
Chapter 5

Fuzzy Stochastic Evolution

Algorithm for DLAN Topology

Design

This chapter proposes a new fuzzy stochastic evolution algorithm (FStocE), specifi-

cally for the multi-objective DLAN topology design problem. A variant of the fuzzy

stochastic algorithm is also proposed, namely, TFStocE, which incorporates char-

acteristics of tabu search. The effect of the tabu list size on the quality of solutions

is investigated. Furthermore, an empirical comparison of the FStocE and TFStocE

is also done. This comparison is done using both the OWA and the UAO operator.

In addition, a method to dynamically assign an important parameter of FStocE,

namely, Rc, is also proposed and analyzed.
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5.1 Fuzzy Stochastic Evolution

Chapter 2 discussed the StocE algorithm. The same algorithm is applicable to the

DLAN topology design problem, but with some modifications to the cost computa-

tion. As described below, this cost computation is done using fuzzy logic.

A valid initial solution (i.e. a solution that satisfies the constraints) is randomly

generated. The PERTURB function alters the existing solution by making a number

of moves, where a move involves removing a link between two nodes in the current

solution (i.e. topology) and introducing a new link between these nodes. Selection

of links for removal as well as for placement is done randomly. However, insertion

of a new link is done under the constraint that the newly placed link must include

one of the two nodes from which the previous link was removed. Removing a link

divides the topology into two disjoint topologies, as depicted in Figure 5.1. Then, for

this removed link, another link has to be introduced in the topology such that the

complete tree is restored. There are many possibilities of introducing a new link. As

an example, consider the removal of a link between two nodes P and Q in Figure 5.1.

Figure 5.2 illustrates links that result in a complete tree to be formed. Note that

these links include node Q, which formed part of the removed link (alternatively

node P, instead of Q could also be chosen to place a new link). It is important to

mention that for each removed link, only one other link is tried. If this results in a

valid topology, violating no constraints, the link is made permanent. Otherwise the

old link is replaced.

Each iteration of the proposed FStocE algorithm makes ten moves, which results

in a new solution. The “overall” cost of this new solution is compared to the cost

131

 
 
 



Q

P

R

Figure 5.1: Two disjoint trees containing nodes P and Q
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Figure 5.2: Candidate moves (illustrated with dotted lines) that can replace the
removed link between P and Q
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of the previous solution and the gain is calculated as described in Figure 2.8. This

overall cost is computed using the fuzzy rule (Rule 1 in Section 3.4) based on either

Equation (3.11) or Equation (4.1).

The FStocE algorithm differs from the standard StocE algorithm in that FStocE

assumes a maximization problem, whereas StocE assumes a minimization problem.

In StocE, the objective is to minimize cost of the solution, whereas in the FStocE

algorithm, the objective is to maximize the overall goodness of the solution based on

Equation (3.11) or Equation (4.1). The FStocE algorithm is summarized in Figure

5.3. The algorithm is run iteratively and the solution that gives the maximum value

of fuzzy cost function using Equation (3.11) (or Equation (4.1)) is taken as the best

solution.

5.2 Tabu Stochastic Evolution

This section proposes a new hybrid fuzzy iterative search technique, namely, tabu

stochastic evolution (TFStocE), which introduces features of tabu search in the

PERTURB function. A move in TFStocE consists of removing a randomly selected

link from the current solution and introducing a new feasible link in the solution.

This newly accepted link is saved in the tabu list. Thus, the attribute is the link

itself. If the link that had been made tabu produces a higher membership value

than the current link in the membership function “good topology”, then the aspi-

ration criterion overrides the tabu status of the link, making the link permanent.

This strategy prevents the algorithm from repetitively removing the same link and

replacing it with a link of equal or worse goodness.
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Stochastic Evolution(Z0, p0, Rc)
NOTATION

Z0= Initial solution
ρ= Counter
p= Control parameter
po= Initial value of p
Rc= Stopping criterion parameter
Goodcur = Goodness of current solution Z
GoodBest = Goodness of best solution
Goodpre = Goodness of previous solution
Begin

ZBest = Z = Z0;
GoodBest = Goodcur = Goodness(Z);
p = p0;
ρ = 0;
Repeat

Goodpre = Goodcur;
Z = PERTURB(Z, p); /* perform a search in the neighborhood of Z */
Goodcur = Goodness(Z);
UPDATE(p, Goodpre, Goodcur); /* update p if needed */
if (Goodcur > GoodBest)

ZBest =Z;
GoodBest = Goodcur;
ρ = ρ − Rc; /* Reward the search with Rc more generations */

else

ρ = ρ + 1;
endif

until ρ > Rc

return (ZBest);
End

Figure 5.3: The fuzzy stochastic evolution algorithm for DLAN topology design
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5.3 Experimental Results

The FStocE and TFStocE algorithms proposed in this chapter were tested on the

cases and instances described in Chapter 3. For StocE, there are two main param-

eters: p (which includes p0 and pincr), and Rc. These parameters have a significant

impact on the performance of the algorithm. Inappropriate values for these param-

eters may result in non-optimal solutions. Thus, it is important to find the most

appropriate parameter setup. Table 5.1 provides a summary of these parameters for

the FStocE algorithm. Five different combinations of these parameters were tried,

as depicted in the table. A variety of experiments were conducted to evaluate the

performance of the two algorithms. The first set of experiments focussed on the

comparison of FStocE and TFStocE. For the second set, a comparative analysis of

OWA and UAO operators using TFStocE was done. For each variant of FStocE,

30 runs were executed for each test case, and the average and standard deviations

of overall goodness of best solutions were calculated. For TFStocE, tabu lists of

different sizes as described in Section 5.3.1 were used. Since the aim of this thesis

is to mutually compare different algorithms, the same initial solution was used for

all simulations of all algorithms discussed in this thesis.

Table 5.1: Parameter settings for fuzzy StocE used in the experiments.

Parameter set Values
p0 pincr R

Set 1 0.5 0.2 50
Set 2 0.1 0.05 50
Set 3 0.01 0.005 20
Set 4 0.05 0.01 50
Set 5 0.1 0.05 100
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5.3.1 Effect of Tabu List Size

Glover [100] in his research article raised issues about the appropriate magnitude

of tabu list sizes. He states, “previous applications had found effective tabu list

sizes to lie in the range from 5 to 12, clustered around 7, a finding that appeared to

be independent of problem size and structure. The much larger tabu list sizes for

the traveling salesman problem, and their dependency on problem size, show that

the choice of a good tabu list size is more subtle that previous empirical outcomes

had suggested”. There are two main inferences from this statement. First, previous

studies suggested that the size of tabu list was clustered around 7, irrespective of

the nature and size of the problem, and Glover does not seem to agree with this.

Second, as the problem size increases, the size of the appropriate tabu list size

increases accordingly. To verify the above two inferences, the impact of a tabu list

size of 7 on the quality of obtained solutions was analyzed. In addition, to see if

better results could be obtained with tabu list sizes other than 7, tabu list sizes

of 3, 5, 9, 11, and 13 were also tried. Experimentation with different tabu list

sizes also provided an insight into Glover’s observation as whether the best tabu list

size increased with increasing the problem size. Tables 5.2 and 5.3 summarize the

average overall goodness for the best solutions for each test case with different tabu

list sizes for OWA and UAO respectively.

The results in Table 5.2 show that the size of tabu list that is related to best

overall goodness varies for each case when OWA is used. A graphic illustration of

the variation in average overall goodness with respect to different tabu list sizes

for OWA is given in Figure 5.4. The second last column of Table 5.2 provides

the percentage difference in the average overall goodness of the given tabu list size
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when compared with that of size 7. Since size 7 was used as the reference, no

percentage improvement is shown for this size, and NA (i.e not applicable) appears

in the corresponding row in the second last column. For example, for case n15,

average overall goodness obtained with size 5 was 6.44% better than that of size

7. For most of the cases, a mid-size tabu list seems to be most appropriate. For

example, for cases n40 and n50, sizes 9 and 7 respectively produced the best average

overall goodness. For n15, size 5 resulted in the best overall goodness, while for n33

and n25, size 11 produced the best results. However, to statistically validate the

results, a two-sided t-test was also performed to test the hypothesis whether the

two averages (i.e. the average overall goodness obtained with tabu list size of XYZ

and that of 7) were significantly different from each other. The t-test results were

obtained at 5% significance level. Percentage improvements which are statistically

significant are shown in italics. Two important observations come out of the t-test

results. First, in general there is no concrete evidence that the results produced by

the tabu list size of 7 were statistically more significant than the results produced

by other tabu list sizes, for example, for cases n15, n33 (expect for tabu list size of

9) and n40. However, there is one case n50, where the size of 7 was able to obtain

statistically more significant results than the sizes 3, 5, and 11. Second, there is the

case of n25 where almost all sizes (except 13) were able to achieve statistically more

significant results than the ones obtained with size 7.

