
Chapter 7

CONCLUSIONS

This thesis reviewed algorithms aimed at solving dynamic optimisation problems. New

DE based algorithms for dynamic environments, which were shown to be improvements

over previous DE-based algorithms, were presented. The principal findings of this thesis

are summarised in this chapter. Section 7.1 gives an overview of the core content of each

of the chapters. The primary objective of this study was to improve on current DE-based

algorithms for optimising dynamic environments. Section 7.2 explains how the primary

and the sub-objectives were achieved. Future work arising from this study is described in

Section 7.3.

7.1 Summary

Chapter 2 briefly described the concepts of optimisation and optimisation algorithms.

Genotypic diversity and measures of diversity were outlined. The chapter reviewed DE

and approaches to self-adapting control parameters. Dynamic optimisation environments

were described and it was concluded that the three major considerations when classifying

dynamic environments are: the fitness landscape composition, the change types, and the

change pervasiveness (refer to Section 2.5.2). The chapter argued that the three factors

that influence the ability of an optimisation algorithm to optimise a dynamic environment

are: the hardness of the fitness landscape, the frequency of changes, and the severity of

changes.

The moving peaks benchmark (MPB) and the generalised dynamic benchmark gen-
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erator (GDBG) were critically discussed. An extension to the MPB, which allows the

investigation of environments in which the number of optima fluctuates over time, was

presented. The discussion concluded that both benchmarks are appropriate for investi-

gating the effect of varying the change period and number of dimensions. The MPB is

best suited to investigating the effect of varying the change severity and number of op-

tima, while the GDBG is best suited to investigating the effect of different change types

and underlying functions. Chapter 2 concluded with a description of performance mea-

sures for dynamic environments. The offline error was identified as the most appropriate

performance measure for use in this thesis.

Chapter 3 reviewed algorithms aimed at optimisation in dynamic environments. The

two main problems associated with using DE in dynamic environments, namely loss of

diversity and outdated information, were described. A literature survey of related work

identified three broad categories of approaches that can be used to categorise strategies

for adapting algorithms for dynamic optimisation: increasing diversity, using memory, and

employing parallel searching. Seven specific strategies were identified that are commonly

used in dynamic optimisation algorithms. These strategies are: change control param-

eters, custom individuals, refresh information, sentinels, selection, history, and multiple

populations. Algorithms aimed at solving dynamic optimisation problems were discussed

in terms of their base algorithms: GA, PSO, DE, and other algorithms. The strategies

that are used by each of the algorithms were indicated. Two DE-based algorithms, DynDE

and jDE were discussed in detail. Section 3.4.1 showed that the subcomponents of DynDE

allow it to maintain much higher diversity than the normal DE algorithm.

Chapters 4 to 6 presented new algorithms. These are tabulated in Table 7.1, along

with their respective advantages and disadvantages to aid the discussion in the rest of this

section.

Chapter 4 commenced with a description of the exclusion threshold approach that is

used in this thesis in the absence of knowledge of the number of optima in the environment.

The appropriate number of individuals per sub-population and the appropriate number

of Brownian individuals were experimentally determined for DynDE. The results of the

experiments showed that using a small sub-population size gives better results in the

majority of investigated cases. While this result may seem counterintuitive, it can be
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Table 7.1: Summary of novel algorithms
Description Advantages Disadvantages

CPE is aimed at lowering the
error faster after changes occur.
Only the best performing sub-
population is evolved at a time.

Performed better than DynDE in
the majority of experimental en-
vironments.

Did not perform better than
DynDE at high change period in
low dimensions.

RMC evaluates the midpoint
value between the best individu-
als in sub-populations flagged for
exclusion. Sub-populations are
not reinitialised if they are lo-
cated on separate optima.

Better results than those of
DynDE were achieved in low di-
mensions.

RMC generally had a very small
impact on the algorithm’s perfor-
mance.

CDE is the combination of CPE
and RMC.

Performed better than DynDE in
the majority of experimental en-
vironments. CDE also resulted in
significant improvements over its
predecessor algorithms. The gen-
eral applicability of CDE was il-
lustrated by the incorporation of
its sub-components into jDE.

Did not perform better than
DynDE at high change period in
low dimensions.

DynPopDE is an extension of
CDE which adapts the number
of sub-populations during the op-
timisation process. DynPopDE
is aimed at situations where the
number of optima is unknown or
fluctuating.

DynPopDE performed better
than DynDE and CDE on MPB
instances with various settings
for the number of optima. Im-
provements were also found when
the number of optima fluctuates.

DynPopDE did not scale well to
other functions, and was gener-
ally inferior to CDE.

jSA2Ran is an adaptation of the
approach of Brest et al. [2009] to
self-adapt the scale and crossover
factors.

jSA2Ran generally performed
better than CDE over a wide
range of benchmark instances.
jSA2Ran has fewer parameters
to tune than CDE.

