
Chapter 1

Introduction

In daily life, so many examples are observed where the aim is to maximize or min-

imize a certain function of one or more parameters. From a shopkeeper to multi-

billionaire gigantic corporations, the goal is to maximize profits. Engineers working

in the aviation and car industries try to minimize air drag, and electronic engineers

try to minimize the size of basic electronic components. Medical surgeons are always

working on new techniques to maximize their patients’ life span. When a task is

performed to maximize or minimize a certain objective, it is known as optimizing

that objective. For example, there may be a significantly large number of ways to

organize a factory production schedule. The problem is to determine which schedule

gives the best throughput, and thus which schedule is optimal.

Optimization is a significant topic in a variety of areas, including engineering,

science, medicine, and business. In many of these disciplines, optimization simply

means “doing better”. In the context of this thesis, however, optimization refers to

the process of finding the best possible solution to an optimization problem within

a given time limit. This thesis considers a specific optimization problem, namely

1

network topology design. A number of techniques and their variants are investigated

for their applicability to a specific case of the above-mentioned problem, namely

topology design of distributed local area networks (or DLAN topology design). The

focus is specifically on the following optimization techniques: simulated evolution

(SimE) [148], stochastic evolution (StocE) [216], simulated annealing (SA) [186], ant

colony optimization (ACO) [42], and particle swarm optimization (PSO) [140].

1.1 Motivation

A variety of difficult network topology design problems are categorized according

to the objective(s) to be optimized. Presence of constraints further amplifies the

complexity of these problems. The problems have received significant attention in

order to find efficient approaches to solve them [57, 58, 75, 80, 98, 111, 142, 151,

152, 208]. However, many of these approaches have not proven to be fully able to

address the problem under consideration [80, 142, 151, 208].

Local search techniques have been frequently used to optimize network topol-

ogy design problems [80, 142, 151, 208, 267]. However, these techniques generally

do not perform well enough when multiple objectives need to be optimized and/or

constraints are present [142, 268, 271, 272]. The specific DLAN topology design

problem considered in this thesis is a multi-objective combinatorial optimization

problem which tends to have a solution space that grows exponentially with the

problem size. There are somewhat simpler versions of the DLAN topology design

problems which are NP-hard [75, 79, 98], and hence the DLAN topology design

problem can be classified as an NP-hard problem. The problem has a number

2

of objectives that need to be optimized simultaneously, in presence of constraints.

Hence, iterative heuristics, such as evolutionary algorithms or swarm intelligence

techniques, seem to be appropriate approaches to solve the problem. Iterative heuris-

tics have a tendency to escape a local optimum and can often find a global optimum

solution in a reasonable amount of computational time. The iterative heuristics

mentioned above have proven to be successful for a number of NP-hard problems

[19, 22, 76, 95, 143, 153, 179, 197, 211, 214, 271, 273], hence providing motivation to

apply these algorithms to topology design of distributed local area networks. One

of these algorithms, namely SA, has been used by researchers for optimization prob-

lems for more than thirty years, yet research is still going on to further improve its

search capabilities. Others, such as SimE and StocE, are relatively new, and have

not been exploited by researchers.

One important feature of SA, SimE, and StocE is that they operate on a sin-

gle solution, as compared to genetic algorithms, which maintain and operate on a

population of solutions. Furthermore, genetic algorithms perform complex opera-

tions such as crossover and mutation. The convergence time for SA, SimE, and

StocE is much less than that of genetic algorithms [220]. All these aspects of these

“single-solution” heuristics make them a strong candidate for application to topol-

ogy design of distributed local area networks. In addition, research has revealed

that hybridization of heuristics with each other has generally proven to be more

efficient and effective [144, 194, 234, 249, 270, 271]. This particular aspect provides

the motivation to develop hybrid heuristics for the DLAN topology design problem.

SA, SimE, and StocE have a number of parameters to be initialized by the user.

Since the best values for these parameters are problem-dependent, trial runs of the

3

heuristics are required to find appropriate values for these parameters, which is a

time-consuming process. Thus, the motivation arises to propose ways such that

user intervention in finding the appropriate values for these parameters is reduced

or eliminated.

Swarm intelligence (SI) techniques, which include ant colony optimization and

particle swarm optimization, are also new in the field of optimization methods,

and are currently being analyzed by researchers through extensive application of

these techniques to a variety of NP-hard problems to find out their capabilities and

limitations [37, 45, 52, 65, 78, 81, 150, 171, 201, 225, 227, 251]. The success of these

SI algorithms provides motivation for a study on their applicability to the DLAN

topology design problem.

A great deal of research has been dedicated to address issues related to multi-

objective optimization [31, 51, 125, 206, 209, 275]. Among many other approaches

[29, 39, 50, 96, 97, 112, 122, 130, 173], fuzzy logic [276] has been used to solve multi-

objective optimization problems. Therefore, the motivation also arises to utilize

fuzzy logic in the above algorithms to address the multi-objective nature of the

DLAN topology design problem.

1.2 Objectives

The primary objectives of this thesis are summarized as follows:

1. To address the multi-objective nature of the DLAN topology design problem

by using fuzzy logic.

2. To show that the stochastic evolution, simulated evolution, simulated anneal-

4

ing, ant colony optimization, and particle swarm optimization can be success-

fully used to solve the DLAN topology design problem.

3. To propose a multi-objective simulated evolution algorithm and its hybrid

variant for the DLAN topology design problem and to analyze the performance

of the algorithm.

4. To propose a multi-objective simulated annealing algorithm and its hybrid

variants for the DLAN topology design problem and to analyze the perfor-

mance of the algorithm.

5. To propose a multi-objective stochastic evolution algorithm and its hybrid

variant for the DLAN topology design problem and to analyze the performance

of the algorithm.

6. To propose approaches which can reduce user intervention in setting the pa-

rameters in simulated annealing, simulated evolution, and stochastic evolution.

7. To propose a multi-objective ant colony optimization algorithm for the DLAN

topology design problem and to analyze the performance of the algorithm.

8. To propose a multi-objective particle swarm optimization algorithm for the

DLAN topology design problem and to provide a preliminary analysis of the

performance of the algorithm.

9. To compare the relative performance of each of the above algorithms and to

find out which algorithm(s) perform the best.

5

1.3 Methodology

The algorithms proposed in this thesis are first presented and discussed. Since the

DLAN topology design problem is a very specific case of network topology design,

no well-known benchmark cases exist. Therefore, test cases given in [271, 268, 270,

272, 269] are used to quantify performance of the proposed algorithms.

For each of the algorithms, values of control parameters are optimized to produce

best performances.

The performances of the different variants of simulated annealing, simulated

evolution, and stochastic evolution are empirically compared. The three algorithms

are also compared with each other.

For ant colony optimization and particle swarm optimization, empirical results

for the two algorithms are compared with each other.

Due to the stochastic nature of the proposed algorithms, results are generally

reported in terms of averages and standard deviations over several simulations. How-

ever, since the simulations are computationally expensive, averages are calculated

for thirty runs, and the average run time for the thirty runs is reported wherever

appropriate. However, the performance of an algorithm is evaluated based on the

quality of solutions produced. The results are also statistically validated through

t-tests.

1.4 Contributions

The main contributions of this thesis are:

1. An approach based on fuzzy logic is proposed to deal with the multi-objective

6

nature of the DLAN topology design problem. The proposed approach employs

fuzzy logic to combine multiple objectives into a single objective function.

2. A new fuzzy operator – the unified And-Or (UAO) operator – is developed,

together with both a theoretical and empirical study of its characteristics.

The purpose of this operator is to aggregate the multiple objectives into a

single objective function. The UAO operator is compared with the well-known

ordered weighted average operator [259, 261]. The comparison is done by

applying the two operators to all the proposed algorithms.

3. The following algorithms are developed to solve the multi-objective DLAN

topology design problem, and these algorithms are analyzed using the proposed

fuzzy objective function:

(a) stochastic evolution,

(b) simulated evolution,

(c) simulated annealing,

(d) ant colony optimization, and

(e) particle swarm optimization.

4. Hybrid algorithms for the DLAN topology design problem using the fuzzy

objective function are developed and analyzed. More specifically:

(a) A hybrid version of SimE that incorporates tabu search characteristics

into the algorithm is developed and analyzed.

(b) A hybrid variant of StocE that incorporates tabu search characteristics

into the algorithm is developed and analyzed.

7

(c) Two hybrid variants of SA are developed and analyzed. The first variant

incorporates characteristics of tabu search in the SA algorithm, while

the second incorporates tabu search and SimE characteristics in the SA

algorithm.

5. An approach to dynamically determine the control parameters in simulated

evolution, stochastic evolution, and simulated annealing is developed and em-

pirically evaluated. More specifically,

(a) a dynamic bias B in SimE is proposed and evaluated,

(b) a dynamic factor R in StocE is proposed and evaluated, and

(c) a dynamic length of the Markov chainM in SA is proposed and evaluated.

1.5 Organization of Thesis

Chapter 2 provides a general overview of optimization methods. The chapter starts

with a short discussion on optimization. This is followed by an elaborate discussion

on multi-objective optimization. Another focus of this chapter is the background on

fuzzy logic, with respect to its use in multi-objective optimization and well-known

operators. This is followed by a discussion on some iterative optimization algorithms,

which are the focus of this thesis. In this context, detailed discussions on simulated

evolution, stochastic evolution, simulated annealing, ant colony optimization, and

particle swarm optimization are provided. Genetic algorithms and tabu search are

briefly discussed.

Chapter 3 reviews the DLAN topology design problem addressed in this thesis

8

in sufficient detail. This includes a formal description of the problem, notation,

assumptions, terminology, cost functions, and computation of objective values.

Chapter 4 discusses the proposed unified And-Or (UAO) operator. This includes

the definition and mathematical representation of the operator, and its mathematical

properties. The chapter also discusses the application of the UAO operator to the

DLAN topology design problem as well as the use of preferences of objectives in the

context of multi-objective optimization.

Chapter 5 provides details on the implementation of the multi-objective fuzzy

StocE algorithm for the DLAN topology design and how the algorithm has been

modified to incorporate tabu search characteristics. The fuzzy StocE and its tabu

search based variant are mutually compared through empirical results. A dynamic

value of R is proposed, in order to eliminate the user-defined value of the parameter,

and empirical results are provided and discussed.

Chapter 6 describes the proposed multi-objective fuzzy SimE algorithm for the

DLAN topology design. The chapter focusses on the basic SimE algorithm for

DLAN topology design, and also on its hybrid variant resulting from incorporating

tabu search characteristics. The chapter discusses how to reduce user intervention

to control the value of the bias, B. Empirical results are provided and discussed.

Chapter 7 presents a DLAN topology design approach that is based on SA.

The implementation details of this fuzzy multi-objective SA algorithm, as well as

its two hybrid variants, are discussed. The two variants incorporate tabu search

and simulated evolution characteristics into the SA algorithm. Furthermore, an

approach is proposed to dynamically determine the value of Markov chain, M , where

the approach reduces user intervention in setting up an appropriate value for this

9

parameter. The proposed SA algorithms are empirically compared.

Chapter 8 presents the proposed multi-objective fuzzy ACO algorithm for the

DLAN topology design. The details on the implementation are provided. The

algorithm is empirically analyzed.

Chapter 9 discusses the proposed multi-objective fuzzy PSO algorithm for the

DLAN topology design. The details on the implementation are provided, and the

algorithm is empirically analyzed.

Chapter 10 summarizes and compares the results obtained in Chapters 6 to 9.

The focus of this chapter is to determine which of the proposed algorithms performs

the best.

Chapter 11 highlights the conclusions of this thesis and provides directions for

future research.

The appendices provide a list of symbols used in this thesis and a list of publi-

cations derived from the work discussed in this thesis.

10

Chapter 2

Optimization and Optimization

Approaches

This chapter provides a brief overview of optimization. The chapter covers both

single-objective and multi-objective optimization, with emphasis on the latter. An-

other focus of this chapter is the background of fuzzy logic, with respect to its use in

multi-objective optimization and some well-known operators. This is followed by a

discussion on iterative optimization algorithms. In this context, detailed discussions

are given regarding the fundamentals of simulated evolution, stochastic evolution,

simulated annealing, ant colony optimization, and particle swarm optimization. Ge-

netic algorithms and tabu search are also discussed briefly.

2.1 Optimization

In its simplest definition, optimization is the process of trying to find the best

possible solution to an optimization problem within a given amount of time [44].

11

The objective of optimization is to determine the values of a set of parameters such

that the objective function is maximized or minimized, subject to certain constraints

[244]. A feasible solution is defined as a solution that satisfies all design constraints.

A feasible solution results from an assignment of values to design parameters. An

optimal solution is defined as a feasible solution that results in the optimum value

of the objective function(s) among the set of other feasible solutions. In other

words, if a pool of feasible solutions exists, then the optimum solution is the one

which produces the optimum values of the objective functions (either minimum or

maximum, depending on the nature of the problem). Associated with the optimum

solution are the optimum values of parameters.

Optimization techniques are constantly employed in many disciplines, since many

real-world problems are optimization problems. Optimization techniques have been

applied in industry, business, engineering, science, and medicine, with applications

such as planning, resource allocation, timetabling, decision making, and structural

design.