The above discussion suggests that it is not necessary that only size 7 would

always produce the best results, since other sizes produced results that were statis-

tically equivalent to the results of size 7. In addition, there were instances where

tabu list sizes other than 7 produced statistically better results. Therefore, the re-
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sults confirm Glover’s disagreement with having the tabu list size of 7 as the best

choice. Second, there was no concrete evidence that as the test case size increased,

the tabu list size that produced the best results also increased. This negates the

second inference from Glover’s statement.

As for UAO, a trend similar to that of OWA was observed, where the tabu list

varied with each test case. As shown in Table 5.3, a tabu list size of 9 produced

the best results for n15, while for n25 and n33, the best tabu list size was 7. For

n40, size 3 produced the best results, whereas for n50, size 13 produced the best

overall goodness. A graphic illustration of variation in average overall goodness

with respect to different tabu list sizes for UAO is presented in Figure 5.5. The

t-test results suggest that for all test cases, a tabu list size of 7 was unable to

achieve statistically better results when compared to other sizes. Thus, Glover’s

first observation holds valid for UAO as well. However, the best tabu list size did

not increase with the increase in problem size, which negates Glover’s observation.

The conclusion from the above discussion is that it is not true that a tabu list

size of 7 would always produce the best results for any problem. Moreover, the size

of the best tabu list size is not proportional to the size of test case. The size of the

tabu list depends on the structure of the problem, and not on the size of the test

case.

5.3.2 Comparison of FStocE and TFStocE

Tables 5.4 and 5.5 respectively summarize the average results obtained by FStocE

and TFStocE with the OWA and UAO operators. For each test case, different values

of p0, pincr, and Rc as given in Table 5.1 were tried. The set of parameter values
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Table 5.2: Effect of tabu list size on the quality of overall goodness for TFStocE using
OWA. Run time is in seconds. Statistically significant improvement is in italics. NA
= Not Applicable (since size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall % Improvement Run time
goodness

3 0.102 ±0.050 -9.24 5.7
5 0.120 ± 0.053 6.44 4.6

n15 7 0.112 ± 0.049 NA 5.5
9 0.108 ± 0.044 -4.20 6.0
11 0.114 ± 0.054 1.12 5.6
13 0.108 ± 0.054 -3.91 6.1
3 0.152 ± 0.024 15.73 26.1
5 0.143 ± 0.008 8.55 26.2

n25 7 0.132 ± 0.020 NA 24.2
9 0.155 ± 0.021 17.38 24.7
11 0.160 ± 0.035 21.27 30.1
13 0.141 ± 0.009 7.13 30.1
3 0.096 ± 0.041 -1.05 36.6
5 0.089 ± 0.042 -8.47 31.9

n33 7 0.097 ± 0.040 NA 40.1
9 0.075 ± 0.032 -22.50 28.4
11 0.099 ± 0.045 1.73 36.2
13 0.083 ± 0.026 -14.93 37.9
3 0.119 ± 0.054 0.28 119.9
5 0.111 ± 0.055 -6.43 116.0

n40 7 0.119 ± 0.051 NA 125.0
9 0.131 ± 0.053 10.30 145.1
11 0.111 ± 0.057 -6.82 107.2
13 0.121 ± 0.053 1.88 162.5
3 0.153 ± 0.048 -14.12 1257.7
5 0.153 ± 0.052 -14.36 1253.7

n50 7 0.178 ± 0.044 NA 1341.1
9 0.162 ± 0.052 -8.89 1296.7
11 0.152 ± 0.053 -14.81 1291.5
13 0.159 ± 0.047 -10.65 1286.9
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Table 5.3: Effect of tabu list size on the quality of overall goodness for TFStocE
using UAO. Run time is in seconds. Statistically significant improvement is in italics.
NA = Not Applicable (since size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall % Improvement Run time
goodness

3 0.223 ± 0.015 -2.44 0.4
5 0.226 ± 0.017 -1.22 0.6

n15 7 0.229 ± 0.019 NA 0.7
9 0.245 ± 0.032 7.05 0.7
11 0.228 ± 0.031 -0.28 0.6
13 0.242 ± 0.033 5.82 1.2
3 0.271 ± 0.008 -1.22 13.2
5 0.273 ± 0.006 -0.75 14.7

n25 7 0.275 ± 0.008 NA 16.0
9 0.272 ± 0.005 -1.12 15.6
11 0.273 ± 0.009 -0.42 17.1
13 0.276 ± 0.017 0.35 15.2
3 0.222 ± 0.032 -0.92 10.5
5 0.216 ± 0.011 -3.60 10.5

n33 7 0.224 ± 0.032 NA 11.3
9 0.216 ± 0.011 -3.60 11.1
11 0.220 ± 0.014 -1.75 12.7
13 0.224 ± 0.032 0.00 12.4
3 0.318 ± 0.032 5.31 143.1
5 0.318 ± 0.062 5.34 136.2

n40 7 0.302 ± 0.062 NA 136.8
9 0.301 ± 0.041 -0.21 136.5
11 0.289 ± 0.044 -4.32 131.8
13 0.304 ± 0.045 0.71 132.1
3 0.244 ± 0.020 -1.34 48.3
5 0.246 ± 0.023 -0.51 50.8

n50 7 0.247 ± 0.030 NA 48.5
9 0.250 ± 0.031 1.32 48.8
11 0.244 ± 0.018 -1.25 50.3
13 0.256 ± 0.025 3.67 54.2
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Figure 5.4: Plots of average overall goodness versus tabu list size for FStocE using
the OWA operator for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15
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Figure 5.5: Plots average overall goodness versus tabu list size for FStocE using the
UAO operator for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15
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which gave the best results for FStocE are reported in the tables. The same set of

parameters was used for TFStocE and the results are also presented in the tables.

The reason for using the same parameter setup for both FStocE and TFStocE was

to observe the performance of the two algorithms under the same conditions.

For the OWA operator, the general trend for FStocE is that as the size of the

test case increases, the values of p0, pincr, and Rc which resulted in the best overall

goodness also increase as observed in Table 5.4. For example, for n25, best average

overall goodness was obtained with p0 = 0.01, pincr = 0.005, and Rc = 20, and as

the size of the test case increases, these parameter values also need to be increased.

For example, for n50, p0 = 0.1, pincr = 0.05, and Rc = 100. The only exception to

this trend was for test case n15. As far as the relative performance of FStocE and

TFStocE (with respect to the quality of produced solutions) is concerned, it is very

obvious from Table 5.4 that TFStocE demonstrated far better performance for all

test cases. The percentage improvements ranged between 17% and 43%. The t-test

(performed at 5% significance level) also suggested that all improvements achieved

by TFStocE over FStocE were statistically significant.

With regard to the UAO operator, a behavior similar to that of OWA is observed

for FStocE, where the values of p0, pincr, and Rc for the best overall goodness values

need to be increased when the size of the test case increases. The only exception was

for n50, where the best overall goodness was obtained for p0 = 0.01, pincr = 0.005,

and Rc = 20. In comparison with FStocE, TFStocE generally showed improvements

in the quality of solutions in the range of 4% to 12%. There were exceptions such as

n50 and n33 where FStocE was able to achieve slightly better results than TFStocE.

However, statistical testing (with t-test) of the results suggested that the improve-
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ment achieved by TFStocE was significant only for n40. For other test cases, no

significant differences were found. Thus, for UAO, the performance of TFStocE and

FStocE was generally more or less the same.

