
Chapter 1

INTRODUCTION

Evolutionary algorithms (EAs) are optimisation algorithms inspired by facets of biolog-

ical evolution. Populations of potential solutions (individuals) are iteratively evolved by

encouraging the reproduction of more fit individuals. Mutations and crossovers of par-

ent individuals are used to increase the genetic diversity of subsequent generations. EAs

have been shown to be effective on optimisation problems that pose a challenge to more

traditional optimisation methods [Bäck et al., 1997].

Differential evolution (DE) is an EA variant which uses the positional difference be-

tween randomly selected individuals to create a mutant vector. A trial vector is created

through a crossover between a mutant and a parent individual. Selection is implemented

as competition between a parent individual and a trial vector. DE has been shown to be

an effective optimisation algorithm in static environments.

A dynamic optimisation problem is a problem in which the fitness landscape varies over

time. Dynamic optimisation problems are found in many real world domains, for example

in air-traffic control, polarisation mode dispersion compensation in optical fibre, and target

tracking in military applications [Gibbon et al., 2008] [Li et al., 2006]. A considerable

amount of research has been conducted on applying EA to dynamic optimisation problems,

but very few of these algorithms are based on DE. The focus of this thesis is on the

application of DE variants to dynamic optimisation problems.

This chapter gives a motivation for this research in Section 1.1. The research objectives

are listed in Section 1.2. Section 1.3 gives the methodology followed in this thesis. The

1

CHAPTER 1. INTRODUCTION 2

main contributions of this study are highlighted in Section 1.4. The scope of this research

study is delineated in Section 1.5. A break-down of the thesis structure is presented in

Section 1.6.

1.1 Motivation

Despite the fact that evolutionary algorithms often solve static problems successfully,

dynamic optimisation problems tend to pose a challenge to evolutionary algorithms [Mor-

rison, 2004]. Lack of diversity is the main disadvantage of most standard evolutionary

algorithms when applied to dynamic problems, since the algorithms tend to converge to a

single optimum in the fitness landscape and then lack the diversity to locate new global

optima when they appear. Differential evolution is one of the evolutionary algorithms

that does not scale well to dynamic environments due to lack of diversity [Zaharie and

Zamfirache, 2006].

A significant body of work exists on algorithms for optimising dynamic problems (refer

to Section 3.3). However, very few of these algorithms are based on DE. DE has been

successfully applied to a large number of static optimisation problems (refer to Section

2.4.5), and is generally considered to be a reliable, accurate, robust, and fast optimisa-

tion technique [Salman et al., 2007]. DE provides several advantages as an optimisation

algorithm:

• The function to be optimised by DE does not have to be differentiable [Ilonen et al.,

2003].

• The DE selection and mutation operators are simpler than those of other EA algo-

rithms [Zaharie, 2002b].

• DE has relatively few control parameters [Storn and Price, 1997].

• The DE algorithm exhibits fast convergence [Karaboga and Okdem, 2004].

• The mutation step size of DE is automatically controlled so that the exploration is

favoured initially, and exploitation is favoured later in the optimisation process [Xue

et al., 2003].

CHAPTER 1. INTRODUCTION 3

• The space complexity of DE is comparatively low [Das and Suganthan, 2011].

The application of DE to dynamic optimisation problems has only recently begun to

receive attention (refer to Section 3.3.3.3), despite the previously mentioned advantages

of DE. The relatively small amount of research into DE-based algorithms for dynamic

environments means that the performance and behaviour of DE on dynamic optimisation

problems have not been thoroughly investigated, and that improvements to current DE-

based algorithms can potentially be made. The purpose of this thesis is to investigate,

create, and refine DE-based algorithms aimed at dynamic optimisation problems.

1.2 Objectives

The primary objective of this thesis is to create improved DE-based algorithms for dynamic

environments. The sub-objectives are as follows:

• Investigate existing algorithms aimed at solving dynamic optimisation problems,

specifically focusing on algorithms based on differential evolution.

• Identify specific approaches, tailored to dynamic optimisation problems, that are

commonly used in the above algorithms.

• Extend and hybridise existing DE algorithms to create more effective DE-based

optimisation algorithms for dynamic environments.

• Identify and investigate dynamic optimisation problem types that have not been

thoroughly investigated by other researchers.

• Investigate the use of adaptive control parameters to reduce the number of parame-

ters that must be manually tuned.

• Perform scalability studies on existing and newly created algorithms.

• Compare the performance of the newly created algorithms to the reported results of

other algorithms.

CHAPTER 1. INTRODUCTION 4

1.3 Methodology

The primary objective of this thesis is to create improved DE-based algorithms for dy-

namic environments. Eight algorithms are created sequentially in this study. Figure 1.1

illustrates how each algorithm relies on one or more base algorithms. Names of new algo-

rithms, developed in this thesis, are printed in bold italics. DynDE [Mendes and Mohais,

2005], a DE-based multi-population algorithm for dynamic environments, is used as the

root algorithm.

Two novel algorithms are directly based on DynDE. The first is competitive popu-

lation evaluation (CPE), which improves the performance of DE by evolving only one

sub-population at a time. The selection of sub-populations for evolution is based on per-

formance. Reinitialisation midpoint check (RMC) is a technique aimed at improving the

detection process that DynDE uses to determine if more than one sub-population con-

verges to the same optimum. CPE and RMC are combined to form competing differential

evolution (CDE). The performance and scalability of DynDE, CPE, RMC and CDE are

evaluated on a standard benchmark for dynamic environments. The results of these exper-

iments are used to draw conclusions regarding the effectiveness of the new algorithms. The

general applicability of the CPE and RMC approaches is demonstrated by incorporating

their respective algorithmic components into jDE, a DE-based optimisation algorithm that

was developed by Brest et al. [2009]. Comparisons are drawn with the reported results of

other algorithms in the literature which focus on dynamic optimisation problems.

Dynamic population differential evolution (DynPopDE) is an extension of CDE which

dynamically adjusts the number of sub-populations. DynPopDE is aimed at dynamic op-

timisation problems in which the number of optima is unknown or fluctuates over time.

Fluctuating numbers of optima have not been investigated by previous researchers (al-

though an environment of this type has been included in the benchmark set of the IEEE

WCCI-2012 competition on evolutionary computation for dynamic optimisation problems

[Li et al., 2011]). An adaptation is made to a standard benchmark to investigate the

behaviour of DynPopDE on environments in which the number of optima fluctuates over

time. A scalability study identifies problem instances where DynPopDE performs better

than CDE and DynDE.

CHAPTER 1. INTRODUCTION 5

CDE is used as base algorithm to investigate the incorporation of self-adaptive control

parameters. Three algorithms that self-adapt the DE scale and crossover factors, which

were developed for static environments, are identified as potential approaches to work

effectively in conjunction with CDE. Adaptations, aimed at improving their effectiveness

in dynamic environments, are made to the three approaches. A total of 13 algorithms are

consequently evaluated and compared to find the most effective, i.e. jSA2Ran.

Four strategies for self-adapting the Brownian radius (refer to Section 3.4.1.3) are in-

vestigated. SABrNorRes is shown to be the most effective of the four strategies. The final

algorithms developed are SACDE and SADynPopDE, which are formed by incorporating

the self-adaptive components from jSA2Ran and SABrNorRes into CDE and DynPopDE,

respectively. The performances of SACDE and SADynPopDE are evaluated on a bench-

mark function and are compared to the performances of their base algorithms.

Figure 1.1: Thesis outline

CHAPTER 1. INTRODUCTION 6

1.4 Contributions

The main contributions of this thesis can be classified under the headings practical and

theoretical. These contributions are briefly highlighted below.

Practical Contributions

• A novel approach to improving optimisation in dynamic environments based on sub-

populations competing for function evaluations.

• An improvement of the approach used to prevent sub-populations from converging

to the same optima by checking for valleys in the fitness landscape.

• A novel algorithm that dynamically spawns and removes sub-populations. This

algorithm is aimed at dynamic environments where the number of optima is unknown

or fluctuating.

• A novel algorithm to self-adapt the Brownian radius.

• An extension of a standard benchmark that allows the study of optimisation algo-

rithms on environments in which the number of optima fluctuates over time.

Theoretical Contributions

• A unified taxonomy for classifying dynamic environments.

• Algorithmic approaches which are commonly used in dynamic optimisation problems

are identified.

• Appropriate values for the sub-population size and number of Brownian individuals

are determined.

• The general applicability of the competitive population evaluation and reinitialisa-

tion midpoint check approaches is illustrated.

• Evidence is presented to prove that fewer sub-populations should be used than the

number of optima that are present in the environment, especially when the number

of optima is large.

CHAPTER 1. INTRODUCTION 7

• An investigation into the most effective self-adaptive scale and crossover approach

to use in conjunction with algorithms for dynamic environments is provided.

• An investigation into the most effective approach to self-adapting the Brownian

radius is presented.

• Extensive scalability studies of existing and novel algorithms.

• The convergence profiles of the algorithms are investigated.

1.5 Scope

The scope of this research is delineated as follows:

• Dynamic environments in which the number of dimensions vary over time are ex-

cluded.

• The effect of different change detecting strategies is not investigated. The algorithms

considered are independent of the change detection mechanism. The default detec-

tion strategy used is a change detection “oracle” which uses no function evaluations

and detects changes perfectly. However, the optimisation algorithms employ actual

change detection strategies when comparing these results with the published results

of other researchers that used detection strategies.

• Only dynamic environments in which changes are periodic are considered. This

constraint applies to the environments that are investigated, but is not exploited

by the algorithms presented in this thesis. Specifically, at no point is it known to

the algorithms how many function evaluations remain before the next change in the

environment.

1.6 Thesis structure

This thesis is structured as follows:

Chapter 2 contains a brief overview of optimisation and evolutionary algorithms. Dif-

ferential evolution is discussed in detail with reference to DE schemes and control pa-

CHAPTER 1. INTRODUCTION 8

rameters. A literature review of approaches to self-adapt or eliminate control parameters

is included. Dynamic environments are described and the main factors which influence

optimisation algorithm effectiveness are identified. The benchmarks and performance

measures that are used in this study are discussed.

Chapter 3 introduces related work solving dynamic optimisation problems. The chap-

ter commences with a discussion on how normal DE performs on dynamic optimisation

problems. Algorithms presented by other researchers in the literature are reviewed. Three

broad categories of strategies, which are followed to adapt optimisation algorithms to dy-

namic environments, are given. Seven specific strategies that fall within these categories

are identified. It is argued that most current algorithms aimed at dynamic environments

utilise at least one of the seven strategies. Two DE-based algorithms, DynDE and jDE,

are reviewed in detail. The chapter concludes with a brief description of techniques used

to detect changes in the environment.

Chapter 4 presents novel extensions to DynDE. An alternative method of calculating

the DynDE exclusion threshold in the absence of knowledge regarding the number of op-

tima present in the environment is given. Competitive population evaluation (CPE) is

described and motivated. Reinitialisation midpoint check (RMC) is presented and poten-

tial pitfalls with the use of this approach are described. CPE and RMC are combined to

form competing differential evolution (CDE). The scalability and performances of DynDE,

CPE, RMC and CDE are compared. The general applicability of the CPE and RMC ap-

proaches is illustrated by their incorporation into another DE-based algorithm aimed at

dynamic optimisation problems. CDE is compared to other algorithms in the literature.

Chapter 5 presents DynPopDE, an extension of CDE aimed at dynamic optimisation

problems where the number of optima is unknown, or unknown and fluctuating over time.

The technique used by DynPopDE to spawn or remove sub-populations is discussed and

motivated. The performance of DynPopDE on problems where the number of optima is

unknown is compared to that of DynDE and CDE. In addition, DynPopDE results are

compared to results of other algorithms reported in the literature. DynPopDE is tested

on an extension of one of the benchmarks that allows for fluctuating numbers of optima.

Comparative results with DynDE and CDE are presented.

Chapter 6 incorporates self-adaptive control parameter approaches into CDE. Several

CHAPTER 1. INTRODUCTION 9

approaches and variations of the approaches are investigated to self-adapt the DE scale and

crossover factors. A new approach to self-adapting the Brownian radius is presented. The

self-adaptive algorithms are combined to form SACDE. The performance and scalability of

SACDE are compared to that of its predecessor algorithms and results of other algorithms

reported in the literature. The self-adaptive approach is incorporated into DynPopDE to

form SADynPopDE. The performance of SADynPopDE on problems where the number

of optima is unknown or fluctuates is compared to the performance of DynPopDE and

SACDE.

Chapter 7 summarises the conclusions found in this study and describes avenues of

future research.

Several appendices are included in this thesis. Appendix A empirically shows the pa-

rameter dependence of jDE, a DE-based algorithm aimed at dynamic optimization prob-

lems (refer to Section 3.4.2).

Appendices B, C and D, provide additional results relevant to Chapters 4, 5, and 6,

respectively. Appendix E lists the symbols used in this thesis, while Appendix F gives a

list of acronyms that are used. Appendix G lists the publications that were derived from

this research study.

Chapter 2

BACKGROUND

This chapter provides a contextual background for the rest of the thesis. A brief overview

of optimisation techniques and general evolutionary algorithms is followed by a discus-

sion of the differential evolution algorithm, common variations and control parameters.

