea..c;ure, take S defined by Sk = k, k = {O, 1, ... ,T}. Because Ep[SkJ = k, which is 

not constant w.r.t. k for any probability measure P, S cannot be a martingale under 

any mea..c;ure. And the strategy hk = 1 for all k, is enough to verify that in this ca..c;e 

the no-arbitrage condition is not satisfied either. 

1.13. We use the symbol JE for the conditional expectation operator (which is defined 

in most introductory texts on stochastic calculus or mathematical finance). As an 

exercise we can prove the sufficiency part of our main theorem. 

Theorem. Let S = (St)~o be a stochastic process which is adapted to the filtration 

(Fk)k'=o' fr S is a martingale, then S satisfies the no-arbitrage condition. 

Proof: Suppose S is a martingale, and let hE LO(O, F t - 1, P; ~d). Then (we refer to 
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the ith coordinate of h by hi; hi is also Ft_1-mea..'lurable) 

d 

E[(h, St - St-dIFt- 1] =E[L hi(S: - S:_I)IFt- 1] 

i=l 

=L
d 

hiIE[S; - S;_lIFt- rl (since h is Ft - l -mea..'lurable) 
i=l 

=0 (because S is a martingale). 

So E[(h(-), (St - St-IK)] = o. Now the condition (h(·), St(-) - St-l(·)) 2 0 a.s. 

implies that , because its expectation is zero, (h(-), StU - St-l(·)) = 0 a.s. We have 

shown that the no-arbitrage condi tion is satisfied. o 

 
 
 



Chapter 2 

Some techniques in weak topology 

2.1. It is useful to have the Bolzano-Weierstra..')s property, namely that every bounded 

sequence ha..') a convergent subsequence. However, this principle does not hold in infi­

nite dimensional space, e.g. an orthonormal sequence in infinite dimensional Hilbert 

space cannot have a convergent subsequence (it doesn't satisfy the Cauchy criterion), 

although all the elements of that sequence have norm one, so that the sequence is 

bounded. This is onE? of the important rCCt..'Jon3 to introduce LlIe weak topology, which 

is the smallest topology on the Hilbert space H under which all the bounded linear 

functionals are continuous.. It is not difficult to show that a sequence (.1;n)~=1 ~ H 

converges weakly to x iff. 

(1) for all y E H. 

The weak topology is clearly coarser than the norm topology usually defined on 

a Hilbert space, because in the norm topology the bounded linear functionals are 

already continuous. (The weak topology can be defined for more general spaces, but 

here we only need the Hilbert space ca..')e.) 

2.2. Note that we have the following well-known fundamental property (d. [DS, 

IV. 7]) 

Theorem. (The weak sequential compactness property) Every bounded sequence of 

elements in a Hilbert space contains a weakly convergent subsequence. 

9 
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2.3. If A is a set, we denote by convA the convex envelope of A, i.e. the smallest con­

vex set which contains A. (We have convA = {2=~=1 aixil n E N, 2::'1 ai = 1; 0 ~ 

a'i ~ 1 and Xi E A for i = 1,2"." n}. So convA isjust the set of convex combinations 

of A. The idea of a sequence (Yn) of convex combinations, Yn E conv{ Xn, Xn+1, ... } 

will also be encountered frequently. It simply means that the sequence satisfies the 

requirement that for every n E N, it holds that Yn E conv{xml m ~ n}. Sometimes 

it will be convenient to just say (Yn)~=l is a sequence of conve.T combinations from 

(xn)~=l· 
It should be noted that if (Yn) is a sequence of convex combinations from (xn ), 

any subsequence (YnJ~l will also be a sequence of convex combinations from (xn). 

Theorem. Let (fn)';;=' 1 be a sequence in the Hilbert space L2(D, F, P; JRd). If fn 

converges weakly to i} then there e.Tists a sequence (cn)~=l of convex combinations 

from (fn)~=l which converges to f (in norm). 

Proof: In fact, we can choose it to be a sequence of arithmetic averages. Note that 

it follows directly from the uniform bOllndedness principle that there is a B > 0 

such that E[(fn, in)] = IlinllL2 ::; B for all n. We can also control terms of the form 

E[Cq, h)] where g and h appear in the subsequence: for all n E N set min) := n. Since 

we can choose m~n) > n such that 

Similarly we can set m1
n

) > m~n) to satisfy 

Continuing in the same fa..c;hion , it is clear that given j E {I, 2, ... , n - I}, we can 

find an integer m~11 so that 

for all i < j. 
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Thus 


f (n) + f (n) + ... + f (n) II
rrL 2 rrl,7lm 1 

L2 

1 n 

=n2 ' (LE[(fm~n),fm~n))]+2LE[(fm~n),fm~n))]+ 
i= l i<2 

II n 

+ 2 LE[(fmln ), fm~n)) ] + ... + 2 L E[(fm;n)' fm~n))]) 
i<3 i<n 

111 
:;n2 (nB + 2 . 1 + 2 . 2 . "2 + .. . + 2 . n . ;;:) 

= nB +2n(2) -t O. 

n 


o 

2.4. Theorem. Let (.9n)~=l be a sequence of convex combinations from (fn)~=l' 

Then 

(i) E[Jn] -t a as n -t 00 =} E[.9n] -t a as n -t 00. 

(ii) 	 If h is a random variable and the sequence (fn) satisfies fn(w) :; h(w) almost 

surely for all n E N, then every convex combination .9n satisfies .9n(w) :; h(w) 

a.s. 

Proof: (i) Suppose N E N is such that if n 2: N then IE[Jn]- al < E. Denote each 

convex combination .9n by I::~~) andni (I:~~) ani = 1, each 0 :; ani:; I).Then, if 

n 2: N, we get the following. IE[.9n]- al = IE[I:~:~) andni] - al = II:7~~) aniE[Jni­

a]1 :; I::~~) aniIE[Jni] - al :; (I:7~~) ani)E = E. (We used the triangle inequality for 

absolute values and the supposition successively, in the inequalities) . So if EUn] -t a 

then E[.9n] -t a. 

