
Chapter 9

Fuzzy Particle Swarm

Optimization for DLAN Topology

Design

This chapter presents another swarm intelligence algorithm, namely, the fuzzy par-

ticle swarm optimization algorithm. The original particle swarm algorithm was

adapted to address the multi-objective aspects of the DLAN topology design using

fuzzy logic. The chapter first discusses the main features of the fuzzy PSO algo-

rithm. This is followed by empirical results to evaluate the performance of the fuzzy

PSO algorithm with respect to different parameters of the algorithm.

9.1 Fuzzy Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) was discussed in Chapter 2. Although PSO

has been applied to a number of problems, its effectiveness in the multi-objective
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domain has to be explored further. The development of a multi-objective PSO

for the DLAN topology design problem is one step towards the assessment of the

performance of PSO in multi-objective optimization with application to a real-world

design problem. Therefore, the focus of this chapter is not to compare the variants

and alterations proposed for PSO by many researchers, but rather the development

of a fuzzy logic based multi-objective PSO, and a preliminary analysis of the fuzzy

PSO with respect to the OWA and UAO operators.

The fuzzy PSO (FPSO) maintains a population of particles. Each particle is

responsible for generating a feasible network topology. In contrast to ACO, where

each ant (except the elitist ant) dies after generating a solution, a particle in PSO

progresses iteration by iteration, learning from its own history, and it also inherits

characteristics from other particles generating high-quality solutions. This is done

while simultaneously considering the design objectives and constraints. In FPSO, a

particle incrementally improves an already existing solution. This improvement is

done by replacing low-quality links with high-quality ones. The guidance in selection

of links is provided by three parameters: the particle’s current position, its own best

position so far, and the best position in relation to the particle’s neighborhood. Each

step of the proposed FPSO is discussed next.

9.1.1 Particle Position and Velocity Representation

For the original PSO, particle position as well as velocity representation were in

the real number domain, that is, all xij ∈ <, and all vij ∈ <. However the DLAN

topology design problem has discrete-valued variables. Therefore, the representation

of particle positions and velocities need to change, and a set representation need to
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be used. This representation scheme is described below.

A position will be the set

Xi(t) = {l1, l2, ..., lq, ..., lL}

where lq is a link between any two nodes a and b in the network, and lL is the

number of links, i.e. |Xi(t)| = L. The velocity of the particle i is represented as

Vi(t) = {lq ⇔ lq
′}

where link lq is removed and replaced with link lq
′, and |Vi(t)| gives the total num-

ber of changes to particle i.

Example 1: Consider a simple network of 6 nodes as given in Figure 9.1. The

topology in this figure represents a possible configuration at time t, and thus rep-

resents a solution (i.e. particle). According to the network configuration in Figure

9.1, the current solution is given as

Xi(t)={(1,2), (1,3), (3,5), (4,5), (4,6)}

That is, there are links between nodes (1,2), (1,3), (3,5), (4,5) and (4,6). This Xi(t)

is also used in Examples 2 and 3 below.

Also assume that at time t, Vi(t) = {(2, 4) ⇔ (1, 2), (3, 4) ⇔ (3, 5), (5, 6) ⇔

(4, 6)} where the symbol “⇔” represents exchange of links. That is, the current

solution Xi(t) was obtained when link (2,4) was removed and replaced with (1,2),

then (3,4) was removed and replaced with (3,5), and then (5,6) was removed and

replaced with (4,6). This Vi(t) is also used in Examples 2 and 3 below.

9.1.2 Velocity Update

The velocity of particle i is updated using
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Figure 9.1: Network topology for PSO example

Vi(t+ 1) = w ⊗ Vi(t) ⊕ c1r1(t) ⊗ [Pi(t) � Xi(t)] ⊕ c2r2(t) ⊗ [Pg(t) � Xi(t)] (9.1)

where Pi(t) represents the particle’s own best position, and Pg(t) represents the

global best position.

In Equation (9.1), the operator ⊗ is implemented as follows: the number of

elements to be selected are determined as bw×|Vi(t)| c. Then, the result will be the

above number of elements randomly selected from Vi(t). The same is approach is

applicable to other factors where the operator ⊗ is used.

The operator � is implemented as the ‘exchange’ operator. That is, the links in

Xi(t) are replaced with the links in Pi(t).

The term c1r1(t) ⊗ [Pi(t) � Xi(t)] is implemented by multiplying c1 and r1(t)

with the size of the set Pi(t) � Xi(t) and taking the floor, i.e.
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c1r1(t) ⊗ [Pi(t) � Xi(t)] = bc1r1 × |Pi(t) � Xi(t)| c (9.2)

where |Pi(t) � Xi(t)| represents the cardinality of the set. The result of Equation

(9.2) indicates the number of elements that are randomly selected from the set

Pi(t) � Xi(t); c2r2(t) ⊗ [Pg(t) � Xi(t)] has the same meaning.

The operator ⊕ implements the set addition (union) operator, i.e. the elements in

any two sets are combined in a new set using the set addition operator. Furthermore,

Vmax is used to limit the number of elements selected from a set.

Example 2: Continuing with Example 1, assume the following parameter values:

w = 0.5

Vmax = 2

c1 = c2 = 0.5

r1 = 0.52 (randomly generated)

r2 = 0.75 (randomly generated)

Assume that the best goodness so far for particle i was generated by position,

Pi(t) = {(1, 2), (1, 4), (2, 3), (2, 5), (2, 6)}

Also assume that the best solution so far generated by the entire swarm was

achieved by the following global best solution:

Pg(t) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}

The inertia weight, w, determines the number of moves that will be randomly

selected from Vi(t) (mentioned in Example 1 above). Since w = 0.5, and |Vi(t)| =
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3, the number of moves selected is 0.5 × |Vi(t)| = 1.5. Since fractional moves are

not possible, the value is truncated to 1.

Now, 0.5×Vi(t) = {(2, 4) ⇔ (1, 2)}. Note that (3, 4) ⇔ (3, 5) OR (5, 6) ⇔ (4, 6)

is also possible; any one move of these three moves can be randomly chosen.

The difference between the particle’s current position and its own best position,

Pi(t) � Xi(t) is calculated by replacing each link in Xi(t) with the link in the

corresponding position in Pi(t) as

Pi(t) � Xi(t) = {(1, 2) ⇔ (1, 2), (1, 3) ⇔ (1, 4), (3, 5) ⇔ (2, 3), (4, 5) ⇔ (2, 5),

(4,6) ⇔ (2, 6)}

Therefore, c1×r1⊗(Pi(t)�Xi(t)) = 0.5×0.52×|Pi(t)�Xi(t)|. Since cardinality

of Pi(t)�Xi(t) is 4 (i.e. there are four exchanges in the set, as (1, 2) ⇔ (1, 2) is not

considered an exchange), this implies that 0.5 × 0.52 ⊗ |Pi(t) � Xi(t)| = 1.04 = 1.

This means that any one of the four elements in Pi(t) � Xi(t) can be randomly

chosen. So, assume that c1 × r1 ⊗ (Pi(t) � Xi(t)) = {(4, 6) ⇔ (2, 6)}.