Related research on eliminating and adapting differential evolution control parameters is

briefly outlined. Dynamic environments with specific focus on the benchmarks used in

this research are described. A review of performance measures available in the literature

is presented.

2.1 Introduction

Optimisation is an important branch of mathematics, engineering, and computer science.

Many real-world problems can be reduced to optimisation problems, for which solutions

can be found iteratively using optimisation algorithms (refer to Section 2.2 where optimi-

sation algorithms are described). Differential evolution (DE) is an optimisation algorithm

which is based on ideas from biological evolution. Section 2.4 describes the basic DE

algorithm, its common variations, and DE control parameters. Best results are found if

DE control parameters are fine-tuned for each specific problem. This process can be time

consuming and should ideally be avoided. A literature survey on adapting and eliminating

DE control parameters is included in Section 2.4.

The focus of this thesis is on the application of DE to dynamic optimisation problems

(dynamic environments). A dynamic environment is a problem space that does not remain

10

CHAPTER 2. BACKGROUND 11

static over time, but which changes periodically. Section 2.5 formally defines the concept

of dynamic environments and describes the different types of dynamic environments.

The development of a new algorithm requires a test-bed of problems on which to

evaluate the effectiveness of the new algorithm, explore the scalability of the algorithm,

and compare the performance of the algorithm to existing algorithms. Researchers have

developed benchmark problems to provide a common platform for the evaluation and com-

parison of algorithms aimed at optimisation in dynamic environments. Two benchmarks

are used in this study, namely the moving peaks benchmark (MPB) and the generalised

dynamic benchmark generator (GDBG). These benchmarks are discussed in Section 2.5,

which also contains a survey of approaches to measure the performance of optimisation

algorithms in dynamic environments. Conclusions are drawn in Section 2.6.

2.2 Optimisation

Optimisation refers to the process of iteratively refining the proposed solution to a problem

until a satisfactory result is reached. In the nd dimensional real-valued number space, a

minimisation optimisation problem is defined as the process of finding ~x∗ with x∗j ∈ R for

j = 1, . . . , nd such that

F (~x∗) ≤ F (~x) ∀ ~x ∈ Snd (2.1)

where F is a function that gives the value of the potential solution vector ~x and Snd ⊆ R
nd

denotes the search space. The vector ~x∗ is referred to as a global optimum of F . Note

that multiple global optima may exist. A local optimum is a point in the fitness landscape

which gives the lowest value for F within a subregion of Snd , but does not represent the

lowest value of F in the entire fitness landscape. Equation (2.1) is an example of a function

minimisation problem (i.e. the goal is to find the lowest value of function F). Problems

where it is necessary to find the maximum value of a function is referred to as function

maximisation problems. A global optimum position, ~x∗, must thus be found such that

F (~x∗) ≥ F (~x) ∀ ~x ∈ Snd (2.2)

The value of the solution vector, ~x∗, can typically not be found analytically and large

branches of applied mathematics and computer science have been dedicated to optimisa-

CHAPTER 2. BACKGROUND 12

tion. Historically, many optimisation techniques are derivative-based [Burden and Faires,

2001]. Essentially, derivative-based approaches make use of the gradient of the function

to perform stepwise updates to the solution vector. A basic derivative-based function

minimisation optimisation approach is given in Algorithm 1.

Algorithm 1: Simple Derivative-Based Optimisation

Randomly select vector ~x in the nd dimensional search space;

t = 0;

while ~x(t) is not a satisfactory solution do

foreach j ∈ {1, . . . , nd} do

xj(t+ 1) = xj(t)− η ·
∂F (~x(t))

∂xj(t)
(2.3)

t = t+ 1;

end

end

The learning rate, η, is a constant that controls the size of the steps taken up (for

maximisation) or down (for minimisation) the gradient of the fitness landscape. A large

step size increases the rate of convergence of Algorithm 1, but increases the risk of stepping

over a good optimum. A small step size typically increases the convergence time and the

risk of becoming stuck in a local optimum, but ensures a finer grained search. An adaptive

function, η(t), is often used to provide a large step size initially and an increasingly smaller

step size to refine the solution during the later stages of optimisation. It is important to

note that Algorithm 1 is not guaranteed to converge to a global optimum.

A disadvantage of derivative-based optimisation is that two requirements must be

met. Firstly, a continuous function must exist that fully describes the problem space.

Secondly, the function must be differentiable. These requirements are not met for all

optimisation problems, which means that derivative-based approaches cannot be applied

to all optimisation problems. A further disadvantage of derivative-based approaches is

that, in the process of descending down the gradient, the algorithm could become trapped

in a local optimum. Since the algorithm cannot recover from such situations, suboptimal

CHAPTER 2. BACKGROUND 13

results may be found.

Research conducted into the simulation of biological evolution by scientists like Barri-

celli [1957] and Fraser [1957] on early electronic computers marked the advent of the field

of evolutionary computation. Evolutionary algorithms (EAs) draw on ideas from genetics

and Darwinian evolution [Darwin, 1859] to stochastically evolve solutions to optimisation

problems. An elementary EA to minimise a function F is given in Algorithm 2.

Algorithm 2: Elementary Evolutionary Algorithm

Generate a population, Px, of I individuals by creating vectors of random

candidate solutions, ~xi, i = 1, · · · , nI ;

Evaluate the fitness, F (~xi), of all individuals;

while termination criteria are not met do

Select parent individuals from Px to reproduce;

Create offspring from parent individuals through reproduction;

Produce the next population from current parents and offspring;

Evaluate the fitness, F (~xi), of all individuals;

end

Candidate solutions (individuals) are referred to as chromosomes, in an analogy to

biological evolution. Individuals are given a representation based on the problem and

the specific evolutionary algorithm used. Binary vectors were initially used in genetic al-

gorithms (GAs), popularised by Holland [1975], while more recently real-valued numbers

are commonly used as the representation scheme. In genetic programming, individuals are

normally represented as trees [Koza, 1992]. Evolutionary programming, which is an exam-

ple of phenotypic evolution rather than genotypic, use individuals to represent behavioural

traits.

The initial population of individuals is randomly generated based on the representation

used. Ideally, the initial population will uniformly represent the entire search space.

A fitness function is created to quantify the quality of each potential solution. This

can, for example, take the form of a function that gives the error of any individual within

the search space, or merely the function value at the point represented by an individual.

Termination criteria depend on the problem, but commonly, a set number of genera-

CHAPTER 2. BACKGROUND 14

tions or a threshold for fitness is used.

The selection process in Algorithm 2 is generally done based on fitness. More fit

individuals are assigned a higher likelihood of reproducing than less fit individuals. Com-

ponents from good solutions are consequently spread through the population. A strong

focus on the most fit individual increases the selection pressure, which may lead to the

population being dominated by a single solution [Engelbrecht, 2007].

In GAs, reproduction usually involves crossover and mutation. Crossover is the process

of combining genetic building blocks from two or more parent vectors to form one or more

new offspring individuals. Mutation is the process of injecting random noise into offspring

vectors to form a slightly different offspring individual, thereby increasing the genetic

diversity of the population.

Broad and often overlapping subfields of evolutionary computation include genetic

algorithms, genetic programming [Koza, 1992], evolutionary programming [Fogel, 1962],

evolution strategies [Rechenberg, 1973], cultural evolution [Reynolds and Sverdlik, 1994]

and differential evolution [Storn, 1996].

Particle swarm optimisation (PSO) [Kennedy and Eberhart, 1995] is often included in

the above list, although it is strictly not an evolutionary algorithm [Engelbrecht, 2006].

PSO mimics the swarming behaviour of bird flocks to explore optimisation problem spaces.

Evolutionary algorithms and swarm-based algorithms solve the challenges faced by

derivative-based approaches which were mentioned earlier. EAs are global optimisation

techniques and thus more, global information about the fitness landscape to determine

new candidate solutions [Engelbrecht, 2007], making EAs less likely to converge to a

local optimum. Furthermore, the function to be optimised need not be differentiable or

continuous. Technically, all that is required is a function that, given two potential solutions

to the problem, can indicate which one is the better solution.

This thesis focuses on differential evolution, which is discussed in Section 2.4.

2.3 Genotypic Diversity

Central to the behaviour of an EA in a search space is the concept of genotypic diversity.

Genotypic diversity (subsequently referred to simply as diversity) refers to the dispersion

CHAPTER 2. BACKGROUND 15

of individuals in the search space.

A large portion of the fitness landscape is searched when individuals are spread over

a large area. This corresponds to a highly diverse population and such a wide search of

the fitness landscape is referred to as exploration. A fine-grained search of the fitness

landscape results from low diversity (i.e. individuals are clustered closely together). This

is referred to as exploitation.

Typically, EAs commence with a high diversity population which favours exploration.

As time passes the individuals converge which lowers the diversity and leads to exploita-

tion. Premature convergence, which refers to the population’s converging to a local opti-

mum, can be the result of transitioning from exploration to exploitation too early [Riget

and Vesterstrøm, 2002]. A balance must thus be reached between maintaining diversity

and rapid convergence [Ursem, 2002].

Several diversity measures are available in the literature [Olorunda and Engelbrecht,

2008]. Diversity measures may be algorithm specific, for example tree similarity measures

used for genetic programming [Burke et al., 2004]. However, a basic diversity measure,

Dbasic, for an EA with a population of size nI in nd dimensions can be formulated as:

Dbasic =

nI
∑

i=1

‖~d− ~xi‖2 (2.4)

where ~d is the average location of all individuals, calculated as:

dj =

nI
∑

i=1

xi,j

nI
, ∀ j ∈ nd (2.5)

The diversity is thus calculated as the sum of the Euclidian distances of all the indi-

viduals from their average location. A low value of Dbasic implies that the individuals are

grouped spatially close together, while a large value implies that individuals are dispersed

throughout the fitness landscape.

The diversity measure as calculated in equation (2.4) does not take into account that

a large population size may artificially increase the diversity value (since the sum over the

Euclidian distances would be taken over a large number of individuals). This problem can

be remedied by normalising with respect to the population size, by changing the diversity

CHAPTER 2. BACKGROUND 16

calculation to give the normalised diversity, Dnorm [Krink et al., 2002]:

Dnorm =

∑nI

i=1 ‖
~d− ~xi‖2
nI

(2.6)

The magnitude of the range of the search space has an influence on how the calculated

diversity value is interpreted. For example, D = 0.8 would be considered a high diversity

in a two dimensional search space with range [0, 1] for each dimension, but low in a 100

dimensional search with range [0, 100000] for each dimension. Therefore, to simplify the

interpretation of the diversity value, it is common to normalise with respect to the length

of the longest diagonal in the search space, L [Ursem, 2002][Riget and Vesterstrøm, 2002].

Equation (2.6) is thus further adapted to calculate diversity, D, as

D =

∑nI

i=1 ‖
~d− ~xi‖2

nIL
(2.7)

Equation (2.7) will be used as diversity measure throughout this thesis.

2.4 Differential Evolution

The purpose of this section is to describe differential evolution (DE) and to discuss varia-

tions of the basic DE algorithm. The original DE algorithm is discussed in Section 2.4.1,

followed by a discussion of DE schemes in Section 2.4.2 and DE control parameters in

Section 2.4.3. A review of approaches to eliminate or adapt DE control parameters is

given in Section 2.4.4. DE applications are listed in Section 2.4.5.

2.4.1 Basic Differential Evolution

Differential evolution (DE) is a population-based, stochastic optimisation algorithm, cre-

ated by Storn and Price [Price et al., 2005] [Storn and Price, 1997]. DE differs from other

EAs in the following aspects:

• Mutational step-sizes are not sampled from a prior specified distribution. Rather,

mutations are made based on the spatial difference between two or more individuals

added to a base vector.

• Mutation is applied first and thereafter the parent is combined with the mutated

individual.

CHAPTER 2. BACKGROUND 17

• Selection is applied as competition between the parent and the offspring.

Several variants of the DE algorithm have been suggested, but the original algorithm is

given in Algorithm 3.

The following definitions are used for symbols in Algorithm 3: Each ~vi is known as a

mutant vector, F is known as the scale factor, ~xi1 is referred to as the base vector, Cr is

referred to as the crossover probability, ~ui is referred to as a trial or offspring vector, and

each ~xi that is tested for replacement by ~ui is known as a target or parent vector. The

subscripts of ~xi1 , ~xi2 and ~xi3 are simplified to ~x1, ~x2 and ~x3, when no confusion is possible.

A thorough comparison of DE with 16 other optimisation algorithms showed that,

while DE is not always the fastest method, it frequently produced the best results on a

large number of benchmark problems [Price et al., 2005]. In the first international contest

on evolutionary optimisation, held in 1996, the performance of DE on benchmark functions

was ranked third amongst several competing algorithms [Bersini et al., 1996]. Vesterstrøm

and Thomsen [2004] showed that DE performed better than PSO variants and a simple

evolutionary algorithm on several benchmark functions. DE is now generally considered

to be a reliable, accurate, robust and fast optimisation technique [Salman et al., 2007].

2.4.2 Differential Evolution Schemes

Most variations of DE (called schemes) are based on different approaches to create the

mutant vectors, ~vi [Storn, 1996] (see equation (2.8)), and different approaches to create

trial vectors. One of two crossover schemes are typically used to create trial vectors.

