
Chapter 4

NOVEL EXTENSIONS TO

DYNDE

The purpose of this chapter is to propose and evaluate new adaptations to the DynDE

algorithm. These adaptations include: an approach that allows sub-populations to com-

pete for fitness evaluations based on performance and an approach aimed at improving

the effectiveness of the exclusion component of DynDE. The two adaptations are com-

bined to form a third approach. The new approaches are empirically compared to DynDE

and analysed in terms of their performance characteristics on a large set of benchmark

problems.

4.1 Introduction

The previous chapter described the DynDE algorithm as a multi-population, DE-based

algorithm aimed at DOPs. The literature review found that DynDE employs strategies

that are generally used by other algorithms to optimise dynamic environments (refer to

Table 3.1). DynDE is a comparatively simple algorithm which has been shown to be

effective in solving DOPs [Mendes and Mohais, 2005].

A potential problem with DynDE is the fact that function evaluations are equally dis-

tributed to all the sub-populations that are used to track optima. Function evaluations

are wasted on optimising local optima, whereas merely locating the general location of
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local optima would suffice for the purpose of tracking the optima. The algorithms of

Kamosi et al. [2010b] and Novoa-Hernández et al. [2011], which were developed concur-

rently with the algorithms presented in this study, periodically remove badly performing

sub-populations from the evolution process to allow more function evaluations for the bet-

ter performing sub-populations. The competitive population evaluation (CPE) approach

that is presented in this chapter proposes that sub-populations should compete for fitness

evaluations. Lower error values can be found using fewer function evaluations, by evolving

sub-populations sequentially based on performance, rather than in parallel.

DynDE makes use of exclusion to prevent sub-populations from converging to the

same optima by reinitialising a sub-population that moves within the exclusion radius of

another. The exclusion approach ignores the possibility that multiple optima may exist

within the exclusion radius, which would result in only one of the optima being tracked.

This problem is addressed by a second novel adaptation to DynDE, called reinitialisation

midpoint check (RMC). RMC changes the mechanism by which exclusion is implemented

in DynDE to avoid reinitialisation of sub-populations that are not positioned on the same

optimum. The fitness of the midpoint between the best individuals in the sub-populations

is checked to determine whether the sub-populations are located on the same optimum.

Exclusion is not performed if multiple optima are detected.

This chapter is structured as follows: Section 4.2 describes how the DynDE exclusion

threshold calculation can be changed so that information regarding the number of optima

in the fitness landscape is not required. CPE is presented in Section 4.3. Section 4.4

describes the RMC approach. The combination of CPE and RMC to form competing

differential evolution (CDE) is discussed in Section 4.5. Section 4.6 describes experiments

to investigate the performance and scalability of DynDE, CPE, RMC and CDE. Specific

research questions are formulated and the experimental procedure is given in Sections 4.6.1

and 4.6.2. Section 4.6.3 investigates appropriate settings for the sub-population size and

number of Brownian individuals for DynDE. The scalability of DynDE, CPE, RMC and

CDE as the change period, number of dimensions, severity of changes, change types, and

underlying function are varied, is investigated in Section 4.6.4. Section 4.6.5 investigates

whether the novel approaches proposed in this chapter significantly improve DynDE. The

convergence behaviour of CDE is compared and contrasted with that of DynDE in Section
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4.6.6. The performance of CDE is compared in Section 4.6.7 to that of DynDE, using the

average lowest error before changes in the environment as performance measure.

A comparison of CDE to other algorithms in the literature is given in Section 4.7.

The general applicability of the approaches presented in this chapter is investigated by

incorporating the approaches into jDE in Section 4.8. Final conclusions are drawn in

Section 4.9.

4.2 Alternative Exclusion Threshold Approach

This thesis considers dynamic environments where information regarding the number of

optima is not available to the optimisation algorithm. Section 3.4.1.2 described the cal-

culation of the exclusion threshold as used by Mendes and Mohais [2005] and Blackwell

and Branke [2006]. The exclusion threshold, as calculated using equation (3.1), assumes

that the number of optima is known. Knowledge of the number of optima is generally

not available when solving a DOP, consequently, this thesis proposes that the exclusion

threshold rather be calculated using the number of sub-populations as follows:

rexcl =
Vmax,F − Vmin,F

2nk
1

nd

(4.1)

where nk is the number of sub-populations, and Vmax,F and Vmin,F are the upper and

lower search range of function F in the nd dimensions (assuming equal ranges for all

dimensions). The threshold is thus dependent on the number of available sub-populations.

A small number of sub-populations results in a large exclusion threshold, thus assigning

a large area of the search space to each sub-population. Conversely, a large number of

sub-populations results in a small exclusion threshold, consequently assigning a relatively

small area of the search space to each sub-population. Equation (4.1) was also used by

Blackwell [2007] in the self-adapting multi-swarms algorithm discussed in Section 3.3.3.2.

Note that, for the moving peaks benchmark (MPB) experiments discussed in this

chapter, the same number of populations as the number of optima was used. The results

can thus be directly compared to results from researchers that made use of equation (3.1)

to calculate the exclusion threshold, since the same threshold value was used.
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4.3 Competitive Population Evaluation

The effectiveness of an algorithm on static optimisation problems is usually measured by

the error of the best solution found at the end of the optimisation process. Although many

approaches aim to reduce the execution time of optimisation algorithms (i.e. reach a low

error value as soon as possible), the error during the course of the optimisation process

is of secondary concern. In contrast, optimisation in dynamic environments implies that

a solution is likely to be required at all times (or at least just before changes in the

environment occur), not just at the termination of the algorithm. In these situations,

it is imperative to find the lowest error value as soon as possible after changes in the

environment have occurred.

The offline error performance measure (discussed in Section 2.5.5) measures an algo-

rithm’s efficiency at finding solutions quickly by calculating the performance of an opti-

misation algorithm as the average of the lowest error value over every function evaluation,

as opposed to averaging errors immediately prior to changes in the environment. The

offline error can thus be reduced by finding solutions earlier (without necessarily finding

a better solution). An algorithm that finds solutions faster will also be beneficial in situa-

tions where evaluation criteria are only concerned with the error value immediately prior

to changes in the environments (as is the case with performance measure number two in

Section 2.5.5), since the algorithm will be more effective than a standard algorithm, when

the number of function evaluations between changes is reduced. A dynamic optimisation

algorithm can thus be improved, not only by reducing the error, but also by making the

algorithm reach its lowest error value (before a change occurs in the environment) in fewer

function evaluations.

The above argument is the motivation for a new approach to finding solutions ear-

lier which is proposed in this thesis, namely competitive population evaluation (CPE)

[du Plessis and Engelbrecht, 2012b]. CPE is an extension to DynDE discussed in Section

3.4.1. The primary goal of the new approach is not to decrease the error value found by

DynDE, but rather to make the algorithm reach the lowest error value in fewer function

evaluations. The proposed algorithm aims to achieve this by initially allocating all function

evaluations, after a change in the environment, to the sub-population that has the current
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best solution. Thereafter function evaluations are allocated to other sub-populations.

The mechanism used by CPE to allocate function evaluations is based on the perfor-

mance of sub-populations. The best-performing sub-population is evolved on its own until

its performance drops below that of another sub-population. The new best-performing

sub-population then evolves on its own until its performance drops below that of another

sub-population. This process is repeated until a change in the environment occurs. Ideally,

CPE would locate the global optimum early, while locating local optima later. CPE thus

differs from DynDE in that peaks are not located in parallel, but sequentially. The CPE

process is detailed in Algorithm 12. Changes in the environment are always followed by the

evolution of all sub-populations for two generations. These two generations are necessary

in order to calculate the performance value, Pk, for each of the Pk sub-populations. How-

ever, after the initial two generations, the CPE process evolves only one sub-population

per generation. CPE is thus responds directly to changes in the environment, unlike

algorithms like CPSOR (refer to Section 3.3.3.2).

Algorithm 12: Competitive population evaluation

while termination criterion not met do

Allow the standard DynDE algorithm to run for two generations;

repeat

for k = 1, . . . , nk do

Calculate the performance value, Pk(t)

end

Select sub-population Pa such that Pa(t) = min
k=1,...,nk

{Pk(t)};

Evolve only sub-population Pa using DE for one generation;

t = t+ 1;

Perform exclusion according to Algorithm 7;

Create Brownian individuals;

until a change in the environment occurs;

end

The performance value, Pk, of sub-population Pk depends on two factors: The current

 
 
 



CHAPTER 4. NOVEL EXTENSIONS TO DYNDE 111

fitness of the best individual in the sub-population and the error reduction of the best

individual during the last evaluation of the sub-population. Let nk be the number of sub-

populations, ~xbest,k the best individual in sub-population Pk, and F (~xbest,k, t) the fitness

of the best individual in sub-population Pk during iteration t. The performance Pk(t) of

population Pk, after iteration t, is given by:

Pk(t) = (∆F (~xbest,k, t) + 1)(Rk(t) + 1) (4.2)

where

∆F (~xbest,k, t) = |F (~xbest,k, t)− F (~xbest,k, t− 1)| (4.3)

For function maximisation problems, Rk(t) is calculated as:

Rk(t) = |F (~xbest,k, t)− min
a=1,...,nk

{F (~xbest,a, t)}| (4.4)

and for function minimisation problems,

Rk(t) = |F (~xbest,k, t)− max
a=1,...,nk

{F (~xbest,a, t)}| (4.5)

The best performing sub-population is, therefore, the sub-population with the highest

product of fitness and improvement. The motivation for the addition of 1 to the first and

second terms in equation (4.2) is to prevent a performance value of zero being assigned to

a sub-population. Without the addition in the second term, the least fit population will

always be assigned a performance value of zero (since the product of the first and second

term will be zero) and will never be considered for searching for an optimum. Similarly,

without the addition in the first term, a good performing population that does not show

any improvement during a specific iteration, is assigned a performance value of zero and

will never be considered for evaluation again. The addition of 1 to the first and second

terms is thus included to ensure that every sub-population could, potentially, have the

highest performance value and subsequently be given function evaluations.

The absolute values of ∆F (~xbest,k, t) and Rk(t) are taken to ensure that the perfor-

mance values are always positive. When a population is reinitialised due to exclusion

(see Section 3.4.1.2), the fitness of the best individual is likely to be worse than before

reinitialisation (since the sub-population now consists of randomly generated individuals).
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This results in a large ∆F (~xbest,k, t) value. The sub-population is consequently assigned

a relatively large performance value, making it likely that the sub-population would be

allocated fitness evaluations in the near future.

The CPE approach can be clarified by an example. Figure 4.1 plots the error per func-

tion evaluation of the best individual in each of three sub-populations (labelled Population

1, Population 2 and Population 3), found during an actual run of the DynDE algorithm on

the MPB using Scenario 2 settings. During the period that is depicted, no changes oc-

curred in the environment. Note that one of the sub-populations (Population 3) converged

to a global optimum, as is evidenced by its error value approaching zero, while the others

likely converged to local optima.
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Figure 4.1: Error profile of three DynDE populations in a static environment

The performance of each of the populations was calculated using equation (4.2) on

page 111. A plot of the performance of each of the populations is given in Figure 4.2.

Population 2 and Population 3 alternated between having the highest performance value,

for approximately the first half of the period depicted. After the first half of the depicted
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period, Population 3 consistently received the highest performance value, as it converged

to a global optimum. Population 3 received, on average, a higher performance value than

the other two populations. Population 1, which had the highest overall error, received a

relatively low average performance value. Note that it was only after about 1 000 function

evaluations that Population 2 and Population 3 received a lower performance value than

the initial performance value of Population 1.
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Figure 4.2: Performance, P, of each population

The behaviour of each of the populations, when using the CPE process (refer to Al-

gorithm 12) to selectively evolve sub-populations on their own based on their respective

performance values, can now be observed by using the calculated performance values. The

plots of the error of each of the populations per function evaluation when using CPE are

given in Figure 4.3. Population 2 and Population 3 were alternately evolved for the first

few iterations, followed by a period where only Population 2 was evolved. After about 250

function evaluations, Population 3 was evolved (except for a few intermittent iterations

around 700 function evaluations) until it converged to the global optimum at about 1 000
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function evaluations. Population 2 was evolved during the next period which lasted until

about 1 200 function evaluations, while Population 1 was evolved during the last period.

Note that the lowest error was reached after 1 000 function evaluations in Figure

4.3, while this point was only reached after 1 800 function evaluations in Figure 4.1.

The performance values of the three populations when using CPE are given in Figure

4.4. Observe that for considerable periods, the performance values of some of the sub-

populations remain constant. This occurs because only one sub-population is evolved at

a time, during which the performance value of the other populations remains unchanged.
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Figure 4.3: Error profile of three populations when using competitive evaluation

More successful sub-populations are clearly allocated more function evaluations earlier

in the evolution process. Optima are located sequentially by CPE and in parallel by

DynDE. Figure 4.5 depicts the effect that using CPE had on the offline error for the three

sub-populations example. The curve of the offline error, when competing sub-populations

are used, exhibits a steeper downward gradient than the curve of normal DynDE, due to

earlier discovery of the global optimum. Overall, the offline error was reduced by more
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Figure 4.4: Performance, P, of each population when using competitive evaluation

than 30% after 1 800 function evaluations.

The lowest error value is reached sooner by competitively choosing the better perform-

ing populations to evolve before other populations, thus reducing the average error. This

technique has the added advantage that better performing populations will receive more

function evaluations that would otherwise have been wasted on finding the maximum of

the sub-optimal peaks. The overall error value should consequently also be reduced.

An advantage of CPE is that it only utilises information that is available in normal

DynDE, so that no extra function evaluations are required. A potential disadvantage of

the CPE process is that too few function evaluations may be allocated to the weaker

sub-populations. Consequently, the weaker sub-populations may not locate local optima

which may become global optima after changes in the environment. This is more likely

to be a problem in situations where changes in the environment are infrequent, since

normal DynDE would have enough function evaluations available to optimise all optima

thoroughly. The benefits of locating optima early are also expected to diminish as the
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Figure 4.5: Comparison of offline error for normal and competitive evaluation

period between changes in the environment increases, because the offline error would be

averaged over a larger number of function evaluations, thus reducing the impact of initial

lower errors. CPE is thus expected to be most applicable to rapidly changing dynamic

environments.

4.4 Reinitialisation Midpoint Check

The exclusion approach, which was described in Section 3.4.1.2, causes DynDE to reini-

tialise the weaker sub-population when two sub-populations are located within the exclu-

sion radius of each other. This approach does not take into account the case when two

optima are located extremely close to each other, i.e. within the exclusion threshold of one

another. One of the sub-populations will be reinitialised in these situations, leaving one of

the optima unpopulated. This section proposes that this problem be partially remedied

by determining whether the midpoint between the best individuals in each sub-population
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constitutes a higher error value than the best individuals of both sub-populations. If this is

the case, it implies that a trough exists between the two sub-populations and that neither

should be reinitialised (refer to Figure 4.6, scenario A). This approach is referred to in

this thesis as the reinitialisation midpoint check (RMC) approach. Algorithm 13 details

how exclusion will be performed when RMC is used (assuming function minimisation).

Algorithm 13: RMC Exclusion

for k1 = 1, . . . , nk do

for k2 = 1, . . . , nk do

if ‖~xbest,k1 − ~xbest,k2‖2 < rexcl and k1 6= k2 then

Let ~xmid = (~xbest,k1 + ~xbest,k2)/2;

if F (~xmid) > F (~xbest,k1) and F (~xmid) > F (~xbest,k2) then

if F (~xbest,k1) < F (~xbest,k2) then

Reinitialise population Pk2

else

Reinitialise population Pk1

end

end

end

end

end

It is apparent that RMC does not work in all cases. Scenarios B and C of Figure 4.6

depict situations where multiple optima within the exclusion threshold are not detected

by a midpoint check. Scenario C further constitutes an example where no point between

the two optima will give a higher error, thus making it impossible to detect two optima

by using any number of intermediate point checks.

This approach is similar to, but simpler, than hill-valley detection suggested by Ursem

[2000] (described in Section 3.3), since only one point is checked between sub-populations.

The midpoint check approach provides a method of detecting multiple optima within the

exclusion threshold without being computationally expensive or using too many function

evaluations, since only one point is evaluated.
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Scenario C: Multiple optima not detected
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Scenario B: Multiple optima not detected
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Figure 4.6: Midpoint checking scenarios
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4.5 Competing Differential Evolution

The RMC and CPE algorithms are mutually independent and can thus be combined into a

single algorithm. This algorithm is referred to as competing differential evolution (CDE).

CDE thus consists of the standard DynDE algorithm, with the addition of a midpoint

check before reinitialising populations when they are within the exclusion threshold of

each other, and the evaluation of populations based on their performance. The pseudo-

code for CDE is identical to that of CPE given in Algorithm 12, but with the exclusion

step using Algorithm 13.

4.6 Experimental Results

This section describes the empirical analysis of DynDE, CPE, RMC and CDE and dis-

cusses the results. Experiments are designed to answer specific research questions given in

Section 4.6.1. The general experimental procedure is given in Section 4.6.2. The analysis

pertaining to each research question is given in Sections 4.6.3 to 4.6.7 respectively.

4.6.1 Research Questions

The following research questions were identified as pertinent for analysing the algorithms

proposed in this chapter:

1. What are effective settings for sub-population size and number of Brownian individ-

uals? Mendes and Mohais [2005] recommended using a small sub-population size

of six individuals. This can be seen as counterintuitive since larger sub-population

sizes should increase diversity. The effect of larger sub-populations is investigated.

Various settings for the number of Brownian individuals are also investigated to

determine the most effective value.

2. How do DynDE, RMC, CPE and CDE scale under factors that influence the com-

plexity of a DOP? Section 2.5.2 described the factors that determine an optimisation

algorithm’s ability to locate optima in a dynamic environment. The factors that are

investigated are: the number of dimensions of the search space, the number of func-

tion evaluations between changes in the environment (change period), the severity of
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changes, change types, and the function describing the fitness landscape. The scala-

bility study analyses the performance of the algorithms when varying combinations

of the previously mentioned factors.

3. Are RMC, CPE and CDE more effective dynamic optimisation algorithms than

DynDE? The results found when measuring the performance of the algorithms sug-

gested in this chapter on benchmark problems are compared to the results of DynDE.

4. How does the convergence behaviour of CDE differ from that of DynDE? The con-

vergence behaviours of DynDE and CDE are compared in terms of diversity, current

error and the resulting offline error to assist in explaining the trends observed in the

analyses of research questions 1 and 2.

5. How does the average lowest error, found just before changes in the environment,

differ between DynDE and CDE? CPE aims to locate optima earlier, but is not

specifically designed to achieve a lower overall error value before changes occur in

the environment. Similarly, RMC is not directly focused on lowering the error,

but rather on improving the optima tracking process. This research question is

investigated to determine how the performance of the new CDE algorithm differs

from that of CDE in terms of the average lowest error values before changes in the

environment.

The experimental procedure followed to investigate the research questions is outlined

in Section 4.6.2.

4.6.2 Experimental Procedure

The performance of DynDE, CPE, RMC and CDE was evaluated on the MPB and the

GDBG. The simplicity of the MPB makes it ideal for investigating the effect of different

change severities, while the GDBG provides functionality to investigate different change

types and underlying functions. Accordingly, a standard set of experiments is defined

here. Variations of the Scenario 2 settings on the MPB which are included in the standard

set are given in Table 4.1. The settings include several values for change severity and
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both the cone and sphere peak functions. The combinations of change severity and peak

function results in 12 MPB variations which are included in the standard set.

Table 4.1: MPB Scenario 2 Variations

Setting Value

Number of dimensions (nd) 5

Number of Peaks 10

Max and Min Peak height [30,70]

Max and Min Peak width [1.0,12.0]

Change period (Cp) 5000

Change severity (Cs) 1.0, 5.0, 10.0, 20.0, 40.0, 80.0

Height severity 7.0

Width severity 1.0

Function (F ) Cone, Sphere

Correlation 0.0

The GDBG problems considered here consist of six change types (T1 to T6) and six

functions (F1 to F6). Refer to Section 2.5.4 for details on these functions and change

types. The creators of the GDBG suggested that two instances of F1 be used: one con-

taining 10 peaks and one containing 50 peaks. These instances are denoted by F1a and

F1b respectively. The combinations of change types and functions thus yield a total of

42 GDBG environments that are included in the standard set. The GDBG variations are

summarised in Table 4.2. The default values for the number of dimensions and change

period are in accordance with the settings for the IEEE WCCI-2012 competition on evo-

lutionary computation for dynamic optimisation problems [Li et al., 2011].

Table 4.2: GDBG Variations

Setting Value

Number of dimensions (nd) 5

Change period (Cp) 50000

Function (F ) F1a, F1b, F2, F3, F4, F5, F6

Change type (Ct) T1, T2, T3, T4, T5, T6
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The 54 environments in the standard set thus contain 12 environments from the MPB

and 42 environments from the GDBG. The standard set is varied to investigate the effect

of different numbers of dimensions and various values for the change period (number of

function evaluations between changes in the environment). The variations on the standard

are given in Table 4.3.

Table 4.3: Standard Set Variations

Setting Values

Number of dimensions (nd) 5, 10, 25, 50, 100

Change period (Cp) 100, 500, 1000, 5000, 10000, 25000, 50000, 100000

A stopping criterion of 60 changes in the environment was used for all experiments

as suggested in [Li et al., 2008], [Li et al., 2011]. The offline error was used as perfor-

mance measure for all environments and experiments were repeated 30 times to facilitate

drawing statistically valid conclusions from the results. Mann-Whitney U tests were used

to test statistical significance when comparing algorithms. Unless otherwise stated, the

algorithms used the parameter settings described in Chapter 3.

4.6.3 Research Question 1

What are effective settings for sub-population size and number of Brownian individuals?

Mendes and Mohais [2005] investigated sub-population sizes of 6 and 10 with 2 and

5 Brownian individuals respectively. Experimental results on the MPB showed that the

smaller sub-population size was more effective. The experiments conducted by Mendes and

Mohais [2005] can be criticized for not being extensive enough for three reasons. Firstly,

only two sub-population size values (which are reasonably close to each other) were tested.

Secondly, the ratio of Brownian versus normal individuals is not the same in the two tests:

the sub-population of size 6 used 33.3̇% of each sub-population as Brownian, while the

sub-population of size 10 used 50% of each sub-population as Brownian. The results may

thus have been determined by the percentage of Brownian individuals rather than by the

sub-population size. Thirdly, the experiments used only the MPB without investigating

any variations of the Scenario 2 settings.
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This section presents the results of a more extensive investigation to determine the most

effective sub-population size and the appropriate proportion of Brownian individuals. The

goal of the experimental investigation is to find settings that works well over a broad range

of dynamic environments. Four settings for sub-population size were tested: 6, 12, 24, and

48. Six was selected as the smallest sub-population size tested, to prevent the DynDE’s

DE/best/2/bin scheme from always using the same five individuals to form the mutant

vector. Seven values for the percentage of Brownian individuals in each sub-population

were investigated: 0%, 16.6̇%, 33.3̇%, 50%, 66.6̇%, 83.3̇%, and 100%. These percentages

correspond to a sub-population of size six, using zero, one, two, three to six Brownian

individuals respectively. The other sub-population sizes that were tested are all multiples

of six, so an integer number of Brownian individuals was used in each case.

