
Chapter 3

Topology Design of Distributed

Local Area Networks

This chapter provides a detailed definition of the problem considered in this the-

sis. This information is required in order to understand the concepts, terminology,

and related work described in subsequent chapters. Firstly, an informal discussion

of network topology design and related issues are provided. This is followed by

assumptions made for the purposes of this thesis and a formal statement of the

distributed local area networks topology design problem. Design objectives and

constraints are also discussed. Finally, the fuzzy logic approach for aggregating the

individual design objectives is discussed.

3.1 Background

A computer communication network provides communication services to a large

number of hosts. Hosts may include mainframe computers, mini systems, worksta-

86

 
 
 



tions, personal computers, printers, and other peripherals. To interconnect these

hosts, network active elements such as routers, switches, and hubs are used. The

large number of different hosts and network active elements result in a large number

of ways in which hosts and network active elements can be interconnected. Such

networks are referred to as internetworks. At an abstract level, a typical computer

communication network can be divided into two stages. The first stage is known as

the local access network, which allows users access to hosts or local servers. Local

access networks are generally designed as centralized systems. The second stage con-

sists of a backbone, which is responsible for the delivery of information from source

to destination using switching elements. The backbone network can be designed as

a distributed network which relies on switching technology.

In a modern organization, communication services are centered around a dis-

tributed local area network, or DLAN. In a DLAN, the backbone interconnects a

number of local access networks via routers or layer 3 switches (refer to Figure 3.1).

A local access network may be subdivided into smaller sub-groups, called segments.

Thus, a hierarchically structured network topology is achieved. Such a hierarchi-

cal topology comprises a switched backbone that interconnects several local access

networks via routers or layer 3 switches, where each local access network is an in-

terconnected collection of segments. Distributed local area networks have several

advantages over centralized networks, including

1. Broadcast traffic is confined to a single local access network. This prevents

broadcast storms from sweeping across the entire network.

2. Highest network availability and lowest latency are ensured.
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Figure 3.1: A typical distributed local area network (WS represents a workgroup
switch)

3. Users are provided with the most appropriate connectivity.

4. Cost of administration is reduced. Equipment movement and changes are

carried out more systematically. Moreover, diagnosis and troubleshooting of

network problems are easier.

The objective of topological design of computer networks is to achieve a cer-

tain performance level through improvement in various parameters such as network

delay, cost, reliability, and number of hops between communicating nodes. An

over-dimensioned network is easy to design, while it is always difficult to design a

cost-optimized network. The prime factors contributing to this difficulty are the size,

the constraints, and obviously the cost parameters. Topology optimization usually
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involves a tradeoff between performance and cost. For example, management would

like to consider financial aspects while designing a network, and would like the mon-

etary costs to be minimized. On the other hand, a user would be more interested

in a service where communication delay is minimized while network reliability is

maximized. Thus, the notion of optimality becomes vague in the presence of vari-

ous cost parameters and constraints. A rational approach to high-quality network

design is to search for a solution that possesses a set of desirable attributes and does

not violate well-established design principles. For example,

• there should be a physical path between any two nodes,

• the number of hops between any two nodes should remain within a defined

upper limit, and

• utilization levels of links should always be below a given threshold.

The network topology design problem has received considerable attention by

network designers and analysts. Extensive research has been done to develop efficient

optimization techniques for this complex optimization problem [57, 58, 75, 98, 110,

111, 152, 204]. Topology design has been categorized as an NP-hard problem [75, 79,

98]. Similarly, topological design of DLAN can be considered as an equally complex

problem with a huge search space. For a network with n nodes, there exist as

many as 2(
n(n−1)

2
−1) distinct topologies. Even for n = 10, there exist more than 1013

potential solutions. It is therefore clear that an exhaustive search is not desirable

due to its huge computational cost. Rather, heuristic approximation methods are

used to search for an optimal topology design. Heuristic methods produce good
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feasible solutions in a reasonable amount of time and focus the search on feasible

topologies of desirable characteristics.

3.2 Assumptions and Problem Statement

This section describes the necessary assumptions adopted in this thesis, and also

provides a formal statement of the DLAN topology design problem and design con-

straints.

3.2.1 Assumptions

For the purposes of DLAN topology design, the following are assumed:

• A tree topology is considered for network design.

• A “node” refers to a LAN (i.e. a local site). The node represents a layer 2,

or above, networking device (i.e. switch, router, or gateway) connecting the

LAN to another backbone node.

• The “root” node is a switch acting as a collapsed backbone with given required

interfaces.

• Each link is bidirectional.

• The reliability of each link is known.

• Nodes are fault-free. Only links are susceptible to failure.

• Only fiber optic cable is used between two LANs.
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• The maximum utilization of any link should remain within a desired threshold

(e.g., 60%).

• Fast Ethernet is implemented on the backbone.

• The “capacity” of a network device is equal to the number of ports available

on it. These ports are used to connect users to a network device.

• Distances between local sites (nodes) are known. The location of a node can

be represented by its Cartesian coordinates with respect to some reference

point.

• The internal topology of each LAN (i.e. a local site) is known a priori. That

is, each LAN is assumed to already exist.

3.2.2 Problem Statement

The DLAN topology design problem can be stated as follows [268, 269, 270, 271, 272]:

“With the assumption that the internal topology of each LAN is already de-

signed and known, find a quality feasible tree topology under a given set of design

objectives and constraints. This tree topology will interconnect all nodes (LANs) in

the network, thus forming a backbone topology of a DLAN.”

The term “feasible topology” in the above statement refers to a solution that

satisfies all design principles and constraints. The term “quality topology” refers to a

solution that optimizes the design objectives. In this thesis, the quality of a topology

is evaluated on the basis of four design objectives: monetary cost, average network
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delay per packet (network latency), maximum number of hops between any source-

destination pair, and network reliability. The search targets feasible topologies which

minimizes the first three objectives and maximizes the fourth objective.

3.3 Design Objectives and Constraints

This section describes the design objectives and constraints considered in this thesis.

All objectives are summarized in Section 3.3.1, while the constraints are discussed

in Section 3.3.2.

3.3.1 Design objectives

As mentioned earlier, four design objectives are considered. These objectives are:

Monetary cost

The aim is to find a topology with low cost, while satisfying the design constraints

(discussed in Section 3.3.2 below). Since the number of network devices would be

the same in any topology, the only entity that affects the monetary cost is the cost

of cables. Cost is expressed as

cost = length × ccable (3.1)

where length represents the total length of cable, and ccable represents the cost per

unit of the cable used.
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Average Network Delay

The second objective is to minimize the average network delay incurred on a packet

during transmission from a source node to a destination node.