Optimization problems can be classified as unconstrained or constrained prob-

lems. In unconstrained problems, the aim is to minimize or maximize the function

without any conditions or constraints imposed on the values of design parameters.

Thus, all values of the variables within the domain of the function are considered

in searching for the optimum value. Since this thesis deals with a maximization

problem, the terms optimization and maximization will be used interchangeably.

An unconstrained maximization problem is formally defined as follows [189]:

12

Given f : <n → <

find x∗ ∈ < for which f(x∗) ≥ f(x) ∀ x ∈ <n (2.1)

In Equation (2.1), vector x∗ is called the global maximizer while f(x∗) is called the

global maximum value of f . The process of seeking a global maximum is called global

optimization [107]. In contrast to global optimization, the term local optimization

refers to an optimum value within the local neighborhood of a solution. In other

words, a global optimum is the maximum value within the complete search space,

while the local optimum is the maximum value within a sub-region, B ⊆ S, of the

search space. Thus, for multi-modal problems, it can be inferred that there exist

many local optima within the global search space (this is not necessary for unimodal

problems, which have only one optimum). It should also be noted that every global

optimum is also a local optimum, but a local optimum is not necessarily a global

optimum, as illustrated in Figure 2.1. In this figure, x∗ is the global optimum, while

xb is a local optimum.

In contrast to unconstrained problems, the goal in constrained optimization is

to optimize the objective function subject to certain constraints. These constraints

often make certain points in the search space invalid. These points might other-

wise be global optima. Formally, a constrained maximization problem is defined as

follows:

13

�

���

���

���

��

�

�

��

��

��

��

��

���� ��� ��� ��� ��� 	��

�

�

�

���

������

Figure 2.1: Example of global maximum x∗ and local maximum xb

Given f : <n → <

find x∗ ∈ < for which f(x∗) ≥ f(x) ∀ x ∈ S ⊆ <n (2.2)

subject to gm(x) ≤ 0, m = 1, · · · , n

hm(x)=0, m = n+ 1,· · · , n+ nh

Optimization problems can be further categorized based on the number of objec-

tives to be solved. Many problems, whether constrained or unconstrained, require

only one objective to be optimized. Solving this type of optimization problem is

referred to as single objective optimization (SOO). For example, in an organization,

14

say ABC, the objective could be to maximize productivity. The definition of SOO

can be further extended to many objectives which are “non-conflicting”. That is,

if there are a number of objectives, and if the aim is to maximize all of them, and

if maximizing one objective automatically maximizes others, then it will also be

a case of SOO. For example, in organization ABC, if one objective is to maximize

the profitability, then maximizing productivity will implicitly maximize profitability

at the same time, since the two objectives are directly proportional to each other.

However, problems arise when the optimization objectives are “conflicting”. That

is, optimizing one objective could result in degradation of the other objectives. For

example, if productivity is to be maximized, while the workforce is to be minimized,

then the two objectives are conflicting, since variation in one objective will adversely

affect the other. This is where multi-objective optimization (MOO) comes into the

picture. In this type of situation, a trade-off is needed to obtain a “balanced” solu-

tion; a solution (or rather a set of solutions, referred to as the Pareto front) that has

the best possible value of all objectives. Single objective optimization is useful when

insights into the nature of the problem are sought by decision-makers [223]. How-

ever, SOO is generally not capable of providing a set of comparable solutions that

trade different objectives against each other. This capability is provided by MOO

[223]. Since the focus of this thesis is on constrained MOO, a detailed discussion on

the subject is given below.

15

2.2 Constrained Multi-objective Optimization

In multi-objective decision-making problems, a possible compromise between several

conflicting objectives needs to be found by evaluating these objectives [173]. Many

multi-objective optimization problems are also constrained. Therefore, any opti-

mization technique applied to solve these problems must ensure that all constraints

are satisfied by the set of optimum solutions [257]. Multi-objective optimization

problems are usually solved by scalarization (also referred to as weighted aggrega-

tion); the problem is converted into a single or a family of single objective problems,

which can then be solved using single objective optimizers. Mathematically, a MOO

problem can be stated as follows:

Optimize : F(x) = (f1(x), f2(x), · · · , fK(x)) (2.3)

subject to gm(x) ≤ 0, m = 1, · · · , n

hm(x)=0, m = n+ 1,· · · , n+ nh

where x ∈ S, and there are at least two (i.e. K ≥ 2) conflicting objective

functions, fk, that need to be optimized simultaneously. Here x = (x1, x2, ..., xD) is

called the vector of decision variables, S is defined as the feasible region, {gm(x)}

is the set of inequality constraints, and {hm(x)} is the set of equality constraints.

Due to the contradiction of objectives, there does not exist a single solution that

would optimize all the objectives simultaneously. In multi-objective optimization,

vectors are regarded as optimal if their components cannot be improved without

16

deterioration of any one of the other components [173]. This is usually referred to

as Pareto optimality. Presence of multiple objectives in an optimization problem

usually gives rise to a set of optimal solutions, commonly known as Pareto-optimal

solutions. Pareto-optimal solutions are also referred to in the literature as non-

dominated, non-inferior, or Pareto-efficient. A non Pareto-optimal solution is a

solution where one optimization criterion can be improved without degrading any

others. This solution is known as a dominated or inferior solution. Mathematically,

the MOO problem is considered to be solved when a Pareto-optimal set is found.

This is also known as vector optimization. MOO also has a relationship with multi-

modal optimization. The slight difference between the two is that MOO generally

results in Pareto-optimal solutions, which are global optimal solutions. In multi-

modal optimization, the set of solutions includes multiple optimum solutions, but

many of these solutions are local optimal solutions. Niching methods have also been

adopted by researchers to maintain diversity in the population of solutions as well

as to allow a population-based iterative algorithm to find many optima in parallel

[231].

A number of approaches to handle constraints have been reviewed by Fonseca

et al. [87]. Among them, two common approaches to handle constraints have been

utilized for use with Pareto-based ranking methods. The first employs penalization

of the rank of infeasible individuals, while the second considers transformation of

constraints to objectives [257].

In the design or planning stages of an optimization problem, the consideration of

many objectives provides three major improvements to the procedure that directly

supports the decision-making process [41]:

17

1. A multi-objective methodology usually identifies a wider range of alternatives.

2. In planning and decision-making processes, the roles of “analyst” or “modeler”

and “decision-maker” are more appropriately promoted by considering multi-

ple objectives. An analyst or modeler generates alternative solutions, and a

decision-maker uses the solutions generated by the analyst to make informed

decisions.

3. More realistic models of a problem are elaborated if many objectives are con-

sidered.

Several methods for handling the multi-objective aspects by finding a Pareto set of

solutions have been reported in the literature. Some of the popular methods are

summarized below.

2.2.1 Weighted Sum Method

The weighted sum method [96, 275] is one of the simplest MOO approaches. This

method was extended to address constrained optimization problems [7, 232], where

the aim is to solve the following problem:

Maximize
K
∑

i=1

wifi(x) (2.4)

subject to x ∈ S

gm(x) ≤ 0, m = 1, · · · , n

hm(x)=0, m = n+ 1,· · · , n+ nh

18

where wi ≥ 0 for all i = 1,, K, and
∑K

i=1 wi= 1. The solution to the above equation

is weakly Pareto optimal. Weak Pareto optimal solutions are points where all criteria

cannot be simultaneously improved. It is Pareto optimal if wi > 0 for all i = 1,, K

or if the solution is unique [173]. The values of wi are generally set by the user and

therefore require proper adjustment to obtain the desired results. The purpose of

these weights is to define relative importance of the individual objectives during the

optimization process. A larger weight assigned to one objective as compared to the

others would guide the search into a region where this particular objective achieves

relatively better optimization than the other objectives.

Advantages and Disadvantages

One drawback of the weighting method is that not all the Pareto optimal solutions

can be found unless the problem is convex. An algorithm for generating differ-

ent weights automatically for convex problems to produce an approximation of the

Pareto optimal set is proposed in [26]. The weighted sum method has several other

weaknesses. For example, a small change in weights may result in big changes in the

objective vectors f1(x), f2(x),· · · , fK(x). Moreover, significantly different weights

may produce nearly similar objective vectors. The main advantage of the method is

its computational efficiency, which makes the method a strong candidate for gener-

ating a strongly non-dominated solution that can be used as an initial solution for

other techniques [39].

19

Some Applications

The weighting sum method has been used quite extensively, with new improvements

to the method developed continuously. One such application is by Jakob et al. [125]

who used a weighted sum of several objectives involved in a task planning problem.

Another example is by Jones et al. [129], where the authors used weights for their

genetic operators in order to reflect the effectiveness of these operators when a GA

was applied to generate hyperstructures from a set of chemical structures.

2.2.2 ε-Constraint Method

The ε-Constraint method [112] is based on the minimization of one objective function

(the most preferred or primary, as chosen by the decision-maker), and considering

the other objectives as constraints bound by some allowable levels. Hence, a single-

objective minimization is carried out for the most relevant objective function subject

to additional constraints on the other objective functions. The upper bounds of

these constraints are obtained through the ε-vector, and by varying the ε-vector,

the exact Pareto front can theoretically be generated. The method optimizes one of

the objective functions in the form (considering a minimization problem):

Minimize fl(x) (2.5)

subject to fj(x) ≤ εj for all j = 1,, K, j 6= l

x∈ S

where l ∈ {1,, K}, and εj are upper bounds for the objectives fj 6= fl. The

upper bounds are user defined. The solution to Equation (2.5) is weakly Pareto

20

optimal since the main objective is optimized while satisfying other objectives within

a certain bound. However, x∗ ∈ S is Pareto optimal if and only if Equation (2.5)

is solved for every l = 1,K, where εj = fj(x
∗) for j = 1, ...K, and j 6= l [173].

Thus, it is not a necessary condition that the problem be convex in order to find

any Pareto optimal solution. To ensure Pareto optimality in this method, either

K different problems have to be solved, or a unique solution has to be obtained.

However, it is generally not easy to verify uniqueness [173].

Advantages and Disadvantages

The most prominent disadvantage of the above approach is that it is time-consuming

[39]. Also, coding of the objective functions may be difficult or even impossible for

certain problems, particularly if there are many objectives [39]. Furthermore, the

method may not be appropriate in some applications, since the method tends to find

weakly non-dominated solutions [39]. However, the main strength of the technique

is its simplicity, making it attractive to optimization practitioners [39].

Some Applications

The ε-Constraint method has been used in many applications. Quagliarella et al.

[209] used this technique in combination with a hybrid GA to solve multi-objective

optimization problems. Loughlin et al. [160] applied ε-Constraint method to a

real-world air quality management problem having two conflicting objectives: to

maximize the amount of emissions reduction and to minimize the cost of controlling

air pollutant emissions.

21

2.2.3 Lexicographic Ordering

Lexicographic ordering [39] ranks the objectives in order of importance. The domain

expert (modeler) assigns the importance to objectives. The optimum solution, x∗, is

then obtained by optimizing the objective functions. The most important objective

is optimized first, after which the other objectives are optimized according to the

assigned order of their importance.

Let the subscripts of the objectives denote the objective function number as well

as the priority of the objective. Therefore, f1(x) and fK(x) represent the most

and least important objective functions, respectively. Then, the first problem is

formulated as [39],

Maximize f1(x) (2.6)

subject to gj(x) ≤ 0 j = 1, 2,,m

hj(x) = 0 j = m+ 1,· · · ,m+mh

The solution of Equation (2.6) is referred to as x∗

1
. The second problem is then

formulated as:

Maximize f2(x) (2.7)

subject to gj(x) ≤ 0 j = 1, 2,,m

hj(x) = 0 j = m+ 1,· · · ,m+mh

and f1(x) = x∗

The solution of Equation (2.7) is referred to as x∗

2
. This procedure is then continued

22

until solutions to all K objectives are found. The solution, x∗

K , obtained at the end

is the desired solution, x∗.

Advantages and Disadvantages

The main disadvantage of lexicographic ordering is that it tends to favor certain

objectives when many are present, since randomness is involved in the process. This

in turn may cause the solutions to be concentrated in a particular part of the Pareto

front rather than the complete front [36]. This particular situation is undesirable,

since a diverse spread of solutions in the Pareto front is required. Moreover, the

decision-maker may find it difficult to specify an absolute order of importance [173].

However, an advantage of the technique is its simplicity which makes it competitive

with the weighted sum approach [39].

Some Applications

Prasad and Kuo [206] used lexicographic ordering to solve redundancy allocation

problems in coherent systems. Shou and Guo [229] used the method in engineering

management, where lexicographic ordering is used to select research and develop-

ment projects subject to resource constraints. Another application of the process has

been reported by Jégou et al. [124], where the method has been used in developing

data compression techniques.

2.2.4 Goal Programming

Goal programming [29, 122] is one of the first methods exclusively developed for

multi-objective optimization [173]. The technique was developed for linear models

23

and has an effective role in industrial optimization problems [39]. Targets, or goals

that need to be achieved, are assigned by the decision-maker. Values associated

with these goals are then incorporated into the optimization problem as additional

constraints [39]. The decision-maker specifies aspiration levels (i.e. the ideal values

of the objectives), Ti (i = 1,, K), for the objective functions and absolute devi-

ations from these aspiration levels are minimized to the best possible extent [173].