The four sub-population sizes and the seven percentages of Brownian individuals re-

sulted in 28 combinations of settings being investigated. The standard set of environments

(described in Section 4.6.2) was used to test each of the settings. The standard set was

also varied for each of the change periods and numbers of dimensions listed in Table 4.3.

A total of 648 experiments was thus conducted for each of the 28 settings.

The results for each setting were compared with those of each of the other settings to

determine which resulted in the lowest offline error. A Mann-Whitney U test was used

in each case to determine whether differences in average offline error were statistically

significant at a 95% confidence level. Table 4.4 gives a count for each setting of the

number of experiments that yielded a statistically significantly lower offline error than any

of the other settings. A maximum count of 17 496 can be found for each setting as 28

settings were each investigated on 648 experiments. Table 4.5 lists a similar count as Table

4.4, but here the counter was only incremented if a particular setting performed better

than all other settings for a particular experiment. A maximum value of 648 can thus be

achieved.

The results presented in Tables 4.4 and 4.5 indicate that using 16.6̇% Brownian in-

dividuals yields the most effective algorithm. The two instances that scored the highest

values in both tables occurred in rows that used 16.6̇% Brownian individuals. The conclu-

sion can thus be drawn that using 16.6̇% Brownian individuals gives the best performance

over a wide range of environments.
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Table 4.4: Number of environments in which each setting resulted in better performance
than other settings

Sub-Population Size

Percentage Brownian 6 12 24 48

0% 1585 5172 5396 4251

16.6̇% 14248 14613 12425 8854

33.3̇% 12891 13038 11076 7703

50% 11432 10509 8558 5774

66.6̇% 9656 8440 6432 4275

83.3̇% 7376 6173 4554 2892

100% 6159 5036 3438 2001

Table 4.5: Number of environments in which each setting performed the best

Sub-Population Size

Percentage Brownian 6 12 24 48 Total Best

0% 1 17 14 1 33

16.6̇% 251 56 6 0 313

33.3̇% 1 0 1 0 2

50% 0 0 0 0 0

66.6̇% 0 0 0 0 0

83.3̇% 0 0 0 0 0

100% 15 5 3 0 23

Total Best 268 78 24 1

The results for the most effective number of sub-populations is less clear-cut. The

highest value in Table 4.4 is for a sub-population size of 12 (14 613 out of a possible

17 496), while the highest value in Table 4.5 is for a sub-population size of 6 (251 out of

a possible 648). The sub-population size of 12 outperformed more of the other settings

per experiment, however the sub-population size of 6 most often performed the best per

experiment. Further analysis is thus required to determine whether a sub-population size

of 6 or 12 is the most effective.

Table 4.6 gives results comparing the comparative performance of the four sub-population
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sizes. The percentage Brownian individuals are kept constant at 16.6̇% for this analysis.

Each row of the table gives the number of times (out of a possible 648) that DynDE, using

the indicated number of sub-populations, performed better than the sub-population size,

shown in the respective columns. Totals are provided for the number of times that each

setting performed better (given in the last column) and worse (given in the last row) than

other settings.

Table 4.6: Number of environments in which each sub-population size resulted in better
performance than other sub-population sizes (row vs column) when using 16.6̇% Brownian
individuals

Sub-Population Size

Sub-Population Size 6 12 24 48 Total Better

6 - 340 424 487 1251

12 199 - 476 547 1222

24 150 61 - 529 740

48 98 53 20 - 171

Total Worse 447 454 920 1563

The sub-population size of six experiments yielded the highest total number of better

values (1 251 out of a possible 1 944) and the smallest total number of worse values (447).

DynDE, with sub-population size of six, was better than its closest contender (popula-

tion size of 12) in 340 cases and worse in only 199 cases. These results provide evidence

that using a sub-population size of six is the most effective approach. This conclusion is

strengthened by summing the number of times that each of the sub-population sizes per-

formed better than all the other three sub-population sizes for each experimental setting.

This information is summarised in Table 4.7. The experiments with a sub-population size

of six performed the best, considerably more often, than the other sub-population sizes. It

can thus be concluded that using a sub-population size of six yields the best results over

a broad range of dynamic environments.

A final analysis is given here to confirm the appropriateness of using 16.6̇% Brownian

individuals in a sub-population of 6 individuals. Table 4.8 lists the number of experiments

in which each of the percentages of Brownian individuals performed the best when a sub-
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Table 4.7: Number of environments in which each sub-population size resulted in the best
performance when using 16.6̇% Brownian individuals

Sub-Population Size 6 12 24 48

Number Best 340 81 23 20

population size of 6 was used. The experiments that used 16.6̇% Brownian individuals

outperformed the experiments using other percentages by a wide margin.

Table 4.8: Number of environments in which each percentage of Brownian individuals
resulted in the best performance when using a sub-population size of 6

Percentage Brownian 0% 16.6̇% 33.3̇% 50% 66.6̇% 83.3̇% 100%

Number Best 18 351 1 0 0 0 53

The 18 cases where using no Brownian individuals yielded better offline errors than

the other percentage settings were all in environments with a change period of either

100 or 500. These rapidly changing environments allow DynDE to perform very few

generations (about one generation with a change period of 100 and five generations with

a change period of 500). DynDE is unable to converge to optima effectively with so

few generations, which means that the Brownian individuals are created around inferior

individuals and function evaluations are consequently wasted. However, the disadvantage

of using Brownian individuals in these rapidly changing environments is minor, because

the results were statistically significantly better in only 18 of the 84 rapidly changing

environments that were investigated when Brownian individuals were not used.

This research question investigated appropriate settings for the sub-population size

and the proportion of Brownian individuals. The results presented in this section indicate

that Mendes and Mohais [2005] were correct in recommending a small sub-population size

of six, but that, using a single Brownian individual, rather than two, yields the best results

over a wide selection of dynamic environments.
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4.6.4 Research Question 2

How do DynDE, RMC, CPE and CDE scale under factors that influence the complexity

of a DOP?

This section presents the results of a scalability study on DynDE, CPE, RMC and

CDE with respect to dimension, change period, change type, change severity, and un-

derlying function. The standard set (refer to Section 4.6.2) of environments was varied

over all combinations of change periods and dimensions given in Table 4.3. The standard

set contains 54 environments which, multiplied by the five dimensional settings and the

eight change period settings, gives a total of 2 160 experiments that were conducted per

algorithm.

The rest of this section is structured as follows: Section 4.6.4.1 gives the results of each

algorithm on the standard set. Section 4.6.4.2 describes the scalability of the algorithms

with respect to change period, Section 4.6.4.3 the scalability with respect to dimension,

Section 4.6.4.4 the scalability with respect to change severity, Section 4.6.4.5 the scalability

with respect to underlying function, and Section 4.6.4.6 the scalability with respect to

change type. The observed trends are summarised in Section 4.6.4.7.

4.6.4.1 Performance on the Standard Set

The large amount of experimental data (a total of 8 640 experiments) makes it inconvenient

to present all results in tabular form. Accordingly, the following sections employ graphs to

illustrate the observed trends. The offline errors of each of the algorithms on the standard

set is given in Table 4.9 to provide context to the graphs given in the following sections.

The MPB conical peak function is denoted by “C”, the spherical peak function by “S”,

the change severity by “Cs”, the GDBG functions by “F1” to “F6”, and the GDBG change

types by “T1” to “T6”.

The first observation that can be made from Table 4.9 is that the different settings

of the standard set clearly has a large impact on the offine errors produced by each of

the algorithms. For example, observe the increase in offline error of the algorithms on

the MPB with the conical peak function (denoted by C) as the change severity, Cs, is

increased. Also note that the increase in offline error with respect to change severity is
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Table 4.9: Offline error of DynDE, CPE, RMC and CDE on the standard set

Settings DynDE CPE p-val RMC p-val CDE p-val

C Cs 1.0 1.05 ± 0.12 0.95 ± 0.15 0.155 0.85 ± 0.06 0.021 0.80 ± 0.21 0.000

5.0 4.26 ± 0.22 2.51 ± 0.25 0.000 4.22 ± 0.25 0.741 2.79 ± 0.22 0.000

10.0 10.87 ± 0.67 5.53 ± 0.45 0.000 10.39 ± 0.56 0.343 5.60 ± 0.39 0.000

20.0 20.33 ± 1.08 11.50 ± 0.71 0.000 19.04 ± 1.26 0.075 11.98 ± 0.79 0.000

40.0 20.49 ± 1.01 20.11 ± 1.18 0.458 20.59 ± 1.46 0.602 19.47 ± 0.78 0.109

80.0 28.53 ± 1.82 24.36 ± 1.14 0.000 28.54 ± 1.60 0.752 24.10 ± 0.81 0.000

S Cs 1.0 1.06 ± 0.17 1.15 ± 0.15 0.300 0.80 ± 0.10 0.017 1.07 ± 0.21 0.797

5.0 4.27 ± 0.13 2.88 ± 0.15 0.000 4.03 ± 0.08 0.009 2.58 ± 0.10 0.000

10.0 18.16 ± 0.23 10.42 ± 0.21 0.000 17.79 ± 0.24 0.040 9.71 ± 0.22 0.000

20.0 73.74 ± 1.37 46.01 ± 1.00 0.000 72.90 ± 2.05 0.242 43.71 ± 0.89 0.000

40.0 166.96 ± 6.38 152.81 ± 3.75 0.000 162.76 ± 6.49 0.350 147.32 ± 3.87 0.000

80.0 242.02 ± 10.48 234.25 ± 6.86 0.366 240.73 ± 7.69 0.947 220.62 ± 6.11 0.005

F1a T1 9.73 ± 0.20 6.03 ± 0.29 0.000 9.74 ± 0.20 0.982 5.99 ± 0.22 0.000

T2 18.75 ± 0.45 10.87 ± 0.30 0.000 18.47 ± 0.37 0.248 10.36 ± 0.29 0.000

T3 17.35 ± 1.19 9.84 ± 0.75 0.000 16.35 ± 0.95 0.286 10.56 ± 0.69 0.000

T4 20.24 ± 0.33 13.54 ± 0.32 0.000 20.13 ± 0.32 0.513 13.08 ± 0.27 0.000

T5 22.45 ± 0.35 13.45 ± 0.42 0.000 22.50 ± 0.32 0.832 13.63 ± 0.48 0.000

T6 26.52 ± 0.45 17.18 ± 0.38 0.000 26.43 ± 0.37 0.752 17.24 ± 0.36 0.000

F1b T1 11.56 ± 0.44 8.89 ± 0.35 0.000 11.28 ± 0.37 0.335 9.35 ± 0.41 0.000

T2 16.91 ± 0.36 11.35 ± 0.32 0.000 16.63 ± 0.34 0.358 11.35 ± 0.28 0.000

T3 16.80 ± 0.57 11.14 ± 0.51 0.000 16.64 ± 0.61 0.741 12.26 ± 0.63 0.000

T4 21.64 ± 0.51 15.34 ± 0.44 0.000 21.91 ± 0.50 0.314 15.42 ± 0.57 0.000

T5 18.84 ± 0.21 11.93 ± 0.21 0.000 18.49 ± 0.25 0.057 11.78 ± 0.16 0.000

T6 25.13 ± 0.37 15.87 ± 0.24 0.000 24.74 ± 0.38 0.159 16.12 ± 0.32 0.000

F2 T1 59.32 ± 1.16 52.76 ± 1.56 0.000 59.79 ± 1.29 0.476 50.98 ± 1.97 0.000

T2 154.55 ± 1.43 142.39 ± 3.00 0.000 155.87 ± 2.31 0.382 141.45 ± 6.47 0.000

T3 144.66 ± 2.19 142.71 ± 3.67 0.213 147.59 ± 1.99 0.057 138.18 ± 3.77 0.001

T4 109.16 ± 1.99 87.51 ± 3.17 0.000 109.39 ± 2.08 0.820 86.27 ± 3.14 0.000

T5 182.75 ± 4.08 210.98 ± 3.01 0.000 184.87 ± 3.67 0.254 208.00 ± 2.85 0.000

T6 157.50 ± 2.02 132.97 ± 2.94 0.000 160.88 ± 2.57 0.173 135.86 ± 4.14 0.000

F3 T1 603.28 ± 33.91 651.14 ± 21.62 0.037 629.03 ± 38.33 0.106 567.47 ± 63.52 0.843

T2 954.22 ± 8.57 944.15 ± 8.14 0.177 949.64 ± 5.98 0.440 948.69 ± 8.33 0.406

T3 957.51 ± 6.51 950.71 ± 7.31 0.485 949.20 ± 7.04 0.230 947.46 ± 7.91 0.068

T4 823.01 ± 14.58 813.42 ± 20.65 0.912 807.79 ± 24.27 0.764 803.66 ± 18.89 0.116

T5 912.61 ± 16.99 928.88 ± 14.77 0.033 928.74 ± 15.26 0.046 928.02 ± 19.91 0.182

T6 977.84 ± 9.30 975.48 ± 10.82 0.832 990.33 ± 9.79 0.077 972.99 ± 10.47 0.343

F4 T1 104.09 ± 2.71 75.07 ± 3.00 0.000 106.57 ± 2.93 0.572 74.63 ± 2.00 0.000

T2 317.50 ± 4.86 200.90 ± 5.37 0.000 314.00 ± 5.21 0.390 202.21 ± 5.31 0.000

T3 292.79 ± 5.02 203.19 ± 5.66 0.000 288.32 ± 4.59 0.224 209.94 ± 6.21 0.000

T4 210.72 ± 4.30 141.80 ± 5.39 0.000 214.69 ± 3.45 0.197 138.78 ± 4.03 0.000

T5 354.22 ± 6.60 315.53 ± 8.49 0.000 359.61 ± 6.88 0.293 323.35 ± 7.20 0.000

T6 304.35 ± 6.22 207.34 ± 5.38 0.000 304.12 ± 6.94 0.686 208.45 ± 5.25 0.000

F5 T1 184.45 ± 4.56 140.43 ± 2.70 0.000 179.84 ± 3.90 0.112 138.39 ± 2.74 0.000

T2 431.23 ± 3.99 281.12 ± 2.04 0.000 432.09 ± 5.02 0.686 283.31 ± 2.59 0.000

T3 456.55 ± 8.15 257.72 ± 4.07 0.000 457.50 ± 5.65 0.582 254.75 ± 4.22 0.000

T4 323.49 ± 5.58 211.48 ± 2.90 0.000 321.02 ± 7.11 0.542 209.22 ± 3.19 0.000

T5 660.93 ± 15.61 309.31 ± 4.75 0.000 655.21 ± 17.96 0.495 304.52 ± 4.42 0.000

T6 530.49 ± 13.27 274.13 ± 4.30 0.000 524.56 ± 11.99 0.350 272.89 ± 4.76 0.000

F6 T1 122.00 ± 4.56 88.10 ± 2.91 0.000 124.65 ± 3.28 0.279 89.67 ± 3.25 0.000

T2 364.30 ± 12.74 217.14 ± 20.63 0.000 381.20 ± 12.71 0.051 231.04 ± 10.06 0.000

T3 415.76 ± 14.23 279.81 ± 16.12 0.000 432.63 ± 15.18 0.100 305.07 ± 22.58 0.000

T4 262.26 ± 18.88 151.61 ± 11.73 0.000 254.35 ± 14.22 0.832 166.38 ± 14.31 0.000

T5 498.69 ± 17.72 383.18 ± 19.69 0.000 525.48 ± 16.39 0.051 396.75 ± 21.66 0.000

T6 430.24 ± 21.31 277.79 ± 19.30 0.000 444.89 ± 26.90 0.440 305.50 ± 18.43 0.000
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greater for the spherical peak function (denoted by S) than for the conical function. The

substantial effect of different settings is also clear on the GDBG experiments. For example,

compare the offline errors on function F1a to errors on function F3.

The standard set does not include variations of the number of dimensions, nd, or change

period, Cp. Experimental results on different settings of nd and Cp showed that these

values also had a considerable influence on offline errors. For example, consider Figure 4.7

which shows the offline error of DynDE on the MPB with the conical peak function and

change severity of 1.0 as nd and Cp are varied. The large effect of these settings is clear.
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Figure 4.7: Offline error of DynDE on the MPB using the conical peak function with
change severity 1.0 for various settings of number of dimensions and change period.

An analysis of the results found that the influence of the various settings is strongly

interrelated, for example, a combination of high dimension and low change period results

in an extremely high offline error in Figure 4.7. The following sections discuss the trends

that were observed for each of the scalability settings, respectively, in the context of the

other settings.
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4.6.4.2 Trends from Varying the Change Period

Section 2.5.2 pointed out that the frequency of changes (determined by the change period)

is one of the defining characteristics of a dynamic environment and argued that the change

frequency determines the viability of solving a DOP. Figure 4.7 shows an exponential in-

crease in offline error as the change period is reduced. A similar trend was found for all

other experimental environments and algorithms with respect to change period. This trend

exists because, as the change period is decreased, the number of available function evalua-

tions between changes in the environment decreases. The algorithms are consequently less

likely to locate optima which, in turn, leads to a higher offline error. Conversely, a large

change period makes the discovery of optima more likely, which results in a lower offline

error. An increase in change period results in diminishing returns, in terms of offline error,

as the environment tends towards a static environment. This explains the comparatively

low gradient of the curve for large change periods in Figure 4.7.

An analysis of the experimental data found that, in general, DynDE and RMC scaled

similarly with respect to change period, but that CPE and CDE exhibited different scal-

ing behaviour. All four algorithms performed similarly in the presence of very frequent

changes of 100 function evaluations. This observation is to be expected in the case of CPE

since the competition between sub-populations only commences subsequent to the second

generation after a change in the environment. A change period of 100 causes a change in

the environment before the second generation is completed. Accordingly, the CPE algo-

rithm reduces to DynDE which explains the similar results. The RMC approach is aimed

at situations where multiple optima are located within the exclusion radius of each other.

RMC aims to prevent the unnecessary reinitialisation of sub-populations when converging

to closely located optima. However, in the presence of frequent changes, the algorithm does

not have enough time to converge to optima and RMC consequently performs similarly to

DynDE.

CPE and CDE were found to be more scalable than DynDE and RMC when the

change period was higher than 100, although it was found that the number of dimensions

influenced the scalability. The performance of the algorithms on the GDBG function F1a,

with change type T1, was selected as a representative example to illustrate the influence of
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the number of dimensions on the scalability trend (refer to Figures 4.8 to 4.11). CPE and

CDE scaled better than DynDE and RMC only in the lower change periods (ignoring the

change period of 100) in low dimensions, with similar offline errors for the higher change

period experiments, as shown in Figure 4.8. The gap between CPE and CDE versus

DynDE and RMC widens in the 10 and 25 dimensional cases shown in Figures 4.9 and

4.10 but still yielded similar results for high change periods. However, in 100 dimensions

CPE and CDE clearly scale better than DynDE and RMC, even for high change periods.

The trends shown in Figures 4.8 to 4.11 are specific examples, but CPE and CDE

tended to scale better than DynDE and RMC in terms of change period on all functions

and change types, especially in high dimensions. Only low dimensional experiments yielded

situations where the the algorithms performed similarly for high change periods, as shown

in Figure 4.9.

4.6.4.3 Trends from Varying the Number of Dimensions

Section 2.5.2 mentioned the number of dimensions as one of the factors that determines

the hardness of a fitness landscape. One can generally assume that increasing the number

of dimensions increases the hardness of the fitness landscape (refer to page 35) since

the size of the search space is increased (there are, however, exceptions to this rule).

The experimental results showed that, in general, increasing the number of dimensions

resulted in a close-to-linear increase in offline error for all four algorithms. DynDE and

RMC showed similar scaling behaviour, while the results of CPE and CDE were similar.

Typically, CPE and CDE scaled better in terms of number of dimensions than DynDE

and RMC, but it was found that this trend was influenced by the change period.

The performance of the algorithms on the GDBG function F2 with change type T4

was selected as a representative example of the scalability of the algorithms in terms

of the number of dimensions with respect to change period. These trends are shown

in Figures 4.12 to 4.15. The previous section found that all four algorithms performed

similarly for low change periods. Figure 4.12 shows similar scaling behaviour over the

number of dimensions for DynDE, RMC, CPE and CDE for a change period of 500.

As the change period is increased to 5 000 (refer to Figure 4.13) CPE and CDE scales

better than DynDE and RMC. A change period of 25 000 function evaluations results in
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Figure 4.8: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F1a and change type
T1 for various settings of change period
in 5 dimensions.
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Figure 4.9: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F1a and change type
T1 for various settings of change period
in 10 dimensions.

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

90

Change Period (log scale)

O
ffl

in
e 

E
rr

or

 

 
DynDE
CPE
RMC
CDE

Figure 4.10: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F1a and change type
T1 for various settings of change period
in 25 dimensions.
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Figure 4.11: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F1a and change type
T1 for various settings of change period
in 100 dimensions.
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similar offline errors for all four algorithms in low dimensions (as shown in Figure 4.14),

but with CPE and CDE still scaling better than DynDE and RMC in high dimensions.

The diminishing performance of CPE and CDE with respect to DynDE and RMC in low

dimensions with an increased change period of 100 000 is apparent in Figure 4.15 where

CPE and CDE actually perform worse than DynDE and RMC in low dimensions, although

better performance is still observed in high dimensions.

The general trends observed in the examples shown in Figures 4.12 to 4.15 were found in

the majority of the benchmark settings that were investigated. CPE and CDE, in general,

scale better than DynDE and RMC in terms of number of dimensions. The increase

in offine error with the increase in the number of dimensions fits the hypothesis that

increasing the number of dimensions makes the DOP harder. The diminished scalability

of CPE and CDE in low dimensions with high change periods, in comparison with DynDE

and RMC, is explained by the fact that the large change periods allow sufficient function

evaluations for all algorithms to locate optima, hence resulting in similar offline errors. As

the dimension increases and the problem becomes harder, the more scalable algorithms,

CPE and CDE, give lower offline errors.

4.6.4.4 Trends from Varying the Change Severity

The severity of changes in a dynamic environment was identified as a critical factor which

determines the ability of an algorithm to solve a DOP (refer to Section 2.5.2). The result of

significantly large changes is that the new environment bears no relation to the previous

environment. The usefulness of information, gathered about an environment before a

change, thus diminishes as the severity of the changes increases. The offline error of an

optimisation algorithm is, consequently, expected to increase as the changes become more

severe. Experimental results from the experiments on the MPB showed that a considerable

increase in offline error for all algorithms does, in fact, result from increasing the change

severity.