Table 5.4: Comparison of FStocE and TFStocE for OWA. TL = Tabu List Size,
Time = Run time (in seconds), and % imp = percentage improvement. Statistically
significant percentage improvements are in italics.

Case Values FStocE TFStocE % imp
p0 pincr Rc Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.05 0.01 50 0.069±0.036 2.8 5 0.120±0.053 4.6 42.50

n25 0.01 0.005 20 0.116±0.021 62.4 11 0.160±0.035 30.1 27.50

n33 0.01 0.005 20 0.079±0.022 54.4 11 0.099±0.045 36.2 20.20

n40 0.05 0.01 50 0.102±0.054 262.8 9 0.131±0.053 145.1 22.14

n50 0.1 0.05 100 0.147±0.055 1669.2 7 0.178±0.044 1341.1 17.42

Table 5.5: Comparison of FStocE and TFStocE for UAO. TL = Tabu List Size,
Time = Run time (in seconds), and % imp = percentage improvement. Statistically
significant percentage improvements are in italics.

Case Values FStocE TFStocE % imp
p0 pincr Rc Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.01 0.005 20 0.233 ±0.021 0.8 9 0.245 ±0.032 0.7 4.90

n25 0.05 0.01 50 0.262 ±0.027 26.8 7 0.275 ±0.008 16.0 4.73

n33 0.05 0.01 50 0.227 ±0.037 16.3 7 0.224 ±0.032 11.3 -1.34

n40 0.1 0.05 100 0.280 ±0.048 319.6 3 0.318 ±0.032 143.1 11.95

n50 0.01 0.005 20 0.268 ±0.039 991.8 13 0.256 ±0.025 54.2 -4.69

It is observed from the above discussion that as compared to FStocE, TFStocE

was able to achieve significantly better results for OWA, and slightly better re-

sults for UAO. This better performance of TFStocE can be attributed to the many

constraints which limit the feasible search space. It may happen that, after some

iterations, a number of moves are repeated, and thus the FStocE algorithm revisits
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Table 5.6: Ratio of tabu moves for TFStocE using UAO.

Test case Tabu list size Total feasible Tabu moves % of Tabu moves
for best solution moves

n15 5 1362.1 39.3 2.89
n25 11 2673.6 205.6 7.69
n33 11 1459.9 102.0 6.99
n40 9 2648.3 350.9 13.25
n50 7 10804.9 1028.7 9.52

the same part of the search space. However, TFStocE will list these repetitive moves

as being tabu, causing the algorithm to diversify the search into another subarea.

Recall that the PERTURB function randomly removes a link from the current solu-

tion, and adds a new feasible link to the solution. This new link is also saved in the

tabu list. It may happen that this new link is removed in the following iterations

and later reintroduced in the solution, but, since the link is in the tabu list, it will

not be chosen again, thus allowing other links to be chosen. This increases explo-

ration of the search space for TFStocE, resulting in better solutions than FStocE.

The above reasoning is supported by the results in Table 5.6, which provides the

ratio of tabu moves compared to the total number of feasible moves attempted by

the TFStocE algorithm using the UAO operator. Note that tabu moves are a subset

of all the feasible moves. As an example, consider n25, where on average, 2673.6

feasible moves were made, and 205.6 moves were tabu, resulting in 7.69% of tabu

moves. This means that for these 7.69% tabu moves, other additional feasible moves

were attempted, thus preventing the TFStocE from cycling back to the same moves.

Had it been the FStocE algorithm, those 7.69% moves would have been repeated

since there was no mechanism in FStocE to prevent repetitive acceptance of the

same moves.
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Table 5.7: Effect of different Rc values on overall goodness of solutions with p0 = 0.1
and pincr = 0.05 for OWA and UAO. Statistically significant difference is in italics.

Case OWA (Goodness) UAO (Goodness)
Rc= 50 Rc= 100 % Difference Rc= 50 Rc= 100 % Difference

n15 0.06 0.07 7.48 0.24 0.26 8.54
n25 0.04 0.05 19.84 0.13 0.19 29.81
n33 0.07 0.04 -96.64 0.12 0.11 -11.58
n40 0.03 0.02 -88.93 0.27 0.28 4.64
n50 0.08 0.15 48.65 0.21 0.14 -52.88

5.4 Dynamic Value of Rc

The parameter Rc is used to decide how many extra iterations should be rewarded

to the algorithm to continue the search. Thus in an iteration, if the goodness of

the current solution is better than the goodness of the best solution found so far,

then the algorithm takes the current solution Z as the best solution, Zbest, and

decrements Rc by ρ, thereby rewarding itself by increasing the number of iterations

and allowing the search to continue for Rc more iterations. The impact of this

is that the algorithm is allowed to perform a more detailed investigation of the

neighborhood, since more and more iterations are rewarded as long as the algorithm

keeps finding a solution better than the current best solution. One point to note

here is that the basic FStocE algorithm is always rewarded with the same number

of extra iterations to perform the search, regardless of the level of improvement

achieved by the algorithm during execution. This approach poses one important

question of how to find the appropriate number of extra iterations that need to be

awarded. If too few extra iterations are allowed, then the algorithm may not be

able to explore the search space to a satisfactory level. If too many iterations are

allowed, then the algorithm may waste time in exploring the search space without
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producing any improvement. To understand this, consider the results for OWA

and UAO in Table 5.7 which lists the effect of two different Rc values with other

algorithm parameters kept constant. The results for OWA show that for n50, Rc

= 50 was able to produce statistically better results with reference to Rc = 100

(validated through the t-test). Furthermore, the difference for n15 and n25 for both

Rc values was statistically insignificant. This suggests that the FStocE algorithm

wasted time by executing extra iterations unnecessarily with Rc = 100, since the

same (or even better) results were achievable with Rc = 50 for the three test cases.

However, for n33 and n40, Rc = 100 produced statistically significant results with

reference to Rc = 50. This suggests that a lower value of Rc = 50 was not sufficient

to obtain the same level of results as those of Rc = 100. The same explanation can

be given for results of UAO in Table 5.7, where Rc = 50 and Rc = 100 produced

similar results (statistically), but Rc = 100 produced higher quality results for n25

and n50.

One way of finding an appropriate value of Rc is to do several trial runs of

the algorithm with different numbers of extra iterations. However, these trial runs

will result in finding the best number of iterations for only that instance of the

problem. As the problem changes, or even an instance of the problem changes,

another set of trial runs will be required to find the best number of iterations.

Therefore, the “trial run” approach cannot be used as a general rule for any set of

problems. Furthermore, the approach also causes excessive execution time for all

the trial runs. To overcome this problem, a “performance-based” rewarding scheme

is proposed in this section. The objective of this performance-based scheme is to

reward the algorithm with less iterations the better the improvement, and more
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iterations the lower the improvement. The logic behind this approach is that a high

goodness value suggests that the algorithm might be near convergence. This claim

can be proven using average goodness of links as a measure. A high average goodness

of links suggests that the majority of links in the solution are placed in their optimal

positions, causing the algorithm to converge to the near-optimal position.

Figure 5.6 elaborates on the above phenomenon where Figure 5.6(a) shows the

improvement in the average goodness of links versus iterations for a typical run

of FStocE. Figure 5.6(b) shows the corresponding improvement in the goodness of

solution with iterations. Notice that, as the average goodness of links improves, the

goodness of solution also improves. Towards the end of the run, the average goodness

of links ceases to improve any further, suggesting that most of the links have found

their optimal positions. Accordingly, the goodness of solution does not improve any

further, which is a sign that the algorithm has converged to a sub-optimal solution.

Thus, awarding the algorithm with more iterations at the near-convergence situation

might waste computational time in unnecessary traversing of the search space. On

the other hand, if the goodness is low, the algorithm still needs more time to improve,

and thus more iterations are required to give the algorithm sufficient time to traverse

more of the search space, so as to possibly improve the quality of the solution.

One way to achieve this is to associate the number of extra iterations with the

improvement achieved by the algorithm as given by

Rci =
1

GoodPre(Z)
(5.1)

where Rci is the value of Rc at iteration i and GoodPre(Z) is the goodness of
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Figure 5.6: Plots of average overall goodness versus tabu list size for FStocE using
the OWA operator for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15

solution Z in the immediate previous iteration. Equation (5.1) allows the algorithm

to dynamically assign the number of extra iterations. Also note that the required

information (i.e. the goodness of the previous solution) to dynamically calculate Rc

in Equation (5.1) is extracted from the problem instance itself.