Similarly:

Pg(t) � Xi(t)= {(1, 2) ⇔ (1, 2), (1, 3) ⇔ (1, 3), (3, 5) ⇔ (1, 4), (4, 5) ⇔ (1, 5),

(4,6) ⇔ (1, 6)}

The cardinality of the above set is 3, since (1, 2) ⇔ (1, 2) and (1, 3) ⇔ (1, 3) are

not considered exchanges. So, 0.5 × 0.75 ⊗ (Pg(t) � Xi(t)) =0.5 ×0.75 × 3 = 1.12

= 1 move. Assume {(4,5) ⇔ (1, 5)} is randomly chosen, although any combination

consisting of a single move from Pg(t) � Xi(t) can be randomly chosen.

Putting the above calculations in Equation (9.1) gives Vi(t+1) containing three

elements as

Vi(t+ 1) = {(2, 4) ⇔ (1, 2), (4, 6) ⇔ (2, 6), (4, 5) ⇔ (1, 5)}
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Since velocity clamping Vmax = 2, only two moves (i.e. exchanges) from Vi(t+1)

can be randomly chosen. Assume that (2, 4) ⇔ (1, 2) and (4, 6) ⇔ (2, 6) are chosen.

Hence,

Vi(t+ 1) = {(2, 4) ⇔ (1, 2), (4, 6) ⇔ (2, 6)}

9.1.3 Particle Position Update

The position Xi(t) of a particle i is updated using

Xi(t+ 1) = Xi(t) � Vi(t+ 1) (9.3)

where � is a special operator that updates the links in Xi(t) on the basis of link

exchanges in Vi(t+ 1), to get the new position Xi(t+ 1).

Example 3: Continuing with Example 2,

Xi(t + 1) = Xi(t) � Vi(t + 1) = {(1, 2), (1, 3), (3, 5), (4, 5), (4, 6)} � {(2,4) ⇔

(1, 2), (4, 6) ⇔ (2, 6)} = {(1,2), (1,3), (3,5), (4,5), (2,6)}

Notice that since the link (2,4) was not present in Xi(t), the exchange (2, 4) ⇔

(1, 2) could not be performed. Therefore, in the new solution, the links (1,2), (1,3),

(3,5), and (4,5) have been brought from the solution Xi(t), while the new link, i.e.

(2,6), was introduced, replacing the link (4,6), as specified by the replacement in

Vi(t+ 1).

9.1.4 Fitness Evaluation

The fitness (goodness) of a solution is evaluated using either Equation (3.11) or

Equation (4.1), as discussed in Chapters 3 and 4.
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9.1.5 Initialization

Since PSO is a population-based algorithm, the initialization process consists of

generating a set of solutions. This process is exactly the same as discussed in Section

8.1.1 for fuzzy ACO. Algorithm parameters such as inertia weight, velocity clamping,

and acceleration constants are also initialized. The goodness of each particle is then

evaluated with respect to the reference solution (a predefined initial solution used

in the earlier chapters of this thesis).

9.1.6 Particle Activity

It was mentioned in Chapter 2 that PSO has two basic models known as lbest PSO

and gbest PSO. FPSO is based on the gbest model (although the lbest model could

be used as well) to allow comparison with the fuzzy ACO. Recall that, in fuzzy

ACO, the elitist ant has a significant effect in guiding the search process towards a

certain direction. In other words, the fuzzy ACO is considering a global approach

in guidance. Therefore, to match this global approach to the best possible extent,

the gbest model has been adopted, where the global component is provided by the

overall best particle.

Once the initial set of solutions is generated, the global best particle is chosen

on the basis of the goodness value calculated in the initialization phase. Also, at

this stage, each particle’s current position is its best position. In the following

iterations, each particle updates its position based on information provided by the

particle’s immediate previous position and by the alterations (moves) performed on

the particle through the velocity update vector, as explained in Section 9.1.3. The

velocity of a particle is updated on the basis of moves performed on the particle in its
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immediate previous position, the particle’s own best position so far, and the overall

best position achieved by any particle in the swarm in any iteration, as described in

Section 9.1.2. Moreover, to avoid premature convergence, the global best particle is

updated regularly, i.e. as soon as a particle’s overall goodness becomes higher than

the overall goodness of the global best particle, that new particle is selected as the

global best particle, and the search process continues. If no updating is done, then

the algorithm will very quickly converge on a solution that might not even be a local

minimum.

A ‘move’ in FPSO is very similar to what has been described for other algorithms

in earlier chapters: removing a link and introducing a new one such that the tree is

maintained (refer to Example 1 in Section 9.1.1). Then, the constraints are checked

to evaluate the feasibility of the performed move. However, the notion of moves

in FPSO depends on three factors, namely: moves performed in the immediate

previous position of the particle, the structure of the particle’s own best position,

and the structure of the global best particle. For all these factors, the number of

moves performed to get the new position of the particle is governed by parameters

such as acceleration coefficients, inertia weight, and velocity clamping. Values of

these parameters decide how many moves are required to get the new position of a

particle.

9.2 Results and Discussion

The fuzzy PSO was applied to the five test cases. The performance of the algorithm

was evaluated with respect to a number of parameters. These parameters are the
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inertia weight w, velocity clamping Vmax, swarm size, and acceleration constants.

The parameter values used in the experiments are given in Table 9.1. In these

experiments, each instance of the algorithm was run for 100 iterations. Thirty

independent runs were executed for each parameter setup, and the average of best

solutions found in each run was reported, with the standard deviation. Following

default values were used for experiments, unless otherwise specified: number of

particles = 20, Vmax = 5, w = 0.72, and c1 = c2 = 0.5.

Table 9.1: Parameter settings for fuzzy PSO used in experiments.

Parameter Values

Number of particles 5, 10, 15, 20, 25, 30

Vmax 5
10% size of test case
20% size of test case

w 0.72
0.95
0.4

c1, c2 0.5 and 0.5
1.49 and 1.49
2.0 and 2.0

9.2.1 Effect of Swarm size

The effect of swarm size was investigated with different number of particles as given

in Table 9.1. Other parameters were kept as follows: Vmax = 5, c1 = c2 = 0.5,

and inertia weight w = 0.72. Tables 9.2 to 9.6 reflect the effect of number of

particles on the quality of solution. Column 1 lists the test case, column 2 gives

the overall goodness obtained using the OWA operator, while column 3 provides the

corresponding run time, and column 4 lists the percentage difference between the
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corresponding number of particles and the best goodness (in boldface). Column 5

reports the overall goodness obtained using the UAO operator, column 6 provides

the corresponding run time, and column 7 lists the percentage difference between the

corresponding number of particles and the best goodness (in boldface). For example,

in Table 9.2, the best overall goodness (in boldface) using OWA is obtained with 30

particles. The overall goodness with different numbers of particles is then compared

with the best overall goodness, and the percentage difference is listed. It is evident

from Tables 9.2 to 9.6 that the best overall goodness was obtained when the number

of particles was relatively high. With OWA, the best results for n50 and n40 were

obtained with 30 particles, while for n25 and n15, 25 particles resulted in the best

solutions. Only in test case n33 did a moderate number of particles, 20 in this case,

demonstrate better performance.

As for UAO, the effect of the large swarm size was even more prominent, where

it is noticed that the best results were obtained in all cases with a swarm size of 30.

A small deviation from this trend was the case n33 where 25 particles produced the

best overall goodness.

Table 9.2: Effect of swarm size on overall goodness for n50 with OWA and UAO.
Time = Run time (in seconds), % Diff = % Difference. Statistically significant
difference is in italics.