(ii) 
m(n) m(n) 

9n(w) = L an,di(w) :; L ai,nh(w) = h(w) a.i>. 
i=l i=l 

since 	fi(w) :; h(w) a.s. for any i. o 

2.5. The above results will only be used in the following chapters via the next two 

lemma'). 
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Lemma. Let (fn)':=1 be a sequence in LO(,O, F, P;JRd) with SUPnEf\!{llfn(-)112} almost 

surely finite. Then there exists a sequence (9n) with the properly that for every n E N 

we have that 9n E conv{fn, fn+!,"'}' and which converges almost surely. 

Proof: Step 1: First 8,.')sume that (fn) is a sequence bounded in L 2(P; JRd). Apply 

theorem 2 and corollary 4 to obtain a sequence of convex combinations (9n)':=I, 9n E 

conv{fn, fn+1""} converging in L2. Take an a.s. converging subsequence, which is 

as mentioned in note 4 still a sequence of convex combinations from (fn)':=I' 

Step 2: Now we relax the 8,.')sumption of boundedness. Define a «weight" function, 

w(w) := sup{llfn(w)lllRd}.
nEf\! 

Apply step 1 to the sequence (an) which is defined to satisfy 

if w(w) ~ 0 

otherwise 

(Step 1 applies because every an satisfies Ilan(w)11 ::; 1 a.s., so In lian(-)11 2dP ~ 1. 

Let's say (cn) is the sequence of convex combinations from (an) converging almost 

surely to c. Then (9n)~=1 := (cn . 10)':=1 is a sequence of convex combinations from 

(fn)~=1 = (an(w) . w(W))~=1 which converges almost surely to c· w 0 

Remark. This result cannot be strengthened to get convergence of the sequence itself 

(i.e. not needing convex combinations) : let ,0 = [0,1], P the Lebesgue measure and 

(rn) be the Rademacher sequence. That is, 

if the integer part of w . 271 is odd 

otherwise 

This sequence cannot have an a.s. convergent subsequence since for any m ~ n, we 

have that P(rm ~ rn) = ~, so the subsequence cannot be almost surely Cauchy. 

The Rademacher sequence (rn )':=l also gives an example of a weakly convergent 

sequence which fails to be convergent. Because it is orthonormal , it does not converge 
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in U, as noted above. And by the Bessel inequality if given f E L'2, we have for 

(rn)~=1 that 2::1 1(1, rk )12 ~ IIfll2 < 00. The left hand side being a convergent 

series, 1(1, rk) 1 0 &s k -----t O. f E L2 is arbitrary, so (rn) is weakly convergent in -----t 

L'2([O, 1], F, /Ld. 
This fact has a bearing on the next theorem, where convergence to a non-zero 

limit is obtained, because of the following observation. No matter which convex 

combinations from (rn) are chosen, the new sequence cannot have an a.s. limit c E 

L2 other than c = 0 a.s. This can be seen by the following argument. Let en E 

conv{rn, rn+l""} for every n, with Cn -----t C a.s., and A be an arbitrary member of 

F. Then we get fA c dP = fA lim endP = lim fA cndP , due to the boundedness of the 

sequence. And the last term must be zero as from the weak convergence of (rn)~=1 

we get that (XA, rn) 0, so (properties, 2.4) fA endP = (XA, cn ) -----t O. That is, for-----t 

every A E F we have that J~ c dP = 0, therefore the limit is zero almost surely. 

This will be the case, for instance, if we take Cn = ~(rn+l + rn+2 + ... + r'2n) for 

all n. We know by the strong law of large numbers that if we set Sk = 2:1$j9 Rj , 

then kSk -----t 0 a..s. Now 

2.6. Under some restrictions a non-zero limit can be found. 

Lemma. Let (hn)~=1 be a bounded sequence in L'2(n, F, P; ~d) which stays bounded 

away from zero in probability, i. e., there is a constant a > 0 such that P (II hn(-) II 2 ;::: 

a) ;::: a, for all n EN. 

Then there is a bounded sequence (.9n)~=1 ~ LOO(n, F, P) and a sequence of 

convex combinations fn E conv{.9nhn, .9n+lhn+l' ... } such that fn converges almost 

surely to some fo E L2(n, F, P; ~d) with fo =I O. 

Proof: Chebychev's inequality says that for any real-valued random variable X and 

constant a, we have that 

E[IXll ;::: aP(IXI ;::: a). 
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Applying this to X : w /----t IIhn(w)llz we get 

So 

. 1 d . 1 d . 


mfxE[lh~(-)ll ~ d L E[lh~(-)ll = dE[L Ih~(-)I] 
i=l i=1 

11k 
= dE[llhn(-)lhl ~ dE[kllhn(-)llz] ~ 71O:z, 

where k > 0 is a constant such that 11(-)111 ~ kllOli z (which exists by the topological 

"equivalence" of all norms in finite-dimensional space JRd). There will be such an i 

for every n E N. Let i be such that E[lh;,1] 2': 0 for infinitely many n's (for every 

n E N there will be an in E {I, 2, ... , d} satisfying (2); (in)~=l must have a constant 

subsequence), and (hnr)~l be the subsequence such that (2) holds for every r E N. 

We can assume without loss of generality that the subsequence is also (hn)~=l' since 

the goal of the argument is to find a sequence of convex combinations from (kn)~=l = 

(gnhn)~=l; and a sequence of convex combinations from a subsequence (knr )~l is also 

a sequence of convex combinations from (kn)~=l' Set .9n(w) := 8i.9n(h~(w)). Then 

we have E[.9nh~l = E[lh~ll > ~. Define k = (kn)~=l by kn := .9n . hn for every n. 