The above strategy to dynamically calculate Rc was incorporated into TFS-

tocE, and the resulting variant is called DTFStocE. Tables 5.8 and 5.9 respectively

summarize the comparative results of FStocE and DTFStocE for OWA and UAO

operators. According to Table 5.8, a degradation was observed in the quality of
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overall goodness produced by DTFStocE as compared to FStocE in most of the

cases. The degradation was mainly in the range of 14% to little over 21%. For n50

a degradation of over 78% was observed. For n25 DTFStocE was able to perform

better than FStocE with an improvement of 14.51%. However, statistical analysis

using t-test revealed that there was no significant difference in the performance of

the two algorithms, except for n50. Therefore, for OWA, the dynamic Rc approach

performed satisfactorily in general. As for the UAO, DTFStocE showed degradation

in quality of results as compared to FStocE, with the degradation in the range of

4.5% to 20.5%. However, statistical analysis with t-test suggested that the degra-

dation for n15 and n33 was not significant, but significant for n25, n40, and n50.

Therefore, the performance of DTFStocE for UAO was not very appreciable.

A general observation from the above discussion is that DTFStocE showed an

overall satisfactory performance compared to FStocE. However, the percentage dif-

ference between the results of DTFStocE and FStocE suggest that there is still scope

to further investigate alternative methods. Such methods may use problem depen-

dent or instance dependent information such as overall goodness of the solution (as

in Equation (5.1)), goodness of each individual (link) in the solution, and/or number

of nodes in the network.

5.5 Comparison of OWA and UAO Operators

As mentioned earlier in this chapter, the OWA and UAO operators were used to

combine the four design objectives using Equations (3.11) and (4.1) respectively. In

this section, a comparison of these two fuzzy operators is presented with respect
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Table 5.8: Comparison of FStocE and DTFStocE for OWA. Time = Run time (in
seconds), and % imp = percentage improvement. % improvement is for DTFStocE
compared to FStocE. Statistically significant improvement is in italics.

Case Values FStocE DTFStocE % imp
p0 pincr Rc Avg. Overall Time Avg. Overall Time

Goodness Goodness

n15 0.05 0.01 50 0.069 ±0.036 2.8 0.059 ±0.014 0.4 -17.58
n25 0.01 0.005 20 0.116 ±0.021 62.4 0.136 ±0.034 12.9 14.51
n33 0.01 0.005 20 0.079 ±0.022 54.4 0.069 ±0.028 16.9 -14.78
n40 0.05 0.01 50 0.102 ±0.054 262.8 0.084 ±0.041 30.5 -21.64
n50 0.1 0.05 100 0.147 ±0.055 1669.2 0.082 ±0.038 120 -78.19

Table 5.9: Comparison of FStocE and DTFStocE for UAO. Time = Run time (in
seconds), and % imp = percentage improvement. % improvement is for DTFStocE
compared to FStocE. Statistically significant improvement is in italics.

Case Values FStocE DTFStocE % imp
p0 pincr Rc Avg. Overall Time Avg. Overall Time

Goodness Goodness

n15 0.01 0.005 20 0.233 ±0.021 0.8 0.223 ±0.015 0.1 -4.50
n25 0.05 0.01 50 0.262 ±0.027 26.8 0.237 ±0.020 0.7 -10.53
n33 0.05 0.01 50 0.227 ±0.037 16.3 0.212 ±0.000 1.2 -7.01
n40 0.1 0.05 100 0.280 ±0.048 319.6 0.237 ±0.032 3.9 -18.37
n50 0.01 0.005 20 0.268 ±0.039 991.8 0.222 ±0.033 6.2 -20.48

to their application to TFStocE. The tabu version of FStocE was chosen since

it produced the best results with respect to the other two variants (FStocE and

DTFStocE). These comparisons focussed on the effect of the four design objectives,

namely cost, delay, hops, and reliability with respect to change in the number of

nodes. In all experiments conducted in this study, β = 0.5 was chosen for the

OWA operator in Equation (3.11) and ν = 0.5 was used for the UAO operator in

Equation (4.1). A simple linear regression analysis (see Appendix B for background)

was performed with the number of nodes as the independent variable and each one
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Table 5.10: Comparison of OWA and UAO for TFStocE.

Objective Regression coefficients Ratio = % Gain Comment
OWA UAO OWA

UAO
by UAO

Cost 0.947 0.775 1.22 18.16 UAO performs 18.16%
better than OWA

Delay 0.672 0.549 1.22 18.30 UAO performs 18.30%
better than OWA

Hops 0.753 0.507 1.49 32.67 UAO performs 32.67%
better than OWA

Rel -0.76 -0.56 1.36 26.32 UAO performs 26.32%
better than OWA

of the design objectives as a dependent variable. Several regression models were

developed to see how a design objective is affected by increasing number of nodes

when OWA and then UAO is used. The effect is measured through regression

coefficients. A confidence level of 95% was used. The analysis was based on 150

data values, since there were five test cases with five different number of nodes,

where for each test case, 30 runs were made.

Table 5.10 presents a comparison of OWA and UAO for TFStocE considering

all five test cases from n15 to n50. Design objectives are listed in the first column.

The regression coefficients for the OWA and UAO regression models are given in

columns 2 and 3 respectively. The fourth column gives the ratio of regression coef-

ficients of OWA versus UAO. This ratio signifies the rate of increase for a certain

objective if the performance of OWA and UAO are compared for that objective.

The percentage gain given in column 5 shows the improvement achieved by the

UAO operator as compared to the OWA operator. A further comment elaborates

on this finding in column 6. For example, the regression coefficients for Cost are

given for OWA and UAO as 0.947 and 0.775 respectively. If these two values are
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compared, the corresponding ratio is 1.22. The interpretation is that, as the number

of nodes are increased, the rate at which Cost increases using OWA is 1.22 times

faster than if UAO was used. This is equal to an 18.16% increase in performance for

UAO compared to OWA. The same approach can be used for the Delay and Hops

objectives in terms of the ratio and percentage gain. It is observed that, for these

two objectives, UAO performs much better than OWA. Similarly, for Reliability, the

regression coefficients have a negative sign. This negative sign implies an inverse

relationship between number of nodes and reliability, i.e. the reliability decreases

as the number of nodes is increased. The corresponding OWA/UAO ratio is 1.36,

suggesting that, as the size of test case increases, the rate at which reliability dete-

riorates using OWA is 1.36 times faster than if UAO is employed. The percentage

of 26.32% also suggests the same observation; the UAO would be 26.32% better

than OWA in terms of controlling the decline in reliability. Thus, the analysis of

the results in Table 5.10 suggest that UAO is undoubtedly performing better than

OWA for the design objectives.

5.6 Conclusions

This chapter presented and investigated the fuzzy stochastic evolution algorithm

(FStocE) for DLAN topology design. A variant of the proposed fuzzy stochastic

evolution algorithm, ‘TFStocE’, was also proposed. This variant introduced tabu

search characteristics to the FStocE algorithm. The effect of tabu list size was in-

vestigated, revealing that the size of the tabu list is related to the problem under

investigation as well as the test instances of the problem. Moreover, empirical evalu-
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ation and comparison of FStocE and TFStocE suggested that, in general, TFStocE

produced better results than FStocE for both the OWA and UAO operators. An

investigation of dynamic computation of Rc and comparison with FStocE showed

that generally there was no significant difference in the results for the OWA opera-

tor, while for UAO lower quality solutions were obtained compared to the FStocE

algorithm. As far as the effectiveness of the OWA and UAO operators are concerned,

the investigation found that UAO performed much better than OWA in optimizing

each of the four design objectives.