To estimate the average network delay, the aggregate behavior of a link and

network device is modelled by an M/M/1 queue [75]. If a link connects local sites i

and j, then the delay per bit due to the network device feeding this link is Bi,j =

bi ,j/ω, where bi ,j is the delay per packet, and ω is the average packet size in bits. If

γij is the total traffic through the network device between local sites i and j, then

the average packet delay due to all network devices is:

Dnd =
1

γ

d
∑

i=1

d
∑

j=1

γijBij (3.2)

where d is the total number of networking devices in the network, and γ is the

total traffic in the network, representing the summation of all γij. The total average

network delay is the summation of delays over all links and network devices, given

as [75]:

D =
1

γ

L
∑

i=1

λi
λmax,i − λi

+
1

γ

d
∑

i=1

d
∑

j=1

γijBij (3.3)

where L is the number of links in the topology, λi is traffic on link i in bits per

second (bps), and λmax,i is the capacity of link i in bps.
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Maximum number of hops between any source-destination pair

The maximum number of hops between any source-destination pair needs to be

minimized. A hop is counted as the packet crosses a network device. The reason

for taking number of hops as an optimization objective is due to the restrictions

imposed by the routing information protocol (RIP). RIP uses hop count to measure

the distance between the source and a destination node. RIP implements a limit

on the number of hops encountered in the path from a source to a destination to

prevent routing loops from continuing indefinitely [233]. The maximum number

of hops allowed in a path is 15. If the hop count exceeds this number, then the

destination is considered unreachable [233].

Network reliability

Network reliability should be maximized. Network reliability can be defined as the

probability of occurrence of an event in which each node communicates with every

other node in the network [2]. For the purposes of this thesis, the topology is a tree.

Thus, the reliability of such a topology is the product of the reliabilities of all links

present in that particular topology [12, 136]. Mathematically,

Rs =
L
∏

i=1

Ri (3.4)

where Ri is the reliability of link i, and Rs is reliability of the network.
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3.3.2 Constraints

Three types of constraints are considered in this thesis, namely:

1. The maximum number of nodes attached to network device i must not exceed

the capacity, pi, of that device. That is,

n
∑

j=1

tij < pi, i = 1, 2, ..., n, ∀i 6= j (3.5)

where n is number of nodes in the network, and tij represents a connection

between device (i.e. a node) i and device j.

2. Link bandwidth is limited. Therefore, a good network will employ “reason-

ably” utilized links, since links with high utilization levels experience delays,

congestion, and packet loss. The traffic flow on any link i therefore must be

limited by a threshold value, λmax,i, as follows:

λi < λmax,i, i =1, 2, ...,L (3.6)

3. The last set of constraints are specified by the designer, and is used to enforce

certain design guidelines and principles:

(a) Certain nodes must be leaf/terminal nodes. For example, hubs should

generally be placed as leaf nodes.

(b) Certain nodes must be interior nodes of the tree, for example, nodes

designated as switches or routers.
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(c) Certain nodes cannot be directly connected to the backbone. For exam-

ple, hubs should not be directly connected to the backbone (i.e. the root

node).

3.4 Fuzzy Logic Approach to the DLAN Topology

Design Problem

Topology design of LANs is a complex process which requires simultaneous opti-

mization of a number of design objectives. Important objectives include monetary

cost, maximum number of hops between a source-destination pair, network average

delay, and network reliability. None of these objectives on their own gives sufficient

information to decide the quality of the network topology. It is also the case that

some of these objectives, such as the delay, can only be approximated. The com-

plexity of the problem is further amplified by the conflicting nature of some of these

objectives. Thus, a trade-off between the conflicting objectives is required. Fuzzy

logic comfortably provides a mechanism to handle imprecise information since the

logic provides a rigorous algebra for dealing with imprecise information. Further-

more, the logic is a convenient method of combining conflicting objectives and expert

human knowledge.

The rest of this section describes how fuzzy logic is employed in combining the

four conflicting objectives into a single overall objective. This overall objective

estimates the quality of a solution in terms of membership of a given topology to

the fuzzy set of quality topologies. For simplicity, the following discussion uses the

terms cost, delay, hops, and reliability. The goal is to find a high quality solution,
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represented by a linguistic variable ‘good topology’. A good topology consists of

low cost, small number of hops, low delay, and high reliability, as summarized in

Figure 3.2.

Good Topology

Low average
network delay

Low  Monetary
        Cost

High
Reliability

Low maximum
number of hops
between s-d pair

Figure 3.2: Basic components of a good topology

To evaluate the quality of the overall solution using fuzzy logic, the quality

of individual objectives needs to be evaluated first through membership functions.

Once this is done, fuzzy logic rules can be used to assess the quality of solutions

with respect to the individual objectives. For the DLAN topology design problem, a

solution should satisfy the four objectives mentioned above. Each of these objectives

is evaluated using a membership function. Thus, a membership function needs to

be defined for each objective. This process is described below.

1.0
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Figure 3.3: Membership function of the objective to be optimized
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To find the membership function of cost, two extreme values, the minimum and

maximum, are determined first. These values can be found mathematically or from

prior knowledge. Figure 3.3 depicts the membership function of the objective to be

optimized (cost in this case). In this figure, the two values shown as ‘A’ and ‘B’

refer to the minimum cost ‘MinC’ and the maximum cost ‘MaxC’. The membership

value for cost of solution x, µc(x), is computed as

µc(x ) =



























1 if Cost(x) ≤MinC

MaxC−Cost(x)
MaxC−MinC

if MinC < Cost(x) ≤MaxC

0 if Cost(x) > MaxC

(3.7)

where the term Cost(x) represents the cost of the solution. The membership function

for delay, µd(x), can be defined in a similar way. The two extreme values of delay are

‘MinD’ and ‘MaxD’ for minimum and maximum values respectively. In Figure 3.3,

‘MinD’ corresponds to ‘A’ and ‘MaxD’ corresponds to ‘B’. The membership value

of delay is determined as

µd(x ) =



























1 if Delay(x) ≤MinD

MaxD−Delay(x)
MaxD−MinD

if MinD < Delay(x) ≤MaxD

0 if Delay(x) > MaxD

(3.8)

where the term Delay(x) represents the average delay of the solution. The member-

ship function for number of hops, µh(x), is also illustrated by Figure 3.3, where the

minimum (MinH) and maximum (MaxH) values correspond to ‘A’ and ‘B’ respec-

tively. The membership value for number of hops is determined as
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µh(x ) =



