For a maximization problem, goals are of the form fi(x) ≥ Ti. The simplest form of

goal programming is formulated as [71],

Maximize
K
∑

i=1

|fi(x) − Ti| (2.8)

subject to x ∈ S

gm(x) ≤ 0, m = 1, · · · , n

hm(x)=0, m = n+ 1,· · · , n+ nh

The objective is to minimize the sum of the absolute values of the differences

between target values and actually achieved values [39]. A more generalized form of

the goal programming objective function is a weighted sum of the pth power of the

deviation |fi(x) − Ti|[53], referred to as generalized goal programming [54, 71].

Advantages and Disadvantages

The main advantage of goal programming is its computational efficiency, provided

that the target values are known, and if the goals are in a feasible region [39]. Goal

programming would generally produce a dominated solution if the target point is

chosen in a feasible region [71]. However, if the targets are wrong, then a feasible

24

region is difficult to approach, in which case goal programming could be very ineffi-

cient. Nevertheless, goal programming may prove useful in situations where a linear

or piecewise-linear approximation of the objective functions can be made, because

of the availability of excellent computer programs for such approximations, along

with the possibility of eliminating dominated goal points easily [39]. However, for

non-linear cases, this approach may not be a viable option and other approaches

may be more efficient.

Some Applications

Goal programming has been used in many applications. Some recent applications

include the works of Li et al. [156], Johnson et al. [205], and Dawande and Gupta

[51]. Li et al. [156] used goal programming for proposing a generalized varying-

domain optimization method with multiple priorities. Johnson et al. [205] applied

goal programming for project time/cost tradeoff analysis and decision making, while

considering quality issues. Dawande and Gupta [51] used goal programming to solve

bi-criteria multicasting problems in optical networks.

2.2.5 Goal Attainment

The goal attainment method [97] involves expressing a set of design goals T1, T2,, TK ,

associated with a set of objectives, f1, f2,, fK . The problem is formulated in such

a way that objectives are allowed to be over-achieved or under-achieved by using

a vector of weights, w = (w1, w2,wK). This vector of weights is provided by

the decision-maker, and enables him/her to be relatively imprecise about the initial

goals. In order to find the best solution, x∗, the following problem is solved [39]:

25

Minimize αgoal

such that Ti+αgoal.wi ≥ fi(x) i = 1, 2,, K, x ∈ S, w ∈ Λ (2.9)

subject to gj(x) ≤ 0 j = 1, 2,,m

hj(x) = 0 j = m+ 1,· · · ,m+mh

where αgoal is a scalar variable unrestricted in sign and Λ = {w ∈ Rn s.t. wi ≥

=,
∑K

i=1wi = 1, and = ≥ 0}

The term αgoal.wi introduces a degree of slackness into the problem, which would

otherwise require that the goals be rigidly met. The weight vector w enables the

decision-maker to quantitatively express the tradeoffs among the objectives. For

smaller wi, the ith objective prefers a smaller function value.

Given the vectors Ti and w, the direction of the Ti + αgoal.wi vector can be

determined. Therefore, the problem in Equation (2.9) is equivalent to finding a

feasible solution, which is nearest the origin, on this vector in objective space. During

the optimization, αgoal is varied, changing the size of the feasible region.

It is worth mentioning that whether the goals are attainable or not depends on

the value of αgoal. A negative value of αgoal implies that the goal of the decision-

maker is attainable and an improved solution can be obtained. Otherwise, if αgoal >

0, then the goal is unattainable [39].

Advantages and Disadvantages

The most prominent disadvantage of the goal attainment method is that the tech-

nique can generate misleading results in some cases [255]. For example, if there are

26

two candidate solutions having the same value in one objective function but different

in the other, then the solutions could still have the same goal-attainment value for

their two objectives. This means that none of the solutions will be better than the

other [39]. The main advantages of the technique are its computational efficiency

and simple implementation.

Some Applications

A number of applications of goal attainment have been reported in the literature.

Mueller et al. [184] used the goal attainment technique for analog circuit design,

considering circuit parameters such as transistor lengths and widths, high gain, and

low power consumption. Chen and Huang [31] utilized the technique for bi-objective

power dispatch optimization, considering fuel cost and environmental impact of mul-

tiple emissions. Liao et al. [157] adopted the technique for optimal multi-objective

filter planning in industrial distribution systems.

2.2.6 Other Approaches

Several other approaches for handling multiple objectives have also been reported

in the literature. Some of these approaches include the method of weighted metrics

[173], the weighted min-max approach [130], normal boundary interaction [50], and

the use of game theory [188].

27

2.3 Fuzzy Logic and Multi-objective Optimiza-

tion

Apart from the techniques described earlier in this chapter, fuzzy logic is another

technique that has been used for multi-objective optimization. In recent years, the

use of fuzzy logic for MOO has gained some momentum, with applications in various

areas, such as analog circuit design [191], war resource allocation [195], direct current

electromagnet design [32], and facility location selection [133]. Since one of the focus

areas of this thesis is on fuzzy logic, a detailed overview of the technique is given in

this section.

The theory of fuzzy sets [276, 277] is based on a multi-valued logic wherein a

statement can be partly true and partly false at the same time. In fuzzy logic, the

degree of truthfulness of a statement is expressed by a membership function, µ, in

the range [0,1]. A value of µ = 0 indicates that the statement is false, while µ = 1

indicates that the statement is true. The fuzzy logic approach differs from binary

logic, in that binary logic allows a statement to be either false or true.

The fuzzy logic approach replaces the vector-based objective function with a

scalar function [230]. Although it is possible to describe uncertainties in terms of

conditional probabilities, it is difficult to do so for the majority of practical cases

[230]. A framework for representing uncertainties is conveniently provided by fuzzy

logic, thus giving a strong reason to consider a fuzzy logic approach to MOO prob-

lems.

Another reason to advocate the use of fuzzy logic in MOO is due to the nature

of algorithms used for solving MOO problems. Many MOO problems are proven to

28

be NP-hard in nature. The situation becomes even more complex in the presence of

design constraints. To solve these NP-hard problems, heuristics are employed, which

are based on human knowledge acquired through experience and understanding of

problems [230]. Natural language, which provides the foundation of fuzzy logic, has

a more convenient approach for expressing such knowledge.

2.3.1 Fuzzy Set Theory

A crisp set, X, is normally defined as a collection of elements or objects, x ∈ X,

that can be finite, countable or uncountable. Each single element can either belong

to a set or not. However, in real-life situations, objects do not have crisp (1 or 0)

membership to sets. Fuzzy set theory (FST) aims to represent vague information,

such as ‘low load’, ‘high load’, or ‘low latency’, etc., which are difficult to represent

in classical (crisp) set theory. A fuzzy set is characterized by a membership function

which provides a measure of the degree of membership for every element to the

fuzzy set [169, 278]. A fuzzy set, A, of a universe of discourse, X, is defined as

A = {(x, µA(x))| ∀ x ∈ X}, where µA(x) is a membership function of x with

respect to fuzzy set A. Figure 2.2 shows an example of a membership function.

As for crisp sets, set operations such as union, intersection, and complement, are

also defined on fuzzy sets. There are many operators for fuzzy union and fuzzy in-

tersection. For fuzzy union, the operators are known as s-norm operators (denoted

as ⊕). The s-norm operators are also known as “ORing” functions since they im-

plement the OR operation between the membership functions under consideration.

Some examples of s-norm operators are given below (where A and B are fuzzy sets

of universe of discourse, X) [169]:

29

µ
Α

(x , µ (x))Α 11

0

1.0

0.5

degree of membership

Universe of discourse X

Figure 2.2: Membership function for a fuzzy set A

• Maximum operator: µA⋃B(x) = max{µA(x), µB(x)}.

• Algebraic sum operator: µA
⋃

B(x) = {µA(x) + µB(x) − µA(x)µB(x)}.

• Bounded sum operator: µA⋃B(x) = min{1, µA(x) + µB(x)}.

• Drastic sum operator: µA⋃B(x) = µA(x) if µB(x) = 0, µA⋃B(x) = µB(x) if

µA(x) = 0, or µA⋃B(x) = 1 if µA(x), µB(x) > 0.

An s-norm operator satisfies the commutativity, monotonicity, associativity, and

µA⋃ 0 = µA properties.

Fuzzy intersection operators are known as t-norm operators (denoted as *).

The t-norm operators possess the “ANDing” property since they implement the

AND operation between the membership functions under consideration. Examples

of fuzzy intersection operators are [169]:

• Minimum operator: µA⋂B(x) = min{µA(x), µB(x)}.

30

• Algebraic product operator: µA⋂B(x) = {µA(x)µB(x)}.

• Bounded product operator: µA⋂B(x) = max{0, µA(x) + µB(x) − 1}.

• Drastic product operator: µA
⋂

B(x) = µA(x) if µB(x) = 1, µA
⋂

B(x) = µB(x)

if µA(x) = 1, or µA⋂B(x) = 0 if µA(x), µB(x) < 1.

t-norms also satisfy the commutativity, monotonicity, associativity, and µA⋂ 1 =

µA properties.

Additionally, the membership function for the fuzzy complement operator is

defined as

µB(x) = 1 − µB(x)

2.3.2 Fuzzy Reasoning

Fuzzy logic [277] is a mathematical discipline invented to express human reasoning

in rigorous mathematical notation. Unlike classical reasoning in which a proposi-

tion is either true or false, fuzzy logic establishes an approximate truth value of a

proposition based on linguistic variables and inference rules. A linguistic variable is

a variable whose values are words or sentences in natural or artificial language [276].

An expert can form rules with linguistic variables, by using hedges, e.g. ‘more’,

‘many’, ‘few’, and connectors such as AND, OR, and NOT. These rules will be used

by an inference engine to facilitate approximate reasoning.

31

2.3.3 Linguistic Variables

As defined by Zadeh [277], a linguistic variable is a variable whose values are words

or sentences in a natural or artificial language. A linguistic variable is characterized

by a quintuple (Ω, T (Ω), X, G, N), where

• Ω is the name of the linguistic variable;

• T (Ω) is the term-set of Ω, i.e. the collection of its linguistic values;

• X is a universe of discourse;

• G is a syntactic rule which generates the terms in T (Ω); and

• N is a semantic rule which associates a meaning with each linguistic value.

N(ω) denotes a fuzzy subset of X for each ω ∈ T(Ω). Consider the following

example to clarify the meaning of a linguistic variable. Let X be the universe

of network average delay, A is the fuzzy subset network average delay near 0.05

seconds, and µA(•) is the membership function for A. Here, network average delay is

a linguistic variable, i.e. Ω=network average delay. The linguistic values of network

average delay can be defined as T (Ω)= {very small delay, small delay, delay near

0.05 seconds, large delay, very large delay}. Each linguistic value is characterized

by a membership function which associates a meaning to that value. The universe

of discourse, X, is a possible range of network average delay. N(ω) defines a fuzzy

set for each linguistic value, ω ∈ T(Ω).

32

2.3.4 Fuzzy Rules

One of the major components of a fuzzy logic system are rules, which are expressed

as logical implications. Fuzzy logic rules are “IF-THEN” rules, which define relations

between linguistic values of outcome (i.e. the consequent) and linguistic values of

condition (i.e. the antecedent) [1]. For example,

IF monetary cost is low and maximum number of hops are low and network

average delay is low THEN the solution is good.

Here monetary cost, maximum number of hops, network average delay, and so-

lution are linguistic variables and low and good are linguistic values.

Rules are a form of propositions. A proposition is an ordinary statement involving

defined terms. In traditional propositional logic, an implication is said to be true if

one of the following holds:

• both the antecedent and the consequent are true;

• both the antecedent and the consequent are false; and

• the antecedent is false, and the consequent is true.

Rules may be provided by experts or can be extracted from numerical data. In

either case, engineering rules are expressed as a collection of IF-THEN statements.

The following are important aspects needed to construct a rule [1]:

• understanding of linguistic variables;

• quantifying linguistic variables by using fuzzy membership functions;

• logical connections for linguistic variables;

33

• implications, i.e. “IF A THEN B”; and

• how different rules can be combined together to form other rules.

2.3.5 Fuzzy Logic System

A fuzzy logic system (FLS) [169], as illustrated in Figure 2.3, is a model of fuzzy

based decision making in engineering applications. A FLS consists of the following

components:

• A fuzzifier, which accepts crisp data as input and converts the data into fuzzy

input sets. The fuzzifier is needed to activate rules which are expressed in

terms of linguistic variables.

• An inferencing engine, which is governed by the rules. Rules are stored in a

knowledge base. The inference engine carries out the decision-making process.

The output of the decision-making process is fuzzy sets.

• A defuzzifier, which converts fuzzy output to crisp values. The defuzzifier

is used if an application requires crisp output data. Generally, optimization

applications do not require crisp output, in which case the defuzzifier is not

used.