The focus of the next chapter is on another optimization algorithm, namely

simulated evolution, which has been adapted to solve the multi-objective DLAN

topology design problem.
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Chapter 6

Fuzzy Simulated Evolution for

DLAN Topology Design

A fuzzy multi-objective simulated evolution (FSimE) algorithm is proposed in this

chapter. FSimE combines the four design objectives into one fuzzy function and

optimizes this single fuzzy objective. This chapter first describes the steps of the

proposed FSimE algorithm, and how fuzzy logic has been incorporated. This is

followed by a modified version of FSimE, where tabu search characteristics are in-

corporated into the FSimE algorithm. Another modification of FSimE is proposed

later in this chapter, with the purpose to reduce user dependency in setting the

value of the bias factor of FSimE. The performance of FSimE and its variants are

empirically assessed and mutually compared.
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6.1 Fuzzy Simulated Evolution Algorithm

Chapter 2 discussed the general SimE algorithm, which consists of four steps: ini-

tialization, evaluation, selection, and allocation. Of these steps, evaluation and

allocation are of special interest, since they involve assessment of the solution and

play a key role in the overall performance of the algorithm. For example, in the eval-

uation step, the quality of each individual (a link in this case) of the current solution

is evaluated based on a goodness measure. The need is to find an appropriate good-

ness measure. Similarly, in the allocation phase, the current solution is perturbed

to generate a new solution. Again, an appropriate assessment function is required

to compare the quality of the old and the new solutions. In both these steps, fuzzy

logic plays an important role, as explained below for the FSimE algorithm.

6.1.1 Initialization

The initial spanning tree topology can be generated randomly, while taking into

account all design constraints mentioned earlier. However, since the aim of this

thesis is to mutually compare different algorithms, the initial solution is predefined

and is used for all algorithms discussed in this thesis.

6.1.2 Fuzzy Evaluation

The goodness of each individual is computed as follows. For the purposes of this

thesis, an individual represents a link interconnecting two network devices. For

the fuzzy evaluation scheme, monetary cost, link reliability, and depth of a link are

considered fuzzy variables. Depth of a link is measured as the distance from the
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depth = 1

depth = 2

depth = 3

  R

Figure 6.1: Depths of links with respect to the root node R

root in the spanning tree, as illustrated in Figure 6.1. Considering the above three

variables, goodness of a link is then characterized by the following rule:

Rule 2: IF a link is near optimum cost AND near optimum depth

AND near optimum reliability THEN it has high goodness

Here, near optimum cost, near optimum depth, near optimum reliability, and

high goodness are linguistic values for the fuzzy variables cost, depth, reliability, and

goodness respectively. Using OWA-AND, Rule 2 translates to the following equation

for the fuzzy goodness measure of link li:

gli = µe(li) = βe ×min{µe1(li), µ
e
2(li), µ

e
3(li)} + (1 − βe) ×

1

3

3
∑

i=1

µei (li) (6.1)

The superscript e denotes evaluation. In Equation (6.1), µe(li) is the degree of

membership to the fuzzy set of high goodness links and βe ∈ [0, 1] is a constant, which

represents the degree to which the OWA operator resembles the pure “AND”; µe1(li),

µe2(li), and µe3(li) respectively represent memberships in the fuzzy sets near optimum

monetary cost, near optimum depth, and near optimum reliability respectively.
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The membership of a link with respect to near optimum monetary cost is de-

termined as follows: from the cost matrix, which gives the costs of each possible

link, the minimum and maximum costs among all the link costs are found. These

minimum and maximum costs are taken as the lower and upper bounds, and are

termed as “LCostMin” and “LCostMax”, respectively. Then, the membership of a

link with respect to cost, µ1, is calculated with respect to these bounds as follows:

µ1 =



























1 if LCost ≤ LCostMin

LCostMax−LCost
LCostMax−LCostMin

if LCostMin < LCost ≤ LCostMax

0 if LCost > LCostMax

(6.2)

where the term ‘LCost’ represents the cost of the link. In the same manner, mem-

bership of a link with respect to near optimum depth can be found. The lower limit,

called “LDepthMin”, is taken to be a depth of 1 with respect to the root. The

upper bound,“LDepthMax” is taken to be the maximum depth generated in the

initial solution or a user-specified maximum limit.1 The membership function with

respect to near optimum depth, µ2 is calculated using Equation (6.3) as follows:

µ2 =



























1 if LDepth ≤ LDepthMin

LDepthMax−LDepth
LDepthMax−LDepthMin

if LDepthMin < LDepth ≤ LDepthMax

0 if LDepth > LDepthMax

(6.3)

1This user specified limit may be a design constraint, e.g., if each hop represents a router that
uses the routing information protocol (RIP), then a reasonable limit would be 7, i.e. a branch of
the tree should not have more than 7 routers.
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where the term ‘LDepth’ represents the depth of the link. Finally, the membership

of a link with respect to near optimum reliability is determined as follows. From the

reliability matrix, which gives the reliability of each possible link, the minimum and

maximum reliabilities among all the link reliabilities are found. These minimum

and maximum reliabilities are taken as the lower and upper bounds, “LRelMin”

and “LRelMax”, respectively. Then, the membership of a link for reliability, µ3, is

calculated with respect to these bounds as follows:

µr(x ) =



























1 if LRel ≥ LRMax

LRMax−LRel
LRMax−LRMin

if LRMin < LRel ≤ LRMax

0 if LRel < LRMin

(6.4)

where LRel represents the reliability of the link. For the purposes of this thesis, five

values of link reliabilities were used, namely, 0.99, 0.95, 0.9, 0.85, and 0.8, as used

by Altiparmak et al. [6] in a similar study. Thus, LRelMin = 0.8 and LRelMax =

0.99.

Selection

The selection process sample for each link, li, in the current tree topology, where

i = 1,2,..., n-1, a random number RANDOM ∈ [0, 1]. If RANDOM > gci + B ,

where B is the selection bias, then link li is selected for allocation and considered

removed from the topology. The bias is used to control the size of the set of links

selected for removal, as described earlier in Section 2.4.2.
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6.1.3 Fuzzy Allocation

The allocation step of the algorithm removes the selected links from the topology

one at a time. For each removed link, a new link is introduced in the topology,

provided that the constraints are not violated. This procedure is repeated for all

the links that are present in the set of selected links. The strategy of this operation

is somewhat similar to the one used in the FStocE algorithm. However, in FSimE,

prior to the allocation step, the selected links are sorted according to their goodness

values, with the link with the worst goodness at the head of the list.

The fuzzy allocation scheme combines the four criteria to be optimized using

fuzzy logic to characterize a good topology. This overall cost is computed using

fuzzy Rule 1 discussed in Section 3.4, using either Equation (3.11) or Equation

(4.1).

6.2 Tabu Simulated Evolution

This section proposes a new hybrid iterative search technique, tabu simulated evo-

lution (TFSimE), which introduces features of tabu search in the allocation phase of

the SimE algorithm. TFSimE takes an approach very similar to TFStocE described

in Chapter 5. In TFSimE, a user-specified number of moves are made for each link

in the selection set, and the best move is accepted, making the move (i.e. link)

permanent. This newly accepted link is also saved in the tabu list to prevent cycling

back to the same solution. As described in Section 2.4.5, tabu search requires that

attributes and aspiration criteria need to be defined. Thus, the attribute is the link

itself. The aspiration criterion overrides the tabu status of the link if the tabu link
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produces a higher membership value (i.e. overall goodness) than the current one in

the membership function “good topology”. As with the case of TFStocE, the tabu

search based strategy prevents the algorithm from repetitively performing the same

move in consecutive iterations.

6.3 Experimental Results

The FSimE and TFSimE algorithms proposed in this chapter were tested on the

five test cases as described in Chapter 3. For both algorithms, the bias B can have

a significant impact on the performance of the algorithms (refer to Section 2.4.2).

Thus, it is important to find the most appropriate value of the bias for each problem

instance. Experiments with five different bias values were conducted, i.e. 0.0, 0.1,

0.2, 0.3, and 0.4. Values greater than 0.4 were not considered since a very high

bias value would reduce the number links selected for removal, thereby increasing

the risk of premature convergence, as discussed in Section 2.4.2. To assess the

performance of the FSimE and TFSimE algorithms, four different sets of experiments

were performed. The first set of experiments focussed on TFSimE, where different

tabu list sizes as described in Section 6.3.1 were tried. In the second set, FSimE and

TFSimE were compared. In the third set, a variant of TFSimE with a dynamically

changing bias, termed as DTFSimE, is discussed and evaluated. Finally, the fourth

set of experiments provided a comparative analysis of the OWA and UAO operators

using DTFSimE. For each variant of SimE, 30 runs were executed for each test case,

and the average and standard deviation of overall goodness of best solutions were

calculated.
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6.3.1 Effect of Tabu List Size

The effect of the tabu list size was investigated for the TFSimE algorithm with tabu

list sizes of 3, 5, 7, 9, 11, and 13. The effect was evaluated for both the OWA and

UAO operators. The purpose of this investigation was to see if the observations of

Glover [100] (as discussed in Section 5.3.1) can be confirmed. Tables 6.1 and 6.2

summarize the average overall goodness for the best solutions for each test case with

different tabu list sizes for OWA and UAO respectively.