The sequence k is bounded in LZ since (.9n)~=l is, so we can now apply theorem 2, 

the weak compactness property, to get a weakly convergent subsequence. To that 

subsequence we apply corollary 4, to find a sequence of convex combinations (fn)~=l 

from (gn . hn)~=l' converging almost surely to say fo . 

Now (fn)~=l is uniformly integrable as the following shows: 

IIfn(-)llzdP = c-1 J cllfn(-) 112J{lIf"OIl2>C} {llfnOI12 >C} 

::;: c 1 J (IIfn(-)llz)2dP 
{llfnOI12>C} 

::;: c-
1 .l(1Ifn(-) Ilz)ZdP 

<M 
- ,

c 
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where !V! E lR is the L2 upper bound of the sequence. That is, it holds for every 

n E N that J{llfnOI12>c} Ilfn(')112dP ~ rv:, a constant independent of n which converges 

to 0 if c ~ 00. Therefore (fn)::'=l is uniformly integrable. 

We have also shown above that fn ~ fo a.s. and therefore fn ~ fo in measure. By 

the Vitali convergence theorem 1.9, we can conclude that IIfk - fo II £1 ~ 0, therefore 

E[I(fk - fo)OI] ~ 0 which implies E[jk] ~ E[jJ]. But by constnlction fk, for any 

kEN, is a convex combination of elements with expected value > ~2, so E[jj] =J 0 

and we conclude that fo =J o. 0 

Remark. It is in general possible for E[ lfl] > 0 and E[j] = 0 to be true simultane­

ously. That is why multiplication by 9n is needed to ensure that E[hn] =J O. In our 

Rademacher example of above, 9n = rn will do. 

Remark. The usefulness of these two results lies in the fact that convex combina­

tions of elements of a (vector) subspace remain in the subspace, and that convex 

combinations preserve inequalities in the manner of (2.4). 

 
 
 



Chapter 3 

Reduction to a "topological 

problem" 

In this chapter we prove our main theorem (3.4), which is a corollary of (3.3). We 

assume in the proof of (3.3) that under the no-arbitrage assumption we have that 

K - L~ is closed in probability. This fact, that K - L~ is closed when assuming 

no-arbitrage, is shown independently in lemma 6.1. Therefore this chapter reduces 

our main theorem to lemma 6.1. 

3.1. We begin by giving another form of the the no-arbitrage condition, which will 

be used often. We say that there is a single-step arbitrage opportunity if there is a 

kEN, 1 ~ k ~ N, and hE LO(Fk_1;JRd) such that (h, Sk - Sk-d E K n L~ \ {O}. 

Theorem. The process (St)~o satisfies the no-arbitrage condition, i. e. KnL~ (D, F, P) = 

{O}, if and only if there does not exist a single-step arbitrage opportunity. 

Proof: Note that in general the condition "x 2': 0 a.s. :::} x = 0 a.s." is equivalent to 

"x ~ L~ \{O}". 
Suppose K n L~ = {O}. Let t E {I, ... , N}, and h E LO(Ft- 1;JRd) be arbitrary. 

Let hi = 0 if i =1= t, and ht = h. Then for i E {I, ... , N} we have that hi is Fi- 1­

measurable, so (h, St - St-d = ~~:l (hi-I, Si - Si-l) belongs to K. By supposition, 
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(h , St - St-d E L~ would then imply h = 0 (almost surely). So there is no single-step 

arbitrage opportunity. 

Now we prove the sufficiency part of the statement by induction. For n E N, let 

P(n) be the statement that for all stochastic processes of the type (Sk)~=O' the absence 

of single-step arbitrage opportunities implies that K n L~ = {a}. When k = 1, P(k) 

can be shown by observing that the no single-step arbitrage condition is simply that 

for all ffi.d-valued Fo-measurable h it holds that (h, Sl -So) rf:- L~ \{O}. And KnL~ = 

{O} means that for all Fo-measurable ho it is true that L:~=l (hi-I, Si-Si-d tJ. L~ \{o}. 
So P(1) is true. 

Suppose P(N) holds, and we have the no single-step arbitrage condition for the 

process (Sk )f~}. We need to show that P(N +1) holds, i.e. that under this assumption 

it can be stated that K n L~ = {O}, where 

N+l 

K = { I)hi- 1, Si - Si-l)1 hi E LO(n, .G- l, P; ffi.d) for all i E {I, ... , N}}. 
i=l 

Let :7; = L:[:i1(hi - 1,Si - Si-d E K n L~, where every hi satisfies the conditions 

needed for membership of K. 

Now x = L:N +fN+l, where we define L:N := L:[:l (hi-I, Si - Si-d and 

fN+! := (hN) SN+l - SN)' 

Now if, case 1, L:N < 0 holds with positive probability; and if x E L~ \ {O} 

then L:N(w) < 0 =? fN+l(W) > O. Let h* = X{"£N <o}hN (where hN is such that 

fN+l = (hN, SN+! - SN )). Then clearly (h*, SN+l - SN) E L~ \ {O}, contradicting 

the inductive assumption that that there is no single-step arbitrage. 

In case 2, L:N 2: 0 a.s., we have by P(N) that L:N = 0 a.s. So x = fN+l, but 

fN+l rf:- L~ \ {O}, due to absence of single-step arbitrage opportunities; so we conclude 

(since x E K is arbitrary) that K n L~ = {O}. 0 

3.2. The martingale measure Q satisfying dQ = g. dP for some 9 E Loo, will be found 

by applying a separation theorem. Now if 9 E Loo , it can be seen as a functional both 

onn and on Ll. The former use will be denoted (as usual) g(w), and the latter use by 

(j, g) (= E[jg]). Roughly the motivation why we need a result like the next theorem 

is as follows: in order to get If/S1(w) - So(w))dQ = 0, we need a 9 which makes all 
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Fo-mea.surable h satisfy In(h(w), Sl(W) - So(w)) . 9 dP = O. It follows that glK = 0 

must hold. But for Q to be an equivalent mea.sure, which can also be scaled to a 

probability mea.sure, we also need g(w) > 0 a.s. 

