
Chapter 6

SELF-ADAPTIVE CONTROL

PARAMETERS

The previous chapter dealt with adapting the number of sub-populations during the opti-

misation process. This chapter describes the incorporation of self-adaptive control param-

eters into CDE and DynPopDE. Variations of approaches from the literature are used to

self-adapt the scale and crossover factors. Novel approaches are suggested to self-adapt the

Brownian radius. The various self-adaptive approaches are empirically compared. Empir-

ical evidence is presented to prove that the self-adaptive approaches do improve CDE and

DynPopDE.

6.1 Introduction

The discussion in Section 3.4.1.5 concluded that a disadvantage of the DynDE algorithm

is that it has several parameters that influence its performance, and may have to be

manually tuned for best results. These parameters are: the size of sub-populations, the

number of sub-populations, the number of Brownian individuals per sub-population, and

the parameter rbrown, which is used to create Brownian individuals. DynDE also contains

the scale and crossover factor parameters of DE. All these are also parameters of CDE.

The various parameters have, in part, been addressed in previous chapters. Section

4.6.3 empirically determined appropriate values for the sub-population size and the number
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of Brownian individuals. Chapter 5 dealt extensively with DynPopDE, an algorithm that

adapts the number of sub-populations, hence removing it as a parameter. The focus of this

chapter is on self-adapting the scale and crossover factors, as well as the Brownian radius.

The previous chapter found that DynPopDE does not scale well to different functions, and

CDE is consequently used as the base algorithm for the investigations into the self-adaptive

(SA) control parameters, in this chapter.

The algorithms that were selected from the literature for adapting the scale and

crossover factors are discussed in Section 6.2. All the selected algorithms were originally

discussed in Section 2.4.4. Section 6.2 also contains a description of alterations made to

the selected algorithms, which are investigated as potentially more effective in dynamic

environments. A total of 13 approaches to self-adapting the scale and crossover factors

are identified. Section 6.3 presents a novel algorithm for adapting the Brownian radius

used when creating Brownian individuals. A total of four alternative implementations of

the new approach is presented.

The experimental results of this chapter are provided in Section 6.4. This section

lists the specific research questions that were investigated and gives the experimental

procedure followed to answer each research question. The research questions identify the

most effective self-adaptive approach for the scale and crossover parameters, out of the 13

approaches that were investigated. Furthermore, the most effective self-adaptive approach

for the Brownian radius is identified from the four approaches that were investigated.

These two approaches are combined to form self-adaptive competing differential evolution

(SACDE).

The research questions include a scalability study to observe the scaling behaviour

of the self-adaptive algorithms with respect to factors such as change period, number

of dimensions and underlying function. The research questions further investigate the

incorporation of the self adaptive approaches into DynPopDE to form SADynPopDE.

The performance of SACDE is compared to the performance of other algorithms on

the benchmark environments in Section 6.5. Conclusions from this chapter are presented

in Section 6.6.
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6.2 Adapting the Scale and Crossover Factors

Several approaches to self-adapting or eliminating DE control parameters can be found in

the literature (refer to Section 2.4.4). The purpose of this section is to identify potential

self-adaptive approaches that can be incorporated into CDE. Section 6.2.1 reviews the al-

gorithms selected for incorporation into CDE. Alternative implementations of the selected

algorithms are described in Section 6.2.2.

6.2.1 Selected Approaches

Several approaches to self-adapting or eliminating control parameters, specific to DE, were

reviewed in Section 2.4.4. Three of these approaches were selected for incorporation into

CDE and are discussed below. The reasons for selecting these algorithms are:

• they can all be incorporated into CDE with relatively few changes,

• these algorithms are some of the more recent SA approaches for DE,

• all performed well in static environments, and

• these algorithms do not introduce a large number of parameters that are obviously

problem-dependent.

The first approach selected is that of Omran et al. [2005a], called SDE, discussed in

Section 2.4.4. SDE associates a scale factor with each individual in the population. Before

a new trial vector is created, the scale factor to be used is calculated from the scale factors

of three randomly selected individuals, using equation (2.18). This new scale factor is then

associated with the newly created trial individual. The initial scale factors that are used at

the commencement of the algorithm are selected from a normal distribution, N(0.5, 0.15).

The crossover factor is selected from a normal distribution, N(0.5, 0.15), for each crossover

and thus is not self-adaptive.

The second approach to be incorporated into CDE is that of Brest et al. [2006], dis-

cussed in Section 2.4.4. This algorithm self-adapts both the crossover and the scale factors.

The crossover and scale factors from the target individual are used in equations (2.19) and

(2.20) to find crossover and scale factors for the trial individual. This approach is the
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basis of the successful jDE algorithm [Brest et al., 2009] which is aimed at dynamic envi-

ronments. Brest et al. [2009] used Fl = 0.36 rather than Fl = 0.1 (refer to Section 3.4.2.1)

for jDE. Brest et al. [2009] used initial values of 0.9 for the crossover factor and 0.5 for

the scale factor.

The third approach selected for incorporation into CDE is the Barebones DE [Omran

et al., 2009], discussed in Section 2.4.4. This is a hybrid PSO and DE algorithm that

eliminates the scale factor. Trial individuals are created from the weighted average of an

individual’s personal best position and the global best position using equation (2.26). A

crossover is then performed between the trial individual and the personal best position of

a randomly selected individual. The hybrid of the Barebones DE with CDE is referred

to as BBSA. This algorithm does not make use of a self-adaptive component, but rather

eliminates the scale factor. BBSA is, however, discussed within the category of self-

adaptive algorithms, for the sake of brevity, in the rest of this chapter.

6.2.2 Alternative Techniques

This section describes the alterations made to the algorithms described in the previous

section. The goal of using the alterations is to investigate alternative techniques of ap-

plying the SA algorithms to DOPs. The alternative techniques relate to the DE scheme,

the response to changes in the environment, and the initial values that are used at the

commencement of the algorithm.

SDE makes use of the DE/rand/1/bin scheme, while CDE uses DE/best/2/bin. Two

versions of SDE are incorporated into CDE and compared. The first, SSA1, makes use of

DE/rand/1/bin as in SDE. The second, SSA2, calculates scale and crossover factors as in

SDE, but uses DE/best/2/bin to create trial individuals.

jDE makes use of DE/rand/1/bin. Consequently, two versions of this self-adaptive

technique are considered. The first, jSA1, is the self-adaptive version of jDE. The second,

jSA2, uses the jDE approach, but with DE/best/2/bin.

Brest et al. [2009] successfully used their self-adaptive approach in jDE to solve DOPs.

This self-adaptive approach was implemented in the same way as for static environments.

No special measures were taken to customise the approach for dynamic environments. This

section considers alternative strategies to incorporate self-adaptation into CDE. Figures
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which show the convergence profile of the scale and crossover factors are used to aid the

discussion.

The average scale and crossover factor profiles of jSA2 on the Scenario 2 settings of the

MPB (refer to Section 2.5.3) are given in Figure 6.1 for 10 changes in the environment and

in Figure 6.2 for 100 changes in the environment. Averages over the scale and crossover

factors of all individuals over 30 repeats are shown. It is evident from Figure 6.2 that,

over a long period, the scale and the crossover factors stabilise to values around 0.63 and

0.52 respectively. However, these stabilised values are only reached after a period of about

100 000 iterations. During the initial period before stabilisation, the overall crossover

factor slowly decreases and the overall scale factor slowly increases.

Figure 6.1 shows that, directly after a change in the environment, a sudden decrease

in the value of the average crossover factor and a sudden increase in the value of the

average scale factor occurs. For the rest of the period before the next change in the

environment, the crossover factor slowly increases while the scale factor slowly decreases.

This cycle continues until equilibrium is reached at the stabilisation point where increases

are roughly matched by decreases in scale and crossover factors.
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Figure 6.1: Scale and Crossover Factors
for 50 000 function evaluations on the
MPB, Scenario 2.
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Figure 6.2: Scale and Crossover Factors
for 500 000 function evaluations on the
MPB, Scenario 2.

The scale and crossover profiles give evidence that jSA2 does respond to changes in

the environment. The argument can be made that the initial high value of the crossover

factor and initial low value of the scale factor corresponds to a period where jSA2 discovers

 
 
 



CHAPTER 6. SELF-ADAPTIVE CONTROL PARAMETERS 238

optima in the environment. The eventual lower value of the crossover factor and slightly

higher value of the scale factor corresponds to a period when jSA2 no longer discovers

new optima but merely tracks optima that have already been discovered. In other words,

the adaptation trends exist because the algorithm is successfully adapting the scale and

crossover factors to appropriate values at different stages of the evolution process.

Alternatively, the trends in scale and crossover factor profiles in Figures 6.1 and 6.2

could be the result of poorly selected initial values. The initial values of 0.9 for the crossover

factor and 0.5 for the scale factor may be entirely inappropriate and may cause the pro-

longed initial period when the crossover factor decreases and the scale factor increases.

If initial values are indeed ineffective, then the algorithm can potentially be improved by

rather selecting initial values randomly as advocated by the creators of SDE who suggested

initial values from a normal distribution, N(0.5, 0.15) [Omran et al., 2005a].

The two algorithms that use random initial values are referred to as jSA1Ran and

jSA2Ran. The convergence behaviour that results from the random initial values of

jSA2Ran is shown in Figures 6.3 and 6.4 for 10 and 100 changes, respectively, on the

MPB Scenario 2. This algorithm exhibits much less variation in the value of the crossover

factor than was observed in Figure 6.2. The scale factor still increases over the first 100 000

function evaluations.
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Figure 6.3: Scale and Crossover Factors
for 50 000 function evaluations on the
MPB, Scenario 2, when using random
initial values.
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Figure 6.4: Scale and Crossover Factors
for 500 000 function evaluations on the
MPB, Scenario 2, when using random
initial values.
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Another alternative interpretation of the trends visible in Figures 6.1 and 6.2 is that

the initial drop in crossover factor and increase in scale factor, after a change in the envi-

ronment, negatively affects the values of the scale and crossover factors for the rest of the

period before the next change in the environment. Ideal values for the scale and crossover

factor may be respectively lower and higher, but the algorithm may adapt the factors by

too much when a change in the environment occurs, and may be unable to undo the initial

adaptation before the next change in the environment. Should this interpretation be cor-

rect, then the algorithm can be potentially improved by resetting the scale and crossover

factors to initial values every time a change in the environment occurs.

Figures 6.5 and 6.6 show the scale and crossover value profiles of jSA2 when the factors

are reset when a change in the environment occurs. The average value of the scale factor

is kept considerably higher than was the case in Figures 6.1 and 6.2. The crossover factor

repeatedly increases to a value similar to that in Figures 6.1 and 6.2 after each change in

the environment.
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Figure 6.5: Scale and Crossover Factors
for 50 000 function evaluations on the
MPB, Scenario 2, when the factors are
reset after changes in the environment.
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Figure 6.6: Scale and Crossover Factors
for 500 000 function evaluations on the
MPB, Scenario 2, when the factors are
reset after changes in the environment.

Resetting the scale and crossover factors when a change in the environment occurs,

is applicable to both jDE and SDE. The two SDE-based algorithms that use resetting

are referred to as SSA1Res and SSA2Res. Two strategies are tested for the jDE -based

algorithms, the first, resetting the factors to the values recommended by Brest et al. [2009]
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(jSA1Res and jSA2Res), and the second, resetting the values from a normal distribution,

N(0.5, 0.15) as suggested by Omran et al. [2005a] (jSA1RanRes and jSA2RanRes).

Figures 6.7 and 6.8 show the scale and crossover value profiles of jSA2 when the

factors are set to values from a normal distribution, N(0.5, 0.15), when a change in the

environment occurs. The scale factor increases sharply after being reset, but never reaches

as high a value as it did in Figures 6.1 and 6.2. The value of the crossover factor is

more chaotic than it was in previous strategies, and fluctuates around a lower value than

previously.
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Figure 6.7: Scale and Crossover Factors
for 50 000 function evaluations on the
MPB, Scenario 2, when the factors are
set to random values after changes in the
environment.
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Figure 6.8: Scale and Crossover Factors
for 500 000 function evaluations on the
MPB, Scenario 2, when the factors are
set to random values after changes in the
environment.

6.2.3 Summary of Algorithms for Adapting the Scale and Crossover

Factors

The previous sections described several algorithms for adapting the scale and crossover

factors, which were incorporated into CDE. Each algorithm is thus a hybrid between CDE

and a self-adaptive approach. These algorithms are summarised below.

SSA1: The algorithm of Omran et al. [2005a], which uses the DE/rand/1/bin scheme.

SSA2: The algorithm of Omran et al. [2005a], but using the DE/best/2/bin scheme.
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SSA1Res: The algorithm of Omran et al. [2005a], which uses the DE/rand/1/bin scheme,

in which the factors are reselected from a normal distribution after a change in the

environment.

SSA2Res: The algorithm of Omran et al. [2005a], but using the DE/best/2/bin scheme,

in which the factors are reselected from a normal distribution after a change in the

environment.

jSA1: The algorithm of Brest et al. [2009], employed in jDE, which uses the DE/rand/1/bin

scheme.

jSA2: The algorithm of Brest et al. [2009], but using the DE/best/2/bin scheme.

jSA1Ran: The algorithm of Brest et al. [2009], which uses the DE/rand/1/bin scheme,

but with initial values selected from a normal distribution, as proposed by Omran

et al. [2005a].

jSA2Ran: The algorithm of Brest et al. [2009], but using the DE/best/2/bin scheme,

with initial values selected from a normal distribution, as proposed by Omran et al.

[2005a].

jSA1Res: The algorithm of Brest et al. [2009], which uses the DE/rand/1/bin scheme, in

which the factors are reset to their initial values after a change in the environment.

jSA2Res: The algorithm of Brest et al. [2009], but using the DE/best/2/bin scheme, in

which the factors are reset to their initial values after a change in the environment.

jSA1RanRes: The algorithm of Brest et al. [2009], which uses the DE/rand/1/bin scheme,

but with initial values selected from a normal distribution, in which the factors are

reselected from a normal distribution after a change in the environment.

jSA2RanRes: The algorithm of Brest et al. [2009], but using the DE/best/2/bin scheme,

with initial values selected from a normal distribution, in which the factors are

reselected from a normal distribution after a change in the environment.

BBSA: The algorithm of Omran et al. [2009].
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The 13 algorithms, summarised above, are experimentally compared in Section 6.4 to

determine which is the most effective approach to use in conjunction with CDE in dynamic

environments.

6.3 Adapting the Brownian Radius

The creation of Brownian individuals was discussed in Section 3.4.1.3. The purpose of the

Brownian individuals is to increase the diversity within sub-populations, so that the DE

process can respond effectively to changes in the environment. A secondary advantage

of using Brownian individuals is that it acts as a random local search around the best

individual in the sub-population, which helps to reduce the error. A self-adaptive approach

is suggested in this section to eliminate the need for tuning the Brownian radius parameter.

The new approach is presented in Section 6.3.1, while alternative implementations to the

proposed approach are presented in Section 6.3.2.

6.3.1 Proposed Approach

Section 3.4.1.3 gave the equation used to create Brownian individuals and specified that

a value for the Brownian radius of rbrown = 0.2 has been found to produce good results.

Intuitively, it seems unlikely that a single value for rbrown would produce the best results at

all stages of the optimisation process, for example, more diversity would likely be required

after a change in the environment. Furthermore, the Brownian radius is likely to be

function-dependent.

This section proposes a novel approach to self-adapting the Brownian radius to ap-

propriate values for different functions and different stages of the optimisation process.

The new approach relies on the assumption that the Brownian radius should initially be

large, as new optima need to be discovered. Appropriate values for the Brownian radius,

rbrown(t), can later be deduced from radii used by successful Brownian individuals that

resulted in lower error values. The Brownian radius, rbrown(t), is set equal to the absolute

value of a random number selected from a normal distribution:

rbrown(t) ∼ | N(0, rdev(t)) | (6.1)
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where rdev(t) is the standard deviation of the normal distribution, and the actual value

that is self-adapted.

The proposed self-adaptive approach commences with a Brownian radius proportional

to the sub-population radius of the first sub-population that is evaluated. The population

radius, rpop,k, is calculated for sub-population Pk using:

rpop,k =

max
i1,i2∈{1,...,nI,k}

{

‖~xi1 − ~xi2‖2

}

2
(6.2)

The initial value of rdev(t) is thus half of the maximum Euclidian distance between

any two individuals in the sub-population, i.e. rdev(0) = rpop,k, where Pk is the first

sub-population that is evaluated. The algorithm keeps track of the rdev(t) values of all

Brownian individuals that have a higher fitness than the best individual within the sub-

population, ~xbest,k(t), that was used in their creation. An average of all successful rdev

values are used to calculate successive values for rdev. Algorithm 16 formally describes the

new approach (assuming a function minimisation problem).

Algorithm 16: Self-adaptive Brownian radius algorithm

t = 0;

DevSum = rpop,0 with P0 being the first sub-population evaluated;

DevCount = 1;

foreach Brownian individual that to be created in sub-population Pk do

rdev(t) = DevSum/DevCount;

rbrown(t) ∼| N(0, rdev(t)) |;

~xbrown = ~xbest,k + ~r with rj ∼ N(0, rbrown(t));

if F (~xbrown) < F (~xbest,k) then

DevSum = DevSum+ rdev(t);

DevCount = DevCount+ 1;

end

t = t+ 1;

end
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The proposed algorithm uses the average of successful values of rdev as the standard

deviation of the normal distribution to select the next rdev value. Smaller values than

the average rdev value are thus more likely to be produced, but larger values will also be

produced by the normal distribution.

6.3.2 Alternative Techniques

Two alternative techniques of implementing the self-adaptive Brownian radius algorithm

are presented here. The first technique pertains to the distribution used to create the

value of rdev(t). The second technique involves a response to changes in the environment.

Equation (6.1) selects the new value for rdev(t) from a normal distribution. About

68.27% of values selected from a normal distribution fall within one standard deviation

from the mean value, and 99.73% of values fall within three standard deviations of the

mean. This means, in the context of equation (6.1), that the next selected value of rbrown(t)

would likely be smaller than the current value of rdev(t), and cases where rbrown(t) >

3rdev(t) are extremely unlikely. The propensity for selecting small values for rbrown(t)

could potentially negatively affect the performance of the algorithm, as too little diversity

may be introduced into the sub-populations by the Brownian individuals.

The Cauchy distribution is a distribution function with two parameters, the location of

the median and a scale value. A random number from a Cauchy distribution, in contrast

to a random number from a normal distribution, is more likely to be greater than the scale

value. For example, only 50% of values selected from a Cauchy distribution fall within one

scale value from the median, while less than 80% of values fall within three scale values

from the median.

The use of a Cauchy distribution, rather than a normal distribution, to select new

values for rbrown(t), would thus result in larger values being selected more frequently. This

could potentially avoid the problem of low sub-population diversity which could result from

using a normal distribution. This section thus proposes to use a Cauchy distribution to

calculate the values for rdev(t), as follows:

rbrown(t) ∼ | C(0, rdev(t)) | (6.3)
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The algorithm that utilises a normal distribution is referred to as SABrNor and the algo-

rithm that uses a Cauchy distribution is referred to as SABrCau.

Section 6.2.2 described an alternative implementation of the self-adaptive algorithms

for adapting the scale and crossover factors, which resets the parameters to initial values

when a change in the environment occurs. A similar resetting scheme is proposed here

whereby the value of rdev(t) is reset to the original population radius, and the average over

successful values is cleared. Algorithm 16 is consequently changed into Algorithm 17.

Algorithm 17: Self-adaptive Brownian radius algorithm with resetting

t = 0;

DevSum = rpop,0 with P0 being the first sub-population evaluated;

DevCount = 1;

foreach Brownian individual that to be created in sub-population Pk do

if A change in the environment occurred then

DevSum = rpop,0;

DevCount = 1;

end

rdev(t) = DevSum/DevCount;

rbrown(t) ∼| N(0, rdev(t)) |;

~xbrown = ~xbest,k + ~r with rj ∼ N(0, rbrown(t));

if F (~xbrown) < F (~xbest,k) then

DevSum = DevSum+ rdev(t);

DevCount = DevCount+ 1;

end

t = t+ 1;

end

Resetting of rdev(t) can also be used in conjunction with a Cauchy distribution. The

algorithm that utilises a normal distribution with resetting is referred to as SABrNor-

Res and the algorithm that uses a Cauchy distribution with resetting is referred to as

SABrCauRes.

 
 
 



CHAPTER 6. SELF-ADAPTIVE CONTROL PARAMETERS 246

6.3.3 Summary of Algorithms for Adapting the Brownian radius

The previous sections introduced four algorithms for adapting the Brownian radius. These

algorithms are summarised below:

SABrNor: This algorithm uses a normal distribution to select values for rdev(t).

SABrCau: This algorithm uses a Cauchy distribution to select values for rdev(t).

SABrNorRes: This algorithm uses a normal distribution to select values for rdev(t), and

resets rdev(t) to the original population radius when a change in the environment

occurs.

SABrCauRes: This algorithm uses a Cauchy distribution to select values for rdev(t), and

resets rdev(t) to the original population radius when a change in the environment

occurs.

Experimental comparisons are performed in Section 6.4 on the four algorithms.

6.4 Experimental Results

The experimental investigations into the proposed self-adaptive control parameter ap-

proaches are described in this section. The investigations are guided by the research

questions listed below:

1. Which one of the 13 algorithms for self-adapting the scale and crossover factors is

the most effective? The 13 algorithms are compared to CDE to determine which

provides the most improved results.

2. How does the algorithm identified in the previous research question compare to DynDE

and CDE on the set of environments used in Chapter 4? The algorithm found to

perform the best in the previous research question is compared to DynDE and CDE

on a broad set of environments. Specific environments where use of the self-adaptive

approach is effective, are identified.
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3. Which one of the four algorithms, for self-adapting the Brownian radius, is the most

effective? The four algorithms are compared to CDE to determine which provides

the most improved results.

4. How does the algorithm identified in the previous research question compare to DynDE

and CDE on the set of environments used in Chapter 4? The best algorithm for

self-adapting the Brownian radius is compared to DynDE and CDE on a broad set

of environments. Specific environments on which use of the self-adaptive approach

is effective, are identified.

5. How does the combination of the algorithms for adapting the scale and crossover

factors and the Brownian radius, SACDE, compare to DynDE and CDE? The two

algorithms that were identified in research questions 1 and 3 are combined to form an

algorithm that self-adapts the scale and crossover factors and the Brownian radius.

The new algorithm is referred to as SACDE. SACDE is experimentally compared to

DynDE and CDE.

