
Chapter 7

Fuzzy Simulated Annealing for

DLAN Topology Design

A fuzzy simulated annealing algorithm (FSA) is proposed in this chapter for DLAN

network topology design. Two variants of FSA are also proposed, as described

later in the chapter. These variants incorporate characteristics of the tabu search

and simulated evolution algorithms into the FSA algorithm. Another modification

of FSA is proposed later in this chapter, with the purpose of reducing the user’s

dependency in setting the value of the Markov chain factor of FSA. The performance

of FSA and its variants are empirically evaluated and mutually compared.

7.1 Fuzzy Simulated Annealing Algorithm

The studies in Section 2.4.4 focussed on the use of SA for network design problems

with a single objective. Therefore, more research was considered necessary to eval-

uate the performance of SA in a multi-objective environment. Another aspect of
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SA which deserves more attention is its hybridization with other iterative heuristics.

Considering the above two issues, this section proposes a fuzzy simulated annealing

algorithm for the DLAN topology design problem.

In the fuzzy SA algorithm for the DLAN network topology design, the neighbor-

hood state of a current solution is generated by randomly selecting a link li from

the topology and replacing li with another link lj not in the topology. The FSA

algorithm executes different steps similar to the basic SA algorithm discussed in

Section 2.4.4. These steps as adapted for FSA are discussed below in detail.

7.1.1 Initialization

The initial topology (a spanning tree) is generated randomly, while keeping in mind

the constraints mentioned earlier. The FSA control parameters are also initialized,

i.e. the initial temperature T0, the cooling rate αSA, the constant βSA, maximum

time for the annealing process MaxTime (in terms of number of iterations), and M

which represents the time until the next parameter update.

The control parameters have an impact on the convergence of the FSA algorithm.

As mentioned in Chapter 2, a suitable value of T0 should be chosen. A number

of approaches have been reported in the literature to find a suitable value of T0

[33, 126, 145, 167, 202]. In this thesis, the approach presented by Kirkpatrick et al.

[145] has been adopted. According to this method, the value of T0 is chosen such

that the initial acceptance ratio, χ(T0), is close to unity, where

χ(T0) =
Number of moves accepted at T0

Total number of moves attempted at T0

(7.1)
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In Equation (7.1), a ratio close to unity will allow a high majority of initial moves

to be accepted, thus allowing the algorithm to escape local minima. If the ratio is

low, then the FSA algorithm will mainly accept good moves and will behave as a

greedy algorithm, thus reducing the chances of escaping local minima, and resulting

in premature convergence.

As for the other parameters of FSA, a discussion has already been given in Section

2.4.4 with regard to the importance of these parameters as well as the selection of

appropriate values for them.

7.1.2 Metropolis Algorithm

The metropolis procedure uses a sub-procedure neighbor to perform a move. A move

involves removing a randomly selected link between two nodes from the current

solution (i.e. topology) and introducing another link between two nodes. A move

is represented by a local neighbor NewZ of any given solution Z. Removal of a link

and introduction of a new link is exactly the same as described in Section 5.1. This

new link is accepted if all constraints are satisfied and the new overall goodness

fulfils the metropolis criterion. The overall goodness represents the fuzzy value of a

solution given by Equation (3.11) or (4.1) and is calculated by function OG in the

pseudo-code of the simulated annealing algorithm given in Figure 2.10. If the overall

goodness of a new solution, NewZ (where NewZ is the restructured tree), is higher

than the overall cost of the current solution Z, then NewZ is definitely accepted.

However, if the overall goodness of NewZ is less than the overall goodness of the

current solution Z, then NewZ is accepted probabilistically based on the metropolis

criterion given by P (random < e−∆h/T ). If any of the constraints are violated, or if
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the new solution does not pass the metropolis criterion, then the new link is rejected

and the original link is restored.

7.1.3 Evaluation of a solution

During the Metropolis stage of the algorithm, a move is made which might result in

a new solution (if the constraints are satisfied and the new solution is definitely or

probabilistically accepted). The overall goodness of the resulting solution is com-

puted by combining the four criteria to be optimized using fuzzy logic, as described

in Section 3.4. To form the membership functions of individual objectives, the

minimum and maximum values are required for each objective, which have been

discussed earlier in Section 3.1.

7.1.4 Stopping Criterion

The algorithm is stopped when a maximum number of iterations is reached. For the

purposes of this thesis, the maximum number of iterations was set to 20,000.

7.2 Hybrid Simulated Annealing Algorithms

Apart from the FSA algorithm for DLAN topology design that was presented in

Section 7.1, two hybrid variants of the FSA algorithm are proposed in this sec-

tion. Section 7.2.1 presents a hybrid algorithm incorporating tabu search into the

FSA algorithm, while a hybrid algorithm incorporating tabu search and simulated

evolution characteristics into the FSA algorithm is presented in Section 7.2.2.
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7.2.1 Tabu Fuzzy Simulated Annealing

This thesis proposes a new hybrid iterative search technique, tabu simulated an-

nealing (TFSA), which combines features of TS within the metropolis procedure of

FSA. Recall that, in the metropolis procedure, a move is made in which a link is

randomly removed from the current solution (i.e. the current topology), and a new

feasible link is introduced in the solution. This newly accepted link is saved in a

tabu list. Thus, the attribute is the link itself. The aspiration criterion is that, if the

link that had been made tabu produces a higher membership value than the current

link in the membership function “good topology”, then the tabu status of the link is

overridden, making the link permanent. This strategy prevents the algorithm from

repetitively removing the same link and replacing it with a link of equal or worse

goodness.

7.2.2 Evolutionary Tabu Fuzzy Simulated Annealing

The hybrid tabu search FSA algorithm, TFSA, as described in Section 7.2.1 is

modified to incorporate the evaluation phase of the SimE algorithm. The resulting

algorithm is referred to as TEFSA. In TEFSA, the evaluation phase considers a

solution as a set of movable elements, where a movable element is a link. Each link,

li, has an associated goodness (fitness) measure, gi, in the interval [0,1], defined as

gi =
Oi

Ci
(7.2)

where Oi is the estimate of the optimal cost of the link li and Ci is the actual cost

of li in its current location. The fuzzy evaluation measure proposed in Rule 2 in
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Section 6.1.2 is used to evaluate the goodness of a link according to Equation (6.1).

The main objective of developing TEFSA is to obtain a better solution than

FSA and TFSA, with the same runtime for all algorithms. Recall that the metropo-

lis procedure of TFSA randomly removes a link, and a new link is introduced to

maintain the topology. There is a non-zero probability that this removed link was

already placed in its optimum (or near-optimum) position. If this process continues

blindly for other links with near optimum position, then it will take a significant

amount of time for the algorithm to converge. Rather than having a ‘blind move’, an

‘intelligent move’ would be more appropriate, where a link is removed based on its

quality. Thus, a link having low quality will have a higher chance of getting removed

from its current position, while a link with a high quality (i.e. in a near-optimum

position) will have a lower probability of being removed. On the other hand, with

the ‘blind move’ approach, each link in the topology has an equal probability of

being removed from its current position, irrespective of its quality. The ‘intelligent

move’ approach has been incorporated in TEFSA, with all links being evaluated

using Equation (6.1). After evaluation of all links, a set of links is randomly chosen.

The size of this set can vary from one link to all links evaluated. A large-sized set

will allow a higher number of low-quality links, but at the expense of more runtime.

On the other hand, a small-sized set will have less runtime, but many of the low-

quality links may not be a part of the set. In any case, the worst link from this set is

chosen and removed from the topology. The new link is then inserted as described

earlier, subject to constraints and the tabu criteria.
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7.3 Results and Discussion

The FSA, TFSA, and TEFSA algorithms proposed in this thesis were experimentally

tested using the five test cases. A variety of experiments were conducted to evaluate

the performance of the algorithms. The first set focussed on comparisons between

the three variants of SA. In the second set, a comparative analysis of OWA versus

UAO was done. Details of these experiments are discussed below.

The control parameters of FSA have an impact on the performance of the al-

gorithm, as discussed in Section 2.4.4. Inappropriate values for these parameters

may result in non-optimal solutions. After trials with several values for the initial

temperature, a value of T0=1000 was found to be the most appropriate since the

value satisfied the ratio in Equation (7.1) to be near unity. To find a good value

for αSA, the following values were considered: 0.6, 0.75, 0.85, 0.95, and 0.99. Two

values of the Markov chain with M =10 and M = 30 were tried, with the annealing

constant set at β = 1.1. This value of β was taken since a gradual change in the

value of M was desired. As shown in Tables 7.1 and 7.2, M = 30 and M = 10

produced results of equal quality, as validated by the t-test. In some cases, M = 10

produced slightly better results (marked in italics). Therefore, a value of M = 10

was used for all experimentation. For each variant of SA, 30 runs were executed

for each test case, and the average and standard deviation of overall goodness of

best solutions were calculated. For TFSA, different tabu list sizes as described in

Section 7.3.1 were tried. The best tabu list size obtained for TFSA was also used

for TEFSA. For fair comparison of the performance, the same initial solution was

used for all runs of the three variants for each test case. The three algorithms were

186

 
 
 



run for the same amount of absolute time.