Table 6.1 shows that the size of tabu list that is related to best overall goodness

varies for each case when OWA is used. A graphic illustration of the variation in

average overall goodness with respect to different tabu list sizes for OWA is given in

Figure 6.2. Table 6.1 also provides the percentage difference in the average overall

goodness of the given tabu list size when compared with size 7. For example, for

case n40, the average overall goodness obtained with size 13 was 10.11% better

than that obtained with size 7. It appears from the results in Table 6.1 that, in

general, Glover’s first observation that tabu list size of 7 does not always produce

the best results seem to be proven true. However, this observation is confirmed

through validation of results using the t-test. The t-test was performed to test

the hypothesis whether the two averages (i.e. the average overall goodness obtained

with tabu list size of XYZ and that of 7) were significantly different from each other.

The t-test results were obtained at 5% significance level. Percentage improvements

which are statistically significant are shown in italics. The t-test results signify

two important issues. First, in general there is no hard evidence that the results

produced by the tabu list size of 7 were statistically significantly different than the

results produced by other sizes. This observation is obvious from the results of n25,
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n33, and n50, where size 7 failed to produce statistically better results than any

other size. Even for test cases n15 and n40, a tabu list size of 7 did not result in

significant improvement as a whole; there are only instances where size 7 produced

better results than sizes 9 and 13 (for n15), and 3 and 9 (for n40). Second, there is

the case of n40 where size 13 achieved statistically significantly better results than

the results obtained with size 7. However, the above discussion negates Glover’s

observation that size of the best tabu list (i.e., tabu list that produces the best

results) increases as the test case size increases.

As for UAO, a trend similar to that of OWA was observed, where the tabu list

for best results varied with each test case. As observed from Table 6.2, there was

not a single test case where the tabu list size of 7 seemed to produce the best results.

For example, size 3 provided the best results for n50, n40, and n15, while for n33

the best size was 5. Only in case n25 did a tabu list size of 11 provide the best

overall goodness. A graphic illustration of variation in average overall goodness

with respect to different tabu list sizes for UAO is presented in Figure 6.3. The

t-test results suggest that for all test cases, in general, size 7 was unable to achieve

statistically better results when compared to other tabu list sizes. There were minor

exceptions such as n15 (where size 7 showed improvement over sizes of 5 and 9), and

n50 (where size 3 had a statistically significant improvement over size 7). Moreover,

the results also provide an evidence that the best tabu list size did not increase

proportional to the size of the test case.

Based on the above discussion, it can be fairly claimed that the tabu list size

that resulted in the best solution coincide with Glover’s [100] observation that a size

of 7 does not always produce the best results. However, the suggestion of Glover
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that best tabu list size increases as the test case size increases is not true. The size

of the tabu list depends on the nature of the problem, but is not proportional to the

size of the test case.

6.3.2 Comparison of FSimE and TFSimE

This section compares the results of the FSimE and TFSimE algorithms. The results

of 30 runs obtained by FSimE and TFSimE with the OWA and UAO operators are

summarized in Tables 6.3 and 6.4. For each test case, different values of bias B were

investigated as listed in Section 6.3. The results reported in the tables are for bias

values responsible for producing the best overall goodness values for FSimE. The

same bias was used for TFSimE mentioned in Section 6.3 and the best results are

also mentioned in the tables.

Results in Table 6.3 show that the size of test cases was inversely proportional to

the best bias value. A high bias value generated the best results for small test cases;

for example n15 has a best bias of 0.4. As the size of the test case was increased, the

general trend is that the bias value decreased. For example, the bias for n33 was 0.2,

while that of n40 and n50 was 0. An exception to this trend is test case n25, where

a bias of 0 produced the best results. As far as comparison of FSimE and TFSimE is

concerned, it is obvious from Table 6.3 that, in general, TFSimE was able to achieve

significant improvement in the overall goodness of the solution compared to FSimE.

This achievement is more prominent in small and medium size test cases such as

n15, n25, and n33. The improvements for these cases were in the range of 14% to

39%. For n40, the improvement was about 4.5%. As for n50, FSimE was able to

perform better than TFSimE, as a deterioration of almost 12% was observed in the
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Table 6.1: Effect of tabu list size on the quality of overall goodness for TFSimE using
OWA. Run time is in seconds. Statistically significant improvement is in italics. NA
= Not Applicable (since size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall % Improvement Run time
goodness

3 0.123 ± 0.020 -1.40 82.9
5 0.122 ± 0.021 -2.20 82.6

n15 7 0.125 ± 0.019 NA 83.2
9 0.116 ± 0.016 -6.93 83.9
11 0.130 ± 0.039 4.51 83.6
13 0.115 ± 0.016 -7.53 84.7
3 0.226 ± 0.017 2.05 221.9
5 0.226 ± 0.008 1.89 231.8

n25 7 0.222 ± 0.007 NA 244.0
9 0.228 ± 0.021 2.84 256.5
11 0.228 ± 0.020 2.71 268.0
13 0.223 ± 0.006 0.72 280.6
3 0.202 ± 0.006 0.12 174.1
5 0.201 ± 0.009 0.04 192.3

n33 7 0.201 ± 0.006 NA 221.3
9 0.200 ± 0.008 -0.67 230.9
11 0.200 ± 0.008 -0.66 253.7
13 0.201 ± 0.009 -0.34 266.6
3 0.250 ± 0.086 -9.30 1568.5
5 0.256 ± 0.150 -6.87 1590.4

n40 7 0.275 ± 0.140 NA 1591.8
9 0.232 ± 0.028 -15.72 1747.2
11 0.268 ± 0.066 -2.71 1805.3
13 0.303 ± 0.176 10.11 1856.9
3 0.219 ± 0.047 0.35 3734.6
5 0.220 ± 0.036 0.44 3713.1

n50 7 0.219 ± 0.061 NA 3871.9
9 0.231 ± 0.094 5.55 3981.1
11 0.222 ± 0.048 1.62 4321.2
13 0.220 ± 0.046 0.57 4482.5
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Table 6.2: Effect of tabu list size on the quality of overall goodness for TFSimE using
UAO. Run time is in seconds. Statistically significant improvement is in italics. NA
= Not Applicable (since size 7 was used as the reference for comparison).

Test Case Tabu list size Avg. Overall % Improvement Run time
goodness

3 0.320 ± 0.052 2.53 99.5
5 0.299 ± 0.024 -4.03 102.9

n15 7 0.312 ± 0.034 NA 100.0
9 0.300 ± 0.014 -3.60 101.8
11 0.313 ± 0.039 0.45 103.6
13 0.315 ± 0.039 0.93 104.4
3 0.273 ± 0.008 -0.19 94.0
5 0.276 ± 0.008 1.06 103.0

n25 7 0.273 ± 0.007 NA 103.0
9 0.276 ± 0.009 0.90 109.4
11 0.277 ± 0.011 1.44 117.0
13 0.270 ± 0.006 -1.02 114.0
3 0.277 ± 0.012 -0.85 133.7
5 0.282 ± 0.012 0.98 160.8

n33 7 0.279 ± 0.013 NA 165.2
9 0.275 ± 0.020 -1.49 167.8
11 0.274 ± 0.013 -1.59 183.8
13 0.277 ± 0.011 -0.62 182.5
3 0.302 ± 0.010 1.32 360.6
5 0.295 ± 0.014 -0.93 479.3

n40 7 0.298 ± 0.010 NA 446.2
9 0.299 ± 0.010 0.34 471.8
11 0.302 ±0.016 1.35 517.1
13 0.301±0.013 1.01 543.3
3 0.314 ± 0.036 4.17 3580.1
5 0.296 ± 0.025 -2.07 3464.5

n50 7 0.302 ± 0.032 NA 3566.4
9 0.303 ± 0.036 0.51 3673.9
11 0.292 ± 0.023 -3.18 3994.1
13 0.309 ± 0.042 2.31 4346.1
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Figure 6.2: Plots of average overall goodness versus tabu list size for FSimE using
the OWA operator for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15
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Figure 6.3: Plots average overall goodness versus tabu list size for FSimE using the
UAO operator for (a) n50 (b) n40 (c) n33 (d) n25 (e) n15
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quality of solution produced by TFSimE. A statistical validation of results using a

t-test at 5% significance level suggested that TFSimE produced significantly better

results for n15, n25, and n33, while FSimE showed better performance for n50. For

n40, the improvement achieved by TFSimE was not statistically significant.