1 if Hops(x) ≤MinH

MaxH−Hops(x)
MaxH−MinH

if MinH < Hops(x) ≤MaxH

0 if Hops(x) > MaxH

(3.9)

Finally, the membership function for reliability, µr(x), can be determined by

finding the maximum and the minimum bounds for the solution reliability. In Figure

3.3, the minimum (MinR) and maximum (MaxR) values correspond to ‘B’ and ‘A’

respectively. The membership value for reliability is determined as

µr(x ) =



























1 if Rel(x) ≥MaxR

MaxR−Rel(x)
MaxR−MinR

if MinR < Rel(x) ≤MaxR

0 if Rel(x) < MinR

(3.10)

After obtaining the membership functions of the four objectives, the next phase

is to combine these functions into an overall function (i.e. a single objective function)

of “good topology” using fuzzy logic. A good topology is one that is characterized

by a low cost, low delay, small number of hops, and high reliability. In fuzzy logic,

this can be stated by the following fuzzy rule:

Rule 1: IF a solution X has low cost AND low delay AND low hops

AND high reliability THEN it is a good topology

The expressions “low cost”, “low delay”, “low hops”, “high reliability”, and

“good topology” are linguistic values, each defining a fuzzy subset of solutions. For
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example, “high reliability” is the fuzzy subset of topologies of high reliabilities.

Each fuzzy subset is defined by a membership function µ. The membership function

returns a value in the interval [0,1] which describes the degree of satisfaction with

the particular objective criterion. The above fuzzy rule can be mathematically

represented using the OWA-AND operator:

µ(x)O = β min{µ1(x), µ2(x), µ3(x), µ4(x)} + (1 − β)
1

4

4
∑

i=1

µi(x) (3.11)

In Equation (3.11), µ(x)O is the membership value for solution x in the fuzzy

set good topology using the OWA-AND operator. Also in the same equation, µi for

i = {1,2,3,4} represents the membership values of solution x in the fuzzy sets low

cost, low delay, low hops, and high reliability respectively. The solution which results

in the maximum value for Equation (3.11) is reported as the best solution found.

However, it is also possible to get a set of best solutions having equal membership

values (i.e. Pareto optimal solutions), in which case any one of such solutions is

taken as the best solution.

3.5 Characteristics of Test Cases

The test cases used in this thesis have been used in other literature [271, 272, 268,

270, 269]. These test cases were used to evaluate the performance of all algorithms

proposed in this thesis. The test cases represent networks consisting of local sites.

Traffic generated by each local site for these test cases was collected from real sites,

and costs of the network cables were collected from vendors. Other characteristics,
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Table 3.1: Network characteristics assumed for experiments.

Parameter Characteristic

Cost of fiber optic cable $ 5 per meter
Delay per bit due to networking device 250µsec.

Maximum traffic on a link allowed 60
Average packet size 500 bytes

Type of networking device Router, switch, or hub
Number of ports on a networking device 4, 8, or 12

such as the number of ports on a network device and its type are listed in Table 3.1.

Five test cases were used for experimental work. For these test cases, the number of

local sites ranged between 15 (denoted by n15) and 50 (denoted by n50). Table 3.2

summarizes the features of these test cases.

Table 3.2: Characteristics of test cases used in experiments. MinC is in US$, MinD
is in milliseconds, and traffic is in Mbps.

Test Case # of Local Sites MinC MinD MaxR Traffic

n15 15 4640 2.14296 0.868746 24.63
n25 25 5120 2.15059 0.785678 74.12
n33 33 8158 2.15444 0.72498 117.81
n40 40 9646 2.08757 0.675729 144.76
n50 50 11616 2.08965 0.611117 164.12

3.5.1 Upper and Lower Bounds for Objective Values

The extreme values of the objectives can be found as given below. Some of these

values, such as MinC, MaxC, MinD, MinH, and MaxR, can be pre-calculated, while

others such as MaxD, MaxH, and MinR are computed during the initialization step

of the optimization algorithm.

For the cost objective, the minimum value, ‘MinC’, is found by using the Esau-
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Williams algorithm [80], with all the constraints completely relaxed. This guarantees

that the minimum possible cost of the topology is obtained. The value of ‘MinC’ for

the five test cases is given in Table 3.2. The maximum value for cost, ‘MaxC’, is taken

to be the cost generated by the initialization step of the optimization algorithm.

Once the two extreme values are available, the membership value, µc, of cost is

computed using Equation (3.7).

The minimum value for the delay objective, ‘MinD’, is found by connecting all

the nodes directly to the root node, ignoring all constraints. The value of ‘MinD’

for the five test cases is given in Table 3.2. The maximum value of delay, ‘MaxD’,

is taken to be the delay generated by the initialization step. Once these values are

obtained, the delay membership value, µd, is calculated using Equation (3.8).

For the number of hops objective, the minimum value, ‘MinH’, is taken to be 1

hop. The maximum value, ‘MaxH’, is taken to be the maximum number of hops

between any source-destination pair generated by the initialization step. The mem-

bership value of hops, µh, is computed using Equation (3.9).

Finally, for the reliability objective, the maximum reliability, ‘MaxR’, is found

using the Esau-Williams algorithm [80], with all constraints relaxed. This guarantees

the maximum possible reliability that could be attained. The value of ‘MaxR’ for

the five test cases is given in Table 3.2. The minimum reliability, ‘MinR’, is taken

to be the reliability of the initial solution. The membership value for reliability, µr,

is found using Equation (3.10).

102

 
 
 



3.6 Conclusion

This chapter defined and discussed the problem of topology design of distributed

local area networks formulated as a multi-objective optimization problem. Neces-

sary background information along with important concepts, design objectives, and

problem constraints were discussed in sufficient detail. Moreover, aggregation of in-

dividual objectives into a combined single fuzzy function using the ordered weighted

averaging operator was also covered. In addition, this chapter provided character-

istics of test cases used to evaluate the performance of each proposed algorithm,

along with the upper and lower bounds of the objective values. The next chapter

discusses a new fuzzy aggregating operator proposed in this thesis.
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Chapter 4

The Unified AND-OR Fuzzy

Operator

A new fuzzy operator is proposed and discussed in detail in this chapter. This new

operator is shown to have mathematical properties similar to that of the ordered

weighted averaging operator. A new preference handling approach is also proposed.