6. How do the self-adaptive algorithms scale under factors that influence the complexity

of a dynamic optimisation problem? This scalability study analyses the performance

of the algorithms when varying combinations of the change period, number of di-

mensions, change severity, underlying function, and change type.

7. What are the convergence profiles of the self-adaptive algorithms? The convergence

behaviours of SACDE and its predecessors are compared to DynDE and CDE in

terms of diversity, current error, and the resulting offline error. The convergence

profiles of the self-adapted values are also investigated.

8. How do the self-adaptive components affect the performance of DynPopDE? The

self-adaptive components, which were used to create SACDE, are incorporated into

DynPopDE to create SADynPopDE. This algorithm is evaluated on various experi-

mental sets and compared to DynPopDE, CDE and SACDE.

The rest of this section is structured as follows: Section 6.4.1 gives the experimental

procedure that was followed to answer each of the research questions. Sections 6.4.2 to

6.4.9 respectively cover research questions 1 to 8.
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6.4.1 Experimental Procedure

This chapter uses the sets of environments defined in previous chapters to evaluate the self-

adaptive approaches. Research question 1 is answered by evaluating the 13 algorithms on

the set of environments used in Section 4.6.3 to determine the appropriate sub-population

size and number of Brownian individuals. The standard set of experiments, defined in

Section 4.6.2 on page 120 was varied for each of the change periods and numbers of

dimensions listed in Table 4.3. Each of the 13 algorithms was consequently evaluated on

a total of 648 environments.

Research question 2 uses the set of environments used in Chapter 4 to compare CDE

to its subcomponents. This set is created by varying the standard set for all combinations

of settings in Table 4.3. The algorithm evaluated in research question 2 is thus tested on

2 160 environments.

The same experimental environments that were used in research question 1 are also

used to answer research question 3. Each of the four approaches to self-adapting the

Brownian radius was tested on the 648 environments created by varying the standard set

of experiments for each of the change periods and numbers of dimensions in Table 4.3.

Research questions 4, 5, 6, 7 and 8 employ the same environmental set as research

question 2. The 2 160 environments described in Section 4.6.2 are used to evaluate the

comparative performance of the algorithms.

Research question 8 also uses the np and the np(t) standard sets defined in Sections

5.3.1.1 and 5.3.1.2, respectively, to evaluate the performance of the relevant algorithms

on problems with various numbers of optima and fluctuating numbers of optima. The np

standard set consists of 480 environments, while the np(t) standard set consists of a total

of 2 000 environments.

A stopping criterion of 60 changes in the environment was used for all experiments.

The offline error was used as the performance measure for all environments. Experiments

were repeated 30 times to facilitate drawing statistically valid conclusions from the re-

sults. Mann-Whitney U tests were used to test statistical significance when comparing

algorithms.

 
 
 



CHAPTER 6. SELF-ADAPTIVE CONTROL PARAMETERS 249

6.4.2 Research Question 1

Which one of the 13 algorithms for self-adapting the scale and crossover factors is the

most effective?

Section 6.2 outlined 13 algorithms for self-adapting the scale and crossover factors.

The focus of this section is to determine which of the algorithms produces the best re-

sults. Each of the algorithms was executed on the 648 environments described in Section

6.4.1, and the results compared to those of CDE. Three metrics were used to gauge the

comparative performance of the algorithms. The first is the number of experiments in

which an algorithm performed statistically significantly better than CDE (Nr Better).

The second is the number of times that CDE performed statistically significantly better

than the algorithm (Nr Worse). The third is the average percentage improvement (API,

calculated as in equation (4.6) on page 148) of the algorithm over CDE.

Table 6.1 lists the results of the 13 algorithms. The column labelled “Difference”

gives the number of times that each algorithm performed better than CDE, minus the

number of times that the algorithm performed worse than CDE. Only algorithms that

used the DE/best/2/bin scheme performed better more often than CDE. The cases where

the average percentage increase was positive are also isolated to algorithms that used the

DE/best/2/bin scheme. The superiority of the DE/best/2/bin scheme is to be expected,

as Mendes and Mohais [2005] showed that this scheme is the most appropriate to use in

DynDE, the base algorithm of CDE.

The jSA2Ran performed better than CDE most often and yielded the highest API

value, followed closely by jSA2. This leads to the conclusion that these algorithms are

not very sensitive to the initial values that are used, as jSA2 commences with the values

suggested by Brest et al. [2009], and jSA2Ran commences with values sampled from a

normal distribution.

Algorithms in which the scale and crossover factors were reset did not perform better

than CDE as often as jSA2 and jSA2Ran, but jSA2RanRes was outperformed by CDE

the fewest times of all algorithms, and yielded an API only slightly lower than jSA2 and

jSA2Ran. SSA2Res performed the best of all the approaches based on SDE.

The algorithm with the largest difference between the number of times it outperformed
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Table 6.1: Performance of SA scale and crossover algorithms vs CDE
Algorithm Nr Better Nr Worse Difference API

SSA1 33 380 -347 -8.43 %
SSA2 70 88 -18 0.40 %
SSA1Res 42 378 -336 -7.71 %
SSA2Res 111 54 57 1.78 %
jSA1 83 366 -283 -6.45 %
jSA2 204 93 111 4.54 %
jSA1Ran 85 335 -250 -5.69 %
jSA2Ran 207 72 135 4.92 %
jSA1Res 68 390 -322 -8.04 %
jSA2Res 166 130 36 3.12 %
jSA1RanRes 81 339 -258 -6.16 %
jSA2RanRes 179 49 130 4.29 %
BBSA 11 521 -510 -19.73 %

CDE and the number of times it was outperformed, is jSA2Ran. This algorithm is thus

selected as the best approach out of those investigated, as jSA2Ran also had the highest

average percentage increase value. jSA2Ran has the advantage over jSA2 that it has fewer

parameters to tune, since the initial values of the scale and crossover factors are selected

randomly.

This research question concluded that jSA2Ran is the most effective of the 13 algo-

rithms. The following section investigates jSA2Ran on a large set of environments in order

to determine whether jSA2Ran is actually better than CDE.

6.4.3 Research Question 2

How does the algorithm identified in the previous research question compare to DynDE

and CDE on the set of environments used in Chapter 4?

The previous section found that jSA2Ran is the most effective self-adaptive algorithm.

The purpose of this section is to comparatively evaluate the performance of jSA2Ran on

a broad range of dynamic environments. The set of environments used in Chapter 4 to

evaluate algorithms was used for this purpose. The performance of jSA2Ran was compared

to that of DynDE and CDE.

The performance analysis of jSA2Ran compared to DynDE found that jSA2Ran per-

formed statistically significantly better than DynDE in 1 479 of the 2 160 environments,
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and performed worse in only 198 environments. jSA2Ran thus performed better than

DynDE in more cases than CDE, and worse in fewer cases than CDE (refer to Section

4.6.5.3). The average percentage improvement of jSA2Ran over DynDE was found to

be 14.78%. The complete performance analysis of jSA2Ran versus DynDE is given in

Appendix D.

The performance analysis of jSA2Ran versus CDE is given in Tables 6.2 and 6.3.

The majority of experiments did not result in statistically significantly different results.

jSA2Ran did, however, perform better than CDE in 724 of the 2 160 experiments, and

worse in 339 experiments.

The environments in which jSA2Ran performed better than CDE in 5 and 10 dimen-

sions are mainly concentrated on the MPB functions. Notable exceptions are functions

F3 and F6 from the GDBG which showed improved results achieved by jSA2Ran. The

trend in higher dimensions is that jSA2Ran is better than CDE on the GDBG functions

at the higher change periods (greater than 10 000 function evaluations). The function F5

is an exception in high dimensions as jSA2Ran performs better on this function, even at

low change periods. The results thus indicate that the difference in performance between

jSA2Ran depends mostly on the change period and dimension, but that there is also a

dependence on the underlying function.

The average percentage improvement of jSA2Ran over CDE over all experiments was

found to be 5.01%. The APIs per dimension were found to be 1.97%, 3.70%, 7.48%,

8.48% and 3.43% for 5, 10, 25, 50 and 100 dimensions respectively. Larger improvements

in offline error were thus found in higher dimensions, with the exception of 100 dimensions.

The APIs per change period were found to be 0.36%, 3.75%, 3.99%, 2.54%, 3.28%, 5.31%,

9.86% and 11.01% for change periods of 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000 and

100 000 function evaluations respectively. The percentage improvement thus increases as

the change period increases.

This research question used a large experimental set to determine whether jSA2Ran is

a better algorithm than DynDE and CDE. The performance analysis found that jSA2Ran

performed better more often than DynDE and CDE, and that jSA2Ran results in a con-

siderable percentage improvement over DynDE and CDE, on average. The conclusion that

is drawn from this section is that jSA2Ran is a superior algorithm to DynDE and CDE.
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Table 6.2: jSA2Ran vs CDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑7 ↓0

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑12 ↓0

20 (2) ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑13 ↓0

40 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑15 ↓0

80 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑12 ↓0

C (6) ↑2 ↓0 ↑3 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑3 ↓0 ↑1 ↓0 ↑1 ↓0 ↑25 ↓0

S (6) ↑3 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓0 ↑6 ↓0 ↑36 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓5 ↑0 ↓3 ↑0 ↓2 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓12

F1b (6) ↑1 ↓1 ↑0 ↓0 ↑0 ↓4 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓12

F2 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓4 ↑0 ↓5 ↑0 ↓3 ↑0 ↓0 ↑0 ↓0 ↑0 ↓14

F3 (6) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑7 ↓0

F4 (6) ↑0 ↓0 ↑1 ↓1 ↑0 ↓3 ↑0 ↓4 ↑0 ↓5 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓14

F5 (6) ↑0 ↓0 ↑3 ↓1 ↑0 ↓5 ↑0 ↓5 ↑0 ↓5 ↑0 ↓3 ↑0 ↓1 ↑0 ↓0 ↑3 ↓20

F6 (6) ↑0 ↓0 ↑1 ↓0 ↑1 ↓1 ↑3 ↓1 ↑4 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑13 ↓2

T1 (7) ↑0 ↓0 ↑0 ↓2 ↑0 ↓6 ↑0 ↓5 ↑0 ↓3 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓16

T2 (7) ↑0 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓3 ↑1 ↓4 ↑0 ↓3 ↑0 ↓0 ↑0 ↓1 ↑3 ↓12

T3 (7) ↑0 ↓0 ↑2 ↓0 ↑0 ↓2 ↑2 ↓3 ↑1 ↓3 ↑1 ↓2 ↑2 ↓0 ↑0 ↓0 ↑8 ↓10

T4 (7) ↑0 ↓1 ↑0 ↓1 ↑1 ↓5 ↑0 ↓4 ↑0 ↓4 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓16

T5 (7) ↑0 ↓0 ↑1 ↓0 ↑0 ↓4 ↑1 ↓3 ↑1 ↓2 ↑1 ↓2 ↑0 ↓2 ↑0 ↓0 ↑4 ↓13

T6 (7) ↑1 ↓0 ↑1 ↓0 ↑1 ↓2 ↑1 ↓1 ↑2 ↓3 ↑2 ↓1 ↑0 ↓0 ↑1 ↓0 ↑9 ↓7

All (54) ↑6 ↓1 ↑13 ↓3 ↑13 ↓20 ↑14 ↓19 ↑14 ↓19 ↑11 ↓9 ↑7 ↓2 ↑8 ↓1 ↑86 ↓74

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑5 ↓0

5 (2) ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑5 ↓0

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

20 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑13 ↓0

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

80 (2) ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

C (6) ↑0 ↓0 ↑4 ↓0 ↑4 ↓0 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑2 ↓0 ↑1 ↓0 ↑21 ↓0

S (6) ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓0 ↑5 ↓0 ↑4 ↓0 ↑5 ↓0 ↑38 ↓0

GDBG

F1a (6) ↑0 ↓1 ↑0 ↓2 ↑0 ↓3 ↑0 ↓4 ↑0 ↓1 ↑0 ↓2 ↑0 ↓0 ↑0 ↓0 ↑0 ↓13

F1b (6) ↑0 ↓0 ↑1 ↓2 ↑0 ↓4 ↑0 ↓5 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓13

F2 (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓4 ↑0 ↓3 ↑0 ↓1 ↑0 ↓2 ↑0 ↓0 ↑0 ↓13

F3 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑3 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓0

F4 (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓4 ↑0 ↓5 ↑0 ↓3 ↑0 ↓3 ↑0 ↓0 ↑0 ↓18

F5 (6) ↑2 ↓0 ↑3 ↓2 ↑3 ↓3 ↑1 ↓3 ↑2 ↓3 ↑2 ↓2 ↑2 ↓3 ↑2 ↓0 ↑17 ↓16

F6 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑3 ↓1 ↑4 ↓1 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑18 ↓2

T1 (7) ↑1 ↓0 ↑0 ↓5 ↑0 ↓5 ↑1 ↓6 ↑1 ↓4 ↑1 ↓2 ↑1 ↓1 ↑1 ↓0 ↑6 ↓23

T2 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑1 ↓3 ↑1 ↓2 ↑1 ↓2 ↑0 ↓2 ↑0 ↓0 ↑3 ↓10

T3 (7) ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓2 ↑1 ↓2 ↑2 ↓2 ↑1 ↓1 ↑2 ↓0 ↑10 ↓7

T4 (7) ↑0 ↓1 ↑0 ↓3 ↑0 ↓5 ↑0 ↓5 ↑0 ↓3 ↑0 ↓0 ↑2 ↓2 ↑0 ↓0 ↑2 ↓19

T5 (7) ↑0 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑2 ↓1 ↑2 ↓1 ↑1 ↓1 ↑2 ↓0 ↑11 ↓5

T6 (7) ↑0 ↓0 ↑2 ↓0 ↑1 ↓2 ↑3 ↓4 ↑2 ↓2 ↑2 ↓2 ↑2 ↓1 ↑2 ↓0 ↑14 ↓11

All (54) ↑6 ↓1 ↑15 ↓8 ↑12 ↓14 ↑16 ↓21 ↑14 ↓14 ↑16 ↓9 ↑13 ↓8 ↑13 ↓0 ↑105 ↓75

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑10 ↓1

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

80 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

C (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑21 ↓1

S (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓3 ↑0 ↓5 ↑0 ↓0 ↑3 ↓0 ↑4 ↓0 ↑4 ↓0 ↑11 ↓9

F1b (6) ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓6 ↑0 ↓1 ↑4 ↓0 ↑4 ↓0 ↑4 ↓0 ↑12 ↓12
F2 (6) ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓3 ↑0 ↓1 ↑2 ↓1 ↑3 ↓0 ↑3 ↓0 ↑8 ↓9

F3 (6) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑4 ↓0 ↑2 ↓0 ↑4 ↓0 ↑3 ↓0 ↑14 ↓1

F4 (6) ↑0 ↓1 ↑1 ↓0 ↑1 ↓2 ↑0 ↓3 ↑0 ↓4 ↑2 ↓1 ↑3 ↓0 ↑4 ↓0 ↑11 ↓11
F5 (6) ↑0 ↓1 ↑3 ↓0 ↑4 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑33 ↓1

F6 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑2 ↓2 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑21 ↓3

T1 (7) ↑0 ↓0 ↑1 ↓2 ↑0 ↓5 ↑1 ↓5 ↑2 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑25 ↓12

T2 (7) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓3 ↑1 ↓1 ↑2 ↓0 ↑3 ↓0 ↑3 ↓0 ↑11 ↓4

T3 (7) ↑0 ↓1 ↑0 ↓0 ↑1 ↓0 ↑2 ↓1 ↑2 ↓1 ↑2 ↓1 ↑3 ↓0 ↑4 ↓0 ↑14 ↓4

T4 (7) ↑0 ↓2 ↑0 ↓3 ↑0 ↓4 ↑0 ↓5 ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑20 ↓16

T5 (7) ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑2 ↓2 ↑1 ↓1 ↑3 ↓1 ↑5 ↓0 ↑4 ↓0 ↑17 ↓5

T6 (7) ↑0 ↓0 ↑1 ↓0 ↑2 ↓1 ↑1 ↓3 ↑3 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑23 ↓5

All (54) ↑0 ↓4 ↑16 ↓5 ↑17 ↓10 ↑15 ↓19 ↑19 ↓6 ↑32 ↓2 ↑38 ↓0 ↑36 ↓1 ↑173 ↓47
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Table 6.3: jSA2Ran vs CDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑11 ↓0

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑10 ↓0

20 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓2

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑11 ↓0

80 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑12 ↓0

C (6) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑3 ↓0 ↑1 ↓1 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑20 ↓2

S (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓0

GDBG

F1a (6) ↑0 ↓2 ↑0 ↓1 ↑0 ↓3 ↑0 ↓5 ↑0 ↓2 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑17 ↓13

F1b (6) ↑0 ↓3 ↑0 ↓4 ↑0 ↓3 ↑0 ↓6 ↑0 ↓2 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑15 ↓18

F2 (6) ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑0 ↓2 ↑0 ↓4 ↑2 ↓0 ↑5 ↓0 ↑5 ↓0 ↑12 ↓10

F3 (6) ↑1 ↓1 ↑0 ↓2 ↑0 ↓3 ↑0 ↓0 ↑1 ↓0 ↑6 ↓0 ↑4 ↓0 ↑5 ↓0 ↑17 ↓6

F4 (6) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓3 ↑0 ↓4 ↑3 ↓0 ↑5 ↓0 ↑5 ↓0 ↑13 ↓13
F5 (6) ↑1 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

F6 (6) ↑0 ↓2 ↑0 ↓0 ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑19 ↓5

T1 (7) ↑0 ↓3 ↑0 ↓3 ↑1 ↓3 ↑1 ↓5 ↑1 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑24 ↓15

T2 (7) ↑0 ↓1 ↑1 ↓0 ↑1 ↓2 ↑1 ↓2 ↑1 ↓4 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑23 ↓9

T3 (7) ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑20 ↓4

T4 (7) ↑1 ↓3 ↑1 ↓4 ↑1 ↓3 ↑1 ↓4 ↑1 ↓2 ↑7 ↓0 ↑6 ↓0 ↑7 ↓0 ↑25 ↓16

T5 (7) ↑0 ↓2 ↑1 ↓1 ↑1 ↓3 ↑2 ↓2 ↑3 ↓2 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑22 ↓10

T6 (7) ↑0 ↓1 ↑0 ↓3 ↑0 ↓2 ↑1 ↓3 ↑1 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑19 ↓11

All (54) ↑3 ↓12 ↑15 ↓11 ↑17 ↓14 ↑16 ↓17 ↑15 ↓13 ↑41 ↓0 ↑43 ↓0 ↑46 ↓0 ↑196 ↓67

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑6 ↓1

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓1 ↑7 ↓1

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑4 ↓0

20 (2) ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑5 ↓0

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑4 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑6 ↓0

C (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑4 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑17 ↓0

S (6) ↑0 ↓1 ↑3 ↓0 ↑4 ↓0 ↑4 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑15 ↓2

GDBG

F1a (6) ↑0 ↓1 ↑0 ↓3 ↑0 ↓2 ↑0 ↓6 ↑0 ↓4 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑14 ↓16

F1b (6) ↑1 ↓0 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓5 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑15 ↓21

F2 (6) ↑0 ↓1 ↑0 ↓3 ↑0 ↓5 ↑0 ↓4 ↑0 ↓4 ↑2 ↓1 ↑4 ↓0 ↑5 ↓0 ↑11 ↓18

F3 (6) ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑23 ↓1

F4 (6) ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓4 ↑0 ↓4 ↑2 ↓2 ↑4 ↓0 ↑5 ↓0 ↑11 ↓14

F5 (6) ↑1 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓0

F6 (6) ↑2 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑6 ↓0 ↑5 ↓1 ↑4 ↓0 ↑19 ↓4

T1 (7) ↑1 ↓0 ↑1 ↓2 ↑1 ↓2 ↑1 ↓4 ↑2 ↓2 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑27 ↓10

T2 (7) ↑1 ↓0 ↑0 ↓2 ↑1 ↓4 ↑1 ↓2 ↑2 ↓4 ↑3 ↓0 ↑7 ↓0 ↑6 ↓0 ↑21 ↓12

T3 (7) ↑2 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓4 ↑3 ↓1 ↑3 ↓0 ↑4 ↓0 ↑6 ↓0 ↑21 ↓8

T4 (7) ↑1 ↓0 ↑1 ↓3 ↑1 ↓4 ↑1 ↓3 ↑2 ↓4 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑27 ↓14

T5 (7) ↑0 ↓0 ↑0 ↓2 ↑1 ↓3 ↑1 ↓4 ↑3 ↓4 ↑3 ↓2 ↑4 ↓1 ↑5 ↓0 ↑17 ↓16

T6 (7) ↑0 ↓1 ↑0 ↓3 ↑0 ↓3 ↑1 ↓4 ↑1 ↓2 ↑4 ↓1 ↑6 ↓0 ↑7 ↓0 ↑19 ↓14

All (54) ↑5 ↓3 ↑10 ↓13 ↑15 ↓17 ↑14 ↓21 ↑16 ↓17 ↑28 ↓3 ↑37 ↓1 ↑39 ↓1 ↑164 ↓76

Set. Max All Dimensions

MPB

Cs 1 (10) ↑0 ↓1 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑4 ↓0 ↑33 ↓1

5 (10) ↑1 ↓0 ↑8 ↓0 ↑9 ↓0 ↑8 ↓0 ↑3 ↓0 ↑2 ↓0 ↑3 ↓0 ↑4 ↓2 ↑38 ↓2

10 (10) ↑2 ↓0 ↑9 ↓0 ↑9 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑44 ↓0

20 (10) ↑4 ↓1 ↑9 ↓0 ↑9 ↓0 ↑7 ↓0 ↑7 ↓1 ↑6 ↓0 ↑4 ↓0 ↑4 ↓0 ↑50 ↓2

40 (10) ↑2 ↓0 ↑9 ↓0 ↑10 ↓0 ↑8 ↓0 ↑8 ↓0 ↑8 ↓0 ↑7 ↓0 ↑4 ↓0 ↑56 ↓0

80 (10) ↑1 ↓0 ↑5 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑9 ↓0 ↑6 ↓0 ↑7 ↓0 ↑57 ↓0

