
CHAPTEREIGHT
RESULTS

8.1 OVERVIEW

The first part of the chapter studies the effects of different parameter settings to determine their

influence on the quality of the solutions. The second part of the chapter explores the classification

accuracies of several different methods, while the last part investigates the change detection accuracies

of the best performing methods. The chapter concludes with the processing of these methods on large

regional scale areas and assessing the outcome.

8.2 GROUND TRUTH DATA SET

A labelled data set, offering ground truth, is required to evaluate the performance of different land

cover change detection algorithms. The performance of the methods is measured with a variety of

tests to assess accuracy and robustness. Two study areas were investigated in this chapter, namely the

Limpopo and Gauteng provinces.

Limpopo province: The Limpopo province is located in the northern parts of South Africa and is

largely covered by natural vegetation. The expansion of human settlements, often informal and

unplanned, is the most pervasive form of land cover change in the province. Areas were identified

where new settlements were known to have been built over the last decade.

Gauteng province: The Gauteng province is located in the highveld of South Africa and is the most

urbanised province in the country. The province contributes 33% of the country’s national

economy. Active migration to the province from other provinces is motivated by the prospect

of higher incomes and more diverse employment opportunities. An average growth of 249 310
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(a) Quickbird image taken on 1 March 2004
(courtesyof GoogleTMEarth).

(b) Quickbird image taken on 9 July 2008
(courtesyof GoogleTMEarth).

(c) Quickbird image taken on 11 December
2009(courtesy of GoogleTMEarth).

FIGURE 8.1: Three high resolution images acquired over a residential area called Midstream estates
located in Midrand, Gauteng, South Africa. The area was zoned for residential use in 2003 and new
settlements were erected only after 9 July 2008.

persons per year within the province has been estimated over the past decade [214, 215]. It

should be noted that the Gauteng province only covers 1.4% of the country’s total land area,

while housing over 20% of the population.

8.2.1 MODIS time series data set

The performance of different land cover change detection methods will be evaluated on a per pixel basis

using a set of different spectral bands’ time series, which are extracted from the MODIS land surface

reflectance product. The MODIS (MCD43A4, Collection V005) 500 metre, Nadir and BRDF adjusted

spectral reflectance bands were used, as these significantly reduce the anisotropic scattering effects of

surfaces under different illumination and observation conditions [27, 28]. The first two spectral bands

(RED and NIR spectral bands) are the only spectral bands available at a spatial resolution of 250 metre,

and are not BRDF adjusted. The 500 metre resolution spectral bands were considered to illustrate the
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FIGURE 8.2: The Limpopo province study area has land cover types polygons overlayed using Albers
projection on SPOT5 RGB 321 imagery that was acquired between March 2006 and May 2006. The
SPOT2 images were acquired of the same area in May 2000 [8].

advantages of using additional spectral bands in the analysis. A time series is extracted for all 7 spectral

bands from the data set (MODIS tile H20V11) for each pixel in each study area (year 2000–2008).

8.2.2 Manual inspection of study areas

Identification of no change areas:Visual interpretation of SPOT2 (year 2000) and SPOT5 (year

2006 / 2008) high spatial resolution images was used to verify that none of the areas classified

as no change, experienced any form of land cover change during the study period.

Identification of change areas: This data set was captured using the same procedure explained for

the no change areas, except that areas where new human settlements had formed during the

study period were captured.

Even though human settlement expansion is one of the most pervasive forms of land cover change

in South Africa, information on this form of land cover change is poorly documented, and vital details
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FIGURE 8.3: A land cover change of natural vegetation to human settlement in Sekuruwe. Sekuruwe
is a human settlement that is located in the Limpopo province, South Africa. The SPOT2 image (RGB
321) was acquired on 2 May 2000 of the natural vegetation area (a) and a SPOT5 (RGB 321) image
was acquired on 1 May 2007 of a newly developed human settlement (b). The SPOT2 and SPOT5
image is projected to a MODIS sinusoidal WGS84 projection and is overlaid with a MODIS 500 metre
coordinate grid [8].

such as the date of land cover conversion cannot be determined reliably. An example of inaccurate

information is shown in figure 8.1. The local municipality demarcated new roads in a suburban area

for future expansion. Unfortunately, no newly developed settlements had been built until quite recently.

A good estimate on the date of land cover conversion can be made if regular acquisitions are obtained

for a particular area. In this example, if only the images in figure 8.1(a) and figure 8.1(c) were available,

then the date of change could be somewhere between March 2004 and December 2009. The real land

cover change only occurred after July 2008, which illustrates the importance of the vital statistic of

knowing when change occurred.

Once the areas have been identified as change or no change, they are mapped with polygons on the

geocoded SPOT imagery, as shown in figure 8.2. The SPOT images are then projected to a MODIS

sinusoidal WGS84 projection and is overlaid with a MODIS 500 metre coordinate grid (Figure 8.3).

The MODIS grid blocks, which contain the mapped polygons, are thus marked for extraction from the

MODIS MCD43A4 product.
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8.2.3 GoogleTMEarth used for visual inspection

GoogleTMEarth is being used more routinely in visually displaying and validating of geographical areas

[216, 217]. As an additional validation step, the MODIS pixel coordinates of interest were transformed

into a KML (Keyhole Markup Language) file and visually inspected in GoogleTMEarth. The true

colour of the high resolution Quickbird images available in GoogleTMEarth made a good platform to

illustrate some of the findings presented in this chapter.

GoogleTMEarth operates on a free sharing policy of images and does not have a mandate to buy

regular imagery of certain geographical areas. This means that only areas in which suitable images

were acquired before and after the settlement formation could be validated using GoogleTMEarth.

8.2.4 Simulated land cover data set

Accurate date-of-change information was not available for the ground truth data set, preventing the

measurement of the delay in detecting change of the proposed methods. Land cover change events

were simulated by combining data from natural vegetation and human settlement time series, with the

advantage of a known date of change and transition duration [8].

Four testing data subsets were created, based on concatenating time series of different combinations

of classes:

• Subset 1: natural vegetation time series (class 1) concatenated to settlement time series (class 2).

• Subset 2: settlement time series (class 2) concatenated to natural vegetation time series (class 1).

• Subset 3: settlement time series (class 2) concatenated to another settlement time series (class

2).

• Subset 4: natural vegetation time series (class 1) concatenated to another natural vegetation time

series (class 1).

These four subsets were used to test if the change detection algorithm can detect change reliably

on subsets 1 and 2, while not falsely detecting change for subsets 3 and 4.

8.3 SYSTEM OUTLINE

In this section an overall system outline is provided to explain how all the different methods

interconnect with one another (figure 8.4) to create a change detection framework. The system

starts with the input of time series extracted from the MODIS MCD43A4 land surface reflectance
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FIGURE 8.4: A flow diagram which provide a complete system outline used in this chapter in all the
experiments.

product (section 2.6). The time series used as input can either be one of the following spectral band

combinations as listed with the number of dimensions in the feature space as:

• NDVI (2-dimensions),

• first two spectral bands (RED and NIR spectral bands, 4-dimensions), and

• all seven spectral bands (land bands, 14-dimensions).

A temporal sliding window is used to extract sequential subsequences from the time series for

analysis. The length of the temporal sliding window is varied, depending on the feature extraction

method used. The feature extraction methods applied to these subsequences are listed with their

corresponding temporal sliding window length as:

• SFF (6, 12, and 18 months),

• least squares (12 months, see section 8.5.3),

• M-estimator (12 months, see section 8.5.3), and

• EKF (8 days).