For UAO, the results in Table 6.4 show that the general trend was somewhat

similar to the results in Table 6.4 as far as the relationship of bias with test case

size is concerned. For FSimE, the best results were obtained when the bias was

inversely proportional to the test case size, with the exception of n15. With respect

to the performance of FSimE and TFSimE, the results were somewhat unclear. A

statistical validation using t-test suggested that TFSimE was able to achieve better

results than FSimE for n25, n33, and n50 with percentage improvement in the range

of 2% to almost 35%, while FSimE showed better performance than TFSimE for n15

with improvement equal to 31.35%. For n40, the improvement achieved by TFSimE

compared to FSimE was not statistically significant.

From the discussion above, it is observed that TFSimE was able to achieve

better results for the majority of cases when OWA was used, and had more or less

equivalent performance when UAO was used. This better performance of TFSimE is

due to reasons very similar to what was observed for TFStocE in Chapter 5: due to

the limited search space, several moves are repeated again and again. Thus, FSimE

keeps searching in the same parts of the search space repetitively. For TFSimE,

larger parts of the search space are covered because previous moves remain tabu for

some time. This causes the algorithm to diversify the search into another subarea.

Recall that, during the allocation phase, a new valid link is selected for each removed

link. This new link is then also saved in the tabu list. However, the new link may
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become “bad” (in terms of the evaluation function) in the following iterations, in

which event it is removed. However, the same link may become good again after

one or more iterations, but, since it is in the tabu list, it will not be selected again,

thus giving room for other links to be considered. This allows TFSimE to cover

larger parts of the search space, causing the algorithm to find better solutions than

FSimE. The above reasoning is supported by evidence presented earlier in Table 5.6

and the related discussion at the end of Section 5.3.2. The evidence and discussion

in Section 5.3.2 are also applicable to the TFSimE algorithm.

Table 6.3: Comparison of FSimE and TFSimE for OWA. TL = Tabu List Size,
Time = Run time (in seconds), and % imp = percentage improvement. Statistically
significant percentage improvements are in italics.

Case Bias FSimE TFSimE % imp
Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.4 0.114 ±0.053 91.4 11 0.130 ±0.039 83.6 14.70
n25 0.0 0.175 ±0.010 276.0 9 0.228 ±0.021 256.5 30.32
n33 0.2 0.145 ±0.019 492.8 7 0.201 ±0.006 221.3 38.70
n40 0 0.290 ±0.082 6067.4 13 0.303 ±0.176 1856.9 4.49
n50 0 0.262 ±0.105 7017.0 9 0.231 ±0.094 3981.1 -11.94

Table 6.4: Comparison of FSimE and TFSimE for UAO. TL = Tabu List Size,
Time = Run time (in seconds), and % imp = percentage improvement. Statistically
significant percentage improvements are in italics.

Case Bias FSimE TFSimE % imp
Avg. Overall Time TL Avg. Overall Time

Goodness Goodness

n15 0.1 0.465 ±0.022 125.6 3 0.320 ±0.052 99.5 -31.35
n25 0.3 0.271 ±0.014 236.1 11 0.277 ±0.011 117.0 2.08
n33 0.3 0.264 ±0.039 523.5 5 0.282 ±0.012 160.8 6.85
n40 0.2 0.298 ±0.045 2272.3 3 0.302 ±0.010 360.6 1.42
n50 0.0 0.235 ±0.037 7025.2 3 0.314 ±0.036 3580.1 33.94
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6.4 Dynamic Bias

The results in Tables 6.3 and 6.4 point to the fact that a proper bias value is

highly dependent on the test case under consideration. Since it is computationally

expensive to find the best bias value by a process of trial-and-error, it will be more

efficient if the value of the bias is dynamically adjusted. A dynamic bias holds the

following advantages:

1. The bias value is not arbitrarily selected, and no trial runs are required to

find the best bias value. The bias value automatically adjusts according to the

problem state, thus saving the time and effort spent by the user in finding the

best bias value by trial-and-error.

2. For bad quality solutions, the average overall goodness of solution and of the

links are low, forcing the algorithm to perform a significant number of moves,

and thus resulting in large perturbations. To prevent this, the algorithm would

dynamically adjust the bias to a high value. This ensures that the size of the

selection set is not excessively large, since only links with a very high goodness

value will be selected for removal. A selection set of small size will prevent the

algorithm from making moves with large step sizes.

3. For good quality solutions, the average link goodness and overall goodness

is high, and there is no need to inflate the overall goodness of the solution.

Therefore, a low bias value is used. A low bias value will allow the algorithm to

have a selection set of a sufficient number of links. This in turn will allow the

algorithm to perform a sufficient number of moves, thus enabling the algorithm

to escape local minima, and protecting the algorithm from early convergence.
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Considering the above points, it is proposed that at each iteration, t, the bias be

calculated as:

B(t) = 1 −

(

1

L

L
∑

i=1

gli(t)

)µ

(6.5)

where B(t) is the bias at iteration t, gli(t) is the goodness of all links in the solution

at iteration t, L is the total number of links in the solution at iteration t, and µ is

the overall goodness of the solution at time t. From Equation (6.5), the value of the

bias is a function of average goodness of links present in the current solution raised

to power of overall goodness (solution membership), µ, of the solution. The above

strategy to dynamically adjust the bias value was incorporated into the TFSimE

algorithm. The resulting algorithm is referred to as the DTFSimE algorithm.

Tables 6.5 and 6.6 respectively summarize the results for the FSimE and DTF-

SimE algorithms. It is very clear from the tables that DTFSimE demonstrated a

much superior performance compared to FSimE. For OWA, Table 6.5 shows a sig-

nificant improvement in the overall goodness for DTFSimE compared to FSimE.

Improvements are in the range of 17% to 82%. Statistical testing with a t-test also

suggests that DTFSimE produced significantly better results than TFSimE for all

test cases. Likewise, the results for UAO as given in Table 6.6 show that DTFSimE

produced statistically better overall goodness values (validated by the t-test) for

n25, n33, and n50, with improvements in the range of 10% and 20%. For n15 and

n40, FSimE had slightly better results than DTFSimE, but these results were not

statistically significant.
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Table 6.5: Comparison of FSimE and DTFSimE for OWA. Time = Run time (in sec-
onds). % improvement is for DTFSimE compared to FSimE. Statistically significant
improvement is in italics.

Case Bias FSimE DTFSimE % improvement
Avg. Overall Time Avg. Overall Time

Goodness Goodness

n15 0.4 0.114 ±0.053 91.4 0.206 ±0.052 134.2 81.19
n25 0.0 0.175 ±0.010 276.0 0.240 ±0.008 354.2 36.87
n33 0.2 0.145 ±0.019 492.8 0.229 ±0.061 1080.7 57.43
n40 0 0.290 ±0.082 6067.4 0.340 ±0.122 2861.0 17.26
n50 0 0.262 ±0.105 7017.0 0.350 ±0.143 7042.8 33.71

Table 6.6: Comparison of FSimE and DTFSimE for UAO. Time = Run time (in sec-
onds). % improvement is for DTFSimE compared to FSimE. Statistically significant
improvement is in italics.