Theorem (Yan). Let C ~ L1 be a closed convex cone (with basis 0, i.e. if x E 

C, A > 0, then AX E C) containing L~. Suppose C n L~ = {OJ. Then there exists a 

g E (L1)* = Loo such that gle :s; 0 and g(w) > 0 P - a.s . 

Proof: For the fact that the continuous dual of L1 (P) is Loo(P), or rather that 

the map 9 t-; (J EUg]) defines an isomorphism between (L1)* and Loo, consultt-; 

standard texts such as [DS, p.381j. (This fact extends to a-finite spaces) 

Observe that if 9 E Loo separates C from L~, let's say sup{ (g, .7:) I x E C} = 0: , then 

0: = O. This is because C is a cone and 9 is linear, so if (g , x) = 0: then (g,2x) = 20:, 

thus 0: cannot be strictly positive. Similarly 0: cannot be strictly negative, since 

~x E C. Also note that if gle 2: 0 then g' := -g satisfies lie :s; 0, so we can a.ssume 

gle :s; 0 if we already have that 9 separates C from L~. Therefore we only need to 

show that there is agE Loo which separates (as a linear functional on L1) the subsets 

L~ and C; and that g(w) > 0 a.s. a.s. 

Step 1: We show that every h E L~ can be strictly separated from from C, and 

the separating functional is an element of Le;!. Suppose non-zero h E L~ is given. 

Then a well known corollary of the Hahn-Banach separation theorem [Robertson & 

Robertson, p.30], which says that in locally convex spaces a given point can always 

be strictly separated from a given disjoint closed convex set, implies that there is a 

9 E LOO such that h ¢ closure(g(C)). By the observations above, therefore, gle :s; 0 

and (g, h) > O. And because L~ ~ C, we have that giL:' :s; O. Therefore 9 E Le;!, for 

the supposition that on the contrary for wE A ~ n, P(A) > 0 it holds that g(w) < 0, 

leads to the contradiction that (g, -XA) > O. 

Step 2: Now we use step 1 to separate L3_ from C by an almost surely positive 

9 E Loo. Denote by 0 the set {g E Le;!I gle :::; OJ, and.'> := sup{P[g(w) > Ojl 9 EO}. 

Let (gn)~=l C 0 be a sequence such that P[gn(w) > 0] -t s. Let 
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Then clearly 9 E g, and P[g(w) > 0] ;:::: P[gn(w) > 0] for all n. That is, P[g > 0] = 8, 

since 8 is the supremum. Now let g' be the functional separating X{g(w)=O} from C, 

and g" := 9 + g'. Suppose 8 < l. Then P[g" > 0] = P[g > 0] + P[g' > 0] > 8, a 

contradiction showing 8 = l. So 9 > 0 a.s., and glc ~ o. o 

3.3. Here we show a preliminary to the main result of these notes, assuming (as 

mentioned in the beginning of this chapter), lemma 6.1, which will then be shown 

independently in the sequel. 

Theorem. Let 5 = (50) 51) be a stochastic process which is adapted to the filtra­

tion (Fa, Fd, and suppose it satisfies the no-arbitrage condition. Then there is an 

equivalent measure Q, under which 5 is a martingale. 

Proof: Let Yew) := (51(w) - 50 (w))/w(w), where 

w(w) := max(1I50 (w)lll, 1151(w)111,1). 

(Then Y E LOO) . Theorem 3.1 tells us that that the no-a.rbitrage a.,c;srnnption simply 

means that K n L~(n, F I , P; JRd) = {o}. Adding lemma 6.1, this means that K - L~ 

(Algebraic difference: K - L~ := {k - l: k E K , l E LO(n, Fo, P ; lR)}) is closed in 

LO(n, F 1, P). 

Now look at the subspace topology induced by L1(n, F 1, P), as a subset of 

LO(n, F 1 , P) under its topology of convergence in probability. Because K - L~ is 

closed in La, C := ((K - L~) n £1) will be closed in the subspace topology. And 

the norm-topology on L1 is finer than the topology of convergence in probability, 

so C is closed in L1 (w.r.t. the norm-topology). Furthermore, it will be disjoint 

from L~(n, F 1 , P)\{O}, because, as noted in theorem 3.1, the no-arbitrage condition 

implies that K n L~ = {O}. 

In addition, C is convex: K and L1 are both convex, since they are vector spaces. 

To show that L~ is a convex set, suppose .X,y E L~(Fd , so x(w) ;:::: 0 a.s. and 

yew) ;:::: 0 a.s. Then if z = t.x + (1 - t)y, 0 ~ t ~ 1, then z ;:::: 0 holds trivially. z 

is also a linear combination of Frmeasurable functions, therefore z E L~(Fd, and 

L~ is convex. Now the algebraic difference of two convex sets is convex, and the 

intersection of convex sets is convex, so C = (K - L~) n Ll is convex. 
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Finally, since 0 E K it is a fact that L~ = -L~ s;;: -L~ s;;: C. 

This allows us to apply Yan's theorem (3.2) to C to get agE LOO(n, F l , P), 

g(w) > 0 a.s., such that glc :::; 0 (g is again treated a.c; a functional 011 Ll (0., Fl , P)). 

Now let h E LOO(n, Fo, P; JRd) . Then (h, Y) E LOO s;;: £1, so f := (h, Y) = ((h, Y) ­

0) E ((K - L~) n Ll). Applying 9 to f, we get 

1(h(w, 51 (w) - 50(w))· g(w)/w(w))dP = j(h, y). 9 dP 

= j fg dP '2 O. 

By repeating the argument for -h instead of h (K is a vector space), we deduce that 

J(h(w, 51 (w) - 50(w)) . g(w)/w(w))dP = 0 for all h E K. 