To illustrate the effectiveness of the proposed operator and the preference scheme,

empirical analysis is performed using some examples, and a comparison with the

OWA operator is done.

4.1 Definition of the Unified AND-OR Operator

This section focusses on a new operator proposed in this thesis, namely the unified

AND-OR operator or UAO. As will be seen, this operator uses a single equation

(unlike the two separate equations for AND and OR of Yager’s OWA operator), yet

it is capable of behaving either as the OWA-AND or the OWA-OR operator. The
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behavior is controlled by a variable ν ≥ 0, whose value decides whether the function

will behave as AND or OR. The operator is defined as

f(a, b) =
ab+ νmax{a, b}

ν + max{a, b}
=











I? = µA∪B(x) if ν > 1

I∗ = µA∩B(x) if ν < 1

(4.1)

where a represents the membership value of µA (i.e. a = µA), b represents the

membership value of µB (i.e. b = µB), and f(a, b) represents the value of the overall

objective function (i.e. f(a, b) = µAB). I∗ represents the AND operation using the

UAO operator, and I? denotes the OR operation using the UAO operator.

In Equation (4.1), parameter ν is used to orient the equation such that the UAO

behaves either as the AND or the OR operator. With ν < 1, the UAO behaves as

the OWA-AND operator. A value of ν = 0 gives the pure-AND behavior. On the

other hand, a value of ν > 1 shifts the behavior of the UAO towards the OWA-

OR operator. As ν −→ ∞, the ORing becomes more ‘rigid’. The UAO behaves

as pure-OR when ν = ∞. However, experimentation with different values of ν

suggests that the behavior of the UAO is quite similar to that of the OWA-OR with

1 ≤ ν ≤ 100. Figure 4.1 depicts instances of the UAO with different values of ν.

As illustrated in Figure 4.1(a), a value of ν = 0 for UAO gives exactly the same

behavior as that of OWA-AND with β =1 (see Figure 2.4(f)). Similarly, Figure

4.1(b) and (c) depict almost the same behavior illustrated in Figure 2.4. When ν

= 1 (Figure 4.1(d)), the UAO operator behaves almost the same as the OWA-AND

with β = 0 (or equivalently, as OWA-OR with β = 0).
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Figure 4.1: Effect of ν on Unified AND-OR operator
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4.2 Mathematical Properties

This section proves that the UAO operator also satisfies the properties of mono-

tonicity, symmetry, and idempotency, similar to OWA. Assume a value, ∆a > 0,

which represents the change in µA (i.e. ∆a = ∆µA).

1. Monotonicity: The claim is that the UAO operator is monotonic. Thus, it

is necessary to prove that

f(a, b) ≥ f(ä, b̈) if a ≥ ä and b ≥ b̈

To prove this, several cases need to be considered. The proof of each case is given

below:

Case 1: a+ ∆a < b⇒ a < b. It is to be proven that f(a+ ∆a, b) > f(a, b).

Proof: From Equation (4.1),

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a<b,a<b

=
(a+ ∆a)b+ νb

ν + b

=
ab+ νb

ν + b
+

∆ab

ν + b
(4.2)

f(a, b)

∣

∣

∣

∣

a<b

=
ab+ νb

ν + b
(4.3)

Comparing Equations (4.2) and (4.3), and since ∆ab
ν+b

> 0, it is concluded that

f(a+ ∆a, b) > f(a, b).

Case 2: a+ ∆a > b and a > b. It is to be proven that f(a+ ∆a, b) > f(a, b).

Proof: Since a > b, take a = b + k2 where k2 > 0. Also a + ∆a > b, which

implies that a + ∆a = k1 + b, where k1 > 0. We find ∆a = k1 − k2. From
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Equation (4.1),

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a>b

=
(a+ ∆a)b+ ν(a+ ∆a)

ν + (a+ ∆a)
=

(a+ ∆a)(b+ ν)

ν + (a+ ∆a)
(4.4)

f(a, b)

∣

∣

∣

∣

a>b

=
ab+ νa

ν + a
=
a(b+ ν)

ν + a
(4.5)

Substituting ∆a = k1 − k2 and a = b+ k2 in Equations (4.4) and (4.5) respec-

tively, yields:

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a>b

=
(b+ k1)(b+ ν)

ν + b+ k1

(4.6)

f(a, b)

∣

∣

∣

∣

a>b

=
(b+ k2)(b+ ν)

ν + b+ k2

(4.7)

Now, compare Equations (4.6) and (4.7) as follows:

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a>b

?

≷ f(a, b)

∣

∣

∣

∣

a>b

(4.8)

That is,

L.H.S.
?

≷ R.H.S.

⇒
(b+ k1)(b+ ν)

ν + b+ k1

?

≷
(b+ k2)(b+ ν)

ν + b+ k2

(4.9)

∴
b+ k1

ν + b+ k1

?

≷
b+ k2

ν + b+ k2

(4.10)

Cross multiplication yields:

(b+ k1)(ν + b+ k2)
?

≷ (b+ k2)(ν + b+ k1) (4.11)
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Solving Equation (4.11) results in:

ν(b+ k1)
?

≷ νa (4.12)

∴ b+ k1

?

≷ a (4.13)

Since a+ ∆a = k1 + b ⇒ a = k1 + b− ∆a, Equation (4.13) becomes

(b+ k1)
?

≷ (b+ k1 − ∆a) (4.14)

Simplifying Equation (4.14) yields:

∆a > 0 (4.15)

From Equation (4.15), since L.H.S. > R.H.S., it is concluded that f(a +

∆a, b) > f(a, b).

Case 3: a+ ∆a > b and a < b. It is to be proven that f(a+ ∆a, b) > f(a, b).

Proof: Since a < b, assume a+ k2 = b where k2 > 0. Also a+ ∆a > b, which

implies that a + ∆a = k1 + b, where k1 > 0. Therefore ∆a = k1 + k2. From

Equation (4.1),

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a<b

=
(a+ ∆a)b+ ν(a+ ∆a)

ν + (a+ ∆a)
=

(a+ ∆a)(b+ ν)

ν + a+ ∆a
(4.16)

f(a, b)

∣

∣

∣

∣

a>b

=
ab+ νb

ν + b
=
b(a+ ν)

ν + b
(4.17)
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Substituting ∆a + a = b + k1 and a = b − k2 in Equations (4.16) and (4.17)

respectively, yields

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a<b

=
(b+ k1)(b+ ν)

ν + b+ k1

(4.18)

f(a, b)

∣

∣

∣

∣

a>b

=
b[(b− k2) + ν]

ν + b
(4.19)

Now, compare Equations (4.18) and (4.19) as follows:

f(a+ ∆a, b)

∣

∣

∣

∣

a+∆a>b, a<b

?