The extracted feature vectors are then processed by a machine learning method, which assigns a

class label to each feature vector. The machine learning method can be either a supervised classifier, or
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FIGURE 8.5: An illustrative example of the effective change detection delay∆τ , which is defined as
the time duration it takes after the first acquisition of change in the MODIS time series for the land
cover change detection algorithm to detect it.

an unsupervised classifier. The class labels produced by the machine learning method form a new time

series, where each time index corresponds to a classification of an extracted temporal subsequence.

An example of such a time series consisting of class labels is given in figure 8.5. The class labels in

the time series start in the class label1 (natural vegetation class), and transitions to the class label-1

(human settlement class), as the position of the temporal sliding window is incremented. It is clear

from the illustration that a change in the land cover has occurred in the time series.

A simulated land cover change data set was created in response to the lack of information about

when the actual land cover changed (section 8.2.4). In the simulated land cover change data set, the

exact position (date) of land cover change in the time series is known. This creates another dimension

of evaluation, which enables the quantification of how quickly the land cover change can be detected

by the land cover change detection algorithm.

This delay in detecting a change in land cover is termed the effective change detection delay∆τ ,

and is defined as the time duration in which the change detection algorithm is unable to detect the

simulated land cover change in subset 1, and subset 2 after the date of change. The concatenation

process (section 8.2.4) in the simulated land cover change data set produces an abrupt change in

the time series, which does not necessarily represent the reality of human-induced change such as

settlement expansion, which could take several months to develop. A blending period (linear blend

over 12 and 24 months) from one land cover time series to another was initially considered, but it

turned out that it did not affect the ability to detect the land cover change correctly, as this is a property

that is exploited in the post-classification change detection approach. The blending model does not

Department of Electrical, Electronic and Computer Engineering 144

University of Pretoria

 
 
 



Chapter 8 Results

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

−1

−0.5

0

0.5

1

C
la

ss

Instantaneous blend

Settlement

Vegetation

Instantaneous blend

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan

−1

−0.5

0

0.5

1

C
la

ss

1 year linear blending period

End of blendStart of blend

Settlement

Vegetation

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar

−1

−0.5

0

0.5

1

C
la

ss

2 year linear blending period

Settlement

Start of blend End of blend

Vegetation

FIGURE 8.6: Class label time series for simulated land cover change from natural vegetation to human
settlement. The top panel is for instantaneous simulated land cover change, the middle panel is for a
land cover change over a 12 month blending period and the bottom panel is for a land cover change
over a 24 month blending period.

faithfully simulate all forms of actual land cover change, but it does delay the date on which the

change is declared (figure 8.6). It was concluded that only abrupt concatenation should be used when
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measuring the lower limit of effective change detection∆τ time.

8.4 EXPERIMENTAL PLAN

In this section an overview is given of the experiments conducted in this chapter. The experiments were

conducted in the Limpopo and Gauteng provinces. The number of pixels per data set in each province

is given in table 8.1.

Table 8.1: Number of pixels per land cover type, per study area used for training, validation and testing
data sets.

Province Class Number of
time series

Limpopo Vegetation - No change 1497
Settlement - No change 1735
Simulated land cover change 500
Real land cover change 118
Complete Province 590212

Gauteng Vegetation - No change 591
Settlement - No change 371
Simulated land cover change 124
Real land cover change 180
Complete Province 78702

The experiments conducted in this chapter are grouped into fourcategories:

1. Parameter exploration (section 8.5),

2. Classification (section 8.6),

3. Change detection (section 8.7),

4. Provincial experiments (section 8.9).

A set of general experiments were conducted in section 8.5 to optimise the parameters which

are used in the remaining sections (section 8.6 – section 8.9). The first set of experiments is used

to determine the optimal network architecture for the MLP (section 8.5.1) that will minimise the

generalisation error. The second set of experiments is used to explore two different training methods

for the MLP (section 8.5.2): batch mode and iteratively retrained mode. The third set of experiments

is used to optimise the length of the sliding window for the least squares method (section 8.5.3).

The fourth set of experiments is used to compare the performance of the EKF when using the BVEP

criterion (denoted by EKFBVEP) and ALS methods (denoted by EKFALS, section 8.5.4). The fifth set
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of experiments is used to investigate the setting of the BVEP criterionusing the BVSA (section 8.5.5).

The sixth set of experiments is used to investigate the performance of each of the regression methods

(section 8.5.6). The seventh set of experiments is used to determine the number of clusters to use in

the unsupervised classifier (section 8.5.7). The last set of experiments is used to determine the average

silhouette value for different clustering algorithms (section 8.5.8).

In section 8.6, the classification accuracy is computed for each of the two classes in a range of

experiments on the no change data set. In each section the average classification accuracy is reported,

along with the corresponding standard deviation. Different combinations of feature extraction methods

and machine learning methods are investigated in these experiments. The feature extraction methods

that were explored are:

• least squares model fitting,

• M-estimator model fitting,

• SFF, and

• EKFBVEP.

The classification experiments are divided into supervised classification experiments and

unsupervised classification experiments. The machine learning method determines the category of

the classifier. The machine learning methods that were explored are:

1. Supervised classifier:

• Multilayer Perceptron (section 8.6.1).

2. Unsupervised classifier:

• Hierarchical clustering, single linkage criterion (section 8.6.3),

• Hierarchical clustering, average linkage criterion (section 8.6.3),

• Hierarchical clustering, complete linkage criterion (section 8.6.3),

• Hierarchical clustering, Ward clustering method (section 8.6.4),

• Partitional clustering,K-means algorithm (section 8.6.5),

• Partitional clustering, EM algorithm (section 8.6.6).

The objective of the classification experiments is to identify combinations of methods which have high

classification accuracies and minimal corresponding standard deviations.
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The change detection algorithms in this thesis are based on a post-classificationapproach, and are

thus dependent on the classification accuracies reported in section 8.6. The classification accuracies

are used to identify a set of methods that will provide acceptable change detection accuracies (section

8.7).

The first set of experiments is used to determine the change detection accuracies on the simulated

land cover change data set. The number of time series blended to simulate the land cover change in

each province is given in table 8.1. The true positives and false positives are reported on the simulated

land cover data set in section 8.7.1.

The second set of experiments is used to determine the change detection accuracies on the real land

cover change data set. The number of time series that experienced actual land cover change in the

labelled data set of each province is given in table 8.1. In these experiments only the true positives are

reported on the real land cover data set in section 8.7.2.

The third set of experiments is used to determine the effective change detection delay∆τ on the

simulated land cover change data set. The number of time series blended to simulate land cover change

with the exact time index known of change in each province is given in table 8.1. The effective change

detection delay is reported in days in section 8.7.3.

The change detection algorithms are then applied to the complete province in section 8.9. The total

number of time series in each province is given in table 8.1. The entire province is classified and areas

which experienced land cover change are mapped, followed by the calculation of summary statistics.

8.5 PARAMETER EXPLORATION

8.5.1 Optimising the multilayer perceptron

The MLP comprises an input layer, one hidden layer and an output layer. All hidden and output nodes

used a tangent sigmoid activation function. The input layer accepts feature vectors for classification,

while the output layer represents the likelihood that an input belongs to a specific class. The MLP

output was in the range [-1;1], where 1 represents a 100% certainty of class membership to class

1 (natural vegetation) given the feature vector, while -1 represents a 100% certainty of class 2

(settlement).