Table 7.1: Summary of best overall goodness with Markov chain size M = 10 and M
= 30 using the OWA operator for FSA. % improvement shows improvement achieved
by M = 10 with reference to M = 30. Statistically significant improvement is in
italics.

Case αSA M = 10 M = 30 % improvement
Avg. Goodness Avg. Goodness

n15 0.95 0.206 ±0.035 0.203 ±0.034 1.33
n25 0.75 0.414 ±0.115 0.346 ±0.101 19.92
n33 0.85 0.623 ±0.369 0.543 ±0.380 14.70
n40 0.75 0.244 ±0.051 0.253 ±0.040 -3.65
n50 0.75 0.238 ±0.066 0.237 ±0.044 0.42

Table 7.2: Summary of best overall goodness with Markov chain size M = 10 and M
= 30 using the UAO operator for FSA. % improvement shows improvement achieved
by M = 10 with reference to M = 30. Statistically significant improvement is in
italics.

Case αSA M = 10 M = 30 % improvement
Avg. Goodness Avg. Goodness

n15 0.99 0.335 ±0.003 0.335 ±0.003 -0.03
n25 0.75 0.345 ±0.034 0.335 ±0.034 2.86
n33 0.75 0.351 ±0.092 0.394 ±0.087 -12.43
n40 0.85 0.382 ±0.068 0.368 ±0.061 3.69
n50 0.85 0.350 ±0.053 0.343 ±0.036 1.97

7.3.1 Effect of Tabu List size

The effect of the tabu list size was investigated for the TFSA algorithm with tabu

list sizes of 3, 5, 7, 9, 11, and 13. The effect was evaluated for both the OWA

and UAO operators. As for the previous chapters, the purpose of this investigation

is to see if the statement made by Glover [100] (mentioned in Section 5.3.1) can

be confirmed. Tables 7.3 and 7.4 summarize the average overall goodness for the
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best solutions for each test case with different tabu list sizes for OWA and UAO

respectively.

It is observed in Table 7.3 that the size of tabu list that is related to best overall

goodness varies for each case when OWA is used. A graphic illustration of the

variation in average overall goodness with respect to different sizes for OWA is given

in Figure 7.1. Table 7.3 also provides the percentage difference in the average overall

goodness of the given size when compared with size 7. For example, for case n33, the

average overall goodness obtained with size 9 was 19.35% better than that obtained

with size 7. It appears from the results in Table 7.3 that, in general, Glover’s first

observation that tabu list size of 7 does not always produce the best results seem

to be proven true. This observation is confirmed through validation of results using

the t-test. The t-test was performed (at 5% significance level) to test the hypothesis

whether the two averages (i.e. the average overall goodness obtained with a tabu list

size of XYZ and that of 7) were significantly different from each other. Percentage

improvements which are statistically significant are shown in italics. The t-test

results signify two important issues. First, in general there is no hard evidence that

the results produced by a tabu list size of 7 were statistically more significant than

the results produced by other sizes. This observation is obvious from the results of

n15, n25, n33, and n40, where size 7 failed to produce statistically better results than

any other size. Even for test case n50, size 7 did not result in significant improvement

as a whole; there is only one instance where size 7 produced better results than size

3. Second, there are instances where sizes other than 7 achieved statistically more

significant results than results obtained with size 7. These instances include a tabu

list size of 9 for n25, and the sizes 3, 9, and 13 for n33. Furthermore, Glover’s
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observation that size of the best tabu list increases as the test case size increases

was not found to be true.

As for UAO, a trend similar to that of OWA was observed, where the size for best

results varied with each test case. As observed from Table 7.4, there was only one

instance of n15 where size 7 produced statistically better results than size 3, with

an improvement of 0.93%. For other test cases, size 7 failed to produce statistically

significant results compared to other sizes. In some instances, tabu list sizes other

than 7 produced statistically better results. Such instances include n25, where tabu

list sizes of 3 and 9 respectively produced 4.71% and 6.7% better overall goodness

than size 7. Another instance is n40 where size 9 produced 11.40% better results

than size 7. A graphic illustration of the variation in average overall goodness with

respect to different tabu list sizes for UAO is given in Figure 7.2.

The conclusion from the above discussion and results is that it is not true that

a tabu list size of 7 will always produce the best results for any problem; the size of

the tabu list is problem-dependent. Moreover, the best tabu list size also does not

necessarily increase with increasing the size of test case.

7.3.2 Comparison of FSA, TFSA, and TEFSA

Table 7.5 summarizes the results of 30 runs obtained by TEFSA, TFSA, and FSA

for the OWA operator. The corresponding run time is given in Table 7.6. For each

test case, different values of αSA were tried, and the values which gave the best

results are reported in Table 7.5. The results show that the value of αSA is not

proportional to the size of the test case. For example, the best value of αSA for

n15 is 0.95, which is a small test case. A value of αSA = 0.85 gave best results for
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Table 7.3: Effect of tabu list size on the quality of overall goodness for TFSA using
OWA. Run time is in seconds. Statistically significant improvement is in italics. NA
= Not Applicable (since size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall Run time % Improvement
goodness

3 0.257 ± 0.041 53.9 -2.67
5 0.257 ± 0.041 74.1 -2.37

n15 7 0.264 ± 0.042 75.0 NA
9 0.265 ± 0.048 77.2 0.43
11 0.265 ± 0.047 61.1 0.69
13 0.250 ± 0.045 62.7 -5.31
3 0.502 ± 0.114 240.8 5.09
5 0.464 ± 0.134 242.1 -2.88

n25 7 0.478 ± 0.129 241.8 NA
9 0.532 ± 0.106 246.1 11.36
11 0.444 ± 0.141 247.1 -7.00
13 0.485 ± 0.114 265.0 1.44
3 0.526 ± 0.352 478.3 11.38
5 0.490 ± 0.358 475.7 3.87

n33 7 0.472 ± 0.359 492.2 NA
9 0.563 ± 0.362 509.2 19.35
11 0.501 ± 0.354 525.3 6.11
13 0.523 ± 0.350 567.1 10.78
3 0.321 ± 0.078 1457.4 -0.42
5 0.334 ± 0.099 1462.6 3.72

n40 7 0.322 ± 0.102 1491.4 NA
9 0.316 ± 0.076 1509.0 -1.81
11 0.309 ± 0.085 1542.4 -3.98
13 0.310 ± 0.089 1544.6 -3.90
3 0.254 ± 0.088 3208.1 -15.38
5 0.279 ± 0.076 3310.8 -6.85

n50 7 0.300 ± 0.068 3308.9 NA
9 0.316 ± 0.080 3289.6 5.52
11 0.275 ± 0.082 3342.0 -8.34
13 0.296 ± 0.092 3361.9 -1.41

190

 
 
 



Table 7.4: Effect of tabu list size on the quality of overall goodness for TFSA using
UAO. Statistically significant improvement is in italics. NA = Not Applicable (since
size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall Run time % Improvement
goodness

3 0.340 ± 0.008 53.3 0.15
5 0.336 ± 0.004 73.7 -0.93

n15 7 0.339 ± 0.008 76.3 NA
9 0.338 ± 0.006 77.2 -0.46
11 0.339 ± 0.006 61.3 -0.14
13 0.338 ± 0.005 65.4 -0.49
3 0.368 ± 0.032 594.0 4.71
5 0.360 ± 0.040 227.2 2.58

n25 7 0.351 ± 0.043 229.6 NA
9 0.375 ± 0.048 239.1 6.70
11 0.352 ± 0.039 234.1 0.23
13 0.352 ± 0.032 234.8 0.25
3 0.321 ± 0.068 772.3 -5.78
5 0.328 ± 0.080 754.2 -3.86

n33 7 0.341 ± 0.094 759.5 NA
9 0.339 ± 0.084 760.0 -0.59
11 0.316 ± 0.074 848.2 -7.31
13 0.337 ± 0.099 850.1 -1.05
3 0.450 ± 0.057 944.8 6.88
5 0.421 ± 0.070 944.9 0.04

n40 7 0.421 ± 0.070 1004.0 NA
9 0.469 ± 0.036 1032.6 11.40
11 0.431 ± 0.065 1061.9 2.44
13 0.440 ± 0.063 1088.9 4.54
3 0.356 ± 0.048 2050.9 -3.83
5 0.369 ± 0.062 2104.9 -0.30

n50 7 0.370 ± 0.061 2162.1 NA
9 0.393 ± 0.070 2214.6 6.13
11 0.379 ± 0.065 2270.0 2.30
13 0.370 ± 0.062 2322.5 -0.11
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Figure 7.1: Plots of maximum, minimum, and average values of membership function
“Good topology” versus tabu list size using the OWA operator for (a) n50 (b) n40
(c) n33 (d) n25 (e) n15
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Effect of Tabu list size for n50 - UAO
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Figure 7.2: Plots of maximum, minimum, and average values of membership function
“Good topology” versus tabu list size using the UAO operator for (a) n50 (b) n40
(c) n33 (d) n25 (e) n15
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Table 7.5: Summary of overall goodness and percentage improvement with OWA
for FSA, TFSA, and TEFSA. TL = Tabu list size, imp = percentage improvement.
Statistically significant improvement is in italics.