Let Q be the measure with density function c· g(w)/w(w), where c> 0 is chosen 

to satisfy Q(n) = 1. Then Q is an equivalent probability mea.c;ure. And we have seen 

above that for each h E Loo (0., Fo, P; JRd) we get 

(1) (h(w), 51 (w) - 50(w))dQ = O.1 
This implies that (50 ,51) is a martingale under Q and the filtration (Fo, F l ) (Rea­

soning: Suppose A E Fo. Let 1 :::; i:::; d and h = XA ' ei E LOO(n,Fo,p;JRd), where 

ei is the ith unit vector in JRd. We have J(h, Y)dQ = 0 by the above argument (1), 

so (j~ (51 - 50)dQ)i = J~ (51 - 50)idQ = J~(h, 51 - 50)dQ = O. This implies that for 

any A E Fo, it holds that (j~ (51 - 50)dQ)i = O. i is arbitrary, so J~ (51 - 50)dQ = 0; 

and A E Fo is arbitrary, therefore (50 ,51) is a martingale) 0 

3.4. This is the main result of the dissertation. 

The Dalang-Morton-Willinger theorem. Let 5 = (5k )f=0 be a an JRd -valued 

stochastic process in (0., F, P) which is adapted to the filtration (Fk)f=o' Suppose 5 

satisfies the no-arbitrage condition. Then there e.'Eists an equivalent measure Q, under­

which 5 is a martingale 

Proof: The main work, except for the "topological" part, wa." done in the previous 

lemma. Only induction from the N = 2-process to general N remains. Let P(i ) be 
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the statement that this theorem is true for all processes with length i (i.e. i time steps, 

the process consists of i + 1 random variables). By the previous result, P(l) holds. 

Suppose P(M -1) is true. Let 5 be a process of length M satisfying the suppositions 

of this theorem, say 5 = (5k)~O' and 5' = (5k)~1' Now since (50, ... ,5M ) satisfies 

the no-arbitrage condition, (51, ... ,5M ) will also satisfy it. So there is an equivalent 

measure Q' making 5' a martingale. 

Observe the following. If 9 E La is F 1-measurable, then the mea..'lure Q = gdQ' 

preserves the martingale property for (5k)~I' This is because then, if 1 :::; .9 :::; t, we 

have Ed(5t - 50)IFs] = EQI[(5t - 5s)gIFs] = gEQI[5t - 5slFsl = o. 
P and Q' are equivalent, so 5" = (50,51), which as an (Fa, F1)-adapted process in 

(.0, F1, P) (strictly speaking P should be restricted in its domain to F 1 ) doesn't allow 

arbitrage, will satisfy the no-arbitrage condition in the probability space (0, F 1 , Q') 

a..'l well. There is therefore agE LO(F1 ) making Q, with dQ = 9 dQ', an equivalent 

martingale measure for 5". By the previous paragraph, Q is still an equivalent mar­

tingale measure for 5', so 5 is a martingale. (For if 0:::; 8 < t, either 8 = 0 or 8 2 1 . 

In the first case, E[5t lFsl = E[E[5t IFd IFol = E[51IFo] = 50' In the second case the 

fact that 5' is already a martingale under Q implies that IB:[5t IFsl = 58' Therefore Q 

is a martingale under Q and P(M) is true. This finishes the induction proof. 0 

I l bo Ib 'bOO 
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Chapter 4 

Further results independent from 

the no-arbitrage assumption 

For the rest of these notes, we will fix an Y E £0(0., F 1, P; JRd). We define the following 

subspaces of £0(0., Fo, P; JRd); 

N;= {k E £O(0.,Fo, p;JRd); (k(w), Y(w)) = 0 P - a.s.}, 

N(J..) ;= {h E £0(0., Fo, P; JRd); (k(w), h(w)) = 0 P - a.s. for each kEN}. 

Note both these subspaces are closed under multiplication by Fo-measurable scalar­

valued random variables. 

4.1. Lemma. N n £2(0., Fo, P; JR) and N(J..) n £2(0. , Fo , P ; R) are orthogonal com­

plements in the Hilbert space H ;= £2(0., Fo , P; JR). 

Proof. Define M ;= N n Hand M(J..) ;= N(J..) n H. Let x E M, y E M(J..). 

Then (x, y) = E[(x, y)] = 0 since (x, y) = 0 a.s. by definition. So M and M(J..) are 

orthogonal. Next we show that they are orthogonal complements. If not, then there 

will be an hE £2(0., Fo, P; JR) such that h .1 M(J..) , h f/- M and h f O. Let A be the 

set {(h(w), Y(w)) > O}. h not being a member of M, {(h, Y) f O} is an event with 

strictly positive probability. So either "(h, Y) > 0" or "(-h, Y) > 0" happens with 

strictly positive probability. Therefore, by choosing -h instead of h if necessary, we 
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can assume P(A) > O. Let 09 := XA' h, then 09 ~ M since "(XAh, Y) > 0" is a non-zero 

event. 

Now, on the one hand, (09, Y) = E[(XAh, Y)] = E[(h, XAY)], because XA is scalar­

valued. And this is zero, because XAY E MCl..) since Y E MCl..) , and MCl..) is closed 

under Fo-measurable scalar multiplication. So (09, Y) = O. On the other hand, for 

wE A we have (o9(w), Y(w)) = (XA(w)h(w), y(w)) = (h(w), Y(w)) > 0 by definition of 

A; and for w ~ A we get (o9(w) ,y(w)) = (XA(w)h(w), Y(w)) = O. A being of strictly 

positive probability, this shows that (09, Y) > O. 

This is a contradiction, showing that M and MCl..) are orthogonal complements, i.e. 

Ml.. = MCl..). 0 

4.2. M and JvJ(l..) (as defined in the previous paragraph) are also closed (as Hilbert 

space sets) subspaces: Let (xn)~=l C M, Xn ---t x. Then there's a subsequence (.TnJ~l 

converging a.s. to x. So (x nr - .T, Y) ---t 0 a.s. But each (xnr' Y) equals zero almost 

surely, a fact which implies that (x, Y) = 0 a.s. We have that x E M; in conclusion 

M is closed. The proof that MCl..) is closed is the same, just substituting an arbitrary 

member of N for Y. 