The weights of the MLP were determined using a steepest descent gradient optimisation method in

the training phase, with gradients estimated using backpropagation [130, Ch. 4 p. 140]. A validation

set was used for initial MLP architecture optimisation by evaluating the generalisation error to identify

overfitting of the network for each study area. The MLP architecture was optimised for different

lengths of sliding windowQ, number of spectral bands and training mode. In table 8.2 the number
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TABLE 8.2: The number of hidden nodes used within the MLP for each experiment.

Province Algorithm Window length Spectral Band
NDVI 2 Bands 7 Bands

Limpopo SFF, Iteratively retrained 6 months 7 6 6
12 months 8 10 9
18 months 8 9 7

SFF, Batch mode 12 months 8 10 9

Least squares 12 months 9 8 11

M-estimator 12 months 9 10 7

EKFBVEP n/a 7 5 5
EKFALS n/a 15 13 11

Gauteng SFF, Iteratively retrained 6 months 8 8 7
12 months 7 7 8
18 months 7 6 5

SFF, Batch mode 12 months 7 7 8

Least squares 12 months 8 10 5

M-estimator 12 months 11 10 9

EKFBVEP n/a 9 4 2
EKFALS n/a 14 6 5

of hidden nodes used in each experiment are reported. The learningrate was set to 0.01 and the

momentum parameter was set to 0.9. The maximum number of epochs in each training phase was set

to 10000, and used the generalisation error on the validation set as an early stopping criterion.

8.5.2 Batch mode versus iterative retrained mode

In this section the notion of an iterative retrained training mode is explored and is compared to a

classical batch training mode. The change detection method extracts feature vectors sequentially from

a time series using a temporal sliding window. These feature vectors must be processed to yield a class

label for each feature vector.

A MLP operating on the SFFs extracted from the temporal sliding window was used to explore the

difference in classification accuracies between the batch mode and iteratively retrained mode. In the

batch mode [130, Ch. 7 p. 263] all the incremental sliding windows between the year 2000 and the

year 2008 were used as initial training inputs to the MLP. The experiments were conducted for the 8

years without any retraining.

The iteratively retrained MLP is proposed to compensate for the inter-annual variability between

years due to the rainfall variability. The iteratively retrained MLP is trained to recognise data from
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Table 8.3: Classification accuracy of the batch mode and iteratively retrained MLP on the validation
set. Each entry gives the average classification accuracy for each mode, calculated over 10 repeated
independent experiments along with the corresponding standard deviation. The average classification
accuracy is given in percentage for each of the classes over a temporal sliding window length of 12
months and different sets of spectral band combinations (NDVI, 2 spectral bands and all 7 spectral
bands).

Province Spectral Band Class Mode
Batchmode Iteratively retrained

Limpopo NDVI Vegetation 67.7± 9.5 72.8± 5.3
Settlement 83.0± 4.9 83.2± 3.7

2 Bands Vegetation 80.5± 5.6 83.1± 4.1
Settlement 87.2± 2.0 86.8± 2.7

7 Bands Vegetation 94.5± 2.1 94.4± 1.6
Settlement 94.8± 1.2 95.2± 1.1

Gauteng NDVI Vegetation 94.6± 4.1 96.2± 2.0
Settlement 82.3± 8.9 88.0± 6.3

2 Bands Vegetation 96.6± 1.4 96.7± 1.6
Settlement 92.2± 3.2 95.6± 2.3

7 Bands Vegetation 97.2± 0.4 99.8± 0.3
Settlement 95.7± 0.4 99.3± 0.7

the training set within the sliding window at positionp in the time series, and is then used to classify

the data from the testing set within the sliding window at positionp. This retraining at each time

increment caused a small adaptation of the weights, and has low complexity because of the small

incremental MLP weight changes over each 8 day increment of MODIS. These small MLP weight

changes only required 300 epochs at each time increment for network adaptation.

The iteratively retrained mode provided slightly higher mean classification accuracies when

compared to the classical batch training mode. The reason why the iteratively retrained mode

performed better than the batch mode (table 8.3) is that the iteratively retrained mode had the

advantage of learning the most recent spectral properties of the land cover types, as time progressed.

The iteratively retrained mode takes cognisance of what is within the temporal sliding window to

compensate for short-term inter-annual climate variability and adapts to longer term trends in climate

without confusing any of these with a particular land cover type, which has often been a problem

with other regional land cover studies [218, 219]. It should be noted that these benefits of using the

iteratively retrained mode comes at the cost of having shorter predictive spans, as predicting future

events will require retraining with an training data set that is unavailable. The benefits of using

iteratively retrained mode resulted in it being used in the remainder of this chapter.
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8.5.3 Optimising least squares
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FIGURE 8.7: Classification accuracy reported by theK-means algorithm using the model fitted with a
least squares model approach. The average classification accuracy is measured in percentage for each
of the classes over a range of temporal sliding window length.

In this section an experiment was conducted to determine the optimal length of the sliding window

when using the least squares approach to fit a model. The model is a triply modulated cosine

model and the estimated parameters are used by a machine learning method for classification and

change detection. The sliding window length was evaluated against classification accuracy, the model

parameters’ standard deviation and residuals of the fitted model. The classification accuracies were

computed using theK-means algorithm operating on the first two spectral bands that were extracted

from the Limpopo province study area. In figure 8.7, the classification accuracies are plotted as a

function of the sliding window length, which is reported in the number of months.

It was observed that the settlement classification accuracy stabilised above 80% when the sliding

window length surpassed the 5 month mark. The vegetation classification accuracy only stabilised

above 80% after the sliding window had a length longer than 9 months. Similar classification

accuracies and corresponding standard deviations were observed for both classes when the sliding

window length increased beyond 11 months.

The model parameters’ standard deviation for both the mean and amplitude parameters are shown

in figure 8.8(a) and figure 8.8(b) respectively. It was observed that the model parameters’ standard

deviation for both the mean and amplitude parameters reduced as the length of the sliding window was

increased. The mean parameter’s standard deviation for both spectral bands started to decrease more
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(b) Amplitude parameter
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(c) Absolute error

FIGURE 8.8: The standard deviation for the mean and amplitude parameter are illustrated in (a) and
(b) when using a least squares approach to fit a triply modulated cosine model to the first two spectral
bands of MODIS. The absolute error between the fitted model and the actual MODIS time series is
shown in (c).

slowly when the sliding window length was longer than 9 months. The amplitude parameter’s standard

deviation for both spectral bands started to decrease more slowly when the sliding window length was

longer than 10 months.

The opposite was observed with the absolute error, which measures the difference between the fitted

model and the actual MODIS time series. A shorter sliding window length had a smaller measured

residuals, except if the window was too short and was severely affected by the additive noise in the

MODIS time series. A sliding window of 2–3 months had the smallest measured residuals (figure

8.8(c)).

The length of the sliding window was determined based on the classification accuracies, owing to

the inverse relationship between the standard deviations of the model’s parameters and the absolute

error. On the basis of this experiment it was decided to set the sliding window length to 12 months for

all experiments using least squares to fit a model. The similarity between the results produced by the

least squares and M-estimator supports the choice of a 12 month window for the M-estimator too. No

significant variations in the parameter vector were found when sliding the window through the time

series and using the least squares or the M-estimator.
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8.5.4 BVEP versus autocovariance least squares

Table8.4: Classification accuracy of the MLP using either the BVEP criterion or the ALS approach to
fine tune the parameters of the Extended Kalman filter. Each entry gives the average classification
accuracy for each mode, calculated over 10 repeated independent experiments along with the
corresponding standard deviation. The average classification accuracy is given as a percentage for
each of the classes over a number of spectral band combinations (NDVI, 2 spectral bands and all 7
spectral bands).