C (30) ↑2 ↓1 ↑22 ↓0 ↑28 ↓0 ↑19 ↓0 ↑11 ↓1 ↑10 ↓0 ↑7 ↓0 ↑5 ↓1 ↑104 ↓3

S (30) ↑8 ↓1 ↑25 ↓0 ↑26 ↓0 ↑26 ↓0 ↑23 ↓0 ↑22 ↓0 ↑21 ↓0 ↑23 ↓1 ↑174 ↓2

GDBG

F1a (30) ↑0 ↓4 ↑0 ↓8 ↑0 ↓16 ↑0 ↓23 ↑0 ↓9 ↑12 ↓3 ↑14 ↓0 ↑16 ↓0 ↑42 ↓63

F1b (30) ↑2 ↓5 ↑1 ↓13 ↑0 ↓18 ↑0 ↓25 ↑0 ↓11 ↑12 ↓2 ↑14 ↓1 ↑15 ↓1 ↑44 ↓76

F2 (30) ↑0 ↓2 ↑0 ↓8 ↑0 ↓12 ↑0 ↓17 ↑0 ↓17 ↑6 ↓6 ↑12 ↓2 ↑13 ↓0 ↑31 ↓64

F3 (30) ↑2 ↓2 ↑1 ↓2 ↑1 ↓4 ↑5 ↓0 ↑12 ↓0 ↑17 ↓0 ↑17 ↓0 ↑16 ↓0 ↑71 ↓8

F4 (30) ↑0 ↓3 ↑2 ↓6 ↑1 ↓11 ↑0 ↓18 ↑0 ↓22 ↑7 ↓7 ↑12 ↓3 ↑14 ↓0 ↑36 ↓70

F5 (30) ↑4 ↓1 ↑16 ↓3 ↑17 ↓8 ↑16 ↓8 ↑19 ↓8 ↑20 ↓5 ↑20 ↓4 ↑20 ↓0 ↑132 ↓37

F6 (30) ↑2 ↓2 ↑2 ↓0 ↑1 ↓6 ↑9 ↓6 ↑13 ↓1 ↑22 ↓0 ↑21 ↓1 ↑20 ↓0 ↑90 ↓16

T1 (35) ↑2 ↓3 ↑2 ↓14 ↑2 ↓21 ↑4 ↓25 ↑6 ↓10 ↑22 ↓2 ↑22 ↓1 ↑22 ↓0 ↑82 ↓76

T2 (35) ↑1 ↓1 ↑4 ↓2 ↑3 ↓8 ↑3 ↓13 ↑6 ↓15 ↑11 ↓5 ↑17 ↓2 ↑16 ↓1 ↑61 ↓47

T3 (35) ↑4 ↓3 ↑5 ↓1 ↑4 ↓4 ↑7 ↓11 ↑8 ↓8 ↑12 ↓5 ↑15 ↓1 ↑18 ↓0 ↑73 ↓33

T4 (35) ↑2 ↓7 ↑2 ↓14 ↑3 ↓21 ↑2 ↓21 ↑5 ↓15 ↑20 ↓1 ↑21 ↓2 ↑20 ↓0 ↑75 ↓81

T5 (35) ↑0 ↓3 ↑5 ↓3 ↑4 ↓11 ↑7 ↓12 ↑10 ↓10 ↑14 ↓6 ↑15 ↓4 ↑16 ↓0 ↑71 ↓49

T6 (35) ↑1 ↓2 ↑4 ↓6 ↑4 ↓10 ↑7 ↓15 ↑9 ↓10 ↑17 ↓4 ↑20 ↓1 ↑22 ↓0 ↑84 ↓48

All (270) ↑20 ↓21 ↑69 ↓40 ↑74 ↓75 ↑75 ↓97 ↑78 ↓69 ↑128 ↓23 ↑138 ↓11 ↑142 ↓3 ↑724 ↓339

 
 
 



CHAPTER 6. SELF-ADAPTIVE CONTROL PARAMETERS 254

6.4.4 Research Question 3

Which one of the four algorithms for self-adapting the Brownian radius is the most effec-

tive?

This section investigates the performance of each of the four self-adaptive Brownian

radius algorithms in comparison with CDE. The purpose of this comparison is to determine

which of the four algorithms yields the best results.

Table 6.4 lists the results of the performance analysis comparing each of the four algo-

rithms to CDE. The table gives the number of times that each of the algorithms performed

statistically significantly better than CDE (Nr Better), the number of times that each

algorithm performed significantly worse than CDE (Nr Worse), the difference between

the number of times that each algorithm performed better and worse (Difference), and

the average percentage improvement (API) over CDE.

The analysis of the experimental results shows that SABrNor and SABrCau, the two

algorithms that did not reset the rdev(t) value after changes in the environment, performed

worse than CDE more often than they performed better. Furthermore, the average per-

centage improvement values for these algorithms were found to be negative. These two

approaches thus degrade the performance of CDE.

Algorithms SABrNorRes and SABrCauRes both yielded positive API values, indicating

that, on average, their performances were superior to those of CDE. The number of times

that these algorithms performed better than CDE was also more than the number of times

that they performed worse. SABrNorRes, which used a normal distribution to calculate

rdev(t), performed better than CDE slightly more often than SABrCauRes, which used a

Cauchy distribution. The average percentage improvement of SABrNorRes over CDE was

also slightly higher than the average percentage improvement of SABrCauRes over CDE.

Table 6.4: Performance of SA Brownian radius algorithms vs CDE
Algorithm Nr Better Nr Worse Difference API

SABrNor 241 283 -42 -4.41 %
SABrCau 241 269 -28 -4.20 %
SABrNorRes 419 125 294 18.44 %
SABrCauRes 413 126 287 18.23 %

This section described a comparative evaluation of the four approaches to self-adapting
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the Brownian radius. The experimental results indicate that SABrNorRes, the algorithm

that utilises a normal distribution and which resets rdev(t) values after changes in the

environment, is the most effective of the four algorithms.

6.4.5 Research Question 4

How does the algorithm identified in the previous research question compare to DynDE

and CDE on the set of environments used in Chapter 4?

SABrNorRes, the self-adaptive Brownian radius algorithm which employs a normal

distribution and resets the rdev(t) value after a change in the environment, was identified

under the previous research question as the most effective of the algorithms that were

investigated. The purpose of this research question is to perform a comparative perfor-

mance analysis of SABrNorRes, with respect to DynDE and CDE, on a wide range of

experimental environments.

The analysis of the experimental results found that SABrNorRes performed statisti-

cally significantly better than DynDE in 1 532 of the 2 160 environments, and worse in 325.

SABrNorRes thus performed better than DynDE more often than CDE performed better

than DynDE. The number of times that SABrNorRes performed worse than DynDE is,

however, higher than the number of times that CDE performed worse than DynDE. The

average percentage improvement of SABrNorRes over DynDE was found to be 18.19%.

The complete comparative performance analysis of SABrNorRes compared to DynDE is

given in Appendix D.

The performance analysis of SABrNorRes compared to CDE is given in Tables 6.5 and

6.6. The shaded, italicised and boldfaced text have their usual meaning. SABrNorRes

performed statistically significantly better than CDE on 1 076 environments and worse

in 686 environments. SABrNorRes performed better more often than CDE on change

periods of more than 5 000 function evaluations. CDE performed better more often than

SABrNorRes in 100 dimensions.

The analysis indicates that the comparative performances of CDE and SABrNorRes

was dependent on the underlying function. SABrNorRes was especially effective on the

MPB functions, with the exception of experiments in 100 dimensions. The GDBG function

F5 proved particularly challenging to SABrNorRes in dimensions below 50, where CDE
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performed better more often. Conversely, F5 was one of only two GDBG functions in

which SABrNorRes performed better than CDE more often in 50 and 100 dimensions.

SABrNorRes performed better than CDE more often than CDE performed better than

SABrNorRes. However, the CDE did perform better than SABrNorRes in almost a third

of all experimental environments. SABrNorRes can therefor not definitively be described

as better than CDE without considering the magnitude of the differences between the two

algorithms.

The average percentage improvement (API), calculated as in equation (4.6) on page

148, of SABrNorRes over CDE was calculated to determine how much better, on average,

SABrNorRes is than CDE. The average percentage improvement of SABrNorRes over

CDE over all experiments was found to be 9.5%. The APIs per dimension were found

to be 19.96%, 13.57%, 9.17%, 10.03% and -5.23% for 5, 10, 25, 50 and 100 dimensions

respectively. SABrNorRes thus consistently yielded substantial improvements with the

exception of 100 dimensional environments. The APIs per change period were found to be

0.17%, 8.43%, 7.05%, 2.89%, 4.42%, 10.79%, 17.64% and 24.60% for change periods of 100,

500, 1 000, 5 000, 10 000, 25 000, 50 000 and 100 000 function evaluations, respectively.

SABrNorRes, on average, thus performed very similar to CDE at a change period of

100 function evaluations. The magnitude of the improvement over CDE increased to a

considerable percentage as the change period was increased.

This research question investigated the comparative performance of SABRNorRes and

its predecessor algorithms. SABrNorRes performed better more often than both DynDE

and CDE on a large set of dynamic environments. This, and the fact that sizable per-

centage improvements of SABrNorRes over CDE were found (and consequently DynDE),

leads to the conclusion that SABrNorRes is a more effective algorithm for solving DOPs

than DynDE and CDE.

6.4.6 Research Question 5

How does the combination of the algorithms for adapting the scale and crossover factors

and the Brownian radius, SACDE, compare to DynDE and CDE?

SABRNorRes and jSA2Ran, the two self-adaptive approaches that were investigated

in research questions 2 and 4 can be combined into a single CDE-based algorithm. This
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Table 6.5: SABrNorRes vs CDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑8 ↓2

5 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑11 ↓0

10 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑14 ↓0

20 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

40 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

80 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

C (6) ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓1 ↑4 ↓0 ↑4 ↓1 ↑3 ↓0 ↑3 ↓0 ↑34 ↓2

S (6) ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑47 ↓0

GDBG

F1a (6) ↑1 ↓1 ↑0 ↓3 ↑0 ↓5 ↑2 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑26 ↓11

F1b (6) ↑2 ↓3 ↑0 ↓4 ↑0 ↓6 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑28 ↓13

F2 (6) ↑0 ↓0 ↑0 ↓3 ↑0 ↓6 ↑0 ↓5 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑22 ↓14

F3 (6) ↑1 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓1

F4 (6) ↑0 ↓2 ↑1 ↓1 ↑0 ↓4 ↑0 ↓4 ↑1 ↓3 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑18 ↓14

F5 (6) ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑3 ↓3 ↑3 ↓2 ↑3 ↓2 ↑9 ↓35

F6 (6) ↑3 ↓1 ↑3 ↓1 ↑2 ↓2 ↑4 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓5

T1 (7) ↑0 ↓3 ↑1 ↓6 ↑1 ↓6 ↑2 ↓5 ↑4 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑29 ↓21

T2 (7) ↑3 ↓1 ↑2 ↓2 ↑1 ↓6 ↑2 ↓4 ↑4 ↓2 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑33 ↓15

T3 (7) ↑1 ↓1 ↑3 ↓1 ↑2 ↓3 ↑2 ↓3 ↑2 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑27 ↓13

T4 (7) ↑0 ↓6 ↑1 ↓4 ↑1 ↓5 ↑3 ↓2 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑32 ↓17

T5 (7) ↑0 ↓2 ↑0 ↓2 ↑1 ↓5 ↑2 ↓3 ↑5 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑25 ↓17

T6 (7) ↑3 ↓0 ↑2 ↓3 ↑2 ↓4 ↑4 ↓1 ↑5 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑34 ↓10

All (54) ↑18 ↓13 ↑20 ↓18 ↑19 ↓29 ↑25 ↓19 ↑36 ↓8 ↑47 ↓4 ↑48 ↓2 ↑48 ↓2 ↑261 ↓95

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑12 ↓0

5 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑11 ↓0

10 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑12 ↓0

20 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑14 ↓0

40 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

80 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

C (6) ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑2 ↓0 ↑3 ↓0 ↑32 ↓0

S (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑48 ↓0

GDBG

F1a (6) ↑1 ↓1 ↑2 ↓2 ↑1 ↓2 ↑3 ↓2 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑30 ↓7

F1b (6) ↑1 ↓1 ↑1 ↓2 ↑1 ↓3 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑28 ↓6

F2 (6) ↑0 ↓3 ↑2 ↓2 ↑0 ↓3 ↑2 ↓3 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑26 ↓12

F3 (6) ↑0 ↓2 ↑6 ↓0 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓2

F4 (6) ↑0 ↓2 ↑1 ↓2 ↑0 ↓3 ↑1 ↓3 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑23 ↓12

F5 (6) ↑2 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓4 ↑2 ↓43

F6 (6) ↑0 ↓0 ↑3 ↓1 ↑3 ↓2 ↑4 ↓1 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑32 ↓5

T1 (7) ↑0 ↓2 ↑1 ↓6 ↑1 ↓6 ↑1 ↓5 ↑3 ↓4 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑24 ↓25

T2 (7) ↑0 ↓0 ↑2 ↓1 ↑1 ↓3 ↑2 ↓4 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑28 ↓11

T3 (7) ↑1 ↓1 ↑3 ↓1 ↑1 ↓1 ↑4 ↓1 ↑5 ↓1 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑31 ↓8

T4 (7) ↑0 ↓6 ↑1 ↓5 ↑1 ↓6 ↑2 ↓3 ↑3 ↓2 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑25 ↓25
T5 (7) ↑0 ↓3 ↑3 ↓1 ↑3 ↓1 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑35 ↓10

T6 (7) ↑3 ↓0 ↑5 ↓1 ↑1 ↓2 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑37 ↓8

All (54) ↑15 ↓12 ↑27 ↓15 ↑20 ↓19 ↑28 ↓15 ↑37 ↓10 ↑44 ↓6 ↑44 ↓6 ↑45 ↓4 ↑260 ↓87

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑12 ↓0

5 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑10 ↓2

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑10 ↓3

20 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑10 ↓2

40 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑12 ↓0

80 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

C (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑2 ↓3 ↑1 ↓3 ↑2 ↓0 ↑1 ↓0 ↑21 ↓8

S (6) ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑47 ↓1

GDBG

F1a (6) ↑0 ↓4 ↑0 ↓3 ↑0 ↓3 ↑1 ↓2 ↑3 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑20 ↓12

F1b (6) ↑0 ↓5 ↑0 ↓3 ↑1 ↓3 ↑1 ↓2 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑21 ↓13

F2 (6) ↑0 ↓6 ↑0 ↓2 ↑0 ↓3 ↑0 ↓6 ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑18 ↓18
F3 (6) ↑0 ↓6 ↑5 ↓0 ↑1 ↓3 ↑3 ↓1 ↑4 ↓0 ↑4 ↓0 ↑5 ↓0 ↑4 ↓0 ↑26 ↓10

F4 (6) ↑0 ↓6 ↑0 ↓2 ↑0 ↓2 ↑0 ↓4 ↑0 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑18 ↓16

F5 (6) ↑6 ↓0 ↑4 ↓2 ↑3 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑13 ↓35

F6 (6) ↑0 ↓4 ↑2 ↓0 ↑3 ↓2 ↑3 ↓1 ↑3 ↓0 ↑5 ↓1 ↑5 ↓1 ↑5 ↓1 ↑26 ↓10

T1 (7) ↑1 ↓3 ↑1 ↓5 ↑1 ↓6 ↑1 ↓6 ↑1 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑23 ↓24

T2 (7) ↑1 ↓6 ↑3 ↓0 ↑1 ↓5 ↑0 ↓5 ↑0 ↓2 ↑5 ↓2 ↑5 ↓2 ↑5 ↓2 ↑20 ↓24

T3 (7) ↑1 ↓5 ↑3 ↓1 ↑2 ↓1 ↑1 ↓4 ↑1 ↓1 ↑3 ↓1 ↑4 ↓1 ↑6 ↓1 ↑21 ↓15

T4 (7) ↑1 ↓5 ↑1 ↓4 ↑0 ↓5 ↑1 ↓3 ↑3 ↓3 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑24 ↓23

T5 (7) ↑1 ↓6 ↑2 ↓2 ↑2 ↓1 ↑4 ↓2 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑30 ↓15

T6 (7) ↑1 ↓6 ↑1 ↓0 ↑2 ↓1 ↑1 ↓2 ↑3 ↓1 ↑5 ↓1 ↑6 ↓1 ↑5 ↓1 ↑24 ↓13

All (54) ↑11 ↓33 ↑23 ↓12 ↑20 ↓19 ↑17 ↓23 ↑20 ↓12 ↑38 ↓10 ↑41 ↓7 ↑40 ↓7 ↑210 ↓123
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Table 6.6: SABrNorRes vs CDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓1

5 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑9 ↓3

10 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑9 ↓5

20 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓4

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓2

80 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑2 ↓0 ↑12 ↓3

C (6) ↑0 ↓5 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑1 ↓3 ↑0 ↓4 ↑1 ↓4 ↑2 ↓0 ↑19 ↓17

S (6) ↑2 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓1

GDBG

F1a (6) ↑0 ↓3 ↑0 ↓5 ↑0 ↓5 ↑0 ↓4 ↑2 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑19 ↓18

F1b (6) ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑20 ↓24

F2 (6) ↑0 ↓6 ↑0 ↓6 ↑1 ↓3 ↑0 ↓5 ↑0 ↓6 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑15 ↓26

F3 (6) ↑0 ↓6 ↑3 ↓0 ↑0 ↓3 ↑1 ↓4 ↑1 ↓3 ↑1 ↓0 ↑2 ↓2 ↑1 ↓2 ↑9 ↓20

F4 (6) ↑0 ↓6 ↑0 ↓5 ↑0 ↓4 ↑0 ↓5 ↑0 ↓5 ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑15 ↓25

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓3 ↑1 ↓3 ↑1 ↓4 ↑1 ↓5 ↑1 ↓5 ↑25 ↓20

F6 (6) ↑0 ↓6 ↑2 ↓0 ↑1 ↓1 ↑4 ↓1 ↑4 ↓0 ↑5 ↓1 ↑5 ↓1 ↑4 ↓1 ↑25 ↓11

T1 (7) ↑1 ↓5 ↑3 ↓4 ↑1 ↓4 ↑1 ↓6 ↑1 ↓4 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑25 ↓26

T2 (7) ↑1 ↓5 ↑2 ↓4 ↑2 ↓3 ↑1 ↓6 ↑0 ↓6 ↑4 ↓2 ↑4 ↓2 ↑4 ↓2 ↑18 ↓30

T3 (7) ↑1 ↓5 ↑1 ↓2 ↑1 ↓2 ↑2 ↓3 ↑1 ↓3 ↑2 ↓1 ↑5 ↓2 ↑4 ↓2 ↑17 ↓20

T4 (7) ↑1 ↓6 ↑2 ↓4 ↑1 ↓5 ↑1 ↓6 ↑3 ↓3 ↑5 ↓1 ↑5 ↓2 ↑5 ↓1 ↑23 ↓28

T5 (7) ↑1 ↓6 ↑2 ↓3 ↑2 ↓3 ↑1 ↓2 ↑3 ↓2 ↑3 ↓0 ↑5 ↓1 ↑3 ↓1 ↑20 ↓18

T6 (7) ↑1 ↓6 ↑1 ↓4 ↑1 ↓4 ↑2 ↓5 ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑25 ↓22

All (54) ↑8 ↓39 ↑23 ↓21 ↑20 ↓21 ↑17 ↓29 ↑17 ↓23 ↑32 ↓9 ↑38 ↓12 ↑36 ↓8 ↑191 ↓162

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑4 ↓9

5 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓12

10 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓14

20 (2) ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓13

40 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓13

80 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑4 ↓10

C (6) ↑0 ↓5 ↑6 ↓0 ↑6 ↓0 ↑1 ↓2 ↑2 ↓4 ↑0 ↓4 ↑0 ↓5 ↑1 ↓4 ↑16 ↓24

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓47

GDBG

F1a (6) ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓5 ↑0 ↓6 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑16 ↓27

F1b (6) ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑17 ↓28

F2 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑1 ↓4 ↑0 ↓4 ↑2 ↓3 ↑5 ↓0 ↑5 ↓0 ↑13 ↓29

F3 (6) ↑0 ↓6 ↑3 ↓0 ↑0 ↓5 ↑0 ↓6 ↑0 ↓3 ↑1 ↓3 ↑3 ↓0 ↑4 ↓0 ↑11 ↓23

F4 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑1 ↓4 ↑0 ↓4 ↑2 ↓3 ↑4 ↓0 ↑5 ↓0 ↑12 ↓28

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓1 ↑4 ↓2 ↑43 ↓3

F6 (6) ↑0 ↓6 ↑3 ↓2 ↑3 ↓2 ↑2 ↓0 ↑4 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓0 ↑26 ↓10

T1 (7) ↑1 ↓5 ↑3 ↓4 ↑2 ↓5 ↑1 ↓5 ↑1 ↓4 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑28 ↓23

T2 (7) ↑1 ↓6 ↑2 ↓4 ↑1 ↓5 ↑2 ↓4 ↑1 ↓5 ↑3 ↓1 ↑5 ↓1 ↑5 ↓1 ↑20 ↓27

T3 (7) ↑1 ↓5 ↑1 ↓4 ↑1 ↓6 ↑1 ↓3 ↑1 ↓2 ↑2 ↓3 ↑3 ↓0 ↑6 ↓0 ↑16 ↓23

T4 (7) ↑1 ↓6 ↑2 ↓4 ↑2 ↓5 ↑2 ↓5 ↑2 ↓5 ↑6 ↓1 ↑6 ↓0 ↑5 ↓1 ↑26 ↓27

T5 (7) ↑1 ↓6 ↑3 ↓4 ↑2 ↓3 ↑3 ↓3 ↑2 ↓2 ↑5 ↓2 ↑5 ↓0 ↑5 ↓0 ↑26 ↓20

T6 (7) ↑1 ↓6 ↑1 ↓5 ↑1 ↓6 ↑1 ↓5 ↑2 ↓4 ↑4 ↓2 ↑6 ↓0 ↑6 ↓0 ↑22 ↓28

All (54) ↑6 ↓45 ↑18 ↓31 ↑15 ↓35 ↑11 ↓33 ↑11 ↓32 ↑26 ↓19 ↑32 ↓12 ↑35 ↓12 ↑154 ↓219