CPE and CDE, typically, scaled better with respect to change severity than DynDE

and RMC. The trends, however, were once again found to be heavily dependent on the

change period. Results of the algorithms on the spherical peak function of the MPB in 10

dimensions are used as an example to illustrate the general trend (refer to Figures 4.16 to
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Figure 4.12: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F2 and change type
T4 for various settings of dimension with
a change period of 500 function evalua-
tions.
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Figure 4.13: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F2 and change type T4
for various settings of dimension with a
change period of 5 000 function evalua-
tions.
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Figure 4.14: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F2 and change type T4
for various settings of dimension with a
change period of 25 000 function evalua-
tions.
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Figure 4.15: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing peak function F2 and change type T4
for various settings of dimension with a
change period of 100 000 function evalu-
ations.
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4.19). Small change periods, as shown in Figure 4.16 resulted in similar scaling behaviour

for all four algorithms. A higher change period results in better scaling by CPE and CDE

than DynDE and RMC, as shown in Figure 4.17. The gap between the offline errors of

CPE and CDE versus DynDE and RMC increases in proportion as the change period is

increased to 25 000 in Figure 4.18 and to 100 000 in Figure 4.19.

The superior scalability of CPE and CDE, in terms of change severity, was found to

be especially pronounced when using the spherical peak function, but was also present,

to a lesser degree, in the conical peak function experiments. The improved scalability of

CPE and CDE, with an increasing change period, is in contrast with trends found with

respect to scalability in terms of dimension (refer to Section 4.6.4.3) and change period in

general (refer to Sections 4.6.4.2). A diminished difference between the scaling behaviour

of CPE and CDE versus DynDE and RMC was previously found when increasing the

change period.

The superior scaling behaviour exhibited by CPE and CDE is due to large errors

resulting from severe changes in the environment, which typically leaves sub-populations

located far from the optima. The competing population approach evolves only the best

sub-population at any given time and the current error thus decreases in fewer function

evaluations than it would when using normal DynDE.

Figure 4.20 shows the offline and current errors of DynDE and CPE on the MPB using

the spherical peak function in 10 dimensions with a change period of 5 000, while Figure

4.21 gives the same results with a change period of 100 000. A large change severity

value of 80.0 is used. Note that an increase in current error of about 3 000 occurs for

both algorithms after changes in the environments, which is roughly equal to the current

error at the commencement of the optimisation process. The current error of the CPE

algorithm decreases faster than that of DynDE after each change. This allows CPE to

achieve a lower current error than DynDE when a low change period is used (note the

difference in offline error between DynDE and CPE immediately before changes in Figure

4.20), which lead to a lower offline error.

Large change periods allow both algorithms to attain a current error approaching zero

before each change (refer to Figure 4.21), but the current error of CPE reduces faster

than that of DynDE. This tendency can be more clearly observed in Figure 4.22, which
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Figure 4.16: Offline errors of DynDE,
CPE, RMC, and CDE on the MPB using
the spherical peak function in 10 dimen-
sions for various settings of change sever-
ity with a change period of 500 function
evaluations.
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Figure 4.17: Offline errors of DynDE,
CPE, RMC, and CDE on the MPB us-
ing the spherical peak function in 10 di-
mensions for various settings of change
severity with a change period of 5 000
function evaluations.
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Figure 4.18: Offline errors of DynDE,
CPE, RMC, and CDE on the MPB us-
ing the spherical peak function in 10 di-
mensions for various settings of change
severity with a change period of 25 000
function evaluations.
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Figure 4.19: Offline errors of DynDE,
CPE, RMC, and CDE on the MPB us-
ing the spherical peak function in 10 di-
mensions for various settings of change
severity with a change period of 100 000
function evaluations.
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shows an enlargement of Figure 4.21 around the first change in the environment. The

CPE current error approaches zero in roughly half the function evaluations as does that

of DynDE. The faster reduction in error is reflected in the offine error (since it averages

over all the best errors found).
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Figure 4.20: Offline and current errors
of DynDE and CPE on the MPB spher-
ical function in 10 dimensions, a change
period of 5 000, and a change severity of
80.0.
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Figure 4.21: Offline and current errors of
DynDE and CPE on the MPB spherical
function in 10 dimensions, a change pe-
riod of 100 000, and a change severity of
80.0.

Figure 4.23 shows an enlargement of the current errors of DynDE and CPE in the

presence of a change period of 100 000 but with a minor change severity of 1.0. The small

change severity of Figure 4.23 (compared to Figure 4.22) results in comparatively small

increases in current error after a change in the environment. Both algorithms recover

quickly which results in similar behaviour by the two algorithms. The competitive pop-

ulation evaluation approach is thus more useful in the presence of severe changes in the

environment.

4.6.4.5 Trends from Various Functions

The underlying function, which determines the topology of the search landscape, was

identified in Section 2.5.2 as a factor that influences the intuitive concept of the hardness

of the fitness landscape. The underlying function used in a benchmark is consequently

expected to influence the performance of a DOP algorithm.
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Figure 4.22: Offline and current errors of
DynDE and CPE on the MPB spherical
function in 10 dimensions, a change pe-
riod of 100 000, and a change severity of
80.0. The area around the first change is
enlarged.
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Figure 4.23: Current errors of DynDE
and CPE on the MPB spherical func-
tion in 10 dimensions, a change period
of 100 000, and a change severity of 1.0.
The area around the first change is en-
larged.

The seven functions of the GDBG listed in Table 4.2 are used in this section to ob-

serve the effect of the function on the optimisation process. The number of dimensions

was found to have a large impact on the relative performance of DynDE, CPE, RMC and

CDE on the seven functions. The performance of the algorithms on environments with a

change type T1 and a change period of 10 000 was selected as a representative example

to illustrate the general trends observed over all change types, and the influence of the

number of dimensions on the scalability trend (refer to Figures 4.24 to 4.27). Low dimen-

sional experiments typically resulted in the behaviour shown in Figure 4.24. Function F3,

which is a composition of Rastrigin’s function (refer to Section 2.5.4.1), yielded a much

higher offline error than the other functions. DynDE, CPE, RMC and CDE all performed

similarly on F3, but the performance of DynDE and RMC differed from that of CPE and

CDE. Function F5 shows a more rapid growth in offline error than the other functions,

as the number of dimensions is increased (refer to Figure 4.25), while the difference in

performance between DynDE and RMC versus CPE and CDE grows.

At high dimensions (refer to Figure 4.26), the offline error on F5 exceeds that of

F3 while the gap between the performance of DynDE and RMC versus CPE and CDE

narrows until their behaviour becomes very similar (refer to Figure 4.27). Note that the

 
 
 



CHAPTER 4. NOVEL EXTENSIONS TO DYNDE 139

performance of DynDE and RMC versus CPE and CDE still differs for functions F2, F4

and F6 in Figure 4.27.

The general trend that is thus observed is that in low dimensions, function F3 presents

the greatest challenge to the optimisation algorithms, followed by F5, F6, F3, F2, and

finally F1. High dimensions alter this trend to function F5 posing the greatest challenge

to the algorithms, followed by F3, F6, F4, F2, and F1. Function F3 is comparatively

unaffected by increasing the number of dimensions, and causes the most similar scaling

behaviour in DynDE, CPE, RMC and CDE. CPE and CDE perform better than DynDE

and RMC on all other functions, especially in lower dimensions.

4.6.4.6 Trends from Various Change Types

The six change types of the GDBG listed in Table 4.2 are used in this section to observe

the effect of the change type on the optimisation process. The experimental results did

not reveal clear, general trends as was the case with the other settings that were varied.

The effect of the change type on the optimisation algorithm was found to depend on the

underlying function.

Table 4.10 was created by ranking the offline error of DynDE on each change type

in ascending order over all experiments for each function. The ranking of each change

type was then averaged to give an average ranking per change type, per function. Over all

functions, T1 ranked the highest, which means that, on average, DynDE yielded the lowest

offline error on T1. T3, T2, and T4 received similar rankings, while T5 and T6 received lower

rankings. T1 always received the highest ranking while T6 always ranked the lowest per

function, but the rankings per function did differ considerably from the overall ranking

in several cases. For example, consider the ranking on function F3, where T5 received a

relatively high rank and T2 received a relatively low rank.

Section 4.6.4.2 identified a trend in change period wherein CPE and CDE performed

better than DynDE and RMC at low change periods, while DynDE and RMC outper-

formed CPE and CDE at high change periods. An analysis of the experimental data

found that the point where DynDE and RMC start outperforming CPE and CDE de-

pends on the change type for each function. As an example, the offline error per change

type of DynDE, CPE, RMC, and CDE on function F1a in 10 dimensions is given in Figures
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Figure 4.24: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing change type T1 for various functions
in 10 dimensions with a change period of
10 000 function evaluations.
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Figure 4.25: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing change type T1 for various functions
in 25 dimensions with a change period of
10 000 function evaluations.
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Figure 4.26: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing change type T1 for various functions
in 50 dimensions with a change period of
10 000 function evaluations.
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Figure 4.27: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing change type T1 for various functions
in 100 dimensions with a change period
of 10 000 function evaluations.
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Table 4.10: Average ranking of change type per function
F1a F1b F2 F3 F4 F5 F6 All

T1 - 1.30 T1 - 1.80 T1 - 1.00 T1 - 1.00 T1 - 1.00 T1 - 1.28 T1 - 1.00 T1 - 1.20
T3 - 2.38 T2 - 2.35 T4 - 2.95 T3 - 2.83 T4 - 2.93 T4 - 2.80 T4 - 2.05 T3 - 3.23
T2 - 2.58 T3 - 2.58 T3 - 3.55 T5 - 3.38 T3 - 3.55 T2 - 3.03 T2 - 3.23 T2 - 3.26
T4 - 4.30 T5 - 3.60 T2 - 3.63 T4 - 3.55 T2 - 3.80 T3 - 3.58 T3 - 4.15 T4 - 3.36
T5 - 4.53 T4 - 4.98 T5 - 4.73 T2 - 4.25 T5 - 4.73 T5 - 4.60 T5 - 5.15 T5 - 4.39
T6 - 5.93 T6 - 5.70 T6 - 5.15 T6 - 6.00 T6 - 5.00 T6 - 5.73 T6 - 5.43 T6 - 5.56

4.28 to 4.31.

Very similar offline errors were found for each algorithm in Figure 4.28, which shows the

performance with a change period of 100. Figure 4.29, where a change period of 5 000 was

used, shows clearly better performance for CPE and CDE than for DynDE and RMC. The

diminishing difference in performance between CPE and CDE versus DynDE and RMC

is shown in Figure 4.30 (at a change period of 25 000 function evaluations), where T4 no

longer shows clear differences between CPE and CDE versus DynDE and RMC, and the

confidence bars of the algorithms on T3 overlap. Figure 4.31 shows the performance of the

algorithms at a change period of 100 000, where DynDE and RMC generally outperformed

CPE and CDE. The change type thus has an influence on how early, in terms of the change

period setting, the change over point between the performances of the algorithms occurs.

4.6.4.7 Summary for Research Question 2

The trends that emerged from varying the benchmark settings are summarised below for

each setting:

Change Period: Increasing the change period resulted in a reduction of offline error.

The algorithms have more function evaluations available between changes in the

environment which resulted in lower offline errors. CPE and CDE scaled better

than DynDE and RMC as changes became more frequent.

Number of Dimensions: Larger numbers of dimensions resulted in larger offline errors.

CPE and CDE scaled better than DynDE and RMC as the number of dimensions

increased.

Change Severity: More severe changes in the environment resulted in higher offline
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Figure 4.28: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing function F1a for various change types
in 10 dimensions with a change period of
100 function evaluations.
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Figure 4.29: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing function F1a for various change types
in 10 dimensions with a change period of
5 000 function evaluations.
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Figure 4.30: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing function F1a for various change types
in 10 dimensions with a change period of
25 000 function evaluations.
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Figure 4.31: Offline errors of DynDE,
CPE, RMC, and CDE on the GDBG us-
ing function F1a for various change types
in 10 dimensions with a change period of
100 000 function evaluations.
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errors, as information, gathered before changes, became less relevant. CPE and

CDE scaled better than DynDE and RMC as changes became more severe.

Function: The underlying benchmark function was found to have a strong influence on

the offline errors of the optimisation algorithms. The underlying function also de-

termines the scalability of each algorithm in terms of dimension. CPE and CDE

typically performed better than DynDE and RMC on the various functions.

Change Type: The effect of the change type was found to be related to the function

that was being optimised. The change types influence the point where DynDE and

RMC starts to outperform CPE and CDE due to an increased change period.

4.6.5 Research Question 3

Are RMC, CPE and CDE more effective dynamic optimisation algorithms than DynDE?

The discussion related to the previous research question identified trends which suggest

that CPE and CDE are superior to DynDE and RMC in terms of scalability over the change

period, number of dimensions and change severity. The aim of this section is to determine

whether RMC, CPE and CDE give significantly lower offline errors than DynDE and are

thus more effective algorithms for DOPs.

Table 4.9 gives the offline errors of DynDE, CPE, RMC and CDE on the standard

set of experiments which correspond to the benchmark settings in Tables 4.1 and 4.2.

The respective offline errors of CPE, RMC and CDE are printed in boldface in shaded

cells where the errors are lower than that of DynDE. The outcomes of Mann-Whitney U

tests, comparing the results of each algorithm to those of DynDE, are printed in italics

if differences in average offline error are statistically significant at a 95% confidence level

(i.e. are lower than 0.05). The results in Table 4.9 show that CPE and CDE clearly

outperformed DynDE in the majority of the settings of the standard set. RMC, however,

yielded a significantly lower offline error in only four cases and was outperformed by

DynDE in one case.

The standard set of experiments is not extensive enough to draw meaningful con-

clusions about the performance of the three algorithms compared to that of DynDE.

Experiments were consequently conducted on variations of the standard set, over all com-
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binations of settings of change period and number of dimensions given in Table 4.3. The

results were analysed by counting the number of times that DynDE was outperformed by

each of the algorithms and the number of times that each of the algorithms outperformed

DynDE. Only results that were statistically significantly different were considered.

Comparative results for each of the algorithms are summarised in Tables 4.11 to 4.16.

Each cell in the tables gives the number of cases in which the relevant algorithm outper-

formed DynDE (indicated by ↑) and the number of cases in which DynDE outperformed

that specific algorithm (indicated by ↓). The results were aggregated by function, change

type and change severity for all the values of the change period and number of dimensions

and totals given to support the analysis of the data. The value in column Max indicates

the maximum possible score that can be found in the cells in each row. Note that rows

labelled All, which gives aggregated results per change period, do not give totals of values

in each row as some results are duplicated in the stratifications of the different categories.

For example, results for each function are summed over all change types, while the result

for each change type is summed over all functions.

The following sections, respectively discuss the performance of CPE, RMC and CDE

compared to DynDE. CPE is compared to DynDE in Section 4.6.5.1, RMC is compared to

DynDE in Section 4.6.5.2, and CDE is compared to DynDE in Section 4.6.5.3. Concluding

remarks on this research question are given in 4.6.5.4.

4.6.5.1 CPE compared to DynDE

Table 4.11 summarises the comparison between the CPE and DynDE results in 5, 10 and

25 dimensions, while Table 4.12 gives the summary for 50 and 100 dimensions, and results

summarised over all the dimensions that were investigated. CPE performed significantly

better than DynDE in 1 344 experiments out of a total of 2 160 (i.e. 62.2% of all ex-

periments). DynDE performed better than CPE in only 219 experiments (10.1% of all

experiments). This clearly indicates that CPE is a more effective algorithm for DOPs than

DynDE. The majority of the cases where DynDE performed better than CPE occurred

when using a change period 50 000 or higher.

Section 4.3 hypothesised that the competing populations approach could potentially

allocate too few function evaluations to weaker sub-populations when changes in the en-
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vironment are infrequent, which could lead to inferior performance. This hypothesis has

been proved to be correct by the analysis presented in Table 4.11. However, the inferior

performance of CPE on high change period problems only occurs in low dimensions (com-

pare the 5 and 10 dimensional results to the 25, 50 and 100 dimensional cases in Tables

4.11 and 4.12). The aggregate analysis over all dimensions, which is given in Table 4.12,

shows that, when all dimensions are considered, CPE performed better than DynDE in

more cases, even when large change periods were used. These results agree with the trends

observed, in terms of change period and number of dimensions, in the scalability study

presented in Section 4.6.4.

Experiments, in which a change period of 100 function evaluations were used, resulted

in the fewest cases of statistically significant differences between DynDE and CPE. This

is because the competing populations process only commences after two generations, fol-

lowing a change in the environment. The two algorithms are identical when a change

period of 100 is used, because the population size employed in the experiments results in

successive changes in the environment occurring in less than two generations.

The trend that was observed in Section 4.6.4.4 in respect of change severity is confirmed

by CPE outperforming DynDE more often when a high change severity is used, in higher

than 10 dimensions. CPE outperformed DynDE more often on the MPB’s spherical peak

function in five dimensions, but in higher dimensions, CPE performed better more often

on the conical peak function. The GDBG F3 function consistently resulted in the fewest

number of statistically significantly differing results between CPE and DynDE. Function

F5 resulted in a comparatively large number of cases where CPE outperformed DynDE in

low dimensions, but resulted in a comparatively small number of superior results by CPE

in high dimensions, thus confirming the trend observed in Section 4.6.4.5.

The analysis described in this section does not give an indication of the magnitude of

the improvement of CPE over DynDE. The experimental data was analysed to determine

the average percentage improvement (API) in offline error of CPE over DynDE. The API

is calculated using:
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Table 4.11: CPE vs DynDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑3 ↓2

5 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓0

10 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑12 ↓0

20 (2) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑6 ↓1

80 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑4 ↓1

C (6) ↑0 ↓0 ↑1 ↓0 ↑3 ↓0 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑1 ↓0 ↑1 ↓2 ↑16 ↓2

S (6) ↑0 ↓1 ↑2 ↓1 ↑3 ↓0 ↑4 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑28 ↓2

GDBG

F1a (6) ↑0 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓3 ↑0 ↓6 ↑0 ↓6 ↑24 ↓17

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑23 ↓17

F2 (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑4 ↓1 ↑2 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑15 ↓23

F3 (6) ↑0 ↓1 ↑1 ↓0 ↑4 ↓0 ↑0 ↓2 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑7 ↓4

F4 (6) ↑0 ↓2 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑0 ↓6 ↑0 ↓6 ↑22 ↓15

F5 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑1 ↓3 ↑0 ↓6 ↑29 ↓12

F6 (6) ↑1 ↓0 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓2 ↑1 ↓2 ↑31 ↓5

T1 (7) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑4 ↓1 ↑0 ↓6 ↑0 ↓6 ↑1 ↓6 ↑23 ↓21

T2 (7) ↑0 ↓1 ↑4 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓2 ↑1 ↓5 ↑0 ↓5 ↑26 ↓14

T3 (7) ↑0 ↓0 ↑4 ↓0 ↑7 ↓0 ↑5 ↓0 ↑5 ↓1 ↑3 ↓1 ↑1 ↓4 ↑1 ↓5 ↑26 ↓11

T4 (7) ↑0 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑25 ↓17

T5 (7) ↑0 ↓2 ↑3 ↓0 ↑5 ↓0 ↑5 ↓2 ↑5 ↓1 ↑2 ↓2 ↑2 ↓4 ↑0 ↓5 ↑22 ↓16

T6 (7) ↑1 ↓1 ↑4 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑3 ↓3 ↑1 ↓4 ↑1 ↓5 ↑29 ↓14

All (54) ↑1 ↓7 ↑30 ↓1 ↑45 ↓0 ↑42 ↓3 ↑38 ↓5 ↑19 ↓18 ↑11 ↓29 ↑9 ↓34 ↑195 ↓97

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓2 ↑3 ↓7

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑6 ↓1

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

20 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

40 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

C (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓1 ↑35 ↓1

S (6) ↑0 ↓0 ↑0 ↓1 ↑2 ↓1 ↑4 ↓0 ↑4 ↓2 ↑4 ↓1 ↑4 ↓1 ↑4 ↓1 ↑22 ↓7

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑0 ↓5 ↑0 ↓6 ↑27 ↓11

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑0 ↓5 ↑0 ↓6 ↑28 ↓11

F2 (6) ↑0 ↓1 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓1 ↑3 ↓3 ↑0 ↓4 ↑0 ↓6 ↑20 ↓15

F3 (6) ↑0 ↓1 ↑3 ↓0 ↑5 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1 ↑11 ↓2

F4 (6) ↑0 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑3 ↓2 ↑2 ↓4 ↑0 ↓6 ↑23 ↓13

F5 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑40 ↓2

F6 (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑39 ↓1

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓4 ↑1 ↓6 ↑33 ↓10

T2 (7) ↑0 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑7 ↓0 ↑4 ↓1 ↑2 ↓4 ↑2 ↓4 ↑33 ↓9

T3 (7) ↑0 ↓1 ↑3 ↓0 ↑7 ↓0 ↑7 ↓0 ↑4 ↓0 ↑2 ↓2 ↑2 ↓2 ↑2 ↓5 ↑27 ↓10

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓2 ↑1 ↓5 ↑35 ↓7

T5 (7) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓2 ↑4 ↓2 ↑2 ↓4 ↑2 ↓4 ↑26 ↓12

T6 (7) ↑0 ↓1 ↑4 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑2 ↓4 ↑34 ↓7

All (54) ↑0 ↓2 ↑33 ↓1 ↑48 ↓1 ↑46 ↓0 ↑43 ↓4 ↑35 ↓6 ↑22 ↓19 ↑18 ↓30 ↑245 ↓63

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑7 ↓1

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑9 ↓0

10 (2) ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑9 ↓1

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

C (6) ↑0 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑37 ↓1

S (6) ↑0 ↓0 ↑1 ↓1 ↑4 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑3 ↓0 ↑4 ↓0 ↑26 ↓1

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑37 ↓2

F1b (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓2 ↑38 ↓2

F2 (6) ↑0 ↓0 ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓0 ↑34 ↓0

F3 (6) ↑0 ↓0 ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓1 ↑0 ↓2 ↑0 ↓3 ↑0 ↓4 ↑14 ↓10

F4 (6) ↑1 ↓0 ↑4 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓1 ↑34 ↓1

F5 (6) ↑0 ↓0 ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑38 ↓0

F6 (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑42 ↓4

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓0 ↑2 ↓2 ↑38 ↓2

T3 (7) ↑0 ↓0 ↑4 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑3 ↓1 ↑38 ↓2

T4 (7) ↑1 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑4 ↓3 ↑43 ↓4

T5 (7) ↑0 ↓0 ↑4 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓0 ↑4 ↓0 ↑36 ↓1

T6 (7) ↑1 ↓0 ↑3 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑38 ↓2

All (54) ↑2 ↓1 ↑34 ↓1 ↑45 ↓0 ↑51 ↓0 ↑50 ↓1 ↑47 ↓2 ↑41 ↓3 ↑28 ↓9 ↑298 ↓17
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Table 4.12: CPE vs DynDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑12 ↓0

10 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑10 ↓0

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

C (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑36 ↓0

S (6) ↑0 ↓0 ↑1 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑34 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

F1b (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑40 ↓0

F2 (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑38 ↓1

F3 (6) ↑0 ↓1 ↑1 ↓0 ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓0 ↑0 ↓3 ↑0 ↓5 ↑16 ↓9

F4 (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑37 ↓1

F5 (6) ↑0 ↓0 ↑2 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓0 ↑3 ↓1 ↑27 ↓1