The first, binomial crossover, is used in equation (2.9). The second approach is called

exponential crossover, given in Algorithm 4.

By convention, schemes are labelled in the form DE/α/β/γ, where α is the method

used to select the base vector, β is the number of difference vectors, and γ is the method

used to create offspring. The scheme used in Algorithm 3 is referred to as DE/rand/1/bin.

Several methods of selecting the base vector have been developed and can be used

with either of the crossover methods. Popular base vector selection methods include

[Storn, 1996][Storn and Price, 1996] [Mezura-Montes et al., 2006] (in each case the selected

vectors’ indexes are assumed to be unique):

CHAPTER 2. BACKGROUND 18

Algorithm 3: Basic Differential Evolution

Generate a population, Px, of nI individuals by creating vectors of random

candidate solutions, ~xi, i = 1, · · · , nI and a dimensionality of nd;

Evaluate the fitness, F (~xi), of all individuals.;

while termination criterion are not met do

foreach i = 1, . . . , nI do

Select three individuals, ~xi1 , ~xi2 and ~xi3 , at random from the current

population such that i1 6= i2 6= i3 6= i;

Create a new mutant vector ~vi using:

~vi = ~xi1 + F · (~xi2 − ~xi3) (2.8)

where F ∈ (0,∞);

Create trial vector ~ui as follows:

ui,j =







vi,j if (U(0, 1) ≤ Cr or j == r)

xi,j otherwise
(2.9)

where Cr ∈ (0, 1) is the crossover probability and r is a randomly selected

index, i.e. r ∼ U(1, nd);

Evaluate the fitness of ~ui;

end

foreach target vector, ~xi, in the current population do

Select corresponding ~ui from trial population;

If ~ui has a better fitness value than ~xi then replace ~xi with ~ui;

end

end

CHAPTER 2. BACKGROUND 19

Algorithm 4: Exponential Crossover

r ∼ U(1, nd);

j = r;

repeat

ui,j = vi,j ;

j = ((j − 1) mod (nd − 1)) + 1;

until U(0, 1) ≥ Cr or j == r;

while j 6= r do

ui,j = xi,j ;

j = ((j − 1) mod (nd − 1)) + 1;

end

DE/rand/2: Two pairs of difference vectors are used:

~vi = ~x1 + F · (~x2 + ~x3 − ~x4 − ~x5) (2.10)

DE/best/1: The best individual in the population is selected as the base vector:

~vi = ~xbest + F · (~x1 − ~x2) (2.11)

Using the best individual as the base vector encourages fast convergence (a conse-

quence of which is exploitation) since offspring individuals will always be a mutation

of the best individual.

DE/best/2: The best individual in the population is used as base vector in conjunction

with two pairs of difference vectors:

~vi = ~xbest + F · (~x1 + ~x2 − ~x3 − ~x4) (2.12)

DE/rand-to-best/1: A point between a randomly selected individual and the current

best individual is used as the base vector:

~vi = ~x1 + G · (~xbest − ~x1) + F · (~x2 − ~x3) (2.13)

where G is a parameter that scales the contribution of the position of the current

best individual to the resultant base vector. Should G be assigned a value of one,

CHAPTER 2. BACKGROUND 20

DE/rand-to-best/1 is equivalent to DE/best/1 (which encourages exploitation). A

value of zero for G would result in the position of the best individual being ignored,

thus favouring exploration, as the mutant vector would not be biased towards the

best individual. G thus controls the balance between exploitation and exploration of

the fitness landscape, and is referred to as the greediness of the scheme.

DE/current-to-best/1: A point between the target vector and the current best indi-

vidual is used as the base vector:

~vi = ~xi + G · (~xbest − ~xi) + F · (~x1 − ~x2) (2.14)

where G is a parameter that scales the contribution made by the target and the

best individual to the resultant base vector. A G value of zero results in only the

target vector contributing, while a value of one results in only the best individual

contributing. Exploration versus exploitation around the target vector and best

individual is thus controlled by G.

DE/current-to-rand/1: A point between a randomly selected individual and the target

vector is used as the base vector:

~vi = ~xi + G · (~x1 − ~xi) + F · (~x2 − ~x3) (2.15)

where G is a parameter that scales the contribution made by the target and the

randomly selected individual to the resultant base vector. A G value of zero results in

only the target vector contributing, while a value of one results in only the randomly

selected individual contributing. Exploration versus exploitation around the target

vector is thus controlled by G.

2.4.3 Differential Evolution Control Parameters

Differential evolution algorithms have several control parameters that have to be set. Ig-

noring extra parameters introduced by some DE schemes, the main DE control parameters

are the population size (nI), scale factor (F) and crossover factor (Cr).

The scale factor controls the magnitude of the difference vector and consequently the

amount by which the base vector is perturbed. Large values of F encourage large scale

CHAPTER 2. BACKGROUND 21

exploration of the fitness landscape but could lead to premature convergence, while small

values result in a more detailed exploration of the local fitness landscape (exploitation)

while increasing convergence time.

The crossover factor controls the diversity of the population, since a large value of

Cr will result in a higher probability that new genetic material will be incorporated into

the population. Large values of Cr result in broad exploration of the fitness landscape,

which in turn may result in slow convergence. Conversely, very small values result in

very little genetic material being introduced into the population which may lead to pre-

mature convergence. A value for Cr must thus be used that is large enough to ensure

sufficient exploration, but small enough to allow exploitation and consequently acceptably

fast convergence times.

General guidelines for the values of parameters that work reasonably well on a wide

range of problems are known. For example, Zaharie [2002a] showed on three test functions

that the smallest reliable value for F is 0.3 when Cr = 0.2 and nI = 50. Storn and Price

[1997] showed that 0 ≤ Cr ≤ 0.2 worked well on decomposable functions, while 0.9 ≤

Cr ≤ 1 worked well on functions that are not decomposable. Other recommendations are

available in the literature [Storn, 1996][Rönkkönen et al., 2005][Pedersen, 2010], however,

best results in terms of accuracy and convergence time are found if the parameters are

tuned for each problem individually [Engelbrecht, 2007].

The population size influences the diversity of the population. A large population

size, rather than a small population size, makes a more diverse sampling of the search

space likely. The population size also controls the number of function evaluations that

are performed per iteration. A small population size would result in a larger number

of iteration than would result from a large population size, when a constant number of

function evaluations is available. A value for nI must thus be selected to ensure that an

adequate number of iterations can be performed, but also that the fitness landscape is

sufficiently explored.

2.4.4 Adapting and Eliminating Control Parameters

A disadvantage of control parameters is that their fine-tuning is a time consuming manual

task. Furthermore, ideal values for the control parameters may vary during the evolution

CHAPTER 2. BACKGROUND 22

process. For example, values that encourage exploration may be desirable initially, while

values that encourage exploitation may be effective at a later time during the algorithm’s

execution.

Three broad strategies have emerged to address the disadvantages associated with DE

control parameters. The first strategy uses adaptive control parameters and is discussed

in Section 2.4.4.1. The values of the control parameters are adapted using information

gathered during the optimisation process or to predetermined values. The second strategy

is to use self-adapting control parameters. This is discussed in Section 2.4.4.2. Parameters

are incorporated into the evolution process, which results in the optimisation of the control

parameters in parallel with optimising the fitness landscape [Eiben et al., 2000]. The third

strategy is to explicitly eliminate the need to tune control parameters from the algorithm

and is discussed in Section 2.4.4.3.

The computational intelligence community have not reached consensus on when an

algorithm should be classified as “adaptive” and when it should be classified as “self-

adaptive”. For example, Brest et al. [2006] and Qin and Suganthan [2005] describe their

algorithms as “self-adaptive”, while Zhang and Sanderson [2009] argue that these algo-

rithms should be described as “adaptive”. The following convention is used in this thesis:

Algorithms that explicitly control the values of control parameters during the optimisation

process are classified as “adaptive”. For example, linearly decreasing the scale factor as a

function of time (initially to encourage exploration and later to encourage exploitation) are

classified as “adaptive”. Algorithms that select control parameters based on the success

rate of previous values during the optimisation process are classified as “self-adaptive”.

Ideally, algorithms that adapt control parameters should reduce the number of pa-

rameters, or preferably eliminate all parameters. However, the literature review presented

in this section illustrates that, in practice, adaptive and self-adaptive control parameter

algorithms do not in all cases reduce the number of parameters. Several approaches to

adapting or eliminating DE parameters are available in the literature and are discussed in

this section. Algorithms that are relevant to Chapter 6, which presents the incorporation

of self-adaptive control parameters into the algorithms that are developed in this thesis,

are described in more detail.

CHAPTER 2. BACKGROUND 23

2.4.4.1 Adaptive Control Parameters

A simple method of adapting a control parameter is to linearly vary it between two values

as a function of the number of iterations. Das et al. [2005] linearly decreased the scale

factor from 1.2 to 0.4 during the course of the optimisation process. A disadvantage of

this approach is that the number of iterations that will be performed must be known in

advance.

Ali and Törn [2004] proposed an algorithm that adapts the scale factor at the end of

each generation using:

Fnew =































max







0.4, 1−

∣

∣

∣

∣

∣

∣

max
~xa∈Px

{F (~xa)}

min
~xb∈Px

{F (~xb)}

∣

∣

∣

∣

∣

∣







if

∣

∣

∣

∣

∣

∣

max
~xa∈Px

{F (~xa)}

min
~xb∈Px

{F (~xb)}

∣

∣

∣

∣

∣

∣

< 1

max







0.4, 1−

∣

∣

∣

∣

∣

∣

min
~xa∈Px

{F (~xa)}

max
~xb∈Px

{F (~xb)}

∣

∣

∣

∣

∣

∣







otherwise

(2.16)

The effect of this approach is that small scale factors are used when the difference in

function value between the best and the worst individuals in the population is large (this

should occur during the initial stages of the evolution). The approach of Ali and Törn

[2004] thus initially encourages exploitation. Larger scale factors are produced when the

difference in function value between the best and the worst individuals in the population

is small (which occurs once the population has converged). Exploration is thus favoured

during the later stages of the optimisation process. A disadvantage of this algorithm is

that adding a constant to F would result in different scale factors being produced.

Liu and Lampinen [2005] proposed an approach that uses fuzzy logic controllers to

adapt the scale factor, F , and crossover factor, Cr. This algorithm is called fuzzy adaptive

differential evolution (FADE). FADE employs knowledge of a human expert (in the form

a fuzzy rules) in order to adjust values of F and Cr based on differences in position

and fitness of individuals in successive generations. It was shown that this approach

outperformed normal DE on high dimensional problems. A disadvantage of FADE is that

the fuzzy rules have to be manually created for a specific type of problem and consequently

depends on the subjectivity of the human expert [Liu and Lampinen, 2005]. Rules can

only be as effective as the specialised knowledge of the expert.

CHAPTER 2. BACKGROUND 24

Zaharie [2002a] concluded that premature convergence of the DE algorithm can be

avoided by selecting appropriate values for the scale factor, F , and the crossover factor,

Cr, during the optimisation process. These parameters should be selected such that higher

levels of divesity are maintained for longer to facilitate better exploration. Consequently,

an algorithm that adapts F and Cr to avoid loss of diversity was developed [Zaharie,

2002b]. This approach introduces a new parameter, $, into the algorithm which deter-

mines the convergence rate of the DE algorithm. Values of $ > 1 increases the diversity of

the population, thus reducing the probability of premature convergence. Values of $ < 1

increases the convergence rate. The problem of tuning the two interrelated parameters F

and Cr is thus reduced to tuning only one parameter, $.

2.4.4.2 Self-Adaptive Control Parameters

Abbass [2002] introduced a self-adaptive crossover operator into the Pareto differential

evolution algorithm [Abbass and Sarker, 2002], which uses the DE/rand/1/bin scheme.

Each individual, ~xi, in the population stores its own crossover value Cri. When individuals,

~x1, ~x2 and ~x3, are selected to create a mutant vector, the crossover value, Crnew, to be

used in equation (2.9) is calculated as follows:

Crnewi
= Cr1 +N(0, 1) · (Cr2 − Cr3) (2.17)

where Cr1, Cr2 and Cr3 are the crossover values associated with individuals ~x1, ~x2 and

~x3, respectively. The value of Crnewi
is forced to be within the bounds [0, 1] by making

use of a repair rule. The repair rule essentially keeps the decimal part of Crnewi
(i.e.

Crnewi
− bCrnewi

c). A value of 3.2 would thus be changed to 0.2 by the repair rule.

Crnewi
is then associated with the newly created offspring individual. The scale factor

Fnewi
, used in equation (2.8), is selected randomly from a Gaussian distribution, N(0, 1),

clipped to the range [0, 1].