Case αSA FSA TFSA TEFSA % imp % imp %imp
Goodness TL Goodness Goodness TEFSA TEFSA TFSA

vs FSA vs TFSA vs FSA

n15 0.95 0.206±0.04 9 0.265±0.05 0.389±0.06 89.14 47.13 28.56

n25 0.75 0.391±0.12 9 0.53±0.106 0.500±0.13 27.81 -6.11 36.12

n33 0.85 0.646±0.37 9 0.563±0.36 0.429±0.19 -33.56 -23.79 -12.82

n40 0.75 0.231±0.05 7 0.322±0.10 0.489±0.08 111.56 51.68 39.48

n50 0.75 0.198±0.07 9 0.316±0.08 0.329±0.12 66.39 4.10 59.83

Table 7.6: Average run time (in seconds) of algorithms in Table 7.5.

Test Case Run time
FSA TFSA TEFSA

n15 89.0 89.2 89.5

n25 314.4 315.1 314.8

n33 765.1 765.2 764.7

n40 1498.8 1498.4 1499.5

n50 4295.8 4296.6 4295.4

n33 which is a medium size case. However, the best value of αSA was 0.75 for n25,

n40, and n50. Notice that n25 is a small size test case, while n40 and n50 are large

size test cases. As for the UAO operator, Table 7.7 reports similar trends as that of

OWA with respect to αSA. There is no clear trend which would suggest that the test

case size is directly or inversely proportional to αSA. Therefore, it can be concluded

that the best value of αSA is problem-dependent.

As far as the comparison of TEFSA, TFSA, and FSA with respect to OWA is

concerned, it is observed from Table 7.5 that TEFSA obtained the best results among

the three variants for most test cases. As per the table, TEFSA had statistically

better overall goodness than FSA for test cases n50, n40, n25, and n15, as validated
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Table 7.7: Summary of overall goodness and percentage improvement with UAO
for FSA, TFSA, and TEFSA. TL = Tabu list size, imp = percentage improvement.
Statistically significant improvement is in italics.

Case αSA FSA TFSA TEFSA % imp % imp %imp
Goodness TL Goodness Goodness TEFSA TEFSA TFSA

vs FSA vs TFSA vs FSA

n15 0.99 0.335±0.0 7 0.339±0.01 0.365±0.02 9.16 7.68 1.37

n25 0.75 0.345±0.03 9 0.375±0.05 0.412±0.06 19.30 9.82 8.63

n33 0.75 0.339±0.09 7 0.341±0.09 0.411±0.07 21.14 20.55 0.49

n40 0.85 0.374±0.07 9 0.469±0.04 0.470±0.08 25.72 0.30 25.34

n50 0.85 0.350±0.05 9 0.388±0.07 0.374±0.05 6.99 -3.48 10.85

Table 7.8: Average run time (in seconds) of algorithms in Table 7.7.

Test Case Run time
FSA TFSA TEFSA

n15 88.0 88.3 88.5

n25 321.3 322.1 322.4

n33 757.6 758.5 757.0

n40 1564.5 1565.6 1564.4

n50 3485.3 3484.6 3485.6

by the t-test (performed at 5% significance level). However, for n33, FSA obtained

statistically better results than TEFSA. As for comparison of TEFSA and TFSA,

results in Table 7.5 suggest that TEFSA produced results that were statistically

significantly better for n15 and n40. For n25, n33, and n50, TEFSA and TFSA had

results of equal quality, as validated by the t-test. All in all, it can be fairly claimed

that TEFSA performed better than the other two variants when OWA was used.

The above observations are further supported by Figure 7.3. In this figure, the

average performance of the three algorithms is compared by plotting the frequency

of solutions in different membership (i.e. overall goodness) range. The plots for

n50, n40 and n15 show that TEFSA has more solutions in the higher membership
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Figure 7.3: Frequency of solution in different membership ranges for function “Good
topology” using the OWA operator for FSA, TFSA, and TEFSA for (a) n50 (b) n40
(c) n33 (d) n25 (e) n15
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Figure 7.4: Frequency of solution in different membership ranges for function “Good
topology” using the UAO operator for FSA, TFSA, and TEFSA for (a) n50 (b) n40
(c) n33 (d) n25 (e) n15
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range than TFSA and FSA. For example, in Figure 7.3(a), TEFSA has around 10

solutions in the goodness range 0.41 − 0.6, whereas TFSA and FSA have less than

2 solutions in the same range. A similar pattern is apparent in Figure 7.3(b) where

TEFSA has almost all solutions in the range 0.41 − 0.6. In contrast, TFSA has

less than 10 solutions in the same range, while FSA has none. For n15 (Figure

7.3(e)), the pattern is somewhat similar to Figure 7.3(a). For n25, TFSA shows

the best performance, which is apparent from plots in Figure 7.3(d), where it is

observed that TFSA had more solutions than TEFSA in the ranges 0.41 − 0.6 and

0.61 − 0.8. In this plot, FSA has the worst performance since most of its solutions

fall in ranges 0.21−0.4 and 0.41−0.6. Finally, for n33, the plots show that FSA has

more solutions than TEFSA and TFSA in the range 0.81− 1, with TEFSA showing

the least number of solutions than FSA and TFSA.

With respect to the UAO operator, a mutual comparison of performance of

TEFSA, TFSA, and FSA is given in Table 7.7. The table clearly shows that TEFSA

was the best for all test cases except n50. For this test case, TEFSA and TFSA had

almost the same level of performance. This particular observation is also supported

by the graphs in Figure 7.4, where it is observed that, for n50, TFSA had more

solutions in the higher overall range (0.41 − 0.6) than TEFSA and FSA. For other

test cases, TEFSA has more solutions than FSA and TFSA in higher goodness

ranges, which is clearly visible in test cases n33, n25 and n40. The results and

observations presented above suggest that TEFSA performed better than the other

two variants for UAO.

It is evident from the above discussion that, in general, TEFSA was able to

produce results of higher quality than TFSA and FSA, for both OWA and UAO.
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This superior performance of TEFSA can be attributed to the fact that TEFSA

performs a more efficient exploration of the search space than TFSA and FSA (refer

to Section 7.2.2). Recall that, in TEFSA, links with bad goodness have a higher

probability of being removed from the topology, while links which are already in

“good” positions have a lower probability of being removed. This characteristic of

TEFSA makes it different from TFSA and FSA, where all links, whether good or

bad, have equal probability of being removed. This explanation is also supported

by the results in Table 7.9, where the average goodness of links (AGL) for FSA,

TFSA, and TEFSA is given for test cases n33 and n40. The AGL is calculated as

the average of 30 runs, and, for each run, the value of AGL associated with the best

solution in that run is taken. As observed from Table 7.9, there is clear evidence

that the AGL for TEFSA was higher than that for TFSA and FSA. In other words,

TEFSA was able to retain links of higher goodness, while TFSA and FSA were not

so efficient in retaining links of higher goodness.

As far as a comparison of TFSA and TSA is concerned, it is observed from Tables

7.5 and 7.7 that TFSA produced statistically better results than TSA for all cases,

with the exception of n33, as depicted in the last columns of Tables 7.5 and 7.7. A

possible explanation for the better performance of TFSA in comparison to FSA is

that there might be certain moves which are recursively repeated. For example, a

link is removed from the topology and placed back in its position. It is quite possible

that, in the next iteration, the same link is chosen, removed, and placed back in its

location. If this process continues for a certain amount of time, then the algorithm

will not improve the solution and execution time will be wasted. However, TFSA

prevents this situation from occurring, thus allowing the algorithm to explore more
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of the search space and obtain a better quality solution than FSA. This explanation

is also supported by the subsequent example where two typical runs for FSA and

TFSA for n40 (while using OWA) were compared in terms of number of repeated

moves. The results suggest that out of the 20000 moves performed for each run,

FSA had 6842 moves repeated, while TFSA had 4103 moves repeated. That is,

FSA repeated 2739 additional moves compared to TFSA. In other words, TFSA

had 2739 new moves compared to FSA. These additional new moves allowed TFSA

to explore a bigger part of the search space than did FSA, thus resulting in higher

quality solutions.