Province Spectral Band Class Mode
EKFALS EKFBVEP

Limpopo NDVI Vegetation 66.6± 9.1 80.2± 4.4
Settlement 79.2± 6.2 82.7± 3.7

2 Bands Vegetation 79.3± 2.7 87.2± 1.6
Settlement 85.9± 2.1 89.7± 1.3

7 Bands Vegetation 86.6± 3.7 95.3± 0.7
Settlement 90.6± 1.9 96.1± 0.6

Gauteng NDVI Vegetation 89.3± 4.8 91.4± 5.7
Settlement 72.1± 16.9 86.9± 9.1

2 Bands Vegetation 90.6± 2.9 98.6± 1.0
Settlement 87.6± 3.2 96.2± 1.5

7 Bands Vegetation 95.3± 1.8 99.9± 0.1
Settlement 94.8± 2.4 99.9± 0.1

In this section two different methods used for setting the parametersof the EKF are investigated.

The first method that is investigated is the ALS method discussed in section 7.3. The second method

investigated is the BVEP criterion approach discussed in section 7.2.4.

In table 8.4, the classification accuracies for both provinces are reported when the EKF is used

to extract the features. The average classification accuracy is calculated with cross-validation using

10 repeated independent experiments [127]. From these results it was concluded that the EKFBVEP

performed better than any experiment conducted using the EKFALS. This could be owing to the fact

that the BVEP criterion utilises spatial information that is inherent in the set of time series.

8.5.5 Optimisation of Kalman filter parameters

In this section the results obtained by using the BVSA are discussed. The BVSA is an iterative

algorithm that moves the BVS through a defined space. In each epoch the algorithm attempts to

minimise the standard deviation of all the state space variables while simultaneously minimising the

residual between the triple modulated cosine function’s output and the actual observations.
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FIGURE 8.9: The expected standard deviation of the mean parameter computed for the first MODIS
spectral band on the Limpopo province study area as a function of epoch.
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FIGURE 8.10: The expected standard deviation of the amplitude parameter computed for the first
MODIS spectral band on the Limpopo province study area as a function of epoch.

In figure 8.9, the standard deviationσµ of the mean parameter obtained by fitting the cosine model

to the first MODIS spectral band is illustrated as a function of epoch in the BVSA. The standard

deviation reported here is the average standard deviation found over all the time series extracted from

the Limpopo province study area. It is clear from the graph that the standard deviation decreases as

more epochs are processed, which implies that the mean parameter appears to become more stable with

each iteration.
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The standard deviationσα of the amplitude parameter that is used to fit the first MODIS spectral

band is illustrated as a function of epoch of the BVSA in figure 8.10. The standard deviation reported

here is the average standard deviation found over all the time series extracted from the Limpopo

province study area. It is clear from the graph that the standard deviation decreases as more epochs are

processed, implying increasing stability with further iterations.
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FIGURE 8.11: The expected residuals computed for the first MODIS spectral band on the Limpopo
province study area as a function epoch.

In figure 8.11, the mean residualσE over all the time series’ difference between the actual

observations and EKF output is illustrated as a function of epoch in the BVSA. It is observed that

the residual decreases significantly after the 10th epoch. Overfitting appears towards the end of the

optimisation process. This overfit can occur on any metric and in this experiment the overfit is observed

on theσE metric after the 21st epoch. This overfit defines the end of the search and is used as an early

stopping criterion.

Table 8.5: Parameter evaluation of two different search methods that were compared in the Limpopo
province study area.

Algorithm Parameter evaluation
σµ σα σE

Simulated Annealing 14.5 12.6 94.6
BVSA 0.04 0.02 87.1

The process covariance matrixQ and observation covariance matrixR used in the 21st epoch are

then used to initialise the EKF for the experiments. The BVSA is applied independently to each of the
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seven spectral bands and NDVI time series to obtain a process covariance matrixQ and observation

covariance matrixR for each spectral band.

Table 8.6: Parameters evaluation of all four methods for the Limpopo province study area. The
measurements are made on all seven MODIS spectral bands and NDVI.

Province Spectral Band Mode
Least M-estimator EKFALS EKFBVEP

squares
Limpopo NDVI σE 0.04 0.04 0.001 0.03

σµ 0.02 0.01 0.04 0.02
σα 0.02 0.02 0.05 0.001

Band 1 σE 118.6 118.7 144.0 87.1
σµ 28.8 28.1 29.8 0.04
σα 36.4 36.1 21.8 0.02

Band 2 σE 145.2 144.7 179.9 95.7
σµ 38.5 37.4 29.6 0.01
σα 56.4 57.6 25.2 0.36

Band 3 σE 58.1 58.0 62.3 47.9
σµ 13.6 13.1 20.9 0.06
σα 18.9 18.3 14.7 0.05

Band 4 σE 65.6 65.6 81.0 58.3
σµ 14.2 14.1 25.5 0.05
σα 19.7 20.8 18.0 0.04

Band 5 σE 154.6 154.3 171.1 97.3
σµ 36.7 36.2 29.6 0.01
σα 48.6 49.1 24.9 0.01

Band 6 σE 198.5 198.4 242.4 166.9
σµ 46.6 45.8 33.8 0.01
σα 67.8 68.1 27.3 0.01

Band 7 σE 232.1 232.0 302.0 201.1
σµ 79.3 76.5 31.3 0.02
σα 77.9 76.4 26.1 0.03

It should be noted that other optimisation algorithms were alsoexplored, based on the objective

function defined in the BVEP criterion (equation (7.50)) to evaluate the performance of the BVSA.

The algorithms used to set the BVS are: (1) the interior point method [220], (2) active set method

[221], and (3) simulating annealing [222]. It is observed from the active set method that larger and

more aggressive step sizes are required, which supports the BVSA described on page 135. Simulated

annealing (500 epochs, 5 function evaluations per epoch) produced better results than either the active

set method or the interior point method. Table 8.5 compares simulated annealing to BVSA.

By evaluating the propagation direction of the simulating annealing method, it was concluded that
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the method would eventually find the same solution identified bythe BVSA, and yield the exact same

performance. The advantage of the BVSA was the speed of convergence, which is attributed to the

fact that it only requires a single function evaluation per epoch and converged in 21 epochs in this

experiment.

8.5.6 BVSA parameter evaluation

Table 8.7: Parameters evaluation of all four methods for the Gauteng province study area. The
measurements are made on all seven MODIS spectral bands and NDVI.