Number of Goodness Time % Diff Goodness Time % Diff
particles OWA UAO

10 0.251 ±0.074 2057.7 14.26 0.333 ±0.005 2151.9 0.89
15 0.268 ±0.041 3041.9 6.94 0.334 ±0.004 3510.4 0.72
20 0.263 ±0.039 4291.1 9.02 0.335 ±0.004 4505.4 0.23
25 0.269 ±0.042 5352.3 6.72 0.335 ±0.002 5704.9 0.43
30 0.287 ±0.034 6328.1 NA 0.336 ±0.003 7074.9 NA
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Table 9.3: Effect of swarm size on overall goodness for n40 with OWA and UAO.
Time = Run time (in seconds), % Diff = % Difference. Statistically significant
difference is in italics.

Number of Goodness Time % Diff Goodness Time % Diff
particles OWA UAO

10 0.296 ±0.039 544.9 14.12 0.338 ±0.005 545.3 3.90
15 0.326 ±0.044 782.5 3.61 0.341 ±0.012 829.5 2.92
20 0.318 ±0.036 1132.9 6.20 0.342 ±0.009 1081.8 2.80
25 0.316 ±0.023 1390.7 6.78 0.346 ±0.010 1428.2 1.50
30 0.337 ±0.026 1736.7 NA 0.351 ±0.012 1659.2 NA

Table 9.4: Effect of swarm size on overall goodness for n33 with OWA and UAO.
Time = Run time (in seconds), % Diff = % Difference. Statistically significant
difference is in italics.

Number of Goodness Time % Diff Goodness Time % Diff
particles OWA UAO

10 0.300 ±0.041 215.8 4.17 0.332 ±0.006 210.5 2.06
15 0.306 ±0.030 324.7 2.29 0.337 ±0.006 329.3 0.56
20 0.313 ±0.053 445.3 NA 0.337 ±0.005 455.9 0.58
25 0.312 ±0.031 597.9 0.17 0.339 ±0.005 560.6 NA
30 0.311 ±0.040 667.3 0.63 0.338 ±0.006 662.5 0.16

Table 9.5: Effect of swarm size on overall goodness for n25 with OWA and UAO.
Time = Run time (in seconds), % Diff = % Difference. Statistically significant
difference is in italics.

Number of Goodness Time % Diff Goodness Time % Diff
particles OWA UAO

10 0.306 ±0.038 62.6 11.39 0.330 ±0.009 58.0 2.69
15 0.325 ±0.036 92.1 4.70 0.330 ±0.004 91.5 2.73
20 0.333 ±0.031 118.7 2.20 0.335 ±0.005 120.3 1.13
25 0.340 ±0.030 153.0 NA 0.337 ±0.008 159.3 0.60
30 0.327 ±0.032 187.1 4.17 0.339 ±0.008 187.0 NA
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Table 9.6: Effect of swarm size on overall goodness for n15 with OWA and UAO.
Time = Run time (in seconds), % Diff = % Difference. Statistically significant
difference is in italics.

Number of Goodness Time % Diff Goodness Time % Diff
particles OWA UAO

10 0.186 ±0.020 13.7 16.98 0.332 ±0.002 14.3 0.42
15 0.204 ±0.049 22.1 6.85 0.332 ±0.002 21.2 0.42
20 0.218 ±0.031 29.8 -0.09 0.332 ±0.001 28.7 0.32
25 0.218 ±0.029 36.5 NA 0.332 ±0.002 35.9 0.42
30 0.216 ±0.024 43.9 0.91 0.333 ±0.003 43.2 NA

A t-test validation of percentage difference in Tables 9.2 to 9.6 was also per-

formed, and the statistically significant differences are italicized. An important

observation in Tables 9.2 to 9.6 is that the lowest level of overall goodness was

obtained when the number of particles was lowest. More specifically, having 10

particles resulted in the worst solutions in all cases and with both fuzzy operators.

The only exception to this trend was n15 when UAO was applied. In this instance,

all particles from 10 to 25 resulted in the same overall goodness value. The im-

provement between the highest and the lowest overall goodness using the OWA and

UAO operators is given in Tables 9.7 and 9.8 respectively. Table 9.7 shows that

the improvement was generally between 10% and 15%, with the exception of n33

where an improvement of 4.17% was observed. Moreover, t-test validation showed

that all improvements, except that for n33, were statistically significant. As for

UAO, the improvement was generally less than 4%, as shown in Table 9.8, and

all improvements (except for n15) were statistically significant, as validated by the

t-test.

A graphical representation of the results in Tables 9.2 to 9.6 is given in Figure
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9.2. This figure shows the effect on overall goodness when the number of particles are

varied from 10 to 30. This figure further strengthens the observations, noted above,

that in general, increasing the number of particles positively affects the quality of

overall goodness of the solution. For example, in Figure 9.2(a), the overall goodness

increased with an increase in the number of particles for case n50. The trend is more

obvious for OWA than for UAO. Similarly, for all other cases, this general trend is

observed for both the OWA and UAO operators. Only in the instance of n25 with

OWA (Figure 9.2(d)) did the overall goodness increase up to 25 particles and then

dropped with 30 particles.

Table 9.7: Results for best and worst average overall goodness and their respective
number of particles for OWA. Statistically significant improvement is in italics.

Case Particles Max. goodness Particles Min. goodness % improvement

n15 25 0.218 ±0.029 10 0.186 ±0.020 16.98
n25 25 0.340 ±0.030 10 0.306 ±0.038 11.39
n33 20 0.313 ±0.053 10 0.300 ±0.041 4.17
n40 30 0.337 ±0.026 10 0.296 ±0.039 14.12
n50 30 0.287 ±0.034 10 0.251 ±0.074 14.26

Table 9.8: Results for best and worst average overall goodness and their respective
number of particles for UAO. Statistically significant improvement is in italics.

Case Particles Max. goodness Particles Min. goodness % improvement

n15 30 0.333 ±0.003 10,15,20,25 0.332 ±0.002 0.42
n25 30 0.339 ±0.008 10 0.330 ±0.009 2.69
n33 25 0.339 ±0.005 10 0.332 ±0.006 2.06
n40 30 0.351 ±0.012 10 0.338 ±0.005 3.90
n50 30 0.336 ±0.003 10 0.333 ±0.005 0.89

The above discussion and observations suggest that, in general, an increase in
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Figure 9.2: Effect of swarm size on overall goodness for (a) n50 (b) n40 (c) n33 (d)
n25 (e) n15
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the number of particles increases diversity and reduces the possibility of getting

trapped in local minima, thereby resulting in higher quality solutions.

9.2.2 Effect of Acceleration Coefficients

The effect of acceleration coefficients was investigated with different values of the

coefficients as given in Table 9.1. Other parameters were kept as follows: number

of particles = 20, w = 0.72, and Vmax = 5. Tables 9.9 and 9.10 respectively provide

the results for OWA and UAO operators with respect to the three sets of acceler-

ation coefficients. The values c1 = c2 = 1.49 (along with inertia weight = 0.72)

were specifically chosen, since they are often used in the literature and they ensure

convergence [244].

Table 9.9: Effect of acceleration coefficients on the test cases, for OWA. Good
= average overall goodness, Time = Run time (in seconds). % imp shows the
improvement achieved by one set of values of c1 and c2 over the other set of values.
Statistically significant improvement is in italics.