Self-adaptive differential evolution (SaDE), an approach that adapts the values of F ,

Cr and the DE scheme, was proposed by Qin and Suganthan [2005]. SaDE adapts the

DE scheme by utilising DE/rand/1/bin and DE/best/2/bin with probabilities ρ1 and

ρ2, respectively. The probabilities, ρ1 and ρ2, are assigned initial probabilities of 0.5

each, and subsequently receive values based on the rate at which each has been used to

CHAPTER 2. BACKGROUND 25

generate trial vectors that successfully replaced the target vector. DE was found to be less

sensitive to the value of the scale factor, and F is consequently allowed to assume random

numbers sampled fromN(0.5, 0.3), clipped to the range (0, 2]. Crossover probabilities, Cri,

are associated with each individual, and is originally created from a normal distribution,

N(0.5, 0.1). Each Cri is randomly perturbed at regular time intervals (ρ3 = 5 generations)

from the distribution N(ρ4, 0.1), where ρ4 is originally set to 0.5. The algorithm stores all

Cri values which result in offspring replacing parent individuals. These successful values

are averaged and assigned to ρ4 every ρ5 = 25 generations, whereafter the list of successful

values is cleared. Qin and Suganthan [2005] do not explicitly explain how the algorithm

treats randomly generated values of Cri that are larger than 1.0 or smaller than zero.

However, since the background section of [Qin and Suganthan, 2005] states that Cr is a

number in the range [0, 1), it is presumed that Cri is clipped to the range [0, 1). This

algorithm is classified as self-adaptive since only successful values of Cri are averaged to

replace ρ4.

A weakness of SaDE is that five potentially problem dependent parameters are intro-

duced: ρ3, ρ5, and the original values of ρ1, ρ2 and ρ4. Furthermore, ρ3 and ρ5 clearly

depend on the population size (since the population size affects the number of function

evaluations before Cr is adapted).

The self-adaptive differential evolution (SDE) algorithm [Omran et al., 2005a] uses a

technique similar to that of Abbass and Sarker [2002], but in this case the scale factor is

adapted rather than the crossover factor. Each individual, ~xi, stores its own scale factor

Fi. When individuals, ~x1, ~x2 and ~x3, are selected to create mutant vectors using the

DE/rand/1/bin scheme, three extra vectors ~x4, ~x5 and ~x6 are selected from the population

in order to create a new scale factor. The scale factor to be used in equation (2.8) is then

calculated as follows:

Fnewi
= F4 +N(0, 0.5) · (F5 −F6) (2.18)

where F4, F5 and F6 are the scale factors associated with ~x4, ~x5 and ~x6, respectively. The

crossover factor, Crnew, is sampled from a Gaussian distribution N(0.5, 0.15) to create

each new offspring individual. It is not clear from [Omran et al., 2005a] how random

values of Crnew outside the range (0, 1) are treated. However, since 99.7% of the numbers

CHAPTER 2. BACKGROUND 26

sampled from the Gaussian distribution N(0.5, 0.15) falls within the range (0.05, 0.95),

it can be assumed that the values are clipped to the range (0, 1). Values outside the

range (0, 1) occur extremely infrequently and the assumption should not have a significant

impact on the performance of the algorithm. It was shown that SDE produced favourable

results when compared to other versions of DE [Salman et al., 2007].

Brest et al. [2006] presented an algorithm that self-adapts the values of both the

crossover factor and the scale factor. This algorithm is referred to here as jSADE. Each in-

dividual, ~xi, stores its own value for the crossover factor, Cri, and scale factor, Fi. Before

equation (2.8) is used to create a new mutated individual, the scale factor and crossover

factor of the target individual (~xi in equation (2.9)) are used to create new values for the

scale factor and crossover factor to be used in equations (2.8) and (2.9). The new scale

and crossover factors are calculated as follows:

Fnewi
=







Fl + U(0, 1) · Fu if (U(0, 1) < τ1)

Fi otherwise
(2.19)

Crnewi
=







U(0, 1) if (U(0, 1) < τ2)

Cri otherwise
(2.20)

where τ1 and τ2 are the probabilities that the factors will be adjusted. Brest et al. [2006]

used 0.1 for both τ1 and τ2. Other values used were Fl = 0.1 and Fu = 0.9. Fl is a

constant introduced to avoid premature convergence by ensuring that the scale factor is

never too small (see Section 2.4.3), while Fu determines the range of scale factors that can

be explored by the algorithm.

Brest et al. [2006] showed that this algorithm was better or at least comparable to

DE and other evolutionary algorithms, including FADE [Liu and Lampinen, 2005], using

various benchmark functions. However, a disadvantage of the algorithm is that, while F

and Cr need not be tuned, four new parameters are introduced (τ1, τ2, Fl and Fu). Fine

tuning of these parameters may be required for best results on specific problems.

jSADE was extended by Brest et al. [2007] to form jSADE2. This algorithm utilises the

approach from jSADE to self-adapt the scale and crossover factors for two DE schemes,

DE/rand/1/bin and DE/best/1/bin. A pair of scale and crossover values are stored by

each individual for each of the schemes. Schemes are selected using the same approach as

CHAPTER 2. BACKGROUND 27

SaDE. jSADE2 further differs from jSADE in that the τ3 worst performing individuals are

randomly reinitialised every τ4 generations. A drawback of jSADE2 is that it introduces

two additional parameters (τ3 and τ4) to be tuned.

Zhang and Sanderson [2009] proposed JADE, a DE algorithm that self-adapts the scale

and crossover factors. JADE employs a new scheme, which is similar to DE/current-to-

best/1/bin. The new scheme is called DE/current-to-κbest/1/bin by Zhang and Sanderson

[2009] and is given by

~vi = ~xi + Fi · (~x
κ1
best − ~xi) + Fi · (~x1 − ~x2) (2.21)

where κ1 ∈ (0, 100] and ~xκ1
best is randomly selected from the best κ1% individuals in the

the population. The crossover factor for each individual at each generation is calculated

as

Crnewi
= N(µCr, 0.1) (2.22)

where µCr (which is originally set to κ2 = 0.5) is updated at the end of each generation

using

µCr,new = (1− κ3)µCr + κ3

∑

CrO∈ OCr

CrO

|OCr|
(2.23)

where OCr is the set of all successful crossover factors (i.e. values of Cr that resulted in

trial vectors that replaced parent vectors), and κ3 ∈ [0, 1] is a parameter to the algorithm.

The value of µCr,new is thus calculated as the weighted average of the current value and

the mean of all previous successful crossover factors. Crnewi
is truncated to the range

[0, 1].

JADE calculates the scale factor for each individual at each generation as

Fnewi
= C(µF , 0.1) (2.24)

where µF (which is originally set to κ4 = 0.5) is updated at the end of each generation

using

µF ,new = (1− κ3)µF + κ3

∑

FO∈ OF
F2
O

∑

FO∈ OF
FO

(2.25)

CHAPTER 2. BACKGROUND 28

where OF is the set of all successful scale factors. Equation (2.25) uses the Lehmer

mean to place more emphasis on larger scale factors, while equation (2.24) uses a Cauchy

distribution to encourage more diverse values of Fnewi
. Fnewi

is truncated to the range

[0, 1].

JADE also contains an optional archive component which was found to be beneficial

for high dimensional problems. The archive population, which is initially empty, is grown

by adding trial vectors that do not replace parent vectors in the selection step of the DE

algorithm. Individuals are randomly removed from the archive when the size of the archive

exceeds the size of the normal DE population. The archive is utilised by the DE algorithm

by randomly selecting individuals for mutation from the union of the archive and normal

DE populations.

Zhang and Sanderson [2009] report better results for JADE in comparison with SaDE

and jSADE on several benchmark problems. A disadvantage of the JADE algorithm is that

four new parameters are introduced (κ1, κ2, κ3 and κ4). The authors do, however, argue

that JADE is relatively insensitive to these parameters, and that JADE works effectively

on a large range of values of the parameters.

The preceding approaches that were discussed all focused on adapting the scale and

crossover factors. An algorithm that self-adapts the population size was presented by Teo

[2006]. In this algorithm, each individual encodes a value for population size which is

evolved along with the individual’s position. The average of all the individual population

size values is then used to calculate the actual population size for the next generation.

When the population size is increased, copies of the best individual in the current popula-

tion are inserted (in addition to all the individuals in the current population) into the new

population until the new population has grown to the appropriate size. In cases where

the population size is reduced, the weakest individuals in the current populations are not

copied to the population of the next generation.

Brest et al. [2008] also adapted the population size with jSADE3, an extension to

jSADE. jSADE3 halves the population size every τ5 function evaluations. The fitness

of each individual in the first half of the population is compared to the fitness of the

corresponding individual in the second half of the population (i.e. the first individual

in the first half is compared to the first individual in the second half, etc.). After each

CHAPTER 2. BACKGROUND 29

comparison, the fittest individual is placed in the new population. The old population is

discarded after the comparison process and evolution continues using the new, smaller,

population. jSADE3 does not provide a mechanism to increase the population size.

jSADE3 further differs from jSADE in that the sign of the scale factor is changed,

with a probability of τ6 = 0.75, if F (~x2) > F (~x3) (assuming a function minimisation

problem), where ~x2 and ~x3 are the randomly selected difference vectors used in the

DE/rand/1/scheme. The difference vector thus points towards the individual with the

lowest error value after changing the sign. Note that neither of the changes made to

jSADE to form jSADE3 can be classified as “self-adaptive”. jSADE3 was, however, in-

cluded in this section because of the self-adaptive components inherited from jSADE.

A significant disadvantage of the jSADE3 algorithm is that the number of function

evaluations that are used during the optimisation process must be known in advance in

order to set parameter τ5. jSADE3 could potentially reduce the population size to the

point where it is impossible to execute the DE algorithm (i.e. the population could become

too small to select unique individuals for the trial-vector creation step) if τ5 is set too low.

2.4.4.3 Eliminating Control Parameters

Three of the the self-adaptive approaches described in the previous section eliminated the

need to fine-tune control parameters by sampling their values from a distribution. The

approaches of Abbass and Sarker [2002] and Qin and Suganthan [2005] used random values

for the scale factor, while Omran et al. [2005a] used random values for the crossover factor.

These parameters were thus not self-adapted. The randomisation of control parameters

to eliminate the need for fine-tuning is a common approach, and has been used by several

researchers [Price et al., 2005] [Das et al., 2005].

Several researchers have investigated DE and PSO hybrids [Hendtlass, 2001], [Zhang

and Xie, 2003]. Omran et al. [2009] presented a self-adaptive hybrid PSO and DE algo-

rithm, called the Barebones DE, as a means of eliminating DE control parameters. Three

significant changes were made to the standard DE algorithm. Firstly, each individual is

given a memory that stores the best location that the individual has occupied during the

execution of the algorithm. This is called the personal best value and is labelled ~yi for

individual ~xi. The fittest personal best value within the entire population is called the

CHAPTER 2. BACKGROUND 30

global best and is labelled ~̂y. In the second place, the competition between parents and

offspring of DE is eliminated and offspring are placed directly into the main population,

even if they are less fit than the original individual. Good solutions are not lost, however,

since these solutions will be stored in the personal best value. The third change is in how

offspring are created. The trial vector is calculated as:

vi,j = rj1 · yi,j + (1− rj1) · ŷj + rj2 · (x1,j − x2,j) (2.26)

where rj1 ,rj2 ∼ U(0, 1). The trial vector is thus computed as the weighted average of the

current individual’s personal best and the global best. The choice for trial vector is moti-

vated by studies that showed that PSO particles converge to the weighted average of their

personal and neighbourhood best positions [van den Bergh and Engelbrecht, 2006][Trelea,

2003][Clerc and Kennedy, 2002]. Note that the scale factor has been eliminated.

The crossover step (see equation (2.9)) is replaced by:

xi,j =







vi,j if (U(0, 1) ≤ Cr)

y3,j otherwise
(2.27)

Crossover is thus performed with the personal best of one of the randomly selected

parent individuals. Note that the crossover factor has not been eliminated.

Omran et al. [2009] compared Barebones DE to DE, PSO and Barebones PSO. It was

concluded that the Barebones DE is more noise tolerant than the other approaches and

that it gave superior performance on high-dimensional problems.

2.4.4.4 Summary

The majority of approaches discussed in this section are aimed at adapting, or eliminating

the need to tune the scale and crossover factors. The purely adaptive approaches removed

the need to tune both the scale and crossover factors, but in the case of the approach of

Zaharie [2002b], a new parameter was introduced which must be fine-tuned. In the case

of FADE, the approach of Liu and Lampinen [2005], the fuzzy rules must be manually

created, which is arguably as onerous as fine-tuning control parameters and subjective.

An advantage of the self-adaptive approaches described in this section is that they are

significantly simpler than the adaptive approaches that were discussed. However, only two

CHAPTER 2. BACKGROUND 31

of the self-adaptive approaches, [Zhang and Sanderson, 2009][Brest et al., 2006], applies

self-adaption to both the scale and crossover factors, but at the expense of introducing four

new parameters into the algorithm. The other self-adaptive approaches only self-adapt

one of the two factors, while the need to tune the other factor is eliminated by repeatedly

selecting it from a normal distribution.

The hybrid DE and PSO approach of Omran et al. [2009] completely removes the scale

factor from the algorithm, but retains the crossover factor.

2.4.5 Differential Evolution Applications

Differential evolution has been applied to a wide range of problems, including image analy-

sis [Li et al., 2003][Xu and Dony, 2004][Omran et al., 2005b], neural network training [Chen

et al., 2002][Magoulas et al., 2004][Moalla et al., 2002], scheduling [Lin et al., 2000][Rae

and Parameswaran, 1998][Rzadca and Seredynski, 2005], and controllers [Chang and Du,

2000][Chiou and Wang, 1998][Cruz et al., 2003]. This thesis investigates the use of DE in

dynamic environments.