Set. Max All Dimensions

MPB

Cs 1 (10) ↑5 ↓3 ↑8 ↓1 ↑8 ↓1 ↑6 ↓2 ↑5 ↓1 ↑4 ↓2 ↑6 ↓1 ↑7 ↓1 ↑49 ↓12

5 (10) ↑5 ↓3 ↑9 ↓1 ↑9 ↓1 ↑4 ↓1 ↑4 ↓4 ↑4 ↓4 ↑4 ↓2 ↑4 ↓1 ↑43 ↓17

10 (10) ↑5 ↓3 ↑9 ↓1 ↑9 ↓1 ↑6 ↓4 ↑5 ↓4 ↑5 ↓4 ↑4 ↓3 ↑4 ↓2 ↑47 ↓22

20 (10) ↑6 ↓2 ↑9 ↓1 ↑9 ↓1 ↑6 ↓2 ↑6 ↓4 ↑6 ↓4 ↑5 ↓3 ↑5 ↓2 ↑52 ↓19

40 (10) ↑5 ↓2 ↑9 ↓1 ↑9 ↓1 ↑8 ↓1 ↑7 ↓2 ↑6 ↓3 ↑6 ↓3 ↑6 ↓2 ↑56 ↓15

80 (10) ↑3 ↓6 ↑9 ↓1 ↑9 ↓0 ↑9 ↓1 ↑9 ↓1 ↑7 ↓1 ↑7 ↓3 ↑8 ↓2 ↑61 ↓15

C (30) ↑11 ↓11 ↑29 ↓0 ↑29 ↓0 ↑15 ↓5 ↑12 ↓10 ↑8 ↓12 ↑8 ↓9 ↑10 ↓4 ↑122 ↓51

S (30) ↑18 ↓8 ↑24 ↓6 ↑24 ↓5 ↑24 ↓6 ↑24 ↓6 ↑24 ↓6 ↑24 ↓6 ↑24 ↓6 ↑186 ↓49

GDBG

F1a (30) ↑2 ↓14 ↑2 ↓18 ↑1 ↓21 ↑6 ↓15 ↑16 ↓7 ↑26 ↓0 ↑28 ↓0 ↑30 ↓0 ↑111 ↓75

F1b (30) ↑3 ↓20 ↑1 ↓20 ↑2 ↓23 ↑6 ↓14 ↑14 ↓7 ↑28 ↓0 ↑30 ↓0 ↑30 ↓0 ↑114 ↓84

F2 (30) ↑0 ↓21 ↑2 ↓19 ↑1 ↓21 ↑3 ↓23 ↑8 ↓12 ↑24 ↓3 ↑28 ↓0 ↑28 ↓0 ↑94 ↓99

F3 (30) ↑1 ↓21 ↑22 ↓0 ↑10 ↓11 ↑16 ↓11 ↑17 ↓6 ↑18 ↓3 ↑22 ↓2 ↑21 ↓2 ↑127 ↓56

F4 (30) ↑0 ↓22 ↑2 ↓16 ↑0 ↓18 ↑2 ↓20 ↑4 ↓16 ↑22 ↓3 ↑28 ↓0 ↑28 ↓0 ↑86 ↓95

F5 (30) ↑20 ↓8 ↑16 ↓14 ↑15 ↓15 ↑9 ↓21 ↑6 ↓20 ↑9 ↓19 ↑9 ↓20 ↑8 ↓19 ↑92 ↓136

F6 (30) ↑3 ↓17 ↑13 ↓4 ↑12 ↓9 ↑17 ↓4 ↑20 ↓1 ↑28 ↓2 ↑26 ↓2 ↑25 ↓2 ↑144 ↓41

T1 (35) ↑3 ↓18 ↑9 ↓25 ↑6 ↓27 ↑6 ↓27 ↑10 ↓14 ↑31 ↓3 ↑32 ↓3 ↑32 ↓2 ↑129 ↓119

T2 (35) ↑6 ↓18 ↑11 ↓11 ↑6 ↓22 ↑7 ↓23 ↑10 ↓16 ↑25 ↓6 ↑27 ↓6 ↑27 ↓5 ↑119 ↓107

T3 (35) ↑5 ↓17 ↑11 ↓9 ↑7 ↓13 ↑10 ↓14 ↑10 ↓9 ↑17 ↓7 ↑24 ↓5 ↑28 ↓5 ↑112 ↓79

T4 (35) ↑3 ↓29 ↑7 ↓21 ↑5 ↓26 ↑9 ↓19 ↑17 ↓13 ↑30 ↓4 ↑30 ↓4 ↑29 ↓4 ↑130 ↓120

T5 (35) ↑3 ↓23 ↑10 ↓12 ↑10 ↓13 ↑15 ↓11 ↑20 ↓8 ↑25 ↓5 ↑28 ↓4 ↑25 ↓4 ↑136 ↓80

T6 (35) ↑9 ↓18 ↑10 ↓13 ↑7 ↓17 ↑12 ↓14 ↑18 ↓9 ↑27 ↓5 ↑30 ↓2 ↑29 ↓3 ↑142 ↓81

All (270) ↑58 ↓142 ↑111 ↓97 ↑94 ↓123 ↑98 ↓119 ↑121 ↓85 ↑187 ↓48 ↑203 ↓39 ↑204 ↓33 ↑1076 ↓686
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algorithm is referred to as self-adaptive competing differential evolution, SACDE. SACDE

thus self-adapts both the scale and crossover factors and the Brownian radius. The focus

of this research question is on the performance of SACDE compared to that of DynDE

and CDE.

The performance analysis that compared the results of SACDE to that of DynDE

found that SACDE performed statistically significantly better than DynDE in 1 485 envi-

ronments (the analysis is given in Appendix D). This number is slightly larger than what

was found when comparing jSA2Ran to DynDE, and slightly smaller than that found

when comparing SABRNorRes to DynDE. SACDE performed statistically significantly

worse than DynDE in 360 environments. This value is greater than that found when

comparing DynDE to jSA2Ran and SABRNorRes. An average percentage improvement

of SACDE over DynDE, of 16.76% was found.

Tables 6.7 and 6.8 contain the performance analysis of SACDE compared to CDE.

SACDE performed statistically significantly better than CDE in 1 013 of the 2 160 envi-

ronments, but performed worse in 814 of the environments. Similar trends to what was

evident when comparing SABRNorRes to CDE can be observed in Tables 6.7 and 6.8.

SACDE outperformed CDE more often in low dimensional and high change period en-

vironments. The comparative performance also depends on the underlying function, for

example, consider the performance of SACDE on function F5 over the various dimensions.

The average percentage improvement of SACDE over CDE over all experiments was

found to be 7.8%. The APIs per dimension were found to be 17.94%, 11.84%, 7.26%, 8.24%

and -6.29% for 5, 10, 25, 50 and 100 dimensions respectively. SACDE thus consistently

yielded substantial improvements with the exception of 100 dimensional environments.

The APIs per change period were found to be -0.13%, 7.47%, 5.37%, -0.13%, 1.19%,

8.66%, 15.98% and 23.98% for change periods of 100, 500, 1 000, 5 000, 10 000, 25 000,

50 000 and 100 000 function evaluations, respectively. SACDE performed very similar to

CDE at a change periods of 100 and 5 000 function evaluations. The magnitude of the

improvement over CDE increased as the change period was increased to larger values.

A comparison of the APIs of SACDE to those found for jSA2Ran in Section 6.4.3

shows that the magnitude of improvements by SACDE was greater than the improvements

achieved by jSA2Ran in the majority of cases. The APIs of SACDE were slightly lower
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Table 6.7: SACDE vs CDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑8 ↓4

5 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑7 ↓3

10 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑13 ↓0

20 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

40 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

80 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

C (6) ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓1 ↑4 ↓2 ↑3 ↓2 ↑3 ↓2 ↑3 ↓0 ↑32 ↓7

S (6) ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑43 ↓0

GDBG

F1a (6) ↑1 ↓2 ↑0 ↓4 ↑0 ↓6 ↑0 ↓3 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑23 ↓15

F1b (6) ↑1 ↓3 ↑0 ↓5 ↑0 ↓6 ↑2 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑26 ↓16

F2 (6) ↑0 ↓1 ↑0 ↓3 ↑0 ↓5 ↑0 ↓6 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑21 ↓16

F3 (6) ↑0 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓1

F4 (6) ↑0 ↓3 ↑3 ↓2 ↑0 ↓5 ↑0 ↓6 ↑0 ↓3 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑19 ↓20

F5 (6) ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑2 ↓3 ↑3 ↓3 ↑3 ↓3 ↑8 ↓37

F6 (6) ↑3 ↓1 ↑3 ↓1 ↑2 ↓3 ↑3 ↓1 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑34 ↓7

T1 (7) ↑0 ↓4 ↑1 ↓6 ↑1 ↓6 ↑2 ↓5 ↑4 ↓2 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑29 ↓23

T2 (7) ↑1 ↓1 ↑3 ↓3 ↑1 ↓6 ↑1 ↓5 ↑3 ↓3 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑29 ↓18

T3 (7) ↑1 ↓1 ↑3 ↓1 ↑2 ↓5 ↑2 ↓3 ↑2 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑27 ↓15

T4 (7) ↑0 ↓7 ↑1 ↓5 ↑1 ↓6 ↑2 ↓3 ↑5 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑30 ↓22

T5 (7) ↑0 ↓2 ↑0 ↓3 ↑0 ↓4 ↑2 ↓5 ↑5 ↓2 ↑5 ↓2 ↑6 ↓1 ↑6 ↓1 ↑24 ↓20

T6 (7) ↑3 ↓0 ↑3 ↓3 ↑2 ↓4 ↑2 ↓3 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑32 ↓14

All (54) ↑14 ↓15 ↑22 ↓21 ↑18 ↓31 ↑21 ↓25 ↑33 ↓13 ↑44 ↓6 ↑47 ↓5 ↑47 ↓3 ↑246 ↓119

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑11 ↓0

5 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑11 ↓2

10 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑11 ↓2

20 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑13 ↓0

40 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

80 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

C (6) ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓0 ↑2 ↓2 ↑3 ↓2 ↑2 ↓0 ↑3 ↓0 ↑30 ↓4

S (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑48 ↓0

GDBG

F1a (6) ↑0 ↓1 ↑1 ↓2 ↑0 ↓5 ↑0 ↓3 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑22 ↓11

F1b (6) ↑0 ↓1 ↑0 ↓4 ↑0 ↓6 ↑0 ↓5 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑21 ↓16

F2 (6) ↑0 ↓5 ↑0 ↓2 ↑0 ↓3 ↑1 ↓5 ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑21 ↓17

F3 (6) ↑0 ↓4 ↑5 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑37 ↓4

F4 (6) ↑0 ↓5 ↑1 ↓2 ↑0 ↓4 ↑0 ↓4 ↑2 ↓2 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑19 ↓17

F5 (6) ↑2 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑1 ↓4 ↑3 ↓43

F6 (6) ↑1 ↓1 ↑3 ↓2 ↑3 ↓2 ↑3 ↓2 ↑4 ↓2 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑30 ↓9

T1 (7) ↑0 ↓2 ↑1 ↓6 ↑1 ↓6 ↑1 ↓6 ↑1 ↓4 ↑5 ↓1 ↑6 ↓1 ↑7 ↓0 ↑22 ↓26

T2 (7) ↑1 ↓3 ↑2 ↓2 ↑1 ↓5 ↑1 ↓5 ↑2 ↓1 ↑5 ↓1 ↑6 ↓1 ↑5 ↓0 ↑23 ↓18

T3 (7) ↑1 ↓3 ↑1 ↓1 ↑1 ↓2 ↑2 ↓3 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑27 ↓13

T4 (7) ↑0 ↓6 ↑1 ↓6 ↑1 ↓6 ↑1 ↓5 ↑3 ↓4 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑23 ↓30

T5 (7) ↑0 ↓4 ↑2 ↓1 ↑0 ↓3 ↑3 ↓2 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑29 ↓14

T6 (7) ↑1 ↓2 ↑3 ↓2 ↑1 ↓4 ↑2 ↓4 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑29 ↓16

All (54) ↑15 ↓20 ↑22 ↓18 ↑16 ↓26 ↑19 ↓25 ↑28 ↓14 ↑42 ↓8 ↑44 ↓6 ↑45 ↓4 ↑231 ↓121

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓0

5 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓3

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓4

20 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓3

40 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑11 ↓1

80 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓1

C (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓1 ↑1 ↓3 ↑1 ↓4 ↑1 ↓3 ↑0 ↓0 ↑17 ↓11

S (6) ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑47 ↓1

GDBG

F1a (6) ↑0 ↓3 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑1 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑18 ↓19

F1b (6) ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑1 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑18 ↓23

F2 (6) ↑0 ↓6 ↑0 ↓4 ↑0 ↓4 ↑0 ↓6 ↑0 ↓3 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑15 ↓23

F3 (6) ↑0 ↓6 ↑4 ↓0 ↑1 ↓2 ↑2 ↓2 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑27 ↓10

F4 (6) ↑0 ↓6 ↑0 ↓4 ↑0 ↓2 ↑0 ↓6 ↑0 ↓5 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑16 ↓23

F5 (6) ↑6 ↓0 ↑4 ↓2 ↑3 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑13 ↓35

F6 (6) ↑0 ↓6 ↑1 ↓0 ↑2 ↓3 ↑3 ↓2 ↑3 ↓2 ↑5 ↓0 ↑5 ↓1 ↑5 ↓1 ↑24 ↓15

T1 (7) ↑1 ↓4 ↑1 ↓5 ↑1 ↓6 ↑1 ↓6 ↑1 ↓4 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑23 ↓28

T2 (7) ↑1 ↓5 ↑3 ↓3 ↑1 ↓4 ↑0 ↓6 ↑0 ↓4 ↑3 ↓1 ↑5 ↓2 ↑5 ↓2 ↑18 ↓27

T3 (7) ↑1 ↓5 ↑1 ↓2 ↑1 ↓3 ↑1 ↓6 ↑1 ↓2 ↑4 ↓1 ↑5 ↓1 ↑6 ↓1 ↑20 ↓21

T4 (7) ↑1 ↓6 ↑1 ↓5 ↑0 ↓6 ↑1 ↓6 ↑3 ↓4 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑24 ↓30

T5 (7) ↑1 ↓6 ↑2 ↓2 ↑1 ↓4 ↑1 ↓5 ↑2 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑25 ↓21

T6 (7) ↑1 ↓6 ↑1 ↓3 ↑2 ↓2 ↑1 ↓5 ↑1 ↓2 ↑3 ↓1 ↑6 ↓1 ↑6 ↓1 ↑21 ↓21
All (54) ↑11 ↓33 ↑21 ↓20 ↑18 ↓25 ↑13 ↓35 ↑15 ↓20 ↑35 ↓10 ↑41 ↓10 ↑41 ↓7 ↑195 ↓160
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Table 6.8: SACDE vs CDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

5 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑9 ↓5

10 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑9 ↓5

20 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑10 ↓5

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑10 ↓3

80 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑11 ↓3

C (6) ↑0 ↓4 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑1 ↓3 ↑0 ↓4 ↑1 ↓5 ↑1 ↓2 ↑18 ↓20

S (6) ↑1 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓1

GDBG

F1a (6) ↑0 ↓4 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓4 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑17 ↓24

F1b (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑17 ↓29

F2 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑14 ↓30

F3 (6) ↑0 ↓6 ↑2 ↓1 ↑0 ↓4 ↑1 ↓5 ↑2 ↓2 ↑3 ↓0 ↑4 ↓0 ↑4 ↓0 ↑16 ↓18

F4 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑14 ↓30

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓3 ↑1 ↓3 ↑1 ↓4 ↑1 ↓5 ↑1 ↓5 ↑25 ↓20

F6 (6) ↑0 ↓6 ↑0 ↓2 ↑0 ↓2 ↑3 ↓1 ↑3 ↓1 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑21 ↓12

T1 (7) ↑1 ↓5 ↑1 ↓4 ↑1 ↓4 ↑1 ↓6 ↑1 ↓6 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑23 ↓28

T2 (7) ↑1 ↓6 ↑1 ↓4 ↑1 ↓5 ↑1 ↓6 ↑0 ↓5 ↑4 ↓1 ↑5 ↓1 ↑4 ↓1 ↑17 ↓29

T3 (7) ↑1 ↓5 ↑2 ↓4 ↑1 ↓4 ↑2 ↓5 ↑1 ↓4 ↑2 ↓1 ↑4 ↓1 ↑6 ↓1 ↑19 ↓25

T4 (7) ↑1 ↓6 ↑1 ↓5 ↑1 ↓5 ↑0 ↓6 ↑0 ↓4 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑21 ↓29

T5 (7) ↑1 ↓6 ↑2 ↓4 ↑1 ↓5 ↑1 ↓5 ↑2 ↓4 ↑4 ↓0 ↑4 ↓1 ↑5 ↓1 ↑20 ↓26

T6 (7) ↑1 ↓6 ↑1 ↓5 ↑1 ↓5 ↑2 ↓5 ↑2 ↓5 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑24 ↓26

All (54) ↑7 ↓39 ↑20 ↓26 ↑18 ↓28 ↑16 ↓35 ↑13 ↓31 ↑33 ↓8 ↑38 ↓10 ↑40 ↓7 ↑185 ↓184

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓9

5 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓12

10 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓14

20 (2) ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓13

40 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓13

80 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑3 ↓11

C (6) ↑0 ↓5 ↑6 ↓0 ↑6 ↓0 ↑2 ↓2 ↑1 ↓4 ↑0 ↓5 ↑1 ↓5 ↑1 ↓4 ↑17 ↓25

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓47

GDBG

F1a (6) ↑0 ↓5 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑13 ↓27

F1b (6) ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑15 ↓30

F2 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑2 ↓4 ↑4 ↓2 ↑5 ↓0 ↑11 ↓35

F3 (6) ↑0 ↓6 ↑2 ↓1 ↑0 ↓4 ↑0 ↓4 ↑1 ↓3 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑19 ↓18

F4 (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑1 ↓4 ↑4 ↓1 ↑5 ↓0 ↑10 ↓35

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓1 ↑4 ↓2 ↑43 ↓3

F6 (6) ↑0 ↓6 ↑2 ↓2 ↑1 ↓2 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑28 ↓10

T1 (7) ↑1 ↓4 ↑2 ↓4 ↑2 ↓4 ↑1 ↓4 ↑2 ↓4 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑29 ↓20

T2 (7) ↑1 ↓6 ↑2 ↓4 ↑1 ↓6 ↑2 ↓5 ↑1 ↓5 ↑2 ↓2 ↑6 ↓1 ↑6 ↓1 ↑21 ↓30

T3 (7) ↑1 ↓5 ↑1 ↓4 ↑1 ↓5 ↑1 ↓5 ↑2 ↓4 ↑3 ↓3 ↑4 ↓1 ↑7 ↓0 ↑20 ↓27

T4 (7) ↑1 ↓6 ↑1 ↓5 ↑1 ↓5 ↑2 ↓5 ↑2 ↓5 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑26 ↓27

T5 (7) ↑1 ↓6 ↑3 ↓4 ↑1 ↓4 ↑1 ↓4 ↑2 ↓4 ↑3 ↓3 ↑5 ↓2 ↑5 ↓0 ↑21 ↓27

T6 (7) ↑1 ↓6 ↑1 ↓5 ↑1 ↓5 ↑1 ↓5 ↑2 ↓4 ↑3 ↓2 ↑6 ↓0 ↑7 ↓0 ↑22 ↓27

All (54) ↑6 ↓44 ↑16 ↓32 ↑13 ↓34 ↑10 ↓36 ↑12 ↓36 ↑24 ↓21 ↑36 ↓15 ↑39 ↓12 ↑156 ↓230

Set. Max All Dimensions

MPB

Cs 1 (10) ↑4 ↓2 ↑8 ↓1 ↑7 ↓1 ↑6 ↓2 ↑5 ↓2 ↑4 ↓2 ↑6 ↓2 ↑7 ↓1 ↑47 ↓13

5 (10) ↑4 ↓3 ↑9 ↓1 ↑9 ↓1 ↑4 ↓2 ↑4 ↓6 ↑3 ↓6 ↑3 ↓5 ↑3 ↓1 ↑39 ↓25

10 (10) ↑5 ↓3 ↑9 ↓1 ↑9 ↓1 ↑5 ↓4 ↑5 ↓5 ↑4 ↓5 ↑4 ↓4 ↑4 ↓2 ↑45 ↓25

20 (10) ↑6 ↓2 ↑9 ↓1 ↑9 ↓1 ↑6 ↓2 ↑5 ↓4 ↑6 ↓4 ↑5 ↓4 ↑5 ↓3 ↑51 ↓21

40 (10) ↑5 ↓2 ↑9 ↓1 ↑9 ↓1 ↑8 ↓1 ↑6 ↓2 ↑6 ↓4 ↑6 ↓3 ↑6 ↓3 ↑55 ↓17

80 (10) ↑3 ↓5 ↑9 ↓1 ↑9 ↓0 ↑9 ↓1 ↑8 ↓1 ↑7 ↓2 ↑7 ↓3 ↑6 ↓2 ↑58 ↓15

C (30) ↑11 ↓9 ↑29 ↓0 ↑28 ↓0 ↑14 ↓6 ↑9 ↓14 ↑7 ↓17 ↑8 ↓15 ↑8 ↓6 ↑114 ↓67

S (30) ↑16 ↓8 ↑24 ↓6 ↑24 ↓5 ↑24 ↓6 ↑24 ↓6 ↑23 ↓6 ↑23 ↓6 ↑23 ↓6 ↑181 ↓49

GDBG

F1a (30) ↑1 ↓15 ↑1 ↓21 ↑0 ↓26 ↑0 ↓24 ↑8 ↓10 ↑26 ↓0 ↑27 ↓0 ↑30 ↓0 ↑93 ↓96

F1b (30) ↑1 ↓19 ↑0 ↓26 ↑0 ↓29 ↑2 ↓25 ↑9 ↓13 ↑25 ↓2 ↑30 ↓0 ↑30 ↓0 ↑97 ↓114

F2 (30) ↑0 ↓24 ↑0 ↓21 ↑0 ↓24 ↑1 ↓29 ↑5 ↓17 ↑20 ↓4 ↑27 ↓2 ↑29 ↓0 ↑82 ↓121

F3 (30) ↑0 ↓23 ↑18 ↓2 ↑8 ↓10 ↑15 ↓11 ↑18 ↓5 ↑25 ↓0 ↑27 ↓0 ↑28 ↓0 ↑139 ↓51

F4 (30) ↑0 ↓26 ↑4 ↓20 ↑0 ↓23 ↑0 ↓28 ↑2 ↓22 ↑17 ↓5 ↑27 ↓1 ↑28 ↓0 ↑78 ↓125

F5 (30) ↑20 ↓7 ↑16 ↓14 ↑15 ↓15 ↑9 ↓21 ↑6 ↓21 ↑8 ↓19 ↑9 ↓21 ↑9 ↓20 ↑92 ↓138

F6 (30) ↑4 ↓20 ↑9 ↓7 ↑8 ↓12 ↑14 ↓6 ↑20 ↓6 ↑27 ↓0 ↑28 ↓1 ↑27 ↓1 ↑137 ↓53

T1 (35) ↑3 ↓19 ↑6 ↓25 ↑6 ↓26 ↑6 ↓27 ↑9 ↓20 ↑31 ↓3 ↑32 ↓3 ↑33 ↓2 ↑126 ↓125

T2 (35) ↑5 ↓21 ↑11 ↓16 ↑5 ↓26 ↑5 ↓27 ↑6 ↓18 ↑20 ↓5 ↑29 ↓5 ↑27 ↓4 ↑108 ↓122

T3 (35) ↑5 ↓19 ↑8 ↓12 ↑6 ↓19 ↑8 ↓22 ↑10 ↓13 ↑20 ↓7 ↑25 ↓5 ↑31 ↓4 ↑113 ↓101

T4 (35) ↑3 ↓31 ↑5 ↓26 ↑4 ↓28 ↑6 ↓25 ↑13 ↓18 ↑30 ↓3 ↑32 ↓3 ↑31 ↓4 ↑124 ↓138

T5 (35) ↑3 ↓24 ↑9 ↓14 ↑3 ↓20 ↑8 ↓21 ↑17 ↓12 ↑24 ↓7 ↑27 ↓6 ↑28 ↓4 ↑119 ↓108

T6 (35) ↑7 ↓20 ↑9 ↓18 ↑7 ↓20 ↑8 ↓22 ↑13 ↓13 ↑23 ↓5 ↑30 ↓3 ↑31 ↓3 ↑128 ↓104

All (270) ↑53 ↓151 ↑101 ↓117 ↑83 ↓144 ↑79 ↓156 ↑101 ↓114 ↑178 ↓53 ↑206 ↓46 ↑212 ↓33 ↑1013 ↓814
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than those found for SABrNorRes in all cases. SACDE does, however, have the advantage

that the parameters controlling the scale and crossover factors and the Brownian radius

are self-adapted and consequently do not have to be fine-tuned. This advantage is achieved

by incurring only a relatively small performance penalty.