F6 (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑5 ↓0 ↑35 ↓0

T1 (7) ↑0 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑5 ↓2 ↑37 ↓4

T2 (7) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓3 ↑38 ↓3

T3 (7) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑6 ↓1 ↑40 ↓2

T4 (7) ↑0 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓1 ↑41 ↓2

T5 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓1 ↑41 ↓1

T6 (7) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓0 ↑36 ↓0

All (54) ↑0 ↓1 ↑30 ↓0 ↑45 ↓0 ↑52 ↓0 ↑52 ↓0 ↑45 ↓0 ↑42 ↓3 ↑37 ↓8 ↑303 ↓12

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑1 ↓1 ↑11 ↓2

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑11 ↓3

10 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑10 ↓3

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑1 ↓1 ↑11 ↓2

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑12 ↓1

80 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

C (6) ↑0 ↓0 ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑37 ↓0

S (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓3 ↑3 ↓3 ↑2 ↓4 ↑31 ↓11

GDBG

F1a (6) ↑0 ↓1 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓1

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

F2 (6) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑40 ↓2

F3 (6) ↑0 ↓0 ↑0 ↓2 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓0 ↑0 ↓2 ↑0 ↓5 ↑19 ↓9

F4 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑41 ↓2

F5 (6) ↑0 ↓0 ↑1 ↓2 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑4 ↓0 ↑20 ↓2

F6 (6) ↑0 ↓1 ↑4 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓1 ↑34 ↓3

T1 (7) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑6 ↓1 ↑39 ↓3

T2 (7) ↑0 ↓0 ↑4 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓3 ↑42 ↓5

T3 (7) ↑0 ↓0 ↑4 ↓1 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑5 ↓1 ↑39 ↓2

T4 (7) ↑0 ↓2 ↑5 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑45 ↓4

T5 (7) ↑0 ↓0 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓2 ↑37 ↓4

T6 (7) ↑0 ↓1 ↑3 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑33 ↓1

All (54) ↑0 ↓4 ↑33 ↓4 ↑46 ↓0 ↑50 ↓0 ↑50 ↓1 ↑46 ↓3 ↑40 ↓6 ↑38 ↓12 ↑303 ↓30

Set. Max All Dimensions

MPB

Cs 1 (10) ↑0 ↓1 ↑6 ↓3 ↑7 ↓1 ↑5 ↓0 ↑7 ↓1 ↑4 ↓2 ↑5 ↓1 ↑3 ↓3 ↑37 ↓12

5 (10) ↑0 ↓0 ↑5 ↓0 ↑10 ↓0 ↑9 ↓0 ↑8 ↓1 ↑8 ↓1 ↑5 ↓1 ↑3 ↓1 ↑48 ↓4

10 (10) ↑0 ↓1 ↑4 ↓0 ↑7 ↓0 ↑9 ↓0 ↑9 ↓1 ↑10 ↓0 ↑8 ↓1 ↑6 ↓1 ↑53 ↓4

20 (10) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓1 ↑9 ↓0 ↑8 ↓1 ↑59 ↓2

40 (10) ↑0 ↓0 ↑2 ↓0 ↑7 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓0 ↑8 ↓1 ↑9 ↓1 ↑53 ↓2

80 (10) ↑0 ↓0 ↑1 ↓0 ↑8 ↓0 ↑8 ↓0 ↑8 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓1 ↑52 ↓1

C (6) ↑0 ↓1 ↑14 ↓0 ↑27 ↓0 ↑27 ↓0 ↑27 ↓0 ↑26 ↓0 ↑23 ↓0 ↑17 ↓3 ↑161 ↓4

S (6) ↑0 ↓1 ↑10 ↓3 ↑19 ↓1 ↑23 ↓0 ↑24 ↓3 ↑23 ↓4 ↑21 ↓4 ↑21 ↓5 ↑141 ↓21

GDBG

F1a (30) ↑0 ↓3 ↑25 ↓0 ↑27 ↓0 ↑30 ↓0 ↑30 ↓0 ↑22 ↓3 ↑18 ↓11 ↑15 ↓14 ↑167 ↓31

F1b (30) ↑1 ↓0 ↑29 ↓0 ↑30 ↓0 ↑30 ↓0 ↑29 ↓0 ↑22 ↓5 ↑18 ↓11 ↑12 ↓14 ↑171 ↓30

F2 (30) ↑0 ↓2 ↑20 ↓0 ↑26 ↓0 ↑28 ↓1 ↑24 ↓5 ↑21 ↓9 ↑15 ↓10 ↑13 ↓14 ↑147 ↓41

F3 (30) ↑0 ↓3 ↑5 ↓2 ↑23 ↓0 ↑17 ↓2 ↑15 ↓2 ↑4 ↓2 ↑0 ↓8 ↑3 ↓15 ↑67 ↓34

F4 (30) ↑1 ↓3 ↑19 ↓0 ↑26 ↓0 ↑30 ↓0 ↑28 ↓1 ↑24 ↓3 ↑17 ↓10 ↑12 ↓15 ↑157 ↓32

F5 (30) ↑0 ↓1 ↑20 ↓2 ↑23 ↓0 ↑26 ↓0 ↑26 ↓0 ↑23 ↓2 ↑20 ↓3 ↑16 ↓9 ↑154 ↓17

F6 (30) ↑1 ↓1 ↑18 ↓0 ↑28 ↓0 ↑30 ↓0 ↑30 ↓0 ↑27 ↓1 ↑24 ↓3 ↑21 ↓4 ↑179 ↓9

T1 (35) ↑0 ↓3 ↑28 ↓0 ↑31 ↓0 ↑30 ↓1 ↑28 ↓2 ↑21 ↓7 ↑18 ↓13 ↑18 ↓16 ↑174 ↓42

T2 (35) ↑0 ↓1 ↑24 ↓1 ↑32 ↓0 ↑33 ↓0 ↑33 ↓1 ↑26 ↓3 ↑17 ↓10 ↑12 ↓17 ↑177 ↓33

T3 (35) ↑0 ↓1 ↑18 ↓1 ↑29 ↓0 ↑33 ↓0 ↑30 ↓1 ↑24 ↓3 ↑19 ↓8 ↑17 ↓13 ↑170 ↓27

T4 (35) ↑1 ↓3 ↑28 ↓1 ↑35 ↓0 ↑33 ↓0 ↑32 ↓0 ↑24 ↓4 ↑20 ↓10 ↑16 ↓16 ↑189 ↓34

T5 (35) ↑0 ↓2 ↑21 ↓1 ↑27 ↓0 ↑31 ↓2 ↑29 ↓3 ↑23 ↓5 ↑17 ↓9 ↑14 ↓12 ↑162 ↓34

T6 (35) ↑2 ↓3 ↑17 ↓0 ↑29 ↓0 ↑31 ↓0 ↑30 ↓1 ↑25 ↓3 ↑21 ↓6 ↑15 ↓11 ↑170 ↓24

All (270) ↑3 ↓15 ↑160 ↓7 ↑229 ↓1 ↑241 ↓3 ↑233 ↓11 ↑192 ↓29 ↑156 ↓60 ↑130 ↓93 ↑1344 ↓219
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API =

nexp
∑

a=1

100× PIa

nexp
(4.6)

with

PIa =







HOE,a(DynDE)
HOE,a(CDE)

− 1 if HOE,a(DynDE) < HOE,a(CDE)

1−
HOE,a(CDE)
HOE,a(DynDE)

if HOE,a(DynDE) > HOE,a(CDE)
(4.7)

where nexp is the total number of experimental environments, and HOE,a(DynDE) and

HOE,a(CDE) are the average offline errors of DynDE and CDE on experimental environ-

ment a, respectively. API is thus calculated by averaging the percentage improvement or

deterioration over all experiments.

The average percentage improvement of CPE over DynDE over all experiments was

found to be 10.88%. The APIs per dimension were found to be 3.12%, 10.57%, 15.67%,

13.95% and 11.05% for 5, 10, 25, 50 and 100 dimensions respectively. Larger improvements

in offline error were thus found in higher dimensions. The APIs per change period were

found to be -0.29%, 4.33%, 11.43%, 22.72%, 22.97%, 17.02%, 8.54% and 0.3% for change

periods of 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000 and 100 000 function evaluations

respectively. The maximum improvements were thus found for change periods of 5 000 and

10 000, while small improvements were found for large change periods and a deterioration

in offline error was found for the change periods of 100 function evaluations.

4.6.5.2 RMC compared to DynDE

The scalability study presented in Section 4.6.4 did not reveal any obviously different

trends between DynDE and RMC. The analysis of the number of times that DynDE and

RMC outperformed each other, given in Tables 4.13 and 4.14, shows that the average

offline errors of DynDE and RMC differed statistically significantly in only 152 of the

2 160 experiments.

RMC outperformed DynDE in 102 cases while DynDE outperformed RMC in 50 cases.

This indicates that there is very little benefit in using RMC. RMC did, however, outper-

form DynDE in 49 of the five dimensional experiments (i.e. 11.3% of the five dimensional
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experiments), while it was only outperformed by DynDE in seven cases. This shows that

while, in general, the RMC approach has a very small impact, it is still beneficial in low

dimensional problems. The underlying function had a clear impact on when RMC proved

useful. For example, on the spherical peak function, RMC outperformed DynDE in 15

(i.e. 31.2%) of the cases but was inferior to DynDE in only one case.

An experiment was conducted to investigate why RMC delivered improvements only

in low dimensions, and why RMC is more effective when using the spherical peak function.

The experiment used 100 000 random moving peak function fitness landscapes which were

created for each of the numbers of dimensions from 2 to 40. For each case, the number of

pairs of peaks, located within an Euclidean distance of less than the exclusion threshold

of each other, was counted. For each pair of these peaks, a midpoint check was performed

to determine whether the RMC algorithm would have detected multiple peaks correctly.

The results of these experiments are depicted in Figures 4.32 and 4.33 for simulations on

the conical and spherical peak functions respectively. Observe that the number of peaks,

located within the exclusion threshold of each other, drops sharply from over 300 000 to

zero between 2 and 16 dimensions. This explains why the RMC approach is only effective

in low dimensional cases. The situations where RMC would have been useful did not

occur in high dimensional problems. The midpoint check approach was more effective at

identifying pairs of peaks on the spherical function than on the conical function in low

dimensions (i.e. more cases as depicted in Figure 4.6, scenarios B and C, occur with the

conical peak function). This explains why RMC yielded larger improvements in offline

error on the spherical peak function than on the conical peak function.

The average percentage improvement of RMC over DynDE, over all experiments, was

found to be 0.2%. The APIs per dimension were found to be 1.42%, -0.445%, 0.06%, -0.19%

and 0.13% for 5, 10, 25, 50 and 100 dimensions respectively. The largest improvement was

thus found in 5 dimensions. The APIs per change period were found to be -0.36%, 0.20%,

0.38%, 0.20%, 0.37%, 0.17%, 0.31% and 0.29% for change periods of 100, 500, 1 000,

5 000, 10 000, 25 000, 50 000 and 100 000 function evaluations respectively. The general

improvement of RMC over CDE is thus minor and localised to 5 dimensions. Although

RMC yielded low improvements on average, specific cases where large improvements were

found to exist; for example, the experiment using the MPB’s spherical peak function in five
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Table 4.13: RMC vs DynDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑7 ↓0

5 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑5 ↓0

10 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1 ↑3 ↓1

20 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑3 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
80 (2) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓1

C (6) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1 ↑5 ↓1

S (6) ↑0 ↓1 ↑0 ↓0 ↑1 ↓0 ↑3 ↓0 ↑3 ↓0 ↑1 ↓0 ↑2 ↓0 ↑5 ↓0 ↑15 ↓1

GDBG

F1a (6) ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑4 ↓0 ↑11 ↓0

F1b (6) ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑9 ↓0

F2 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0

F3 (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1
F4 (6) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

F5 (6) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑2 ↓0 ↑5 ↓1

F6 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓3

T1 (7) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑6 ↓0

T2 (7) ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑2 ↓0 ↑6 ↓2

T3 (7) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑3 ↓1

T4 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0

T5 (7) ↑3 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑10 ↓1

T6 (7) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓1

All (54) ↑3 ↓2 ↑4 ↓0 ↑6 ↓0 ↑4 ↓1 ↑6 ↓1 ↑7 ↓0 ↑6 ↓1 ↑13 ↓2 ↑49 ↓7

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

5 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
10 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1

20 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
C (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑2 ↓1

S (6) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑1 ↓3

F1b (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
F2 (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑0 ↓0 ↑4 ↓1

F3 (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓4

F4 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1

F5 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑3 ↓1

F6 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

T1 (7) ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1
T2 (7) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

T3 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1
T4 (7) ↑0 ↓0 ↑1 ↓0 ↑0 ↓1 ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑3 ↓4

T5 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑2 ↓1

T6 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓3 ↑0 ↓1 ↑0 ↓0 ↑0 ↓4

All (54) ↑1 ↓0 ↑2 ↓1 ↑2 ↓3 ↑3 ↓0 ↑0 ↓0 ↑2 ↓4 ↑1 ↓3 ↑0 ↓1 ↑11 ↓12

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

5 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
10 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
20 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑2 ↓0

40 (2) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

80 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

C (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

S (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑3 ↓1

GDBG

F1a (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0

F1b (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

F2 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑2 ↓0

F3 (6) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑1 ↓3

F4 (6) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1
F5 (6) ↑1 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓1

F6 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓0 ↑0 ↓0 ↑2 ↓2
T1 (7) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0

T2 (7) ↑0 ↓1 ↑2 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑3 ↓1

T3 (7) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓2 ↑1 ↓0 ↑0 ↓0 ↑3 ↓2

T4 (7) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑1 ↓1
T5 (7) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓0 ↑0 ↓0 ↑0 ↓3

T6 (7) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0

All (54) ↑2 ↓2 ↑3 ↓1 ↑2 ↓0 ↑3 ↓0 ↑2 ↓1 ↑0 ↓4 ↑2 ↓1 ↑0 ↓0 ↑14 ↓9
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Table 4.14: RMC vs DynDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

5 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

10 (2) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

20 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1

40 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
80 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

C (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓3

S (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑1 ↓1
GDBG

F1a (6) ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓4

F1b (6) ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑4 ↓0

F2 (6) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓1

F3 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑2 ↓1

F4 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑2 ↓3

F5 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑1 ↓1
F6 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

T1 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓3

T2 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓3

T3 (7) ↑1 ↓1 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑3 ↓2

T4 (7) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑0 ↓2 ↑0 ↓0 ↑4 ↓2

T5 (7) ↑0 ↓0 ↑1 ↓1 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑3 ↓1

T6 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

All (54) ↑1 ↓1 ↑2 ↓2 ↑1 ↓1 ↑2 ↓2 ↑1 ↓3 ↑3 ↓0 ↑1 ↓3 ↑1 ↓3 ↑12 ↓15

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1

5 (2) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

10 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑2 ↓2
20 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
40 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
80 (2) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0
C (6) ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓2

S (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓1 ↑2 ↓1

GDBG

F1a (6) ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓1

F1b (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑5 ↓0

F2 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑2 ↓0

F3 (6) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

F4 (6) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

F5 (6) ↑0 ↓0 ↑0 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1
F6 (6) ↑0 ↓1 ↑0 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓2

T1 (7) ↑0 ↓0 ↑1 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓1

T2 (7) ↑0 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓1

T3 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0

T4 (7) ↑1 ↓1 ↑0 ↓1 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓2
T5 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑3 ↓0 ↑1 ↓0 ↑1 ↓0 ↑5 ↓0

T6 (7) ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0

All (54) ↑1 ↓1 ↑2 ↓4 ↑2 ↓1 ↑0 ↓0 ↑2 ↓0 ↑5 ↓0 ↑2 ↓0 ↑2 ↓1 ↑16 ↓7

Set. Max All Dimensions

MPB

Cs 1 (10) ↑1 ↓0 ↑0 ↓1 ↑2 ↓0 ↑3 ↓0 ↑2 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑10 ↓1

5 (10) ↑0 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑6 ↓1

10 (10) ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓1 ↑1 ↓2 ↑5 ↓5
20 (10) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓1 ↑5 ↓1

40 (10) ↑0 ↓0 ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑2 ↓1

80 (10) ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓2 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓3

C (6) ↑0 ↓0 ↑0 ↓3 ↑3 ↓1 ↑2 ↓1 ↑2 ↓1 ↑0 ↓0 ↑0 ↓1 ↑1 ↓1 ↑8 ↓8
S (6) ↑1 ↓1 ↑1 ↓0 ↑2 ↓0 ↑4 ↓0 ↑4 ↓1 ↑2 ↓0 ↑3 ↓0 ↑5 ↓2 ↑22 ↓4

GDBG

F1a (30) ↑2 ↓1 ↑4 ↓2 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑3 ↓1 ↑1 ↓2 ↑4 ↓2 ↑16 ↓8

F1b (30) ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑3 ↓0 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑19 ↓0

F2 (30) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑3 ↓0 ↑0 ↓1 ↑2 ↓1 ↑3 ↓0 ↑1 ↓0 ↑12 ↓2

F3 (30) ↑0 ↓1 ↑2 ↓1 ↑1 ↓2 ↑1 ↓1 ↑0 ↓0 ↑1 ↓2 ↑0 ↓1 ↑0 ↓1 ↑5 ↓9

F4 (30) ↑2 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑2 ↓1 ↑0 ↓2 ↑0 ↓0 ↑5 ↓5
F5 (30) ↑1 ↓2 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑3 ↓0 ↑2 ↓1 ↑2 ↓0 ↑12 ↓5

F6 (30) ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓3 ↑0 ↓1 ↑0 ↓1 ↑3 ↓9

T1 (35) ↑0 ↓0 ↑4 ↓2 ↑1 ↓0 ↑0 ↓0 ↑1 ↓1 ↑1 ↓0 ↑2 ↓1 ↑2 ↓1 ↑11 ↓5

T2 (35) ↑0 ↓2 ↑3 ↓1 ↑2 ↓0 ↑1 ↓1 ↑2 ↓1 ↑1 ↓0 ↑0 ↓1 ↑3 ↓1 ↑12 ↓7

T3 (35) ↑2 ↓1 ↑0 ↓0 ↑1 ↓2 ↑1 ↓0 ↑0 ↓0 ↑2 ↓2 ↑3 ↓0 ↑2 ↓1 ↑11 ↓6

T4 (35) ↑1 ↓1 ↑2 ↓1 ↑3 ↓1 ↑1 ↓0 ↑1 ↓0 ↑4 ↓1 ↑0 ↓4 ↑0 ↓1 ↑12 ↓9

T5 (35) ↑3 ↓1 ↑3 ↓1 ↑0 ↓1 ↑2 ↓1 ↑1 ↓0 ↑5 ↓2 ↑4 ↓0 ↑2 ↓0 ↑20 ↓6

T6 (35) ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑2 ↓3 ↑0 ↓1 ↑1 ↓0 ↑6 ↓5

All (270) ↑8 ↓6 ↑13 ↓8 ↑13 ↓5 ↑12 ↓3 ↑11 ↓5 ↑17 ↓8 ↑12 ↓8 ↑16 ↓7 ↑102 ↓50
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Figure 4.32: Number of peak pairs
that fall within the exclusion threshold
and number of correct classifications by
RMC per dimension on the conical peak
function.
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Figure 4.33: Number of peak pairs
that fall within the exclusion threshold
and number of correct classifications by
RMC per dimension on the spherical
peak function.

dimensions with a change period of 50 000 yielded a 54.61% improvement over DynDE.

The benefits of using RMC are less pronounced and wide-ranging than that of CPE.

However, RMC does constitute an improvement over DynDE in a specific sub-set of dy-

namic environments.

4.6.5.3 CDE compared to DynDE

The analysis of the CDE results, in comparison with DynDE, is given in Tables 4.15 and

4.16. CDE performed significantly better than DynDE in 1 351 experiments and worse

than DynDE in 208 cases. CDE was thus better than DynDE in 62.5% of all experiments

and DynDE was better than CDE in only 9.6% of the experiments. This performance is

considerably better than that of RMC, and slightly better than that of CPE. The most

noticeable difference between CPE and CDE is in five dimensional experiments, in which

the number of cases where CDE is better than DynDE is 17 more than those of CPE,

and the number of cases where CDE is worse than DynDE is 10 less than CPE. The

higher dimensional experiments yielded roughly equivalent performance in comparison to

DynDE for CPE and CDE. RMC’s positive contribution was shown to be localised to low

dimensions, and the benefits of incorporating RMC into CPE are also limited to the five

dimensional experiments.
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CPE was shown to be more effective when using a low change period than when using

a high change period. This trend is continued in CDE, where 86% of the cases where

DynDE performed the best, occurred when a change period of 25 000 or higher was used.

The average percentage improvement of CDE over DynDE over all experiments was

found to be 11.09%. The APIs per dimension were found to be 4.30%, 10.69%, 15.51%,

13.96% and 10.97% for 5, 10, 25, 50 and 100 dimensions respectively. Larger improvements

in offline error were thus found in higher dimensions, as was the case with CPE. The APIs

per change period, were found to be -0.22%, 4.56%, 11.51%, 22.66%, 22.68%, 17.45%,

9.02% and 1.04% for change periods of 100, 500, 1 000, 5 000, 10 000, 25 000, 50 000 and

100 000 function evaluations respectively. The maximum improvements were thus found

for change periods of 5 000 and 10 000, while small improvements were found for large

change periods and a deterioration in offline error was found for the change period of 100.

4.6.5.4 Summary for Research Question 3

CPE, RMC and CDE were all found to outperform DynDE more often than being out-

performed by DynDE. RMC differed from DynDE in only a small number of instances,

but was shown to be effective on isolated functions. CPE generally outperformed DynDE,

with cases where it was inferior to DynDE being concentrated in the low dimensions with

a high change period.

CDE was better than DynDE in more cases than both CPE and RMC. The scalability

study conducted in Section 4.6.4 found that CDE scaled very similar to CPE, and is es-

pecially superior to DynDE in high dimensional, low change period and severely changing

environments. Section 2.5.2 argued that the set of feasible DOPs for any particular func-

tion is bounded by values of the change severity and change period. CDE thus increases

the set of feasible DOP by being more effective on high dimensional environments in which

changes occur frequently.