Table 7.9: Average goodness of links for FSA, TFSA, and TEFSA using the OWA
operator. AGL represents the average goodness of links. Statistically significant
percentage difference is given in italics.

Case AGL % Difference % Difference
FSA TFSA TEFSA TEFSA vs FSA TEFSA vs TFSA

n33 0.491 0.597 0.733 17.71 18.61
n40 0.401 0.484 0.646 17.12 25.09

Figure 7.5 illustrates a typical performance pattern over time for TEFSA, TFSA,

and FSA, with respect to the best value of membership function “Good topology”

(i.e. best overall goodness) using the OWA operator. It is observed that, for all test

cases, the overall goodness of TESA generally stays higher than that of FSA and

TFSA. For example, for n50, the overall goodness of FSA, TFSA, and TEFSA is

the same at time 0 (since all three algorithms start with the same initial solution).

However, as time progresses, the overall goodness of TEFSA increases at a faster rate

than FSA and TFSA. This pattern is also prominent in cases n25 and n15. However,

for n40 and n33, there are some time instances where TESA attains higher overall
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goodness than TEFSA. As for UAO, Figure 7.6 shows patterns similar to that of

OWA. In all test cases, TEFSA either maintains a higher overall goodness or the

same level of goodness, when compared with TESA and TSA.

With respect to the performance patterns of TESA and TSA, Figures 7.5 and

7.6 show that TESA generally maintains a higher goodness level than TSA for both

OWA and UAO. However, there are a few instances, such as n50 in Figure 7.5(a)

and n15 in Figure 7.5(e), where both TESA and TSA maintain the same level of

overall goodness for a major portion of the runtime.

7.4 Dynamic Markov chain size

The effect of Markov chain, M , on the convergence of SA algorithm was discussed

in detail in Section 2.4.4. A too high value of M increases the algorithm runtime

unnecessarily, while a too low value may produce results of low quality. Therefore, it

is necessary to find an appropriate value of M . It will be more efficient if the value of

the Markov chain is dynamically adjusted. The motivation behind a dynamic value

of the Markov chain is that it is computationally expensive to find the best value

of M by a process of trial-and-error. A dynamic value of M can be achieved by

enhancing the capabilities of the SA algorithm such that the algorithm itself adjusts

the value of M , rather than using a pre-defined static value of M . Considering the

above points, it is proposed that at each iteration, t, the value of the Markov chain

be calculated as:
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Figure 7.5: Plots of best value of membership function “Good topology” versus
execution time using the OWA operator for FSA, TFSA, and TEFSA for (a) n50
(b) n40 (c) n33 (d) n25 (e) n15
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Figure 7.6: Plots of best value of membership function “Good topology” versus
execution time using the UAO operator for FSA, TFSA, and TEFSA for (a) n50
(b) n40 (c) n33 (d) n25 (e) n15
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M(t) =











M(t− 1) + ( 1
L

∑L
i=1 gli(t))/µ if µ 6= 0

M(t− 1) + 1 if µ = 0

(7.3)

where M(t) is the bias at iteration t, gli(t) is the goodness of all links in the solution

at iteration t, L is the total number of links in the solution at iteration t, and µ is

the overall goodness of the solution at time t. From Equation (7.3), the value of

the Markov chain length is updated by a factor which is a function of the average

goodness of links present in the current solution divided by the overall goodness

(solution membership) µ of the solution, provided that the goodness of solution is

not zero. However, the goodness of solution can be zero in an iteration, resulting

in M = ∞. To avoid this, M is incremented by 1 in the case where the goodness

of solution is zero. The above strategy to dynamically adjust the value of M was

incorporated into the TEFSA algorithm. The resulting algorithm is referred to as

the DTEFSA algorithm.

Tables 7.10 and 7.11 respectively present the results obtained for dynamic M

for both the OWA and UAO operators. It is obvious from these tables that the

computation of M based on Equation (7.3) did not produce better results than

FSA. For the OWA operator, a degradation was observed in the quality of overall

goodness produced by DTEFSA in most of the cases, as shown in Table 7.10. This

degradation was mainly in the range of 14% to almost 72%. There was an exception

to the above trend, where an improvement of 2.13% was observed for DTEFSA with

test case n15. As for the UAO, a trend similar to that of OWA is observed, where

DTEFSA produced results of lesser quality for all cases. The degradation was in

the range of 4% to 19.5%. Statistical testing with the t-test also confirmed that the
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degradation in results reported in Tables 7.10 and 7.11 was statistically significant.

From the above discussion, a general observation is that DTEFSA was not able

to produce better results than FSA. However, the extent of degradation of perfor-

mance by DTEFSA for UAO was far less than that of OWA. This information gives

motivation for improving the proposed dynamic M measure such that the gap ob-

served in the quality of solution is reduced or completely eliminated. A modified

approach for DTEFSA can be proposed where different combinations of parameters

in Equation (7.3) can be tried.

Table 7.10: Comparison of FSA and DTEFSA for OWA. Time = Run time (in
seconds). % imp shows percentage improvement achieved by DTEFSA compared to
FSA. Statistically significant results are in italics.

Case αSA FSA DTEFSA % imp
Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.95 0.206 ±0.035 89.0 9 0.210 ±0.057 93.9 2.13
n25 0.75 0.391 ±0.145 314.4 9 0.257 ±0.008 300.1 -34.31
n33 0.85 0.646±0.363 765.1 9 0.184 ±0.012 791.5 -71.56
n40 0.75 0.231 ±0.067 1498.8 7 0.199 ±0.007 1911.6 -14.24
n50 0.75 0.198 ±0.046 4295.8 9 0.173 ±0.019 4161.5 -12.80

7.4.1 Comparison of OWA and UAO

The relative performance of the OWA and UAO operators was also compared with

respect to the four individual objectives, by taking the averages of 30 runs for the

three algorithms. With respect to the Cost objective, OWA performed slightly better

than UAO for FSA, since OWA generated statistically better results for n25 and

n50, while UAO generated better results for n33, as shown in Table 7.12. With

regard to TFSA, again OWA was better than UAO, since OWA generated better
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Table 7.11: Comparison of FSA and DTEFSA for UAO. Time = Run time (in
seconds). % imp shows percentage improvement achieved by DTEFSA compared to
FSA. Statistically significant results are in italics.

Case αSA FSA DTEFSA % imp
Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.99 0.335 ±0.003 88.0 7 0.321 ±0.028 98.9 -3.93
n25 0.75 0.345 ±0.034 321.3 9 0.303 ±0.007 225.8 -12.08
n33 0.75 0.339 ±0.088 757.6 7 0.313 ±0.017 739.1 -7.65
n40 0.85 0.377 ±0.066 1564.5 9 0.304 ±0.006 1950.9 -19.49
n50 0.85 0.350 ±0.053 3485.3 9 0.285 ±0.013 2496.9 -18.65

results for test cases n50, n40 and n25 as shown in Table 7.13. For TEFSA, UAO

performed better than OWA, since UAO produced solutions with lesser costs than

OWA for n50 and n25, while for n15, n33, and n40, UAO and OWA produced results

of equal quality, as statistically tested and reported in Table 7.14.

For the Delay objective, OWA performed relatively better than UAO for all three

algorithms. For FSA, OWA produced lesser delays for two cases (n15 and n40) than

UAO as shown in Table 7.15. Similarly, for TFSA, OWA showed more improvement

for n50, n40, and n15, and equal improvement for n25 and n33 as shown in Table

7.16. As for TEFSA, OWA had statistically better results for n50, n40, and n25,

and equal performance for n15, as shown in Table 7.17.

As far as number of hops is concerned, OWA generally performed better than

UAO. For example, OWA performed better than UAO for all test cases except n50,

n40, and n15 for FSA as shown in Table 7.18. For TFSA (Table 7.19), OWA had

more improvement for n50, n40, and n15. For TEFSA, OWA again performed better

than UAO for test cases n50, n33, and n25, as shown in Table 7.20.