The performance of SACDE, and the fact that it removes the need to tune several

parameters, makes SACDE a viable alternative to its predecessor algorithms. The fol-

lowing research question considers the scalability of the various self-adaptive approaches

proposed in this chapter.

6.4.7 Research Question 6

How do the self-adaptive algorithms scale under factors that influence the complexity of a

dynamic optimisation problem?

The set of environments used in research questions 2, 4 and 5 was used to observe

how jSA2Ran, SABrNorRes, and SACDE scale with respect to change period, number

of dimensions, change severity, underlying function, and change type. The results for

DynDE and CDE are included to aid the comparisons. The volume of experimental results

makes it impossible to plot figures and discuss each of the dynamic environments. The

following sections rather focus on determining the general trends that can be observed in

the experimental results.

The rest of this section is structured as follows: Section 6.4.7.1 describes the scalability

of the algorithms with respect to change period. Section 6.4.7.2 discusses the effect of

varying the number of dimensions, while Section 6.4.7.3 describes the effect of varying the

change severity. The scalability of the algorithms with respect to the underlying function

and the change type is discussed in Sections 6.4.7.4 and 6.4.7.5, respectively. The findings

of the scalability study are summarised in Section 6.4.7.6.

6.4.7.1 Trends from Varying the Change Period

The change period is an important consideration for self-adaptive algorithms in dynamic

environments. A large change period results in a large number of function evaluations

that are available between changes in the environment. A self-adaptive algorithm would

consequently have more available function evaluations to adapt its values effectively.
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A comparison of the offline errors of DynDE, CDE, jSA2Ran, SABrNorRes and SACDE

found that jSA2Ran and CDE generally yielded very similar offline errors, while SABrNor-

Res and SACDE generally yielded similar offline errors. Sections 6.4.3, 6.4.5 and 6.4.6

found that jSA2Ran, SABrNorRes and SACDE were all less effective on low change pe-

riods than on high change periods. This trend can be seen in Figure 6.9, which gives the

offline errors of DynDE, CDE, jSA2Ran, SABrNorRes and SACDE for various settings of

change period on the GDBG function F1b with change type T4 in five dimensions. CDE

and jSA2Ran gave the lowest offline errors at low change periods, while SABrNorRes

and SACDE gave the lowest offline errors at high change periods. Chapter 4 found that

DynDE performed better than CDE at high change periods. This situation is remedied by

SABrNorRes and SACDE which generally performed better than DynDE at high change

periods.

The trends described above were present in the majority of evironments, but notable

exceptions did occur. The previous research questions found a strong correlation between

the underlying function and the comparative performance of the self-adaptive algorithms.

This dependence on the underlying function is evident when comparing Figure 6.9 to

Figure 6.10. Figure 6.10 gives the same information as Figure 6.9, but on the GDBG

function F3. SABrNorRes and SACDE outperformed the other algorithms by a wide

margin on function F3.

The underlying function can also have a detrimental effect on the performances of the

self-adaptive algorithms. Figure 6.11 shows the offline errors of DynDE, CDE, jSA2Ran,

SABrNorRes and SACDE on function F5, with change type T4, in 10 dimensions. The

offline errors of SABrNorRes and SACDE were considerably higher than those of the other

algorithms, even at high change periods. At high dimensions on the same problem, shown

in Figure 6.12 for 100 dimensions, SABrNorRes and SACDE performed better than the

other algorithms at low change periods, but were weaker than jSA2Ran at high change

periods.

6.4.7.2 Trends from Varying the Number of Dimensions

Section 4.6.4.3 found that the offline error of DynDE and CDE increased as the number

of dimensions was increased. This trend also occurred for jSA2Ran, SABrNorRes and
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Figure 6.9: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak
function F1b and change type T4 for
various settings of change period in 5
dimensions.

10
1

10
2

10
3

10
4

10
5

10
6

300

400

500

600

700

800

900

1000

1100

1200

Change Period (log scale)

O
ffl

in
e 

E
rr

or

 

 
DynDE
CDE
jSA2Ran
SABrNorRes
SACDE

Figure 6.10: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak
function F3 and change type T4 for
various settings of change period in 5
dimensions.
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Figure 6.11: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak
function F5 and change type T4 for
various settings of change period in 10
dimensions.
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Figure 6.12: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak
function F5 and change type T4 for
various settings of change period in 100
dimensions.
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SACDE. The self-adaptive algorithms generally did not perform better than CDE at low

change periods, as is evident from Figure 6.13, which gives the offline errors for various

settings of number dimensions of DynDE, CDE, jSA2Ran, SABrNorRes and SACDE on

function F4, with change type T1 and a change period of 5 000 function evaluations.

The situation changes at high change periods, where the self-adaptive algorithms per-

formed better, especially in high dimensions. Figure 6.14 gives the same information as

Figure 6.13, but with a change period of 100 000 function evaluations. The self-adaptive

algorithms, jSA2Ran, SABrNorRes and SACDE, all performed better than CDE in di-

mensions greater than 10. Large improvements were found. SABrNorRes and SACDE

performed better or similar to DynDE in low dimensions, where DynDE generally per-

formed better than CDE.

The scalability of the algorithms with respect to dimension was also found to be de-

pendent on the underlying function, which caused exceptions to the general trends. Figure

6.15 gives the offline errors for various settings of number dimensions, for DynDE, CDE,

jSA2Ran, SABrNorRes and SACDE on function F3, with change type T1, and a change

period of 5 000 function evaluations. SABrNorRes and SACDE performed better than

the other algorithms on this function, despite the fact that a low change period was used.

Note that, at high dimensions, SACDE performed noticeably better than SABrNorRes,

which illustrates the functional dependence of the interaction between the two self-adaptive

approaches.

The underlying function also proved detrimental to the performance of the algorithms

in a minority of the experiments. Figure 6.16 gives the offline errors for various settings of

number dimensions for DynDE, CDE, jSA2Ran, SABrNorRes and SACDE on function F5,

with change type T3, and a change period of 100 000 function evaluations. SABrNorRes

and SACDE performed worse than the other algorithms at low dimensions, despite the high

change period. The performance of SABrNorRes and SACDE recovers at high dimensions

where they performed similar to, or better than jSA2Ran.

6.4.7.3 Trends from Varying the Change Severity

The main reason for including Brownian individuals in the sub-populations is to increase

diversity, which in turn assists the algorithms to respond effectively to changes in the
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Figure 6.13: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak func-
tion F4 and change type T1 for various
settings of dimension with a change
period of 5 000 function evaluations.
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Figure 6.14: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak func-
tion F4 and change type T1 for various
settings of dimension with a change
period of 100 000 function evaluations.
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Figure 6.15: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak func-
tion F3 and change type T1 for various
settings of dimension with a change
period of 25 000 function evaluations.
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Figure 6.16: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using peak func-
tion F5 and change type T3 for various
settings of dimension with a change
period of 100 000 function evaluations.
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environment. MPSO, the PSO based algorithm aimed at DOPs (refer to Section 3.3.3.2),

accepts the change severity within the dynamic environment as a parameter. This param-

eter is used to determine the cloud radius of the quantum particles, so that more diversity

is injected into the swarms when changes are more severe. The self-adaptive Brownian

radius employed in SABrNorRes and SACDE thus has the potential of achieving lower of-

fline errors than CDE over a range of values for change severity by adapting the Brownian

radius to a value appropriate to the environment.

Figure 6.17 gives the offline errors, for various settings of change severity, for DynDE,

CDE, jSA2Ran, SABrNorRes and SACDE on the conical MPB function, in 10 dimensions,

and a change period of 500. The figure shows that SABrNorRes and SACDE indeed yielded

lower offline errors on this environment in which CDE performed similar to DynDE. The

self-adaptive scale and crossover factors of jSA2Ran also yielded improvements on the

intermediate range of change severities.

The improvements that were found by using the self-adaptive approaches continued to

high change periods, of which Figure 6.18 is an example, as it gives the same information as

Figure 6.17, but with a change period of 100 000 function evaluations. The improvements

were less pronounced than at low change periods.

A dependence on the underlying function was found with respect the change severity

scalability at high dimensions. Figure 6.19 gives the offline errors for various settings of

change severity for DynDE, CDE, jSA2Ran, SABrNorRes and SACDE on the spherical

MPB function, in 5 dimensions, and a change period of 5 000. The self-adaptive ap-

proaches yielded considerable improvements over DynDE and CDE, as was the case when

using the conical function. A large degradation in the performances of SABrNorRes and

SACDE were found in 100 dimensions when using the spherical function (refer to Figure

6.20). This poor performance is an exception to the general case where SABrNorRes and

SACDE performed better than the other algorithms. The effectiveness of the self-adaptive

Brownian radius approach thus depends on the dimension and the underlying function.

6.4.7.4 Trends from Various Functions

The previous sections within this research question have noted the dependence of the self-

adaptive approaches on the underlying function. The algorithms described in this chapter
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Figure 6.17: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the MPB using the conical
peak function in 10 dimensions for
various settings of change severity
with a change period of 500 function
evaluations.
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Figure 6.18: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the MPB using the conical
peak function in 10 dimensions for
various settings of change severity with
a change period of 100 000 function
evaluations.
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Figure 6.19: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the MPB using the spherical
peak function in 5 dimensions for various
settings of change severity with a change
period of 5 000 function evaluations.
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Figure 6.20: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the MPB using the spherical
peak function in 100 dimensions for
various settings of change severity
with a change period of 5 000 function
evaluations.

 
 
 



CHAPTER 6. SELF-ADAPTIVE CONTROL PARAMETERS 269

generally followed similar trends as DynDE and CDE on the various functions that were

evaluated, but several noteworthy exceptions are described in this section.

Figure 6.21 gives the offline errors for various underlying GDBG functions for DynDE,

CDE, jSA2Ran, SABrNorRes and SACDE, in 5 dimensions, a change period of 50 000

function evaluations and change type T1. Section 4.6.4.5 found that function F3 was partic-

ularly challenging to DynDE and CDE. Figure 6.21 shows that SABrNorRes and SACDE

performed considerably better than the other algorithms on this function. The improved

performance was, however, found to be dependent on the number of dimensions. Consider

Figure 6.22, which gives the same information as Figure 6.21, but in 10 dimensions. Here

the performance difference between SABrNorRes and SACDE, and the other algorithms

has diminished.

The self-adaptive scale and crossover approach also suffered from function-dependence.

Figure 6.23 gives the offline errors for various underlying GDBG functions for DynDE,

CDE, jSA2Ran, SABrNorRes and SACDE, in 50 dimensions, a change period of 50 000

function evaluations and change type T1. The figure shows that jSA2Ran performed

considerably better than the other algorithms on function F5. This advantage, however,

narrows when the number of dimensions is increased to 100, as shown in Figure 6.24.

Cases where the self-adaptive algorithms performed worse than DynDE and CDE were

also found to be function-dependent. SABrNorRes and SACDE performed worse than

the other algorithms by a wide margin in Figure 6.23, while SABrNorRes and SACDE

performed better than the other algorithms on the other functions. SABrNorRes and

SACDE recover from poor performance when the number of dimensions was increased to

100 (refer to Figure 6.24).

The scalability of the self-adaptive algorithms with respect to the underlying function

is thus dependent on the number of dimensions, although, in general, trends similar to

those of DynDE and CDE were found.

6.4.7.5 Trends from Various Change Types

The effect of the change type on the self-adaptive algorithms was found to depend on the

underlying function, as was the case with DynDE and CDE. However, the change period

did, in a small number of experimental cases, influence the effect of the change type.
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Figure 6.21: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using change
type T1 for various functions in 5 di-
mensions with a change period of 50 000
function evaluations.
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Figure 6.22: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using change
type T1 for various functions in 10
dimensions with a change period of
50 000 function evaluations.
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Figure 6.23: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using change
type T1 for various functions in 50
dimensions with a change period of
50 000 function evaluations.
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Figure 6.24: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using change
type T1 for various functions in 100
dimensions with a change period of
50 000 function evaluations.
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Figure 6.25 gives the offline errors for various change types, for DynDE, CDE, jSA2Ran,

SABrNorRes and SACDE, in 5 dimensions, with a change period of 1 000 function evalua-

tions and function F5 on the GDBG. This is a function that was identified in the previous

section as one on which SABrNorRes and SACDE was ineffective. Figure 6.25 show that

SABrNorRes and SACDE gave higher offline errors than the other algorithms, but that

all algorithms follow similar trends over different change types. Conversely, Figure 6.26,

which presents the same results when using a change period of 50 000, shows very differ-

ent behaviour for SABrNorRes and SACDE when using change types T3, T5 and T6. The

inferior performance of SABrNorRes and SACDE on this function is thus clearly linked

to the change type.

Figure 6.27 gives the offline errors for various change types, for DynDE, CDE, jSA2Ran,

SABrNorRes and SACDE, in 50 dimensions, with a change period of 1 000 function

evaluations on function F2. Once again, all the algorithms exhibited offline errors similar

to each other over the different change types. Figure 6.28 gives the same information as

Figure 6.27, but when using a change period of 50 000 function evaluations. The self-

adaptive algorithms performed noticeably better than DynDE and CDE on change types

T1, T4 and T6.

The cases where the self-adaptive algorithms performed better than the other algo-

rithms thus also depend on the change type. Note that SABrNorRes and SACDE per-

formed worse than DynDE and CDE on change type T6 in Figure 6.26, but performed

better than DynDE and CDE on the same change type in Figure 6.28. The influence of

the change type is thus strongly linked to the underlying function.

6.4.7.6 Summary for Research Question 6

The scalability study found that in the vast majority of cases, CDE and jSA2Ran scaled

similarly with respect to the various benchmark settings, while SABrNorRes and SACDE

behaved similarly. The trends that emerged from varying the benchmark settings are

summarised below for each setting:

Change Period: Increasing the change period resulted in a reduction of offline error for

all algorithms. The self-adaptive algorithms were found to be comparatively more
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Figure 6.25: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using function
F5 for various change types in 5 dimen-
sions with a change period of 1 000
function evaluations.
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Figure 6.26: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using function
F5 for various change types in 5 dimen-
sions with a change period of 50 000
function evaluations.
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Figure 6.27: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using function
F2 for various change types in 50 di-
mensions with a change period of 1 000
function evaluations.
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Figure 6.28: Offline errors of DynDE,
CDE, jSA2Ran, SABrNorRes and
SACDE on the GDBG using function
F2 for various change types in 50 di-
mensions with a change period of 50 000
function evaluations.
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effective at high change periods, as more function evaluations are available for the

adaptation process.

Number of Dimensions: Larger numbers of dimensions resulted in larger offline errors.

SABrNorRes and SACDE were found to be generally inferior to CDE and jSA2Ran

at high dimensional problems, especially when a low change period was used.

Change Severity: More severe changes in the environment result in higher offline errors

as information gathered before changes becomes less relevant. The self-adaptive

algorithms were more effective than DynDE and CDE on environments where the

changes were severe.

Function: A strong correlation between the effectiveness of the self-adaptive algorithms

and the underlying function was found. SABrNorRes and SACDE outperformed the

other algorithms by a wide margin on some functions, notably F3, but also performed

comparatively poorly on other functions, for example, F5.

Change Type: The effect of the change type was found to be related to the function that

was being optimised. Cases where SABrNorRes and SACDE performed much worse

than the other algorithms were found to be isolated to specific, function dependent,

change types. The self-adaptive algorithms were also found to be more effective on

specific change types which depended on the underlying function.

6.4.8 Research Question 7

What are the convergence profiles of the self-adaptive algorithms?

This research question compares the convergence profiles of jSA2Ran, SABrNorRes

and SACDE to those of DynDE and CDE to provide insights into the functioning of the

algorithms. The algorithms are compared in terms of offline and current errors, and the

diversity of the algorithms is compared in terms of overall diversity and average diversity

per sub-population (as calculated using equation (4.8) on page 156). The values assumed

during the optimisation process for the scale factor, crossover factor and the Brownian

radius, are also investigated. All the figures in this section present results averaged over

30 repeats of each experiment.
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Figure 6.29 gives the offline and current errors of DynDE, CDE, jSA2Ran, SABrNorRes

and SACDE during the first 10 changes in the environment on the Scenario 2 settings of

the MPB. The current errors of the self-adaptive approaches decreased at a faster rate,

and reached a lower value than those of DynDE and CDE during the period before the

first change in the environment. The current errors of SABrNorRes and SACDE reached

lower values than those of jSA2Ran. The fast initial decrease in current error resulted in

considerably lower initial offline errors for the self-adaptive algorithms. The self-adaptive

algorithms are thus more effective at initially discovering optima in the environment.

The performance difference between the algorithms became less noticeable later in the

optimisation process, as none of the algorithms clearly performed better than the others

(in terms of current error) after the fifth change in the environment.

Section 4.6.6 found that the reason why DynDE performed better than CDE at high

change periods was that DynDE’s current error eventually reached a lower value than

that of CDE, despite the fact that CDE’s current error initially decreased faster than

that of DynDE. SABrNorRes and SACDE did not suffer from this problem, as can be

seen in Figure 6.30, which gives the same information as Figure 6.29, but with a change

period of 100 000 function evaluations. The self-adaptive algorithms generally reached

lower current errors than CDE, while SABrNorRes and SACDE generally reached current

errors as low as those of DynDE. This explains the trend where SABrNorRes and SACDE

performed better than the other algorithms at high change periods, which was found in

Section 6.4.7.1.

Figure 6.31 gives the diversity and average sub-population diversity of DynDE, CDE,

jSA2Ran, SABrNorRes and SACDE during the first 10 changes in the environment on the

Scenario 2 settings of the MPB. CDE and jSA2Ran exhibits virtually identical diversity

profiles, which explains the similar scaling behaviour observed in the previous section.

SABrNorRes and SACDE exhibits similar diversity profiles which, in contrast to the other

algorithms, show clear reactions to the changes in the environment. The average sub-

population diversity of SABrNorRes and SACDE increased dramatically after a change in

the environment, and was mirrored by a smaller increase in overall diversity. This increase

in diversity is caused by resetting the value from which the Brownian radius is selected,

when a change in the environment occurs. The Brownian individuals which are created
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Figure 6.29: Offline and current errors
of DynDE, CDE, jSA2Ran, SABrNorRes
and SACDE on the MPB with the Sce-
nario 2 settings.
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Figure 6.30: Offline and current errors
of DynDE, CDE, jSA2Ran, SABrNorRes
and SACDE on the MPB using the Sce-
nario 2 settings with a change period of
100 000.

using a large Brownian radius are typically located at a large Euclidean distance from

the best individuals in the sub-populations, which results in high diversity. The average

sub-population diversity of SABrNorRes and SACDE dropped sharply after a change in

the environment, but always maintained a higher value than that of the other algorithms.

Figure 6.32 gives the scale and crossover factors adapted by jSA2Ran, the value from

which the Brownian radius is calculated by SABrNorRes, and all three previously men-

tioned for SACDE during the first 10 changes in the environment on the Scenario 2 settings

of the MPB. The scale and crossover factors of jSA2Ran and SACDE followed the same

trends as discussed in Section 6.2.2, with the scale factor converging to a value around 0.63

and the crossover factor converging to values around 0.52. The behaviour of the scale and

crossover factor adapting process did thus not change noticeably when used in conjunction

with the adaptive Brownian radius component.

The value used to select the Brownian radius is reset after changes in the environment,

which causes the periodic spikes that are visible in Figure 6.32, for both SABrNorRes and

SACDE. A rapid decrease in the Brownian value occurs directly after a change in the

environment, but the value never dropped below 1.53. The Brownian radius, as calculated

using equation (6.1), is thus likely to be greater than the default value of rbrown = 0.2,

which was used in the previous chapters. This explains the higher overall average diversity
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Figure 6.31: Diversity profiles of DynDE, CDE, jSA2Ran, SABrNorRes and SACDE on
the MPB with the Scenario 2 settings.

per sub-populations which was observed for SABrNorRes and SACDE in comparison with

the other algorithms.

6.4.9 Research Question 8

How do the self-adaptive components affect the performance of DynPopDE?

The previous sections identified jSA2Ran and SABrNorRes as the more effective of

the two self-adaptive approaches. These were combined to form SACDE. This section

investigates a new algorithm, SADynPopDE, which is formed by incorporating the self-

adaptive scale factor, crossover factor and Brownian radius components of SACDE into

DynPopDE.

SADynPopDE is evaluated on three sets of experiments. The performance analysis of

SADynPopDE on variations of the standard set, which has been used to evaluate jSA2Ran,

SABrNorRes and SACDE in this chapter, is discussed in Section 6.4.9.1. SADynPopDE

is evaluated on environments with various numbers of optima in Section 6.4.9.2, and on

environments in which the number of optima fluctuates in Section 6.4.9.3. A summary of

the findings of this research question is provided in Section 6.4.9.4.
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Figure 6.32: Self-adaptive value profiles of jSA2Ran, SABrNorRes and SACDE on the
MPB with the Scenario 2 settings.