2.5 Dynamic Environments

This section commences with a formal definition of dynamic environments in Section 2.5.1.

Section 2.5.2 provides a discussion of the different types of dynamic environments and the

factors that influence an algorithm’s ability to effectively locate optima in a dynamic

environment. The moving peaks benchmark and the generalised dynamic benchmark gen-

erator, two benchmarks used to simulate dynamic environments, are discussed in Sections

2.5.3 and 2.5.4 respectively. Various performance measures have been suggested for use in

dynamic optimisation problems, which are described in Section 2.5.5.

2.5.1 Formal Definition

The solution to real-world optimisation problems often vary over time. Consider, for

example, the optimal air-fuel mixture of a aircraft during flight. The optimal mixture

at any point in time depends on the prevailing winds, the altitude and the speed of the

aircraft, and also varies due to the change in mass caused by burning fuel.

CHAPTER 2. BACKGROUND 32

A dynamic environment, in the context of optimisation problems, is a fitness landscape

that varies over time. Formally, ∃ t, t′ ∈ T , where T is the set of all time steps, and

∃ ~x ∈ Snd ⊆ R
nd such that

F (~x, t) 6= F (~x, t′) (2.28)

where F is a dynamic function. Consequently, the optima in the fitness landscape may

vary in number, location, and function value over time. The objective of an algorithm

applied to a dynamic optimisation problem (DOP) is to find the best solutions at all

time steps during the optimisation process [Weicker, 2002], i.e. for all t ∈ T , assuming a

minimisation problem, find

~x∗(t) : F (~x∗(t), t) ≤ F (~x, t) ∀ ~x ∈ Snd (2.29)

where ~x∗(t) ∈ Snd is the location of a global optimum at time step t.

The above discussion gives a broad definition of dynamic environments. The following

section explores various types of dynamic environments and the characteristics of each.

2.5.2 Types of Dynamic Environments

Several classifications of dynamic environments based on different characteristics are avail-

able in the literature [Angeline, 1997][Trojanowski and Michalewicz, 1999a][Branke, 2002][Li

et al., 2008][Hu and Eberhart, 2001][De Jong, 1999]. This section endeavors to synthe-

sise disparate classification approaches into a single unified classification scheme by which

different types of dynamic environments can be identified.

The three mayor considerations to be taken into account when classifying dynamic

environments are the fitness landscape composition, the types of changes and the perva-

siveness of changes. An individual discussion of these considerations follows:

1. Fitness landscape composition: Changes in a dynamic environment depend in a

large extend on the underlying composition of the fitness landscape. The composition

of a search space can be classified as either homogeneous or heterogeneous:

(a) A homogeneous fitness landscape is made up of a single underlying function.

Such a fitness landscape was suggested by Angeline [1997]. The underlying

function is moved with respect to the coordinate system of the search space to

CHAPTER 2. BACKGROUND 33

create a change in the environment. The number of optima and the function

value of each optimum thus depends purely on the underlying function that is

used and does not change over time.

(b) A heterogeneous fitness landscape contain multiple underlying functions. Two

ways of how underlying functions are combined have been suggested:

i. At each point in the fitness landscape the sum of the function values of all

underlying functions is taken [Li et al., 2008], i.e. F (~x, t) =
∑

p=1,...,np
fp(~x),

where fp is one of the np underlying functions. As the underlying functions

are moved with respect to the coordinate system of the search space, op-

tima in the fitness landscape are formed at locations where the optima of

the underlying functions correspond, analogous to constructive interference

in wave theory [Feynman et al., 1963]. The number of optima in the fitness

landscape and their respective function values thus not only depend on the

number of optima and function values of the underlying functions, but also

on the relative position and orientation of the underlying functions with

respect to the coordinate system of the search space.

ii. At each point in the fitness landscape the maximum function value of

all underlying functions is taken for function maximisation problems (i.e.

F (~x, t) = maxp=1,...,np{fp(~x)}, where fp is one of the np underlying func-

tions) and the minimum is taken for function minimisation problems (i.e.

F (~x, t) = minp=1,...,np{fp(~x)}) [Branke, 2002]. The effect of this approach

is that some optima may be obscured by other optima, thus varying the

number of optima in the fitness landscape over time. The function value of

the global optimum, however, depends purely on the function value of the

most optimal underlying function.

2. Change types: The nature of changes in a dynamic environment influence ap-

proaches that can be followed by algorithms to recover from changes. The three

broad change types that have been identified:

(a) Random changes imply that a particular change in the environment does not

depend on a previous change [Trojanowski and Michalewicz, 1999a], i.e. no

CHAPTER 2. BACKGROUND 34

pattern governing changes exist.

(b) Chaotic changes refer to changes where a dependency, or pattern, between

successive changes exists. This is in contrast to random changes where each

change is completely independent of the previous. According to Trojanowski

and Michalewicz [1999a], the dependency between changes may be so complex

that changes appear random and may thus not be predictable. On the other

hand, if the relationship between successive changes is simple enough, changes

may be considered predictable, and could be exploited by an optimisation al-

gorithm. Angeline [1997] identified two types of predictable changes:

i. Linear, where successive changes are linearly correlated.

ii. Cyclic (or recurrent), where the dynamic environment periodically returns

to the same state.

(c) Combinations of chaotic and random changes are changes where some rela-

tionship between successive changes exist, but which also contain a random

component [Li et al., 2008][Branke, 2002].

3. Change Pervasiveness: This metric classifies dynamic environments on the at-

tributes of the environment that are modified. Hu and Eberhart [2001] identified

three classifications based on properties of a dynamic environment that can change,

to which a fourth category can be added:

(a) The locations of optima in the environment change (referred to by Hu and

Eberhart [2001] as Type I environments).

(b) The locations of the optima remain the same, but the values of the optima

change (referred to by Hu and Eberhart [2001] as Type II environments). A

consequence of this is that different optima can become the global optimum

over time.

(c) The locations and the values of the optima change (referred to by Hu and

Eberhart [2001] as Type III environments).

(d) A classification not included in the categorisation of Hu and Eberhart [2001] is

represented by environments in which new optima are explicitly introduced or

CHAPTER 2. BACKGROUND 35

old optima are removed, i.e. the number of optima does not remain constant.

The above taxonomy (i.e. fitness landscape composition, change type and change

pervasiveness) can be used to classify a dynamic environment, but does not encompass all

the physical characteristics that describes a dynamic environment. The type of dynamic

environment also depends on factors that influence an optimisation algorithm’s ability to

successfully locate optima.

It is argued here that the three main factors that combine to influence an optimisation

algorithm’s ability to locate optima successfully in a dynamic environment are the hardness

of the fitness landscape, the frequency at which changes occur, and the severity of changes

to the environment. The the three factors are respectively described below:

Hardness of the fitness landscape: Hardness is a term that is used in this thesis to

describe the intuitive concept of the difficulty involved in optimising an objective

function by an optimisation algorithm. Intuitively, an easy optimisation problem

implies that a specific optimisation algorithm is likely to successfully locate a global

optimum within relatively few iterations. Conversely, a hard optimisation problem

implies that the algorithm typically requires a relatively large number of iterations

to locate the global optimum, or that the algorithm lacks the ability to locate the

global optimum. This implies that the algorithm is likely to either converge to an

abitrary point or to a local optimum in the fitness landscape of a hard problem.

Note that the No-Free-Lunch theorems [Wolpert and Macready, 1997] imply that

not all optimisation problems are equally hard for all optimisation algorithms.

Several factors can influence the hardness of a fitness landscape, for example, the

modality of the fitness landscape (i.e. the number of optima), the gradient at various

points in the fitness landscape and the presence of ridges, valleys and plateaus. In

addition, the number of dimensions of a search space usually influences the hardness,

since increasing the number of dimensions increases the size of the search space.

Note that there are exceptions to this, such as the Griewank function, which has

been shown to become easier as the dimension increases [Locatelli, 2003].

Scientists have endeavored to quantify the hardness of fitness landscapes by means

of metrics like ruggedness [Malan and Engelbrecht, 2010], fitness distance correlation

CHAPTER 2. BACKGROUND 36

[Jones and Forrest, 1995], and the dispersion metric [Lunacek and Whitley, 2006].

To date, no single satisfactory problem hardness measure has been found [He et al.,

2007][Malan and Engelbrecht, 2009].

An optimisation algorithm has a limited number of iterations within which to locate

a global optimum before a change in a dynamic environment occurs. The quality of

the solution found by the optimisation algorithm is thus directly influenced by the

hardness of the search landscape.

Frequency of changes: Changes in a dynamic environment can either be at discrete

time intervals (the environment is static for periods between changes) or continuous

(the environment changes every time it is sampled) [Trojanowski and Michalewicz,

1999a]. As the frequency of changes tends to infinity, changes intervals tend from

discrete to continuous. As the frequency of changes tend towards zero, the dynamic

environment tends towards a static environment.

Assume that a particular optimisation algorithm has the ability to locate a global

optimum in specific static fitness landscape. This assumption does not imply that

the algorithm will locate a global optimum in a dynamic version of the same fitness

landscape, as the frequency of changes to the fitness landscape will influence the

likelihood of locating a global optimum. For example, in situations where changes

are highly infrequent (i.e. many iterations can be performed before a change occurs),

the optimisation algorithm has more time to locate optima and the likelihood of

locating a global optimum is thus increased. However, if changes are frequent, the

optimisation algorithm will be able to perform fewer iterations between changes, and

the chances of locating optima are reduced. Performance is consequently adversely

affected by frequent changes as algorithms must locate optima in fewer iterations.

Severity of changes: Changes in a dynamic environment change the fitness landscape

surface. The degree of correlation between the fitness landscape before a change and

after a change depends on the severity of the change.

Factors that influence the severity of changes in a dynamic environment include: the

amount by which the locations of optima are changed, how much the values of the

CHAPTER 2. BACKGROUND 37

optima change, and whether new optima are introduced or old optima are removed

[De Jong, 1999]. If the changes in the environment are so severe that the fitness

landscape after the change bears no relation to the search space before the change,

an optimisation algorithm cannot exploit any information collected regarding the

fitness landscape before the change, and optimisation might as well resume from

scratch [Branke et al., 2000].

Conversely, very small changes in the environment, which result in the location of

an optimum remaining close to its old position, makes it possible for an optimisation

algorithm to exploit the information regarding the old position of the optimum in

order to find the new position. The severity of changes thus determines how much

useful information regarding the shape of the search space can be transferred from

before a change in the environment to after the change. A large amount of useful

information can be exploited by an optimisation algorithm to recover quickly from

a change in the environment, while if only a small amount of useful information can

be exploited, the recovery rate of the algorithm is likely to be reduced.

The interaction between change frequency and change severity has a considerable im-

pact on whether it is feasible for an optimisation algorithm to optimise a dynamic envi-

ronment. Figure 2.1 illustrates how the change frequency and change severity impact on a

feasible region (where it is possible to solve the problem) which exists for any algorithm on

any dynamic optimisation problem. The feasible region corresponds to either changes that

are small enough or changes that are infrequent enough (or both), so that an optimisation

algorithm is able to function adequately.

A high change severity, even in the presence of a low change frequency, results in

successive environments that are too uncorrelated for any useful information from before

the change to be transferred to after the change. Similarly, if the change frequency is

too high in the presence of even small changes, the optimisation algorithm has too little

time to recover from changes. There thus exist upper bounds on the frequency of changes

and the severity of changes beyond which it is no longer viable to perform optimisation

successfully. Figure 2.1 is shown to illustrate to the reader the general case, but similar

curves can be drawn for all optimisation algorithms for dynamic environments, although

CHAPTER 2. BACKGROUND 38

the gradient of the curve may differ from algorithm to algorithm.

Change Frequency

C
ha

ng
e

S
ev

er
ity

Feasible
Region

Figure 2.1: Feasible optimisation region in terms of change frequency and severity

This section described various types of dynamic environments. An investigation into

the effectiveness of optimisation algorithms aimed at dynamic environments necessitates

the evaluation of the optimisation algorithms on a wide range of environment types. The

following two sections describe two benchmarks that are used in this study to simulate

several types of dynamic environments discussed in this section.

2.5.3 Moving Peaks Benchmark

Branke [2007] created the moving peaks benchmark (MPB) to address the need for a single,

adaptable benchmark that can be used to compare the performance of algorithms aimed at

CHAPTER 2. BACKGROUND 39

dynamic optimisation problems. The benchmark consists of a moving peaks maximisation

function to test the effectiveness of an algorithm. The multi-dimensional problem space

of the moving peaks function contains several peaks, or optima, of variable height, width,

and shape. These peaks move around with height and width changing periodically.