2.3.6 Common Fuzzy Operators

t-norms play an important role in fuzzy logic and many other areas [13]. Since multi-

objective optimization problems require simultaneous optimization of all objectives

under consideration, the “AND” operator in a fuzzy rule plays a crucial role in

34

Fuzzy Logic System

Crisp Inputs

Fuzzy
Ouput Sets

Fuzzy Input
Sets

Inference

Rules

DefuzzifierFuzzifier

Figure 2.3: Fuzzy logic system

defining that rule. Consequently, a need arises to develop t-norm operators that will

effectively handle the multi-objective nature of the problem by efficiently incorporat-

ing the characteristics of different objectives (through their membership functions)

into one fuzzy rule. Furthermore, since the DLAN topology design problem also

deals with simultaneous optimization of objectives, it is necessary to elaborate on

different t-norm operators. A number of t-norm operators have been proposed in the

literature, including Dombi’s operator [61, 62], Einstein’s operator [155], Hamacher’s

operator [113], Frank’s operator [89], Weber’s operators [252], Dubois and Prade’s

operator [69, 70], Schweizer’s operators [224], Mizumoto’s operators [177, 178], and

Yager’s operators [259, 261]. These operators are defined below.

Dombi : D(µA, µB) =
1

1 +

(

(

1
µA

− 1
)β

+
(

1
µB

− 1
)β
)

1
β

, β > 0 (2.10)

Einstein : E(µA, µB) =
µAµB

2 − (µA + µB − µAµB)
(2.11)

Hamacher : H(µA, µB) =
µAµB

β + (1 − β)(µA + µB − µAµB)
, β ≥ 0 (2.12)

Frank : F (µA, µB) = logβ

(

1 +
(βµA − 1)(βµB − 1)

β − 1

)

, β > 0, β 6= 1 (2.13)

35

Weber 1 : W1(µA, µB) = max

{

0,

(

µA + µB − 1 + βµAµB
1 + β

)}

, β > −1 (2.14)

Weber 2 : W2(µA, µB) =

max {0, (1 + β)µA + (1 + β)µB − βµAµB − (1 + β)}, β > −1 (2.15)

Dubois and Prade : DP (µA, µB) =
µAµB

max{µA, µB, β}
, 0 ≤ β ≤ 1 (2.16)

Schweizer 1 : S1(µA, µB) = β

√

max
{

0, (µβA + µβB − 1)
}

, β > 0 (2.17)

Schweizer 2 : S2(µA, µB) =

1 - β
√

(1 − µA)β + (1 − µB)β − (1 − µA)β(1 − µB)β , β > 0 (2.18)

Yager : Y (µA, µB) = β×min {µA, µB}+(1−β)×
1

2
(µA+µB), 0 ≤ β ≤ 1 (2.19)

From all the above operators, Yager’s operator, also known as the ordered

weighted average (OWA) operator, has received considerable attention in the do-

main of fuzzy multi-objective optimization [21, 175, 185, 218, 219, 242, 262] due to

the operator’s special characteristics discussed in the following section. One of the

objectives of this thesis is to propose a new fuzzy operator, which is based on the

properties exhibited by Yager’s operator. Therefore, a detailed discussion of Yager’s

ordered weighted average operator is given below.

Ordered Weighted Averaging Operator

In MOO problems, where sub-objectives are aggregated to form an overall objec-

tive function, an important issue is how to form this overall function. Generally,

36

in MOO problems, here are two extreme approaches in creating a single objective

function from sub-objective functions. In the first case, all objectives must be sat-

isfied, which leads to the pure-ANDing operation. At the other extreme, any of

the objectives can be satisfied, thus suggesting the pure-ORing operation. How-

ever, for many real-world problems, it is not desirable to formulate multi-objective

decision functions with pure “ANDing” of t-norm operators nor the pure “ORing”

of s-norm operators. The reason for this is the complete lack of compensation of

t-norm operators for any partial fulfillment and complete submission of s-norm op-

erators to fulfillment of any sub-objective. This observation led to the development

of the Ordered Weighted Averaging (OWA) operator by Yager [260]. Because of

its properties, the OWA operator has been quite popular among researchers work-

ing on multi-objective decision-making, and has been applied to many problems

[21, 175, 185, 218, 219, 242, 262]. The OWA operator allows easy adjustment of

the degree of “ANDing” and “ORing” in the function aggregating sub-objectives.

“OR-like” and “AND-like” OWA for two fuzzy sets A and B are implemented as

follows:

µA∪B(x) = β × max(µA, µB) + (1 − β) ×
1

2
(µA + µB) (2.20)

µA∩B(x) = β × min(µA, µB) + (1 − β) ×
1

2
(µA + µB) (2.21)

where µ represents the membership to the fuzzy set, determined by a membership

function. β ∈ [0, 1] is a constant parameter, which represents the degree to which

the OWA operator resembles the pure “OR” or pure “AND” respectively.

It was shown by Yager that the OWA operator is a mean operator as it satisfies

the monotonicity, symmetry, and idempotency conditions for a function, F(x) =

37

(A1(x), A2(x), · · · , AK(x)) [260]. Before giving definitions of these conditions, recall

that A1(x), A2(x), · · · , AK(x) are K objectives of a multi-objective problem, and

x is a candidate solution. Accordingly, the corresponding membership functions

of A1(x), A2(x), · · · , AK(x) are a1, a2, · · · , aK respectively. With these details in

view, the three conditions satisfied by the OWA operator can be defined as follows:

1. Monotonicity: F (ä1, · · · , äK) ≥ F (a1, · · · , aK) if äk ≥ ak, ∀ k = 1, · · · , K.

2. Symmetry (generalized commutativity): F (ä1, · · · , äK) = F (a1, · · · , aK)

for every permutation (a1, · · · , aK) of (ä1, · · · , äK).

3. Idempotency: F (a1, · · · , aK) = a, if ak = a, ∀ k = 1, · · · , K.

A further analysis of Equations (2.20) and (2.21) reveals the importance of factor

β. The value of β is crucial in deciding the extent of “ORing” or “ANDing”. For

example, in Equation (2.20), the more the value of β tends towards 1, the higher is

the extent of “pure-ORing”. As the value of β is lowered, the extent of pure-ORing

is reduced, thus making it soft-ORing. Similarly, in Equation (2.21), a high value of

β will incline the function towards pure-ANDing, while a low value of β will move

the function towards soft-ANDing.

Figure 2.4 depicts the behavior of the OWA AND-like function of Equation

(2.21). When β = 0 (Figure 2.4(a)), the function takes the average of all the

membership values. This behavior is referred to as “pure-aggregation”. As the

value of β is increased, the “ANDing” between the two membership values also

increases. When β = 1 (Figure 2.4(f)), the behavior of the function is exactly the

same as that of pure-AND defined by Zadeh [276].

38

0
0.5

1

0

0.5

1
0

0.5

1

β = 0(a) 0
0.5

1

0

0.5

1
0

0.5

1

β = 0.3

0
0.5

1

0

0.5

1
0

0.5

1

β = 0.5 0
0.5

1

0

0.5

1
0

0.5

1

β = 0.7

0
0.5

1

0

0.5

1
0

0.5

1

β = 0.9
0

0.5
1

0

0.5

1
0

0.5

1

β = 1

(b)

(c) (d)

(e) (f)

Figure 2.4: Effect of β on OWA-AND function

A similar pattern is observed for Equation (2.20) with respect to ORing. In

Figure 2.5, different instances of the OWA OR-like function of Equation (2.20) are

depicted. For β = 0 (Figure 2.5(a)), the behavior of the function is that of pure-

aggregation. With increasing value of β, the extent of “ORing” between the two

membership values also increases. When β = 1 (Figure 2.5(f)), the behavior of the

function is that of pure-OR, as suggested by Zadeh [276].

39

0
0.5

1

0

0.5

1
0

0.5

1

β = 0 0
0.5

1

0

0.5

1
0

0.5

1

β = 0.3

0
0.5

1

0

0.5

1
0

0.5

1

β = 0.5 0
0.5

1

0

0.5

1
0

0.5

1

β = 0.7

0
0.5

1

0

0.5

1
0

0.5

1

β = 0.9 0
0.5

1

0

0.5

1
0

0.5

1

β = 1

(a) (b)

(d)(c)

(e) (f)

Figure 2.5: Effect of β on OWA-OR function

40

2.3.7 Role of Preferences in Multi-objective Optimization

Solving of a multi-objective optimization problem involves three phases [38]: mea-

surement, search, and decision-making. In most MOO problems, the focus is on

the search for non-dominated vectors, without any insight into the decision-making

process. Thus, the decision-maker has to select one of several alternatives obtained.

In these MOO problems, all individual objectives are considered as having an equal

level of importance, since the decision-maker does not assign preference to an ob-

jective or set of objectives [38]. Even if the decision-maker’s preferences are given,

they are quite often not well stated and the function governing the preferences is

imprecise or even arbitrary [47]. Thus, a strong concern is that the decision-maker’s

preferences are effectively incorporated into the MOO search process to focus on

regions of greater interest. A number of proposals to handle preferences have been

reported in the literature. For example, Fonseca and Fleming [86] utilized the goal

attainment technique to accommodate preferences in the search process. Cvetković

and Parmee [47] used binary preference relations which are expressed as words and

then translated into weights to narrow the search. Greenwood et al. [108] used the

idea of imprecisely specified multi-attribute value theory (ISMAVT) from imprecise

ranking of objectives.

2.4 Optimization Algorithms

Combinatorial optimization (CO) deals with models and methods for optimization

over discrete choices [196]. CO involves selection of a solution from a finite set

of possible solutions [196]. CO has a strong relationship with discrete mathemat-

41

ics, probability theory, algorithmic computer science, and complexity theory [196].

Combinatorial optimization algorithms can be categorized into two general classes:

(1) exact algorithms and (2) approximation algorithms. Exact algorithms reach

an exact solution, while approximation algorithms seek an approximation that is

close to the best solution. Approximation may use either a deterministic or a ran-

dom strategy. Linear programming, dynamic programming, branch-and-bound, and

backtracking are some well-known examples of exact algorithms [119]. Examples of

approximation algorithms include local search, constructive greedy methods, and

many general iterative heuristics.

A large number of optimization problems are NP-hard. Due to the complexity of

NP-hard problems, one cannot resort to exact techniques to solve such optimization

problems. For such problems, approximation algorithms, also known as heuristics,

seem to be more effective. One strong feature of a heuristic is that it explores

only a sub-region of the total search space and finds an “excellent” feasible solution

rather than the best solution. This feature of heuristics provides an edge over

exact techniques with regard to computational complexity: the execution time for

a heuristic, in general, is remarkably less than that of an exact algorithm.

Heuristics are divided into two main categories: constructive and iterative meth-

ods. The main difference between the two categories is in the approach adopted

in reaching the final solution. Iterative heuristics attempt to improve a complete

solution by making controlled stochastic moves, while constructive heuristics con-

struct a solution in a piecewise manner. Although constructive heuristics are faster

than iterative heuristics in generating a final solution, the former often do not reach

a global optimal solution. For highly constrained problems, constructive heuristics

42

may even fail to find a feasible solution. Some examples of constructive heuristics

are Esau-William’s algorithm [80], Prim’s algorithm [208], and Kruskal’s algorithm

[151]. On the other hand, iterative heuristics have proven to be effective for a variety

of NP-hard problems in the field of engineering [19, 22, 76, 143, 153, 179, 211, 271]

and science [95, 197, 214, 273]. Iterative heuristics include simulated annealing

(SA) [186], simulated evolution (SimE) [147, 148], genetic algorithms (GA) [104],

stochastic evolution (StocE) [216, 217], and more recently, ant colony optimization

(ACO) [42] and particle swarm optimization (PSO) [140]. For many NP-hard prob-

lems, these heuristics have the ability to find near optimal solutions when properly

engineered, irrespective of the initial solution from which they start the search. An

overview of these algorithms is given below.

2.4.1 Genetic Algorithm

Genetic algorithms (GA) are a popular and effective optimization algorithm, which

emulates the natural process of evolution as a means of progressing toward an op-

timum. Initially suggested by Fraser [90], Fraser and Burnell [91], and Crosby [46],

and popularized by Holland [118], the GA was inspired by Darwinian theory [49].

The foundation of GA is based on the theory of natural selection, whereby indi-

viduals having certain positive characteristics have a better chance to survive and

reproduce, and hence transfer their characteristics to their offspring. Since a number

of variations of GA exists, the term is generally referred to as GAs (in plural) in the

literature.

GAs operate on a set of solutions in parallel. The set of solutions is known as

a population. Each solution (also referred to as a chromosome) in the population is

43

represented by a string of symbols. A chromosome comprises individual elements,

called genes. During each iteration, a new set of chromosomes, called offspring is

generated. Each offspring is a result of four genetic operators, namely, selection,

crossover, mutation, and inversion (optional). These operators are repeatedly ap-

plied to a collection of solutions to generate the new offspring.

An important issue in applying GAs to solve combinatorial optimization prob-

lems is to find an efficient way of representing a solution in the form of a chromosome.

Moreover, the fitness of each chromosome needs to be evaluated based on some fit-

ness function. The fitness value quantifies the quality of the solution represented by

a chromosome. For a maximization problem, the higher the fitness value, the higher

the quality of the solution, and vice versa. As evolution progresses, better quality

solutions are expected to be produced. It is important that the fitness function

is an accurate reflection of the problem domain. An improper selection of fitness

function and representation may lead to poor performance. Note that both aspects

are problem-dependent.