4.3. Theorem.(i) N is closed in probability. (ii) N n NCl..) = {OJ. 

Proof: (i) As the topology of convergence in probability is a metric topology, we can 

work with sequences. Suppose Xn ---t x in probability, for (xn)~=l ~ N. Then there 

is a subsequence, still called (.Tn)~=l' converging to x almost surely. Now as in the 

previous paragraph it must hold that (x(w), Y(w)) = 0 a.s., SO.T E N. 

(ii) If x E N n N(l..) , then by definition (x(w), x(w)) = 0 with probability one, so x 

can be identified with O. 0 

4.4. With the aim of obtaining a suitable projection from LO to NCl..) , we define 

p: H ---t M as the orthogonal projection of H onto MCl..). Then ker(p) = M, and p 

is a bounded linear operator on the Hilbert space. Of course p is continuous (as an 

operator from the Hilbert space H), but we need to show that p is also continuous if 

H is given the topology inherited from LO. 
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4.5. Theorem. p is a continuous operator from H ~ LO to N(J..)} i.e. p is continuous 

with respect to convergence in measure. 

Proof: It is first shown that IIp(x)(w)112 :::; 11.?:(w)112 almost surely for a.ny x E H. 

Now x = n + p(x) where n E N, p(x) E N(J.~). By the definition of the subspaces, 

(n(w),p(.r)(w)) = 0 a.s., so Ilx(w)112 = Iln(w)112 + IIp(x)(w)112 which implies the state­

ment. 

Now to show continuity, we assume that Xn ~ x in measure and apply this result 

to x - Xn. Recall that a sequence (Xn)~=l converges to x in measure if for every E > 0 

it holds that P[II(x-xnK)112 2 E] ~ O. Now if, for a given wE [2, II(x-xn)(w)112 ~ 0 

then IIp(x -xn)(w)112 ~ 0, so it is clear that p(x - xn) = (p(x) - p(xn)) converges to 

zero in mea..c::ure, i.e. p(xn) ~ x in mea..c::ure. 0 

Fortunately L2([2, F}, P; JRd) is dense in LO([2, F1, P; JRd, because it contains the 

simple functions, and LO(F1 ) is the (convergence in probability) closure of the set 

of Fl-simple functions). So the projection p : L2 ~ N(.l) can now be extended to 

7r : LO ~ N(.l) using the fact that a continuous linear operator in a topological vector 

space is uniformly continuous, and by using a ba..c;ic extension result [DS 1.6.17], "the 

principle of extension by continuity". This construction 7r can then be shown to 

possess a few important properties. 

4.6. Lemma Let hE LO(Fo). Then (h(w), Y(w)) = (7r(h)(w), Y(w)) with probability 

one. 

Proof: In fact 7r is linear: Let x, Y E LO, then we can write (see the previous 

paragraph) x = limn Xn, Y = limn Yn with (xn)~=l' (Yn)~=l ~ L2. Xn and Yn being 

members of L2, 7r(xn + Yn) = p(xn + Yn) = p(xn) + P(Yn) = 7r(.?:n) + 7r(Yn). Taking 

limits, we see that 7r(x + y) = 7r(.?:) + 7r(Y). Similarly 7r(AX) = A7r(X) for A E R 

Now h can be written as (7r(h)) + (h - 7r(h)). So from the linearity of 7r we get 

it only needs to be shown that (h - 7r(h)) E N. Now let (hn)~=l ~ L2 such that 

h = linln hn in measure. Let Yn = hn - 7r(hn) = hn - p(hn), then by the continuity 

of 7r we get tha.t (Yn)~=l is a sequence in N (projection property of p) converging to 

h - 7r(h). N is closed in probability, so h - 7r(h) E N. 0 
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4.7. Per definition the range of 7r is N(l.), and the fact that the kernel of 7r is N can be 

readily shown: If7r(x) = 0 then (x(w), Y(w)) = (Lemma 4.6) (7r(x)(w), Y(w)) = 0 a.s., 

so x E N per definition. Conversely, if x E N then again (7r(x)(w), Y(w)) = 0 with 

probability one, therefore 7r(x) E N. But from the first remark in this paragraph, 

7r(x) belongs to N(l.) as well; this implies that 7r(x) = O. 

4.8. Only Lemma 4.6 and the fact that the range of 7r is N(l.), will be needed from 

now on. But it is interesting that 7r can be explicitly determined. 

Lemma. If f E LO(Fo;~d)} let p(f) : n ---... ~d be defined as follows. Let f be the 

normalised f; that is, 

few) if f(w) =J 0
f(w):= ~f(W)112 

{ otherwise 

Let p be the function 

W r-7 p(j)(w) '1If(w)112' 

Then p = 7r almost surely. 

Proof: We have the following steps: (i)p = 7r = P on the integrable simple functions. 

(ii) p is continuous W.r.t. convergence in mea..c;ure. 

Step (i): Suppose y E LO(Fo;~d) is of the form y(w) = L:;~l CiXAi(W), Ci E 

~d, A~8 disjoint. Then p(f)(w) = P(L:~l 1I:1I2 XAi (W))' (L:~l Ilci I12XAi(W)) by defini­

tion (p works as follows: divide by Ily(w)112 pointwise, apply p, multiply by Ily(w)112 

pointwise). And this equals L:~l p( I I ~iIl 2XAJ(W) . (L:~l IIc·dI2XA.; (w)) because p is lin­

ear. Now the body of the proof of 4.5 shows that IIp(f)(w) 112 ~ IIf(w)112 a.s. for 

any f E LO, so if f(w) = 0 then p(f)(w) = O. This implies that p( Ilc~il2 . XAJ = 
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XAi . p( 1I~12 . XA;)· So 

n n 

p(J)(w) =(LP(":'i,, . XAJ(W)' XAi)(L 'icill2XAi(W)) a.s. 
i=l '1, 2 i=l 

n 

= 8P( II~ill2 .XA;)(W) . XA;II cill2' XA(W)) 

n 

i=l 
n 

=p(L ~XA)(W) = p(J)(W). 
i=l 

So p and p agree on the set of integrable simple functions. And since the simple 

flllctions belong to L2 and 1f is the extension of p from L2, 1f = P = P on the 

integrable simple functions. 