6.4.9.1 SADynPopDE on Variations of the Standard Set

Chapter 5 found that DynPopDE did not scale well over different functions. DynPopDE

performed statistically significantly worse than CDE on 1 257 of the 2 160 variations of the

standard set, and better on only 369 environments (refer to Section 5.3.9). SADynPopDE

was evaluated on the same set of experimental environment and compared to CDE. SA-

DynPopDE performed slightly better in comparison to CDE; it performed significantly

better than CDE in 624 environments, but worse in 1 294 of the 2 160 environments (the

analysis is given in Appendix D). The average percentage improvement of −11.50% was

found for DynPopDE over CDE, while the average percentage improvement of SADyn-

PopDE over CDE was -6%.

SADynPopDE was compared to SACDE and the detailed results of the performance

analysis are given in Appendix D. SADynPopDE performed better than SACDE in 321 of

the 2 160 experiments, and worse in 1 414 experiments. Most of the cases where SADyn-

PopDE performed better more often than SACDE, occurred at a change period of 100,

where SADynPopDE has an advantage, as it commences with a single sub-population. The

average percentage improvement was found to be -13.18%. The margin by which SADyn-

PopDE was inferior to SACDE is thus wider than the margin by which DynPopDE was
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inferior to CDE, despite the fact that the incorporation of the self-adaptive components

improved the relative performance of DynPopDE with respect to CDE. The incorporation

of the self-adaptive components into DynPopDE, thus did not solve the algorithm’s scaling

problem with respect to the underlying function.

6.4.9.2 SADynPopDE on the np Standard Set

DynPopDE showed a considerable improvement over CDE on environments that used var-

ious settings for the number of peaks (refer to Section 5.3.4). This section investigates the

performance of the self-adaptive algorithms on the np standard set to determine whether

the self-adaptive components yield improved results.

The results of a performance analysis comparing SADynPopDE to DynPopDE are

given in Table 6.9. SADynPopDE performed better than DynPopDE in 83 of the 480 envi-

ronments, but worse in 287 environments. Environments where SADynPopDE performed

better than DynPopDE mainly used very high or very low change periods. The average

percentage improvement of SADynPopDE over DynPopDE was found to be −11.49%.

These results indicate that the self-adaptive components identified as effective in SACDE

do not improve the performance of DynPopDE in environments with unknown numbers

of peaks.

SACDE was also evaluated on the np standard set in order to determine whether the

self-adaptive components are beneficial to CDE over a range of settings for the number of

peaks. The analysis which compares the results of SACDE to those of CDE is given in

Table 6.10. SACDE was found to perform statistically significantly better than CDE in

244 of the 480 experiments, and worse in only 92 experiments. SACDE performed better

more often than CDE, except in 100 dimensions.

The average percentage improvement of SACDE over CDE over all experiments was

found to be 12.16%. The APIs per dimension were found to be 2.34%, 16.83%, 34.02%,

37.27% and -29.67% for 5, 10, 25, 50 and 100 dimensions respectively. The percentage

improvement thus increases with the number of dimensions, with the exception of the

100 dimensional case, where CDE performed better than SACDE by a wide margin. The

APIs per change period were found to be 3.63%, 25.82%, 24.12%, 10.00%, 5.78%, 5.65%,

10.19% and 12.08% for change periods of 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000 and
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Table 6.9: SADynPopDE vs DynPopDE performance analysis on the np standard set
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

np 5 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓13

10 (2) ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓9

25 (2) ↑1 ↓0 ↑0 ↓1 ↑0 ↓2 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑2 ↓8

50 (2) ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑2 ↓10

100 (2) ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑1 ↓11

200 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓13

C (6) ↑3 ↓0 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑3 ↓40

S (6) ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑1 ↓1 ↑1 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓2 ↑2 ↓24

All (12) ↑3 ↓4 ↑0 ↓11 ↑0 ↓12 ↑1 ↓7 ↑1 ↓8 ↑0 ↓8 ↑0 ↓7 ↑0 ↓7 ↑5 ↓64

Set. Max 10 Dimensions

np 5 (2) ↑1 ↓0 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑3 ↓7

10 (2) ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑4 ↓6

25 (2) ↑1 ↓0 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓0 ↑1 ↓0 ↑3 ↓6

50 (2) ↑1 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑2 ↓0 ↑5 ↓7

100 (2) ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓9

200 (2) ↑1 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓11

C (6) ↑4 ↓0 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓4 ↑1 ↓1 ↑5 ↓33

S (6) ↑0 ↓1 ↑0 ↓5 ↑0 ↓4 ↑0 ↓1 ↑2 ↓2 ↑2 ↓0 ↑3 ↓0 ↑4 ↓0 ↑11 ↓13

All (12) ↑4 ↓1 ↑0 ↓10 ↑0 ↓9 ↑0 ↓7 ↑2 ↓8 ↑2 ↓6 ↑3 ↓4 ↑5 ↓1 ↑16 ↓46

Set. Max 25 Dimensions

np 5 (2) ↑1 ↓0 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑7 ↓6

10 (2) ↑0 ↓0 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑6 ↓5

25 (2) ↑1 ↓0 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑6 ↓5

50 (2) ↑0 ↓0 ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑6 ↓7

100 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑4 ↓5

200 (2) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑4 ↓5

C (6) ↑0 ↓0 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓4 ↑0 ↓1 ↑0 ↓32

S (6) ↑2 ↓0 ↑0 ↓1 ↑3 ↓0 ↑6 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑33 ↓1

All (12) ↑2 ↓0 ↑0 ↓6 ↑3 ↓5 ↑6 ↓6 ↑4 ↓6 ↑6 ↓5 ↑6 ↓4 ↑6 ↓1 ↑33 ↓33

Set. Max 50 Dimensions

np 5 (2) ↑0 ↓0 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑5 ↓7

10 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑5 ↓8

25 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑5 ↓9

50 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑5 ↓8

100 (2) ↑0 ↓2 ↑0 ↓1 ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑4 ↓9

200 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑5 ↓11

C (6) ↑0 ↓5 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓1 ↑0 ↓40

S (6) ↑0 ↓3 ↑0 ↓6 ↑0 ↓3 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑29 ↓12

All (12) ↑0 ↓8 ↑0 ↓11 ↑0 ↓8 ↑5 ↓6 ↑6 ↓6 ↑6 ↓6 ↑6 ↓6 ↑6 ↓1 ↑29 ↓52

Set. Max 100 Dimensions

np 5 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑0 ↓13

10 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑0 ↓15

25 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓16

50 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓16

100 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓16

200 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓16

C (6) ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓46

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑0 ↓46

All (12) ↑0 ↓11 ↑0 ↓12 ↑0 ↓12 ↑0 ↓12 ↑0 ↓12 ↑0 ↓12 ↑0 ↓11 ↑0 ↓10 ↑0 ↓92

Set. Max All Dimensions

np 5 (10) ↑2 ↓2 ↑0 ↓9 ↑1 ↓7 ↑2 ↓7 ↑2 ↓7 ↑2 ↓5 ↑3 ↓5 ↑3 ↓4 ↑15 ↓46

10 (10) ↑0 ↓4 ↑0 ↓8 ↑1 ↓7 ↑2 ↓6 ↑3 ↓6 ↑3 ↓6 ↑3 ↓4 ↑3 ↓2 ↑15 ↓43

25 (10) ↑3 ↓4 ↑0 ↓8 ↑0 ↓7 ↑3 ↓6 ↑3 ↓6 ↑2 ↓6 ↑2 ↓4 ↑3 ↓3 ↑16 ↓44

50 (10) ↑2 ↓4 ↑0 ↓9 ↑1 ↓8 ↑2 ↓6 ↑3 ↓6 ↑3 ↓6 ↑3 ↓6 ↑4 ↓3 ↑18 ↓48

100 (10) ↑1 ↓5 ↑0 ↓7 ↑0 ↓9 ↑1 ↓6 ↑1 ↓7 ↑2 ↓7 ↑2 ↓6 ↑2 ↓3 ↑9 ↓50

200 (10) ↑1 ↓5 ↑0 ↓9 ↑0 ↓8 ↑2 ↓7 ↑1 ↓8 ↑2 ↓7 ↑2 ↓7 ↑2 ↓5 ↑10 ↓56

C (30) ↑7 ↓10 ↑0 ↓26 ↑0 ↓27 ↑0 ↓30 ↑0 ↓30 ↑0 ↓29 ↑0 ↓26 ↑1 ↓13 ↑8 ↓191

S (30) ↑2 ↓14 ↑0 ↓24 ↑3 ↓19 ↑12 ↓8 ↑13 ↓10 ↑14 ↓8 ↑15 ↓6 ↑16 ↓7 ↑75 ↓96

All (60) ↑9 ↓24 ↑0 ↓50 ↑3 ↓46 ↑12 ↓38 ↑13 ↓40 ↑14 ↓37 ↑15 ↓32 ↑17 ↓20 ↑83 ↓287
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100 000 function evaluations, respectively. The APIs, in terms of the number of peaks,

were found to be 2.73%, 19.10%, 13.97%, 12.49%, 11.86% and 12.81% for 5, 10, 25, 50, 100

and 200 peaks respectively. The self-adaptive components thus improved the performance

of CDE, in general, over different settings for number of peaks.

This section showed that the self-adaptive components proved beneficial to SACDE

on the np standard set, but not to SADynPopDE. A performance comparison between

DynPopDE and SACDE (given in Appendix D) found that DynPopDE performed better

than SACDE on 248 of the 480 environments, and worse on 117 environments. DynPopDE

is thus still the best performing algorithm on the np standard set, despite the fact that

SACDE performed better than CDE.

6.4.9.3 SADynPopDE on the np(t) Standard Set

The poor performance of SADynPopDE on the np standard set suggests that it would

also be ineffective on the np(t) standard set. This, however, was found not to be the case.

Table 6.11 gives the performance analysis of SADynPopDE compared to DynPopDE on

the np(t) standard set. SADynPopDE performed better than DynPopDE in 1 100 of the

2 000 environments, and worse in only 267. The cases where DynPopDE performed better

than SADynPopDE occurred almost exclusively in 100 dimensional environments.

The average percentage improvement of SADynPopDE over DynPopDE over all exper-

iments was found to be 30.51%. The APIs per dimension were found to be 36.08%, 49.02%,

46.61%, 33.83% -13.01% for 5, 10, 25, 50 and 100 dimensions respectively. SADynPopDE

is thus superior except in 100 dimensions. The APIs per change period were found to be

13.81%, 30.87%, 35.84%, 35.60%, 34.29%, 34.63%, 29.41% and 29.61% for change periods

of 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000 and 100 000 function evaluations respec-

tively. The improvement over DynPopDE is uniformly large over all change periods. The

APIs per setting of maximum number of peaks are 29.71%, 30.19%, 30.17%, 30.84% and

31.63% for values 5, 10, 25, 50, 100 and 200, respectively. The APIs, with regard to per-

centage change in the number of peaks, were found to be 18.57%, 25.35%, 32.07%, 36.96%

and 39.58% for values of 5%, 10%, 20%, 40% and 80%, respectively. The improvement of

SADynPopDE over DynPopDE is thus greater when the percentage change in the number

of peaks is higher.
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Table 6.10: SACDE vs CDE performance analysis on the np standard set
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

np 5 (2) ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓14

10 (2) ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑8 ↓4

25 (2) ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑5 ↓1

50 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑5 ↓0

100 (2) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑7 ↓0

200 (2) ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑8 ↓1

C (6) ↑4 ↓0 ↑1 ↓1 ↑1 ↓3 ↑3 ↓2 ↑3 ↓2 ↑4 ↓1 ↑4 ↓1 ↑3 ↓2 ↑23 ↓12

S (6) ↑0 ↓0 ↑1 ↓2 ↑2 ↓1 ↑1 ↓1 ↑2 ↓1 ↑1 ↓1 ↑2 ↓1 ↑1 ↓1 ↑10 ↓8

All (12) ↑4 ↓0 ↑2 ↓3 ↑3 ↓4 ↑4 ↓3 ↑5 ↓3 ↑5 ↓2 ↑6 ↓2 ↑4 ↓3 ↑33 ↓20

Set. Max 10 Dimensions

np 5 (2) ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑8 ↓6

10 (2) ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑11 ↓0

25 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑9 ↓1

50 (2) ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑9 ↓2

100 (2) ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑7 ↓2

200 (2) ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑8 ↓2

C (6) ↑6 ↓0 ↑5 ↓0 ↑1 ↓1 ↑0 ↓5 ↑0 ↓4 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑13 ↓13
S (6) ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓0 ↑39 ↓0

All (12) ↑8 ↓0 ↑11 ↓0 ↑7 ↓1 ↑6 ↓5 ↑6 ↓4 ↑5 ↓1 ↑4 ↓1 ↑5 ↓1 ↑52 ↓13

Set. Max 25 Dimensions

np 5 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑10 ↓4

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

25 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑11 ↓0

50 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓1

100 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓3

200 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓2

C (6) ↑0 ↓3 ↑6 ↓0 ↑6 ↓0 ↑0 ↓2 ↑0 ↓3 ↑0 ↓1 ↑2 ↓1 ↑1 ↓0 ↑15 ↓10

S (6) ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑47 ↓0

All (12) ↑5 ↓3 ↑12 ↓0 ↑12 ↓0 ↑6 ↓2 ↑6 ↓3 ↑6 ↓1 ↑8 ↓1 ↑7 ↓0 ↑62 ↓10

Set. Max 50 Dimensions

np 5 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓2

10 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓1

25 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓1

50 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓1

100 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓2

200 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓2

C (6) ↑0 ↓6 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓3 ↑1 ↓0 ↑5 ↓0 ↑5 ↓0 ↑28 ↓9

S (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

All (12) ↑0 ↓6 ↑12 ↓0 ↑12 ↓0 ↑11 ↓0 ↑6 ↓3 ↑7 ↓0 ↑11 ↓0 ↑11 ↓0 ↑70 ↓9

Set. Max 100 Dimensions

np 5 (2) ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑5 ↓8

10 (2) ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑5 ↓8

25 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑5 ↓7

50 (2) ↑0 ↓2 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑5 ↓2

100 (2) ↑0 ↓2 ↑0 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑1 ↓0 ↑3 ↓6

200 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑4 ↓9

C (6) ↑0 ↓4 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓0 ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑27 ↓4

S (6) ↑0 ↓6 ↑0 ↓4 ↑0 ↓4 ↑0 ↓5 ↑0 ↓4 ↑0 ↓5 ↑0 ↓5 ↑0 ↓3 ↑0 ↓36

All (12) ↑0 ↓10 ↑4 ↓4 ↑6 ↓4 ↑6 ↓5 ↑0 ↓4 ↑0 ↓5 ↑5 ↓5 ↑6 ↓3 ↑27 ↓40

Set. Max All Dimensions

np 5 (10) ↑2 ↓2 ↑6 ↓3 ↑6 ↓4 ↑4 ↓5 ↑3 ↓6 ↑3 ↓5 ↑4 ↓5 ↑4 ↓4 ↑32 ↓34

10 (10) ↑4 ↓2 ↑8 ↓1 ↑7 ↓2 ↑6 ↓2 ↑4 ↓2 ↑5 ↓1 ↑7 ↓1 ↑8 ↓2 ↑49 ↓13

25 (10) ↑3 ↓3 ↑7 ↓1 ↑8 ↓1 ↑5 ↓2 ↑3 ↓1 ↑4 ↓1 ↑7 ↓1 ↑5 ↓0 ↑42 ↓10

50 (10) ↑3 ↓4 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑4 ↓1 ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑41 ↓6

100 (10) ↑3 ↓4 ↑6 ↓0 ↑6 ↓1 ↑6 ↓3 ↑5 ↓3 ↑3 ↓1 ↑5 ↓1 ↑5 ↓0 ↑39 ↓13

200 (10) ↑2 ↓4 ↑7 ↓2 ↑7 ↓1 ↑6 ↓2 ↑4 ↓4 ↑4 ↓1 ↑5 ↓1 ↑6 ↓1 ↑41 ↓16

C (30) ↑10 ↓13 ↑22 ↓1 ↑20 ↓4 ↑14 ↓9 ↑3 ↓12 ↑5 ↓3 ↑16 ↓3 ↑16 ↓3 ↑106 ↓48

S (30) ↑7 ↓6 ↑19 ↓6 ↑20 ↓5 ↑19 ↓6 ↑20 ↓5 ↑18 ↓6 ↑18 ↓6 ↑17 ↓4 ↑138 ↓44

All (60) ↑17 ↓19 ↑41 ↓7 ↑40 ↓9 ↑33 ↓15 ↑23 ↓17 ↑23 ↓9 ↑34 ↓9 ↑33 ↓7 ↑244 ↓92
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Table 6.11: SADynPopDE vs DynPopDE performance analysis on the np(t) standard set
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

np 10 (10) ↑10 ↓0 ↑8 ↓0 ↑8 ↓0 ↑4 ↓0 ↑4 ↓1 ↑3 ↓1 ↑3 ↓0 ↑3 ↓0 ↑43 ↓2

25 (10) ↑10 ↓0 ↑9 ↓0 ↑9 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓1 ↑3 ↓0 ↑50 ↓2

50 (10) ↑9 ↓0 ↑9 ↓0 ↑8 ↓0 ↑6 ↓0 ↑7 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑54 ↓0

100 (10) ↑7 ↓0 ↑8 ↓1 ↑9 ↓0 ↑7 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑3 ↓0 ↑49 ↓1

200 (10) ↑7 ↓0 ↑8 ↓0 ↑8 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓1 ↑3 ↓0 ↑46 ↓2

pc 5 (10) ↑8 ↓0 ↑5 ↓1 ↑6 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓2 ↑0 ↓1 ↑0 ↓0 ↑20 ↓4

10 (10) ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓0 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑0 ↓0 ↑25 ↓3

20 (10) ↑8 ↓0 ↑10 ↓0 ↑10 ↓0 ↑6 ↓0 ↑7 ↓0 ↑4 ↓0 ↑5 ↓0 ↑2 ↓0 ↑52 ↓0

40 (10) ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑10 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑68 ↓0

80 (10) ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑10 ↓0 ↑9 ↓0 ↑9 ↓0 ↑77 ↓0

C (25) ↑25 ↓0 ↑24 ↓0 ↑25 ↓0 ↑17 ↓0 ↑15 ↓1 ↑14 ↓3 ↑13 ↓2 ↑12 ↓0 ↑145 ↓6

S (25) ↑18 ↓0 ↑18 ↓1 ↑17 ↓0 ↑11 ↓0 ↑13 ↓0 ↑7 ↓0 ↑8 ↓0 ↑5 ↓0 ↑97 ↓1

All (50) ↑43 ↓0 ↑42 ↓1 ↑42 ↓0 ↑28 ↓0 ↑28 ↓1 ↑21 ↓3 ↑21 ↓2 ↑17 ↓0 ↑242 ↓7

Set. Max 10 Dimensions

np 10 (10) ↑9 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑8 ↓0 ↑8 ↓0 ↑9 ↓0 ↑73 ↓0

25 (10) ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑7 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑66 ↓0

50 (10) ↑6 ↓0 ↑7 ↓0 ↑9 ↓0 ↑8 ↓0 ↑7 ↓0 ↑8 ↓0 ↑7 ↓0 ↑6 ↓0 ↑58 ↓0

100 (10) ↑9 ↓0 ↑8 ↓0 ↑9 ↓0 ↑6 ↓0 ↑8 ↓0 ↑7 ↓0 ↑7 ↓0 ↑9 ↓0 ↑63 ↓0

200 (10) ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑9 ↓0 ↑55 ↓0

pc 5 (10) ↑10 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓0 ↑2 ↓0 ↑3 ↓0 ↑5 ↓0 ↑39 ↓0

10 (10) ↑6 ↓0 ↑7 ↓0 ↑9 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑8 ↓0 ↑52 ↓0

20 (10) ↑7 ↓0 ↑9 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑8 ↓0 ↑6 ↓0 ↑8 ↓0 ↑67 ↓0

40 (10) ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑79 ↓0

80 (10) ↑8 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑78 ↓0

C (25) ↑18 ↓0 ↑22 ↓0 ↑24 ↓0 ↑22 ↓0 ↑20 ↓0 ↑17 ↓0 ↑17 ↓0 ↑18 ↓0 ↑158 ↓0

S (25) ↑23 ↓0 ↑20 ↓0 ↑21 ↓0 ↑18 ↓0 ↑17 ↓0 ↑18 ↓0 ↑18 ↓0 ↑22 ↓0 ↑157 ↓0

All (50) ↑41 ↓0 ↑42 ↓0 ↑45 ↓0 ↑40 ↓0 ↑37 ↓0 ↑35 ↓0 ↑35 ↓0 ↑40 ↓0 ↑315 ↓0

Set. Max 25 Dimensions

np 10 (10) ↑5 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑7 ↓0 ↑8 ↓0 ↑70 ↓0

25 (10) ↑5 ↓0 ↑7 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓0 ↑8 ↓0 ↑9 ↓0 ↑65 ↓0

50 (10) ↑5 ↓0 ↑9 ↓0 ↑8 ↓0 ↑7 ↓0 ↑9 ↓0 ↑8 ↓0 ↑7 ↓0 ↑10 ↓0 ↑63 ↓0

100 (10) ↑4 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑8 ↓0 ↑8 ↓0 ↑8 ↓0 ↑10 ↓0 ↑58 ↓0

200 (10) ↑4 ↓0 ↑5 ↓0 ↑8 ↓0 ↑7 ↓0 ↑8 ↓0 ↑9 ↓0 ↑7 ↓0 ↑8 ↓0 ↑56 ↓0

pc 5 (10) ↑4 ↓0 ↑4 ↓0 ↑4 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑8 ↓0 ↑43 ↓0

10 (10) ↑4 ↓0 ↑7 ↓0 ↑8 ↓0 ↑7 ↓0 ↑8 ↓0 ↑7 ↓0 ↑5 ↓0 ↑8 ↓0 ↑54 ↓0

20 (10) ↑5 ↓0 ↑9 ↓0 ↑10 ↓0 ↑9 ↓0 ↑9 ↓0 ↑10 ↓0 ↑7 ↓0 ↑9 ↓0 ↑68 ↓0

40 (10) ↑5 ↓0 ↑9 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑74 ↓0

80 (10) ↑5 ↓0 ↑8 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑73 ↓0

C (25) ↑1 ↓0 ↑16 ↓0 ↑21 ↓0 ↑18 ↓0 ↑19 ↓0 ↑19 ↓0 ↑12 ↓0 ↑20 ↓0 ↑126 ↓0

S (25) ↑22 ↓0 ↑21 ↓0 ↑21 ↓0 ↑22 ↓0 ↑25 ↓0 ↑25 ↓0 ↑25 ↓0 ↑25 ↓0 ↑186 ↓0

All (50) ↑23 ↓0 ↑37 ↓0 ↑42 ↓0 ↑40 ↓0 ↑44 ↓0 ↑44 ↓0 ↑37 ↓0 ↑45 ↓0 ↑312 ↓0

Set. Max 50 Dimensions

np 10 (10) ↑1 ↓0 ↑5 ↓0 ↑5 ↓0 ↑8 ↓0 ↑6 ↓0 ↑9 ↓0 ↑8 ↓0 ↑6 ↓0 ↑48 ↓0

25 (10) ↑0 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑7 ↓1 ↑9 ↓0 ↑7 ↓0 ↑7 ↓0 ↑44 ↓1