An overview of the main operators of GAs, namely, selection, crossover, and

mutation is presented below.

Selection

The selection operator is a key element of GAs. Selection operators are used to

choose a pair of chromosomes (called parents) to produce offspring. The choice of

parents plays an important role in generating high-quality offspring. The selection

process usually favors chromosomes with high fitness values. The logic behind this is

that stronger (i.e. fitter) chromosomes are more likely to produce stronger offspring.

44

If the process continues, high-quality offspring are expected in each generation. In

broader terms, the main objective of selection methods is to exploit the search space

[9]. A number of selection methods such as roulette-wheel selection [104], rank

selection [107], tournament selection [104], and elitism [107] have been proposed in

the literature.

Crossover

The purpose of crossover is to provide a mechanism for producing offspring such that

the offspring inherits the characteristics of both the parents. Crossover occurs at a

user-specified probability, referred to as the crossover probability. This probability

typically ranges between 0.4 and 0.8 [253]. A number of crossover schemes have been

proposed in the literature, including simple [104], cyclic [190], order [104], partially

mapped [103], uniform [239], arithmetic [104], and heuristic [256] crossover.

Mutation

The basic purpose of mutation is to perturb chromosomes in order to introduce

characteristics which are absent in the parent population. This is turn allows more

exploration of the search space. Mutation is performed on the offspring produced by

the crossover operator. The mutation operation is also applied at a user-specified

probability, referred to as the mutation probability, pm. A typical value of pm is

taken as 0.01 [116], since high values pm of will result in large perturbations in the

offspring, which is undesirable. A more appropriate measure of pm is by setting pm

to the inverse of the number of genes in a chromosome [104]. However, the most

suitable value of pm is problem-dependent [193].

45

Some applications of GAs

Extensive literature is available on GAs and their use in combinatorial optimization.

The interested reader is referred to Goldberg [104]. As for network design problems,

genetic algorithms have been widely used. Pierre et al. [204] used a GA to solve

the topological design problem of distributed packet-switched networks. Dengiz et

al. [58, 57] used a GA to optimize network topology using cost and reliability as

objective functions. Gen et al. [98] used a GA for topological network design based

on spanning trees. Gen et al. optimized the average network message delay and

connecting cost. Elbaum et al. [75] used a GA for designing LANs with the objective

of minimizing the average network delay under the constraint that the flow on any

link does not exceed the capacity of that link. Ombuki et al. [192] proposed a GA

for the 3-connected computer networks design problem. This problem dealt with

assigning a set of links to computer sites (nodes) such that every source-destination

pair of nodes could successfully communicate with every other via at least one

of three diverse paths. The objective was to minimize the total link connection

costs while maintaining the 3-connectivity constraint. Xianhai et al. [240] proposed

a multi-objective GA to design a computer network considering cost, mean path

delay, and mean link utilization ratio as the optimization objectives. Mostafa et

al. [182] proposed a GA to address the issue of joint optimization of capacity and

flow assignments. The aim was to find the flows on different links as well as the

capacities of the links, such that the total network cost is minimized while keeping

the average network delay below a certain upper limit. White et al. [254] proposed

a GA for ring network design while considering routing, link capacity assignment,

and ring determination as three design objectives.

46

2.4.2 Simulated Evolution

Simulated evolution (SimE) is a general iterative heuristic proposed by Kling and

Banerjee [147, 148, 149] (refer to Figure 2.6). SimE is based on the analogy with

the principles of natural selection thought to be followed by various species in their

biological environments. During the process of biological evolution, organisms tend

to develop features that help them in adapting to their habitat.

SimE belongs to the category of algorithms which emphasize the behavioral link

between parents and offspring, or between reproductive populations, rather than

the genetic link [85]. In other words, SimE follows phenotypic evolution instead of

genotypic evolution. SimE combines iterative improvement and constructive per-

turbation, and prevents itself from getting trapped in local minima by following a

stochastic perturbation approach. The algorithm iteratively operates a sequence of

evaluation, selection and allocation steps on a single solution until some stopping

condition is satisfied. The selection and allocation steps constitute a compound move

from the current solution to another feasible solution of the state space. These steps

are described below.

Initialization

In this very first step, a valid solution (i.e. a solution that satisfies all constraints de-

fined for the problem) is generated. The initial solution may be generated randomly

or by using any constructive algorithm.

47

Evaluation

A solution is seen as a set of movable elements. A movable element is an individual

component of the solution. Different arrangements of movable elements result in

different unique solutions. Each element, ei, has an associated goodness (fitness)

measure, gi, in the interval [0,1], defined as

gi =
Oi

Ci
(2.22)

where Oi is an estimate of the optimal cost of element ei and Ci is the actual cost

of ei in its current location. Notice that Oi remains constant throughout iterations.

The value of Oi is generally obtained through a mathematical approximation and

is set in the initialization phase. However, Ci changes in each iteration, and needs

to be recalculated in each call to the evaluation function. Ci is obtained through

a user-defined evaluation measure. The element, ei, is analogous to a gene of a

chromosome in GAs.

Selection

Selection is the third step of the SimE algorithm. This step takes as input the

existing solution and the goodness of each element, ei, estimated during the eval-

uation step. Elements having a low goodness value are selected for removal from

the solution, so that new elements can replace them. The selection is performed

using a parameter B, called the bias which is used to compensate for inaccuracies

in the goodness measure. A random number is generated, and the following check

is performed for each ei:

48

IF Random > Min{gi +B, 1}

Then select ei for removal

ELSE do not select ei

where Random ∼ U(0, 1). The outcome of this operation decides whether an in-

dividual is to be removed or not. The higher the goodness value of the element,

the higher is its chance of staying in its current location. The lower the goodness,

the larger is the probability that the element will be removed. The bias, B, has

an important role in selecting the number of elements to be removed. A high bias

value inflates the goodness of each element, thus reducing the number of elements

selected for removal (and then re-allocation). This speeds-up the algorithm, but at

the risk of early convergence to a local optimum. A low (or negative) bias increases

the number of elements selected at each iteration, allowing the algorithm to search

rigourously at each iteration. This may result in better solutions, but at the expense

of higher runtime requirements. If the bias is removed, the algorithm will still work

with the default setting (i.e. with gi only), but the presence of bias alters the de-

fault setting in order to extend or reduce the survival chances of elements, thereby

controlling the average number of elements per iteration [146]. It is important to

mention that the value of bias B is a user-defined value in the range [-1,1] and an

appropriate bias value is found by trial and error.

The selection phase is non-deterministic. Therefore, there is still a non-zero

probability for an element with a high goodness to be selected for removal from the

solution. Due to this characteristic of non-determinism, SimE is capable of escaping

local minima [147, 149].

49

Simulated Evolution(B, Φinitial, StoppingCondition)
NOTATION

B= Bias value
Φ= Complete solution
ei= Individual in Φ
Oi= Optimum cost of ei
Ci= Current cost of ei in Φ
gi= Goodness of ei in Φ
Hq= Queue to store the selected individual
ALLOCATE(ei, Φi)=Function to allocate ei in partial solution Φi

Begin

Repeat

EVALUATION: ForEach ei ∈ Φ DO

begin

gi = Oi/Ci
end

SELECTION: ForEach ei ∈ Φ DO

begin

IF Random > Min{gi + B, 1}
THEN

begin

Hq = Hq ∪ ei; Φ = Φ \ {ei}.
end

end

ALLOCATION: ForEach ei ∈ Hq DO

begin

ALLOCATE(ei, Φi)
end

Until Stopping Condition is satisfied

Return Best solution.
End (Simulated Evolution)

Figure 2.6: Structure of the simulated evolution algorithm

50

Allocation

The allocation step is the most important step of the algorithm, and has the most

significant impact on the quality of the solution. This step removes the elements

selected during the selection step, and moves are made for each selected element.

For each selected element, trial moves are performed and the cost of a new solution

resulting from each move is computed. The move which gives the most optimized

cost is accepted. These steps are repeated for each selected element. The number

of trial moves, as well as the types of moves performed, are problem-specific. For

example, for the travelling salesman problem (TSP), a move may consist of swapping

vertex i with any other vertex. The number of moves could then be n − 1, where

n is the number of vertices. However, a smaller number of moves would be more

appropriate to keep the runtime under control. At the end of the allocation step, a

new solution is obtained.

The objective of the allocation phase is to favor improvements in the quality of

the existing solution, without being ‘too greedy’. As mentioned above, out of the

many trial moves, the ‘best move’ results in the most optimized cost. However,

this cost might be worse than the original cost (i.e., when the element selected for

removal was present in the solution). Despite this, the new move with the best

cost among all trial moves is accepted. This momentarily causes the solution to

go towards a worse solution. However, notice that trial moves are performed for

each selected element. Some of the accepted moves might be of lower cost than the

original, while other may be of higher cost. The net effect is that the new complete

solution (after all selected elements are re-allocated) could be better or worse than

the previous solution. Thus, the allocation phase is not very greedy in accepting

51

only good solutions; the phase also accepts bad solutions.

The allocation step is somewhat similar to the mutation operation in genetic

algorithms, but is relatively more complex in nature. As mentioned earlier, mutation

and crossover are the two main operations in GAs that contribute strongly to the

evolution and inheritance in obtaining better quality solutions. The same specific

task has to be performed by the allocation function in SimE. Therefore, it is obvious

that allocation should be a well-engineered and sophisticated operation compared

to the mutation operation of GAs.

Applications of SimE

Since the SimE algorithm was originally proposed for design automation of very large

scale integration (VLSI), and research papers appeared only in related conferences

and journals, the algorithm did not receive much attention and many researchers are

not aware of the algorithm. SimE has been applied in only a few research articles

outside the field of VLSI such as the driver scheduling problem [127], the set covering

problem [128], and the operand data type problem [264].

2.4.3 Stochastic Evolution

Stochastic evolution (StocE) is another randomized iterative search algorithm, also

inspired from biological evolution [215, 216, 217]. The StocE algorithm seeks to find

a suitable location, Z(ei), for each movable element, ei, which eventually leads to a

lower cost of the whole state, Z ∈ f, where f is the state space. The basic idea of

the algorithm is to reward additional iterations to the algorithm if improvement is

observed. A general outline of the StocE algorithm is given in Figure 2.7.

52

Stochastic Evolution(Z0, p0, R)
NOTATION

Z0= Initial solution
ρ= Counter
p= Control parameter
p0= Initial value of p
pincr= User-defined value
Rc= Stopping criterion parameter
Ccur = Cost of current solution Z
CBest = Cost of best solution
Cpre = Cost of previous solution
Begin

ZBest = Z = Z0;
CBest = Ccur = Cost(Z);
p = p0;
ρ = 0;
Repeat

Cpre = Ccur;
S = PERTURB(Z, p); /* perform a search in the neighborhood of Z */
Ccur = Cost(Z);
UPDATE(p, Cpre, Ccur); /* update p if needed */
if (Ccur < CBest)

ZBest =Z;
CBest = Ccur;
ρ = ρ − Rc; /* Reward the search with Rc more generations */

else

ρ = ρ + 1;
endif

until ρ > Rc

return (ZBest);
End

Figure 2.7: The stochastic evolution algorithm

53

The inputs to StocE are an initial solution, a parameter, Rc, for the stopping

criterion, and a control parameter, p, used to control the uphill climbs to escape local

minima. Another variable, pincr, is used to increment the value of p. A counter,

ρ, is used with the main loop of the algorithm, where the loop is iterated until the

value of ρ becomes equal to Rc. ρ is a variable, and is updated according to the

result of a perturbation. Each time a state is found which is lower in cost than the

best cost obtained so far, ρ is decremented by Rc, giving the algorithm a chance to

find better solutions by using more execution time. In other words, the algorithm

is rewarded with more iterations before terminating. If no improvement is observed

for a number of iterations (determined by ρ and Rc), then the algorithm stops since

this indicates that StocE has converged.

There are three main steps of the StocE algorithm, namely, initialization, per-

turbation, and updating. These steps are discussed below.

Initialization

The first step of the StocE algorithm initializes a valid solution, Z. Other algorithm

parameters such the control parameter, p, and the counter, ρ, are also initialized.

Perturbation

Following initialization, a repeat loop is executed. Within the repeat loop, the

‘perturb’ function (refer to Figure 2.8) is invoked to make a compound move (i.e.

a move comprised of multiple single moves) from the current state (i.e. current

solution), Z. The objective of ‘perturb’ is to obtain a new solution by perturbing

the current solution. Once a valid move is done, the gain is evaluated by calculating

54

the difference between the cost of the old solution, Z, and the new solution, Z ′. If

the gain is greater than a randomly generated integer in the range [−p, 0], the move

is accepted and Z ′ replaces Z as the current solution. Moves with positive gains are

always accepted. The new solution generated by ‘perturb’ is returned to the main

procedure as the current solution. Validity of a move is ensured using a sub-function

MAKE STATE which checks whether all design constraints are satisfied. In case

a move is invalid, the MAKE STATE function reverses the move and restores the

previous valid state of the solution.