Finally, for the Reliability objective, UAO and OWA performed equally well.
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Table 7.12: Comparison of OWA and UAO for monetary cost of best solutions of
30 runs for FSA. % imp = percentage improvement achieved by UAO compared to
OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 11422.0 ±1266.5 10850.3 ±1475.9 5.0 UAO and OWA

statistically equal
n25 12346.0 ±2549.7 15453.3 ±1831.8 -25.2 OWA statistically better
n33 27645.6 ±2730.4 22355.5 ±6419.9 19.1 UAO statistically better
n40 34932.9 ±4002.5 35566.0 ±2526.4 -1.8 UAO and OWA

statistically equal
n50 45508.6 ±3772.7 50443.8 ±3405.3 -10.8 OWA statistically better

Table 7.13: Comparison of OWA and UAO for monetary cost of best solutions of
30 runs for TFSA. % imp = percentage improvement achieved by UAO compared
to OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 9647.7 ±910.3 9494.3 ±1108.6 1.6 UAO and OWA

statistically equal
n25 10788.1 ±1448.1 13288.5 ±1747.4 -23.2 OWA statistically better
n33 26969.2 ±2641.5 26396.6 ±2622.1 2.1 UAO and OWA

statistically equal
n40 31599.9 ±4728.8 35608.5 ±2250.0 -12.7 OWA statistically better
n50 45241.5 ±3835.8 49910.9 ±3329.4 -10.3 OWA statistically better

Table 7.14: Comparison of OWA and UAO for monetary cost of best solutions of
30 runs for TEFSA. % imp = percentage improvement achieved by UAO compared
to OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 7968.7 ±563.3 7716.7 ±701.6 3.2 UAO and OWA

statistically equal
n25 9792.2 ±1255.2 8580.2 ±1736.7 12.4 UAO statistically better
n33 17423.3 ±1514.4 18067.1 ±2595.9 -3.7 UAO and OWA

statistically equal
n40 21851.2 ±1888.8 21701.9 ±1401.0 0.7 UAO and OWA

statistically equal
n50 31642.0 ±6766.2 28239.2 ±3657.3 10.8 UAO statistically better
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Table 7.15: Comparison of OWA and UAO for delay of best solutions of 30 runs
for FSA. % imp = percentage improvement achieved by UAO compared to OWA.
Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.0031 ±0.0002 0.0036 ±0.0004 -15.8 OWA statistically better
n25 0.0036 ±0.0004 0.0037 ±0.0007 -2.8 UAO and OWA

statistically equal
n33 0.0076 ±0.0038 0.0083 ±0.0145 -9.7 UAO and OWA

statistically equal
n40 0.0061 ±0.0008 0.0095 ±0.0109 -55.4 OWA statistically better
n50 0.0075 ±0.0073 0.0083 ±0.0038 -10.0 UAO and OWA

statistically equal

Table 7.16: Comparison of OWA and UAO for delay of best solutions of 30 runs
for TFSA. % imp = percentage improvement achieved by UAO compared to OWA.
Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.0030 ±0.0002 0.0032 ±0.0003 -5.24 OWA statistically better
n25 0.0034 ±0.0002 0.0034 ±0.0004 0.36 UAO and OWA

statistically equal
n33 0.0066 ±0.0059 0.0064 ±0.0063 4.19 UAO and OWA

statistically equal
n40 0.0055 ±0.0006 0.0071 ±0.0024 -29.85 OWA statistically better
n50 0.0056 ±0.0023 0.0093 ±0.0134 -65.37 OWA statistically better

Table 7.17: Comparison of OWA and UAO for delay of best solutions of 30 runs for
TEFSA. % imp = percentage improvement achieved by UAO compared to OWA.
Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.0030 ±0.0002 0.0030 ±0.0002 0.0 UAO and OWA

statistically equal
n25 0.0034 ±0.0002 0.0039 ±0.0008 -15.1 OWA statistically better
n33 0.0073 ±0.0127 0.0058 ±0.0014 20.6 UAO statistically better
n40 0.0056 ±0.0005 0.0066 ±0.0016 -17.4 OWA statistically better
n50 0.0055 ±0.0032 0.0066 ±0.0039 -19.7 OWA statistically better
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Table 7.18: Comparison of OWA and UAO for number of hops of best solutions of
30 runs for FSA. % imp = percentage improvement achieved by UAO compared to
OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 5.9 ±0.7 7.2 ±1.3 -20.8 OWA statistically better
n25 6.3 ±1.4 6.5 ±1.9 -4.3 UAO and OWA statistically equal
n33 11.2 ±2.9 9.7 ±3.2 13.9 UAO statistically better
n40 9.5 ±1.2 11.7 ±1.5 -23.2 OWA statistically better
n50 9.9 ±1.5 12.0 ±1.9 -20.5 OWA statistically better

Table 7.19: Comparison of OWA and UAO for number of hops of best solutions of
30 runs for TFSA. % imp = percentage improvement achieved by UAO compared
to OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 5.6 ±0.8 6.3 ±1.0 -13.10 OWA statistically better
n25 5.3 ±0.9 5.1 ±1.3 3.77 UAO and OWA statistically equal
n33 9.7 ±2.5 8.6 ±2.9 11.38 UAO and OWA statistically equal
n40 8.5 ±1.2 11.0 ±1.4 -29.80 OWA statistically better
n50 8.8 ±1.3 10.8 ±1.9 -22.64 OWA statistically better

Table 7.20: Comparison of OWA and UAO for number of hops of best solutions of
30 runs for TEFSA. % imp = percentage improvement achieved by UAO compared
to OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 5.2 ±0.7 5.5 ±0.6 -5.1 UAO and OWA statistically equal
n25 5.5 ±1.2 6.8 ±2.5 -23.5 OWA statistically better
n33 7.8 ±1.0 8.7 ±1.9 -10.6 OWA statistically better
n40 9.1 ±1.0 9.2 ±1.2 -0.7 UAO and OWA statistically equal
n50 7.9 ±1.1 8.8 ±1.2 -11.8 OWA statistically better
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Table 7.21: Comparison of OWA and UAO for reliability of best solutions of 30 runs
for FSA. % imp = percentage improvement achieved by UAO compared to OWA.
Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.273 ±0.000 0.273 ±0.000 0.0 UAO and OWA statistically equal
n25 0.091 ±0.019 0.089 ±0.018 2.9 UAO and OWA statistically equal
n33 0.064 ±0.022 0.059 ±0.011 8.5 UAO and OWA statistically equal
n40 0.036 ±0.005 0.037 ±0.000 -3.6 UAO and OWA statistically equal
n50 0.023 ±0.004 0.024 ±0.003 -4.4 UAO and OWA statistically equal

Table 7.22: Comparison of OWA and UAO for reliability of best solutions of 30 runs
for TFSA. % imp = percentage improvement achieved by UAO compared to OWA.
Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.273 ±0.000 0.272 ±0.000 0.04 UAO and OWA statistically equal
n25 0.092 ±0.038 0.087 ±0.015 5.86 UAO and OWA statistically equal
n33 0.061 ±0.003 0.063 ±0.017 -3.32 UAO and OWA statistically equal
n40 0.037 ±0.000 0.037 ±0.000 0.02 UAO and OWA statistically equal
n50 0.025 ±0.000 0.025 ±0.000 0.14 UAO and OWA statistically equal

Table 7.23: Comparison of OWA and UAO for reliability of best solutions of 30
runs for TEFSA. % imp = percentage improvement achieved by UAO compared to
OWA. Statistically significant results are in italics.

Case OWA UAO % imp Remarks
n15 0.273 ±0.001 0.272 ±0.000 0.1 UAO and OWA statistically equal
n25 0.095 ±0.031 0.088 ±0.014 7.9 UAO statistically better
n33 0.060 ±0.000 0.060 ±0.000 0.2 UAO and OWA statistically equal
n40 0.037 ±0.000 0.037 ±0.000 0.0 UAO and OWA statistically equal
n50 0.020 ±0.007 0.024 ±0.004 -19.0 OWA statistically better
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For example, both UAO and OWA produced statistically equal results for FSA as

observed in Table 7.21. The same situation was observed in Table 7.22 for TFSA

where OWA and UAO showed statistically equal improvement for all test cases.

Finally, for TEFSA, a trend similar to FSA and TFSA was observed (refer to Table

7.23), where UAO and OWA had equal improvement for four test cases. The only

exception was n50, where OWA showed statistically better improvement than UAO.

7.5 Conclusion

This chapter presented a novel approach for topology design of DLANs based on a

fuzzy simulated annealing (FSA) algorithm. Two variants of the FSA algorithm were

proposed, namely tabu FSA (TFSA) and evolutionary tabu FSA (TEFSA). TFSA

combines FSA with tabu search, while TEFSA integrated features of tabu search

and simulated evolution with FSA. The performance of the three algorithms was

evaluated using both the OWA and UAO operators. Results suggest that TEFSA

generally performed better than the other two variants. Moreover, the performance

of UAO and OWA were found to be comparable. Another issue discussed in the

chapter was the proposal of dynamic assignment of the Markov chain, M . Although

the proposed computation of dynamic M produced lower quality results than FSA,

degradation in quality was not significant.