Case c1 = c2 = 0.5 c1 = c2 = 1.49 c1 = c2 = 2.0 % imp % imp % imp
Good Time Good Time Good Time 0.5 vs 2.0 vs 2.0 vs

1.49 1.49 0.5

n15 0.218 29.8 0.224 29.3 0.218 31.2 -2.95 -2.78 0.0
±0.031 ±0.048 ±0.043

n25 0.333 118.7 0.333 111.1 0.323 120.5 0.0 -2.91 -2.91
±0.031 ±0.027 ±0.033

n33 0.313 445.3 0.303 497.9 0.312 546.7 3.14 3.11 -0.03
±0.053 ±0.033 ±0.029

n40 0.318 1132.9 0.330 1248.5 0.327 1428.8 -4.04 -1.00 2.93
±0.036 ±0.037 ±0.041

n50 0.263 4291.1 0.262 5285.4 0.275 5444.8 0.58 4.89 4.34
±0.039 ±0.052 ±0.043

It is observed in Table 9.9 that each set of acceleration coefficients produced
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Table 9.10: Effect of acceleration coefficients on the test cases, for UAO. Good
= average overall goodness, Time = Run time (in seconds). % imp shows the
improvement achieved by one set of values of c1 and c2 over the other set of values.
Statistically significant improvement is in italics.

Case c1 = c2 = 0.5 c1 = c2 = 1.49 c1 = c2 = 2.0 % imp % imp % imp
Good Time Good Time Good Time 0.5 vs 2.0 vs 2.0 vs

1.49 1.49 0.5

n15 0.332 28.7 0.333 29.7 0.332 32.5 -0.12 -0.12 0.0
±0.001 ±0.002 ±0.001

n25 0.335 120.3 0.338 119.3 0.337 127.4 -1.03 -0.51 0.52
±0.005 ±0.010 ±0.009

n33 0.337 455.9 0.338 506.1 0.336 617.7 -0.25 -0.64 -0.39
±0.005 ±0.006 ±0.004

n40 0.342 1081.8 0.328 1327.2 0.350 1280.5 3.96 6.09 2.22
±0.009 ±0.060 ±0.011

n50 0.335 4505.4 0.336 5658.1 0.335 5766.1 -0.13 -0.13 0.0
±0.004 ±0.004 ±0.003

results of the almost the same quality when compared with the other set. For

example, values of c1 = c2 = 0.5 produced slightly better results than c1 = c2 = 1.49

for test cases n50 and n33, but the latter set of coefficients performed better than

the former for n40 and n15. Similarly, c1 = c2 = 2.0 produced better results

for some cases and worse results for others, when compared with c1 = c2 = 1.49

and c1 = c2 = 0.5. However, the t-test showed that, in general, the percentage

improvements reported in Table 9.9 were not statistically significant.

With respect to the UAO operator, a trend similar to that of the OWA operator

was observed. Table 9.10 shows that the percentage improvements achieved by any

set of c1 and c2 compared to another set was at most 1% in the majority of cases.

An exception from this trend was the case of n40, where c1 = c2 = 0.5 achieved an

improvement of 3.96% over c1 = c2 = 1.49, c1 = c2 = 2.0 achieved an improvement

of 6.09% over c1 = c2 = 1.49, and c1 = c2 = 2.0 achieved an improvement of
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2.22% over c1 = c2 = 0.5. A t-test validation showed that all improvements were

insignificant, with the exception of n40 when comparing c1 = c2 = 1.49 with other

sets of c1 and c2. In general, the results indicate that the convergence of PSO is

independent of the acceleration coefficients with respect to the values used.

9.2.3 Effect of Inertia Weight

Table 9.11: Effect of inertia weight on the test cases, for OWA. Good = average
overall goodness, Time = Run time (in seconds). % imp shows the improvement
achieved by one value of w over the other value. Statistically significant improvement
is in italics.

Case w = 0.72 w = 0.95 w = 0.4 % imp % imp % imp
Good Time Good Time Good Time 0.72 vs 0.72 vs 0.95 vs

0.95 0.4 0.4

n15 0.218 29.8 0.233 28.9 0.213 28.2 -6.76 2.40 8.58

±0.031 ±0.053 ±0.022

n25 0.333 118.7 0.323 128.5 0.328 125.6 2.88 1.46 -1.46
±0.031 ±0.032 ±0.031

n33 0.313 445.3 0.291 426.1 0.306 439.9 6.98 2.09 -5.26
±0.053 ±0.026 ±0.023

n40 0.318 1132.9 0.322 1095.7 0.331 1105.1 -1.49 -4.28 -2.75
±0.036 ±0.028 ±0.024

n50 0.263 4291.1 0.258 4285.1 0.273 3872.9 1.93 -3.53 -5.57
±0.039 ±0.044 ±0.040

The effect of the inertia weight, w, is empirically investigated in this section.

Tables 9.11 and 9.12 respectively show the results obtained for the fuzzy PSO with

the OWA and UAO operators. The effect of w on performance was studied with

three values, namely w = 0.72, w = 0.95, and w = 0.4. Other parameters were kept

as follows: number of particles = 20, c1 = c2 = 0.5, and Vmax = 5.

Table 9.11 suggests that there was no clear trend as which value of w produced
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Table 9.12: Effect of inertia weight on the test cases, for UAO. Good = average
overall goodness, Time = Run time (in seconds). % imp shows the improvement
achieved by one value of w over the other value. Statistically significant improvement
is in italics.

Case w = 0.72 w = 0.95 w = 0.4 % imp % imp % imp
Good Time Good Time Good Time 0.72 vs 0.72 vs 0.95 vs

0.95 0.4 0.4

n15 0.332 28.7 0.332 29.1 0.332 27.7 0.0 0.0 0.0
±0.001 ±0.001 ±0.002

n25 0.335 120.3 0.331 127.2 0.333 125.4 1.03 0.70 -0.33
±0.005 ±0.005 ±0.008

n33 0.337 455.9 0.337 455.6 0.340 428.1 0.0 -0.81 -0.88
±0.005 ±0.005 ±0.008

n40 0.342 1081.8 0.344 1103.6 0.345 1025.4 -0.75 -0.91 -0.16
±0.009 ±0.011 ±0.011

n50 0.335 4505.4 0.335 4528.5 0.335 4345.3 0.0 0.0 0.0
±0.004 ±0.003 ±0.004

the best results. For example, w = 0.72 produced better solutions than w = 0.95

for n25, n33, and n50, but for n15 and n40, w = 0.95 produced better results than

w = 0.72. Similarly, comparisons of w = 0.72 with w = 0.4, and w = 0.95 with w =

0.4 did not show any clear pattern as which value of w performed better compared

to the other. The statistical t-test also showed that none of the improvements,

whether achieved by w = 0.72, w = 0.95, or w = 0.4, were significant. As for UAO,

the difference between the overall goodness achieved by the three values of inertia

weight was generally less than 1% for all test cases. The t-test showed that the

improvements were insignificant. These observations suggest that the fuzzy PSO

was insensitive to the inertia weight for both the OWA and UAO operators with

respect to the three values of w used.
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9.2.4 Effect of Velocity Clamping

The effect of velocity clamping was also empirically studied. Tables 9.13 and 9.15

respectively show the results obtained for fuzzy PSO with OWA and UAO operators.

The effect was studied with three values of velocity clamping, with one value fixed

at Vmax = 5 for all cases, while the other two were variable, proportional to the test

case size. These variable values were dVmax = 10%e and dVmax = 20%e of the test

case size. The inspiration for taking 10% and 20% size of the test case comes from

mutation rates in genetic algorithms. Note that both Vmax in PSO and mutation

rate in GA perturb the solution, and therefore the functions of both parameters

is more or less the same. A number of studies [34, 115, 158, 159] have used the

mutation rate up to 20% or more. Therefore, the basis of choosing a variable value

of Vmax is this observation. Other PSO parameters were kept as follows: number of

particles = 20, c1 = c2 = 0.5, and inertia weight w = 0.72.