For np peaks in nd dimensions, the moving peaks function is given by [Branke, 2002]:

F (~x, t) = max

{

B(~x), max
p=1,...,np

{fp(~x, hp(t), wp(t),~lp(t))}

}

(2.30)

where B(~x) is a constant basis landscape and f is a peak shape function. hp(t), wp(t) and

~lp(t) are the height, width and position of the respective peaks, given by

hp(t) = hp(t− 1) + height severity ·N(0, 1) (2.31)

wp(t) = wp(t− 1) + width severity ·N(0, 1) (2.32)

~lp(t) = ~lp(t− 1) + ~cp(t) (2.33)

where height severity and width severity are the deviation of changes to the width and

height, respectively, and ~cp(t) is given by

~cp(t) =
Cs((1− λ)~r + λ~cp(t− 1))

|~r + ~cp(t− 1)|
(2.34)

where Cs is the change severity, ~r is a random vector created by selecting uniform random

numbers for each dimension, rj ∼ U(−0.5, 0.5), and normalising the vector length to Cs,

and λ ∈ (0, 1) is the degree of correlation to previous shifts. For λ = 1 the direction of

the positional shift is equivalent to the direction of the previous shift, while for λ = 0 the

positional shift is not correlated to the previous shift.

The MPB allows the following parameters to be set:

• Number of peaks

• Number of dimensions

• Maximum and minimum peak width

• Maximum and minimum peak height

• Change period (the number of function evaluations between successive changes in

the environment)

CHAPTER 2. BACKGROUND 40

• Change severity (how much the locations of peaks are moved within the fitness

landscape)

• Height severity (standard deviation of changes made to the height of each peak)

• Width severity (standard deviation of changes made to the width of each peak and

consequently the gradient of each peak)

• Peak function

• Correlation (between successive movements of a peak)

A static basis function, B(~x), can optionally be added to the problem space if a more

complex fitness landscape is required. The fitness landscape of the MPB is fundamentally a

heterogeneous fitness landscape (refer to point 1 in Section 2.5.2) although a homogeneous

fitness landscape can be simulated by setting the number of peaks to one.

Type I, II and III environments (see point 3 in Section 2.5.2) can be simulated by

changing the parameters for change and height severity. Three scenarios of settings of

MPB parameters were suggested by Branke [2007]. However, the majority of researchers

using the MPB employ only variations of Scenario 2 settings, as these settings were used

in an early paper by [Branke and Schmeck, 2003] and were subsequently used by other

researchers to facilitate comparisons between algorithms. The Scenario 2 settings are listed

in Table 2.1.

A graphical depiction of the moving peaks function in two dimensions with a conical

peak function is given in Figure 2.2, and with a spherical peak function in Figure 2.3.

The value of the conical peak function with location ~l and height h is calculated in nd

dimensions as

fconical(~x) = h− w ·

√

√

√

√

nd
∑

j=1

(xj − lj)2 (2.35)

while the value of the spherical peak function is calculated as

fspherical(~x) = h−

nd
∑

j=1

(xj − lj)
2 (2.36)

The most apparent difference between the conical and spherical functions is that,

because spherical peaks do not have a constant gradient like the conical peaks, the absolute

CHAPTER 2. BACKGROUND 41

Table 2.1: MPB Scenario 2 settings

Setting Value

Number of Dimensions 5

Number of Peaks 10

Max and Min Peak height [30,70]

Max and Min Peak width [1.0,12.0]

Change period 5000

Change severity 1.0

Height severity 7.0

Width severity 1.0

Peak function Cone

Correlation [0.0,1.0]

0

20

40

60

0

20

40

60
−60

−40

−20

0

20

40

60

V
al
u
e

Dimension 1 Dimension 2

Figure 2.2: The moving peaks function using a conical peak function in two dimensions

minimum of the moving peaks function with spherical peaks is much lower than that of the

conical peaks. It is thus possible to find much greater errors when using spherical peaks

compared to using conical peaks. On the other hand, the steeper slopes on the spherical

CHAPTER 2. BACKGROUND 42

0

20

40

60

0

20

40

60
−2000

−1500

−1000

−500

0

500

V
al
u
e

Dimension 1 Dimension 2

Figure 2.3: The moving peaks function using a spherical peak function in two dimensions

peaks should make initial optimisation easier, but only until a point close to the absolute

minimum (where the gradient is small), where optimisation should become harder.

2.5.3.1 Extensions to the Moving Peaks Benchmark

Part of this study involves investigating dynamic environments in which the number of

peaks fluctuates over time (see point 3 in Section 2.5.2). The MPB was therefore adapted

in this thesis to allow the number of peaks to change when a change in the environment

occurs. For the adapted MPB, the number of peaks, np(t), is calculated as:

np(t) =































max{1, np(t− 1)−Mnp · U(0, 1) ·Mc}

if U(0, 1) < 0.5

min{Mnp , np(t− 1) +Mnp · U(0, 1) ·Mc}

otherwise

(2.37)

where Mnp is the maximum number of peaks and Mc is the maximum fraction of Mnp

that can be added or removed from the population after a change in the environment. Mc

thus controls the severity of the change in the number of peaks. For example, Mc = 1 will

CHAPTER 2. BACKGROUND 43

result in up to Mnp peaks being added or removed, while Mc = 0.1 will result in a change

of up to 10% of Mnp . Mnp and Mc are included as parameters to the benchmark function.

2.5.3.2 Moving Peaks Benchmark Critical Discussion

The MPB has been used by several researchers [Trojanowski, 2007] [Janson and Mid-

dendorf, 2003][Moser and Hendtlass, 2007][Ayvaz et al., 2011][Kiraz et al., 2011] and has

served as a valuable method of comparison between different algorithms. The simplic-

ity of the method used to produce changes in the dynamic environment makes the MPB

ideal for studying the scalability of an optimisation algorithm in terms of change severity.

Unfortunately, apart from three broad scenarios, the benchmark does not contain general

guidelines specifying a set of parameters to investigate. As a result, researchers often

report on different sets of parameters which complicates comparisons among algorithms.

Another disadvantage of the MPB is that it only provides a limited number of peak

functions. Benchmarks for static environments typically contain large sets of complex

functions, for example, the Griewank, Ackley, Rastrigin and Weierstrass functions [Qu and

Suganthan, 2010]. The MPB does not provide a platform on which to identify optimisation

algorithms suited to specific underlying functions that are typically used as benchmarks in

static environments. Furthermore, the MPB does not provide functionality to investigate

the effect of a broad range of change types (refer to point 2 discussed in Section 2.5.2), as

only random and linearly correlated change types are supported.

The MPB does not provide functionality to investigate dynamic environments where

optima are explicitly introduced or removed from the dynamic environment. This limita-

tion has been remedied by the extension made to the MPB which is described in Section

2.5.3.1.

2.5.4 Generalised Dynamic Benchmark Generator

The generalised dynamic benchmark generator (GDBG) of Li et al. [2008] [Li and Yang,

2008] is a recent benchmark created to investigate optimisation in dynamic environments.

This benchmark was used during the special session on evolutionary computation in dy-

namic and uncertain environments at the 2009 IEEE Congress on Evolutionary Computa-

tion to compare the performance of algorithms submitted by several researchers [Korošec

CHAPTER 2. BACKGROUND 44

and Šilc, 2009, Brest et al., 2009, De França and Von Zuben, 2009, Li and Yang, 2009].

The GDBG dynamic function is defined as

F = f(~x, ~φ, t) (2.38)

where ~φ represents the system control parameters for height (~h), width (~w), location of the

global optimum (~l, assuming a single global optimum), and underlying function rotation

(~θ). The notation φΩ with Ω ∈ {~h, ~w,~l, ~θ} is used to refer to the control parameters in

general. Minimum (φΩ,min), maximum (φΩ,max), and severity (φΩ,sev) values are defined

by the creators of the benchmark for each control parameter.

Changes in the environment are enacted by periodically changing the control param-

eters. A function, DynamicChanges, provides the next values of each control parameter

vector:

~φΩ(t+ 1) = DynamicChanges(~φΩ(t)) with Ω ∈ {~h, ~w,~l, ~θ} (2.39)

DynamicChanges takes the form of various change types, presented in Section 2.5.4.2.

2.5.4.1 Generalised Benchmark Generator Functions

The benchmark consists of six main functions. The first, F1, is a peak function with

similarities to the MPB of Branke. The main differences between these two benchmarks

are the peak shapes and the way that peaks are moved. The peak function, F1, at time t

is given by:

F1(~x, t) = max
p=1,...,np







hp/



1 + wp ·

√

√

√

√

nd
∑

j=1

(xj − lp,j)2

nd











(2.40)

where hp, wp and ~lp contain the values for height, width and position of the np peaks in

nd dimensions. Equation (2.40) results in a peak which height decreases with the square

of the distance to the optimum of the peak.

The method used to randomly move peaks around in the MPB results in peaks be-

ing reflected when the boundary of the fitness landscape is reached, analogous to a ball

bouncing off a wall. This is seen as a disadvantage, since it implies an unequal challenge

per change for an optimisation algorithm [Li et al., 2008]. The disadvantage is remedied

in the GDBG by using a rotation matrix to affect positional changes in the environment

CHAPTER 2. BACKGROUND 45

by independently rotating the dimensional components of the positions of the peaks as

described in Algorithm 5 [Li and Yang, 2008].

Algorithm 5: Position rotation algorithm for the p-th underlying function

Randomly select s = 2 · bnd/2c dimensions (s is the largest even integer smaller or

equal to nd) from the nd dimensions to compose a vector ~o = [o1, o2, ..., os];

Let ~θp(t) = DynamicChanges(~θp(t− 1));

foreach pair of dimensions, (oj , oj+1) do

construct a rotation matrix using ~θp(t) as follows: Roj ,oj+1(θp,(j+1)/2)(t)),

end

A transformation matrix T(t) is obtained by:

Tp(t) = Ro1,o2(θp,1(t)) ·Ro3,o4(θp,2(t)) · · ·Ros−1,os(θp,s/2(t));

~lp(t+ 1) = ~lp(t) ·Tp(t);

For positional changes, the values φθ,sev = 1, φθ,max = π, and φθ,min = −π are used in

DynamicChanges.

The vectors containing height and width information of the np peaks (~h = [h1, . . . , hnp]

and ~w = [w1, . . . , wnp]) are changed using the DynamicChanges function:

~h(t+ 1) = DynamicChanges(~h(t)) (2.41)

~w(t+ 1) = DynamicChanges(~w(t)) (2.42)

Settings associated with F1 are:

• The number of peaks: np = 10, 50

• Width range: φw,max = 10 and φw,min = 1

• Width severity: φw,sev = 0.5

• Initial width: initial width = 5

A graphical depiction of a two-dimensional instance of F1 is given in Figure 2.4. F1

is a multi-modal maximisation problem with np optima (although some optima may be

obscured by others).

CHAPTER 2. BACKGROUND 46

0

20

40

60

0

20

40

60
0

10

20

30

40

50

Dimension 2Dimension 1

V
al

ue

Figure 2.4: F1 from the GDBG

0
20

40
60

0
20

40
60

0

500

1000

1500

2000

Dimension 1Dimension 2

V
al

ue

Figure 2.5: F2 from the GDBG

0
10

20
30

40
50

0

10

20

30

40

50

0

1000

2000

3000

Dimension 1
Dimension 2

V
al

ue

Figure 2.6: F3 from the GDBG

0
10

20
30

40
50

0

10

20

30

40

50

0

500

1000

1500

2000

Dimension 1
Dimension 2

V
al

ue

Figure 2.7: F4 from the GDBG

0
20

40
60

0

20

40

60

0

500

1000

1500

2000

2500

Dimension 1Dimension 2

V
al

ue

Figure 2.8: F5 from the GDBG

0

20

40

60

0

20

40

60

0

500

1000

1500

2000

2500

Dimension 1Dimension 2

V
al

ue

Figure 2.9: F6 from the GDBG

CHAPTER 2. BACKGROUND 47

Functions F2 through F6 are composition functions made up from basic functions stan-

dardly used as static benchmarks in the field of evolutionary computing. Each function

is constructed from a composition of 10 underlying functions with different orientations,

whose height and position are changed individually, resulting in a complex dynamic envi-

ronment. The composite function values are calculated as:

F (~x, t) =
10
∑

p=1

(

ψp ·

(

2000 ·
fp

(

(

~x−~lp(t)
)

/σfp
·Tp

)

fp,opti
+ hp(t)

)

)

(2.43)

where ~lp(t) is the location of the global optimum (with value fp,opti) of underlying function

fp, and Tp is the rotation matrix for each underlying function. Tp is generated once for

each underlying function and is not changed thereafter. The value of ψp is calculated for

each fp in three steps:

1.

ψp = exp

(

−

√

∑nd

j=1 (xj − lp,j)
2

2nd

)

(2.44)

2.

ψp =







ψp if ψp = max10a=1{ψa}

ψp ·
(

1− (max10a=1{ψa})
10
)

if ψp 6= max10a=1{ψa}
(2.45)

3.

ψp = ψp/
10
∑

a=1

ψa (2.46)

Note that equation (2.43) allows a single function to be composed of versions of itself

with different orientations. The individual underlying functions that are used are listed in

Table 2.2. Each function has a different range, so a stretch factor is employed to ensure a

uniform range of the composition function F (~x). The stretch factor σfp
is calculated for

each underlying function as

σfp
=
Vmax,F − Vmin,F

Vmaxfp
− Vminfp

(2.47)

where [Vmax,F , Vmin,F]
nd is the search range of F (~x) which is set to [5, 5]nd and the search

range [Vmaxfp
, Vminfp

]nd is that of the underlying function fp.