50 (10) ↑0 ↓0 ↑3 ↓1 ↑3 ↓0 ↑7 ↓0 ↑5 ↓1 ↑9 ↓0 ↑7 ↓0 ↑7 ↓0 ↑41 ↓2

100 (10) ↑0 ↓1 ↑4 ↓1 ↑4 ↓1 ↑6 ↓0 ↑6 ↓1 ↑6 ↓0 ↑8 ↓0 ↑7 ↓0 ↑41 ↓4

200 (10) ↑1 ↓0 ↑3 ↓1 ↑4 ↓0 ↑6 ↓1 ↑4 ↓0 ↑7 ↓1 ↑8 ↓0 ↑9 ↓0 ↑42 ↓3

pc 5 (10) ↑1 ↓0 ↑3 ↓1 ↑2 ↓0 ↑4 ↓1 ↑5 ↓2 ↑6 ↓1 ↑5 ↓0 ↑6 ↓0 ↑32 ↓5

10 (10) ↑0 ↓0 ↑3 ↓0 ↑4 ↓0 ↑5 ↓0 ↑4 ↓1 ↑7 ↓0 ↑5 ↓0 ↑5 ↓0 ↑33 ↓1

20 (10) ↑1 ↓1 ↑3 ↓1 ↑5 ↓1 ↑10 ↓0 ↑6 ↓0 ↑8 ↓0 ↑8 ↓0 ↑6 ↓0 ↑47 ↓3

40 (10) ↑0 ↓0 ↑5 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑9 ↓0 ↑10 ↓0 ↑9 ↓0 ↑50 ↓1

80 (10) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑54 ↓0

C (25) ↑0 ↓1 ↑0 ↓3 ↑0 ↓1 ↑8 ↓1 ↑4 ↓3 ↑15 ↓1 ↑13 ↓0 ↑11 ↓0 ↑51 ↓10

S (25) ↑2 ↓0 ↑19 ↓0 ↑21 ↓0 ↑24 ↓0 ↑24 ↓0 ↑25 ↓0 ↑25 ↓0 ↑25 ↓0 ↑165 ↓0

All (50) ↑2 ↓1 ↑19 ↓3 ↑21 ↓1 ↑32 ↓1 ↑28 ↓3 ↑40 ↓1 ↑38 ↓0 ↑36 ↓0 ↑216 ↓10

Set. Max 100 Dimensions

np 10 (10) ↑0 ↓6 ↑0 ↓10 ↑0 ↓10 ↑0 ↓10 ↑0 ↓10 ↑0 ↓7 ↑0 ↓8 ↑0 ↓2 ↑0 ↓63

25 (10) ↑0 ↓8 ↑0 ↓7 ↑0 ↓10 ↑0 ↓10 ↑0 ↓10 ↑0 ↓5 ↑0 ↓4 ↑2 ↓1 ↑2 ↓55

50 (10) ↑0 ↓7 ↑0 ↓7 ↑0 ↓9 ↑0 ↓10 ↑0 ↓7 ↑0 ↓5 ↑1 ↓4 ↑1 ↓3 ↑2 ↓52

100 (10) ↑0 ↓5 ↑0 ↓8 ↑0 ↓10 ↑0 ↓6 ↑0 ↓5 ↑1 ↓5 ↑0 ↓3 ↑3 ↓2 ↑4 ↓44

200 (10) ↑0 ↓6 ↑0 ↓8 ↑0 ↓9 ↑0 ↓4 ↑1 ↓2 ↑2 ↓4 ↑1 ↓1 ↑3 ↓2 ↑7 ↓36

pc 5 (10) ↑0 ↓7 ↑0 ↓10 ↑0 ↓10 ↑0 ↓8 ↑1 ↓9 ↑0 ↓7 ↑1 ↓7 ↑1 ↓5 ↑3 ↓63

10 (10) ↑0 ↓7 ↑0 ↓9 ↑0 ↓10 ↑0 ↓7 ↑0 ↓6 ↑0 ↓7 ↑0 ↓6 ↑0 ↓2 ↑0 ↓54

20 (10) ↑0 ↓6 ↑0 ↓7 ↑0 ↓9 ↑0 ↓8 ↑0 ↓6 ↑0 ↓3 ↑0 ↓1 ↑0 ↓3 ↑0 ↓43

40 (10) ↑0 ↓5 ↑0 ↓7 ↑0 ↓9 ↑0 ↓9 ↑0 ↓5 ↑1 ↓4 ↑0 ↓3 ↑3 ↓0 ↑4 ↓42

80 (10) ↑0 ↓7 ↑0 ↓7 ↑0 ↓10 ↑0 ↓8 ↑0 ↓8 ↑2 ↓5 ↑1 ↓3 ↑5 ↓0 ↑8 ↓48

C (25) ↑0 ↓7 ↑0 ↓15 ↑0 ↓23 ↑0 ↓19 ↑1 ↓16 ↑0 ↓19 ↑0 ↓13 ↑7 ↓4 ↑8 ↓116

S (25) ↑0 ↓25 ↑0 ↓25 ↑0 ↓25 ↑0 ↓21 ↑0 ↓18 ↑3 ↓7 ↑2 ↓7 ↑2 ↓6 ↑7 ↓134

All (50) ↑0 ↓32 ↑0 ↓40 ↑0 ↓48 ↑0 ↓40 ↑1 ↓34 ↑3 ↓26 ↑2 ↓20 ↑9 ↓10 ↑15 ↓250

Set. Max All Dimensions

np 10 (50) ↑25 ↓6 ↑33 ↓10 ↑33 ↓10 ↑32 ↓10 ↑29 ↓11 ↑30 ↓8 ↑26 ↓8 ↑26 ↓2 ↑234 ↓65

25 (50) ↑25 ↓8 ↑30 ↓7 ↑33 ↓10 ↑28 ↓10 ↑29 ↓11 ↑28 ↓6 ↑26 ↓5 ↑28 ↓1 ↑227 ↓58

50 (50) ↑20 ↓7 ↑28 ↓8 ↑28 ↓9 ↑28 ↓10 ↑28 ↓8 ↑30 ↓5 ↑27 ↓4 ↑29 ↓3 ↑218 ↓54

100 (50) ↑20 ↓6 ↑26 ↓10 ↑29 ↓11 ↑26 ↓6 ↑27 ↓6 ↑27 ↓5 ↑28 ↓3 ↑32 ↓2 ↑215 ↓49

200 (50) ↑19 ↓6 ↑23 ↓9 ↑27 ↓9 ↑26 ↓5 ↑25 ↓2 ↑28 ↓6 ↑26 ↓2 ↑32 ↓2 ↑206 ↓41

pc 5 (50) ↑23 ↓7 ↑18 ↓12 ↑18 ↓10 ↑12 ↓9 ↑17 ↓11 ↑15 ↓10 ↑14 ↓8 ↑20 ↓5 ↑137 ↓72

10 (50) ↑17 ↓7 ↑24 ↓9 ↑27 ↓10 ↑21 ↓7 ↑18 ↓8 ↑19 ↓8 ↑17 ↓7 ↑21 ↓2 ↑164 ↓58

20 (50) ↑21 ↓7 ↑31 ↓8 ↑35 ↓10 ↑35 ↓8 ↑31 ↓6 ↑30 ↓3 ↑26 ↓1 ↑25 ↓3 ↑234 ↓46

40 (50) ↑25 ↓5 ↑34 ↓8 ↑35 ↓9 ↑35 ↓9 ↑36 ↓5 ↑37 ↓4 ↑36 ↓3 ↑37 ↓0 ↑275 ↓43

80 (50) ↑23 ↓7 ↑33 ↓7 ↑35 ↓10 ↑37 ↓8 ↑36 ↓8 ↑42 ↓5 ↑40 ↓3 ↑44 ↓0 ↑290 ↓48

C (125) ↑44 ↓8 ↑62 ↓18 ↑70 ↓24 ↑65 ↓20 ↑59 ↓20 ↑65 ↓23 ↑55 ↓15 ↑68 ↓4 ↑488 ↓132

S (125) ↑65 ↓25 ↑78 ↓26 ↑80 ↓25 ↑75 ↓21 ↑79 ↓18 ↑78 ↓7 ↑78 ↓7 ↑79 ↓6 ↑612 ↓135

All (250) ↑109 ↓33 ↑140 ↓44 ↑150 ↓49 ↑140 ↓41 ↑138 ↓38 ↑143 ↓30 ↑133 ↓22 ↑147 ↓10 ↑1100 ↓267
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The self-adaptive components also improved CDE’s performance on the np(t) standard

set. A performance analysis that compared SACDE to CDE on the np(t) standard set

(given in Appendix D) found that SACDE performed statistically significantly better than

CDE on 1 403 of the 2 000 experimental environments, and worse on only 244. The average

percentage improvement of SACDE over CDE was 36.26%.

The results presented in this section shows that SADynPopDE and SACDE greatly

benefitted from their self-adaptive components on problems where the number of optima

fluctuates over time. Despite the large improvement of SACDE over CDE, a performance

analysis of SADynPopDE compared to SACDE (refer to Appendix D) found that SADyn-

PopDE performed better more often than SACDE, in the 2 000 environments (856 versus

603). SADynPopDE is thus the most effective algorithm on the np(t) standard set.

6.4.9.4 Summary for Research Question 8

This research question investigated the effect of the self-adaptive approaches on envi-

ronments in which the number of optima are unknown or fluctuating. SADynPopDE

performed better than DynPopDE on variations of the standard set, but was still inferior

to CDE and SACDE.

SADynPopDE performed worse than DynPopDE over a range of values for the number

of optima. The self-adaptive components thus did not improve the DynPopDE on problems

when the number of optima are unknown. However, large improvements were found for

SADynPopDE over DynPopDE, and SACDE over CDE, on problems where the number of

optima fluctuates over time. The self-adaptive components were thus especially beneficial

on these problems.

6.5 Comparison to Other Approaches

The experimental results of this chapter showed that, in general, the self-adaptive ap-

proaches incorporated into SACDE, resulted in an improvement over DynDE and CDE.

This section compares SACDE to the algorithms created by other researchers that were

used for comparisons in Chapters 4 and 5. Section 6.5.1 compares SACDE to jDE on

variations of the standard set. Section 6.5.2 compares SACDE to the published results of
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several algorithms aimed at DOPs.

6.5.1 SACDE Compared to jDE

jDE is one of the state-of-the-art algorithms aimed at dynamic environments. The com-

parison of CDE to jDE in Section 4.7.1 found that CDE performed better more often

than jDE on variations of the standard set. SACDE was consequently compared to jDE

to determine whether it constitutes a further improvement.

The performance analysis of SACDE compared to jDE is given in Tables 6.12 and 6.13.

SACDE performed better than jDE in 1 524 of the 2 160 experimental environments, and

worse in only 428 environments. SACDE thus outperformed jDE more often than CDE,

and was outperformed by jDE less often than CDE. The average percentage improvement

of CDE over jDE was 19.4%, while the API of SACDE over jDE was 25.16%. SACDE is

thus not only more effective than jDE, but also more effective than CDE in comparison

to jDE.

jDE performed better more often than SACDE when a change period of 100 function

evaluations was used, as was the case when comparing to CDE. jDE also performed better

than SACDE on specific functions, for example, the GDBG function F3, and the spherical

peak function of the MPB in 100 dimensions. Despite these exceptions, the experimental

results prove that SACDE is generally a more effective optimisation algorithm for dynamic

environments than jDE.

6.5.2 SACDE Compared to Other Algorithms

This section compares SACDE to the published results of other algorithms on variations

of the Scenario 2 settings of the MPB. The four change detection strategies which were

discussed in Section 4.7.2 were incorporated into SACDE to facilitate a fair comparison

of SACDE and the other algorithms.

Table 6.14 lists the offline errors of SACDE using the automatic detection strategy

(which uses no function evaluations and always works perfectly), the Detbest strategy,

the Detlocal strategy, the Detnk−best strategy, and the Detnk−local strategy. Cases where

SACDE performed statistically significantly worse when using a detection strategy are
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Table 6.12: SACDE vs jDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

5 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

10 (2) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑16 ↓0

20 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

80 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

C (6) ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑45 ↓0

S (6) ↑1 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓2

GDBG

F1a (6) ↑1 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓1

F1b (6) ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓2 ↑41 ↓4

F2 (6) ↑0 ↓2 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓2

F3 (6) ↑1 ↓0 ↑4 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑22 ↓18

F4 (6) ↑0 ↓2 ↑4 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓3

F5 (6) ↑0 ↓3 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓1 ↑3 ↓1 ↑3 ↓3 ↑30 ↓9

F6 (6) ↑3 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓1

T1 (7) ↑1 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓2 ↑45 ↓3

T2 (7) ↑1 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑47 ↓3

T3 (7) ↑3 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓2 ↑5 ↓2 ↑45 ↓6

T4 (7) ↑0 ↓6 ↑3 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑41 ↓10

T5 (7) ↑0 ↓4 ↑2 ↓3 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓2 ↑5 ↓1 ↑5 ↓2 ↑35 ↓12

T6 (7) ↑2 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓1 ↑5 ↓1 ↑5 ↓2 ↑45 ↓4

All (54) ↑11 ↓13 ↑45 ↓3 ↑52 ↓0 ↑54 ↓0 ↑52 ↓0 ↑45 ↓6 ↑44 ↓7 ↑43 ↓11 ↑346 ↓40

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

10 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

40 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

80 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

C (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓1

S (6) ↑1 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓3

GDBG

F1a (6) ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓0

F1b (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑40 ↓3

F2 (6) ↑1 ↓3 ↑2 ↓1 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑38 ↓5

F3 (6) ↑1 ↓2 ↑2 ↓3 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓2 ↑0 ↓6 ↑0 ↓6 ↑19 ↓19
F4 (6) ↑1 ↓2 ↑1 ↓1 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑37 ↓4

F5 (6) ↑2 ↓2 ↑1 ↓4 ↑2 ↓3 ↑2 ↓3 ↑3 ↓3 ↑2 ↓3 ↑2 ↓3 ↑2 ↓3 ↑16 ↓24

F6 (6) ↑1 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑39 ↓0

T1 (7) ↑0 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑45 ↓5

T2 (7) ↑1 ↓4 ↑3 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑43 ↓7

T3 (7) ↑1 ↓3 ↑3 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑4 ↓2 ↑36 ↓13

T4 (7) ↑1 ↓1 ↑2 ↓2 ↑5 ↓0 ↑6 ↓0 ↑7 ↓0 ↑5 ↓1 ↑5 ↓1 ↑4 ↓2 ↑35 ↓7

T5 (7) ↑1 ↓1 ↑2 ↓3 ↑3 ↓3 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑4 ↓2 ↑32 ↓14

T6 (7) ↑4 ↓0 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑5 ↓2 ↑42 ↓9

All (54) ↑9 ↓14 ↑34 ↓9 ↑45 ↓5 ↑50 ↓3 ↑51 ↓3 ↑45 ↓5 ↑44 ↓9 ↑40 ↓11 ↑318 ↓59

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

5 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

10 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

20 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

40 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

80 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

C (6) ↑0 ↓6 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓6

S (6) ↑0 ↓4 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓4

GDBG

F1a (6) ↑1 ↓2 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓2

F1b (6) ↑0 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓2

F2 (6) ↑0 ↓5 ↑1 ↓2 ↑4 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓9

F3 (6) ↑2 ↓4 ↑0 ↓5 ↑0 ↓5 ↑5 ↓0 ↑6 ↓0 ↑4 ↓1 ↑0 ↓5 ↑0 ↓6 ↑17 ↓26

F4 (6) ↑1 ↓5 ↑1 ↓3 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓9

F5 (6) ↑6 ↓0 ↑4 ↓2 ↑3 ↓2 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑13 ↓34

F6 (6) ↑1 ↓3 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑38 ↓3

T1 (7) ↑1 ↓3 ↑5 ↓2 ↑5 ↓2 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑39 ↓14

T2 (7) ↑1 ↓4 ↑4 ↓1 ↑4 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑37 ↓13

T3 (7) ↑1 ↓4 ↑2 ↓3 ↑4 ↓2 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑35 ↓16

T4 (7) ↑2 ↓4 ↑1 ↓3 ↑5 ↓2 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑5 ↓2 ↑35 ↓17

T5 (7) ↑2 ↓4 ↑2 ↓3 ↑3 ↓3 ↑5 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑4 ↓2 ↑32 ↓17

T6 (7) ↑4 ↓2 ↑4 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑42 ↓8

All (54) ↑11 ↓31 ↑30 ↓12 ↑39 ↓10 ↑47 ↓6 ↑48 ↓6 ↑46 ↓7 ↑42 ↓11 ↑41 ↓12 ↑304 ↓95
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Table 6.13: SACDE vs jDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

5 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

10 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

20 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

40 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

80 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

C (6) ↑0 ↓6 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓6

S (6) ↑0 ↓6 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓6

GDBG

F1a (6) ↑1 ↓3 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓3

F1b (6) ↑0 ↓4 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓6

F2 (6) ↑0 ↓5 ↑1 ↓1 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑34 ↓6

F3 (6) ↑1 ↓4 ↑0 ↓6 ↑0 ↓6 ↑1 ↓5 ↑3 ↓0 ↑4 ↓0 ↑1 ↓2 ↑0 ↓6 ↑10 ↓29

F4 (6) ↑0 ↓5 ↑2 ↓2 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓7

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓3 ↑1 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑22 ↓25

F6 (6) ↑0 ↓5 ↑2 ↓4 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑34 ↓11

T1 (7) ↑1 ↓5 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑42 ↓13

T2 (7) ↑1 ↓5 ↑2 ↓2 ↑6 ↓1 ↑5 ↓2 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑36 ↓15

T3 (7) ↑1 ↓4 ↑1 ↓4 ↑2 ↓2 ↑6 ↓1 ↑6 ↓0 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑32 ↓15

T4 (7) ↑2 ↓5 ↑4 ↓1 ↑5 ↓1 ↑5 ↓2 ↑5 ↓1 ↑5 ↓1 ↑5 ↓2 ↑5 ↓2 ↑36 ↓15

T5 (7) ↑2 ↓5 ↑2 ↓3 ↑5 ↓2 ↑5 ↓1 ↑6 ↓0 ↑6 ↓1 ↑5 ↓2 ↑4 ↓2 ↑35 ↓16

T6 (7) ↑1 ↓2 ↑2 ↓4 ↑3 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓1 ↑5 ↓1 ↑5 ↓2 ↑32 ↓13

All (54) ↑8 ↓38 ↑29 ↓15 ↑39 ↓8 ↑45 ↓8 ↑46 ↓4 ↑46 ↓6 ↑43 ↓8 ↑41 ↓12 ↑297 ↓99

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓9

5 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓9

10 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓9

20 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓9

40 (2) ↑0 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓9

80 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓7

C (6) ↑0 ↓6 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓6

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓46

GDBG

F1a (6) ↑0 ↓2 ↑2 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑36 ↓3

F1b (6) ↑0 ↓4 ↑2 ↓3 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓8

F2 (6) ↑0 ↓6 ↑2 ↓3 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑37 ↓9

F3 (6) ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑1 ↓1 ↑6 ↓0 ↑5 ↓0 ↑0 ↓4 ↑12 ↓28

F4 (6) ↑0 ↓6 ↑1 ↓2 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓8

F5 (6) ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓2 ↑3 ↓3 ↑1 ↓4 ↑0 ↓6 ↑31 ↓15

F6 (6) ↑0 ↓6 ↑1 ↓4 ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑32 ↓12

T1 (7) ↑1 ↓5 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑42 ↓13

T2 (7) ↑1 ↓4 ↑1 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑36 ↓11

T3 (7) ↑1 ↓4 ↑1 ↓5 ↑3 ↓2 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓2 ↑35 ↓14

T4 (7) ↑1 ↓5 ↑3 ↓2 ↑5 ↓1 ↑5 ↓1 ↑5 ↓1 ↑6 ↓1 ↑5 ↓1 ↑5 ↓2 ↑35 ↓14

T5 (7) ↑1 ↓5 ↑2 ↓3 ↑3 ↓2 ↑6 ↓1 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑5 ↓2 ↑37 ↓14

T6 (7) ↑1 ↓6 ↑1 ↓6 ↑2 ↓2 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓1 ↑33 ↓17

All (54) ↑6 ↓41 ↑19 ↓25 ↑30 ↓14 ↑41 ↓11 ↑41 ↓9 ↑45 ↓9 ↑42 ↓10 ↑35 ↓16 ↑259 ↓135

Set. Max All Dimensions

MPB

Cs 1 (10) ↑0 ↓8 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑63 ↓15

5 (10) ↑1 ↓5 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑64 ↓12

10 (10) ↑3 ↓6 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑66 ↓13

20 (10) ↑1 ↓5 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑64 ↓12

40 (10) ↑0 ↓8 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑63 ↓15

80 (10) ↑0 ↓8 ↑8 ↓1 ↑9 ↓0 ↑9 ↓0 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑62 ↓13

C (30) ↑3 ↓19 ↑29 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑212 ↓19

S (30) ↑2 ↓21 ↑24 ↓6 ↑24 ↓5 ↑24 ↓5 ↑24 ↓6 ↑24 ↓6 ↑24 ↓6 ↑24 ↓6 ↑170 ↓61

GDBG

F1a (30) ↑5 ↓8 ↑21 ↓1 ↑27 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑203 ↓9

F1b (30) ↑2 ↓13 ↑22 ↓5 ↑27 ↓1 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑29 ↓0 ↑26 ↓4 ↑196 ↓23

F2 (30) ↑1 ↓21 ↑10 ↓7 ↑24 ↓3 ↑29 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑184 ↓31

F3 (30) ↑5 ↓15 ↑6 ↓21 ↑8 ↓17 ↑18 ↓11 ↑22 ↓1 ↑15 ↓8 ↑6 ↓19 ↑0 ↓28 ↑80 ↓120

F4 (30) ↑2 ↓20 ↑9 ↓9 ↑20 ↓2 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑181 ↓31

F5 (30) ↑20 ↓5 ↑22 ↓7 ↑23 ↓5 ↑16 ↓12 ↑12 ↓15 ↑8 ↓19 ↑6 ↓20 ↑5 ↓24 ↑112 ↓107

F6 (30) ↑5 ↓15 ↑14 ↓8 ↑22 ↓4 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑25 ↓0 ↑186 ↓27

T1 (35) ↑4 ↓14 ↑31 ↓4 ↑31 ↓4 ↑32 ↓3 ↑32 ↓3 ↑30 ↓4 ↑28 ↓6 ↑25 ↓10 ↑213 ↓48

T2 (35) ↑5 ↓17 ↑17 ↓6 ↑29 ↓3 ↑31 ↓4 ↑32 ↓2 ↑30 ↓4 ↑28 ↓6 ↑27 ↓7 ↑199 ↓49

T3 (35) ↑7 ↓16 ↑14 ↓14 ↑21 ↓7 ↑31 ↓4 ↑30 ↓2 ↑30 ↓4 ↑26 ↓7 ↑24 ↓10 ↑183 ↓64

T4 (35) ↑6 ↓21 ↑13 ↓8 ↑27 ↓4 ↑29 ↓4 ↑30 ↓3 ↑27 ↓6 ↑26 ↓7 ↑24 ↓10 ↑182 ↓63

T5 (35) ↑6 ↓19 ↑10 ↓15 ↑19 ↓10 ↑29 ↓4 ↑30 ↓3 ↑28 ↓5 ↑27 ↓7 ↑22 ↓10 ↑171 ↓73

T6 (35) ↑12 ↓10 ↑19 ↓11 ↑24 ↓4 ↑31 ↓4 ↑30 ↓3 ↑28 ↓4 ↑26 ↓6 ↑24 ↓9 ↑194 ↓51

All (270) ↑45 ↓137 ↑157 ↓64 ↑205 ↓37 ↑237 ↓28 ↑238 ↓22 ↑227 ↓33 ↑215 ↓45 ↑200 ↓62 ↑1524 ↓428
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printed in italics. The Detlocal detection strategy caused SACDE to perform worse in

several instances, but the results from the other detection strategies differed from the

automatic detection strategy in a minority of cases. SACDE performed significantly better

when using the Detbest strategy in one instance, which is printed in boldface.