Province Spectral Band Mode
Least M-estimator EKFALS EKFBVEP

squares
Gauteng NDVI σE 0.04 0.04 0.001 0.003

σµ 0.01 0.01 0.07 0.05
σα 0.009 0.01 0.06 0.01

Band 1 σE 96.6 96.6 90.8 44.8
σµ 17.7 17.4 21.3 0.01
σα 22.5 22.2 17.3 15.3

Band 2 σE 156.4 155.9 204.2 123.4
σµ 49.1 47.2 29.8 0.01
σα 54.9 55.3 25.5 0.5

Band 3 σE 55.1 55.1 46.7 38.5
σµ 10.2 9.8 14.9 0.03
σα 14.0 13.5 12.2 0.02

Band 4 σE 63.3 63.3 57.0 42.7
σµ 12.6 12.6 19.2 0.04
σα 14.7 15.4 14.5 0.03

Band 5 σE 153.2 153.0 162.9 105.3
σµ 47.4 46.2 26.6 0.01
σα 54.2 53.8 22.6 0.01

Band 6 σE 157.3 157.4 130.5 87.3
σµ 29.8 30.0 24.9 0.01
σα 34.8 36.6 22.2 0.01

Band 7 σE 158.0 157.8 151.9 71.9
σµ 27.8 27.0 23.0 0.02
σα 35.0 34.3 21.7 20.5

In this section the derived parameters for each regression methodare compared along with the

residuals. The comparison is based on the standard deviationσµ of the mean parameter, the standard

deviationσα of the amplitude parameter, and the residualsσE . A mean (amplitude) parameter with a

small standard deviation indicates a stable variable. A smallσE indicates a well-estimated output when
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compared to the actual observations.

An analysis of the standard deviation of the parameters extracted from the Limpopo province

data is presented in table 8.6. It was observed that the M-estimator generally performs similarly to

least squares, and in some cases performed slightly better. The EKFALS method generally increased

the residuals to improve the parameter stability when compared to the M-estimator. The EKFBVEP

outperformed all the methods in all the experiments, except for the NDVI experiments. The EKFBVEP

however did yield comparable results to the other methods in the NDVI experiments.

In table 8.7, the same comparison was made as in table 8.6 for the Gauteng province study area.

The M-estimator again performed similar to the least squares and in a few experiments performed

slightly better. The relation between the EKFALS method and M-estimator did not hold in the Gauteng

province study area. The EKFALS method increased its residuals in spectral bands 2 and 5 to improve

the parameters’ stability when compared to the M-estimator. In spectral bands 1, 3 and 4 the mean

parameter’s standard deviationσµ was increased to improve the other two metrics. In spectral bands

6 and 7, EKFALS outperformed the M-estimator in all the metrics. In the NDVI case the EKFALS

decreased its residuals at the cost of parameter stability when compared to the M-estimator.

The EKFBVEP outperformed all methods in all the experiments, except for the NDVI experiments.

A peculiar observation was made for the EKFBVEP in spectral bands 1 and 7. For the first spectral

band case overfitting was observed in the amplitude parameter early in the BVSA, which is used as an

early stopping criterion. For the seventh spectral band case the standard deviationσα of the amplitude

parameter slowly monotonically decreased for each epoch of the BVSA until an overfit was reported

on the residualsσE at the 22nd epoch. If the overfit did not occur, the standard deviationσα of the

amplitude parameter would still steadily decrease. In the remainder of the chapter only the optimised

EKF using the BVEP criterion (EKFBVEP) will be considered and will be referred to as the EKF

method.

8.5.7 Determining the number of clusters

Determining the number of clusters is one of the most difficult design considerations. The number

of clustersK must be determined that provides maximum compression of information in the feature

vectors with minimal error in classification on the data set.

The average silhouette valueSave (equation (4.31) on page 82) is the metric used to determine the

number of clusters. The nature of selecting only natural vegetation and human settlement areas in the

labelled time series data set, and the resolution of the MODIS sensor, suggested a strong tendency of

Save to have a high value at lower values ofK. This is due to the fact that the labelled data set contains

two distinct classes. At 500 metre resolution, the MODIS pixels are quite large, and are therefore
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FIGURE 8.12:The average silhouette valueSave computed over a range of different number of clusters
in the Gauteng province.

likely to contain a mixture of different vegetation types. Nevertheless, it is reasonable to assume that

the variability within the broader vegetation class will be large enough to justify splitting the vegetation

class into subclasses. This however was not the case in the labelled data sets in this study.

In figure 8.12, an experiment was performed to compute the average silhouette valueSave for a

range ofK. The experiment was conducted in Gauteng province using the EKF on the first two

spectral bands. The feature vectors were then clustered using theK-means algorithm, followed by the

computing of the silhouette values. The highest average silhouette value of 0.69 was recorded at two

classes and steadily decreased asK increased. The experiment was repeated for all the other clustering

methods, withK=2 producing the highest silhouette value in all the cases. The same experiments were

conducted in the Limpopo province study area and yielded similar results.

8.5.8 Results: Cophenetic correlation coefficient

In this section the cophenetic correlation coefficientDcc was computed for a range of hierarchical

clustering methods: single linkage criterion (section 8.6.3), average linkage criterion (section 8.6.3),

complete linkage criterion (section 8.6.3) and Ward clustering (section 8.6.4).

The cophenetic correlation coefficient evaluates how the created dendrogram retains the original

placement of the feature vectors within the feature space. A high cophenetic correlation coefficient,

Dcc → 1, denotes that the distance representation is well preserved in the dendrogram. The

cophenetic correlation coefficient was computed in the Limpopo province for a range of experimental
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Table 8.8: The Cophenetic correlation coefficient computed fora range of hierarchical clustering
methods on the Limpopo province’s no change data set.

Algorithm Feature extraction Window length Spectral Band
NDVI 2 Bands 7 Bands

Single linkage SFF 6 months 0.50 0.31 0.33
criterion 12 months 0.51 0.32 0.33

18 months 0.52 0.32 0.33

Least squares 12 months 0.49 0.32 0.38

M-estimator 12 months 0.49 0.32 0.39

EKF n/a 0.46 0.28 0.29

Average linkage SFF 6 months 0.59 0.64 0.61
criterion 12 months 0.59 0.65 0.61

18 months 0.59 0.65 0.62

Least squares 12 months 0.60 0.62 0.61

M-estimator 12 months 0.60 0.62 0.60

EKF n/a 0.59 0.62 0.59

Complete linkage SFF 6 months 0.64 0.64 0.62
criterion 12 months 0.64 0.65 0.63

18 months 0.64 0.66 0.63

Least squares 12 months 0.60 0.61 0.62

M-estimator 12 months 0.60 0.62 0.62

EKF n/a 0.62 0.63 0.64

Ward clustering SFF 6 months 0.69 0.71 0.68
12 months 0.69 0.72 0.68
18 months 0.70 0.72 0.69

Least squares 12 months 0.67 0.73 0.69

M-estimator 12 months 0.67 0.73 0.69

EKF n/a 0.68 0.74 0.69

parameters (table 8.8): hierarchical clustering methods, featureextraction methods, and spectral band

combinations.

A small improvement in the cophenetic correlation coefficient is observed when the sliding window

length is increased. It is concluded that the cophenetic correlation coefficient is highly dependent on the

clustering method used, as all feature extraction methods performed similarly when using a particular

clustering method.

The single linkage criterion provided the lowest cophenetic correlation coefficients among the

clustering methods. The average linkage criterion provided much better cophenetic correlation

coefficients than the experiments using the single linkage criterion. A small improvement is observed
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in the NDVI experiments when the complete linkage criterion iscompared to the average linkage

criterion. Similar results were observed for the average and complete linkage criteria in the two and

seven spectral band experiments. A small improvement was observed in all the experiments when

Ward clustering was used instead of the complete linkage criterion.

The same trend in cophenetic correlation coefficients was observed in the Gauteng province when

all the experiments were compared to the results produced in the Limpopo province. The cophenetic

correlation coefficient confirms the trend, which is observed in classification accuracies through

sections 8.6.3–8.6.4. This is an important experiment, as this result was derived in an unsupervised

manner, meaning the class labels for each time series were not used in the cluster process. It

was concluded from the experiments conducted in this section that creating spherical clusters with

minimum internal variance preserves the inherent distance between feature vectors within the feature

space, which results in a higher cophenetic correlation coefficient.