The next chapter proposes and discusses a swarm intelligence technique, namely

ant colony optimization, in the context of its application to the multi-objective

DLAN topology design problem.
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Chapter 8

Fuzzy Ant Colony Optimization

Algorithm for DLAN Topology

Design

This chapter presents a fuzzy multi-objective ant colony optimization algorithm for

the DLAN topology design problem. The chapter first discusses the main features

of the algorithm, which include the discussion on the fuzzy heuristic value, and the

fuzzy multi-objective function to assess the quality of solution generated by an ant.

This is followed by empirical results to evaluate the performance of the fuzzy ACO

algorithm. This evaluation is based on a number of ACO parameters, which include

pheromone deposit and evaporation rate and the number of ants. The performance

of the OWA and UAO operators is also evaluated through their usage with the ant

colony algorithm.
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8.1 Fuzzy Ant Colony Optimization Algorithm

As discussed earlier in Section 2.4.6, Ant Colony Optimization (ACO) is a relatively

new optimization algorithm. The ACO maintains a population of ants, where each

ant is responsible for building a feasible network topology. The ant starts with the

root node and incrementally builds a topology. The guiding factors in the process of

decision and selection of a particular path are the heuristic value, pheromone trail,

and evaporation. A complete tour by an ant results in a complete feasible network

topology. Below, each step of the proposed fuzzy ACO is presented.

8.1.1 Initialization (Generation of Ants)

Since ACO is a population-based algorithm, initialization consists of generating a

set of candidate solutions. These initial solutions are generated randomly. That is,

each ant produces a solution without any feedback or previous information about the

paths. However, while an ant is generating a solution, the constraints are checked

at each step to ensure feasible initial solutions. Algorithm parameters (such as

pheromone deposit and evaporation rates, as well as values of αant and βant) are

also initialized in this phase.

8.1.2 Ants Activity

Once the initial set of solutions is generated, the next step is to find the probability

of selecting link l between nodes i and j for the kth ant, and to apply pheromone

deposit and pheromone evaporation rules. The approach adopted in this work is

to update pheromone values based on the solution generated by the “elitist” ant
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only (discussed in Section 2.4.6). More specifically, the iteration-based elitist ant

approach [10, 117, 170] has been used in this thesis. In every iteration following

initialization, each ant constructs a solution using the link selection probability

function given in the following equation:

pkij(t) =
[τij(t)]

αant [ηij]
βant

∑

l∈Ni
[τij(t)]αant [ηij]βant

(8.1)

where Ni is the set of neighbors of node i, pkij(t), is the probability of selecting a

connection l between nodes i and j for the kth ant, τij is the pheromone on connection

l, and ηij is the heuristic value of connection l. αant and βant represent the influence

of pheromone content and heuristic respectively.

Once each ant has finished its tour and found a valid solution, the ant which

generates the highest value for Equation (3.11) (or Equation (4.1)) is taken as the

elitist ant. This ant is allowed to update the pheromone value. For each link that

occurs in the solution of the elitist ant, pheromone is updated by adding ∆τij to the

current pheromone concentration of that link. Pheromone evaporation takes place

on all links, irrespective of whether the links are part of the elitist ant or not. The

updated values of pheromone are then passed to following ants, and the above cycle

is repeated until a predefined stopping condition is met.

The prime advantage of the above elitist ant approach is that the approach

forces the ants to search more rigorously near the best solution that has been found

so far. However, the approach can have a disadvantage of exploiting too much, and

exploring less.
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8.1.3 Fuzzy Heuristic Value

Another novelty of the proposed fuzzy ACO is the introduction of a fuzzy heuristic

value in Equation (8.1) above. The heuristic value ηij basically provides an insight

into the structure of the individual elements of the solution. In the context of DLAN

topology design, each element is a link between any two nodes i and j. The heuristic

value of a link is calculated exactly as given in Equation (6.1). Details of calculating

the upper and lower bounds for each objective in Equation (6.1) have already been

discussed in Chapter 6.

8.2 Results and Discussion

The fuzzy ACO was applied to the five test cases. To give equal importance to

pheromone level on a link and the heuristic value of the link, both αant and βant

were taken as 0.5. The main focus of the experiments was to study the effect of

the colony size (i.e. number of ants), and the effect of pheromone deposit and

evaporation, and also to evaluate the performance of the ACO using the OWA

and UAO operators. Table 8.1 shows the combinations of pheromone deposit and

evaporation rates used in the experiments. The colony was taken as 10, 15, 20, 25,

and 30 ants. Thirty independent runs were made for each parameter setup, and

the average of best solutions found in each run was reported, with the standard

deviation. Each test instance was run for 100 iterations.
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Table 8.1: Parameter settings for fuzzy ACO used in experiments. DEP = difference
between pheromone deposit and evaporation rates.

Parameter set Pheromone rates DEP
Deposit Evaporation

Set 1 0.2 0.0 0.2
Set 2 0.4 0.1 0.3
Set 3 0.6 0.2 0.4
Set 4 0.8 0.3 0.5

8.2.1 Effect of Pheromone Deposit and Evaporation

An objective of the work was to study the effect of pheromone deposit and evapora-

tion. In the original ACO algorithm, the trail is updated proportional to the quality

of solution as given in Equation (2.24). This does not provide enough insight into

the effect of high and low pheromone deposit and evaporation rates. Therefore,

pheromone update and evaporation were statically assigned to links. The parame-

ters in Table 8.1 were used to study the effect of pheromone deposit and evaporation.

These parameters depict different rates of pheromone deposit and evaporation, as

given in columns 2 and 3 respectively. Column 4 of the table depicts the difference

between the pheromone deposit and evaporation rate, denoted by DEP. Note that

in Table 8.1, the gap between pheromone deposit and evaporation rates (i.e. DEP)

increases with each set. For example, in Set 1, the difference between deposit and

evaporation was 0.2. DEP gradually increased in each set and reached a maximum

of 0.5 in Set 4. Experiments were done using 20 ants.

Table 8.2 depicts the best and worst overall goodness achieved using OWA. The

last column depicts the percentage improvement obtained when the two situations

were compared. As an example, consider the case of n25, where the overall goodness
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of 0.421 was obtained with DEP = 0.4 (i.e. deposit = 0.6 and evaporation =

0.2), while for DEP = 0.2 (representing deposit = 0.2, and evaporation = 0.0), the

overall goodness was 0.277. This resulted in an improvement of 34.17% which was

achieved when the gap between deposit and evaporation was high. As is obvious

from the table, moderate to high improvements were achieved for almost all cases.

An exception was case n15, where the best results were obtained when the deposit

rate was low and no evaporation was allowed (DEP = 0.2), giving an improvement

of 17.01% over the lowest goodness levels obtained with DEP = 0.5. A general

trend in this table suggests that the worst results were obtained when the difference

between the deposit and evaporation was the lowest (i.e. deposit = 0.2, evaporation

= 0.0). Nevertheless, all percentage improvements in Table 8.2 were statistically

significant, as validated by the t-test.

Table 8.2: Results for best and worst average overall goodness and their respective
pheromone deposit and evaporation rate setup using OWA. Time = Run time (in
seconds), % imp = percentage improvement. Statistically significant improvement
is in italics.

Case DEP Max. Time DEP Min. Time % imp
Goodness Goodness

n15 0.2 0.294 ±0.033 39.3 0.5 0.244 ±0.024 25.4 17.01
n25 0.4 0.421 ±0.022 222.9 0.2 0.277 ±0.021 230.7 34.17
n33 0.3 0.342 ±0.030 452.5 0.2 0.254 ±0.023 458.2 25.79
n40 0.5 0.331 ±0.021 1228.6 0.2 0.279 ±0.014 2044.7 15.62
n50 0.5 0.258 ±0.022 4050.3 0.2 0.217 ±0.014 12572.9 15.86

The results presented in Table 8.3 for UAO followed the same pattern as that of

OWA. In this table, it is observed that most of these improvements were of moderate

level, generally greater than 15%. Again, an exception was in the case of n15, where

a slight improvement of 6.21% was observed. It is also obvious from the table that

217

 
 
 



Table 8.3: Results for best and worst average overall goodness and their respective
pheromone deposit and evaporation rate setup using UAO. Time = Run time (in
seconds), % imp = percentage improvement. Statistically significant improvement
is in italics.