The magnitude of improvements
over CDE was relatively small.

SABrNorRes self-adapts the
Brownian radius.

SABrNorRes performed better
more often on the experimental
environments than CDE. Large
improvements were found at high
change periods and low dimen-
sions. SABrNorRes has fewer pa-
rameters to tune than CDE.

SABrNorRes proved to be infe-
rior to CDE in 100 dimensions.

SACDE is the combination of
jSA2Ran and SABrNorRes.

SACDE generally performed bet-
ter than CDE over a wide range
of benchmark instances. SACDE
has fewer parameters to set than
its predecessor algorithms.

SACDE did not perform bet-
ter than CDE more often than
SABrNorRes. SACDE was infe-
rior to CDE in 100 dimensions.

SADynPopDE was created by
incorporating the self-adaptive
components of SACDE into Dyn-
PopDE.

SADynPopDE performed better
than DynPopDE on environ-
ments where the number of op-
tima is fluctuating. DynPopDE
has fewer parameters to set than
its predecessor algorithms.

SADynPopDE was inferior to
DynPopDE on various settings
of the number of optima on
the MPB. SADynPopDE did not
scale well to other functions, and
was generally inferior to SACDE.

explained by the fact that smaller sub-population sizes allow the optimisation algorithms

to perform more generations between changes in the environment. The benefit of greater

diversity that can be achieved by using larger sub-population sizes is thus offset by the

loss of generations that could have been used to converge to optima.

DynDE was extended by incorporating two novel approaches to form the competi-
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tive population evaluation (CPE) and reinitialisation midpoint check (RMC) algorithms.

CPE utilises a custom performance value to evolve selectively only one sub-population at

a time. This results in optima being discovered in sequence rather than in parallel. The

global optimum is thus discovered earlier, which reduces the average error of the algo-

rithm. DynDE employs exclusion, a technique which reinitialises a sub-population when

it converges to an optimum occupied by another sub-population. This dual convergence

to a single optimum is detected by determining whether the best individuals of each sub-

population are located within a threshold distance of each other. A disadvantage of the

exclusion approach is that some optima are at times located within the exclusion threshold

of another, and sub-populations should consequently not be reinitialised. This weakness

is partially remedied by RMC’s checking if a valley exists between the best individuals

in each sub-population. CPE and RMC are combined to form competitive differential

evolution (CDE).

CPE, RMC and CDE were evaluated on a wide range of benchmark instances in

Chapter 4. Scalability studies showed that the offline errors of DynDE, CPE, RMC and

CDE increase when changes in the environment become more frequent or more severe, and

when the number of dimensions is increased. It was also shown that the peak function can

have a considerable influence on the performance of dynamic optimisation algorithms.

Experimental evidence was presented that shows that RMC yields minor improve-

ments, localised in low dimensional problems, over DynDE. This observation was ex-

perimentally explained by showing that situations where optima are located within the

exclusion threshold of each other are much more likely to occur in low dimensional rather

than in high dimensional cases.

CPE was found to perform better than DynDE in a wide range of experiments, but

especially in high dimensions. No benefit of using CPE over DynDE was found on problems

where changes occur very infrequently. This result is expected since CPE improves DynDE

by locating better optima earlier, after changes in the environment. In the absence of

frequent changes in the environment, the benefit of locating better optima early is reduced.

CDE was shown to be a slight improvement over its constituent parts, CPE and RMC,

but was found to behave very similar to CPE in all cases when high numbers of dimensions

were used. An analysis of the convergence profiles of DynDE and CDE found that CDE’s
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current error reduces faster than that of DynDE after changes in the environment. The

diversity profile of CDE was found to be very similar to that of DynDE, but the average

sub-population diversity of CDE was found to decrease at a faster rate than that of DynDE

at the commencement of the optimisation process.

CDE and DynDE were compared in terms of average lowest error found just before

changes in the environment to illustrate that CDE does not merely exploit the offline error

performance measure. The experimental results showed that CDE performed better more

often, in general, than DynDE on the benchmark environments. The improvements of

CDE over DynDE were more pronounced at low change periods and high dimensions.

CDE was shown to compare favourably to the reported results on the MPB of other

state-of-the-art algorithms. The general applicability of the competitive population evalu-

ation and reinitialisation midpoint check approaches were illustrated by their incorporation

into jDE. The adapted jDE algorithm was shown to outperform the normal jDE algorithm

in the majority of the experimental environments.

Chapter 5 presented and motivated the dynamic population DE (DynPopDE) which

was created by adapting CDE for dynamic problems in which the number of optima is un-

known or fluctuates over time. DynPopDE dynamically introduces a new sub-population

when stagnation occurs for current sub-populations, and removes sub-populations that are

not converging to new optima in the environment.