Case Bias FSimE DTFSimE % improvement
Avg. Overall Time Avg. Overall Time

Goodness Goodness

n15 0.1 0.465 ±0.022 125.6 0.446 ±0.061 116.9 -4.14
n25 0.3 0.271 ±0.014 236.1 0.301 ±0.006 312.9 10.72
n33 0.3 0.264 ±0.039 523.5 0.303 ±0.004 775.1 14.99
n40 0.2 0.298 ±0.045 2272.3 0.297 ±0.122 2526.3 -0.26
n50 0.0 0.235 ±0.037 7025.2 0.281 ±0.000 5013.3 19.84

The superior performance of DTFSimE is due to two factors:

1. The dynamic bias: When a static bias is used, the FSimE algorithm does

not have the flexibility to adjust itself according to the problem state. The

bias value remains fixed throughout the execution of the algorithm, without

considering the average goodness of links. Note that, in the early stages of

the algorithm, the average goodness of links is expected to be low, while it

tends to be high in later stages. The static bias does not fully account for this

behavior, whereas the dynamic bias adapts itself accordingly. To elaborate
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Figure 6.4: Plots of average goodness of links versus iterations for n40 using OWA
obtained with (a) FSimE (with bias = 0.0) (b) DTFSimE

on this, consider the plots in Figures 6.4(a) and (b) which respectively show

average goodness of links for typical runs of fixed bias FSimE and dynamic

bias DTFSimE for n40 using OWA. A comparison of the two plots show that

the average goodness of links in FSimE varies significantly throughout the

execution of the algorithm as is apparent from Figure 6.4(a). In other words,

in FSimE, a number of the links are not able to find their optimum positions,

and, even if they do, these links are removed from their optimum positions
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Figure 6.5: Plots of variation in bias versus iterations for n40 using OWA obtained
with DTFSimE

in the following iterations. The impact of this behavior is that the FSimE

algorithm cannot converge to a sub-optimal solution within the given time

frame. On the other hand, the average goodness of links in DTFSimE increases

smoothly towards higher values as depicted in Figure 6.4(b). Towards the end

of the execution, the variation in average goodness of links in DTFSimE is

almost negligible, i.e. most of the links have found their optimal positions.

This suggests that the DTFSimE algorithm has converged to a sub-optimal

solution. The gradual increase in the average goodness of links for DTFSimE

can be associated with the constant change in the bias value. Figure 6.5 plots

the variation in the bias with respect to the iterations. It is clear from Figure

6.5 that the bias is initially at a higher value, and with the passage of time the

bias decreases. This is logical, since at the beginning of the search a higher

bias value would prevent huge number of selection of links (for removal), while

towards the end of the search most of the links are already in their optimal

positions, and therefore the bias adjusts itself to lower values to allow sufficient

perturbations.
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2. The tabu search characteristics: Tabu search characteristics further en-

hance the search capability of the DTFSimE algorithm due to the reasons

described in the last paragraph of Section 6.3.2.

6.5 Comparison of OWA and UAO Operators

The OWA and UAO operators were used to combine the four design objectives ac-

cording to Equations (3.11) and (4.1). This section presents a comparison of these

two fuzzy operators with respect to their application to DTFSimE. The tabu version

of fuzzy SimE was chosen, since the results produced by DTFSimE were relatively

better than the other variants, namely FSimE and TFSimE. The comparative analy-

sis focussed on the effect of the four design objectives, namely cost, delay, hops, and

reliability with respect to change in the number of nodes. For all the experiments

conducted in this study, β = 0.5 was chosen for the OWA operator in Equation

(3.11) and ν = 0.5 was used for the UAO operator in Equation (4.1). A simple lin-

ear regression analysis was performed with the number of nodes as the independent

variable and each one of the design objectives as a dependent variable. A number

of regression models were developed to see how a design objective is affected by

increasing the number of nodes when OWA and then UAO are used, and the effect

was measured by regression coefficients. The analysis was performed with a confi-

dence level of 95%. The analysis was done using a total of 150 data values, with 30

runs for each test case (n15 to n50).

Results of the comparison are given in Table 6.7, where design objectives are

indicated in the first column, regression coefficients for the OWA regression models
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Table 6.7: Comparison of OWA and UAO for DTFSimE.

Objective Regression coefficients Ratio = % Gain Comment
OWA UAO OWA

UAO
by UAO

Cost 0.947 0.963 0.98 -1.69 UAO performs 1.69 %
worse than OWA

Delay 0.336 0.376 0.89 - 11.90 UAO performs 11.9%
worse than OWA

Hops 0.628 0.402 1.56 35.99 UAO performs 35.99 %
better than OWA

Reliability -0.86 -0.75 1.15 12.79 UAO performs 12.79 %
better than OWA

are given in the second column, and regression coefficients for the UAO regression

models are given in the third column. The fourth column provides the ratio of regres-

sion coefficients of OWA versus UAO, and the fifth column provides the percentage

gain. The ratio in column 4 signifies the rate of increase for a certain objective if the

performance of OWA and UAO are compared for that objective. The percentage

gain given in column 5 shows the improvement achieved by the UAO operator as

compared to the OWA operator. A comment is given in column 6 highlighting this

improvement. According to Table 6.7, the regression coefficients for Cost are given

for OWA and UAO as 0.947 and 0.963 respectively 2. The corresponding ratio of

OWA and UAO is 0.98. The interpretation of this ratio is that, as the number of

nodes are increased, the rate at which cost increases using OWA is 0.98 times more

than the rate if UAO was used. In other words, the rate of increase of cost with

respect to the increase in the number of nodes for OWA is slightly less than that of

UAO. Similarly, the percentage gain shows that the performance of UAO is 1.69%

2A higher value of the regression coefficient would mean that the rate of increase of cost with
respect to increasing number of nodes is high; therefore, a low regression coefficient is desired
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worse than that of OWA in terms of controlling the rise in cost when measured

against the increment in number of nodes. For the Delay objective, UAO had a

11.9% worse performance than OWA. For the Hops objective, the OWA/UAO ra-

tio was 1.56, implying a significant performance improvement of 36% by UAO as

compared to OWA. For the Reliability objective, the regression coefficients have a

negative sign, which implies that the number of nodes and reliability are inversely

proportional. The OWA/UAO ratio for reliability is 1.15, suggesting that, as the

size of the test case increases, the rate at which reliability deteriorates using OWA is

1.15 times faster than if UAO is used. The percentage difference of 12.79% confirms

this observation; the UAO is 12.79% better than OWA in terms of controlling the

decline in reliability. The analysis of results in Table 6.7 suggests that UAO showed

better performance for the Hops and Reliability objectives, a performance almost

equal to that of OWA for Cost, and a worse performance for Delay.

6.6 Conclusions

This chapter proposed and investigated a fuzzy multi-objective algorithm based on

simulated evolution algorithm, namely FSimE. A hybrid variant of FSimE, known

as TFSimE, was also proposed. This variant introduced features of tabu search

in the allocation phase of the FSimE algorithm. The effect of tabu list size was

studied, which suggested that the best size is problem dependent, and not fixed at

7 as recommended by Glover [100]. The performance of TFSimE and FSimE was

compared. It was shown that the TFSimE generally produced better results than

FSimE. This improvement was observed for both the OWA and UAO operators.
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A method for dynamically adjusting the value of the bias was proposed. Results

showed that a dynamic bias improved the performance of TFSimE for all test cases

with respect to OWA and a majority of the test cases for UAO. An empirical analysis

showed that the performance of UAO was:

• better than that of OWA for the number of hops and reliability design objec-

tives,

• similar to OWA for the cost objective, and

• worse for the delay objective.

The next chapter discusses the fuzzy simulated annealing algorithm which has

been tailored for the multi-objective DLAN topology design problem.

179

 
 
 


	Front
	Chapters 1-2
	Chapters 3-4
	CHAPTER 5
	5.1 Fuzzy Stochastic Evolution
	5.2 Tabu Stochastic Evolution
	5.3 Experimental Results
	5.4 Dynamic Value of Rc
	5.5 Comparison of OWA and UAO Operators
	5.6 Conclusions

	CHAPTER 6
	6.1 Fuzzy Simulated Evolution Algorithm
	6.2 Tabu Simulated Evolution
	6.3 Experimental Results
	6.4 Dynamic Bias
	6.5 Comparison of OWA and UAO Operators
	6.6 Conclusions

	Chapters 7-8
	Chapters 9-11
	Back