Case DEP Max. Time DEP Min. Time % imp
Goodness Goodness

n15 0.5 0.333 ±0.000 25.4 0.2 0.312 ±0.009 25.3 6.21
n25 0.3 0.360 ±0.009 246.0 0.2 0.289 ±0.004 245.4 19.81
n33 0.5 0.347 ±0.004 501.9 0.2 0.268 ±0.007 516.3 22.75
n40 0.4 0.346 ±0.006 1143.0 0.2 0.290 ±0.003 1741.2 16.30
n50 0.4 0.334 ±0.002 4239.4 0.2 0.264 ±0.006 12461.4 20.93

for all test cases, the worst results were obtained when DEP = 0.2. However, all

percentage improvements were found to be statistically significant, as validated by

the t-test.

The results and observations presented in Tables 8.2 and 8.3 can be attributed

to the following explanation. When the pheromone deposit rate is low, and no evap-

oration takes place (a situation associated with DEP = 0.2), then the pheromone

contents on links present in the elitist ant are not much different from the pheromone

contents on links not present in the elitist ant. Consequently, there will be a little

difference between the probabilities, pkij(t), which makes selection of links more ran-

dom. In general, this situation would persist as time elapses. There might be very

few links which would have accumulated a noticeable amount of pheromone, and

therefore would be selected again and again. On the other hand, if the pheromone

deposit rate is high, and pheromone evaporation also takes place on links (a situation

associated with DEP = 0.3, 0.4, and 0.5), then the amount of pheromone deposited

on links in the elitist ant will be substantially higher than the pheromone on links

not present in the elitist ant. Thus, there will be a significant difference between
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the probabilities, pkij(t). Therefore, links with high pheromone content would be-

come strong candidates for selection, resulting in the search to be more directional.

Therefore, for the same amount of time, FACO will converge faster towards a sub-

optimal solution for situations where DEP is high as compared to instances where

DEP is low. The above claim is supported by the plots in Figure 8.1. This figure

shows a typical behavior of FACO with DEP = 0.2 and DEP = 0.5 for test case

n50 using the UAO operator. It is observed in this figure that with DEP = 0.5, the

improvement in the overall goodness is much higher than that obtained with DEP

= 0.2 for the same number of iterations.
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Figure 8.1: Plot for overall goodness for test case n50 using FACO with DEP = 0.2
and DEP = 0.5

8.2.2 Effect of Number of Ants

Tables 8.4 to 8.8 show the effect of the number of ants on the overall goodness of the

solution using OWA. The tables consist of nine columns. The first column shows

the number of ants, ranging from 10 to 30. Columns 2 to 9 display the results
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and run time obtained using the four parameter setups according to Table 8.1. It

is observed in these tables that, collectively, an increasing number of ants had a

positive impact on the quality of the final solution. The trend was observed for

all four parameter sets. For example, in column 8 of Table 8.4, it is observed for

case n50 with DEP = 0.5 that the overall goodness of solution was 0.239 for 10

ants, which increased with each step as the number of ants increased. An overall

goodness value of 0.270 was achieved with 30 ants at the end. This improvement is

given as a percentage in Table 8.14 with a value of 11.21% when OWA was used.

In a similar manner, percentage improvements for other cases are also given the

table. A validation through t-test showed that, in general, all improvements were

statistically significant. The percentage improvements are also illustrated in Figure

8.2(a). Another interesting observation in Tables 8.4 to 8.8 is that the best results

(marked in boldface) were obtained with the number of ants being 30 in most cases.

An exception is case n40, where the best overall goodness was achieved with 25 ants.

Tables 8.9 to 8.13 depict the behavior of the ACO algorithm with UAO when the

number of ants was increased from 10 to 30. For UAO, the pattern was similar to

that of OWA, where it is observed that, when the number of ants were increased from

10 to 30 in progression, the overall goodness of solution also increased proportionally.

The percentage improvements are given in Table 8.14 and depicted in Figure 8.2(b).

The results in Table 8.14 show that the improvements were statistically significant,

as validated by the t-test. As with the case of OWA, the best results were obtained

when 30 ants were used, with the exception of n33 where the best solution was

obtained with the number of ants equal to 25.

The above trends appear to be logical. Note that each ant is independent in
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generating its solution, although the elitist ant influences the pheromone concen-

trations on the links of the solution represented by the ant. Increasing the number

of ants initially enhances diversity in solutions, thus increasing the probability of

finding a new elite ant of better quality. This in turn allows the elitist ant to pass

information of links having higher quality to ants in the next iteration.

Another interesting observation in Tables 8.4 to 8.8 is about the quality of so-

lutions obtained with different pheromone deposit and evaporation rates. A careful

analysis of these tables shows that the level of overall goodness achieved with DEP

values of 0.3, 0.4, and 0.5 was almost in the same range, while with DEP = 0.2 the

quality of overall goodness was considerably less. As an example, consider Table 8.5,

where the overall goodness for DEP = 0.3 varied between 0.310 and 0.333, for DEP

= 0.4 between 0.312 and 0.331, and for DEP = 0.5 between 0.314 and 0.331. These

ranges are very close to each other. However, when DEP = 0.2 was considered, the

goodness ranged from 0.268 to 0.283. This range is relatively much less than the

others mentioned above. The trend was more or less true for all test cases, with the

exception of n15.

The same trend was also very visible for UAO for all cases. One possible reason

for this behavior is that for DEP = 0.2 (with no evaporation), there is no feedback

from ‘bad’ links. In other words, although the good links are rewarded by pheromone

deposit, bad links are not penalized since no evaporation takes place on these links.

Therefore, their quality does not deteriorate, in contrast to other cases with DEP

from 0.3 to 0.5, where bad links are penalized. This penalty has a positive effect on

the faster convergence of the algorithm, since good quality links will be passed to

later generations again and again, while bad quality links will be annihilated from
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Table 8.4: Results for n50 with OWA for different population size, pheromone de-
posit rate, and evaporation rate. OG = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.208 6399.1 0.244 2666.7 0.243 2166.7 0.239 1995.4
±0.015 ±0.028 ±0.022 ±0.028

15 0.217 8246.5 0.247 3925.3 0.257 3248.2 0.238 3011.6
±0.015 ±0.028 ±0.041 ±0.022

20 0.217 12572.9 0.251 5299.8 0.250 4250.3 0.258 4050.3
±0.014 ±0.028 ±0.017 ±0.022

25 0.224 15465.0 0.252 6660.7 0.254 5498.5 0.267 4970.7
±0.014 ±0.019 ±0.021 ±0.030

30 0.219 18884.8 0.262 7838.6 0.253 6632.7 0.270 5923.3
±0.015 ±0.021 ±0.022 ±0.032

Table 8.5: Results for n40 with OWA for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.268 1213.1 0.310 849.1 0.312 817.8 0.326 811.0
±0.012 ±0.019 ±0.020 ±0.025

15 0.271 1681.9 0.324 1066.0 0.323 1034.1 0.314 1019.2
±0.012 ±0.026 ±0.022 ±0.019

20 0.279 2044.7 0.322 1286.6 0.323 1246.1 0.331 1228.6
±0.014 ±0.020 ±0.020 ±0.021

25 0.283 2450.1 0.333 1521.2 0.331 1464.9 0.330 1437.2
±0.021 ±0.028 ±0.021 ±0.019

30 0.283 2906.9 0.323 1129.3 0.315 1068.7 0.324 1042.6
±0.016 ±0.022 ±0.020 ±0.020
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Table 8.6: Results for n33 with OWA for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.249 430.4 0.333 426.7 0.328 426.0 0.317 426.0
±0.024 ±0.027 ±0.028 ±0.023

15 0.236 445.7 0.331 439.3 0.340 438.7 0.335 438.3
±0.013 ±0.020 ±0.028 ±0.023

20 0.254 458.2 0.342 452.5 0.333 451.0 0.339 451.2
±0.023 ±0.030 ±0.020 ±0.022

25 0.256 474.8 0.343 466.3 0.341 464.3 0.341 464.9
±0.021 ±0.024 ±0.026 ±0.020

30 0.267 489.5 0.348 478.5 0.343 478.7 0.362 553.3
±0.022 ±0.024 ±0.022 ±0.022

Table 8.7: Results for n25 with OWA for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.272 214.9 0.389 215.0 0.403 213.3 0.404 211.6
±0.018 ±0.015 ±0.027 ±0.024

15 0.281 221.8 0.410 221.0 0.417 217.1 0.421 217.1
±0.018 ±0.028 ±0.030 ±0.022

20 0.277 230.7 0.414 225.5 0.421 222.9 0.415 222.9
±0.021 ±0.022 ±0.022 ±0.020

25 0.293 237.0 0.419 229.2 0.423 228.3 0.425 228.4
±0.021 ±0.024 ±0.030 ±0.030

30 0.294 238.8 0.426 233.8 0.430 234.0 0.423 234.1
±0.016 ±0.023 ±0.023 ±0.023
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Table 8.8: Results for n15 with OWA for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.276 12.9 0.251 13.0 0.244 13.0 0.237 13.2
±0.029 ±0.026 ±0.044 ±0.029