Experiments with DynDE and CDE on problems with large numbers of optima showed

that it is not an effective strategy to use the same number of sub-populations as the

number of optima. Considerably better results were found when a constant number of 10

sub-populations was used in these algorithms.

A scalability study found that increasing the number of optima in a dynamic environ-

ment generally results in higher offline errors for DynDE, CDE and DynPopDE. CDE was

found to perform considerably better than DynDE on problems where the number of op-

tima is unknown. DynPopDE in turn performed better than CDE when larger numbers of

optima are present. However, the improvement was more pronounced in low dimensional

cases. An analysis of DynPopDE’s convergence profiles concluded that the reason for

DynPopDE’s sub-optimal performance in high dimensions is that the population spawn-

ing and removal processes are ineffective in high dimensions. This causes DynPopDE to
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be unable to distinguish between environments with large numbers of optima and envi-

ronments with small numbers of optima. DynPopDE thus creates either too many or too

few sub-populations in high dimensions. DynPopDE was shown to compare favourably

with the reported results of other algorithms focusing on unknown numbers of optima.

Dynamic optimisation problems where the number of optima fluctuate over time have

not been widely investigated by other researchers. To address this gap in the research,

DynDE, CDE and DynPopDE were studied using an extension of the MPB that simulates

these problems. Comparisons between DynDE, CDE and DynPopDE on problems where

the number of optima fluctuates over time showed that CDE performed considerably

better than DynDE. DynPopDE was found to be marginally more effective than CDE,

but considerable improvements of DynPopDE over CDE were found when low change

periods were used.

DynPopDE’s process of spawning and removing sub-populations was validated by in-

corporating the spawning and removal process used in MPSO2 into CDE. The performance

of the resulting algorithm, MPSO2CDE, was compared to that of DynPopDE. DynPopDE

performed better than MPSO2CDE in the majority of the environments that were inves-

tigated.

A major weakness of DynPopDE was identified when evaluating its performance using

various underlying functions. DynPopDE proved to be inferior to CDE on the majority of

the functions of the GDBG. The GDBG benchmark instances all have different numbers

of optima. If DynPopDE was truly effective at adjusting the number of sub-populations

to suit the environment, it should have performed better than CDE on the GDBG envi-

ronments. The set of environments on which DynPopDE can be used effectively is thus

severely limited due to the strong function-dependence of DynPopDE.

Chapter 6 investigated the incorporation of self-adaptive control parameters into CDE.

Strategies were considered to self-adapt the scale and crossover factors, as well as the

Brownian radius. Three existing approaches were considered to self-adapt the scale and

crossover factors: SDE of Omran et al. [2005a], Barebones DE of Omran et al. [2009],

and the approach of Brest et al. [2006][Brest et al., 2009] which was also used in the

successful jDE algorithm. Since CDE uses DE/best/2/bin while both the approaches of

Omran et al. [2005a] and Brest et al. [2006] use DE/rand/1/bin, these two approaches
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were also investigated using DE/best/2/bin. Further alterations that were investigated

included resetting the scale and crossover factors to their initial values when a change in

the environment occurs, and selecting the initial values from a normal distribution.

An experimental comparison found that the approach of Brest et al. [2009], but in

conjunction with DE/best/2/bin and with initial values selected from a normal distri-

bution, is the most effective algorithm for incorporation into CDE. This algorithm was

referred to as jSA2Ran. A comparison to CDE showed that jSA2Ran performed better on

the experimental environments more often than CDE, and that improvements were more

pronounced at high change periods.

Four approaches were investigated for self-adapting the Brownian radius. All the ap-

proaches involved randomly selecting the Brownian radius from a distribution controlled

by the average of a history of successful Brownian radius values. The initial value which

controlled the Brownian radius was set to the radius of the first sub-population that was

evaluated. Two distributions were tested, i.e. Gaussian and Cauchy. Additionally, the

effect of resetting the Brownian radius after changes in the environment, was investigated.

An experimental comparison found that SABrNorRes, the approach that utilises a normal

distribution with resetting after changes, performed the best. SABrNorRes was experi-

mentally compared to CDE. The results showed that SABrNorRes generally performed

better than CDE, especially at high change periods. SABrNorRes performed better than

DynDE on environments with a high change period where DynDE generally performed

better than CDE. However, it was found that SABrNorRes was inferior to CDE in the

majority of 100 dimensional experiments.

SABrNorRes and jSA2Ran were combined to from SACDE. SACDE performed better

more often on the benchmark environments than CDE. A scalability study found that

SACDE and SABrNorRes generally exhibited very similar scaling behaviour. Despite this

fact, SABrNorRes performed better than CDE more often than SACDE. SACDE does,

however, have the advantage of having fewer parameters than SABrNorRes.