Table 9.13: Effect of velocity clamping on the test cases, for OWA. % imp shows
the improvement achieved by one value of Vmax compared to the other value. NA
= Not Applicable.

Case Vmax = 5 Vmax = 10% Vmax = 20% % imp % imp % imp
Goodness Goodness Goodness 5 vs 5 vs 10% vs

10% 20% 20%

n15 0.218 ±0.031 0.220 ±0.048 0.212 ±0.038 -1.00 2.46 3.55
n25 0.333 ±0.031 0.328 ±0.036 The value of 1.54 NA -1.54

Vmax is 5 here
n33 0.313 ±0.053 0.314 ±0.032 0.277 ±0.032 -0.48 11.36 13.36
n40 0.318 ±0.036 0.334 ±0.038 0.313 ±0.024 -5.30 1.52 6.93
n50 0.263 ±0.039 The value of 0.266 ±0.038 NA -1.16 -1.15

Vmax is 5 here

Table 9.13 shows that velocity clamping did not significantly improve the so-
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Table 9.14: Average algorithm run time (in seconds) for different values of Vmax
given in Table 9.13.

Test Case Run time
Vmax = 5 Vmax = 10% Vmax = 20%

n15 29.8 28.8 28.9
n25 118.7 122.4 Same runtime

as for Vmax = 5
n33 445.3 433.0 452.5
n40 1132.9 1075.1 1101.9
n50 4291.1 Same runtime 4386.7

as for Vmax = 5

Table 9.15: Effect of velocity clamping on the test cases, for UAO. % imp shows
the improvement achieved by one value of Vmax compared to the other value. NA
= Not Applicable.

Case Vmax = 5 Vmax = 10% Vmax = 20% % imp % imp % imp
Goodness Goodness Goodness 5 vs 5 vs 10% vs

10% 20% 20%

n15 0.332 ±0.001 0.331 ±0.001 0.332 ±0.001 0.263 -0.009 -0.27
n25 0.335 ±0.005 0.332 ±0.007 The value of 0.843 NA -0.84

Vmax is 5 here
n33 0.337 ±0.005 0.337 ±0.006 0.339 ±0.007 -0.024 -0.609 -0.58
n40 0.342 ±0.009 0.346 ±0.013 0.342 ±0.010 -1.207 -0.055 1.15
n50 0.335 ±0.004 The value of 0.335 ±0.005 NA 0.095 0.10

Vmax is 5 here

lution. The overall goodness for the test cases varied between 1.0% and 6.93%,

with the exception of n33. For n33, improvements of 11.36% (for comparison of

Vmax = 5 with Vmax = 20%) and 13.36% (for comparison of Vmax = 10% with

Vmax = 20%) were obtained. A t-test validation also showed that all improvements

less than 13.36% were statistically insignificant. As for UAO, the results in Table

9.15 suggest a trend similar to that of OWA. It is observed in Table 9.15 that ve-

locity clamping had a very slight impact on the quality of overall goodness, with all
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Table 9.16: Average algorithm run time (in seconds) for different values of Vmax
given in Table 9.15.

Test Case Run time
Vmax = 5 Vmax = 10% Vmax = 20%

n15 28.7 28.5 28.9
n25 120.3 119.9 Same runtime

as for Vmax = 5
n33 455.9 441.7 454.5
n40 1081.8 1098.6 1083.9
n50 4505.4 Same runtime 4867.0

as for Vmax = 5

values having less than 1.5% improvements. The t-test confirmed that all the im-

provements were statistically insignificant. In general, the results in Tables 9.13 and

9.15 suggest that velocity clamping did not have a significant effect on the quality

of the overall goodness for the values used for Vmax.

9.3 Comparison of OWA and UAO

Table 9.17 compares the OWA and UAO operators using linear regression analysis

(performed with a confidence level of 95%), with the number of particles as the

independent variable and the overall goodness of solution as the dependent variable.

The objective of the regression analysis was to study the effect of increasing the

number of particles on the overall goodness while using the OWA and UAO opera-

tors. The data for the analysis consisted of overall goodness for each particle set in

Tables 9.2 to 9.6. Since, for each test case, 30 runs were done for each particle set,

the regression coefficients in Table 9.17 was obtained using 150 values (5 values ×

30 runs). For example, for test case n15, Table 9.6 shows the overall goodness for
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Table 9.17: Comparison of OWA and UAO for FPSO.

Case Regression coefficients Ratio = Comment
OWA UAO UAO

OWA

n15 0.309 0.227 0.735 UAO increases goodness slower
than OWA at the rate of 0.735

n25 0.238 0.472 1.983 UAO increases goodness almost
twice as fast as OWA

n33 0.1 0.329 3.290 UAO increases goodness almost
thrice as fast as OWA

n40 0.289 0.392 1.356 UAO increases goodness faster
than OWA at the rate of 1.356

n50 0.213 0.254 1.192 UAO increases goodness faster
than OWA at the rate of 1.192

OWA and UAO, with five different number of particles (from 10 up to 30). Table

9.17 also provides the regression coefficients for OWA and UAO in columns 2 and

3 respectively. The ratio of UAO and OWA is given in column 4. Based on this

ratio, the sensitivity of OWA and UAO was evaluated with respect to the increasing

swarm size. An interpretation of the ratio in column 4 is given in column 5.

In Table 9.17, it is observed that UAO was more sensitive than OWA with

respect to the increasing number of particles. For almost all cases, UAO increased

the overall goodness significantly faster than OWA. This is quite obvious for cases

n25 and n33 where the rate of UAO is respectively twice and thrice that of OWA.

For cases n40 and n50, UAO also had a faster rate than OWA. Only for n15, OWA

was faster than UAO, as observed in Table 9.17. Thus, the general conclusion is

that, as the number of particles are increased, the rate at which UAO increases the

overall goodness is significant as compared to the rate of the OWA operator.
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9.4 Conclusions

A fuzzy multi-objective particle swarm optimization algorithm for the DLAN topol-

ogy design problem was proposed and investigated in this chapter. The performance

of the algorithm was evaluated with respect to different parameters of the fuzzy PSO

algorithm. Results showed that the larger swarm sizes produced better results than

medium or small sizes. An investigation of acceleration coefficients suggested that

for the three set of values of acceleration coefficients used, there was no significant

difference in the quality of final solutions obtained. Results also revealed that the

fuzzy PSO was insensitive to the inertia weight, with respect to the three values

used. As for velocity clamping, the results suggested that the parameter did not

have a significant effect on the quality of the solutions with the three values used.

With respect to the performance of OWA and UAO, it was found that, in general,

UAO performed better than OWA.

The next chapter presents a comprehensive comparison of the techniques pro-

posed and discussed in this thesis is presented.
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Chapter 10

Comparison of Techniques

Chapters 5 to 9 presented a number of iterative algorithms as applied to solve the

DLAN topology design problem. This chapter presents an overall comparison of

the results obtained for each of the proposed algorithms. As mentioned earlier, the

proposed algorithms are divided into two categories: ones which operate on single

solutions, such as stochastic evolution, simulated evolution, and simulated anneal-

ing, and ones which are population-based swarm intelligence algorithms, namely ant

colony optimization and particle swarm optimization. Therefore, the comparisons

presented below are also categorized in the same way. The results for these com-

parisons have been presented and discussed in earlier chapters, but are consolidated

here for the sake of clear comparisons.