An analysis was performed to determine whether CDE results in statistically significant

improvements over its sub-components, CPE and RMC. Full results of these comparisons

are given in Appendix B. CDE performed better than CPE in 86 of the 2160 experiments

and performed worse in 47. The majority of the cases where CDE outperformed CPE (45

cases) was in five dimensional experiments due to the influence of the RMC component.
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Table 4.15: CDE vs DynDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑7 ↓0

5 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

10 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑11 ↓0

20 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑10 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑6 ↓2

80 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑7 ↓1

C (6) ↑0 ↓0 ↑1 ↓0 ↑3 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓0 ↑3 ↓1 ↑1 ↓2 ↑21 ↓3

S (6) ↑0 ↓0 ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑32 ↓0

GDBG

F1a (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓3 ↑0 ↓6 ↑0 ↓6 ↑24 ↓16

F1b (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑24 ↓16

F2 (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑18 ↓22

F3 (6) ↑0 ↓0 ↑3 ↓0 ↑4 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑11 ↓1

F4 (6) ↑0 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑0 ↓6 ↑0 ↓6 ↑24 ↓13

F5 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑1 ↓4 ↑0 ↓5 ↑29 ↓11

F6 (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓2 ↑0 ↓2 ↑29 ↓5

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑0 ↓6 ↑1 ↓6 ↑1 ↓6 ↑24 ↓19

T2 (7) ↑0 ↓1 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑1 ↓5 ↑0 ↓5 ↑28 ↓12

T3 (7) ↑0 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓2 ↑1 ↓4 ↑0 ↓5 ↑27 ↓12

T4 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓4 ↑1 ↓6 ↑0 ↓6 ↑26 ↓16

T5 (7) ↑1 ↓0 ↑3 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓1 ↑3 ↓2 ↑2 ↓4 ↑0 ↓4 ↑25 ↓12

T6 (7) ↑0 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓3 ↑1 ↓5 ↑1 ↓5 ↑29 ↓13

All (54) ↑1 ↓1 ↑31 ↓0 ↑49 ↓0 ↑45 ↓1 ↑42 ↓3 ↑21 ↓18 ↑15 ↓31 ↑8 ↓33 ↑212 ↓87

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓1 ↑0 ↓0 ↑0 ↓2 ↑3 ↓7

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑7 ↓0

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

20 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

40 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

C (6) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓1 ↑33 ↓1

S (6) ↑0 ↓0 ↑0 ↓1 ↑3 ↓1 ↑4 ↓1 ↑4 ↓1 ↑4 ↓1 ↑4 ↓0 ↑4 ↓1 ↑23 ↓6

GDBG

F1a (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓4 ↑0 ↓6 ↑29 ↓10

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑0 ↓5 ↑0 ↓5 ↑27 ↓10

F2 (6) ↑1 ↓1 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑3 ↓1 ↑3 ↓3 ↑0 ↓4 ↑0 ↓6 ↑21 ↓15

F3 (6) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑3 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓1 ↑12 ↓1

F4 (6) ↑0 ↓0 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓1 ↑3 ↓2 ↑2 ↓4 ↑0 ↓6 ↑22 ↓13

F5 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑40 ↓2

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑40 ↓1

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓4 ↑0 ↓6 ↑32 ↓10

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑4 ↓0 ↑4 ↓1 ↑2 ↓4 ↑2 ↓4 ↑32 ↓9

T3 (7) ↑0 ↓1 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑3 ↓2 ↑2 ↓2 ↑2 ↓3 ↑31 ↓8

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓2 ↑0 ↓5 ↑34 ↓7

T5 (7) ↑1 ↓0 ↑4 ↓0 ↑4 ↓0 ↑6 ↓0 ↑4 ↓2 ↑4 ↓2 ↑2 ↓3 ↑3 ↓4 ↑28 ↓11

T6 (7) ↑0 ↓0 ↑4 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑2 ↓5 ↑34 ↓7

All (54) ↑1 ↓1 ↑35 ↓1 ↑47 ↓1 ↑49 ↓1 ↑40 ↓3 ↑35 ↓6 ↑23 ↓17 ↑17 ↓29 ↑247 ↓59

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑5 ↓0

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑8 ↓0

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓0

C (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑37 ↓0

S (6) ↑0 ↓0 ↑2 ↓0 ↑4 ↓0 ↑3 ↓0 ↑3 ↓0 ↑5 ↓0 ↑4 ↓0 ↑5 ↓0 ↑26 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓2 ↑37 ↓2

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑1 ↓2 ↑36 ↓2

F2 (6) ↑0 ↓0 ↑4 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓1 ↑33 ↓1

F3 (6) ↑0 ↓0 ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓1 ↑0 ↓1 ↑0 ↓5 ↑0 ↓4 ↑13 ↓11

F4 (6) ↑1 ↓1 ↑3 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑3 ↓1 ↑31 ↓2

F5 (6) ↑0 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑39 ↓1

F6 (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑39 ↓0

T1 (7) ↑0 ↓2 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑42 ↓6

T2 (7) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓1 ↑2 ↓3 ↑37 ↓4

T3 (7) ↑0 ↓0 ↑3 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑2 ↓1 ↑35 ↓2

T4 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑4 ↓3 ↑42 ↓4

T5 (7) ↑0 ↓0 ↑4 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑4 ↓0 ↑35 ↓1

T6 (7) ↑1 ↓0 ↑3 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓2 ↑37 ↓2

All (54) ↑1 ↓2 ↑33 ↓0 ↑45 ↓0 ↑50 ↓0 ↑47 ↓1 ↑47 ↓1 ↑39 ↓5 ↑29 ↓10 ↑291 ↓19
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Table 4.16: CDE vs DynDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑12 ↓0

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑12 ↓0

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

20 (2) ↑0 ↓1 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓1

40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓0

80 (2) ↑1 ↓0 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓1

C (6) ↑1 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓0 ↑37 ↓0

S (6) ↑0 ↓1 ↑2 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑37 ↓2

GDBG

F1a (6) ↑0 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑38 ↓0

F1b (6) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑40 ↓1

F2 (6) ↑0 ↓1 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑39 ↓2

F3 (6) ↑0 ↓1 ↑1 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓0 ↑0 ↓0 ↑0 ↓4 ↑0 ↓4 ↑16 ↓9

F4 (6) ↑0 ↓0 ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓1 ↑35 ↓1

F5 (6) ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑4 ↓0 ↑5 ↓0 ↑5 ↓0 ↑3 ↓0 ↑3 ↓0 ↑24 ↓0

F6 (6) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑35 ↓0

T1 (7) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑5 ↓1 ↑38 ↓2

T2 (7) ↑1 ↓0 ↑4 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓3 ↑38 ↓3

T3 (7) ↑0 ↓0 ↑2 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑5 ↓1 ↑38 ↓2

T4 (7) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓1 ↑41 ↓3

T5 (7) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑4 ↓0 ↑38 ↓2

T6 (7) ↑0 ↓1 ↑3 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑34 ↓1

All (54) ↑2 ↓4 ↑31 ↓1 ↑43 ↓0 ↑52 ↓0 ↑51 ↓0 ↑46 ↓0 ↑40 ↓4 ↑36 ↓6 ↑301 ↓15

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑10 ↓5

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑1 ↓1 ↑0 ↓1 ↑9 ↓3

10 (2) ↑0 ↓1 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓1

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑2 ↓0 ↑10 ↓3

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑12 ↓1

80 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

C (6) ↑0 ↓0 ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑36 ↓0

S (6) ↑1 ↓1 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓3 ↑4 ↓2 ↑2 ↓4 ↑4 ↓2 ↑31 ↓13

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

F1b (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

F2 (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑39 ↓1

F3 (6) ↑0 ↓0 ↑0 ↓2 ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑0 ↓1 ↑0 ↓5 ↑19 ↓8

F4 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑41 ↓2

F5 (6) ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑4 ↓0 ↑20 ↓0

F6 (6) ↑0 ↓1 ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑4 ↓2 ↑34 ↓4

T1 (7) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓1 ↑39 ↓2

T2 (7) ↑0 ↓0 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓3 ↑44 ↓4

T3 (7) ↑0 ↓0 ↑3 ↓1 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓2 ↑38 ↓3

T4 (7) ↑0 ↓2 ↑4 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑43 ↓3

T5 (7) ↑1 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑5 ↓2 ↑37 ↓3

T6 (7) ↑0 ↓0 ↑2 ↓0 ↑4 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓0 ↑32 ↓0

All (54) ↑2 ↓3 ↑32 ↓2 ↑45 ↓0 ↑50 ↓1 ↑47 ↓3 ↑46 ↓2 ↑39 ↓6 ↑39 ↓11 ↑300 ↓28

Set. Max All Dimensions

MPB

Cs 1 (10) ↑1 ↓0 ↑7 ↓1 ↑8 ↓1 ↑6 ↓2 ↑6 ↓2 ↑5 ↓2 ↑2 ↓1 ↑2 ↓3 ↑37 ↓12

5 (10) ↑0 ↓0 ↑4 ↓0 ↑10 ↓0 ↑8 ↓0 ↑7 ↓1 ↑9 ↓0 ↑8 ↓1 ↑5 ↓1 ↑51 ↓3

10 (10) ↑0 ↓1 ↑5 ↓0 ↑8 ↓0 ↑9 ↓0 ↑9 ↓0 ↑10 ↓0 ↑9 ↓0 ↑7 ↓0 ↑57 ↓1

20 (10) ↑0 ↓1 ↑3 ↓0 ↑8 ↓0 ↑10 ↓0 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓0 ↑57 ↓4

40 (10) ↑0 ↓0 ↑2 ↓0 ↑8 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓0 ↑8 ↓2 ↑9 ↓1 ↑54 ↓3

80 (10) ↑1 ↓0 ↑2 ↓1 ↑8 ↓0 ↑10 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓0 ↑9 ↓1 ↑57 ↓2

C (6) ↑1 ↓0 ↑13 ↓0 ↑26 ↓0 ↑29 ↓0 ↑27 ↓0 ↑27 ↓0 ↑24 ↓1 ↑17 ↓3 ↑164 ↓4

S (6) ↑1 ↓2 ↑10 ↓2 ↑24 ↓1 ↑23 ↓2 ↑22 ↓4 ↑24 ↓3 ↑21 ↓4 ↑24 ↓3 ↑149 ↓21

GDBG

F1a (30) ↑0 ↓1 ↑26 ↓0 ↑28 ↓0 ↑30 ↓0 ↑30 ↓0 ↑23 ↓3 ↑18 ↓10 ↑13 ↓14 ↑168 ↓28

F1b (30) ↑1 ↓1 ↑27 ↓0 ↑30 ↓0 ↑30 ↓0 ↑29 ↓0 ↑21 ↓4 ↑17 ↓11 ↑12 ↓13 ↑167 ↓29

F2 (30) ↑1 ↓2 ↑21 ↓0 ↑26 ↓0 ↑29 ↓1 ↑24 ↓4 ↑21 ↓9 ↑15 ↓10 ↑13 ↓15 ↑150 ↓41

F3 (30) ↑0 ↓1 ↑7 ↓2 ↑24 ↓0 ↑20 ↓0 ↑11 ↓1 ↑4 ↓2 ↑2 ↓10 ↑3 ↓14 ↑71 ↓30

F4 (30) ↑1 ↓2 ↑18 ↓0 ↑23 ↓0 ↑30 ↓0 ↑28 ↓1 ↑25 ↓3 ↑16 ↓10 ↑12 ↓15 ↑153 ↓31

F5 (30) ↑2 ↓1 ↑19 ↓0 ↑21 ↓0 ↑25 ↓0 ↑26 ↓0 ↑24 ↓2 ↑19 ↓4 ↑16 ↓7 ↑152 ↓14

F6 (30) ↑0 ↓1 ↑21 ↓0 ↑27 ↓0 ↑30 ↓0 ↑30 ↓0 ↑26 ↓1 ↑24 ↓3 ↑19 ↓5 ↑177 ↓10

T1 (35) ↑0 ↓2 ↑28 ↓0 ↑32 ↓0 ↑30 ↓0 ↑28 ↓2 ↑22 ↓7 ↑19 ↓13 ↑16 ↓15 ↑175 ↓39

T2 (35) ↑1 ↓1 ↑26 ↓1 ↑32 ↓0 ↑34 ↓0 ↑31 ↓0 ↑26 ↓2 ↑17 ↓10 ↑12 ↓18 ↑179 ↓32

T3 (35) ↑0 ↓1 ↑18 ↓1 ↑28 ↓0 ↑34 ↓0 ↑31 ↓1 ↑24 ↓4 ↑20 ↓8 ↑14 ↓12 ↑169 ↓27

T4 (35) ↑0 ↓3 ↑28 ↓0 ↑33 ↓0 ↑34 ↓0 ↑32 ↓0 ↑23 ↓4 ↑21 ↓10 ↑15 ↓16 ↑186 ↓33

T5 (35) ↑3 ↓1 ↑22 ↓0 ↑26 ↓0 ↑31 ↓1 ↑27 ↓3 ↑23 ↓4 ↑15 ↓10 ↑16 ↓10 ↑163 ↓29

T6 (35) ↑1 ↓1 ↑17 ↓0 ↑28 ↓0 ↑31 ↓0 ↑29 ↓0 ↑26 ↓3 ↑19 ↓7 ↑15 ↓12 ↑166 ↓23

All (270) ↑7 ↓11 ↑162 ↓4 ↑229 ↓1 ↑246 ↓3 ↑227 ↓10 ↑195 ↓27 ↑156 ↓63 ↑129 ↓89 ↑1351 ↓208
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The results indicate that CDE is thus a slightly better algorithm than CPE. CDE per-

formed better than RMC in 1 342 cases and performed worse in only 209 experiments.

CDE is thus clearly a better algorithm than RMC.

4.6.6 Research Question 4

How does the convergence behaviour of CDE differ from that of DynDE?

The analysis under the previous research question found that CDE is a more effective

DOP algorithm than DynDE. This research question investigates the difference between

DynDE and CDE in terms of diversity and current error with the aim of explaining trends

observed in the previous sections.

Section 3.4.1.5 showed that one of the reasons why DynDE is more effective than

normal DE on DOPs is that DynDE maintains higher diversity during the optimisation

process. The average diversity (calculated using equation (2.7)) of CDE was measured

on the conical peak function of the MPB in five dimensions with a change period of

5 000 function evaluations. The optimisation process was allowed to continue for 500 000

function evaluations and was repeated 30 times. The average diversity per generation over

all repeats was found to be 0.2624 for CDE, compared to the values of 0.2661 for DynDE,

and 0.0017 for DE. The diversity of CDE is thus virtually identical to that of DynDE.

The diversity measure given in equation (2.7) gives the diversity of all individuals

used by the algorithm. This measure will appear artificially high because sub-populations

converge to optima that are uniformly distributed around the fitness landscape. The mea-

sure also gives no information regarding the diversity within sub-populations. Equation

(2.7) can be adapted to give the average diversity per sub-population, DAP , as shown in

equation (4.8).

DAP =

∑nk

i=1

∑nI,k
i=1 ‖~d−~xi,k‖2

nI,k

nkL
(4.8)

DAP can be used to study the diversity within sub-populations. Figure 4.34 gives the

offline error, current error, diversity and average diversity per population for DynDE and

CDE on the conical peak function of the MPB in five dimensions with a change period

of 5 000 function evaluations. The first 10 changes in the environment are depicted.
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The figure shows that, while DynDE and CDE had very similar normal diversity profiles,

the average diversity per sub-population differed drastically between DynDE and CDE.

DynDE’s value for DAP decreased gradually over many function evaluations. This means

that DynDE’s sub-populations slowly converged to optima in the fitness landscape.

CDE’s value forDAP , in contrast to DynDE, rapidly decreased to a relatively low value.

CDE thus converged to optima faster than DynDE, due to the competitive population

evaluation approach which allows sub-populations to evolve in sequence and thus discover

optima faster. The RMC component of CDE also reduced the average sub-population

diversity as it prevents the unnecessary reinitialisation of sub-populations which would

have dispersed individuals randomly over the search space. Figure 4.34 shows that CDE’s

current error reduced faster than that of DynDE after changes in the environment. This is

due to CDE’s sub-populations converging to optima earlier than DynDE’s sub-populations.
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Figure 4.34: Diversity, current error, offline error and average sub-population diversity of
DynDE and CDE on the MPB, Scenario 2

The previous sections found that CDE is more effective than DynDE, especially when a

low change period and high dimensions are present in the environment. The convergence

behaviour of DynDE and CDE is investigated here on environments with low change
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period - low dimensions, low change period - high dimensions, high change period - low

dimensions, and high change period - high dimensions.

Figure 4.35 gives the offline error, current error, diversity and average diversity per

population for DynDE and CDE on the conical peak function of the MPB in five dimen-

sions with a change period of 1 000 function evaluations. The figure confirms that the

average diversity per sub-population of CDE droped noticeably faster than that of DynDE.

This resulted in faster reductions in CDE current error after changes in the environment,

and current errors that were consistently lower than those of DynDE. CDE thus not only

found optima faster, but also achieved lower current errors than DynDE in the presence

of frequent changes.

Figure 4.36 gives the offline error, current error, diversity and average diversity per

population for DynDE and CDE on the conical peak function of the MPB in 100 di-

mensions with a change period of 1 000 function evaluations. The average diversity per

sub-population of CDE was once again lower than that of DynDE. The high number of

dimensions resulted in considerably larger errors than were found in the five dimensional

cases. The magnitude of the difference between the current errors of DynDE and CDE

was greater than what it was on the low dimensional experiment (compare Figure 4.36 to

Figure 4.35). The allocation of function evaluations based on performance was thus es-

pecially beneficial in high dimensions, which explains why CDE generally achieved better

offline errors than DynDE in high dimensional DOPs.

The offline error, current error, diversity and average diversity per population for

DynDE and CDE on the conical peak function of the MPB in five dimensions with a change

period of 100 000 function evaluations, is given in Figure 4.37. The average diversity per

sub-population of CDE reduced faster than that of DynDE. However, the large number

of function evaluations between changes allowed DynDE’s sub-populations more function

evaluations to converge. The result was that the average diversity per sub-population of

DynDE became much closer to that of CDE than what it was in Figure 4.35. The high

change period allowed both algorithms enough function evaluations to achieve low offline

errors.

Figure 4.38 gives an enlargement of the area around the third change in the environ-

ment. CDE’s current error decreased slightly faster than that of DynDE after the change,
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Figure 4.35: DynDE and CDE on the
MPB with a conical peak function in
five dimensions using a change period of
1 000
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Figure 4.36: DynDE and CDE on the
MPB with a conical peak function in
100 dimensions using a change period of
1 000

but DynDE’s current error eventually reached a lower value than that of CDE. The large

number of function evaluations between changes made the initial fast decrease in current

error of CDE negligible, and DynDE thus yielded a lower offline error on this environment.
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Figure 4.37: DynDE and CDE on the
MPB with a conical peak function in
five dimensions using a change period of
100 000
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Figure 4.38: DynDE and CDE on the
MPB with a conical peak function in
five dimensions using a change period of
100 000, enlarged

Figure 4.39 gives the offline error, current error, diversity and average diversity per pop-

ulation for DynDE and CDE on the conical peak function of the MPB in 100 dimensions

with a change period of 100 000 function evaluations. The average diversity per sub-

 
 
 



CHAPTER 4. NOVEL EXTENSIONS TO DYNDE 160

population of DynDE and CDE was, once again, very similar due to the large number of

function evaluations available between changes in the environment. Note that the normal

diversity profile of both algorithms initially decreased as the sub-populations frequently

converged to the same optima. The normal diversity and the average sub-population di-

versity then increased at about 60 000 function evaluations as sub-populations were reini-

tialised due to exclusion. Note that much lower current and offline errors were achieved

by both algorithms than were found when using a low change period in conjunction with

a high number of dimensions (compare Figure 4.39 to Figure 4.36).

Figure 4.40 gives an enlargement of the area around the second change in the envi-

ronment. DynDE’s current error typically took a large number of function evaluations to

reach its lowest value, while CDE’s current error decreased faster after a change in the

environment. CDE consequently yielded lower offline errors on high dimensional problems

with a high change period.
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Figure 4.39: DynDE and CDE on the
MPB with a conical peak function in
100 dimensions using a change period of
100 000
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Figure 4.40: DynDE and CDE on the
MPB with a conical peak function in
100 dimensions using a change period of
100 000, enlarged

4.6.7 Research Question 5

How does the average lowest error found just before changes in the environment differ

between DynDE and CDE?

The components used to form CDE have been shown to produce a lower offline error

than normal DynDE. However, CDE could, potentially negatively, affect the lowest error
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found immediately before changes in the environment occur. A reduction in offline error

does not necessarily imply that the lowest error, found before a change in the environment

occurs, is also reduced. For example, the CPE component could allocate too many function

evaluations to a sub-population that is positioned on a sub-optimal peak, to the detriment

of the sub-population that is positioned on the global optimum. This research question

investigates the possibility that CDE merely exploits the offline error performance measure

and is not effective when the errors immediately before changes are considered.

The second performance measurement discussed in Section 2.5.5, HAEBI , calculates

the average error of the best individuals found just before changes in the environment.

This performance measure was not used as the main performance measure in this study,

because it only considers the performance immediately before changes in the environment,

and ignores the performance during periods between changes. This performance measure

is, however, ideal for answering this research question.

The same set of experiments, used to compare the performance of DynDE and CDE

in Section 4.6.5, was repeated using the HAEBI performance measure. A total of 2 160

experiments were thus conducted for each algorithm. The same analysis that was per-

formed in Section 4.6.5, i.e. a count of the number of instances that each algorithm was

statistically significantly better than the other, was performed. The results of this analysis

are given in Tables 4.17 and 4.18.

CDE performed significantly better than DynDE in just under half of the experiments

(a total of 1 068 cases). DynDE performed better than CDE in 470 cases. The general

trend that can be observed is that DynDE performed better than CDE when a high

change period was used. The analysis of the five dimensional experiments shows that CDE

performed better, more often, than DynDE only in the experiments that used a change

period of 500 or 1 000. As the number of dimensions was increased, CDE performed

comparatively better then DynDE. CDE performed better more often than DynDE in 100

dimensions for all settings of change period except in the experiments that used a change

period of 100 000.

These results are consistent with the comparisons done in the previous section in

terms of the current errors of CDE and DynDE. The low dimensional - low change period

experiment, shown in Figure 4.35, found that CDE’s current error was typically lower
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than that of DynDE just before changes occur in the environment. HAEBI only considers

the error just before a change, and CDE consequently performed better than DynDE in

terms of HAEBI for this case. The low dimensional - high change period experiment,

shown in Figure 4.37, found that CDE, typically, had a higher current error than DynDE

immediately before a change. The HAEBI performance measure thus rates CDE lower

than DynDE when low dimensions are used in conjunction with a high change period.

The analysis presented in this section suggests that CDE is inferior to DynDE in

terms of the HAEBI performance measure in the presence of large change periods. The

competitive evaluation approach is aimed at discovering optima early and is consequently

not beneficial in problems where only the error immediately before infrequent changes is

important. However, CDE did perform better than DynDE more than twice as often as

DynDE performed better than CDE, over all experiments. The cases where CDE was

better than DynDE where mostly in low change period - high dimensional problems. The

algorithms presented in this chapter thus improved the offline error of DynDE without

completely deteriorating the error immediately before changes in the environment.

4.7 Comparison to Other Approaches

This chapter showed that using RMC and CPE yields better results than DynDE alone.

This section compares the combined CDE algorithm to other algorithms in the literature.

Section 4.7.1 compares the performance of CDE to that of jDE (refer to Section 3.4.2).

Section 4.7 compares CDE to the published results from other algorithms.

4.7.1 CDE Compared to jDE

jDE, developed by Brest et al. [2009], was the winning algorithm of the CEC2009 com-

petition on dynamic optimisation, and is currently one of the state-of-the-art algorithms

for optimisation in dynamic environments. jDE was selected for a detailed comparison to

CDE because of its good performance, and because it is also based on DE.