Step (ii): Given In --t 1 in mea..<;ure, we want p(Jn) --t p(J) in measure, a condition 

which is equivalent to requiring that for every subsequence (p(JnJ~l there is a further 

subsequence which converges almost surely. So given such a subsequence, we have 

that In r --t 1 (in mea..<;ure) so we can choose a subsequence denoted (9k)~1 such that 

9k 1 a.s. From this convergence we can get that gk ! a.s. since if gk 1--t --t --t 

a.s. then IIgk(')IIz --t 111(')112 a.s., and the quotient of two sequences converging 

a.s. converges a.s. to the quotient of the limits provided the denominator does 

not equal zero (and we can assume IIl(w)11z =1= 0 because for the Wfor which it 

is zero T/k(w) --t f(w) holds anyway). Now C9k)k::l is a bounded sequence, so an 

application of dominated convergence gives that 9k 1 in L2, so P(9k) p(J) in--t --t 

L2. By a standard convergence theorem there is yet another subsequence, still called 

(gk)k::l such that PC9k) p(J) a.s. For the set, which ha..<; probability one, in which --t 

this convergence takes place pointwise, we have that p(J)(w) = p(J)(w) . IIl(w)II2 = 
limk->oo p(gk(w) ·119k(W)112 . 

Now that 1f and p are both continuous extensions of p from a set (the integrable 

simple functions) which is dense in LO, the fact that such extensions are unique ([DS 

1.6.17] again) implies that p= 1f on LO. 0 

 
 
 



Chapter 5 

Two consequences of the 

no-arbitrage assumption 

5.1. Let (D, F1 , P) be a probability space, Y an Fl-mea..c;urable JR.d-valued function, 

i.e., Y E LO(D,F1 ,P;JR.d) and Fo a sub-cr-field of Fl' Let K := {(h, Y): h E 

LO(D, Fo, P; JR.d)}. For the rest of this manuscript, we a..c;sume the no-arbitrage as­

sumption, i.e. KnLt = {OJ, with our specific choice ofY(w) = (SJ(w)-So(w))/w(w), 

w(w) as defined in 3.3. However, all the results of the remaining chapter hold for any 

Y E LOO(D,FJ ,P;ffid 
). In other words, we only use the fact that KnL! = {OJ. It 

enters the argument through the following. We define the following complementary 

subsets of D. 

DN := {w E DllE[lIYOliz IFo](w) = O}, 

D~ := {w E Dl lE[IIYOllz IFo](w) > OJ. 

Lemma. For A E Fo; A ~ D~ define 

a(A) = inf{E[(h(w), Y(w))+l: hE N(J-), Ilh(w)11 = 1 for w E A}. 

Then a is well defined and P(A) > 0 implies a(A) > O. 

Proof: Suppose to the contrary that there exists a sequence (hn);::'=l ~ N(J-) such 

that E[(hn' Y)+J ~ 0 a..c; n ~ O. It can be assumed straight away that Ilhn(w)11 = 0 
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for all n and wE D\A, because multiplication by XA will leave all the other properties 

intact. 

Part 1: (From E[(hn, Y)+l 0, we get E[(hn, Y)-l 0)----t ----t 

Now (hn)~=l is bounded so lemma 2.5 (page 12) can be applied to get a sequence 

(gn )~=l of convex combinations from (hn)~=l' converging a.s. to say h. 

And by theorem 2.4, and the fact that every (gn , Y)+ is a convex combination 

of {(hm , Y)+: m 2 n}, it is the case that E[(gn, Y)+l ----t o. Now the fact that 

gn h a. s. implies that E[(gn, Y)+l E[(h, Y)+], so E[(h, Y)+l = o. And here ----t ----t 

the assumption of no-arbitrage forces E[(h, Y)-l to be zero as well. For otherwise, 

setting f := -h, we get E[(f, Y)+l > 0 and E[(f,Y)-l = 0, which means that 

f E K n L~ \ {O} , i.e. arbitrage. 

Now lim E[(hn, Y)-J = lim E[(gn, Y) _], because ((gn, Y)-)~=l is a sequence of 

convex combinations from ((hn,Y)-)~=l . And C9n(w), Y(w)) ~ Ilgn(w)lllRd IIY(w)lllRd 

by the Cauchy-Scwartz inequality, so the boundedness of (!~n)~=l (therefore also of 

(gn )~=l) and Y imply that we can use the Lebesg,lle dominated convergence theorem 

to get 

lim E[(gn, Y)-l = E[( lim gn, Y)-J = E[(h, Y) - l = O. n-= n-= 
Therefore E[(hn , Y)-J o. So----t 

and by the boundedness we can extract a subsequence, also called ((hn , Y))~=l ' which 

converges to zero almost surely. 

Part 2: (Application of a convergence theorem) 

The fact that Ilhlln = 1 on A, P(A) > 0, means (hn)~=l is "bounded away from 

zero in probability" , therefore the result of section 2.6 is applicable. Let fn E 

conv{gnhn, gn+l hn+l , . . . } be the resulting sequence, (gn)~=l the bounded sequence 

which is multiplied with (hn)~=l' and fn fa (of 0) a.s.----t 

On the one hand, in general, if (bn)~=l is a bounded sequence of ~l-valued random 

variables, and (Xn)~=l 0 a.s., then bnxn 0 a.s. In this ca..c:;e , the fact that----t ----t 

----t ----t(hn,Y) 0 a.s. implies that (gnhn, Y) 0 as well, and the same with (fn, Y). So 
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(fo(W) , Y(W)) = (limn-->oo In(w), Y(w)) = lim(fn(w), Y(w)) = 0 a.s. This establishes 

that 10 E N. 