FUNCTION perturb(Z, p);
Begin

for each (q ∈ Q) do /* according to some apriori ordering */
Z ′ = MOV E(Z, q);
Gain(q) = Cost(Z) − Cost(Z ′);
if (Gain(q) > RANDINT (−p, 0)) then

Z = Z ′

endif
endfor;
Z =MAKE STATE(Z); /* make sure Z satisfies constraints */
return(Z)

End

Figure 2.8: The Perturb function

Updating

Following the perturbation phase, the next stage in the repeat loop is the update

routine (Figure 2.9). The ‘update’ routine takes the cost the previous current so-

lution and the new current solution and compares the cost. If the two costs turn

out to be the same, then there is a possibility that the algorithm has reached a

55

local minimum. To escape the local minimum, p is increased by pincr to allow uphill

moves. Otherwise, p is reset to p0.

The two key parameters that affect the performance of the StocE algorithm are p

and Rc. As said above, the purpose of p is to help the algorithm escape local minima

by allowing uphill climbs. The value of p controls the steepness of this uphill climb.

In other words, p determines the extent of accepting a solution of worse quality

than the quality of the current solution. Initially, p is set to a non-negative value

close to zero [217]. Such a choice for p means that only moves with small negative

gains are performed. A high value of p will result in moves with large negative

gains. Large negative gains are undesired since they increase the runtime of the

algorithm. Therefore, it is important to find an appropriate value of p, and by what

factor the value of p should be increased. The parameter Rc represents the expected

number of iterations needed by the StocE algorithm until an improvement in the

cost is achieved with respect to the best solution seen so far. If Rc is too small,

the algorithm will not have enough time to improve the initial solution, and if Rc

is too large, the algorithm may waste too much time during the later generations.

Experimental studies suggest that good results are obtained when Rc is between 10

and 20 [215].

Applications of StocE

As is the case with SimE, StocE has not been exploited much by researchers. The

algorithm has been applied to only a few problems, including channel router design

[82], register allocation [248], the graph covering problem [48], and a technology

mapper for field programmable gate arrays [4].

56

PROCEDURE update(p, Cpre, Ccur);
begin

if (Cpre=Ccur) then /* possibility of a local minimum */
p = p + pincr; /* increment p to allow larger uphill moves */

else
p = p0; /* re-initialize p */

endif;
end

Figure 2.9: The update procedure for stochastic evolution algorithm

2.4.4 Simulated Annealing

Simulated annealing (SA) is a popular combinatorial optimization algorithm pro-

posed by Kirkpatrick et al. [145]. It is derived from the analogy of the physical

annealing process of metals. SA works on a single solution. The neighborhood

state of the solution is generated by making a move. All good moves are accepted.

However, bad moves are stochastically accepted. The acceptance probability of bad

moves is controlled by a cooling schedule. In the early stage of the search, bad moves

are accepted with high probability. However, as the search progresses, the tempera-

ture of the cooling schedule decreases and so does the probability of accepting bad

moves. In the last part of the search, SA behaves as a greedy algorithm, accepting

only good moves. The algorithm is depicted in Figure 2.10. SA has two main stages:

initialization and the metropolis procedure. These stages are described below.

Initialization

The first step of the SA algorithm initializes a valid solution, and values are assigned

to the SA control parameters. These parameters include the initial temperature,

57

Simulated Annealing(Z0, T0, αSA, βSA,M,MaxTime)
Z0 = Initial solution
T0 = Initial temperature
αSA = Cooling rate
βSA = A constant
MaxTime = Total allowed time for the annealing process
M = Time until the next parameter update

Begin

T = T0;
Z = Z0;
Time = 0;
Repeat

Call Metropolis(Z, T,M)
Time = Time+M ;
T = αSA × T ;
M = βSA ×M ;

Until (Time ≥MaxTime);
Output best solution found

End

Metropolis(Z, T,M))
Begin

Repeat
Z ′ = neighbor(Z);
∆h = Cost(Z ′) – Cost(Z);
if((∆h < 0) or (random < e−∆h/T)) then Z = Z ′; {accept the solution}
M = M − 1;

Until (M = 0);
End (Metropolis)

Figure 2.10: Structure of the simulated annealing algorithm

58

T0, the cooling rate, αSA, the constant, βSA, the maximum time for the annealing

process, MaxTime, and the length of the Markov chain, M , which represents the

time until the next parameter update.

Metropolis Procedure

The metropolis procedure is the core of the annealing algorithm and is performed

repeatedly until a predefined number of iterations is reached. The metropolis proce-

dure uses a function neighbor to generate a local neighbor, Z ′, of any given solution

Z. The function neighbor performs the following steps: a single move is made.

The move is accepted or rejected based on the constraints of the problem, and the

new cost is calculated according to the metropolis procedure. The function cost

returns the overall cost of the given solution Z. If the overall cost of Z ′ is better

than the cost of Z, then Z ′ is definitely accepted, otherwise Z ′ is accepted proba-

bilistically based on the metropolis criterion. The metropolis criterion is given by

P (random < e−∆h/T), where random is a random number in the range 0 to 1, ∆h

represents the difference in the overall goodness of Z and Z ′, and T represents the

annealing temperature.

The control parameters have an impact on the convergence of the SA algorithm.

Inappropriate values of these parameters can significantly affect the quality of so-

lution produced by SA. One such parameter is the initial temperature, T0. The

initial temperature should be set to an appropriate value, so that all transitions (i.e.

moves) are accepted initially. A very high initial temperature will unnecessarily in-

crease the algorithm execution time, since the algorithm would navigate the search

space blindly (thus increasing exploration). In other words, the algorithm will then

59

implement a blind search without any intelligence. On the other hand, a very low

value of T0 will favor too much exploitation, leading to premature convergence, and

the algorithm will reject bad solutions even in the early steps of the search. There-

fore, a suitable value of T0 should be chosen, depending on the nature of the problem

being solved. A number of approaches have been reported in the literature to find

a suitable value for T0 [33, 126, 145, 167, 202].

The cooling rate, αSA, also has an impact on the performance of the algorithm.

With a high value of αSA, the temperature will decrease slowly. This implies that the

capability of the algorithm for accepting bad solutions will persist for a considerable

amount of time, which may help the algorithm to escape from local minima (thus

favoring exploration). If αSA is very low, then the algorithm will quickly lose the

tendency of accepting a bad solution. This may cause the algorithm to become stuck

in a local minimum. Since small changes in the solution are desired, a value close

to unity is chosen for αSA, typically ranging from 0.8 to 0.99 [154].

Another important parameter that affects the convergence of the algorithm is the

length of the Markov chain, denoted by M , which represents the number of times the

algorithm makes perturbations at a particular temperature. Determination of an

appropriate value of M depends on the fact that a minimum number of transitions

should be accepted in each iteration. This minimum number is user-defined and

depends on the nature of the problem. The value of M should neither be very

high nor very low. A very high value of M increases the execution time, since the

algorithm performs more transitions than necessary. For example, if M = 25, then

for an arbitrary temperature, the algorithm will attempt 25 moves (i.e. transitions).

However, the same quality of solution might be achieved with M = 10. Unnecessary

60

moves are therefore made for M = 25. If M is too small, the solution might not

be perturbed enough to search for better solutions in the current neighborhood.

Kirkpatrick et al. [145] proposed that M should be chosen such that a specific

number of solution transitions are accepted. This implies that it is possible to

define the maximum value of M equal to the neighborhood size. However, to save

the execution time, it is more appropriate to take M equal to some subset of the

neighborhood, rather than the entire neighborhood [145].

It is worth mentioning that, during the course of execution of the algorithm,

parameter βSA (where βSA > 1) is used to increase the value of M as temperature is

decreased. The basic idea behind using βSA is that the number of moves increases

as temperature decreases. In the initial stages of the algorithm, a few moves are

performed. These moves are sufficient to escape local minima, since the algorithm

possesses the tendency to accept bad moves. As the temperature is decreased, the

algorithm’s tendency to accept bad moves is reduced, thus reducing the chances of

escaping local minima. Under this condition, more moves are needed at a particu-

lar temperature to escape local minima, thus enhancing the chances of converging

towards a better solution.

Some applications of SA

Simulated annealing has been used extensively for a variety of problems in different

disciplines, including network design problems. Miyoshi et al. [176] investigated the

use of SA for topological designs of multicast networks, and proposed a new method

for finding an effective initial solution to the problem of reducing the computational

time of SA. Harmatos et al. [114] proposed a heuristic planning algorithm for opti-

61

mizing tree-topology access networks. The algorithm is a combination of an adaptive

version of the SA meta-heuristic and a local improvement strategy. Thompson and

Bilbro [241] empirically compared a GA and SA on the problem of optimizing the

topological design of a network. In addition to the usual problem of optimizing

only the placement of links, the number and placement of concentrators were also

decision variables for a class of problems using a real set of concentrators, links,

and traffic. The results found by the GA and SA were comparable for all test cases.

Ersoy et al. [79] used SA for topological design of interconnected LANs/MANs. The

main objective was to minimize the average network delay. Fetterolf [83] used SA

to design LAN-WAN computer networks with transparent bridges. SA was used to

generate sequences of neighboring spanning trees, and to evaluate design constraints

based on maximum flow, bridge capacity, and end-to-end delay. Atiq et al. [12] pro-

posed a SA algorithm for reliability optimization. Similarly, Dengiz et al. [56] used

SA to design computer communication networks, with reliability as the optimization

objective. The results were almost of the same quality when compared with a GA.

SA has not been exploited well for multi-objective optimization problems. Re-

search includes that of Venanzi et al. [250] where a multi-objective SA algorithm

was used to design optimal wind-excited structures (such as masts and lattice tow-

ers). Chattopadhyay et al. [30] developed a multi-objective optimization procedure

based on SA to simultaneously optimize the synthesis of structures/controls and the

actuator-location problem for the design of intelligent structures. Bandyopadhyay

et al. [14] proposed a multi-objective SA algorithm and tested it on a number of

mathematical benchmarks.

62

2.4.5 Tabu Search

Tabu search (TS) is another single solution iterative heuristic used for solving com-

binatorial optimization problems. The algorithm was first proposed by Glover

[100, 101]. The algorithm is biologically inspired by “memory” - the ability to use

past experiences to improve current decision-making. There are two key features of

the tabu search algorithm, namely the tabu list and the aspiration criterion. The

tabu list is a mechanism through which the algorithm prevents cycling. In essence,

the tabu list controls the memory component of the algorithm, by reminding the

algorithm which moves have already been undertaken in the recent past. The tabu

list maintains a record of recently visited solutions, and no moves leading to tabu

solutions are allowed. However, the tabu status of a solution is overridden when

aspiration criteria are satisfied. Aspiration criteria are defined on the basis of the

nature of the problem being solved.

The tabu search algorithm works as follows: the search starts with a valid initial

solution, labelled as the current solution. Then, the neighborhood of this current

solution is generated and explored, and the best solution in that neighborhood is

selected as the new solution, even if this best solution is worse in quality than the

existing current solution. However, acceptance of this new solution in the neighbor-

hood is subject to the condition that the solution is not in the tabu list. If it is in

the tabu list, then it satisfies the aspiration criteria. If the above conditions fail,

then the next trial solution is examined. This process is repeated until a stopping

condition is met. The best solution found is returned as the result of the TS algo-

rithm. The pseudo-code of the algorithm is depicted in Figure 2.11. Tabu search has

two main stages: initialization and the tabu search procedure. Both are described

63

below.

Ω : Set of feasible solutions
S : Current solution
S∗ : Best admissible solution
Cost : Objective function
ℵ(S) : Neighborhood of S ∈ Ω
V∗ : Sample of neighborhood solutions.

: Tabu list
AL : Aspiration Level

Begin
Start with an initial feasible solution S ∈ Ω;
Initialize tabu lists and aspiration level;
For fixed number of iterations

Generate neighbor solutions V∗ ⊂ ℵ(S);
Find best S∗ ∈ V∗;
IF move S to S∗ is not in tabu list THEN

Accept move and update best solution;
Update tabu list and aspiration level;
Increment iteration number

else
if Cost(S∗) < AL then

Accept move and update best solution;
Update tabu list and aspiration level;
Increment iteration number

endif
endif

endfor
End

Figure 2.11: Algorithmic description of tabu search

Initialization

The first step of the TS algorithm initializes a valid solution, Z. The tabu list and

aspiration level are also initialized in this step.

64

Tabu Search Procedure

A neighborhood, N(Z), is defined for Z. A subset of all neighbor solutions, V*(Z)

⊂ N(Z), is generated. Solutions in V*(Z) are evaluated, and the best (in terms of

an evaluation function), call it Z*, is considered to be the next solution. A list of

attributes of accepted moves is maintained by the algorithm in the tabu list. The size

of the tabu list determines the number of iterations for which the move would remain

tabu. An attribute is some characteristic associated with a move which is saved in

the tabu list. The reason for saving only the attribute instead of the whole solution

is that the solution cannot be stored when the solution representation is large or

complex. If the move leading to Z* is not defined as tabu in the tabu list, then Z*

is accepted as the new solution, even if it results in a worse solution compared to

the current solution in terms of the evaluation function. However, if the tabu list

defines the move leading to Z* as tabu, then the solution is not accepted until it

has one or more features that allow the algorithm to accept it (i.e. the solution)

by overriding its tabu status. An aspiration criterion is used to check whether the

tabu solution is to be accepted or not [102]. The tabu search loop is repeated until

a stopping condition is satisfied.