≷ f(a, b)

∣

∣

∣

∣

a>b

(4.20)

That is,

L.H.S.
?

≷ R.H.S.

⇒
(b+ k1)(b+ ν)

ν + b+ k1

?

≷
b[(b− k2) + ν]

ν + b
(4.21)

Cross multiplication yields:

(b+ k1)(ν + b)2
?

≷ b(b− k2 + ν)(ν + b+ k1) (4.22)

Taking b+ ν = b′ reduces Equation (4.22) to:

(b+ k1)(b
′)2

?

≷ b(b′ − k2)(b
′ + k1) (4.23)

∴ (b′)2k1 + bk2(b
′ + k1)

?

≷ bb′k1 (4.24)

∴ ((b′)2 + bk2)k1 + b′bk2

?

≷ b′bk1. (4.25)
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Substituting b′ = b+ ν back into Equation (4.25) gives:

((b+ ν)2 + bk2)k1 + (b+ ν)bk2

?

≷ (b+ ν)bk1 (4.26)

∴ b2k1 + ν2k1 + 2νbk1 + bk1k2 + b2k2 + νbk2

?

≷ b2k1 + νbk1 (4.27)

⇒ ν2k1 + νbk1 + bk1k2 + b2k2 + νbk2 > 0 (4.28)

Since L.H.S. > R.H.S. for all b and for ν ≥ 0, it is concluded from Equation

(4.28) that f(a+ ∆a, b) > f(a, b).

The above proofs considered the case f(a + ∆a, b) > f(a, b) with different

possible scenarios. The case where f(a, b + ∆b) > f(a, b) can be proven in

a similar manner. Moreover, the proof can be extended to more than two

variables. Thus, it can be claimed that the UAO operator is monotonic for

any number of variables.

2. Symmetry (generalized commutativity): It is obvious from the structure

of the UAO operator that the order of arguments does not matter. Thus the

operator is symmetric.

3. Idempotency: It is to be proven that

f(a, a) =
a · a+ ν max(a, a)

ν +max(a, a)
= a (4.29)

Proof: From Equation (4.29),

f(a, a) =
a2 + ν a

ν + a
=
a(a+ ν)

ν + a
= a (4.30)

�

111

 
 
 



4.3 Fuzzy Rules for Topology Design

The four objectives can be combined in a number of ways using fuzzy operators to

generate rules with a single consequent, i.e. “good topology”. One possibility is the

extreme where it is required that all the objectives are simultaneously optimized,

thus implying the AND operation among all objectives, as mentioned earlier in

Chapter 3. Another extreme is where optimization of any one objective would

suffice. A number of combinations exist between these extremes. These cases, as

well as the application of the proposed UAO operator on them, are discussed next.

4.3.1 Case 1: Simultaneous Optimization of All Four Ob-

jectives

For the extreme case where all objectives have to be optimized, the fuzzy rule is:

• R1: IF cost is low AND delay is low AND hops is low AND reliability is high

THEN the topology is good.

The corresponding mathematical representation using the UAO operator is:

µs = I∗(µc, µd, µh, µr) (4.31)

4.3.2 Case 2: Simultaneous Optimization of Three Objec-

tives

A number of cases can be defined when any three of the four objectives need to be

considered. Some of these cases and their UAO representations are:
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• R2a: IF cost is low AND delay is low AND (hops is low OR reliability is high)

THEN the topology is good.

µs = I∗(µc, µd, I?(µh, µr)) (4.32)

• R2b: IF cost is low AND (delay is low OR hops is low) AND reliability is high

THEN the topology is good.

µs = I∗(µc, µr, I?(µd, µh)) (4.33)

• R2c: IF cost is low AND hops is low AND (delay is low OR reliability is high)

THEN the topology is good.

µs = I∗(µc, µh, I?(µd, µr)) (4.34)

• R2d: IF (cost is low OR reliability is high) AND delay is low AND hops is low

THEN the topology is good.

µs = I∗(µd, µh, I?(µc, µr)) (4.35)

4.3.3 Case 3: Simultaneous Optimization of Two Objectives

When only two objectives need to be optimized, a number of different cases can be

defined. Some of these cases and their UAO representations are given below.

• R3a: IF cost is low AND (delay is low OR hops is low OR reliability is high)
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THEN the topology is good.

µs = I∗(µc, I?(µd, µh, µr)) (4.36)

• R3b: IF delay is low AND (cost is low OR hops is low OR reliability is high)

THEN the topology is good.

µs = I∗(µd, I?(µc, µh, µr)) (4.37)

• R3c: IF (cost is low AND delay is low) OR (hops is low AND reliability is

high) THEN the topology is good.

µs = I?(I
∗(µc, µd), I

∗(µh, µr)) (4.38)

• R3d: IF (cost is low AND reliability is high) OR (delay is low AND of hops is

low) THEN the topology is good.

µs = I?(I
∗(µc, µr), I

∗(µd, µh)) (4.39)

• R3e: IF (cost is low OR delay is low) AND (hops is low OR reliability is high)

THEN the topology is good.

µs = I∗(I?(µc, µd), I?(µh, µr)) (4.40)

• R3f: IF (cost is low OR hops is low) AND (delay is low OR reliability is high)

114

 
 
 



THEN the topology is good.

µs = I∗(I?(µc, µh), I?(µd, µr)) (4.41)

4.3.4 Case 4: Optimization of Any One Objective

For the extreme where any one of the four objectives is optimized, the fuzzy rule is

given as:

• R4: IF cost is low OR delay is low OR hops is low OR reliability is high THEN

the topology is good.

The corresponding mathematical representation using the UAO operator is:

µs = I?(µc, µd, µh, µr) (4.42)

4.4 Preferences and UAO

Many of the fuzzy rules mentioned above treat the objectives equally (i.e. giving

no preference to any objective). For example, in rule R1, all the objectives get

equal preference. This type of situation limits the accuracy in decision-making. To

enhance the precision in decision-making, an additional set of rules is necessary.

This set can be used to give preference to one criterion or another to emphasize or

de-emphasize certain objective(s) involved in the decision-making process.