10.1 Comparison of Single Solution Algorithms

This section compares the performance of the single solution algorithms presented

in this thesis. Chapter 5 showed that the variant of variant of StocE with tabu
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search characteristics (TFStocE) demonstrated the best performance among differ-

ent versions of StocE algorithms. For the simulated evolution algorithm, the results

in Chapter 6 suggested that the simulated evolution algorithm with tabu search

characteristics and dynamic bias (DTFSimE) had the best performance among all

proposed variants. As for simulated annealing, the variants were discussed in Chap-

ter 7, and it was found that the simulated annealing algorithm with tabu search

characteristics (TEFSA) was the best compared to the other variants. Therefore,

this section mutually compares these best algorithms.

Table 10.1: Comparison of TFStocE, DTFSimE, and TEFSA using OWA. % imp
denote percentage improvements. Statistically significant improvement is in italics.

Case TFStocE DTFSimE TEFSA % imp % imp % imp
Goodness Goodness Goodness TEFSA vs TEFSA vs DTFSimE

TFStocE DTFSimE vs TFStocE

n15 0.120 ± 0.206 ± 0.389 ± 69.15 47.04 41.75
0.053 0.052 0.056

n25 0.160 ± 0.240 ± 0.500 ± 68.00 52.00 33.33
0.035 0.008 0.125

n33 0.099 ± 0.229 ± 0.429 ± 76.92 46.62 56.77
0.045 0.061 0.192

n40 0.131 ± 0.340 ± 0.489 ± 73.21 30.47 61.47
0.053 0.122 0.047

n50 0.178 ± 0.350 ± 0.329 ± 45.90 -6.38 49.14
0.044 0.143 0.121

Table 10.1 compares TFStocE, DTFSimE, and TEFSA with respect to the over-

all goodness using the OWA operator. The average run time is given in Table 10.2.

It is obvious from Table 10.1 that, in general, TEFSA produced the best results

among the three schemes, also validated by the t-test. An exception was observed

in the case of n50, where DTFSimE was able to achieve slightly better results than
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Table 10.2: Average run time (in seconds) of algorithms in Table 10.1.

Test Case Run time
TFStocE DTFSimE TEFSA

n15 4.6 134.2 89.5
n25 30.1 354.2 314.8
n33 36.2 1080.7 764.7
n40 145.1 2861.0 1499.5
n50 1341.1 7042.8 4295.4

Table 10.3: Comparison of TFStocE, DTFSimE, and TEFSA using UAO. % imp
denote percentage improvements. Statistically significant improvement is in italics.

Case TFStocE DTFSimE TEFSA % imp % imp % imp
Goodness Goodness Goodness TEFSA vs TEFSA vs DTFSimE

TFStocE DTFSimE vs TFStocE

n15 0.245 ± 0.446 ± 0.365 ± 32.88 -22.19 45.07
0.032 0.061 0.016

n25 0.275 ± 0.301 ± 0.412 ± 33.25 26.94 8.64
0.008 0.006 0.064

n33 0.224 ± 0.303 ± 0.411 ± 45.50 26.28 26.07
0.032 0.004 0.072

n40 0.318 ± 0.297 ± 0.470 ± 32.34 36.81 -7.07
0.032 0.122 0.079

n50 0.256 ± 0.281 ± 0.374 ± 31.55 24.87 8.90
0.025 0.000 0.050

TEFSA. However, this improvement by DTFSimE was not statistically significant.

It is also observed that TFStocE was the worst performer among the three schemes,

with results much inferior to both DTFSimE and TEFSA.

As for UAO, the trends are very much similar to that of OWA. Observe from

Table 10.3 that TEFSA demonstrated the best performance for almost all test cases.

The only exception to this was case n15 where DTFSimE had statistically better

performance than TEFSA, as validated by the t-test. Again, TFStocE produced the
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Table 10.4: Average run time (in seconds) of algorithms in Table 10.3.

Test Case Run time
TFStocE DTFSimE TEFSA

n15 0.7 116.9 88.5
n25 16.0 312.9 322.4
n33 11.3 775.1 757.0
n40 143.1 2526.3 1564.4
n50 54.2 5013.3 3485.6

worst results. However, the extent of degradation in the quality of results produced

by TFStocE compared to DTFSimE and TEFSA was not as significant as was

observed for OWA. The average run time is given in Table 10.4.

10.2 Comparison of Population Based Algorithms

This section compares the performance of the two population based algorithms,

namely, FACO and FPSO, developed in this thesis. The FACO and FPSO al-

gorithms were proposed in Chapters 8 and 9 respectively. Tables 10.5 and 10.7

compares the two algorithms for the OWA and UAO operators respectively. Al-

though the results were discussed in detail in the previous two chapters, these tables

present the consolidated best results found in each of the two chapters along with

the corresponding parameter setup.

With respect to the OWA operator, Table 10.5 (with average run time given in

Table 10.6) suggests that FACO showed statistically better performance than FPSO

for the majority of cases, as validated by the t-test. This observation is prominent

in cases n15, n25, and n33. For n40 and n50, FACO had a milder deterioration

than FPSO. However, this deterioration was not statistically significant. In general,
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Table 10.5: Comparison of FACO and FPSO for OWA. dep = pheromone de-
posit rate, evap = pheromone evaporation rate, % imp = percentage improvement
achieved by FACO. OG = overall goodness. Statistically significant improvement is
in italics.

Case FACO FPSO
% imp

ants dep evap OG par Vmax c1, c2 w OG FACO
vs

FPSO

n15 30 0.2 0 0.313 ± 20 5 0.5 0.95 0.233 ± 25.56
0.032 0.053

n25 30 0.6 0.2 0.430 ± 25 5 0.5 0.72 0.340 ± 20.93
0.023 0.030

n33 30 0.8 0.3 0.362 ± 20 10% 0.5 0.72 0.314 ± 13.26
0.022 0.032

n40 25 0.4 0.1 0.333 ± 30 5 0.5 0.72 0.337 ± -1.20
0.028 0.026

n50 30 0.8 0.3 0.270 ± 30 5 0.5 0.72 0.287 ± -6.30
0.032 0.034

Table 10.6: Average run time (in seconds) of algorithms in Table 10.5.

Test Case Run time
FACO FPSO

n15 50.3 28.9
n25 234.0 153.0
n33 553.3 433.0
n40 1521.2 1736.7
n50 5923.3 6328.1
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Table 10.7: Comparison of FACO and FPSO for UAO. dep = pheromone de-
posit rate, evap = pheromone evaporation rate, % imp = percentage improvement
achieved by FACO. OG = overall goodness. Statistically significant improvement is
in italics.

Case FACO FPSO
% imp

ants dep evap OG par Vmax c1, c2 w OG FACO
vs

FPSO

n15 30 0.8 0.3 0.334 ± 20 5 1.49 0.72 0.333 ± 0.30
0.002 0.002

n25 30 0.4 0.1 0.363 ± 30 5 0.5 0.72 0.339 ± 6.61
0.008 0.008

n33 25 0.8 0.3 0.349 ± 20 5 0.5 0.4 0.340 ± 2.58
0.006 0.008

n40 30 0.6 0.2 0.352 ± 30 5 0.5 0.72 0.351 ± 0.28
0.006 0.012

n50 30 0.6 0.2 0.336 ± 30 5 0.5 0.72 0.336 ± 0.0
0.004 0.003

it can be claimed that FACO performed better than FPSO for OWA.