8.6 CLASSIFICATION

8.6.1 Classification accuracy: Multilayer perceptron

Table 8.9: Classification accuracy of the MLP using SSFs on the no change data set. Each entry gives
the average classification accuracy in percentage along with the corresponding standard deviation.

Province Spectral Band Class Sliding window length
6 months 12 months 18 months

Limpopo NDVI Vegetation 69.7± 7.8 72.8± 5.3 73.9± 4.8
Settlement 81.5± 5.0 83.2± 3.7 84.8± 3.1

2 Bands Vegetation 81.4± 4.3 83.1± 4.1 85.2± 3.7
Settlement 86.3± 3.4 86.8± 2.7 88.1± 2.2

7 Bands Vegetation 93.1± 2.1 94.4± 1.6 94.7± 1.4
Settlement 93.8± 1.6 95.2± 1.1 96.3± 0.9

Gauteng NDVI Vegetation 94.4± 3.7 96.2± 2.0 95.8± 2.2
Settlement 79.5± 11.5 88.0± 6.3 88.5± 7.2

2 Bands Vegetation 95.1± 2.8 96.7± 1.6 97.2± 1.9
Settlement 90.7± 6.7 95.6± 2.3 95.8± 2.5

7 Bands Vegetation 99.3± 0.7 99.8± 0.3 99.8± 0.3
Settlement 98.1± 1.4 99.3± 0.7 99.6± 0.6

In this section the classification accuracies are evaluated fora MLP using a range of feature

extraction methods. In table 8.9, the classification accuracies for both provinces are reported using

SFFs. The average classification accuracy and corresponding standard deviation were calculated with

Department of Electrical, Electronic and Computer Engineering 161

University of Pretoria

 
 
 



Chapter 8 Results

Table 8.10: Classification accuracy of the MLP using regressionmethods to extract features on the
no change data set. Each entry gives the average classification accuracy in percentage along with the
corresponding standard deviation.

Province Spectral Band Class Method
Leastsquares M-estimator EKF

Limpopo NDVI Vegetation 72.5± 5.3 72.8± 5.4 80.2± 4.4
Settlement 83.3± 3.4 84.6± 3.4 82.7± 3.7

2 Bands Vegetation 82.2± 4.3 83.1± 4.3 87.2± 1.6
Settlement 86.4± 2.8 87.7± 2.5 89.7± 1.3

7 Bands Vegetation 92.5± 2.3 92.5± 1.9 95.3± 0.7
Settlement 92.6± 1.2 92.4± 1.4 96.1± 0.6

Gauteng NDVI Vegetation 92.5± 4.9 93.1± 4.4 91.4± 5.7
Settlement 88.6± 6.4 88.8± 6.0 86.9± 9.1

2 Bands Vegetation 97.5± 1.8 97.3± 1.9 98.6± 1.0
Settlement 95.1± 2.6 94.9± 2.9 96.2± 1.5

7 Bands Vegetation 99.8± 0.4 99.9± 0.4 99.9± 0.1
Settlement 99.2± 0.5 99.3± 0.9 99.9± 0.1

cross-validation using 10 repeated independent experiments.The accuracy is reported for each class

over a range of temporal sliding window lengths (6, 12 and 18 months) and different spectral band

combinations (NDVI, 2 spectral bands and all 7 spectral bands).

It is observed that a longer sliding window has a higher classification accuracy in all the

experiments, as well as a reduction in standard deviations. Overall, the trend was that the classification

performance improved for a longer sliding window. Another trend that was observed was an increase

in overall performance when more spectral bands were used as input to a MLP classifier. This is

supported by a higher classification accuracy for the first two spectral bands when compared to the

NDVI, and the highest classification accuracy was reported for all seven spectral bands.

In table 8.10, the classification accuracies for both provinces are reported using regression methods

to extract the features. The regression methods attempted to fit a triply modulated cosine function to

the MODIS time series. The sliding window length was set to 12 months for both the least squares and

M-estimator approaches. A similar improvement is observed as in table 8.9 when more spectral bands

are used in the experiments.

From all the experiments it was concluded that a significant improvement is obtained when using

the first two spectral bands rather than the NDVI. A further improvement was observed when the MLP

operated on all seven spectral bands. The experiments conducted in the section are repeated in the

following sections using different clustering algorithms.
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8.6.2 Clustering experimental setup

In the following sections (section 8.6.3–8.6.4), different clustering approaches are analysed in a range

of experiments. The first set of experiments conducted in each section is the measurement of the

classification accuracy of the labelled time series using SFFs. The experiments were conducted for

three different lengths of sliding window: 6 months (23 MODIS samples), 12 months (46 MODIS

samples), and 18 months (69 MODIS samples). The experiments also explore the use of different

spectral bands: NDVI, the first two spectral bands, and all seven spectral bands. In each experiment

the classification accuracy along with the standard deviation is reported for the two classes: natural

vegetation and human settlement.

The class labels in the experiments are assigned to minimise the overall error. This is accomplished

in the Limpopo province by assigning the cluster containing majority of the feature vectors to the

settlement class, as there are more settlement class time series than vegetation class time series

(table 8.1). In the experiments conducted in the Gauteng province, the cluster containing majority

of the feature vectors is assigned to the vegetation class, as there are more vegetation class time series

than settlement class time series (table 8.1).

The second set of experiments conducted in each section is the measurement of classification

accuracies of the labelled time series using different regression methods to extract features. The

experiment is conducted on three different regression methods: least squares model fitting, M-estimator

model fitting, and EKF. The experiments were also conducted to explore the use of different spectral

bands in the similar method as in the first set of experiments. In each experiment the classification

accuracy along with the standard deviation is reported for the two classes. The class labels are again

assigned to minimised the overall error.

8.6.3 Clustering accuracy: Single, Average and Complete linkage criterion

In this section the viability of using hierarchical clustering based on the single, average and complete

linkage criteria are investigated. Table 8.11 shows the classification accuracy on the experiments

conducted using the SFFs, which were clustered based on the single, average and complete linkage

criteria.

It is clear from the experiments that the first two spectral band outperforms NDVI.The first two

spectral band also offered a slight improvement over the all seven spectral band. It is important to

note that the all seven spectral band feature vector already encapsulate the first two spectral band. The

reason for the decrease in classification accuracy is attributed to the fact that the seven spectral band

feature vector requires more clusters (number of clustersK must increase) to cater for the increase in

feature dimensionality. It was observed in an independent experiment that the classification accuracy
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Table 8.11: Classification accuracy of a hierarchical clusteringalgorithm using the single, average
and complete linkage criteria with the SFFs on the no change data set. Each entry gives the average
classification accuracy in percentage along with the corresponding standard deviation for a sliding
window length of 12 months.