The jDE algorithm was implemented by the author in order to compare its perfor-

mance to the algorithms presented in this thesis. The jDE algorithm was executed on

the standard set of experiments for all the combinations of change period and number
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Table 4.17: CDE vs DynDE HAEBI performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓0 ↑1 ↓1 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑6 ↓3

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑8 ↓1

10 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓1 ↑0 ↓2 ↑1 ↓1 ↑6 ↓4

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑7 ↓4

40 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑6 ↓4

80 (2) ↑0 ↓1 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓2 ↑0 ↓1 ↑0 ↓1 ↑5 ↓5
C (6) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑3 ↓1 ↑0 ↓3 ↑0 ↓4 ↑1 ↓4 ↑0 ↓4 ↑12 ↓16

S (6) ↑0 ↓1 ↑0 ↓1 ↑5 ↓1 ↑5 ↓0 ↑5 ↓0 ↑3 ↓1 ↑4 ↓1 ↑4 ↓0 ↑26 ↓5

GDBG

F1a (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑12 ↓29

F1b (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑13 ↓30

F2 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑11 ↓30

F3 (6) ↑0 ↓0 ↑5 ↓0 ↑3 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑12 ↓2

F4 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓1 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑16 ↓24

F5 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑16 ↓27

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓1 ↑0 ↓1 ↑0 ↓2 ↑1 ↓3 ↑0 ↓3 ↑15 ↓10

T1 (7) ↑0 ↓0 ↑7 ↓0 ↑6 ↓0 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑1 ↓6 ↑1 ↓6 ↑15 ↓30

T2 (7) ↑0 ↓1 ↑7 ↓0 ↑7 ↓0 ↑3 ↓2 ↑0 ↓5 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑17 ↓25

T3 (7) ↑0 ↓1 ↑7 ↓0 ↑7 ↓0 ↑2 ↓2 ↑0 ↓5 ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑16 ↓24

T4 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓4 ↑0 ↓5 ↑0 ↓6 ↑1 ↓6 ↑0 ↓6 ↑14 ↓27

T5 (7) ↑1 ↓0 ↑5 ↓0 ↑6 ↓0 ↑2 ↓4 ↑0 ↓4 ↑0 ↓5 ↑1 ↓5 ↑0 ↓5 ↑15 ↓23

T6 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑3 ↓3 ↑0 ↓5 ↑0 ↓5 ↑0 ↓5 ↑1 ↓5 ↑18 ↓23

All (54) ↑1 ↓3 ↑42 ↓1 ↑49 ↓1 ↑19 ↓22 ↑5 ↓33 ↑3 ↓38 ↑8 ↓38 ↑6 ↓37 ↑133 ↓173

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑2 ↓7

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑3 ↓4

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑3 ↓2

20 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑4 ↓3

40 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓1 ↑6 ↓3

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓1 ↑6 ↓3

C (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑4 ↓0 ↑2 ↓0 ↑0 ↓3 ↑1 ↓3 ↑0 ↓2 ↑16 ↓8

S (6) ↑0 ↓0 ↑0 ↓1 ↑3 ↓1 ↑3 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓6 ↑0 ↓6 ↑8 ↓14

GDBG

F1a (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑18 ↓22

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑18 ↓23

F2 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑2 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑17 ↓24

F3 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑0 ↓1 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑12 ↓1

F4 (6) ↑0 ↓0 ↑3 ↓0 ↑6 ↓0 ↑3 ↓1 ↑3 ↓2 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑15 ↓21

F5 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓3 ↑0 ↓4 ↑0 ↓5 ↑25 ↓12

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓2 ↑5 ↓1 ↑37 ↓4

T1 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓2 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑23 ↓20

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑4 ↓2 ↑2 ↓3 ↑1 ↓5 ↑1 ↓5 ↑1 ↓5 ↑22 ↓20

T3 (7) ↑0 ↓1 ↑6 ↓0 ↑7 ↓0 ↑4 ↓0 ↑2 ↓2 ↑1 ↓4 ↑1 ↓5 ↑1 ↓5 ↑22 ↓17

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓2 ↑0 ↓5 ↑0 ↓6 ↑1 ↓5 ↑25 ↓18

T5 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑4 ↓2 ↑2 ↓3 ↑2 ↓4 ↑1 ↓4 ↑2 ↓5 ↑24 ↓18

T6 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓2 ↑1 ↓4 ↑1 ↓4 ↑1 ↓4 ↑26 ↓14

All (54) ↑0 ↓1 ↑41 ↓1 ↑51 ↓1 ↑37 ↓4 ↑21 ↓14 ↑5 ↓31 ↑5 ↓39 ↑6 ↓38 ↑166 ↓129

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑7 ↓0

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑8 ↓0

10 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑5 ↓2

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓0 ↑0 ↓0 ↑8 ↓0

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑0 ↓0 ↑8 ↓0

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓0 ↑1 ↓0 ↑8 ↓0

C (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑22 ↓2

S (6) ↑0 ↓0 ↑2 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓0 ↑0 ↓0 ↑1 ↓0 ↑22 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓2 ↑0 ↓3 ↑0 ↓5 ↑26 ↓10

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓3 ↑0 ↓6 ↑0 ↓6 ↑25 ↓15

F2 (6) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑4 ↓0 ↑3 ↓2 ↑0 ↓4 ↑28 ↓7

F3 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑2 ↓1 ↑0 ↓4 ↑0 ↓5 ↑0 ↓5 ↑0 ↓4 ↑13 ↓19

F4 (6) ↑1 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓1 ↑3 ↓0 ↑0 ↓3 ↑29 ↓6

F5 (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓0 ↑0 ↓1 ↑31 ↓2

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑41 ↓0

T1 (7) ↑0 ↓2 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑3 ↓2 ↑1 ↓5 ↑35 ↓12

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑2 ↓3 ↑1 ↓4 ↑1 ↓6 ↑30 ↓13

T3 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑3 ↓1 ↑2 ↓2 ↑1 ↓2 ↑32 ↓6

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑3 ↓3 ↑3 ↓3 ↑1 ↓5 ↑33 ↓12

T5 (7) ↑0 ↓2 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑4 ↓0 ↑4 ↓1 ↑1 ↓3 ↑1 ↓2 ↑29 ↓8

T6 (7) ↑1 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓2 ↑3 ↓2 ↑1 ↓3 ↑34 ↓8

All (54) ↑1 ↓4 ↑45 ↓0 ↑52 ↓0 ↑48 ↓1 ↑46 ↓4 ↑25 ↓11 ↑13 ↓17 ↑7 ↓24 ↑237 ↓61
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Table 4.18: CDE vs DynDE HAEBI performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑10 ↓3

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓1 ↑9 ↓2

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑10 ↓3

20 (2) ↑0 ↓1 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑8 ↓4

40 (2) ↑0 ↓0 ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓1 ↑7 ↓1

80 (2) ↑0 ↓0 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓1 ↑10 ↓2

C (6) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓4 ↑0 ↓4 ↑29 ↓8

S (6) ↑0 ↓1 ↑2 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑0 ↓0 ↑0 ↓5 ↑25 ↓7

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓2 ↑1 ↓3 ↑31 ↓5

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓4 ↑1 ↓3 ↑32 ↓7

F2 (6) ↑0 ↓1 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑5 ↓1 ↑3 ↓1 ↑36 ↓4

F3 (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑0 ↓0 ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑16 ↓16
F4 (6) ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑4 ↓1 ↑3 ↓1 ↑35 ↓3

F5 (6) ↑1 ↓0 ↑2 ↓0 ↑3 ↓0 ↑4 ↓0 ↑5 ↓0 ↑4 ↓1 ↑4 ↓0 ↑2 ↓1 ↑25 ↓2

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑4 ↓0 ↑5 ↓0 ↑37 ↓0

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓2 ↑5 ↓1 ↑4 ↓2 ↑37 ↓5

T2 (7) ↑1 ↓0 ↑7 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓3 ↑2 ↓4 ↑2 ↓5 ↑34 ↓12

T3 (7) ↑0 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓1 ↑3 ↓2 ↑2 ↓1 ↑33 ↓4

T4 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓3 ↑3 ↓3 ↑37 ↓7

T5 (7) ↑0 ↓1 ↑7 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓1 ↑4 ↓1 ↑2 ↓1 ↑37 ↓4

T6 (7) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑4 ↓2 ↑2 ↓2 ↑34 ↓5

All (54) ↑1 ↓2 ↑42 ↓1 ↑47 ↓0 ↑52 ↓0 ↑47 ↓0 ↑40 ↓9 ↑22 ↓17 ↑15 ↓23 ↑266 ↓52

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑0 ↓2 ↑9 ↓6

5 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑8 ↓4

10 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑9 ↓3

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑7 ↓5

40 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑0 ↓2 ↑10 ↓3

80 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑0 ↓2 ↑10 ↓3

C (6) ↑0 ↓0 ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑0 ↓6 ↑28 ↓6

S (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓3 ↑3 ↓3 ↑1 ↓5 ↑0 ↓6 ↑25 ↓18

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑2 ↓2 ↑35 ↓2

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑1 ↓3 ↑34 ↓3

F2 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑2 ↓1 ↑36 ↓2

F3 (6) ↑0 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓2 ↑0 ↓6 ↑0 ↓6 ↑19 ↓14

F4 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑2 ↓2 ↑37 ↓3

F5 (6) ↑1 ↓0 ↑1 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑3 ↓0 ↑4 ↓0 ↑21 ↓0

F6 (6) ↑0 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓2 ↑2 ↓2 ↑4 ↓2 ↑31 ↓7

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑4 ↓1 ↑38 ↓2

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑2 ↓3 ↑2 ↓4 ↑36 ↓7

T3 (7) ↑0 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓2 ↑4 ↓2 ↑1 ↓3 ↑35 ↓7

T4 (7) ↑0 ↓1 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑4 ↓1 ↑4 ↓3 ↑41 ↓5

T5 (7) ↑1 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑3 ↓2 ↑3 ↓2 ↑34 ↓6

T6 (7) ↑0 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓0 ↑3 ↓1 ↑1 ↓3 ↑29 ↓4

All (54) ↑2 ↓1 ↑38 ↓0 ↑51 ↓0 ↑50 ↓1 ↑47 ↓3 ↑38 ↓7 ↑25 ↓15 ↑15 ↓28 ↑266 ↓55

Set. Max All Dimensions

MPB

Cs 1 (10) ↑1 ↓0 ↑7 ↓2 ↑6 ↓2 ↑5 ↓1 ↑6 ↓2 ↑5 ↓2 ↑3 ↓4 ↑1 ↓6 ↑34 ↓19

5 (10) ↑0 ↓0 ↑5 ↓0 ↑10 ↓0 ↑7 ↓1 ↑6 ↓1 ↑6 ↓0 ↑1 ↓4 ↑1 ↓5 ↑36 ↓11

10 (10) ↑0 ↓0 ↑5 ↓0 ↑8 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓1 ↑0 ↓6 ↑1 ↓7 ↑33 ↓14

20 (10) ↑0 ↓1 ↑4 ↓0 ↑9 ↓0 ↑10 ↓0 ↑5 ↓2 ↑3 ↓3 ↑2 ↓4 ↑1 ↓6 ↑34 ↓16

40 (10) ↑0 ↓0 ↑2 ↓0 ↑9 ↓0 ↑10 ↓0 ↑9 ↓1 ↑5 ↓2 ↑2 ↓3 ↑0 ↓5 ↑37 ↓11

80 (10) ↑0 ↓1 ↑2 ↓1 ↑10 ↓0 ↑10 ↓0 ↑9 ↓0 ↑4 ↓3 ↑3 ↓3 ↑1 ↓5 ↑39 ↓13

C (6) ↑0 ↓0 ↑15 ↓0 ↑29 ↓0 ↑25 ↓1 ↑20 ↓3 ↑12 ↓7 ↑6 ↓12 ↑0 ↓17 ↑107 ↓40

S (6) ↑1 ↓2 ↑10 ↓3 ↑23 ↓2 ↑24 ↓1 ↑22 ↓3 ↑16 ↓4 ↑5 ↓12 ↑5 ↓17 ↑106 ↓44

GDBG

F1a (30) ↑0 ↓1 ↑28 ↓0 ↑30 ↓0 ↑24 ↓4 ↑18 ↓10 ↑13 ↓14 ↑6 ↓17 ↑3 ↓22 ↑122 ↓68

F1b (30) ↑1 ↓0 ↑30 ↓0 ↑30 ↓0 ↑24 ↓6 ↑18 ↓11 ↑12 ↓15 ↑5 ↓22 ↑2 ↓24 ↑122 ↓78

F2 (30) ↑0 ↓3 ↑28 ↓0 ↑29 ↓0 ↑20 ↓8 ↑19 ↓9 ↑15 ↓13 ↑12 ↓16 ↑5 ↓18 ↑128 ↓67

F3 (30) ↑0 ↓0 ↑22 ↓0 ↑26 ↓0 ↑14 ↓3 ↑5 ↓4 ↑0 ↓14 ↑2 ↓16 ↑3 ↓15 ↑72 ↓52

F4 (30) ↑1 ↓2 ↑25 ↓0 ↑29 ↓0 ↑26 ↓2 ↑20 ↓7 ↑14 ↓14 ↑12 ↓14 ↑5 ↓18 ↑132 ↓57

F5 (30) ↑2 ↓2 ↑21 ↓0 ↑24 ↓0 ↑23 ↓2 ↑20 ↓6 ↑13 ↓10 ↑9 ↓10 ↑6 ↓13 ↑118 ↓43

F6 (30) ↑0 ↓1 ↑29 ↓0 ↑30 ↓0 ↑26 ↓1 ↑24 ↓1 ↑16 ↓5 ↑16 ↓7 ↑20 ↓6 ↑161 ↓21

T1 (35) ↑0 ↓2 ↑33 ↓0 ↑32 ↓0 ↑24 ↓7 ↑20 ↓9 ↑15 ↓15 ↑14 ↓16 ↑10 ↓20 ↑148 ↓69

T2 (35) ↑1 ↓1 ↑32 ↓0 ↑33 ↓0 ↑28 ↓4 ↑21 ↓8 ↑12 ↓16 ↑6 ↓22 ↑6 ↓26 ↑139 ↓77

T3 (35) ↑0 ↓2 ↑29 ↓0 ↑35 ↓0 ↑26 ↓2 ↑21 ↓8 ↑12 ↓14 ↑10 ↓16 ↑5 ↓16 ↑138 ↓58

T4 (35) ↑0 ↓1 ↑32 ↓0 ↑34 ↓0 ↑27 ↓4 ↑23 ↓8 ↑14 ↓15 ↑11 ↓19 ↑9 ↓22 ↑150 ↓69

T5 (35) ↑2 ↓3 ↑30 ↓0 ↑32 ↓0 ↑24 ↓6 ↑18 ↓7 ↑15 ↓13 ↑10 ↓15 ↑8 ↓15 ↑139 ↓59

T6 (35) ↑1 ↓0 ↑27 ↓0 ↑32 ↓0 ↑28 ↓3 ↑21 ↓8 ↑15 ↓12 ↑11 ↓14 ↑6 ↓17 ↑141 ↓54

All (270) ↑5 ↓11 ↑208 ↓3 ↑250 ↓2 ↑206 ↓28 ↑166 ↓54 ↑111 ↓96 ↑73 ↓126 ↑49 ↓150 ↑1068 ↓470

 
 
 



CHAPTER 4. NOVEL EXTENSIONS TO DYNDE 165

of dimensions listed in Table 4.3. This is the same set of experiments used to compare

CPE, RMC and CDE to DynDE. jDE was thus tested on 2 160 different dynamic en-

vironments. The offline errors resulting from the jDE experiments were analysed with

respect to the offline errors produced by CDE. The number of times that each algorithm

was statistically significantly better than the other (according to Mann-Whitney U tests),

was counted. The analysis is summarised in Tables 4.19 and 4.20.

CDE performed significantly better than jDE in 1 427 cases and worse in 472 cases.

The analysis over all dimensions (refer to Table 4.20) showed that jDE performed better

than CDE more often when a change period of 100 function evaluations was used. At

this change period CDE reduced to DynDE as the competitive population evaluation

component only functions after the second generation. jDE also performed better than

CDE on the GDBG function F3. The scalability study presented in Section 4.6.4 found

that CDE and DynDE performed similarly on function F3, and always resulted in a large

offline error. A possible explanation for the comparatively good performance of jDE on

function F3 is that F3 has a large number of local optima (refer to Figure 2.6). The

ageing component of jDE, which continuously reinitialises individuals, may be useful on

this function to reduce the likelihood of convergence to local optima.

jDE performed better more often than CDE in low dimensions when a change period

of 100 000 was used. This result is to be expected as previous sections found that CDE’s

performance deteriorated with respect to DynDE’s when the change period was increased

(refer to Section 4.6.5.3). jDE also performed better than CDE on the MPB functions

when a change period of 500 was used as insufficient function evaluations are available to

the competitive population evaluation to start locating optima early.

The jDE algorithm maintains a history archive of previously found good solutions.

The purpose of this archive is to make the algorithms more effective on environments

which are cyclic (refer to the definition in Section 2.5.2). jDE did not, however, perform

better than CDE more often on the two recurrent change types of the GDBG (T5 and T6,

described in Section 2.5.4.2). This result is unexpected, as CDE does not make use of a

history archive.

The analysis in this section shows that, although jDE performs better than CDE in

isolated cases, CDE generally performs better than jDE.
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Table 4.19: CDE vs jDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓2

5 (2) ↑0 ↓1 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑12 ↓2

10 (2) ↑0 ↓1 ↑0 ↓2 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓4

20 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓5

40 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓10

80 (2) ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓9

C (6) ↑0 ↓3 ↑1 ↓4 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑34 ↓9

S (6) ↑0 ↓6 ↑1 ↓5 ↑2 ↓4 ↑6 ↓0 ↑4 ↓2 ↑4 ↓2 ↑4 ↓2 ↑4 ↓2 ↑25 ↓23

GDBG

F1a (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓1 ↑2 ↓4 ↑35 ↓5

F1b (6) ↑2 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑2 ↓3 ↑1 ↓4 ↑33 ↓9

F2 (6) ↑1 ↓1 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑0 ↓6 ↑0 ↓6 ↑28 ↓14

F3 (6) ↑1 ↓0 ↑1 ↓4 ↑4 ↓0 ↑5 ↓0 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑11 ↓28

F4 (6) ↑1 ↓1 ↑2 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓3 ↑34 ↓5

F5 (6) ↑2 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓3 ↑39 ↓5

F6 (6) ↑1 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑1 ↓4 ↑0 ↓6 ↑28 ↓10

T1 (7) ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓2 ↑2 ↓3 ↑0 ↓7 ↑37 ↓13

T2 (7) ↑1 ↓0 ↑5 ↓1 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑1 ↓3 ↑38 ↓8

T3 (7) ↑0 ↓1 ↑5 ↓1 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑4 ↓3 ↑2 ↓3 ↑37 ↓10

T4 (7) ↑4 ↓0 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑5 ↓1 ↑2 ↓5 ↑0 ↓7 ↑33 ↓15

T5 (7) ↑0 ↓3 ↑3 ↓2 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑4 ↓2 ↑2 ↓3 ↑2 ↓5 ↑30 ↓16

T6 (7) ↑0 ↓1 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓1 ↑2 ↓4 ↑0 ↓7 ↑33 ↓14

All (54) ↑9 ↓14 ↑32 ↓14 ↑45 ↓6 ↑53 ↓0 ↑46 ↓8 ↑40 ↓10 ↑27 ↓22 ↑15 ↓34 ↑267 ↓108

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑9 ↓4

5 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓3

10 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓5

20 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓6

40 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑9 ↓7

80 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑5 ↓10

C (6) ↑0 ↓6 ↑0 ↓4 ↑3 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑33 ↓13

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓5 ↑3 ↓2 ↑4 ↓0 ↑5 ↓1 ↑5 ↓1 ↑5 ↓1 ↑22 ↓22
GDBG

F1a (6) ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓3 ↑40 ↓3

F1b (6) ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓2 ↑2 ↓3 ↑39 ↓5

F2 (6) ↑2 ↓1 ↑3 ↓1 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑39 ↓4

F3 (6) ↑2 ↓0 ↑0 ↓5 ↑0 ↓1 ↑6 ↓0 ↑4 ↓0 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑12 ↓24

F4 (6) ↑2 ↓1 ↑2 ↓2 ↑5 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓4

F5 (6) ↑3 ↓2 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓3

F6 (6) ↑2 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑3 ↓3 ↑34 ↓5

T1 (7) ↑2 ↓0 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓2 ↑3 ↓4 ↑42 ↓8

T2 (7) ↑2 ↓3 ↑3 ↓1 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑43 ↓7

T3 (7) ↑0 ↓1 ↑2 ↓2 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑38 ↓8

T4 (7) ↑5 ↓0 ↑6 ↓1 ↑6 ↓1 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑5 ↓2 ↑4 ↓3 ↑45 ↓8

T5 (7) ↑2 ↓0 ↑2 ↓4 ↑4 ↓2 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑5 ↓2 ↑3 ↓4 ↑35 ↓13

T6 (7) ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓1 ↑3 ↓2 ↑43 ↓4

All (54) ↑16 ↓16 ↑23 ↓19 ↑37 ↓11 ↑51 ↓2 ↑50 ↓0 ↑47 ↓7 ↑42 ↓11 ↑35 ↓17 ↑301 ↓83

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓9

5 (2) ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑6 ↓6
10 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑9 ↓5

20 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓5

40 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓5

80 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑9 ↓5

C (6) ↑0 ↓5 ↑0 ↓4 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑33 ↓9

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑2 ↓2 ↑3 ↓2 ↑4 ↓2 ↑4 ↓1 ↑4 ↓1 ↑17 ↓26

GDBG

F1a (6) ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑43 ↓0

F1b (6) ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑44 ↓1

F2 (6) ↑3 ↓1 ↑3 ↓1 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓3

F3 (6) ↑2 ↓2 ↑0 ↓5 ↑0 ↓5 ↑3 ↓0 ↑4 ↓0 ↑2 ↓2 ↑0 ↓6 ↑0 ↓6 ↑11 ↓26

F4 (6) ↑2 ↓0 ↑3 ↓1 ↑4 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓2

F5 (6) ↑2 ↓0 ↑3 ↓1 ↑3 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑33 ↓2

F6 (6) ↑3 ↓2 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓1 ↑36 ↓4

T1 (7) ↑0 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑41 ↓5

T2 (7) ↑1 ↓3 ↑5 ↓1 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑45 ↓7

T3 (7) ↑0 ↓2 ↑1 ↓1 ↑2 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓1 ↑35 ↓6

T4 (7) ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑4 ↓2 ↑47 ↓6

T5 (7) ↑5 ↓0 ↑2 ↓4 ↑3 ↓3 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓2 ↑4 ↓2 ↑38 ↓11

T6 (7) ↑6 ↓0 ↑2 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑4 ↓2 ↑40 ↓3

All (54) ↑19 ↓16 ↑22 ↓18 ↑31 ↓13 ↑46 ↓2 ↑48 ↓2 ↑48 ↓4 ↑44 ↓8 ↑38 ↓10 ↑296 ↓73
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Table 4.20: CDE vs jDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓9

5 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑6 ↓9

10 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑6 ↓4

20 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓5

40 (2) ↑0 ↓2 ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑10 ↓5

80 (2) ↑0 ↓1 ↑0 ↓1 ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓3

C (6) ↑0 ↓5 ↑0 ↓2 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑35 ↓7

S (6) ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑3 ↓2 ↑3 ↓2 ↑3 ↓2 ↑3 ↓2 ↑3 ↓2 ↑15 ↓28