On the other hand every gnhn E N(J.) , and &c; noted above N(J.) is a closed 

subspace, so 10 E N(J.). 

This is a contradiction: 10 belongs to N n N(J.) = {OJ and was selected to be 

non-zero. D 

5.2. Lemma. Let (hn)~=l be a sequence in NJ. such that 

\lI(W) := sup{(hn(w), Y(w))+} 
nEN 

is finite almost surely. Then 

<I>(W) := sup{llhn(w)ll} 
nEN 

is finite almost surely too. 

Proof: Observe that (lmder the hypotheses of the lemma) if Ilhn (w)112 ---; 00 (as 

n ---; 00) for all w E A, P(A) > 0, then (lin), defined by h'n(w) := 1l~(0112 .XA , will 

satisfy the following: (hn)~=l ~ NJ., Ilh'n(w)II = 1 for W E A and (hn(w) , Y(w))+ = 

Ilhn(~)IIKd (hn(w), Y(w))+ ::; Ilhn(~)IIRd . \lI(w) ---; 0 for w E A. Then E[(hn, Y)+J ---; O. 

This contradicts the previous lemma. However, we have to be more sophistica.ted 

because to prove the theorem by assuming the converse, we do not have lim hn (w) = 00 

but limsuPn->oohn(w) = 00 for all w E A. 

So suppose <I>(w) = 00 for wE A, and that P(A) > O. Define for every n E N, 

where m is a specific integer depending on w a.nd n, namely m = min{k 2: n : 

Ilhn(w)ll~d 2: n}. Or equivalently we can also define h'n, to make its' me&c;urability 

clear, as follows. For m, n E N let Am,n := An {llhm 2: nll lRd }. We know that 

"(\In E N)(3m 2: n)(llhmll 2: n)" holds, so U~=nAm,n = A. Define 

 
 
 



30 

Then (fi'n) is a sequence such that (hn) ~ N~, Ilhn (w)112 = 1 for all wE A, n E Nand 

(hn(w), Y(w))+ -----t 0 a.s. But now an application of Lebesgue's dominated convergence 

theorem (\11 being the dominating function) gives that E[(hn , Y)+l -----t 0 a.s. This 

contradicts the previous lemma, so under the suppositions of the statement of this 

lemma we cannot have a set A with positive measure such that <I>(w) = 00 for w E A. 

D 

 
 
 



Chapter 6 

The key result 

Finally we are in a position to show the lemma on which the arbitrage theorem 

stands. The ta..c;k, to show that K - L~ is closed in probability, can of course not 

be achieved by direct compactness arguments, since both K and L~ are unbounded. 

The results of the previous two chapters, however, allow us to put an upper bound 

on the sequence of norms (1Ihn(w)II)~=l if convergence in probability is given. Note 

that K is a (vector) subspace, and L~ a cone, in the sense that if x E L~, A > 0 then 

AT E L~. 

For purpose of comparison with the arbitrage theorem in discr'ete probability 

spaces, it should be stated that then we have that K - L~ is a cone in the finite­

dimensional space JRd. Then it is an easy fact that K - L~ is closed , since K - L~ 

is an intersection of a finite-dimensional subspace (which is closed because all finite­

dimensional spaces are) with a closed orthant obtained by restricting certain coor­

dinates to (-00,0]. In the infinite-dimensional case that is the most difficult part; 

it has consumed most of the pages of the thesis to show that K - L~ is closed in 

probability. 

6.1. Lemma. IfKnLO(D,F1,P;JRd) = {OJ, thenK-L~(n,F1)P) is closed in 

LO(n, F1, P) with respect to the topology of convergence in measure. 

Proof: Given a sequence (xn)~=l ~ K - L~ such that :r:n ----t .T we have to show that 

:r: E K - L~. Let for each n, hn E LO(n, Fo, P; JRd) and in E L°(.O" Fo, P; JR) be such 
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that Xn = (hn' Y) - In; we have to show that there exists h E LO(n , To, P; ll~d), l E 

LO(n, To, P; JR) such that x = (h, Y) - l. Now because the convergence is in prob­

ability, there is a subsequence, which can be denoted Xn = (hn' Y) - In as well 

without loss of generality, converging almost surely to x. And l being positive al­

most surely, it is enough to show that there exists an 11, E LO (0" To, P; JRd) such that 

(h(w) ,Y(w)) ~ x(w) a.s. 

We have (-hn(w), Y(w)) = - xn(w) - In(w) :::; -xn(w) < 00 a.s. By the pre­

vious lemma Ilhn(w)lllRd = II-hn(w)lllRd < 00 a.s. So we can apply lemma 2.5 to 

get a sequence of convex combinations (gn)~=l from (In)~=l converging to 9 almost 

surely. Now (gn(w), Y(w)) = (~:~~) (Xn,ihi(W) ,Y(w)). Observe that for every n E N 

we have that (hn(w), Y(w)) ~ Xn a.s., by definition. Thus (~~~~) (Xn,ihi(W) ,Y(w)) ~ 
",,\,k(n) T k' 1"tL....i=l (Xn,iXi a.s. a mg 1m1 s as n ---+ 00, 

(g(w), Y(w)) = lim (gn(w), Y(w))) 
n->oo 

ken) 

~ lim ~ (Xn,iXi
n---too~ 

i=l 

= :1; 

as w&<; to be shown. o 

 
 
 



Notation 

{~ 

d Number of assets 

T Final time period 

if ,c ~ 0 
sign(x) 

othenvise. 

.'L+ rnax{x,O}, XElR 

.'L_ rnax{ -x, O}, xElR 

N N(J..) page 22, 

LO
, V, etc. page 4 

S:(w), 0 :::; t :::; T, l:::;i:::;d page 3 

A-B Algebraic difference, p. 19 
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