As an example, consider the set of rules given in Section 4.3.2. In all the rules,

the three objectives are equally weighted. If the designer wants to emphasize cost in

115

 
 
 



all cases, he/she has no way of doing so. However, with the availability of preference

rules, it will be easier to give more significance to cost.

To formulate the preference rules, preference terms need to be defined. These

terms are associated with the main linguistic terms. For the fuzzy rules defined

above, the linguistic terms “low”, “high”, and “good” have been used. The lit-

erature [18, 131, 132] has reported some approaches to find preference terms and

preference rules based on membership functions. These approaches map a fuzzy

preference relation P to a fuzzy membership function µP in the range [0,1] as follows:

µP (si, sj) =























































1 if si is definitely preferred to sj

c ∈ (0.5, 1) if si is slightly preferred to sj

0.5 if there is no preference (i.e., indifference)

d ∈ (0, 0.5) if sj is slightly preferred to si

0 if sj is definitely preferred to si

The above representation is impractical for decision-makers since the degree

of preference for a certain objective is not precise [166]. For example, the term

“slightly” represents indefinite numbers of the numeric preference values which are

within the range (0.5, 1) or (0.0, 0.5) [166]. To overcome this problem, it is suggested

that the numerical representation be extended by using a wider variety of linguistic

terms which includes seven linguistic terms. Thus, the above set of preferences is

extended as follows:
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µPm(si, sj) =















































































































































































































1 if si is definitely preferred to sj

c ∈ (0.917, 1) if si is strongly preferred to sj

d ∈ (0.834, 0.917) if si is highly preferred to sj

e ∈ (0.751, 0.834) if si is considerably preferred to sj

f ∈ (0.668, 751) if si is moderately preferred to sj

g ∈ (0.585, 0.668) if si is slightly preferred to sj

h ∈ (0.5, 0.585) if si is mildly preferred to sj

0.5 if there is no preference (i.e., indifference)

i ∈ (0.417, 0.5) if sj is mildly preferred to si

j ∈ (0.337, 0.417) if sj is slightly preferred to si

k ∈ (0.254, 0.337) if sj is moderately preferred to si

l ∈ (0.171, 0.254) if sj is considerably preferred to si

m ∈ (0.088, 0.171) if sj is highly preferred to si

n ∈ (0, 0.088) if sj is strongly preferred to si

0 if sj is definitely preferred to si

Notice that the preference values are reflective-reciprocal at the point of ‘indiffer-

ence’. The evaluation values can be seen as consisting of two groups: 1) si preferred

to sj, and 2) sj preferred to si. The value corresponding to ‘indifference’ may belong

to both groups. Since the two groups are similar, and each group includes seven

preference terms (including the ‘indifference’), the above representation of preference

values can be curtailed to a representation of only seven values, instead of fourteen.

Thus, it can be said that c ⇐⇒ n, d ⇐⇒ m, and so on, where “⇐⇒” means that

the two preference terms are equivalent. The interpretation of the “two terms being
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equivalent” is that if the first objective is preferred to the second, then the second

objective is not preferred to the first. For example, if we say that si is strongly

preferred to sj, then it is equivalent to saying that sj is strongly not preferred to si,

etc. The seven-point evaluation is also advocated by Miller’s [174] observation that

the human mind can deal with around seven items at a time.

The proposed set of preferences can be seen as a subset of the approach presented

by Cvetković et al. [47]. The approach in [47] suggests a more comprehensive scheme

for the use of preferences in multi-objective optimization. However, the scheme in

[47] seems more suitable for situations where the number of objectives is high (the

authors have applied their approach to a multi-objective problem with thirteen

objectives). Their approach involved more complex steps than are proposed in this

thesis.

To continue, preference terms proposed in this thesis can be used to define a

number of preference rules. These preference rules are divided into several categories,

as described below.

4.4.1 Preference rules involving all four objectives:

Examples of preference rules that contain all four objectives are:

• PR1a: Cost is strongly preferred over the other three objectives

• PR1b: Delay is highly preferred over the other three objectives

• PR1c: Reliability is strongly preferred over the other three objectives

• PR1d: Cost is slightly preferred over the other three objectives
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4.4.2 Preference rules involving three objectives:

It is also possible to develop preference rules which include three objectives, for

example,

• PR2a: Cost is strongly preferred over hops and reliability

• PR2b: Delay is highly preferred over reliability and cost

• PR2c: Reliability is slightly preferred over hops and delay

• PR2d: Cost is slightly preferred over reliability and hops

4.4.3 Preference rules involving two objectives:

Examples of preference rules involving two objectives are:

• PR3a: Cost is strongly preferred over hops

• PR3b: Delay is mildly preferred over reliability

• PR3c: Reliability is considerably preferred over hops

• PR3d: Hops is slightly preferred over cost

• PR3e: Delay is highly preferred over reliability

• PR3f: Cost is mildly preferred over delay

4.4.4 Combining the main rules with preference rules

Once the main rules and the preference rules have been defined, the next step is to

combine them together. This may lead to a number of scenarios, for example:
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1. Ex1: If rule R1 is used at the first level, and Cost is emphasized over the other

three objectives with PR1a at the second level, then the value of the objective

function using the UAO operator is computed by the following formula:

µs = I∗(0.917µc, 0.088µd, 0.088µh, 0.088µr)

2. Ex2: When rule R1 is used at the first level, and the emphasis is given to

reliability using PR1c on the second level, then the value of the objective

function using the UAO operator is computed by the following formula:

µs = I∗(0.088µc, 0.088µd, 0.088µh, 0.917µr)

3. Ex3: If rule R1 is used at the first level and PR3c is used at the second level,

thus giving emphasis to reliability over number of hops, then the value of the

objective function can be computed as follows:

µs = I∗((µc, µd, 0.25µh), 0.75µr)

4. Ex4: When rule R2d is used at the first level and PR2c is used at the sec-

ond level, thus emphasizing reliability over number of hops, the value of the

objective function can be computed as follows:

µs = I∗(0.35µd, 0.35µh, I?(µc, 0.65µr))
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5. Ex5: If rule R1 is used at the first level and both PR3b and PR3d are used at

the second level, the emphasis is given to delay over reliability and to number

of hops over cost. In this case the value of the objective function is computed

by the following formula:

µs = I∗(0.40µc, 0.55µd, 0.60µh, 0.45µr)

6. Ex6: If rule R3c is used at the first level and both PR3c and PR3f are used at

the second level, the emphasis is given to cost over delay and to reliability over

number of hops. In this case the value of the objective function is computed

by the following formula:

µs = I?(I
∗(0.55µc, 0.45µd), I

∗(0.20µh, 0.80µr))

7. Ex7: If rule R1 is used at the first level, PR2a is used at the second level,

and both PR3b and PR3c are used at the third level, the emphasis is given to

cost over number of hops and reliability. Then, the preference is given to delay

over reliability and to reliability over number of hops. In this case the value of

the objective function is computed by the following formula:

µs = I∗(0.95µc, 0.55µd, 0.05 × 0.20µh, 0.05 × 0.80 × 0.45µr)

The examples above provide different scenarios of using main rules with prefer-

ence rules. Examples 1 to 4 suggest using rules at two levels. On the first level, the

main rule is used, whereas at the second level one preference rule is used. An exten-
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sion of this two level case is observed in examples 5 and 6, where a main rule is used

at the first level, and two preference rules are used at the second level. Similarly,

example 7 illustrates how rules at three levels might be used. In this example, it

is observed that a main rule is used at the first level, followed by a preference rule

involving three objectives at the second level, and two preference rules at the third

level with each involving two objectives. Apart from the aforementioned scenarios,

there exist many other possibilities where multi-level rules are possible and multiple

preference rules could be used at a certain level.

4.5 Application of UAO to Topology Design

A multi-objective SimE algorithm for network topology design was proposed in

[271, 268]. This algorithm was engineered to optimize three design objectives: cost,

delay, and number of hops. The main focus of the algorithm was to incorporate

fuzzy logic in the allocation phase to compute the overall goodness (or fitness) of

the solution.

For the purposes of this chapter, the above SimE algorithm has been adopted

to evaluate the performance of UAO and OWA. This evaluation is done by using

rules Ex1 and Ex2 presented in Section 4.4.4. Although SimE was used for this

experiment, any stochastic optimization algorithm, such as a genetic algorithm,

simulated annealing, stochastic evolution, ant colony optimization, or particle swarm

optimization, can be used instead.

The main focus of the fuzzy SimE algorithm in [271] and [268] was to incorporate

fuzzy logic in the allocation phase to compute the overall goodness (or fitness) of the
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solution. This overall goodness was calculated using a fuzzy rule similar to rule R1

(refer to Section 4.3.1). The only difference between the rule in [271] and [268], and

R1 is that the latter also includes reliability as an optimization factor along with

the other three objectives. The overall goodness is used to compare the quality of

two solutions. Results are presented in the following section.

4.6 Empirical Results and Discussion

This section discusses empirical results obtained by applying the UAO and OWA

operators to SimE using rules Ex1 and Ex2 given in Section 4.4.4. The two operators

were applied to the allocation phase of the SimE algorithm, as described in detail

in Chapter 6.

The five test cases as described in Chapter 3 were used for performance evalua-

tion. As mentioned earlier, SimE uses a problem dependent bias parameter, B. An

appropriate selection of bias is important for convergence of SimE to near-optimal

or optimal set of solutions. Thus, it is essential to find the appropriate bias value.

Tables 4.1 to 4.4 provide these values, which were obtained after running several

tests with different bias values ranging from 0.0 to 0.4 for each test case. Also, once

the appropriate bias value was found, thirty runs were executed for each test case

for each of the two operators (i.e. UAO and OWA). The average of these runs is

also reported in Tables 4.1 to 4.4 for each case. Moreover, through trial runs it was

found that the algorithm converges within 4000 iterations. Each run was therefore

executed for 4000 iterations.
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4.6.1 Application of UAO and OWA to Ex1

In Ex1 of Section 4.4.4, the rule requires optimization of all four objectives, with

strong preference given to cost. Tables 4.1 and 4.2 summarize the results obtained

after application of UAO and OWA to SimE using rule Ex1. These results reflect the

percentage improvement of the final solution (average of thirty runs) with respect

to the initial solution. Simulations were run using values of β = 0.5 and ν =

0.5 for OWA and UAO respectively. It is observed from these tables that both

OWA and UAO demonstrated a noticeable improvement in cost for all test cases, as

validated by the t-test for statistical significance. These improvements range from

25.46% to 32.42% for UAO and from 25.26% to 32.57% for OWA. The average cost

improvement for UAO was 29.17 %, while OWA showed an improvement of 28.38%.

Thus, as far as cost is concerned, both operators performed almost equally well, with

OWA having, in general, a slightly higher standard deviation than UAO. However,

although strong preference was given to cost, there was a remarkable improvement in

reliability, with improvements of 4.53% to 77.74% for UAO and 13.16% to 86.45% for

OWA. In general, the improvement in reliability was also statistically significant (as

validated by a t-test), with the exception of n15 when UAO was used. One possible

argument for this behavior is that the search space could be constricted such that no

further improvement in cost is possible, irrespective of the emphasis placed on the

cost objective. However, reliability might have a tendency to improve remarkably

in most parts of the search space, with the improvement being more significant in

some regions. Thus, for the reliability objective, OWA performed better than UAO

with almost the same level of standard deviation for most of the test cases, with the

exception of n50.
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Table 4.1: Results for UAO for Ex1. N= number of local sites in the network,
B=Bias, C=Cost, D=Delay, H=Hops, R=Reliability, Avg= Average percentage
improvement of the five test cases. Statistically significant improvements are in
italics.

Case N B Percentage improvement Standard deviations

C D H R C D H R
n15 15 0.1 25.46 6.67 -6.31 4.53 5.24 11.09 18.56 11.13
n25 25 0.3 30.85 -7.60 -37.20 40.14 7.19 6.16 17.71 15.43
n33 33 0.3 31.50 -8.52 -33.70 67.42 4.38 13.43 15.62 14.30
n40 40 0.2 32.42 7.68 -26.55 68.33 3.82 52.68 26.49 15.54
n50 50 0.3 25.62 -17.96 -30.01 77.74 6.37 28.74 19.16 17.63

Avg 29.17 -3.95 -26.75 51.63

As far as delay and number of hops are concerned, it should be kept in mind

that rule Ex1 requires optimization of all four objectives, and that the objectives

are conflicting in nature. Therefore, it is also noticed in Tables 4.1 and 4.2 that

improvement in cost (and reliability) is achieved at the price of deterioration in

number of hops and delay objectives. However, it is apparent from the tables that, on

average, the percentage of deterioration in the delay and number of hops objectives

was less with UAO than that of OWA (i.e. -3.95% for UAO versus -24.38% for OWA

for delay, and -26.75% for UAO compared with -28.76% for OWA for number of

hops). As far as standard deviations are concerned, OWA showed relatively higher

values than UAO for the delay, specifically for n33 and n50. For number of hops, the

deviations were comparable for both UAO and OWA. Collectively, it can be fairly

claimed that UAO showed a better overall performance than OWA.
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Table 4.2: Results for OWA for Ex1. N= number of local sites in the network,
B=Bias, C=Cost, D=Delay, H=Hops, R=Reliability, Avg= Average percentage
improvement of the five test cases. Statistically significant improvements are in
italics.

