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Abstract

Topology design of distributed local area networks (DLANS) can be classified as an
NP-hard problem. Intelligent algorithms, such as evolutionary and swarm intelli-
gence techniques, are candidate approaches to address this problem and to produce
desirable solutions. DLAN topology design consists of several conflicting objectives
such as minimization of cost, minimization of network delay, minimization of the
number of hops between two nodes, and maximization of reliability. It is possible
to combine these objectives in a single-objective function, provided that the trade-
offs among these objectives are adhered to. This thesis proposes a strategy and a
new aggregation operator based on fuzzy logic to combine the four objectives in a
single-objective function. The thesis also investigates the use of a number of evolu-
tionary algorithms such as stochastic evolution, simulated evolution, and simulated
annealing. A number of hybrid variants of the above algorithms are also proposed.
Furthermore, the applicability of swarm intelligence techniques such as ant colony
optimization and particle swarm optimization to topology design has been inves-
tigated. All proposed techniques have been evaluated empirically with respect to
their algorithm parameters. Results suggest that simulated annealing produced the
best results among all proposed algorithms. In addition, the hybrid variants of
simulated annealing, simulated evolution, and stochastic evolution generated better
results than their respective basic algorithms. Moreover, a comparison of ant colony

optimization and particle swarm optimization shows that the latter generated better



o

UNIVERSITEIT VAN PRETO
UNIVERSITY OF PRETO
W YUNIBESITHI YA PRETO

o0 -
b

results than the former.
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“For the things we have to learn before we can do them, we learn by doing them.’

Aristotle

“I learned this, at least, by my experiment; that if one advances confidently in the
direction of his dreams, and endeavors to live the life which he has imagined, he

will meet with a success unexpected in common hours.”

Henry David Thoreau
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