Province Spectral Band Class Sliding window length
Singlelinkage Average linkage Complete linkage

Limpopo NDVI Vegetation 45.8± 26.7 46.2± 25.7 52.1± 28.8
Settlement 70.3± 21.1 71.0± 18.9 67.1± 21.9

2 Bands Vegetation 72.1± 16.7 76.4± 17.6 78.8± 15.9
Settlement 80.0± 10.1 83.5± 9.5 85.7± 11.3

7 Bands Vegetation 71.4± 17.0 76.5± 25.2 75.5± 19.1
Settlement 77.5± 9.9 83.0± 12.8 80.6± 24.0

Gauteng NDVI Vegetation 60.9± 18.2 65.3± 11.2 64.8± 9.9
Settlement 36.9± 25.4 40.8± 21.8 42.1± 20.0

2 Bands Vegetation 80.1± 16.1 82.8± 14.8 81.6± 11.7
Settlement 66.4± 35.1 67.0± 33.8 69.2± 29.4

7 Bands Vegetation 79.2± 16.3 80.2± 15.1 80.5± 12.2
Settlement 64.4± 34.2 64.8± 34.1 65.9± 30.1

rapidly improves for the seven spectral band case ifK is larger than 10. The number of clusters

was not increased as the objective of the use of the unsupervised classifier is to evaluate a completely

unsupervised change detection method. A supervised algorithm must then be applied onto the clusters

if more clusters are included.

The first two spectral band experiments offered acceptable performance in both provinces. It

should be noted that these classification accuracies could only be obtained with these three hierarchical

clustering methods when performing proper outlier removal. The outliers were identified by applying

principle component analysis to the feature vectors and calculating the HotellierT 2 distance between

the principal components and each of the transformed feature vectors. The outliers were then selected

with distances exceeding a predefined threshold. The other clustering methods did not require the

removal of outliers and for this reason the single linkage, average linkage and complete linkage criteria

will not be further evaluated in this chapter.

8.6.4 Clustering accuracy: Ward clustering method

In this section the viability of using the Ward clustering method is investigated. Table 8.12 and table

8.13 show the results for the experiments that were produced using the Ward clustering method.

The Ward clustering method provided no acceptable classification accuracies when clustering on

the NDVI time series. The Ward clustering method did however provide reasonable classification
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Table 8.12: Classification accuracy of the Ward clustering methodusing the SFFs on the no change data
set. Each entry gives the average classification accuracy in percentage along with the corresponding
standard deviation.

Province Spectral Band Class Sliding window length
6 months 12 months 18 months

Limpopo NDVI Vegetation 45.3± 19.4 45.4± 17.5 46.3± 17.2
Settlement 64.6± 12.8 66.3± 11.9 66.6± 11.7

2 Bands Vegetation 79.0± 14.2 80.9± 13.8 81.7± 13.4
Settlement 78.2± 11.1 77.5± 10.2 77.3± 10.3

7 Bands Vegetation 72.4± 16.5 73.8± 15.6 73.8± 15.8
Settlement 73.6± 11.9 74.5± 11.5 74.7± 11.1

Gauteng NDVI Vegetation 66.4± 10.8 67.4± 8.8 67.5± 8.7
Settlement 35.2± 28.9 38.7± 28.6 38.9± 29.0

2 Bands Vegetation 81.3± 14.5 86.8± 13.1 86.8± 12.7
Settlement 68.0± 31.9 69.8± 31.8 69.9± 32.0

7 Bands Vegetation 77.4± 15.6 78.2± 17.8 76.3± 18.3
Settlement 24.5± 19.0 26.2± 18.7 27.9± 23.1

Table 8.13: Classification accuracy of Ward clustering with theregression methods to extract features
on the no change data set. Each entry gives the average classification accuracy in percentage along
with the corresponding standard deviation.

Province Spectral Band Class Method
Leastsquares M-estimator EKF

Limpopo NDVI Vegetation 68.0± 16.4 68.8± 15.7 66.3± 16.5
Settlement 78.8± 13.4 78.5± 13.4 77.5± 13.4

2 Bands Vegetation 79.9± 15.1 80.0± 15.0 85.7± 12.3
Settlement 76.9± 11.1 76.9± 11.1 77.7± 10.9

7 Bands Vegetation 72.8± 17.5 72.8± 17.6 74.1± 14.9
Settlement 72.8± 14.3 72.8± 14.2 75.4± 9.3

Gauteng NDVI Vegetation 94.6± 10.8 94.7± 10.9 85.1± 12.1
Settlement 27.9± 12.5 28.1± 12.9 36.9± 23.3

2 Bands Vegetation 84.5± 14.5 84.5± 14.5 88.7± 10.2
Settlement 68.6± 32.1 68.8± 32.0 87.9± 14.3

7 Bands Vegetation 79.6± 17.3 79.6± 17.4 78.8± 18.0
Settlement 27.5± 22.7 27.4± 22.6 44.0± 25.2

accuracies when the first two spectral bands and the all seven spectralbands were used in the Limpopo

province. Classification accuracies of above 75% were reported for the first two spectral band

experiments. The EKF features using the first two spectral bands yielded classification accuracies

higher than 87.9% in the Gauteng province when compared to all the other regression methods, which
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yielded classification accuracies below 70%.

In the seven spectral bands experiments an interesting trend was observed in all the hierarchical

clustering experiments. The classification accuracies were lower in higher dimensions (7 spectral

bands) than in lower dimensions (2 spectral bands). The question that was raised was whether the

feature vectors became more separable in higher dimensions. The answer was confirmed with the

MLP in section 8.6.1, where the MLP reported higher classification accuracies in the seven spectral

band experiments when compared to the two spectral band experiments.

This reverts back to the statement made in section 4.2.2 on page 70 that clustering in a

high-dimensional feature space usually provides meaningless results if proper design considerations

are not followed [197, 198]. This is usually attributed to the notion that the ratio between the nearest

neighbour and average neighbourhood distance rapidly converges to one in higher dimensions.

The remedy for this reduction in classification accuracy in the seven spectral band experiments

is the implementation of a more complex clustering algorithm or a more in-depth feature selection

criterion. The complex clustering algorithm will create non-linear mappings as with the MLP to

obtain the desired classification accuracies. The shortcoming is the need to over design the clustering

algorithm for a particular data set. Feature selection is the other approach that can be used to improve

clustering performance, as it is used as a dimensionality reduction procedure, which uses fewer spectral

bands to improve the performance. The problem is that different combinations of spectral bands will

perform better on different data sets.

Based on the impossibility theorem, the emphasis is placed on obtaining acceptable performance

in the clustering algorithm. As stated previously, the Ward clustering method does provide acceptable

classification accuracies when using the first two spectral bands.

8.6.5 Clustering accuracy: K-means clustering

In this section the viability of using theK-means partitional clustering method is investigated.

Table 8.14 and table 8.15 illustrate the classification accuracies for the experiments conducted with

theK-means clustering algorithm.

The clustering of the NDVI time series usingK-means provided acceptable classification

accuracies when the regression method was used in the Limpopo province (table 8.15). This however

was not the case in the Gauteng province, from which it can be concluded that the performance of

clustering NDVI time series withK-means was unacceptable as it is only usable in the Limpopo

province.

The first two spectral band experiments provided better classification accuracy performance when

compared to any similar hierarchical clustering method. The EKF approach was deemed the best
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Table 8.14: Classification accuracy ofK-meanswith the SFFs on the no change data set. Each
entry gives the average classification accuracy in percentage along with the corresponding standard
deviation.