CHAPTER 2. BACKGROUND 48

Table 2.2: Details of the underlying benchmark functions of the GDBG

Name Function Range

Sphere f(~x) =
∑nd

j=1 x
2
j [-100,100]

Rastrigin f(~x) =
∑nd

j=1 (x
2
j − 10 cos(2πxj) + 10) [-5,5]

Weierstrass f(~x) =
nd
∑

j=1

(

20
∑

a=0

(

0.5a cos
(

2π · 3a(xj + 0.5)
)

)

)

−nd
20
∑

a=0

(

0.5a cos(π · 3a)
)

[-0.5,0.5]

Griewank f(~x) = 1
4000

∑nd

j=1 x
2
j −

∏nd

j=1cos(
xj√
j
) + 1 [-100,100]

Ackley f(~x) = −20 exp
(

− 0.2

√

1
nd

nd
∑

j=1
x2j

)

− exp
(

1
nd

nd
∑

j=1
cos(2πxj)

)

+ 20 + e [-32,32]

Changes in the environment occur when ~lp and ~h are changed using theDynamicChanges

function:

~h(t+ 1) = DynamicChanges(~h(t)) (2.48)

~lp(t+ 1) = DynamicChanges(~lp(t)) ∀ p ∈ {1, 2, . . . , np} (2.49)

F2 is made up of a composition of the Sphere function, illustrated in two dimensions in

Figure 2.5. F2 has 10 optima. The third function, F3, contains a composition of Rastrigin’s

function, illustrated in two dimensions in Figure 2.6. F4 is a composition of the Griewank

function, illustrated in two dimensions in Figure 2.7. The fifth function, F5, is conctructed

from a composition of Ackley’s function, illustrated in two dimensions in Figure 2.8. The

last function is a composition of the Sphere, Ackley, Griewank, Rastrigin and Weierstrass

functions. Figure 2.9 depicts F6 in two dimensions. Functions F3 to F4 all have a large

number of optima.

F1 is maximised, while F2 to F6 are minimised. For all functions (F1 to F6) the

following settings are used:

• Height range: φh,max = 10 and φh,min = 1

• Height severity: φh,sev = 5.0

• Initial height: initial width = 50

CHAPTER 2. BACKGROUND 49

2.5.4.2 Generalised Benchmark Generator Change Types

Six different change types are used in the benchmark to investigate algorithm performance

under different types of changes. The experimenter selects one of the following change

types which governs the functioning of the function DynamicChanges:

1. Small step changes, T1:

φΩ,q(t+ 1) = φΩ,q(t) + 0.02 · (φΩ,max − φΩ,min) · U(−1, 1) · φΩ,sev (2.50)

2. Large step changes, T2:

φΩ,q(t+1) = φΩ,q(t)+(φΩ,max−φΩ,min)·(0.02·sign(U(−1, 1))+0.08·U(−1, 1))·φΩ,sev

(2.51)

3. Random changes, T3:

φΩ,q(t+ 1) = φΩ,q(t) +N(0, 1) · φΩ,sev (2.52)

4. Chaotic changes, T4:

φΩ,q(t+ 1) = 3.67 · (φΩ,q(t)− φΩ,min) ·

(

1−
(φΩ,q(t)− φΩ,min)

(φΩ,max − φΩ,min)

)

(2.53)

5. Recurrent changes, T5:

φΩ,q(t+ 1) = φΩ,min + (φΩ,max − φΩ,min) ·
(

sin
(

2π(
t

12
+

q

10
)
)

+ 1
)

/2 (2.54)

6. Recurrent changes with noise, T6:

φΩ,q(t+1) = φΩ,min+(φΩ,max−φΩ,min)·
(

sin
(

2π(
t

12
+
q

10
)
)

+1
)

/2+N(0, 0.8) (2.55)

where φΩ,sev, φΩ,max and φΩ,min correspond to the upper bound, lower bound and sever-

ity values of the specific control parameter to be changed. The creators of the GDBG

suggested that changes occur once every 100 000 function evaluations.

The GDBG also provides a change type that allows the number of dimensions to vary

over time. This type of dynamic environment is outside the scope of this thesis.

CHAPTER 2. BACKGROUND 50

2.5.4.3 Generalised Benchmark Generator Critical Discussion

Each of the six functions of the GDBG provide a heterogeneous fitness landscape (refer to

point 1 discussed in Section 2.5.2) which consists of underlying functions typically found

in benchmarks for static environments. The simulated dynamic environments can all be

classified as type III in terms of change pervasiveness (refer to point 3 discussed in Section

2.5.2).

The GDBG provides six change types which allows researchers to investigate the per-

formance of the optimisation algorithms under different types of changes. All the change

types identified under point 2 in Section 2.5.2 are represented in the GDBG. A disadvan-

tage of the rigidly defined and complex change types of the GDBG is that investigations

into the scalability of algorithms in terms of change severity are not explicitly supported.

The settings of the GDBG can be altered in a limited extent to vary the change severity,

by using different change types, but much of what is intuitively understood as change

severity is lost. The GDBG does not have a parameter, like it has with the change period,

that can be varied over a range of values to observe the scalability of an algorithm with

respect to change severity.

Recent years have seen the development of a considerable number of algorithms to

solve dynamic optimisation problems (refer to Section 3.3). It is important to be able

to compare these algorithms in order to determine which algorithms perform best on

various problems. The next section reviews metrics that have been suggested to measure

performance.

2.5.5 Performance Measures for Dynamic Environments

The purpose of performance measures is firstly to measure how effective an algorithms is

at solving an optimisation problem, and secondly to provide a baseline for comparisons

among optimisation algorithms. The goal of this section is to discuss proposed performance

measures for dynamic optimisation problems. The most appropriate performance measure

for this study can be identified from this discussion. According to Morrison [2003], a good

performance measure should:

1. have intuitive meaning,

CHAPTER 2. BACKGROUND 51

2. allow plain statistical significance testing, and

3. have a sufficiently large exposure to landscape dynamics.

The third requirement implies that performance measures which are normally used in static

environments are not appropriate for dynamic environments, since these are, generally,

only focused on the performance of an algorithm at the conclusion of the optimisation

process. In dynamic environments, the effectiveness of an algorithm has to be considered

over the entire span of the optimisation process and over all environment changes.

An important consideration when choosing a performance measure is the information

that is available to the observer. Benchmark problems typically provide information re-

garding the function value and location of the global optimum, and when changes in the

environment occur. In the case of the moving peaks benchmark (refer to Section 2.5.3)

the function values and locations of local optima are also available. This information can

be used to measure the performance of an algorithm more accurately. However, the above

mentioned information may not be available when solving real world dynamic optimisation

problems [Nguyen et al., 2012].

A survey of the literature identified 13 performance measures:

1. Graphs of the average best-of-generation at each generation [Grefenstette, 1999]

[Bäck, 1998], calculated at the g-th generation as:

HAG,g = F (~xbest(g), t~xbest(g)) (2.56)

where ~xbest(g) is the best performing individual in generation g and F (~x, t) is a dy-

namic optimisation function. The time step in which ~xbest(g) is evaluated is t~xbest(g).

The value of each HAG,g is averaged over many repeats of the same experiment, and

are subsequently plotted on a graph of HAG,g versus generations.

The graphs provide a visual representation of how fitness improves after each change

in the environment. However, a visual comparison of the graphs of more than one

algorithm does not provide clear information as to which algorithm performed the

best [Morrison, 2003]. It is also impossible to do statistical significance testing

between the results of multiple algorithms when using HAG,g graphs, as they support

visual comparisons rather than numerical comparisons.

CHAPTER 2. BACKGROUND 52

A further disadvantage of the HAG,g measure is that it is sampled once every gen-

eration, hence making the time between samples dependent on the population size.

An algorithm with a large population size has a natural advantage over an algorithm

with a small population size, since the larger population size ensures a broader ex-

posure to the fitness landscape. A fair comparison of two algorithms using HAG,g

thus requires equal population sizes, as HAG,g does not consider the computational

cost per generation.

2. The average error of the best individuals just before a change in the environment

[Trojanowski and Michalewicz, 1999b]:

HAEBI =

nc
∑

c=1

E(~xbest(tc), c)

nc
(2.57)

where nc is the total number of changes in the environment, tc is the time step

before the c-th change in the environent, ~xbest(t) the best individual found since the

last change in the environment and E(~x, c) is the error of individual ~x immediately

before the c-th change in the environment.

This performance measure provides an indication of how well the fitness landscape

is optimised before changes in the environment and allows for statistical significance

testing. A further advantage of this performance measure is that it allows for uniform

treatment of function maximisation and minimisation problems, since the error and

not the function value is used. It is thus always desirable to achieve a low value for

HAEBI .

A disadvantage of this performance measure is that it only considers the performance

immediately before changes in the environment. The performance during periods

between changes are ignored. An algorithm that recovers quickly after changes in

the environment will not be rated better than an algorithm with a slow recovery

time.

3. The lowest error value found of the best individual just before a change, over all

changes [Li et al., 2008]:

HB = min
c=1,...,nc

{E(~xbest(tc), c)} (2.58)

CHAPTER 2. BACKGROUND 53

This measure is meant to be used in conjunction with performance measure number

2, and gives the minimum error value found. Very little can be learnt by using this

measure, since an algorithm that achieves a single very low error value at some point

in the optimisation process, but high error values during the rest of the optimisation

process, would be judged to be more effective than an algorithm that consistently

produces moderately low error values.

4. The worst error value found of the best individual just before a change, over all

changes [Li et al., 2008]:

HW = max
c=1,...,nc

{E(~xbest(tc), c)} (2.59)

This measure is meant to be used in conjunction with performance measure numbers

2 and 3, and gives the worst just-before-change error value. HW does not represent

an accurate reflection of an algorithm’s performance, since the error value at just a

single point in the optimisation process is reported.

5. The online performance is the running average of all fitness evaluations [Branke,

2002]:

HON =

nt
∑

t=1

F (~x(t), t)

nt
(2.60)

where ~x(t) is the individual evaluated at function evaluation t, F (~x, t) is the dynamic

function and nt is the total number of function evaluations.

A disadvantage of this measure is that fitness values of all individuals are taken into

account (not only the best performing individuals). An algorithm is penalised for

exploring sub-optimal regions of the fitness landscape even if it locates the global

optimum. This performance measure is thus biased towards algorithms with low

population diversity and fast convergence.

On the other hand, an observer using this performance measure does not require

information regarding when changes in the environment occur and the location or

function value of the global optimum.

CHAPTER 2. BACKGROUND 54

6. The offline performance is the running average of the best-so-far fitness found since

the last change in the environment [Branke, 2002]:

HOP =

nt
∑

t=1

F (~xbest(t), t)

nt
(2.61)

where nt is the total number of function evaluations and F (~x, t) is a dynamic func-

tion.

This measure addresses the disadvantages of measure number 5 by averaging over the

function value of the best individual found since the last change in the environment

at each time step. A disadvantage of using HOP is that function maximisation and

minimisation problems cannot be treated uniformly, since a large value for HOP

is desired for maximisation problems and a low value is desired for minimisation

problems. Furthermore, averaging over the fitness makes intuitive interpretation of

the results difficult, since the optimum value of the dynamic fitness function may

vary over time, leaving the observer without any knowledge of how good a particular

fitness value is.

7. The offline error is the running average of the lowest-so-far error found since the last

change in the environment [Branke, 2002]:

HOE =

nt
∑

t=1

E(~xbest(t), t)

nt
(2.62)

where nt is the total number of function evaluations and E(~xbest(t), t) is the error of

the best individual found since the last change in the environment.

This performance measure is similar to measure number 6, but averages over the error

of the best found individual since the last change in the environment. It addresses

a disadvantage of performance measure number 2 in that the error during the entire

optimisation process is taken into account (not only the error just before changes).

The measure thus also rewards algorithms for recovering quickly after changes in the

environment, not only for achieving a low error value.

An advantage of averaging over the error and not the fitness provides a more intuitive

interpretation of the results, since the observer knows that the ideal error value is

CHAPTER 2. BACKGROUND 55

zero. In addition, by making use of the error rather than the function value allows for

uniform treatment of maximisation and minimisation problems. HOE can only be

used when information regarding the value of the global optimum and when changes

in the environment occurs, is available.

The offline error performance measure was suggested as part of the moving peaks

benchmark (refer to Section 2.5.3), and has become one of the most commonly used

performance measures for dynamic optimisation problems.

8. The collective mean fitness is the average of best-of-generation over all generations

[Morrison, 2003]:

HCM =

ng
∑

g=1

F (~xbest(g), t~xbest(g))

ng
(2.63)

where ~xbest(g) is the best performing individual in generation g, ng is the total

number of generations and F (~x, t) is a dynamic optimisation function. The time-

step in which ~xbest(g) is evaluated is t~xbest(g).

This performance measure requires no information regarding when changes in the

environment occur, or the value of the global optimum. However, as was the case

with performance measure number 6, averaging over the function value complicates

interpretation of the results.

Another disadvantage is that the population size may influence the value of HCM

because the average is taken over the number of generations. For example, an

algorithm with a small population size may have a larger value for ng over a constant

number of fitness evaluations than an algorithm with a large population size. The

average is taken over the function value of the best individual in each generation,

so the algorithm with the smaller population size is more likely to have generations

included in the average where the best individual performed relatively poorly.