15 0.290 19.0 0.257 19.0 0.250 19.1 0.254 19.2
±0.018 ±0.032 ±0.033 ±0.041

20 0.294 39.3 0.249 40.3 0.253 27.5 0.244 25.4
±0.033 ±0.023 ±0.039 ±0.024

25 0.302 47.9 0.279 47.5 0.256 31.7 0.248 44.6
±0.027 ±0.034 ±0.027 ±0.024

30 0.313 50.3 0.277 31.0 0.259 31.2 0.256 31.2
±0.032 ±0.044 ±0.027 ±0.033

Table 8.9: Results for n50 with UAO for different population size, pheromone deposit
rate, and evaporation rate. OG = average overall goodness with standard deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.258 6073.4 0.331 2729.9 0.333 2237.0 0.333 2008.9
±0.007 ±0.004 ±0.004 ±0.004

15 0.262 9452.9 0.333 4029.3 0.333 3418.6 0.334 2980.7
±0.008 ±0.002 ±0.002 ±0.004

20 0.264 12461.4 0.334 5498.3 0.334 4239.4 0.334 3980.6
±0.006 ±0.002 ±0.002 ±0.004

25 0.266 15940.8 0.334 6681.8 0.335 5478.4 0.336 5110.3
±0.005 ±0.003 ±0.003 ±0.004

30 0.265 16546.5 0.335 8132.1 0.336 6478.8 0.334 5891.5
±0.009 ±0.003 ±0.004 ±0.002
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Table 8.10: Results for n40 with UAO for different population size, pheromone
deposit rate, and evaporation rate. OG = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.288 1032.3 0.344 741.9 0.344 727.8 0.345 716.0
±0.003 ±0.008 ±0.007 ±0.008

15 0.289 1416.5 0.346 947.6 0.345 931.3 0.343 919.6
±0.003 ±0.006 ±0.005 ±0.005

20 0.290 1741.2 0.346 1178.5 0.346 1143.0 0.345 1142.5
±0.003 ±0.006 ±0.006 ±0.005

25 0.290 2178.4 0.348 1403.9 0.349 1358.5 0.350 1341.3
±0.003 ±0.008 ±0.005 ±0.007

30 0.290 2602.5 0.349 1614.2 0.352 1561.9 0.348 1534.3
±0.002 ±0.006 ±0.006 ±0.007

Table 8.11: Results for n33 with UAO for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.265 459.8 0.343 451.8 0.345 451.4 0.345 451.2
±0.007 ±0.005 ±0.007 ±0.005

15 0.264 487.5 0.345 477.8 0.346 477.1 0.345 476.6
±0.005 ±0.004 ±0.006 ±0.005

20 0.268 516.3 0.347 502.9 0.347 502.5 0.347 501.9
±0.007 ±0.005 ±0.005 ±0.004

25 0.271 551.5 0.348 528.4 0.348 528.1 0.349 528.1
±0.006 ±0.005 ±0.006 ±0.006

30 0.270 177.5 0.348 153.9 0.348 152.7 0.348 152.7
±0.006 ±0.005 ±0.004 ±0.004
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Table 8.12: Results for n25 with UAO for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.284 227.4 0.355 227.0 0.357 224.4 0.358 223.4
±0.004 ±0.007 ±0.010 ±0.008

15 0.288 233.9 0.355 238.7 0.358 237.8 0.357 237.9
±0.007 ±0.009 ±0.013 ±0.007

20 0.289 245.4 0.360 246.0 0.358 246.1 0.359 246.1
±0.004 ±0.009 ±0.008 ±0.008

25 0.288 266.8 0.359 257.1 0.361 257.2 0.361 257.2
±0.006 ±0.009 ±0.008 ±0.006

30 0.289 278.7 0.363 268.5 0.362 268.7 0.359 268.6
±0.004 ±0.008 ±0.008 ±0.006

Table 8.13: Results for n15 with UAO for different population size, pheromone de-
posit rate, and evaporation rate. Goodness = average overall goodness with standard
deviation.

Number DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5
of Ants OG Time OG Time OG Time OG Time

10 0.310 13.0 0.333 13.2 0.333 13.2 0.333 13.2
±0.011 ±0.000 ±0.000 ±0.000

15 0.312 19.2 0.333 19.2 0.333 19.3 0.334 19.3
±0.011 ±0.000 ±0.000 ±0.002

20 0.312 25.3 0.333 25.5 0.333 25.5 0.333 25.4
±0.009 ±0.001 ±0.000 ±0.000

25 0.319 48.1 0.334 47.8 0.334 40.6 0.334 34.8
±0.008 ±0.002 ±0.002 ±0.002

30 0.315 53.1 0.333 31.5 0.333 31.4 0.334 31.3
±0.007 ±0.001 ±0.000 ±0.002
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Table 8.14: Improvement with respect to increase in number of ants for different
DEP rates using OWA. Statistically significant improvements are in italics.

Case % Improvement
DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5

n15 12.03 9.46 5.66 7.66
n25 7.35 8.77 6.21 4.50
n33 6.91 4.34 4.54 12.43
n40 5.43 6.93 5.65 1.30
n50 4.94 7.12 3.91 11.21

Table 8.15: Improvement with respect to increase in number of ants for different
DEP rates using UAO. Statistically significant improvements are in italics.

Case % Improvement
DEP = 0.2 DEP = 0.3 DEP = 0.4 DEP = 0.5

n15 1.73 0.07 0.07 0.20
n25 1.82 2.22 1.58 0.26
n33 2.09 1.39 0.83 1.09
n40 0.50 1.53 2.29 0.91
n50 2.62 1.26 0.69 0.31

the solutions. For the case with no evaporation, the bad links continue generation

by generation, thus preventing the algorithm from converging to a good quality

solution for the same amount of time as that of the other deposit and evaporation

setups.

8.2.3 Comparison of OWA and UAO

Table 8.16 compares the OWA and UAO operators. This comparison is done using

linear regression analysis. The data for the analysis consisted of the best results with

respect to different numbers of ants. That is, the data consisted of columns where

the best results appear (in boldface) in tables 8.4 to 8.13. Each of these columns
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Figure 8.2: Percentage improvement with increase in number of ants for different
parameter setup using (a) OWA (b) UAO
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contains five values (one for each different number of ants), where each value is an

average of 30 runs. Thus, each regression coefficient in Table 8.16 was obtained

using 150 values (5 values × 30 runs). The regression coefficients of OWA and UAO

are provided in columns 2 and 3 of Table 8.16 for each test case. Column 4 enlists

the ratio of UAO and OWA. Based on this ratio, the sensitivity of OWA and UAO

with respect to an increasing number of ants was assessed. A comment related to

this is provided in column 5.

It is observed in Table 8.16 that UAO was more sensitive with respect to an

increasing number of ants. For cases n50, n25, and n15, both OWA and UAO

increased the overall goodness almost at the same rate when the number of ants

increased. However, UAO performed better than OWA for n33 with a rate of 1.7.

In other words, if the number of ants is increased, then UAO will improve the

goodness 1.7 faster than OWA. For the case n40, UAO showed a rate of more than

6, which is significantly higher than the rate of OWA.

8.3 Conclusions

This chapter proposed and investigated a fuzzy multi-objective ant colony optimiza-

tion algorithm. A fuzzy heuristic value was proposed. Furthermore, since pheromone

deposit and evaporation, and the population of ants, are important parameters in

ACO, empirical analysis was done to study the effect of these parameters. The

analysis revealed that better results were obtained when the difference in pheromone

deposit and evaporation rates was high. This was a general trend for both OWA and

UAO. As for the number of ants, better results were obtained when the number of
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Table 8.16: Comparison of OWA and UAO for ACO.

Case Regression coefficients Ratio = Comment
OWA UAO UAO

OWA

n50 0.343 0.314 0.92 UAO increases goodness at almost
the rate as that of OWA with

increase in number of ants
n40 0.072 0.456 6.33 UAO increases goodness 6.3 times

faster than OWA with increase in
number of ants

n33 0.242 0.418 1.73 UAO increases goodness 1.7 times
faster than OWA with increase

in number of ants
n25 0.305 0.327 1.07 UAO increases goodness at almost

the rate as that of OWA with
increase in number of ants

n15 0.158 0.163 1.03 UAO increases goodness at almost
the rate as that of OWA with

increase in number of ants

ants was high. Moreover, mutual comparison of OWA and UAO suggested that UAO

produced better results in the context of its usage in the ant colony optimization

algorithm.

The next chapter investigates another swarm intelligence technique, the particle

swarm optimization algorithm, with its application to the DLAN topology design

problem.
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