As for UAO, the trends in Table 10.7 (with average run time given in Table 10.8)

are somewhat similar to that of OWA. In n25 and n33, FACO showed statistically

significant improvement in the quality of overall goodness compared to FPSO. How-

ever, for the other three cases, both FACO and FPSO showed equal performance as

there was no statistically significant difference in the results. Thus, it can be fairly

claimed that FACO also demonstrated better results than FPSO for UAO.

Since the swarm size is a common factor in both FACO and FPSO, it is important

to highlight the effect of this factor on the improvement of results. An observation

from Tables 10.5 and 10.7 shows the relation of swarm size with the best results:

for both FACO and FPSO, it is observed that the best results were obtained for

large swarm sizes. For example, for FACO, the best results were obtained when the
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Table 10.8: Average run time (in seconds) of algorithms in Table 10.7.

Test Case Run time
FACO FPSO

n15 31.3 29.7
n25 268.5 187.0
n33 528.1 428.1
n40 1561.9 1659.2
n50 6478.8 7074.9

largest number of ants, i.e. 30, were chosen. There were some instances, such as n40

in Table 10.5 and n33 in Table 10.7, where a number of ants equal to 25 produced

the best results. As for FPSO, the larger swarm size (25 and 30 particles) produced

the best results. There were some instances in both tables where a medium swarm

size of 20 produced the best results. In general, it can be said that the swarm size in

the two swarm intelligence techniques was directly proportional to the improvement

achieved in the quality of results.

10.3 Overall Comparison of OWA and UAO

This section provides an overall comparison of the OWA and UAO operators. This

comparison is based on the results presented in Chapters 5 to 9. In Chapter 5, UAO

produced much better results than OWA for TFStocE. Results in Chapter 6 revealed

that for DTFSimE, UAO performed better than OWA for the number of hops and

reliability objectives, and worse than OWA for the delay objective. However, for the

cost objective, both UAO and OWA produced results of equal quality. With regard

to TEFSA, results in Chapter 7 showed that UAO was better than OWA for the

cost objective, and worse than OWA for the delay and number of hops objectives.
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As for the reliability objective, both OWA and UAO showed equal performance. As

far as FACO and FPSO are concerned, results in Chapters 8 and 9 suggested that

UAO performed better than OWA for both algorithms. From the above discussion,

it can be fairly claimed that UAO is preferred to OWA.

10.4 Overall Best Algorithm

In Section 10.1, it was found that in the category of single solution algorithms,

TEFSA produced the best results among the three algorithms. As for the category

of population based algorithms, the results in Section 10.2 suggested that FACO

produced better results than FPSO. However, it will be interesting to compare the

two best algorithms from each category. Tables 10.9 and 10.10 provide a comparison

of TEFSA and FACO by using the OWA and UAO operators respectively. It is ob-

served from both tables that TEFSA achieved statistically significant improvement

over FACO for all test cases, and for both OWA and UAO.

Table 10.9: Comparison of FACO and TEFSA for OWA. dep = pheromone deposit
rate, evap = pheromone evaporation rate, Time = run time (in seconds), % imp =
percentage improvement achieved by TEFSA. Statistically significant improvement
is in italics.

Case FACO TEFSA % imp
ants dep evap Goodness Time Goodness Time

n15 30 0.2 0 0.313 ±0.032 50.3 0.389 ±0.056 89.5 19.54
n25 30 0.6 0.2 0.430 ±0.023 234.0 0.500 ±0.125 314.8 14.00
n33 30 0.8 0.3 0.362 ±0.022 553.3 0.429 ±0.192 764.7 15.62
n40 25 0.4 0.1 0.333 ±0.028 1521.2 0.489 ±0.047 1499.5 31.90
n50 30 0.8 0.3 0.270 ±0.032 5923.3 0.329 ±0.121 4295.4 17.93
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Table 10.10: Comparison of FACO and TEFSA for UAO. dep = pheromone deposit
rate, evap = pheromone evaporation rate, Time = run time (in seconds), % imp =
percentage improvement achieved by TEFSA. Statistically significant improvement
is in italics.

Case FACO TEFSA % imp
ants dep evap Goodness Time Goodness Time

n15 30 0.8 0.3 0.334 ±0.002 31.3 0.365 ±0.016 88.5 8.49
n25 30 0.4 0.1 0.363 ±0.008 268.5 0.412 ±0.064 322.4 11.89
n33 25 0.8 0.3 0.349 ±0.006 528.1 0.411 ±0.072 757.0 15.09
n40 30 0.6 0.2 0.352 ±0.006 1561.9 0.470 ±0.079 1564.4 25.11
n50 30 0.6 0.2 0.336 ±0.004 6478.8 0.374 ±0.050 3485.6 10.16

10.5 Conclusion

An overall comparison of the proposed techniques was presented in this chapter.

Since simulated annealing, simulated evolution, and stochastic evolution are algo-

rithms which operate on a single solution, their best results were mutually com-

pared. The comparison revealed that among TFStocE, DTFSimE, and TEFSA, it

was TEFSA that generally produced the best results. On the other hand, ant colony

optimization and particle swarm optimization are two swarm intelligence techniques

that maintain and evolve a collection of candidate solutions. A comparison of the two

swarm-based approaches showed that FACO had a better performance than FPSO.

An overall comparison showed that TEFSA produced the best results among all

algorithms proposed in this thesis. Moreover, an overall comparison of OWA and

UAO showed that UAO performed better than OWA.

The next chapter provides a brief summary of the thesis and some directions for

future research.
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Chapter 11

Conclusion

This thesis addressed the problem of the topology design of distributed local area

networks, modelled as a multi-objective optimization problem. The first main objec-

tive of the thesis was the design and analysis of some iterative heuristics and swarm

intelligence algorithms to address the DLAN topology design problem. This objec-

tive was accomplished by engineering a number of algorithms, such as simulated

evolution, stochastic evolution, simulated annealing, ant colony optimization, and

particle swarm optimization for the DLAN topology design problem. The second

main objective was to address the multi-objective nature of the problem, and was

accomplished by using fuzzy logic to aggregate individual objectives into a multi-

objective aggregation function. Hybridization of single-solution algorithms was also

investigated and new hybrid algorithms for the DLAN topology design problem were

proposed and evaluated.

The following sections briefly highlight the key findings and contributions of this

thesis, followed by a short discussion on directions for future research.
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11.1 Summary

Chapter 3 provided details on the formulation of a multi-objective topology design

problem for distributed local area networks. All necessary problem-specific infor-

mation, including assumptions, objectives, and constraints, were discussed in the

chapter. The chapter also discussed the integration of the multiple design objec-

tives into a single objective function using fuzzy logic.

Chapter 4 proposed and discussed a new fuzzy aggregation function, namely the

unified and-or (UAO) operator. The proposed UAO operator was theoretically and

empirically compared with the well-known ordered weighted average (OWA) oper-

ator. The UAO operator exhibited mathematical properties similar to that of the

OWA operator, and empirically performed better than OWA for the test instances.

The chapter also discussed a structured decision-making approach based on fuzzy

logic, with specific application to the problem of topology design of distributed local

area networks.