9. The average minimum Euclidean distance to optimum at each generation [Weicker

CHAPTER 2. BACKGROUND 56

and Weicker, 1999]:

HAD =

ng
∑

g=1

(

min
i=1,...,nI

{‖~lF (t)− ~xi(t)‖2}
)

ng
(2.64)

where ng is the total number of generations and ~lF (t) is the location of the global

optimum of the dynamic function (assuming a single global optimum). This measure

requires information regarding the location of the global optimum.

The major disadvantage of this performance measure is that only the global optimum

is taken into account. Algorithms are not rewarded of locating local optima. Ideally,

the global optimum should be located, but local optima may have function values

very close to that of the global optimum, and could represent an adequate solution

to the optimisation problem. A further disadvantage of using HAD is that it ignores

both the function value and the error of individuals. The gradient around the global

optimum can be steep for a particular optimisation problem which would result in

a high error value for an individual that is relatively close, but this high error value

would not be reflected in HAD.

10. The ratio of the difference between the best-of-generation and the worst fitness found

within a window of recent generations, over the difference of the best fitness found

within the window and the worst fitness found within the window [Weicker, 2002]:

HRW =

ng
∑

g=1

(

F (~xbest(g), t~xbest(g))−Wworst(g)

Wbest(g)−Wworst(g)

)

ng
(2.65)

Wworst(g) = min
g′=g−ω,...,g

{

min
i=1,...,nI

{F (~xi(g
′), t~xi(g′))}

}

(2.66)

Wbest(g) = max
g′=g−ω,...,g

{

max
i=1,...,nI

{F (~xi(g
′), t~xi(g′))}

}

(2.67)

where Wbest(g) is the function value of the best performing individual within a win-

dow of ω generations and Wworst(g) is the function value of the worst performing

individual within a window of ω generations. The i-th individual in generation g is

represented by ~xi(g), and the individual is evaluated at time step t~xi(g). The best

individual within generation g is denoted by ~xbest(g). The above equations assume

CHAPTER 2. BACKGROUND 57

a function maximisation problem. This performance measure does not require infor-

mation regarding the value of the global optimum or when changes occur. A value

close to 1.0 represents good performance while a value close to zero represents poor

performance.

The mayor disadvantage of using this performance measure is that performance is

measured relative to the difference between the best and worst performing individuals

within the window. Consequently, a poor performing population that converged to

the extend where all individuals have a very similar fitness value, will still receive

a relatively high value for HRW . Misleading results can thus ensue from using this

performance measure.

A further disadvantage of using HRW is that results will be affected by the win-

dow size ω and the population size, since both influence the number of function

evaluations that are included within the window.

11. The sampled relative error, HRE [Li et al., 2008]. Let the relative error RE(t) be

defined for maximisation problems as:

RE(t) =
F (~xbest(t), t)

F (~lF (t), t)
(2.68)

and for minimisation problems as:

RE(t) =
F (~lF (t), t)

F (~xbest(t), t)
(2.69)

A relative error close to 1.0 indicates good performance while values smaller than 1.0

indicate poorer performance. The relative error is sampled ns times between succes-

sive changes in the environment, i.e. RE(t1,c), RE(t2,c), . . . , RE(tns,c) before the c-th

change in the environment. The sampled relative error performance measurement,

HRE , is calculated as:

HRE =

nc
∑

c=1

(

RE(tns,c)

1 +
∑ns

a=1(1−RE(ta,c))/ns

)

nc
(2.70)

where nc is the total number of changes in the environment. This performance

measure requires information regarding when changes in the environment occur and

the value of the global optimum.

CHAPTER 2. BACKGROUND 58

There are several disadvantages to HRE as a performance measure. Firstly, HRE is

inappropriate for problems where the function value of the global optimum is equal

to zero since this will always result in a RE value of zero for a minimisation problem

and a divide by zero for a maximisation problem. Secondly, the value of the global

optimum must be positive for function minimisation problems, otherwise RE values

of greater than 1.0 is found. Thirdly, errors are not treated consistently for minimi-

sation and maximisation problems, because RE increases linearly for maximisation

problems as F (~xbest(t), t) tends to F (~lF (t), t), while RE increases hyperbolically for

minimisation problems as F (~xbest(t), t) tends to F (~lF (t), t).

In addition to the above mentioned disadvantages, the fact that errors are only

sampled periodically means that the performance of the algorithm is not taken into

account during the intermediate periods of the optimisation process.

12. Peak cover, a performance measure specifically created for the moving peaks bench-

mark (refer to Section 2.5.3), measures the average ratio of the number of peaks on

which there are individuals over the number of peaks whose optima are not obscured

by other peaks [Branke, 2002]:

covered peaks =

np
∑

p=1



















1 if
(

∃i ∈ {1, . . . , nI} such that fp(~xi, t) = F (~xi, t)
)

and
(

fp(~lp, t) = F (~lp, t)
)

0 otherwise

(2.71)

not hidden peaks =

np
∑

p=1







1 if fp(~lp, t) = F (~lp, t)

0 otherwise
(2.72)

HPC =

ng
∑

g=1

covered peaks

not hidden peaks

ng
(2.73)

(2.74)

where fp(~x, t) is the function value of the p-th peak, ~lp is the location of the optimum

of the p-th peak, F (~x, t) is the dynamic function that contains the p peaks and np

is the number of peaks. A common strategy for optimising dynamic problems is to

track all optima in the environment in order to recover quickly from changes in the

environment (refer to Section 3.3). HPC measures how well all optima are tracked.

CHAPTER 2. BACKGROUND 59

Although several algorithms attempt to track all optima, it can be argued that the

possibility should not be excluded that an effective algorithm could be developed

that does not make use of this strategy. Accordingly, HPC is, in general, not an

appropriate performance measure.

A further disadvantage of the peak cover measure is that it can only be used when

information regarding the locations of all peaks are available, and if F (~x, t) is cal-

culated using the maximum value of all peaks, as described in point 1(b)ii on page

33. This is not the case with all benchmark functions and very unlikely in real world

problems.

13. Best known peak error, a performance measure specifically created for the moving

peaks benchmark, was designed by Bird and Li [2007] to be used in conjunction

with performance measure number 12. The goal of this measure is to measure the

convergence speed of an algorithm once it has been found to cover a peak. This is

achieved by calculating the minimum error found for each peak at the end of each

generation:

ξp,g = min
i=1,...,nI

{E(~xi(g), t~xi(g)) | fp(~xi, t) = F (~xi, t)} (2.75)

where ξp,g is the minimum error found on the p-th peak during generation g, ~xi(g)

is the location of the i-th individual during the g-th generation and t~xi(g) is the time

step in which ~xi(g) is evaluated.

When a change in the environment occurs, the index, ac , of the peak with the lowest

error during the last generation before the change is found:

ac = p where ξp,c×ng,c = min
p′=1,...,np

{ξp′,c×ng,c
} (2.76)

where ng,c is the number of generations that takes place between two changes in the

environment. The best known peak error is then calculated as:

HBKPE =

nc
∑

c=1

PEac,c

ng
(2.77)

CHAPTER 2. BACKGROUND 60

where ng is the total number of generations, nc is the total number of changes and

the function PEp,c is defined as:

PEp,c =

c×ng,c
∑

g=(c−1)×ng,c+1

ξp,g (2.78)

This performance measure requires information regarding when changes in the en-

vironment occur and the function values of all the local optima.

The major disadvantage of using HBKPE is that only the error of the best known

peak is taken into consideration. Since the global optimum is not taken into account,

an algorithm with fast convergence to inferior optima can receive a high ranking from

HBKPE .

A further disadvantage is that the measure is sampled every generation. The assump-

tion is that the number of function evaluations required to evaluate a generation is

much smaller than the number of function evaluations between changes in the envi-

ronment. This is not the case when a large population size is used, or when changes

in the environment occur frequently.

The above discussion of the 13 performance measures pointed out several disadvantages

of sampling the error after each generation. A further disadvantage is that the number

of fitness evaluations per generation is not constant in several modern algorithms aimed

at dynamic optimisation problems (refer to Section 3.3). The number of generations that

an algorithm performs will consequently not always be the same when experiments are

repeated (when allowing a constant number of fitness evaluations to ensure equal exposure

to the fitness landscape).

Considering the positive and negative aspects of the performance measures discussed

in this section it was concluded that the most appropriate performance measure to use in

this thesis is number 7, the offline error. The offline error measure has several benefits:

It conforms to all three requirements of Morrison [2003]: it has intuitive meaning, allows

statistical significance testing, and has sufficient exposure to landscape dynamics since the

error at all function evaluations contribute to the final offline error. A further advantage

of the offline error is that it does not suffer from any of the disadvantages associated with

generation based performance measures. In addition, error values are taken into account

CHAPTER 2. BACKGROUND 61

as opposed to function values, which means that maximisation and minimisation problems

can be treated uniformly. A potential disadvantage of the offline error is that it requires

information regarding when changes in the environment occur and the function value of

the global optimum. However, this is not seen as a problem, as the required information

is available from the benchmark functions used in this thesis.

The offline error averages over the lowest errors found since the last change in the

environment (referred to by Branke [2002] as the current error). The average current error

over several repeats of the optimisation process can be graphed analogously to performance

measure number 1 (average best-of-generation graphs) to provide a visual representation

of the optimisation algorithm’s performance during the optimisation process. Figure 2.10

illustrates the functioning of the offline error measurement and the current error obtained

by an elementary random guessing algorithm (given in Algorithm 6) on the Scenario 2

settings of the MPB. Ten changes in the environment are depicted. The offline error is

the average of all previous current errors and thus produces a smoother curve than the

current error. The current error spikes after each change in the environment and drops as

better solutions are found.

Algorithm 6: Elementary random guessing algorithm

t = 0;

while maximum number of function evaluations is not exceeded do

Uniformly select random vector ~x(t) from the nd dimensional search space;

Evaluate F (~x(t), t);

t = t+ 1;

end

Random guessing is not an effective optimisation strategy, and it will be shown in

the next chapter that much better results are found even with algorithms not tailored to

dynamic environments.

CHAPTER 2. BACKGROUND 62

0 1 2 3 4 5

x 10
4

35

40

45

50

55

60

65

70

75

80

85

O
ffl

in
e

E
rr

or
 a

nd
 C

ur
re

nt
 E

rr
or

Function Evaluations

Current Error
Offline Error

Figure 2.10: Current and offline errors found on the MPB through evaluating random
individuals

2.6 Conclusions

This chapter provided background information regarding optimisation with emphasis on

DE. DE is a evolutionary optimisation algorithm that employs the spatial difference be-

tween individuals to perform mutations. Common DE schemes were reviewed along with

the standard DE control parameters. The control parameters can be altered to change the

exploration and exploitation characteristics of the DE algorithm. However, fine-tuning the

control parameters for a specific problem is a time consuming manual task. Work aimed

at reducing control parameters was reviewed with special emphasis on self-adapting pa-

rameters.

Dynamic optimisation environments were formally defined. It was found that dynamic

environments are typically classified in the literature based on the types of changes that

CHAPTER 2. BACKGROUND 63

occur, the fitness landscape composition and the pervasiveness of changes. It was argued

that the three most important factors influencing the intricacy of an dynamic optimisation

problem is hardness of the fitness landscape, the frequency at which changes occur, and the

severity of changes to the environment. An thorough investigation into the effectiveness

of an optimisation algorithm should include a scalability study on how the algorithm

scales over various values of the three factors that influence the intricacy of the dynamic

environment.

Two benchmarks were discussed that can be used to simulate dynamic environments.

Both are used in this thesis to investigate the performance of an algorithm with respect to

various settings of the number of dimensions and the change period. The first benchmark

that was discussed is the moving peaks benchmark. This benchmark has been used by

several other researchers, and is simple enough to provide an intuitive understanding of the

fitness landscape. The MPB is ideally suited to investigate the scalability of algorithms

in terms change severity. The MPB allows researchers to set the number of peaks in the

environment, and was extended by the author of this thesis to support the simulation of

dynamic environments in which the number of peaks fluctuates over time. The extended

MPB is thus ideal for studying how the number of optima in the environment influences

the performance of an optimisation algorithm.

The second benchmark is the generalised dynamic benchmark generator. This bench-

mark simulates dynamic environments composed of benchmark functions typically used in

static optimisation. The GDBG provides six different change types. The GDBG can be

used to evaluate the performance of an optimisation algorithm on six different functions

and change types.

The chapter concluded with description of common performance measures for dynamic

environments which were identified in the literature. The advantages and disadvantages

of 13 performance measures were discussed. The offline error performance measure, which

averages the lowest error value found since the last change in the environment over all

function evaluations, was concluded to be the most appropriate performance measure for

the current study.

The next chapter introduces related research on optimising dynamic environments with

specific focus on DE-based algorithms.

	Front
	CHAPTER 1
	1.1 Motivation
	1.2 Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Scope
	1.6 Thesis structure

	CHAPTER 2
	2.1 Introduction
	2.2 Optimisation
	2.3 Genotypic Diversity
	2.4 Di®erential Evolution
	2.5 Dynamic Environments
	2.6 Conclusions

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Back