GDBG

F1a (6) ↑2 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

F1b (6) ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑47 ↓0

F2 (6) ↑2 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓3

F3 (6) ↑2 ↓3 ↑0 ↓6 ↑0 ↓5 ↑1 ↓3 ↑3 ↓1 ↑3 ↓2 ↑0 ↓5 ↑0 ↓6 ↑9 ↓31

F4 (6) ↑3 ↓3 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓3

F5 (6) ↑1 ↓1 ↑2 ↓2 ↑2 ↓3 ↑2 ↓3 ↑2 ↓1 ↑4 ↓1 ↑5 ↓1 ↑3 ↓1 ↑21 ↓13

F6 (6) ↑2 ↓3 ↑1 ↓4 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓1 ↑34 ↓8

T1 (7) ↑1 ↓5 ↑6 ↓1 ↑5 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑42 ↓11

T2 (7) ↑1 ↓4 ↑5 ↓2 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑44 ↓9

T3 (7) ↑1 ↓4 ↑3 ↓2 ↑4 ↓1 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑5 ↓1 ↑38 ↓10

T4 (7) ↑5 ↓0 ↑3 ↓2 ↑5 ↓2 ↑5 ↓1 ↑5 ↓0 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑40 ↓8

T5 (7) ↑3 ↓0 ↑4 ↓3 ↑5 ↓2 ↑5 ↓2 ↑5 ↓1 ↑5 ↓0 ↑6 ↓1 ↑4 ↓2 ↑37 ↓11

T6 (7) ↑6 ↓0 ↑4 ↓2 ↑4 ↓1 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑4 ↓2 ↑40 ↓9

All (54) ↑17 ↓24 ↑25 ↓20 ↑34 ↓14 ↑42 ↓8 ↑44 ↓4 ↑46 ↓5 ↑44 ↓8 ↑39 ↓10 ↑291 ↓93

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓2 ↑0 ↓1 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑1 ↓0 ↑6 ↓3

5 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓0 ↑1 ↓1 ↑6 ↓8

10 (2) ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑1 ↓1 ↑10 ↓5

20 (2) ↑0 ↓2 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑2 ↓0 ↑11 ↓4

40 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓4

80 (2) ↑0 ↓2 ↑0 ↓2 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑11 ↓4

C (6) ↑0 ↓6 ↑0 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑36 ↓9

S (6) ↑0 ↓6 ↑0 ↓6 ↑2 ↓1 ↑4 ↓0 ↑4 ↓1 ↑4 ↓1 ↑2 ↓2 ↑3 ↓2 ↑19 ↓19
GDBG

F1a (6) ↑3 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓1

F1b (6) ↑3 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓1

F2 (6) ↑2 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓3

F3 (6) ↑2 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓4 ↑3 ↓1 ↑5 ↓0 ↑0 ↓3 ↑0 ↓6 ↑10 ↓29

F4 (6) ↑2 ↓3 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑44 ↓3

F5 (6) ↑0 ↓2 ↑0 ↓6 ↑0 ↓4 ↑0 ↓6 ↑0 ↓5 ↑0 ↓5 ↑0 ↓5 ↑1 ↓5 ↑1 ↓38

F6 (6) ↑2 ↓3 ↑0 ↓4 ↑3 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓3 ↑32 ↓12

T1 (7) ↑0 ↓5 ↑4 ↓2 ↑5 ↓2 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑36 ↓16

T2 (7) ↑2 ↓4 ↑4 ↓3 ↑5 ↓1 ↑5 ↓2 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓1 ↑39 ↓11

T3 (7) ↑0 ↓5 ↑2 ↓3 ↑3 ↓2 ↑5 ↓2 ↑6 ↓1 ↑6 ↓1 ↑5 ↓1 ↑4 ↓3 ↑31 ↓18

T4 (7) ↑4 ↓2 ↑4 ↓2 ↑5 ↓2 ↑5 ↓2 ↑5 ↓1 ↑6 ↓1 ↑5 ↓2 ↑5 ↓2 ↑39 ↓14

T5 (7) ↑2 ↓0 ↑4 ↓3 ↑4 ↓2 ↑5 ↓2 ↑5 ↓2 ↑5 ↓1 ↑5 ↓2 ↑4 ↓3 ↑34 ↓15

T6 (7) ↑6 ↓0 ↑3 ↓3 ↑4 ↓3 ↑5 ↓1 ↑5 ↓1 ↑6 ↓1 ↑5 ↓1 ↑4 ↓3 ↑38 ↓13

All (54) ↑14 ↓28 ↑21 ↓25 ↑34 ↓13 ↑40 ↓10 ↑43 ↓7 ↑45 ↓6 ↑38 ↓10 ↑37 ↓16 ↑272 ↓115

Set. Max All Dimensions

MPB

Cs 1 (10) ↑0 ↓10 ↑2 ↓4 ↑6 ↓3 ↑6 ↓2 ↑6 ↓2 ↑7 ↓2 ↑7 ↓2 ↑7 ↓2 ↑41 ↓27

5 (10) ↑0 ↓8 ↑0 ↓6 ↑6 ↓3 ↑7 ↓2 ↑7 ↓3 ↑7 ↓3 ↑7 ↓1 ↑7 ↓2 ↑41 ↓28

10 (10) ↑0 ↓9 ↑0 ↓8 ↑6 ↓4 ↑8 ↓0 ↑8 ↓0 ↑9 ↓0 ↑8 ↓1 ↑8 ↓1 ↑47 ↓23

20 (10) ↑0 ↓10 ↑0 ↓9 ↑3 ↓5 ↑10 ↓0 ↑10 ↓0 ↑10 ↓0 ↑9 ↓1 ↑10 ↓0 ↑52 ↓25

40 (10) ↑0 ↓10 ↑0 ↓10 ↑1 ↓6 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑9 ↓1 ↑46 ↓31

80 (10) ↑0 ↓8 ↑0 ↓9 ↑2 ↓6 ↑8 ↓1 ↑8 ↓1 ↑8 ↓2 ↑8 ↓2 ↑8 ↓2 ↑42 ↓31

C (6) ↑0 ↓25 ↑1 ↓17 ↑20 ↓5 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑171 ↓47

S (6) ↑0 ↓30 ↑1 ↓29 ↑4 ↓22 ↑18 ↓6 ↑18 ↓7 ↑20 ↓8 ↑18 ↓8 ↑19 ↓8 ↑98 ↓118

GDBG

F1a (30) ↑11 ↓1 ↑27 ↓0 ↑28 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑26 ↓1 ↑21 ↓7 ↑203 ↓9

F1b (30) ↑17 ↓2 ↑28 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑28 ↓1 ↑24 ↓5 ↑19 ↓8 ↑206 ↓16

F2 (30) ↑10 ↓9 ↑23 ↓2 ↑27 ↓2 ↑30 ↓0 ↑30 ↓0 ↑28 ↓1 ↑24 ↓6 ↑23 ↓7 ↑195 ↓27

F3 (30) ↑9 ↓8 ↑1 ↓26 ↑4 ↓17 ↑15 ↓7 ↑14 ↓8 ↑10 ↓16 ↑0 ↓26 ↑0 ↓30 ↑53 ↓138

F4 (30) ↑10 ↓8 ↑18 ↓4 ↑27 ↓2 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑30 ↓0 ↑25 ↓3 ↑200 ↓17

F5 (30) ↑8 ↓7 ↑15 ↓10 ↑17 ↓7 ↑19 ↓9 ↑19 ↓6 ↑22 ↓6 ↑22 ↓6 ↑15 ↓10 ↑137 ↓61

F6 (30) ↑10 ↓8 ↑9 ↓8 ↑24 ↓2 ↑30 ↓0 ↑30 ↓0 ↑28 ↓0 ↑21 ↓7 ↑12 ↓14 ↑164 ↓39

T1 (35) ↑7 ↓10 ↑29 ↓5 ↑29 ↓4 ↑31 ↓2 ↑31 ↓2 ↑28 ↓6 ↑24 ↓9 ↑19 ↓15 ↑198 ↓53

T2 (35) ↑7 ↓14 ↑22 ↓8 ↑30 ↓3 ↑32 ↓2 ↑33 ↓1 ↑32 ↓2 ↑28 ↓5 ↑25 ↓7 ↑209 ↓42

T3 (35) ↑1 ↓13 ↑13 ↓9 ↑22 ↓4 ↑32 ↓3 ↑32 ↓2 ↑32 ↓3 ↑26 ↓8 ↑21 ↓10 ↑179 ↓52

T4 (35) ↑25 ↓2 ↑23 ↓7 ↑28 ↓6 ↑29 ↓3 ↑28 ↓2 ↑29 ↓5 ↑24 ↓11 ↑18 ↓15 ↑204 ↓51

T5 (35) ↑12 ↓3 ↑15 ↓16 ↑22 ↓9 ↑30 ↓4 ↑29 ↓4 ↑26 ↓4 ↑23 ↓10 ↑17 ↓16 ↑174 ↓66

T6 (35) ↑23 ↓1 ↑19 ↓5 ↑26 ↓4 ↑30 ↓2 ↑30 ↓3 ↑29 ↓4 ↑22 ↓8 ↑15 ↓16 ↑194 ↓43

All (270) ↑75 ↓98 ↑123 ↓96 ↑181 ↓57 ↑232 ↓22 ↑231 ↓21 ↑226 ↓32 ↑195 ↓59 ↑164 ↓87 ↑1427 ↓472
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4.7.2 CDE Compared to Other Algorithms

This section compares the performance CDE to the results of other algorithms published

in the literature. Algorithms are generally required to detect changes in the environment,

which makes a direct comparison with the results presented in this chapter inappropriate,

as CDE used an automatic detection strategy which allowed the algorithm to check for

changes in the environment without using function evaluations. A fair comparison to the

published results of other algorithms necessitates the incorporation of a detection strategy

into CDE.

The algorithms used for comparison in this section all use one of two detection strate-

gies. The first strategy is to re-evaluate the performance of the best individual that has

been found since the last change in the environment. A change is detected if the fit-

ness of the individual changed since it was last evaluated. The second detection strategy,

commonly used, is to re-evaluate the fitness of the best individual in each of the sub-

populations. A change is detected if the fitness of any the best individuals has changed

since it was last evaluated. The first strategy has the advantage of using only one function

evaluation per generation to detect changes, but the disadvantage that sampling only a

single point in the fitness landscape could lead to the strategy’s not detecting a change

when it occurs. The second strategy has the advantage of sampling multiple points in the

fitness landscape, but unfortunately uses more function evaluations to detect the changes

than the first strategy does.

Any two algorithms should ideally use the same change detection strategy when being

compared. However, using the same detection strategy does not guarantee that the algo-

rithms will use the same number of function evaluations to detect changes, or that changes

will be detected equally effectively. The functioning of each algorithm influences the per-

formance of a change detection strategy. For example, the number of sub-populations and

the sub-population size used by an algorithm determines the number of function evalua-

tions between generations, and consequently how frequently the change detection strategy

is performed. Algorithms that employ a large sub-population size or use a large num-

ber of sub-populations, perform change detections less frequently than algorithms that

uses a small number of sub-populations or a small sub-population size. The problem
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is further complicated by the fact that not all algorithms maintain a constant number of

sub-populations during the optimisation process. Furthermore, CDE only evolves one sub-

population per generation, which leads to fewer function evaluations between executions

of the change detection strategy.

This section presents CDE results, using several change detection strategies on vari-

ations of the MPB Scenario 2 which are commonly used by researchers to evaluate their

algorithms. The results of each of the algorithms used for comparison can then be com-

pared to CDE’s results using the closest matching detection strategy. Four detection

strategies were selected for incorporation into CDE. The first, Detbest, re-evaluates the

best individual over all sub-populations, after each generation. Detbest thus uses a single

function evaluation per generation. The second change detection strategy, Detlocal, re-

evaluates the best individual in each sub-population after each generation. Detlocal thus

uses nk function evaluations per generation, where nk is the number of sub-populations.

The Detbest and Detlocal change detection strategies function differently on CDE than on

standard multi-population algorithms (like DynDE) where all sub-populations are evolved

per generation. The third and fourth change detection strategies are variations of Detbest

and Detlocal where the detection is not performed in each generation, but once every

nk generations. These strategies are denoted by Detnk−best and Detnk−local. Detecting

changes once every nk generations ensures that the number of function evaluations used

by Detnk−best and Detnk−local in CDE would, respectively, be similar to the number of

function evaluations used by Detbest and Detlocal in standard multi-population algorithms.

The offline errors and 95% confidence intervals of CDE, using the four change detection

strategies on variations of the MPB Scenario 2, are given in Table 4.21. Outcomes of Mann-

Whitney U tests comparing the results of CDE using each of the detection strategies and

CDE using the automatic detection strategy are included in Table 4.21. Results that are

statistically significantly worse than when the automatic detection strategy is used are

printed in italics. The results show that Detbest did not statistically significantly affect

the performance of CDE. The Detlocal detection strategy resulted in inferior performance

by CDE in almost all cases. This bad performance when using Detlocal is due to too many

function evaluations being wasted to detect changes. The CDE algorithm uses 10 sub-

populations. During the period when only one sub-population is evolved per generation,
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the algorithm, on average, uses more than half of the function evaluations per generation

to detect changes using Detlocal. The benefits of detecting changes correctly are thus

outweighed by the cost in function evaluations. The performance of CDE deteriorated

significantly in only two cases when usingDetnk−best and four cases when usingDetnk−local.

Changes can thus be effectively detected without a large deterioration in performance on

the MBP, if an appropriate detection strategy is used.

Table 4.21: CDE using various detection strategies
Settings Automatic Detbest p-val Detlocal p-val Detnk−best p-val Detnk−local p-val

Cs 1 0.79 ± 0.13 0.79 ± 0.15 0.686 0.9 ± 0.09 0.061 0.71 ± 0.12 0.415 0.71 ± 0.1 0.467
Cs 2 1.1 ± 0.08 1.21 ± 0.13 0.39 1.62 ± 0.16 0.000 1.29 ± 0.12 0.026 1.11 ± 0.1 0.947
Cs 4 2.17 ± 0.12 2.17 ± 0.13 0.901 2.96 ± 0.22 0.000 2.19 ± 0.15 0.901 2.41 ± 0.19 0.075
Cs 6 3.22 ± 0.19 3.46 ± 0.25 0.138 4.61 ± 0.26 0.000 3.45 ± 0.15 0.034 3.72 ± 0.21 0.001
Cp 500 4.26 ± 0.12 4.19 ± 0.12 0.293 5.47 ± 0.28 0.000 4.36 ± 0.17 0.44 4.52 ± 0.18 0.046
Cp 1000 2.43 ± 0.11 2.36 ± 0.09 0.504 3.05 ± 0.12 0.000 2.55 ± 0.11 0.146 2.60 ± 0.12 0.036
Cp 2500 1.16 ± 0.1 1.16 ± 0.1 0.82 1.49 ± 0.11 0.000 1.13 ± 0.12 0.307 1.13 ± 0.09 0.592
Cp 10000 0.52 ± 0.15 0.45 ± 0.11 0.467 0.58 ± 0.14 0.127 0.49 ± 0.11 0.994 0.43 ± 0.08 0.592
nd 10 1.9 ± 0.24 2.03 ± 0.24 0.382 2.66 ± 0.29 0.000 2.02 ± 0.3 0.476 2.09 ± 0.32 0.532
nd 50 12.4 ± 1.13 12.77 ± 0.8 0.134 18.80 ± 1.24 0.000 11.43 ± 0.67 0.523 12.74 ± 0.89 0.219
nd 100 25.81 ± 1.71 26.27 ± 1.91 0.901 40.09 ± 3.95 0.000 24.42 ± 1.57 0.314 26.51 ± 2.2 0.843

Table 4.22 lists the published results for variations of the MBP Scenario 2 for 12 of the

most seminal and modern algorithms aimed at the MPB. An overview of these algorithms

was given in Section 3.3. The 95% confidence intervals were calculated from the reported

standard errors or standard deviations in cases where the confidence interval was not

reported. Results that are better than the corresponding CDE results are printed in italics

while results that are worse than CDE’s are printed in boldface in shaded cells. Results

with overlapping confidence intervals are considered to be similar and are consequently

printed in the normal font.

Table 4.22: Reported offline errors of various algorithms
MMEO HJEO LSEO CESO ESCA MPSO

Cs 1 0.66 ± 0.39 0.25 ± 0.20 0.25 ± 0.16 1.38 ± 0.04 1.53 ± 0.02 1.75 ± 0.12

Cs 2 0.86 ± 0.41 0.52 ± 0.27 0.47 ± 0.24 1.78 ± 0.04 1.57 ± 0.02 2.4 ± 0.12

Cs 4 0.97 ± 0.41 0.64 ± 0.31 0.53 ± 0.25 2.23 ± 0.10 1.72 ± 0.06 3.59 ± 0.20

Cs 6 1.09 ± 0.43 0.9 ± 0.33 0.77 ± 0.47 2.74 ± 0.20 1.79 ± 0.06 4.79 ± 0.20

nd 10 2.44 ± 1.51 2.17 ± 1.57 2.25 ± 1.67 2.51 ± 0.08 N/A 4.17 ± 0.29

nd 50 206.3 ± 69.97 5.79 ± 2.74 6.22 ± 3.14 6.81 ± 0.14 N/A N/A
nd 100 480.5 ± 137.39 16.5 ± 10.86 17.8 ± 13.52 24.6 ± 0.49 N/A N/A

CPSO MPSOD HMSO MSO Cellular DE Cellular PSO

Cs 1 1.06 ± 0.07 1.06 ± 0.03 1.42 ± 0.04 1.51 ± 0.04 1.64 ± 0.03 1.14 ± 0.13

Cs 2 1.17 ± 0.06 1.51 ± 0.04 N/A N/A N/A N/A
Cs 4 1.38 ± 0.08 N/A N/A N/A N/A N/A
Cs 6 1.53 ± 0.08 N/A N/A N/A N/A N/A
Cp 500 N/A N/A 7.56 ± 0.27 5.95 ± 0.09 N/A 1.44 ± 0.13

Cp 1000 N/A 3.58 ± 0.05 4.61 ± 0.07 3.94 ± 0.08 3.98 ± 0.03 1.33 ± 0.11

Cp 2500 N/A N/A 2.39 ± 0.16 N/A 2.42 ± 0.02 1.08 ± 0.09
Cp 10000 0.63 ± N/A N/A 0.94 ± 0.09 0.97 ± 0.04 N/A 1.1 ± 0.18
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The comparison of CDE with each of the tabulated algorithms are briefly discussed

here.

MMEO [Moser and Hendtlass, 2007] MMEO is an algorithm based on extremal op-

timisation and searches for optima in parallel. The algorithm detects changes by

re-evaluating all the best solutions in the search space and is thus comparable to the

Detlocal and Detnk−local detection strategies. MMEO yielded a lower offline error

than CDE on experiments with change severities 1 and 2, but confidence intervals

of the two algorithms overlap and MMEO, accordingly, cannot conclusively be con-

sidered superior to CDE. Change severities of 4 and 6 yielded MMEO results that

are clearly superior to CDE’s results. Overlapping confidence intervals were found

in 10 dimensions, but CDE clearly performed better than MMEO in 50 and 100

dimensions.

HJEO [Moser, 2007] HJEO is an extension of MMEO which incorporates a Hooke-

Jeeves local search. HJEO performed better than CDE on all reported cases, except

10 and 100 dimensions where the confidence intervals overlapped.

LSEO [Moser and Chiong, 2010] The local search component of MMEO was further

improved in the LSEO algorithm. LSEO performed better than CDE on all reported

cases, except in 10 and 100 dimensions, where the confidence intervals overlapped.

CESO [Lung and Dumitrescu, 2007] CESO uses a single DE population and a single

PSO population to solve DOPs. Changes are detected by re-evaluating the best

individual in the DE population and is thus comparable to the Detbest detection

strategy. CDE performed better than CESO on experiments with a change severity

of 1 and 2. Overlapping confidence intervals were found when using a change severity

of 4, but CESO performed better than CDE when using a change severity of 6.

CDE performed better than CESO in 10 dimensions but worse in 50 dimensions.

Overlapping confidence intervals were found in 100 dimensions.

ESCA [Lung and Dumitrescu, 2010] ESCA is an adaptation of CESO which employs

two DE populations in combination with the PSO population. CDE performed
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better than ESCA on change severities of 1 and 2, but worse on change severities of

4 and 6.

MPSO [Blackwell and Branke, 2006] MPSO is a multi-swarm algorithm based on

PSO. MPSO uses the Detlocal detection strategy, and is consequently comparable to

CDE using the Detnk−local detection strategy. CDE performed better than MPSO

in all reported cases. Overlapping confidence intervals were found on the change

severity of 6 experiment when using Detlocal detection strategy.

CPSO [Yang and Li, 2010] CPSO clusters particles of an PSO algorithm into sub-

swarms to track optima in a dynamic environment. CPSO detects changes using

the Detbest detection strategy and is thus roughly comparable to CDE using the

Detnk−best strategy. CPE performed better than CPSO in experiments with a change

severity of 1, but overlapping confidence intervals were found with a change severity

of 2. CPSO performed better than CPE with change severities of 4 and 6. CPE

performed better than CPSO when a change period of 10 000 was used, but as

Yang and Li [2010] did not report the confidence interval for this experiment, CPE’s

superiority cannot be confirmed for this experiment.

MPSOD [Novoa-Hernández et al., 2011] MPSOD is an extension of MPSO. The au-

thors do not explicitly state which change detection strategy is used, but it is assumed

that MPSOD employsDetlocal which is used in MPSO. MPSOD is consequently com-

pared to CDE using the Detnk−local detection strategy. CDE performed better than

MPSOD in all reported cases.

HMSO [Kamosi et al., 2010a] HMSO is an extension of MPSO which hibernates un-

productive sub-swarms. HMSO uses the Detbest change detection strategy, and, as

not all sub-populations are evolved per generation, it can be compared to CDE using

Detbest. CDE performed better than HMSO in all reported cases.

MSO [Kamosi et al., 2010b] MSO is a PSO-based algorithm that utilises a dynamic

number of swarms to locate optima in a dynamic environment. Kamosi et al. [2010b]

do not specify the change detection strategy that is used in MSO, but it is assumed
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that the Detbest strategy that was used in HMSO (which was developed by the same

authors) is also used in MSO. CDE performed better than MSO in all reported cases.

Cellular DE [Noroozi et al., 2011] Cellular DE creates sub-populations by dividing

the search space into equally sized cells. Cellular DE employs the Detlocal change

detecting strategy and is thus comparable to CDE using the Detnk−local strategy.

CDE performed better than Cellular DE in all reported cases.

Cellular PSO [Hashemi and Meybodi, 2009a] Cellular PSO creates sub-swarms by

dividing the search space into equally sized cells. Cellular PSO uses the Detlocal

change detecting strategy and is thus comparable to CDE using the Detnk−local

strategy. Cellular PSO performed better than CDE when using change periods of

500 and 1 000, but overlapping confidence intervals were found when using a change

period of 2 500. CDE performed better than Cellular PSO in when using a change

period of 5 000 and 10 000.