Chapter 5 proposed a fuzzy multi-objective technique based on the stochastic

evolution algorithm, termed as ‘FStocE’. A variant of the proposed stochastic evolu-

tion algorithm, ‘TFStocE’, was also proposed. This variant introduced tabu search

characteristics in the FStocE algorithm. The two variants were mutually compared

empirically, using the OWA and UAO operators. It was found that, in general,

TFStocE produced better results than FStocE for both the OWA and UAO oper-

ators. Moreover, an investigation was also done on a dynamic value of R, which is

an important parameter of the standard stochastic evolution algorithm. The results

suggested that the proposed approach for computing a dynamic R produced inferior
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solutions compared to the TFStocE algorithm, for both the OWA and UAO oper-

ators. As far as the effectiveness of the OWA and UAO operators are concerned,

the investigation found that UAO performed much better than OWA in optimizing

each of the four design objectives.

Chapter 6 proposed and investigated a fuzzy multi-objective algorithm based on

a simulated evolution algorithm, namely FSimE. A variant of FSimE, known as ‘TF-

SimE’, was also proposed. TFSimE incorporated tabu search characteristics in the

allocation phase of the FSimE algorithm. The comparison suggested that TFSimE

generally produced better results than FSimE. This improvement was observed in

both cases when OWA and UAO operators were used for aggregation of single ob-

jectives. Another issue investigated in the chapter was the usage of dynamic bias

value. Since bias is the only parameter in the simulated evolution algorithm, its

proper value has an impact on the quality of the solution. Results suggested that

the proposed approach for TFSimE based on dynamic bias value, denoted as DTF-

SimE, produced better results than TFSimE for all test cases with respect to OWA

and the majority of test cases for UAO. As far as the relative performance of the

OWA and UAO operators was concerned, it was found that UAO performed much

better than OWA for the number of hops and reliability design objectives, while

UAO had an inferior performance for the cost and delay objectives.

Chapter 7 investigated the effectiveness of a fuzzy simulated annealing algorithm

for the DLAN topology design problem. A fuzzy simulated annealing algorithm,

termed ‘FSA’, was proposed. Two variants of FSA were also developed. The first

variant introduced tabu search characteristics into FSA, and was named TFSA. The

second variant, namely TEFSA, introduced simulated evolution characteristics into
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TFSA. A comparison of the three variants of the simulated annealing algorithms

revealed that, generally, TEFSA produced better results than TFSA and FSA. This

trend was observed for both the OWA and UAO operators. Moreover, mutual

comparison of OWA and UAO with respect to the four design objectives suggested

that both operators had more or less similar results. Another issue discussed in

the chapter was the proposal of a dynamic value of an important parameter of

the simulated annealing algorithm, namely the Markov chain, M . Although the

proposed computation of dynamic M produced lower quality results than FSA,

degradation in quality was not very great.

Chapter 8 proposed and discussed a fuzzy multi-objective ant colony optimiza-

tion algorithm. Since heuristic value is an important factor of the ant colony algo-

rithm, a fuzzy heuristic value was proposed. Furthermore, since pheromone deposit

and evaporation, and the number of ants, are important parameters that play a

key role in the algorithm’s search direction, empirical analysis was done to study

the effect of these parameters. As far as pheromone deposit and evaporation was

concerned, better results were obtained when the difference in pheromone deposit

and evaporation rates was high. This was a general trend for both OWA and UAO.

As for the number of ants, relatively better results were obtained when the number

was high. As for the mutual comparison of OWA and UAO, results suggested that

UAO produced better results in the context of its usage in the fuzzy ant colony

optimization algorithm.

Chapter 9 presented a fuzzy multi-objective particle swarm optimization algo-

rithm for the DLAN topology design problem. A preliminary analysis of the effect

of the number of PSO parameters was provided. With respect to swarm sizes, it
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was found that larger sizes produced the best results compared to medium or small

sizes. With respect to acceleration coefficients, results suggested that having differ-

ent values of acceleration coefficients had no significant effect on the quality of final

solutions obtained, with respect to the three values tested. A similar observation

was made for inertia weight, where results revealed that the fuzzy PSO was insensi-

tive to the inertia weight to a considerable extent, for the three values of the inertia

weight used. As for velocity clamping, results suggest that the parameter also did

not have a very significant effect on the quality of the solution with respect to the

tested values. With respect to the performance of OWA and UAO, it was found

that, in general, UAO performed better than OWA.

Chapter 10 provided an overall comparison of the techniques proposed in this

thesis. Since simulated annealing, simulated evolution, and stochastic evolution

are algorithms which operate on a single solution, their best results were mutually

compared. On the other hand, ant colony optimization and particle swarm optimiza-

tion are two swarm intelligence techniques, which were compared with one another.

The comparison revealed that among TFStocE, DTFSimE, and TEFSA, the gen-

eral trend is that TEFSA produced the best results. As for FACO and FPSO, the

comparison suggested that FACO had a better performance than FPSO. Also, an

overall comparison showed that TEFSA produced the best results among all algo-

rithms proposed in this thesis. Moreover, an overall comparison of OWA and UAO

showed that UAO had better performance than OWA.

11.2 Future Research

Some directions for future research are summarized below.
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Efficient Approaches for Dynamic Parameters

Chapters 5, 6, and 7 discussed some approaches to dynamically adjust parameter

values. However, most of these approaches did not prove to be efficient in producing

high-quality solutions. More research is needed to devise highly efficient ways to

deal with dynamic assignment of parameter values. Furthermore, the parameters in

ACO and PSO are statically assigned by the user. Some research is also needed to

develop mechanisms to dynamically adjust their parameter values.

Hybridization of tabu search with ACO and PSO

Results in this thesis suggested that introducing tabu search characteristics into dif-

ferent algorithms resulted in better solutions. However, the hybridization was done

only on algorithms which operate on single solutions, such as simulated annealing,

simulated evolution, and stochastic evolution. The promising results encourage re-

search on incorporating tabu search characteristics or features of simulated evolution

into swarm intelligence algorithms.

Extension of Fuzzy PSO to the lbest Model

The fuzzy PSO introduced in Chapter 9 made use of the gbest PSO model. Results

for the proposed fuzzy PSO suggested that the algorithm was not very effective as

compared to ACO. Effectiveness of fuzzy PSO can possibly be enhanced by extend-

ing the algorithm for the lbest model, since previous research has suggested that the

lbest model may be more effective due to its better ability to escape local minima.

Therefore, a recommendation is to exploit the lbest model for fuzzy PSO.
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More In-depth Study of the Effects of the PSO parameters

Chapter 9 provided a preliminary analysis of the FPSO algorithm with at most three

values for each parameter. More in-depth study is required to asses the effects of

the PSO paramterers.

Application of Other Techniques to DLAN Topology Design

Problem

Other techniques such as genetic algorithms, differential evolution, and estimation

of distribution methods have been applied to a number of optimization problems.

A recommendation is that these techniques be engineered for the DLAN topology

design problem and that a comparative study be done with the techniques proposed

in this thesis.

Other Aggregation Techniques

The multi-objective aspects of the DLAN topology design problem presented in this

paper were addressed by fuzzy logic based aggregation functions such as UAO and

OWA. However, other techniques presented in Chapter 2 should also be exploited.

Application of the UAO Operator to other Multi-objective

Problems

The study of the UAO operator showed better performance as compared to the

OWA operator for the DLAN topology design problem. Therefore, application of

UAO to other multi-objective optimization problems should also be studied.
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