Case N B Percentage improvement Standard deviations

C D H R C D H R
n15 15 0.4 25.26 -3.39 -6.42 13.16 9.25 7.67 16.45 31.02
n25 25 0.3 26.55 -7.91 -33.43 54.02 7.06 8.70 30.70 11.76
n33 33 0.2 32.57 -15.94 -29.02 72.73 5.69 46.72 24.43 12.18
n40 40 0.0 29.27 -29.67 -36.91 76.26 5.09 53.79 15.53 15.28
n50 50 0.1 28.22 -64.97 -38.02 86.45 9.03 67.36 10.96 6.06

Avg 28.38 -24.38 -28.76 60.52

4.6.2 Application of UAO and OWA to Ex2

Rule Ex2 of Section 4.4.4 has a structure similar to that of rule Ex1, since Ex2 also

requires the optimization of all four objectives. However, for rule Ex2, strong prefer-

ence is given to reliability. The results of the application of UAO and OWA to SimE

for Ex2 are given in Tables 4.3 and 4.4. Values of β = 0.5 and ν = 0.5 were used for

OWA and UAO respectively. The tables depict the expected behavior of UAO and

OWA when reliability was given a strong preference over the other three objectives.

For both UAO and OWA, a significant improvement was observed for almost all

test cases, with the exception of test case n15 while UAO was used. For example,

the improvement in reliability for UAO ranges from 78.71% (for n25) to 93.51% (for

n50). These improvements were also statistically significant. Only one case (n15)

deviated from this trend, achieving an improvement of only 7.48%. A similar be-

havior was observed for OWA, where a statistically significant improvement ranging

from 17.85% to 93.56% was achieved for test cases n15 to n50 respectively. On aver-

age, both UAO and OWA showed the same level of improvement in reliability, with
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69.89% for UAO and 72.24% for OWA. The deviations in both cases were almost

of the same magnitude. As for the cost objective, the obtained results suggest that

both UAO and OWA were able to attain almost the same level of improvement for

all test cases. On average, UAO reduced the cost by 11.85% compared to 11.74%

by OWA. The standard deviations were also comparable for the cost objective.

For the delay and number of hops objectives, the tables show that, on average,

both objectives deteriorated for almost all test cases. However, in general, the level

of deterioration for the number of hops objective was not statistically significant.

The reason for the deterioration in the delay and number of hops objectives is the

same as for Ex1, i.e. the four objectives are conflicting in nature, and improvement

in some objectives is achieved at the cost of deterioration in the others. However,

average deterioration in delay for UAO (-9.2%) is less than that in OWA (-21.81%).

Similarly, for the number of hops objective, the deterioration for UAO (-16.42%)

is also less than that of OWA (-28.39%). However, for the hops objective, OWA

generally showed slightly higher deviations than UAO. Overall, it could be claimed

that UAO showed a better performance than OWA for Ex2.

The analysis of results presented above for Ex1 and Ex2 shows that both UAO

and OWA effectively handled the multi-objective aspects of the DLAN topology

design problem in presence of preferences. On the one hand, there was a case where

strong preference was given to the cost objective, while on the other, the situation

required strong preference for reliability. The two examples were specifically cho-

sen to reflect the view that preferences diversified the search into different solution

subspaces.
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Table 4.3: Results for UAO for Ex2. N= number of local sites in the network,
B=Bias, C=Cost, D=Delay, H=Hops, R=Reliability, Avg= Average percentage
improvement of the five test cases. Statistically significant improvements are in
italics.

Case N B Percentage improvement Standard deviations

C D H R C D H R
n15 15 0.1 6.88 2.55 -9.98 7.48 8.97 6.97 14.70 18.66
n25 25 0.3 15.54 -5.78 -23.33 78.71 11.68 10.61 15.23 6.58
n33 33 0.3 14.56 17.90 -6.64 79.35 4.75 36.74 12.48 7.85
n40 40 0.2 10.88 -9.10 -20.85 90.39 9.59 59.51 17.66 3.29
n50 50 0.3 11.38 -51.60 -21.32 93.51 3.17 15.00 16.40 3.76

Avg 11.85 -9.20 -16.42 69.89

4.7 Conclusions

This chapter presented a new fuzzy operator named the unified And-Or (UAO)

operator. The operator was shown mathematically to be similar to the OWA oper-

ator. The proposed UAO operator was able to aggregate the four design objectives

discussed earlier. Moreover, a new 7-point preference scheme was also proposed to

handle preferences between the objectives and facilitate the decision-making pro-

cess. The performance of UAO along with the preference scheme was evaluated by

their application to a simulated evolution algorithm (discussed in detail in Chap-

ter 6) using some test examples. An empirical comparison of UAO was also done

with the OWA operator. Results suggest that the UAO operator performed better

than the OWA operator. Moreover, the proposed fuzzy rules and 7-point preference

rules scheme allowed the integration of individual objectives into a single objective

function with a good degree of precise decision-making.

The next chapter proposes and discusses a fuzzy stochastic evolution algorithm

for the multi-objective DLAN topology design problem. The effectiveness of the
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Table 4.4: Results for OWA for Ex2. N= number of local sites in the network,
B=Bias, C=Cost, D=Delay, H=Hops, R=Reliability, Avg= Average percentage
improvement of the five test cases. Statistically significant improvements are in
italics.

Case N B Percentage improvement Standard deviations

C D H R C D H R
n15 15 0.4 5.19 -11.88 -20.12 17.85 19.86 24.22 26.59 19.12
n25 25 0.3 15.26 -5.75 -24.74 72.61 8.90 17.05 26.64 9.67
n33 33 0.2 11.78 -5.56 -29.93 88.24 5.91 32.21 22.98 3.72
n40 40 0.0 11.92 -40.06 -30.60 88.94 6.48 65.37 14.62 5.72
n50 50 0.1 14.54 -45.78 -36.56 93.56 6.93 48.88 20.20 2.87

Avg 11.74 -21.81 -28.39 72.24

proposed algorithm is evaluated through empirical study.
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