This section compared CDE results with the reported results of other algorithms.

Moser and Chiong [2010] currently report the lowest offline errors in the literature on the

MPB with the LSEO algorithm. The offline errors of LSEO and HJEO are considerably

lower than the reported results of any other algorithm, and CDE is no exception. CDE

does, however, outperform each of the other algorithms to which it was compared on at

least one of the tested environments. The results presented in this section indicate that

CDE compares favourably with the state-of-the-art approaches in the literature.

4.8 General Applicability

DynDE [Mendes and Mohais, 2005] was used as base algorithm for the CPE and RMC

adaptations in this chapter. However, while DynDE is well suited for adaptation, the novel

adaptations presented here can, in theory, be incorporated into any multi-population opti-

misation algorithm. This section investigates the general applicability of the competitive

population evaluation and reinitialisation midpoint check approaches by incorporating

these components into jDE of Brest et al. [2009].
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jDE was adapted to incorporate the competitive population evaluation component

of CDE to allocate function evaluations to sub-populations based on performance. The

exclusion component of jDE was replaced with the reinitialisation midpoint check compo-

nent and exclusion threshold of CDE. The self-adaptive control parameters, aging, local

exclusion and custom reinitialisation components of jDE were left intact. The combination

of jDE and CDE is referred to as CjDE.

CjDE was evaluated on the standard set for all combinations of dimension and change

period listed in Table 4.3. The results were compared to those of jDE and the number of

times that each algorithm performed statistically significantly better than the other were

counted. The results of this analysis are given in Tables 4.23 and 4.24. The new com-

ponents improved the jDE algorithm in 1 382 cases and deteriorated jDE ’s performance

in only 346 cases. The benefit of the new components are clear at lower change periods,

but jDE did outperform CjDE at change periods of over 25 000 in low dimensions. This

confirms the trends observed earlier in this chapter that the competitive population eval-

uation approach is only useful in problems with a low change period, and is more useful

at high dimensions.

The results of the CDE algorithm were compared to CjDE on the same experimental

set as described above. An analysis of the results showed that CDE performed better

than CjDE in 1 273 experiments and worse in 631 experiments (full results of this analysis

are given in Appendix B). CDE outperformed CjDE in the majority of experiments, but

considering that jDE outperformed CDE in only 472 experiments and was inferior to CDE

in 1 427 cases, it can be concluded that CjDE performed better with respect to CDE than

jDE.

CPE and RMC outperformed jDE in the majority of environments that were investi-

gated. These results prove that the approaches suggested in this chapter can be successfully

incorporated into other multi-population algorithms aimed at DOPs.

4.9 Conclusions

This chapter evaluated DynDE on a wide range of environments. An investigation into

the appropriate sub-population size and number of Brownian individuals confirmed the
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Table 4.23: CjDE vs jDE performance analysis - Part 1
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 5 Dimensions

MPB

Cs 1 (2) ↑0 ↓1 ↑2 ↓0 ↑1 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑3 ↓11

5 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑2 ↓8

10 (2) ↑1 ↓0 ↑1 ↓0 ↑0 ↓1 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑3 ↓9

20 (2) ↑0 ↓0 ↑1 ↓0 ↑1 ↓1 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑4 ↓8

40 (2) ↑1 ↓0 ↑0 ↓1 ↑0 ↓1 ↑2 ↓0 ↑1 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑4 ↓8

80 (2) ↑0 ↓0 ↑0 ↓1 ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑4 ↓6

C (6) ↑1 ↓0 ↑4 ↓0 ↑3 ↓0 ↑4 ↓1 ↑1 ↓2 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑13 ↓20

S (6) ↑1 ↓1 ↑1 ↓2 ↑0 ↓4 ↑3 ↓3 ↑2 ↓3 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑7 ↓30

GDBG

F1a (6) ↑0 ↓1 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑17 ↓22

F1b (6) ↑2 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑1 ↓3 ↑0 ↓6 ↑0 ↓6 ↑0 ↓6 ↑19 ↓21

F2 (6) ↑0 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑2 ↓3 ↑0 ↓6 ↑0 ↓6 ↑23 ↓16

F3 (6) ↑3 ↓0 ↑1 ↓0 ↑2 ↓0 ↑6 ↓0 ↑6 ↓0 ↑2 ↓1 ↑0 ↓5 ↑0 ↓6 ↑20 ↓12

F4 (6) ↑0 ↓0 ↑4 ↓1 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑1 ↓1 ↑0 ↓6 ↑0 ↓6 ↑20 ↓15

F5 (6) ↑2 ↓1 ↑3 ↓2 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑5 ↓1 ↑3 ↓2 ↑0 ↓6 ↑28 ↓13

F6 (6) ↑2 ↓1 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓1 ↑0 ↓6 ↑0 ↓6 ↑23 ↓14

T1 (7) ↑1 ↓0 ↑0 ↓2 ↑2 ↓1 ↑7 ↓0 ↑4 ↓2 ↑0 ↓6 ↑0 ↓7 ↑0 ↓7 ↑14 ↓25

T2 (7) ↑2 ↓0 ↑5 ↓1 ↑5 ↓1 ↑7 ↓0 ↑5 ↓0 ↑2 ↓3 ↑1 ↓6 ↑0 ↓7 ↑27 ↓18

T3 (7) ↑2 ↓0 ↑3 ↓0 ↑4 ↓0 ↑7 ↓0 ↑5 ↓0 ↑2 ↓2 ↑1 ↓6 ↑0 ↓7 ↑24 ↓15

T4 (7) ↑1 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓2 ↑3 ↓3 ↑0 ↓7 ↑0 ↓7 ↑30 ↓20

T5 (7) ↑0 ↓3 ↑5 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑3 ↓2 ↑1 ↓5 ↑0 ↓7 ↑29 ↓17

T6 (7) ↑3 ↓0 ↑5 ↓0 ↑5 ↓0 ↑7 ↓0 ↑5 ↓2 ↑1 ↓3 ↑0 ↓6 ↑0 ↓7 ↑26 ↓18

All (54) ↑11 ↓5 ↑30 ↓5 ↑32 ↓6 ↑49 ↓4 ↑34 ↓11 ↑11 ↓29 ↑3 ↓49 ↑0 ↓54 ↑170 ↓163

Set. Max 10 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑3 ↓10

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑5 ↓8

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑5 ↓7

20 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓2 ↑0 ↓2 ↑0 ↓2 ↑8 ↓6

40 (2) ↑0 ↓1 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑7 ↓6

80 (2) ↑0 ↓0 ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓0 ↑0 ↓2 ↑0 ↓2 ↑6 ↓4

C (6) ↑1 ↓1 ↑5 ↓0 ↑5 ↓0 ↑5 ↓1 ↑3 ↓1 ↑0 ↓4 ↑0 ↓6 ↑0 ↓6 ↑19 ↓19
S (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑1 ↓2 ↑3 ↓3 ↑0 ↓5 ↑0 ↓6 ↑0 ↓6 ↑15 ↓22

GDBG

F1a (6) ↑1 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓4 ↑0 ↓4 ↑0 ↓6 ↑25 ↓14

F1b (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓4 ↑0 ↓5 ↑0 ↓6 ↑26 ↓15

F2 (6) ↑1 ↓1 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓1 ↑0 ↓6 ↑28 ↓8

F3 (6) ↑0 ↓0 ↑4 ↓0 ↑2 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓0 ↑33 ↓1

F4 (6) ↑2 ↓1 ↑3 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑1 ↓0 ↑0 ↓4 ↑0 ↓6 ↑24 ↓11

F5 (6) ↑1 ↓0 ↑6 ↓0 ↑4 ↓2 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑38 ↓3

F6 (6) ↑1 ↓0 ↑3 ↓1 ↑3 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑1 ↓3 ↑31 ↓5

T1 (7) ↑0 ↓0 ↑7 ↓0 ↑5 ↓1 ↑7 ↓0 ↑7 ↓0 ↑4 ↓2 ↑2 ↓4 ↑1 ↓5 ↑33 ↓12

T2 (7) ↑2 ↓2 ↑4 ↓0 ↑4 ↓2 ↑7 ↓0 ↑7 ↓0 ↑4 ↓2 ↑2 ↓2 ↑1 ↓5 ↑31 ↓13

T3 (7) ↑0 ↓0 ↑3 ↓1 ↑4 ↓1 ↑7 ↓0 ↑7 ↓0 ↑4 ↓0 ↑3 ↓2 ↑1 ↓5 ↑29 ↓9

T4 (7) ↑2 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓2 ↑3 ↓2 ↑1 ↓4 ↑39 ↓8

T5 (7) ↑0 ↓0 ↑4 ↓0 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓1 ↑2 ↓5 ↑36 ↓6

T6 (7) ↑3 ↓0 ↑5 ↓0 ↑5 ↓0 ↑7 ↓0 ↑7 ↓0 ↑4 ↓2 ↑4 ↓3 ↑2 ↓4 ↑37 ↓9

All (54) ↑8 ↓3 ↑40 ↓1 ↑43 ↓4 ↑48 ↓3 ↑48 ↓4 ↑27 ↓17 ↑17 ↓26 ↑8 ↓40 ↑239 ↓98

Set. Max 25 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑0 ↓1 ↑0 ↓2 ↑0 ↓2 ↑6 ↓6
5 (2) ↑1 ↓1 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑0 ↓2 ↑0 ↓2 ↑10 ↓6

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑0 ↓1 ↑0 ↓2 ↑10 ↓3

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑0 ↓2 ↑11 ↓2

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑13 ↓1

80 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

C (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑4 ↓2 ↑2 ↓3 ↑0 ↓5 ↑29 ↓11

S (6) ↑0 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑3 ↓2 ↑2 ↓4 ↑34 ↓7

GDBG

F1a (6) ↑0 ↓1 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓2 ↑1 ↓4 ↑32 ↓7

F1b (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑3 ↓2 ↑1 ↓4 ↑34 ↓6

F2 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑39 ↓0

F3 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

F4 (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑39 ↓0

F5 (6) ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑0 ↓4 ↑2 ↓1 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑30 ↓5

F6 (6) ↑0 ↓0 ↑5 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓0

T1 (7) ↑0 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑5 ↓2 ↑5 ↓2 ↑43 ↓5

T2 (7) ↑0 ↓1 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑3 ↓2 ↑41 ↓4

T3 (7) ↑0 ↓0 ↑4 ↓0 ↑4 ↓0 ↑6 ↓1 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑5 ↓0 ↑39 ↓2

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓2 ↑5 ↓2 ↑43 ↓4

T5 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓0 ↑46 ↓0

T6 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑5 ↓2 ↑43 ↓3

All (54) ↑1 ↓2 ↑50 ↓0 ↑49 ↓0 ↑47 ↓4 ↑49 ↓2 ↑50 ↓2 ↑41 ↓9 ↑31 ↓17 ↑318 ↓36
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Table 4.24: CjDE vs jDE performance analysis - Part 2
Cp 100 500 1000 5000 10000 25000 50000 100000 Total

Set. Max 50 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 ↑10 ↓3

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑12 ↓1

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓1 ↑13 ↓1

20 (2) ↑0 ↓0 ↑1 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑11 ↓0

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

80 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

C (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑4 ↓1 ↑2 ↓3 ↑34 ↓5

S (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑39 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑4 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓1 ↑37 ↓1

F1b (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑37 ↓1

F2 (6) ↑0 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓0

F3 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

F4 (6) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓0

F5 (6) ↑1 ↓0 ↑4 ↓0 ↑5 ↓0 ↑0 ↓4 ↑0 ↓6 ↑1 ↓3 ↑2 ↓2 ↑4 ↓1 ↑17 ↓16

F6 (6) ↑0 ↓1 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓1

T1 (7) ↑0 ↓1 ↑6 ↓0 ↑5 ↓0 ↑5 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑39 ↓3

T2 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓1 ↑7 ↓0 ↑7 ↓0 ↑7 ↓0 ↑45 ↓2

T3 (7) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑7 ↓0 ↑40 ↓3

T4 (7) ↑1 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓0 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑5 ↓2 ↑43 ↓3

T5 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑44 ↓5

T6 (7) ↑0 ↓0 ↑6 ↓0 ↑7 ↓0 ↑5 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑42 ↓3

All (54) ↑1 ↓1 ↑47 ↓0 ↑49 ↓0 ↑43 ↓4 ↑47 ↓6 ↑48 ↓4 ↑47 ↓3 ↑44 ↓6 ↑326 ↓24

Set. Max 100 Dimensions

MPB

Cs 1 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑1 ↓1 ↑12 ↓1

5 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑13 ↓0

10 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

20 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑14 ↓0

40 (2) ↑0 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑13 ↓0

80 (2) ↑1 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑2 ↓0 ↑15 ↓0

C (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑4 ↓1 ↑39 ↓1

S (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

GDBG

F1a (6) ↑0 ↓0 ↑5 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑39 ↓0

F1b (6) ↑0 ↓0 ↑3 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑5 ↓0 ↑5 ↓0 ↑35 ↓0

F2 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓0

F3 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑41 ↓0

F4 (6) ↑1 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑43 ↓0

F5 (6) ↑0 ↓0 ↑4 ↓0 ↑3 ↓0 ↑1 ↓4 ↑0 ↓6 ↑0 ↓5 ↑0 ↓4 ↑0 ↓5 ↑8 ↓24

F6 (6) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑4 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑40 ↓0

T1 (7) ↑0 ↓0 ↑6 ↓0 ↑6 ↓0 ↑5 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑41 ↓4

T2 (7) ↑0 ↓0 ↑5 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓0 ↑6 ↓0 ↑42 ↓2

T3 (7) ↑1 ↓0 ↑6 ↓0 ↑4 ↓0 ↑5 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓0 ↑6 ↓1 ↑40 ↓4

T4 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑5 ↓1 ↑5 ↓1 ↑6 ↓1 ↑5 ↓1 ↑4 ↓1 ↑39 ↓5

T5 (7) ↑0 ↓0 ↑7 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑44 ↓5

T6 (7) ↑0 ↓0 ↑5 ↓0 ↑6 ↓0 ↑7 ↓0 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑6 ↓1 ↑42 ↓4

All (54) ↑2 ↓0 ↑48 ↓0 ↑49 ↓0 ↑46 ↓4 ↑46 ↓6 ↑48 ↓5 ↑46 ↓4 ↑44 ↓6 ↑329 ↓25

Set. Max All Dimensions

MPB

Cs 1 (10) ↑0 ↓1 ↑10 ↓0 ↑8 ↓0 ↑5 ↓4 ↑4 ↓5 ↑3 ↓6 ↑2 ↓7 ↑2 ↓8 ↑34 ↓31

5 (10) ↑1 ↓1 ↑9 ↓0 ↑9 ↓0 ↑7 ↓2 ↑6 ↓2 ↑5 ↓5 ↑3 ↓6 ↑2 ↓7 ↑42 ↓23

10 (10) ↑1 ↓0 ↑9 ↓0 ↑8 ↓1 ↑8 ↓1 ↑6 ↓2 ↑6 ↓4 ↑4 ↓5 ↑3 ↓7 ↑45 ↓20

20 (10) ↑1 ↓0 ↑8 ↓0 ↑9 ↓1 ↑8 ↓0 ↑8 ↓1 ↑6 ↓4 ↑5 ↓4 ↑3 ↓6 ↑48 ↓16

40 (10) ↑1 ↓1 ↑8 ↓1 ↑8 ↓1 ↑8 ↓0 ↑8 ↓0 ↑6 ↓3 ↑6 ↓4 ↑5 ↓5 ↑50 ↓15

80 (10) ↑1 ↓0 ↑6 ↓1 ↑8 ↓1 ↑10 ↓0 ↑10 ↓0 ↑6 ↓0 ↑6 ↓4 ↑5 ↓4 ↑52 ↓10

C (6) ↑3 ↓1 ↑27 ↓0 ↑26 ↓0 ↑26 ↓2 ↑20 ↓4 ↑15 ↓12 ↑11 ↓16 ↑6 ↓21 ↑134 ↓56

S (6) ↑2 ↓2 ↑23 ↓2 ↑24 ↓4 ↑20 ↓5 ↑22 ↓6 ↑17 ↓10 ↑15 ↓14 ↑14 ↓16 ↑137 ↓59

GDBG

F1a (30) ↑1 ↓2 ↑23 ↓0 ↑27 ↓0 ↑30 ↓0 ↑25 ↓3 ↑18 ↓10 ↑16 ↓12 ↑10 ↓17 ↑150 ↓44

F1b (30) ↑3 ↓0 ↑25 ↓0 ↑27 ↓0 ↑30 ↓0 ↑24 ↓3 ↑19 ↓10 ↑13 ↓13 ↑10 ↓17 ↑151 ↓43

F2 (30) ↑1 ↓2 ↑25 ↓0 ↑27 ↓0 ↑30 ↓0 ↑29 ↓0 ↑26 ↓3 ↑18 ↓7 ↑17 ↓12 ↑173 ↓24

F3 (30) ↑3 ↓0 ↑23 ↓0 ↑22 ↓1 ↑27 ↓0 ↑30 ↓0 ↑26 ↓1 ↑24 ↓5 ↑21 ↓6 ↑176 ↓13

F4 (30) ↑3 ↓1 ↑23 ↓1 ↑26 ↓1 ↑30 ↓0 ↑30 ↓0 ↑20 ↓1 ↑18 ↓10 ↑17 ↓12 ↑167 ↓26

F5 (30) ↑4 ↓1 ↑23 ↓2 ↑20 ↓3 ↑13 ↓12 ↑14 ↓13 ↑18 ↓9 ↑16 ↓8 ↑13 ↓13 ↑121 ↓61

F6 (30) ↑3 ↓2 ↑23 ↓1 ↑23 ↓1 ↑27 ↓0 ↑30 ↓0 ↑25 ↓1 ↑23 ↓6 ↑19 ↓9 ↑173 ↓20

T1 (35) ↑1 ↓1 ↑26 ↓2 ↑24 ↓2 ↑30 ↓2 ↑30 ↓4 ↑23 ↓9 ↑19 ↓14 ↑17 ↓15 ↑170 ↓49

T2 (35) ↑4 ↓3 ↑27 ↓1 ↑28 ↓3 ↑32 ↓3 ↑30 ↓2 ↑26 ↓5 ↑22 ↓8 ↑17 ↓14 ↑186 ↓39

T3 (35) ↑3 ↓0 ↑21 ↓1 ↑21 ↓1 ↑30 ↓3 ↑30 ↓3 ↑25 ↓4 ↑23 ↓8 ↑19 ↓13 ↑172 ↓33

T4 (35) ↑4 ↓1 ↑34 ↓0 ↑35 ↓0 ↑31 ↓1 ↑30 ↓4 ↑26 ↓6 ↑19 ↓12 ↑15 ↓16 ↑194 ↓40

T5 (35) ↑0 ↓3 ↑30 ↓0 ↑34 ↓0 ↑32 ↓2 ↑32 ↓2 ↑28 ↓4 ↑23 ↓8 ↑20 ↓14 ↑199 ↓33

T6 (35) ↑6 ↓0 ↑27 ↓0 ↑30 ↓0 ↑32 ↓1 ↑30 ↓4 ↑24 ↓7 ↑22 ↓11 ↑19 ↓14 ↑190 ↓37

All (270) ↑23 ↓11 ↑215 ↓6 ↑222 ↓10 ↑233 ↓19 ↑224 ↓29 ↑184 ↓57 ↑154 ↓91 ↑127 ↓123 ↑1382 ↓346
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result of Mendes and Mohais [2005] that using a small sub-population size of six is an

effective parameter setting, but concluded that only one Brownian individual should be

used, rather than two.

Three DynDE-based algorithms were introduced and evaluated in this chapter. The

first algorithm, competitive population evaluation (CPE), allows sub-populations to com-

pete for function evaluations based on performance. The second algorithm, reinitialisation

midpoint check (RMC), is aimed at improving the exclusion process of DynDE. The third

algorithm, competitive differential evolution (CDE) is a combination of CPE and RMC.

A scalability study was conducted on DynDE, CPE, RMC and CDE to determine how

the algorithms scale with respect to the number of dimensions, change period, severity

of changes, change types, and underlying function in dynamic environments. The study

found that DynDE and RMC exhibit similar scaling behaviour, while CPE and CDE

exhibit similar scaling behaviour. An increase in the number of dimensions resulted in an

increase in offline error for all the algorithms, with CPE and CDE yielding lower offline

errors as the number of dimensions is increased.

CPE and CDE scaled better than DynDE and RMC as the period between changes in

the environment is decreased, with the exception of extremely low change periods where

the algorithms performed similarly. The offline errors of all the algorithms were found to

decrease as the change period is increased, since more function evaluations are available

between changes. At high change periods DynDE and RMC were found to perform better

than CPE and CDE.

An increase in change severity resulted in lower offline errors for all algorithms. CPE

and CDE were found to scale better than DynDE and RMC as the severity of changes in

the environment increases. Experimental results showed that the improved performance

of CPE and CDE vs DynDE and RMC on high change severity problems is due to CPE

and CDE locating optima faster, after changes in the environment.

The underlying function used in the benchmark was shown to have a strong influence

on the performance of the optimisation algorithm. The underlying function generally

determines the magnitude of the difference in offline error of CPE and CDE vs DynDE

and RMC. The influence of the type of changes in the environment was found to be strongly

linked to the underlying function. Generally, the change type influences the point at which
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DynDE and RMC start outperforming CPE and CDE due to an increased change period.

An analysis was conducted to determine whether CPE, RMC and CDE yielded statis-

tically significantly better results than DynDE. CPE was found to perform significantly

better than DynDE in the vast majority of experiments. The improvements were found

to be especially pronounced in the lower change period experiments. RMC was found to

perform better than DynDE in a small number of experiments localised in the low dimen-

sional environments. CDE performed significantly better than DynDE in the majority of

experiments and was shown to perform better than both RMC and CPE.

Experimental evidence was presented to show that CDE yielded a lower offline error

than DynDE, because CDE’s error values decreased faster after a change in the environ-

ment than those of DynDE. The diversity of the individuals in the search space differed

very little between CDE and DynDE, but the average diversity per sub-population of CDE

decreased faster than that of DynDE.

CDE and DynDE were compared in terms of the average error immediately before

changes in the environment to investigate the possibility that CDE merely exploits the

offline error performance measure. An analysis of the experimental results showed that,

while improvements in terms of the average error immediately before changes were less

pronounced than when using the offline error, CDE still performed significantly better

than DynDE in the majority of the experiments.

An extensive comparison to jDE, a state-of-the-art optimisation algorithm for DOPs,

found that CDE performed significantly better than jDE in the majority of investigated

environments, especially at lower change periods. A comparison of CDE to the reported

results of other algorithms found in the literature showed that CDE compares favourably

with state-of-the-art algorithms.

The general applicability of the approaches suggested in this chapter was investigated

by incorporating the novel components of CDE into the jDE algorithm. The experimental

results proved that jDE was improved by the incorporation of the new approaches, but

that the resultant algorithm was still inferior to CDE.

The evaluations in this chapter did not focus on the effect of the number of optima in

the environment. The following chapter focuses on this important consideration.
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