The key factor that affects the performance of the tabu search algorithm is the

size of the tabu list. As mentioned above, the basic role of the tabu list is to prevent

cycling. If the size of the list is too small, then the algorithm might not be able to

prevent cycling efficiently. Conversely, a very long list creates too many restrictions

on the visited solution, thereby barring the algorithm from exploring the search

space freely. For any optimization problem, it is very difficult to find a tabu list

size that prevents cycling and also does not excessively restrict the search for all

65

instances of the problem of a given size [221]. Therefore, an appropriate size needs

to be determined for effective performance of the tabu search algorithm.

Some applications of TS

Tabu search has been applied to a variety of optimization problems, including appli-

cations to various areas of network design. Fortin et al. [88] proposed a mathematical

model for the dimensioning of a 3G multimedia network, and designed a tabu search

heuristic to solve the dimensioning problem. Subrata et al. [237] used a genetic al-

gorithm (GA), tabu search (TS), and an ant colony algorithm (ACA) to solve the

reporting cells planning problem. The effectiveness of each algorithm was shown

for a number of test problems. Tabu search showed the best performance, followed

closely by ant colony algorithms. Chamberland et al. [28] studied the problem of

expanding cellular networks in a cost-effective way, and presented a mathematical

formulation of the network expansion problem. A tabu search algorithm for finding

“good” solutions is proposed, and results were compared to a proposed lower bound.

These results showed that the tabu-based approach produced solutions close to the

lower bound. Karasan et al. [134] proposed a tabu search based heuristic for the

mesh topology design problem in overlay virtual private networks. For all test cases,

the tabu search heuristic produced results within 2.5% of the optimum. Pierre et al.

[203] used the tabu search algorithm for designing computer network topologies with

unreliable components. Their simulation results showed that the tabu search algo-

rithm is efficient for designing backbone networks. Similarly Dengiz et al. [55] used

the tabu search algorithm for computer network design while considering reliability

as the optimization function. Their TS outperformed a GA upon comparison.

66

2.4.6 Ant Colony Optimization

Ant algorithms are multi-agent systems in which the behavior of each agent, called

an artificial ant (or ant for short in the following), is inspired by the behavior of real

ants [44]. Ant Colony Optimization (ACO) [63] is a relatively new meta-heuristic for

solving combinatorial optimization problems. ACO has a combination of distributed

computation, autocatalysis (positive feedback) and constructive greediness to find

an optimal solution for combinatorial optimization problems [65]. This technique

tries to mimic the ants’ behavior in the real world. Ant algorithms are one of the

most successful examples of swarm intelligent systems [20], and have been applied

to many types of problems, ranging from the classical travelling salesman problem,

to routing in telecommunications networks.

The inspiration for the development of the ACO algorithms came from the ex-

periments conducted by Goss et al. [105] using a colony of real ants. One important

observation from the experiments was that real ants were able to select the short-

est path between their nest and food resource, in the presence of alternative paths

between the two points. The ants made this search possible by an indirect commu-

nication mechanism known as stigmergy. In this process, ants deposit a chemical

substance called pheromone on the ground while travelling. When a point comes

where there are multiple paths, and ants have to make a decision, the choice of path

is probabilistic. This choice is based on the intensity of pheromone encountered on

the paths. This behavior has a rippling effect for ants to follow, due to the fact

that choosing a path increases the probability that the same path will be chosen

again by future ants, since the higher pheromone deposit on the path will enhance

the probability of choosing the same path (despite the fact that pheromone evapo-

67

ration on the paths also take place). Thus, new pheromone will be released on the

chosen path when following ants visit the path, which consequently makes it more

attractive for future ants. Eventually, all ants will be using the same path.

The meta-heuristic consists of an initialization step and three algorithmic com-

ponents, as depicted in the generic specification in Figure 2.4.6. These algorithmic

components undergo a loop that consists of:

1. the construction of solutions by all ants,

2. the (optional) daemon actions, and

3. the update of the pheromones.

Construction of Solutions

For the ACO meta-heuristic, the optimization problem is formulated as a graph,

G = (C,L), where C is the set of components of the problem, and L is the set

of possible connections or transitions among the elements of C. The solution is

expressed in terms of feasible paths on the graph, G, with respect to a set of given

constraints. An ant is defined as a simple computational agent, which iteratively

constructs a solution for the problem to solve [66]. A colony of ants concurrently and

asynchronously moves through adjacent states of the problem by building paths on

G. The movement is done through application of a stochastic local decision policy

that makes use of pheromone trail τ and heuristic value η. Through their movement,

ants incrementally construct solutions to the optimization problem. Each ant moves

from a state ι to state ψ, corresponding to a more complete partial solution. At each

step t, each ant k computes a set of next feasible steps from its current state, and

68

probabilistically moves to one of these states, according to a probability distribution

identified as follows.

For ant k, the probability, pkιψ, of moving from state ι to state ψ depends on the

combination of two values:

1. The attractiveness ηιψ of the move. The attractiveness is defined as the de-

sirability of a move for getting accepted and becoming part of the solution.

Attractiveness is computed by a heuristic indicating the a priori desirability

of that move.

2. The pheromone trail level τιψ of the link, indicating how effective it has been in

the past to make that particular move. The pheromone concentration indicates

an a posteriori condition on the desirability of that move. The pheromone

trails encode a long-term memory about the whole ant search process that is

updated by the ants themselves [66].

Once an ant has constructed a solution, or while the solution is being constructed,

the ant evaluates the (partial) solution and deposits pheromone trails on the com-

ponents or connections used by the ant. This pheromone information later directs

the search of the future ants.

The heuristic value represents a priori information about the problem instance

definition or run-time information provided by a source different from the ants [66].

Generally, η is the cost, or an estimate of the cost, of extending the current state.

These values are utilized by the ants’ heuristic rule to make probabilistic decisions

on how to move on the graph [68].

The exact rules for the probabilistic choice of solution components vary across

69

different ACO variants. The best known rule is the one of ant system (AS) [66, 163,

164]:

pkιψ(t) =
[τιψ(t)]αant [ηιψ]βant

∑

l∈Nι
[τιψ(t)]αant [ηιψ]βant

(2.23)

where Nι is the set of neighbors of node ι, pkιψ(t) is the probability of selecting a

link l between nodes ι and ψ for the kth ant, τιψ is the pheromone on link l, and ηιψ

is the heuristic value of link l. αant and βant represent the influence of pheromone

content and heuristic respectively.

Daemon Actions

The daemon actions are optional processes. Daemon actions can be used to im-

plement centralized actions that cannot be performed by single ants. Examples of

daemon actions are the activation of a local optimization procedure, or the collec-

tion of global information that can be used to decide whether it will be useful to

deposit additional pheromone to bias the search process from a non-local perspective

[42, 65].

Pheromone Update

The purpose of pheromone update is to increase the pheromone values associated

with good solutions, and to decrease those that are associated with bad ones. Usu-

ally, this is achieved by decreasing all the pheromone values through pheromone

evaporation, and by increasing the pheromone levels associated with a chosen set

of good solutions. Pheromone evaporation is a crucial process since it is needed to

avoid too rapid convergence of the algorithm on a sub-optimal region. The evapo-

70

ration process favors exploration of new areas of the search space by implementing

a useful form of forgetting.

A number of pheromone updating schemes have been proposed in the literature

[66, 161, 235]. One update scheme is to make use of elitist ants. It is important to

provide a little description of the approach, since the elitist ant approach is used in

this thesis. The elitist ant approach, proposed by Dorigo et al. [67], is based on the

assumption that the trail of the best tour will direct the search of all the other ants

in probability towards a solution composed by some edges of the best tour itself [67].

Other variations of this elitist approach have been applied to optimization problems.

For example, an elitist ant is treated as the ant that has found the best solution so

far, and the pheromones on links of following ants are updated on the basis of the

edges utilized by this elitist ant, as adopted by Gu et al. [109]. Alternatively, the

elitist ant represents the best solution found in a particular iteration, and only the

links of this solution have the pheromone updated. Thus, the elitist ant potentially

changes in each iteration (there my be chance that it does not change, but will

change more frequently than the global best ant). This approach has been used by

Merkle et al. [170], Ho et al. [117] and Angus [10].

Some Variants of the ACO Meta-heuristic

Following are some of the well-known ACO algorithms.

Ant System

The Ant System (AS) was the first ACO algorithm which was proposed by

Dorigo et al. and applied to the travelling salesman problem (TSP) [65]. AS has

71

served as the prototype of many following ACO algorithms with which many other

combinatorial problems can be solved successfully [187]. In AS, the probability

of moving from node ι to node ψ is found using Equation (8.1). Engelbrecht [77]

described that the transition probability used by AS is a balance between pheromone

intensity (i.e. history of previous successful moves), τιψ, and heuristic information

(expressing desirability of the move), ηιψ. This efficiently balances the exploration-

exploitation trade-off [77]. The best balance between exploration and exploitation

is achieved through selection of suitable values of the parameters αant and βant.

For αant = 0, no pheromone information is used, i.e. previous search experience is

neglected, resulting in a stochastic greedy search [77]. If βant = 0, the attractiveness

(or potential benefit) of moves is neglected [77].

The pheromone is updated using

τιψ(t+ 1) = (1 − %)τιψ(t) + ∆τιψ(t) (2.24)

where % is a user-defined coefficient known as evaporation/forgetting constant, and

∆τιψ represents the sum of the contributions of all ants that used the link ‘ιψ’ to

construct their solutions.

Dorigo et al. [66] developed three variants of AS, namely, Ant-cycle AS, Ant-

density AS, and Ant-quantity AS. The three variants differ in the way ∆τιψ is

calculated.

Ant Colony System

The ant colony system (ACS), developed by Dorigo and Gambardella [161], was

72

the first major improvement in AS. ACS has three major differences than AS [161]:

(i) a different state transition rule is used (ii) the global updating rule is applied

only to edges which belong to the best ant tour, and (iii) while ants construct a

solution, a local pheromone updating rule is applied.

The ACS use the so called pseudo-random-proportional rule [94] developed to

explicitly balance the exploration and exploitation abilities of the algorithm [77].

For ant k currently located at node ι, selection of the next node ψ to move to is

directed by the following rule [77]:

ψ =











arg maxl∈Nk
ι (t){τιl(t)η

β
ιl(t)} if r ≤ r0

Ψ if r > r0

(2.25)

where r ∼ U(0, 1), and r0 ∈ [0, 1] is user-defined parameter, N k
ι (t) is a set of valid

nodes to visit, and Ψ ∈ N k
ι (t) is a node randomly selected according to probability

pkιΨ(t) =
τιΨ(t)ηβιΨ(t)

∑

l∈Nk
ι
τιl(t)η

β
ιl(t)

(2.26)

The parameter r0 is used to balance exploitation and exploration. A value of

r ≤ r0 biases the algorithm towards exploitation by favoring the best edge. However,

a value of r > r0 favors exploration [77]. Also note that that the transition rule is

the same as that of AS when r > r0.

Unlike AS, only the globally best ant (i.e. the ant that constructed the optimum

path, x+(t)) is permitted to deposit pheromone on the links of the corresponding

best path [77]. Pheromone is updated according to the following global update rule,

73

τιψ(t+ 1) = (1 − %1)τιψ(t) + %1∆τιψ(t) (2.27)

where

∆τιψ(t) =











1
f(x+(t)

if (ι, ψ) ∈ x+(t)

0 otherwise

(2.28)

The ACS global update rule results in more directed search, since ants are en-

couraged to search in the proximity of the best solution found thus far. This strategy

supports exploitation, and is applied after all ants have constructed a solution [77].

Pheromone evaporation in ACS follows an approach slightly different than that

of AS. Referring to Equation (2.27), for small values of %1, the current pheromone

concentrations on links evaporate slowly, thus dampening the influence of the best

route [77]. On the other hand, for large values of %1, previous pheromone concen-

trations evaporate rapidly, but the influence of the best path is emphasized [77].

In addition to global updating rule, a local updating rule is also used in ACS

τιψ(t+ 1) = (1 − %2)τιψ(t) + %2τ0 (2.29)

where 0 < %2 < 1 is parameter, and τ0 is a small constant.

Some applications of ACO

Since its advent, ACO has been applied to a variety of problems. Some important

applications are the travelling salesman problem (TSP), which was the first problem

used to evaluate the performance of the AS [65]. Using the TSP as a test case, a

number of modifications were proposed, such as the ant-cycle within AS [44], the

74

Algorithm ACO Meta-Heuristic();
while (termination criterion not satisfied);

ant generation and activity();
pheromone update();
daemon actions(); optional

end while
end Algorithm

Figure 2.12: Pseudo-code of the ant colony optimization meta-heuristic

Max-Min ant system [235], the Ant-Q [92], the elite and ranking ant systems [25],

and multiple ant colonies [135]. Another important application of ACO was on the

quadratic assignment problem (QAP). Several variants of the ACO to deal with

QAP were proposed [64, 150, 162, 163, 164, 226, 236]. The ACO was also applied to

job shop scheduling [43]. Vehicle routing is another well-known application of ACO

algorithms [23, 24]. Other applications of ACO algorithms include the shortest

common supersequence [171, 172], graph coloring [45], sequential ordering [81], set

covering [52], and logic circuit optimization [37]. With respect to the network design

problems, ACO is relatively unexplored. However, ACO meta-heuristic has been

applied successfully to topological networks design by Premprayoon et al. [207].