Table 6.14: SACDE using various detection strategies
Settings Automatic Detbest p-val Detlocal p-val Detnk−best p-val Detnk−local p-val

Cs 1 0.99 ± 0.08 0.97 ± 0.07 0.924 1.33 ± 0.12 0.000 1.06 ± 0.07 0.26 1.01 ± 0.08 0.82
Cs 2 1.65 ± 0.1 1.56 ± 0.1 0.197 2.28 ± 0.14 0.000 1.61 ± 0.12 0.504 1.6 ± 0.11 0.358
Cs 4 2.51 ± 0.15 2.76 ± 0.14 0.043 3.58 ± 0.19 0.000 2.89 ± 0.18 0.006 2.79 ± 0.16 0.016
Cs 6 3.72 ± 0.23 3.81 ± 0.2 0.273 4.88 ± 0.29 0.000 3.86 ± 0.27 0.35 3.85 ± 0.23 0.458
Cp 500 7.26 ± 0.38 6.98 ± 0.31 0.415 8.16 ± 0.47 0.016 7.71 ± 0.26 0.109 8.06 ± 0.42 0.008
Cp 1000 4 ± 0.15 3.94 ± 0.14 0.843 5.06 ± 0.23 0.000 4.35 ± 0.18 0.003 4.19 ± 0.15 0.063
Cp 2500 1.9 ± 0.08 1.97 ± 0.11 0.293 2.54 ± 0.13 0.000 2.03 ± 0.1 0.088 2.02 ± 0.08 0.034
Cp 10000 0.45 ± 0.05 0.59 ± 0.16 0.068 0.79 ± 0.16 0.000 0.51 ± 0.06 0.155 0.56 ± 0.15 0.374
nd 10 2.26 ± 0.16 2.27 ± 0.13 0.786 3.09 ± 0.17 0.000 2.37 ± 0.21 0.423 2.3 ± 0.17 0.775
nd 50 12.06 ± 0.77 12.75 ± 0.96 0.213 16.66 ± 1.34 0.000 12.55 ± 0.79 0.495 13.09 ± 0.74 0.072
nd 100 23.81 ± 1.16 25.84 ± 1.18 0.015 35.63 ± 2.05 0.000 24.99 ± 1.33 0.254 26.35 ± 1.20 0.003
np 1 4.6 ± 0.47 3.9 ± 0.44 0.034 5.03 ± 0.73 0.843 4.39 ± 0.52 0.552 3.97 ± 0.55 0.134
np 5 2.1 ± 0.14 2.1 ± 0.17 0.994 2.60 ± 0.16 0.000 2.09 ± 0.16 0.73 2.13 ± 0.15 0.775
np 20 2.38 ± 0.16 2.42 ± 0.19 0.775 2.59 ± 0.2 0.106 2.18 ± 0.14 0.182 2.17 ± 0.18 0.088
np 30 2.84 ± 0.24 2.8 ± 0.14 0.959 3.08 ± 0.19 0.072 2.64 ± 0.15 0.248 2.61 ± 0.16 0.159
np 40 2.85 ± 0.19 2.8 ± 0.18 0.495 3.01 ± 0.17 0.273 2.79 ± 0.17 0.504 2.81 ± 0.14 0.775
np 50 2.9 ± 0.2 2.96 ± 0.17 0.654 3.29 ± 0.18 0.008 2.91 ± 0.19 0.924 2.91 ± 0.28 0.476
np 100 2.71 ± 0.15 2.98 ± 0.17 0.034 3.19 ± 0.16 0.000 3.03 ± 0.16 0.006 2.91 ± 0.15 0.106
np 200 2.57 ± 0.12 2.54 ± 0.1 0.947 2.88 ± 0.12 0.000 2.67 ± 0.12 0.219 2.6 ± 0.13 0.82

Table 6.15 lists the published results of 14 of the algorithms that were discussed in

Section 3.3 on the variations of the MPB Scenario 2. The 95% confidence intervals were

calculated from the reported standard errors or standard deviations in cases where the

confidence interval was not reported. Each result was compared to the relevant SACDE

result to determine which is better. Results were considered to be similar if the confidence

intervals overlapped, i.e. neither algorithm was considered better than the other. Offline

errors that are higher than SACDE’s (i.e. SACDE performed better) are printed in bold-

face in shaded cells. Offline errors that are lower than the corresponding SACDE results

are printed in italics.

The comparison of SACDE with each of the tabulated algorithms is briefly discussed

below:

MMEO [Moser and Hendtlass, 2007] MMEO algorithm detects changes by re-evaluating

all the best solutions in the fitness landscape and is thus comparable to the Detlocal

and Detnk−local detection strategies. MMEO yielded a lower offline error than

SACDE on experiments with change severity of 1, but confidence intervals of the

two algorithms overlap (when comparing with Detnk−local). Therefore, MMEO can-
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Table 6.15: Reported offline errors of various algorithms on variations of Scenario 2 of the

MPB
MMEO HJEO LSEO CESO ESCA MPSO SPSO

Cs 1 0.66 ± 0.39 0.25 ± 0.20 0.25 ± 0.16 1.38 ± 0.04 1.53 ± 0.02 1.75 ± 0.12 N/A
Cs 2 0.86 ± 0.41 0.52 ± 0.27 0.47 ± 0.24 1.78 ± 0.04 1.57 ± 0.02 2.4 ± 0.12 N/A
Cs 4 0.97 ± 0.41 0.64 ± 0.31 0.53 ± 0.25 2.23 ± 0.10 1.72 ± 0.06 3.59 ± 0.20 N/A
Cs 6 1.09 ± 0.43 0.9 ± 0.33 0.77 ± 0.47 2.74 ± 0.20 1.79 ± 0.06 4.79 ± 0.20 N/A
nd 10 2.44 ± 1.51 2.17 ± 1.57 2.25 ± 1.67 2.51 ± 0.08 N/A 4.17 ± 0.29 N/A
nd 50 206.3 ± 69.97 5.79 ± 2.74 6.22 ± 3.14 6.81 ± 0.14 N/A N/A N/A
nd 100 480.5 ± 137.39 16.5 ± 10.86 17.8 ± 13.52 24.6 ± 0.49 N/A N/A N/A
np 1 11.30 ± 6.98 7.08 ± 3.90 7.47 ± 3.88 1.04 ± 0.00 0.98 ± 0.00 5.07 ± 0.33 N/A
np 5 N/A N/A N/A N/A N/A 1.81 ± 0.14 1.98 ± 0.05

np 20 0.90 ± 0.31 0.39 ± 0.20 0.40 ± 0.22 1.72 ± 0.04 1.89 ± 0.08 2.42 ± 0.14 N/A
np 30 1.06 ± 0.27 0.49 ± 0.18 0.49 ± 0.20 1.24 ± 0.02 1.52 ± 0.04 2.48 ± 0.14 N/A
np 40 1.18 ± 0.31 0.56 ± 0.18 0.56 ± 0.18 1.30 ± 0.04 1.61 ± 0.04 2.55 ± 0.14 N/A
np 50 1.23 ± 0.22 0.58 ± 0.18 0.59 ± 0.20 1.45 ± 0.02 1.67 ± 0.04 2.50 ± 0.12 3.47 ± 0.06

np 100 1.38 ± 0.18 0.66 ± 0.14 0.66 ± 0.14 1.28 ± 0.04 1.61 ± 0.06 2.36 ± 0.08 3.60 ± 0.07

np 200 N/A N/A N/A N/A N/A 2.26 ± 0.06 3.47 ± 0.04

CPSO MSOD HMSO MSO Cellular DE Cellular PSO MPSO2

Cs 1 1.06 ± 0.07 1.06 ± 0.03 1.42 ± 0.04 1.51 ± 0.04 1.64 ± 0.03 1.14 ± 0.13 N/A
Cs 2 1.17 ± 0.06 1.51 ± 0.04 N/A N/A N/A N/A N/A
Cs 4 1.38 ± 0.08 N/A N/A N/A N/A N/A N/A
Cs 6 1.53 ± 0.08 N/A N/A N/A N/A N/A N/A
Cp 500 N/A N/A 7.56 ± 0.27 5.95 ± 0.09 N/A 1.44 ± 0.13 N/A
Cp 1000 N/A 3.58 ± 0.05 4.61 ± 0.07 3.94 ± 0.08 3.98 ± 0.03 1.33 ± 0.11 N/A
Cp 2500 N/A N/A 2.39 ± 0.16 N/A 2.42 ± 0.02 1.08 ± 0.09 N/A

Cp 104 0.625 ± N/A N/A 0.94 ± 0.09 0.97 ± 0.04 N/A 1.1 ± 0.18 N/A
np 1 0.14 ± 0.03 N/A 0.87 ± 0.05 0.56 ± 0.04 1.53 ± 0.07 5.23 ± 0.47 N/A
np 5 0.72 ± 0.08 N/A 1.18 ± 0.04 1.06 ± 0.06 1.50 ± 0.04 1.09 ± 0.22 1.77 ± 0.05

np 20 1.59 ± 0.06 N/A 1.50 ± 0.06 1.89 ± 0.04 2.46 ± 0.05 2.20 ± 0.12 N/A
np 30 1.58 ± 0.05 N/A 1.65 ± 0.04 2.03 ± 0.06 2.62 ± 0.05 2.67 ± 0.13 N/A
np 40 1.51 ± 0.03 N/A 1.65 ± 0.05 2.04 ± 0.06 2.76 ± 0.05 2.70 ± 0.13 N/A
np 50 1.54 ± 0.03 N/A 1.66 ± 0.02 2.08 ± 0.02 2.75 ± 0.05 2.77 ± 0.13 N/A
np 100 1.41 ± 0.02 N/A 1.68 ± 0.03 2.14 ± 0.02 2.73 ± 0.03 2.91 ± 0.14 N/A
np 200 1.24 ± 0.02 N/A 1.71 ± 0.02 2.11 ± 0.03 2.61 ± 0.02 3.14 ± 0.12 2.37 ± 0.03

not conclusively be considered superior to SACDE. Change severities of 2, 4 and 6

yielded MMEO results that are clearly superior to SACDE’s results. Overlapping

confidence intervals were found in 10 dimensions, but SACDE clearly performed bet-

ter than MMEO in 50 and 100 dimensions. SACDE performed worse than MMEO

on experiments with various numbers of peaks, with the exception of the experiment

using one peak, where the confidence intervals overlapped.

HJEO [Moser, 2007] HJEO performed better than SACDE on all reported cases, ex-

cept 10 and 100 dimensions where the confidence intervals overlapped. SACDE

performed worse than HJEO on experiments with various numbers of peaks, with

the exception of the experiment using one peak, where the confidence intervals over-

lapped.

LSEO [Moser and Chiong, 2010] LSEO performed better than SACDE on all re-

ported cases, except in 10 and 100 dimensions, where the confidence intervals over-

lapped. SACDE performed worse than LSEO on experiments with various numbers
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of peaks, with the exception of the experiment using one peak, where the confidence

intervals overlapped.

CESO [Lung and Dumitrescu, 2007] CESO detects changes by re-evaluating the best

individual in the DE population and is thus comparable to the Detbest detection

strategy. SACDE performed better than CESO on experiments with a change sever-

ity of 1 and 2, but CESO performed better than SACDE on experiments with change

severities of 4, and 6. SACDE performed better than CESO in 10 dimensions but

worse in 50 dimensions. Overlapping confidence intervals were found in 100 dimen-

sions. CESO performed better than SACDE on all settings of number of peaks,

except 10.

ESCA [Lung and Dumitrescu, 2010] SACDE performed better than ESCA on a change

severity of 1, but worse on change severities of 2, 4 and 6. ESCA performed better

than SACDE on all settings of number of peaks, except 10.

MPSO [Blackwell and Branke, 2006] MPSO uses theDetlocal detection strategy, and

is consequently comparable to SACDE using the Detnk−local detection strategy.

SACDE performed better than MPSO on all variations of change severity and di-

mension. SACDE performed better than MPSO when one peak was used, but worse

in experiments with 5, 50, 100 and 200 peaks. Overlapping confidence intervals were

found when using 20, 30 and 40 peaks.

SPSO [Li et al., 2006] SPSO detects changes by re-evaluating the five best particles,

and is thus comparable to SACDE using theDetnk−local strategy. SACDE performed

worse than SPSO when five peaks were used, but better than SPSO in all other

reported cases.

CPSO [Yang and Li, 2010] CPSO detects changes using the Detbest detection strategy

and is thus roughly comparable to SACDE using the Detnk−best strategy. Overlap-

ping confidence intervals were found when using a change severity of 1. CPSO

performed better than SACPE with change severities of 2, 4 and 6. SACPE per-

formed better than CPSO when a change period of 10 000 was used, but as Yang

and Li [2010] did not report the confidence interval for this experiment, SACPE’s
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superiority cannot be confirmed for this experiment. CPSO performed better than

SACDE on all settings of number of peaks, except 10.

MPSOD [Novoa-Hernández et al., 2011] MPSOD is compared to SACDE using the

Detnk−local detection strategy. Overlapping confidence intervals were found for vari-

ations of change severity. MPSOD performed better than SACDE when a change

period of 1 000 was used.

HMSO [Kamosi et al., 2010a] HMSO uses the Detbest change detection strategy, and,

as not all sub-populations are evolved per generation, it can be compared to SACDE

using Detbest. SACDE performed better than HMSO on all variations of change

period, with the exception of the experiment where 500 function evaluations were

used, where overlapping confidence intervals were found. HMSO performed better

than SACDE on all settings of number of peaks, except 10.

MSO [Kamosi et al., 2010b] Kamosi et al. [2010b] do not specify the change detection

strategy that is used in MSO, but it is assumed that the Detbest strategy that was

used in HMSO (which was developed by the same authors) is also used in MSO.

SACDE performed better than MSO when a change severity of 1 was used, and

overlapping confidence intervals were found when a change period of 1 000 was used.

SACDE performed better than MSO when a change period of 10 000 was used. MSO

performed better than SACDE in all other reported cases.

Cellular DE [Noroozi et al., 2011] Cellular DE employs theDetlocal change detecting

strategy and is thus comparable to SACDE using the Detnk−local strategy. SACDE

performed better than Cellular DE when a change period of 2 500 and 5 000 were

used, but worse when a change period of 1 000 was used. Cellular DE performed

better than SACDE when 1 and 5 peaks were present, but worse than SACDE when

20 peaks were present. Overlapping confidence intervals were found when more than

20 peaks were present in the environment.

Cellular PSO [Hashemi and Meybodi, 2009a] Cellular PSO uses theDetlocal change

detecting strategy and is thus comparable to SACDE using the Detnk−local strat-

egy. Cellular PSO performed better than SACDE when using change periods of
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500, 1 000 and 2 500, but overlapping confidence intervals were found when using

a change period of 5 000. SACDE performed better than Cellular PSO when using

a change period of 10 000. SACDE performed better than Cellular PSO when a

single peak was present, but worse than Cellular PSO when 5 peaks were present.

Overlapping confidence intervals were found for all settings for the number of peaks

greater than 5, except when 200 peaks were present, where SACDE performed better

than Cellular PSO.

MPSO2 [Blackwell, 2007] MPSO2 detects changes using the Detlocal strategy, which

makes it comparable to SACDE using the Detnk−local strategy. SACDE performed

worse than MPSO2 in both the reported environments.

The analysis in this section found that SACDE performed similar to, or better than

the majority of the algorithms on at least one environment. SACDE did not, however,

compare as favourably to the algorithms as was the case with CDE in Section 4.7.2 and

DynPopDE in Section 5.4. Although CDE and DynPopDE performed better in compari-

son with published results of the algorithms, it should be noted that the experimental set

used in this section is relatively small, and that it has been shown in this chapter that

SACDE is a better algorithm than CDE (and by extension, DynPopDE) over a wide range

of experimental environments. The default values used by CDE for the scale and crossover

factors and the Brownian radius are thus effective for the small set of environments used

in this section (the MPB was used by the researchers who originally tuned the default

values). CDE thus performed comparatively better SACDE on these environments, while

SACDE performed better than CDE on the large set of environments used in the previ-

ous sections. The appropriate parameters are thus problem dependant and the default

parameters were accordingly less effective over a broad set of environments. SACDE has

the further benefit of having fewer parameters to tune than CDE, DynPopDE, and the

majority of the algorithms used for comparison in this section.
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6.6 Conclusions

This chapter investigated the incorporation of self-adaptive control parameters into CDE

and DynPopDE to form SACDE and SADynPopDE. The self-adaptive approaches focused

on adapting the scale and crossover factors and the Brownian radius.

Three approaches to self-adapting the scale and crossover factors were selected from

the literature. Alterations of these approaches were investigated, including the use of

different DE schemes, random initial values and resetting the values when a change in

the environment occurs. A comparison of these approaches found that, in conjunction

with CDE, the approach of Brest et al. [2009] performed the best, but when using the

DE/best/2/bin scheme with initial values of the scale and crossover factors selected from

a normal distribution. This algorithm is referred to as jSA2Ran.

A comparative performance analysis of jSA2Ran and CDE found that jSA2Ran per-

formed better more often than CDE over a wide range of benchmark instances. The

effectiveness of jSA2Ran was found to be function-dependent, and more pronounced at

high change periods.

A novel approach to self-adapting the Brownian radius was proposed in this chapter.

The use of different random distributions and resetting the radius when changes occur,

was investigated. An experimental comparison of these approaches found that the most

effective approach uses a normal distribution to select the Brownian radius, and resets the

radius to initial values when changes occur. This algorithm is referred to as SABrNorRes.

SABrNorRes was compared to CDE on variations of the standard set. The results

showed that SABrNorRes performed better more often than CDE on the benchmark in-

stances. Improvements were more pronounced at high change periods and were found to

be function-dependent. A weakness of the SABrNorRes is that it performed comparatively

poorly on 100 dimensional problems.

SABrNorRes and jSA2Ran were combined to form SACDE. A performance analysis

which compared the performance of SACDE to CDE found that SACDE performed better

more often than CDE, but not more often than SABrNorRes performed better than CDE.

A scalability study found that SACDE generally scaled similar to SABrNorRes, while

jSA2Ran generally scaled similar to CDE.
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The scalability study confirmed that the self-adaptive algorithms scale better to high

change periods than CDE when compared to DynDE. SACDE and SABrNorRes did not

scale well to high dimensions, especially on the MPB functions. This trend was found to be

function-dependent which caused exceptions to the general rule. SACDE and SABrNorRes

scaled well with respect to the change severity, as the adaptive Brownian radius was

capable of maintaining problem-appropriate diversity. A strong correlation was observed

between the performance of the self-adaptive algorithms and the underlying functions and

change types.

The convergence profiles of the algorithms showed that the self-adaptive algorithms

generally show more rapid improvements in errors after a change in the environment.

SACDE and SABrNorRes reached equally low errors as DynDE at high change peri-

ods, which explains why SACDE and SABrNorRes performed better than CDE on these

environments. The diversity profiles showed that, while jSA2Ran mirrored the low di-

versity values found for CDE. SACDE and SABrNorRes maintained a higher average

sub-population diversity over the course of the optimisation process. The effect of reset-

ting the Brownian radius after changes in the environment was a temporary increase in

overall and average sub-populations diversity.

The self-adaptive components that were used to create SACDE were incorporated

into DynPopDE to form SADynPopDE. An experimental comparison found that the self-

adaptive components do not compensate for DynPopDE’s poor scalability with respect to

the underlying function. SADynPopDE performed worse than DynPopDE over various

settings of the number of peaks, which suggests that the self-adaptive components are not

beneficial to the DynPopDE algorithm. However, it was shown that SADynPopDE was

superior to DynPopDE in situations where the number of optima in the dynamic envi-

ronment is fluctuating. Large improvements were found in several experiments, although

diminished performance was observed in 100 dimensions. The self-adaptive components

thus improve DynPopDE on problems where the number of optima fluctuates.

A comparison of SACDE with other algorithms from the literature found that SACDE

compares favourably to the other algorithms. SACDE did not outperform as many algo-

rithms as CDE on the benchmark results reported by other researchers, despite the fact

that this chapter has shown that SACDE, in general, is a more effective algorithm than
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CDE.

The experimental results presented in this chapter showed that CDE was improved by

the incorporation of self-adaptive control parameters which formed SACDE. SACDE has

three fewer parameters to tune than CDE, and yields lower offline errors in the majority

of the benchmark instances that were investigated. DynPopDE does not benefit from the

incorporation of self-adaptive control parameters on problems where the number of optima

is unknown, but SADynPopDE yielded lower offline error on problems where the number

of optima fluctuates.
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