An investigation into the convergence profiles of the new algorithms found that the

reason why the self-adaptive algorithms performed better than CDE at high change periods

is that the current errors of the self-adaptive algorithms reached lower values than those

of CDE. The self-adaptive algorithms thus not only have the advantage of a fast reduction
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in current error after a change in the environment, but also in the low current error value

that is achieved.

The diversity profiles of the self-adaptive algorithms showed that jSA2Ran’s diversity

did not meaningfully differ from that of CDE, but that SABrNorRes and SACDE ex-

hibited different behaviour. The overall diversity and average sub-population diversity of

SABrNorRes and SACDE sharply increased after changes in the environment. The aver-

age sub-population diversity of SABrNorRes and SACDE was generally higher than that

of CDE.

Incorporating the self-adaptive approach used in SACDE into DynPopDE to form SA-

DynPopDE did not result in a more effective algorithm on problems where the number of

optima is unknown, although SADynPopDE did perform slightly better than DynPopDE

over a range of functions. Large improvements of SADynPopDE over DynPopDE were

found on environments where the number of optima fluctuates over time. SACDE also

showed considerable improvements over CDE on these environments, but was inferior to

SADynPopDE. A comparison to other algorithms found that SACDE compares favourably

to state-of-the-art algorithms aimed at dynamic environments.

7.2 Achievement of Objectives

The objectives of this study were outlined in Section 1.2. The primary objective of this

thesis was to create improved DE-based algorithms for dynamic environments. Eight new

algorithms were created and were shown to yield better results than existing DE-based

algorithms. The sub-objectives were achieved as follows:

• Existing algorithms aimed at solving dynamic optimisation problems, specifically

focusing on algorithms based on differential evolution, were identified and reviewed.

• Three broad categories of approaches to solve dynamic optimisation problems were

found in the literature. Seven general strategies used to achieve the three approaches

were identified.

• DynDE was extended to form CDE and DynPopDE, and hybridised with jDE to

form SACDE and SADynPopDE.
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• Dynamic optimisation problem environments that have not been thoroughly inves-

tigated by other researchers, namely environments in which the number of optima

fluctuate over time, were investigated. Scalability studies were also conducted using

larger experimental sets than those generally used by other researchers.

• The use of adaptive control parameters to reduce the number of parameters that must

be manually tuned was investigated. The number of sub-populations is adapted in

DynPopDE, while SACDE self-adapts the DE scale and crossover factors and the

Brownian radius.

• Extensive scalability studies were performed on existing and newly created algo-

rithms.

• The performances of the new algorithms were compared to the reported results of

other algorithms.

All the objectives of this study were achieved.

7.3 Future Work

The components that make up CDE, namely competing populations and reinitialisation

midpoint check, do not depend on any DE specific behaviour. Future studies could in-

vestigate the general applicability of these components on PSO and GA-based algorithms

for dynamic environments. Section 3.3 highlighted the many similarities of DE, PSO and

GA-based approaches to solving DOPs, for example, the use of multiple populations or

swarms. Hybrid algorithms can be formed by incorporating facets of the approaches pre-

sented in this thesis into existing PSO and GA-based algorithms. The resulting hybrid

algorithms may be an improvement on current algorithms.

The approach to spawning and removing sub-populations, which was introduced in

Chapter 5, was found to be beneficial on specific environments, but did not scale well to

different functions. This limits the current applicability of DynPopDE. Future work can

include the improvement of DynPopDE to extend its usefulness to more environments.

DynPopDE does have the advantage of not having to tune the number of sub-populations
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parameter. Research that results in an improved technique of spawning and removing

sub-populations may enable DynPopDE to be as effective as CDE over a wide range of

problems, while still retaining DynPopDE’s advantages.

jDE is currently one of the state-of-the-art DE algorithms aimed at dynamic envi-

ronments. SACDE was shown generally to outperform jDE on a wide range of dynamic

environments. However jDE did perform better than SACDE on several benchmark in-

stances. The self-adaptive scale and crossover component of jDE was incorporated into

SACDE and showed improved results. Future work could include further hybridisations

of the two algorithms which could result in further improvements. For example, the aging

metaphor used by jDE, which results in increased diversity, could potentially improve the

performance of SACDE on DOPs with large change periods by preventing the algorithm

from stagnating.

The scope of this thesis was delineated to exclude environments in which the num-

ber of dimensions changes. The algorithms developed in this study are consequently not

suited to environments with a dynamic number of dimensions. Future work could include

the application of DE to problems with dynamically changing constraints. The result-

ing algorithms would be more generally applicable than CDE, DynPopDE, SACDE and

SADynPopDE.
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