ACO and Multi-objective Optimization

ACO algorithms have been adapted to solve multi-objective optimization problems.

Alaya et al. [5] have differentiated between the multi-objective ACO approaches on

the basis of the following three aspects:

1. Pheromone trails

The quantity of pheromone deposited on a link symbolizes the past experience

75

of the colony with respect to choosing this link. In case of a single objec-

tive, this past experience is defined with respect to this objective. However,

with multiple objectives, two different strategies may be considered. The first

strategy employs a single pheromone structure [15, 99, 106, 165, 168, 263].

In this approach, the amount of pheromone deposited by ants is defined by

an aggregation of the multiple objectives. The second strategy is to consider

several pheromone structures [11, 23, 59, 60, 93, 123, 258]. In this case, an

individual colony of ants is associated with each different objective.

2. Solutions to reward

When updating pheromone trails, it should be decided which ants are allowed

to influence pheromone concentrations. One possible way of deciding is to

reward solutions that find the best values for each objective in the current

iteration [59, 60, 93]. Another possibility is to reward every non-dominated

solution of the current iteration. Either all the solutions in the Pareto set may

influence pheromone update [15], or only the new non-dominated solutions

that enter the set in the current iteration [123].

3. Definition of heuristic factors

As mentioned earlier in this section, when constructing a solution, a candidate

at each step is selected on the basis of the transition probability. This proba-

bility depends on a pheromone factor and a heuristic factor. The definition of

the pheromone factor depends on how the pheromone trails have been defined,

as discussed in point (1) above. The heuristic factor can be defined based on

two different strategies. The first strategy suggests an aggregation of the mul-

76

tiple objectives into a single heuristic information matrix [23, 59, 106, 222].

The other strategy considers a separate heuristic matrix for each objective

[15, 23, 93, 123, 165]. There is also multi-colony approach [27, 258] where

local and global sharing strategies are used.

2.4.7 Particle Swarm Optimization

The particle swarm optimization (PSO) is an optimization heuristic proposed by

Kennedy and Eberhart [73, 138]. As with ACO, the PSO is also inspired from

nature. The PSO algorithm is based on the sociological behavior associated with

bird flocking [138]. The algorithm can be used to solve a variety of continuous and

binary optimization problems.

In PSO, a population of potential solutions to the problem under consideration

is used to explore the search space [200]. Each individual of the population is called

a ‘particle’. A particle has an adaptable velocity (step size), according to which

the particle moves in the search space. Moreover, each particle has a memory,

remembering the best position it has ever visited in the search space [74]. This best

position is termed as personal best, or pbest. The fitness value associated with the

pbest position is also stored. Another “best value” that is tracked by the global

version of the particle swarm optimizer is the overall best value, and the associated

best location, obtained so far by any particle in the population. This location is

called the gbest particle. Thus, a particle’s movement is an aggregated ‘acceleration’

towards its best previously visited position (the cognitive component) and towards

the best individual (the social component) of a topological neighborhood. Since the

“acceleration” term was mainly used for particle systems in particle physics [212],

77

the pioneers of this technique decided to use the term “particle” for each individual,

and the name “swarm” for the population, resulting in the name “particle swarm”

[138].

The particle swarm optimization algorithm consists of, at each time step, chang-

ing the velocity (accelerating) of each particle toward its pbest and gbest locations

in the global version of the PSO. Acceleration is weighted by a random term, with

separate random numbers being generated for acceleration toward pbest and gbest

locations.

Each particle in the swarm maintains the following information:

• xi: the current position of the particle;

• vi: the current velocity of the particle;

• yi: the personal best position of the particle; and

• ŷi: the neighborhood best position of the particle.

The velocity update step is specified separately for each dimension, j ∈ 1...N ,

where vi,j represents the jth dimension of the velocity vector associated with the ith

particle. The velocity of particle i is updated using

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t) − xi,j(t)] + c2r2,j(t)[ŷj(t) − xi,j(t)] (2.30)

where w is the inertia weight, c1 and c2 are acceleration coefficients, and r1,j , r2,j ∼

U(0, 1) are two independent random sequences. These random sequences induce

a stochastic component in the search process. Apart from vi,j(t), Equation (2.30)

has two other main components: the cognitive component, c1r1(t)[yi(t) − xi], and

78

Algorithm PSO();
For each particle i ∈ 1, ..., s do

Randomly initialize xi

Initialize vi to zero
Set yi = xi

end For
Repeat

For each particle i ∈ 1, ..., s do
Evaluate the fitness of particle i
Update yi

Update ŷi

For each dimension j ∈ 1, ..., N do
Apply velocity update using Equation (2.30)

end For
Apply position update using Equation (2.31)

end For
Until some convergence criterion is satisfied

end Algorithm

Figure 2.13: Pseudo-code of the basic particle swarm optimization algorithm

the social component, c2r2(t)[ŷi(t) − xi]. The cognitive component represents the

particle’s own experience of the best solution found by the particle. The social

component represents the belief of the neighborhood regarding the position of best

solution in the neighborhood.

The position xi of a particle i is updated using

xi(t+ 1) = xi(t) + vi(t+ 1) (2.31)

Figure 2.13 lists pseudo-code of the basic PSO. There are many main groups

of PSO algorithms. Based on the neighborhood topology used, two early versions

of PSO have been developed [200]: the global best (gbest) PSO, and the local best

(lbest) PSO. These models are briefly discussed below.

79

gbest PSO

For the global best (gbest) PSO, the neighborhood of each particle is the entire

swarm. Thus, each particle is attracted to single “best solution” called the global

best particle. All particles will converge on a point on the straight line that connects

the global best position with the personal best of the particle [244]. It is also

important to mention that even if all particles converge to the global best particle,

there is no guarantee that the gbest is even a local minimum [247]. If gbest is

not updated regularly, the swarm may converge prematurely [244]. However, one

advantage of the gbest model is that it offers a faster rate of convergence [74].

lbest PSO

Unlike the gbest model, the lbest model maintains multiple attractors. A subset of

particles, known as the neighborhood, Ni, is defined for each particle, usually based

on particle’s index number. However, topological neighborhoods [238] such as ring

and Von Neumann can also be used [137, 141]. For each particle, a neighborhood

best position is selected as the best particle in its neighborhood. In the case of ring

topology, the neighborhood best is referred to as the local best (lbest), and the cor-

responding algorithm is referred to as the lbest PSO. Neighborhoods overlap, which

in the end allows convergence to one point. Particles selected to be in Ni have no

relationship to each other in the search space domain, because selection of neighbors

is based purely on the particle’s index number. This is done for two reasons: it is

computationally inexpensive, since no spatial clustering has to be performed, and it

helps to promote the spread of information regarding good solutions to all particles,

regardless of their current location in search space.

80

The gbest model is a special case of the lbest model with the entire swarm as the

only neighborhood. Note that the lbest model can still prematurely converge due to

the same reasons as for gbest, but there is smaller probability of becoming trapped

in a local minimum [74, 78].

PSO Parameters

The standard PSO algorithm/model consists of several parameters that have an

influence on the performance of the algorithm [139]. These include

• Dimensionality of the particles

In some cases, dimensionality is considered an important parameter in deter-

mining the hardness of a problem. PSO has been shown to perform very well

on a wide variety of hard, high-dimensional benchmark functions such as the

De Jong suite and other hard problems including the Schaffer’s f6, Griewank,

Ackley, Rastrigin, and Rosenbrock functions [8, 138, 228]. Angeline [139] found

that PSO actually performs relatively better on higher-dimensional versions of

some test functions than on versions of the same functions in fewer dimensions.

• Number of particles (i.e. swarm size)

Swarm size is another important factor in PSO. Increasing population size

generally causes increase in computational complexity per iteration, but fa-

vors higher diversity, and therefore, may take less iterations to converge [139].

Generally, there is an inverse relationship between the size of the population

and the number of iterations required to find the optimum of an objective func-

tion [139]. This relationship is more prominent for the gbest versions of the

81

algorithm, with the entire population considered as the neighborhood, than

for some lbest versions.

• Inertia weight w

The inertia weight w was a modification to the standard PSO, proposed by Shi

and Eberhart [228], to control the impact of the previous history of velocities

on the current velocity, thus influencing the trade-offs between global (wide-

ranging) and local (nearby) exploration abilities of the particles. A larger value

of w facilitates exploitation (searching new areas), thus increasing diversity. A

smaller value of w tends to facilitate local exploration to fine-tune the current

search area.

• Acceleration coefficients c1 and c2

The acceleration coefficients, c1 and c2, associated with the cognitive and social

components play an important role in the convergence ability of the PSO.

Varying these parameters has the effect of varying the strength of the pull

towards the two bests (i.e. personal best and neighborhood best). Values of

c1 = c2 = 0 means both the cognitive and social components are absent, and

particles keep moving at their current speed until they hit a boundary of the

search space (assuming no inertia) [77]. With c1 > 0 and c2 = 0, each particle

searches for the best position in its neighborhood, and replaces the current

best position if the new position is better [77]. However, with c2 > 0 and c1

= 0, the entire swarm is attracted to a single point, ŷ. Furthermore, having

c1 >> c2 causes each particle to get attracted to its own personal best position

to a very high extent, resulting in excessive wandering. On the other hand,

82

c2 >> c1 results in particles getting more strongly attracted to the global best

position, thus causing particles to rush prematurely towards optima [77].

Van den Bergh [247] showed that the relation between acceleration coefficients

and inertia weight should satisfy the following equation to have guaranteed

convergence:

c1 + c2
2

− 1 < w (2.32)

• Velocity clamping Vmax

Since there was no actual mechanism for controlling the velocity of a particle,

it was necessary to impose a maximum value, Vmax, on it [74]. Vmax restricts

the step size, i.e. the amount by which velocity is updated. This upper limit

on step sizes prevents individuals from moving too rapidly from one region of

the problem space to another, overshooting good regions of the search space.

Vmax proved to be crucial, because large values could result in particles moving

past good solutions, while small values could result in insufficient exploration

of the search space due to too small step sizes. The value assigned to Vmax is

not arbitrary, and should be optimized for each problem. It is recommended

to set Vmax to a value that is determined by the domain of the variables [139].

Some applications of PSO

The applications of PSO are in diverse fields. One of the first applications of PSO

is to train neural networks [72, 78, 243, 245, 246]. The PSO was also applied to

variations of the travelling salesman problem [227, 225, 251]. Yoshida et al. [265, 266]

83

applied PSO to power systems. Yuan et al. [274] proposed a PSO for multicast

routing in sensor networks. Ai-ling et al. [3] used PSO algorithm to solve a vehicle

routing problem. PSO was applied to the field of antennas by Pérez and Basterrechea

[201].

PSO and Multi-objective Optimization

PSO was also adapted to solve MOO problems. Reyes-Sierra and Coello-Coello [213]

provided a detailed classification of current MOO approaches for PSO, as discussed

below:

1. Aggregating approaches

This category considers approaches that “aggregate” all the objectives of the

problem into a single one. In other words, the multi-objective problem is

converted into a liner combination of the sub-objectives. PSO aggregation

approaches were proposed by Parsopoulos and Vrahatis [199] and Baumgartner

et al. [17].

2. Lexicographic ordering

Lexicographic ordering (discussed in Section 2.2.3) has also been applied to

multi-objective PSO [120, 121].

3. Sub-awarm approaches

Sub-swarm approaches use one swarm for each objective. That is, each swarm

optimizes one of the sub-objectives. An information exchange mechanism is

used to balance the trade-offs among the different solutions generated for the

objectives that were separately optimized [35, 198, 213].

84

4. Pareto-based approaches

Pareto-based approaches involve “leader selection” techniques based on Pareto

dominance. In MOO PSO, the leaders are the personal best positions (local

leaders) and neighborhood best positions (global leaders). The basic idea is

to select leaders to the particles that are non-dominated with respect to the

rest of the swarm [16, 40, 84, 117, 181, 183, 210, 213].

2.5 Conclusion

This chapter provided a brief overview of optimization methods with emphasis on

evolutionary and swarm intelligence techniques. Most of the discussed methods

are used in this thesis to solve the distributed local area network topology design

problem. The problem is modelled as a multi-objective optimization problem using

fuzzy logic. A formal definition of this problem is given and discussed in the next

chapter.

85

	Front
	CHAPTER 1
	1.1 Motivation
	1.2 Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Organization of Thesis

	CHAPTER 2
	2.1 Optimization
	2.2 Constrained Multi-objective Optimization
	2.3 Fuzzy Logic and Multi-objective Optimiza-tion
	2.4 Optimization Algorithms
	2.5 Conclusion

	Chapters 3-4
	Chapters 5-6
	Chapters 7-8
	Chapters 9-11
	Back