Province Spectral Band Class Sliding window length
6 months 12 months 18 months

Limpopo NDVI Vegetation 53.2± 12.8 54.4± 8.3 54.8± 9.2
Settlement 58.7± 7.1 59.9± 5.3 59.7± 7.3

2 Bands Vegetation 81.7± 4.7 82.9± 3.7 83.4± 3.5
Settlement 81.4± 2.2 82.0± 2.4 81.8± 2.2

7 Bands Vegetation 75.8± 5.0 76.2± 4.6 76.3± 4.3
Settlement 74.9± 2.8 75.2± 2.3 75.2± 2.1

Gauteng NDVI Vegetation 61.3± 8.0 63.1± 5.3 65.5± 6.7
Settlement 42.3± 28.3 39.8± 30.2 38.9± 29.9

2 Bands Vegetation 85.1± 9.1 90.0± 7.3 90.4± 7.2
Settlement 72.6± 19.4 70.9± 21.3 71.2± 21.7

7 Bands Vegetation 76.5± 13.2 77.3± 13.1 77.3± 13.4
Settlement 38.7± 7.6 41.2± 6.8 41.6± 6.3

Table 8.15: Classification accuracy ofK-meanswith the regression methods to extract features on the
no change data set. Each entry gives the average classification accuracy in percentage along with the
corresponding standard deviation.

Province Spectral Band Class Method
Leastsquares M-estimator EKF

Limpopo NDVI Vegetation 69.9± 5.7 71.4± 5.7 70.5± 6.8
Settlement 79.3± 3.5 81.2± 3.4 79.1± 4.7

2 Bands Vegetation 81.5± 3.5 81.5± 3.6 84.4± 0.2
Settlement 80.7± 3.1 80.6± 3.0 82.3± 0.2

7 Bands Vegetation 76.7± 3.8 76.7± 3.7 76.3± 0.2
Settlement 74.3± 2.8 74.5± 2.7 75.1± 0.1

Gauteng NDVI Vegetation 94.4± 5.2 94.4± 5.2 68.3± 14.2
Settlement 29.2± 2.7 29.3± 2.6 39.9± 32.2

2 Bands Vegetation 87.2± 7.6 87.2± 7.6 92.3± 0.4
Settlement 73.9± 20.1 73.9± 20.2 84.7± 2.2

7 Bands Vegetation 75.9± 12.5 76.0± 12.4 75.9± 1.9
Settlement 24.5± 6.6 24.5± 6.6 33.2± 0.7

performing feature extraction method in view of the small standarddeviation in classification accuracy.

A similar observation was made for the partitional clustering as for the hierarchical clustering when

clustering in higher dimensions. A small decrease of 6% was measured in classification accuracy when

the first two spectral band experiments were compared to the all seven spectral band experiments in
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the Limpopo province. A large decrease of over 30% was measuredin classification accuracy when

comparing the same experiments in the Gauteng province. This suggested that the same approach as

described in section 8.6.4 must be followed.

8.6.6 Clustering accuracy: Expectation-Maximisation

In this section the viability of using the EM clustering algorithm is investigated. Table 8.16 and

table 8.17 illustrate the results for the experiments conducted with the EM clustering algorithm. It was

concluded from the experiments that theK-means clustering algorithm and EM clustering algorithm

perform similarly, as the experimental results were almost exactly the same.

Table 8.16: Classification accuracy of EM algorithm with the SFFs on the no change data set. Each
entry gives the average classification accuracy in percentage along with the corresponding standard
deviation.

Province Spectral Band Class Sliding window length
6 months 12 months 18 months

Limpopo NDVI Vegetation 51.3± 12.8 52.4± 8.5 52.9± 11.7
Settlement 58.7± 7.1 58.8± 6.5 57.7± 7.3

2 Bands Vegetation 80.7± 4.6 81.9± 3.7 81.4± 3.6
Settlement 81.4± 2.2 81.1± 2.2 80.6± 2.1

7 Bands Vegetation 75.8± 5.0 76.3± 4.5 76.3± 4.3
Settlement 75.0± 2.9 75.2± 2.3 75.2± 2.1

Gauteng NDVI Vegetation 61.3± 8.0 63.1± 5.3 65.5± 6.7
Settlement 42.3± 28.3 39.8± 30.2 39.0± 29.9

2 Bands Vegetation 85.1± 9.1 90.0± 7.4 90.4± 7.2
Settlement 72.6± 19.4 70.9± 21.1 71.2± 21.7

7 Bands Vegetation 76.5± 13.2 77.3± 13.2 77.3± 13.4
Settlement 38.7± 7.6 41.2± 6.8 41.6± 6.3

The EM clustering algorithm did however have a slightly lower classificationaccuracy at a

negligible increase in standard deviation in a few of the experiments. For this reason theK-means

clustering algorithm was chosen for its lower computational complexity.

8.6.7 Summary of classification results

In this section the results of the classification accuracies for section 8.6 are summarised. The first

classifier that was considered in this section was the supervised MLP, which had the advantage of

modelling a non-linear relationship between the input and output vectors.

The prospect of detecting land cover change was confirmed as possible by either using the NDVI

time series or the first two spectral bands time series of the MODIS data, as this was supported by
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Table 8.17: Classification accuracy of EM algorithm with the regressionmethods to extract features on
the no change data set. Each entry gives the average classification accuracy in percentage along with
the corresponding standard deviation.

Province Spectral Band Class Method
Leastsquares M-estimator EKF

Limpopo NDVI Vegetation 69.9± 5.9 71.3± 5.7 69.5± 6.9
Settlement 79.3± 3.5 81.3± 3.4 79.0± 4.7

2 Bands Vegetation 81.5± 3.5 81.5± 3.5 84.3± 0.2
Settlement 80.7± 3.1 80.6± 3.1 81.3± 0.2

7 Bands Vegetation 76.7± 3.8 76.8± 3.8 76.3± 0.2
Settlement 74.5± 2.4 74.4± 2.5 75.0± 0.1

Gauteng NDVI Vegetation 94.4± 5.2 94.4± 5.2 68.3± 14.2
Settlement 29.2± 2.6 29.3± 2.9 40.1± 31.2

2 Bands Vegetation 87.2± 8.4 87.2± 8.3 92.2± 0.4
Settlement 73.1± 22.0 73.1± 22.0 83.9± 2.1

7 Bands Vegetation 75.8± 12.3 75.9± 12.5 75.8± 1.9
Settlement 24.5± 6.8 24.4± 6.6 33.2± 0.7

the results in [223]. The classification accuracies produced bythe MLP were however found to be the

highest when using all seven spectral bands.

The MLP was deemed to be the best classifier in this chapter when the feature vectors were

extracted with the EKF. Classification accuracies of 95.3% with a standard deviation of 0.7% for

the vegetation class, and 96.1% with a standard deviation of 0.6% for the settlement class were

reported in the Limpopo province. In the Gauteng province classification accuracies of 99.9% with

a standard deviation of 0.1% for the vegetation class and 99.9% with a standard deviation of 0.1% for

the settlement class were reported.

It should be noted that the MLP classifier can be replaced with a variety of other classifiers. The

MLP performed the best of all the classifiers in this thesis, but like most other supervised machine

learning methods, the MLP is dependent on a training set and is required to be robust to any errors

occurring within the training set [14]. The drawback in the remote sensing field is that the training

data set has to be created with the aid of high spatial resolution imagery, and because of the temporal

component must be updated periodically. These periodic updates are a costly endeavour, which justifies

the consideration of unsupervised classification methods.

An unsupervised classifier is usually designed bylearning from example. Thus several clustering

methods were evaluated to make deductions about the nature of the feature vectors in the feature space.

Acceptable performance was only obtained with the single, average and complete linkage criteria

with proper outlier removal. The other clustering methods did not require the removal of outliers and
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for this reason was not explored further.

Ward’s clustering method produced the best results of all the hierarchical clustering methods. It

was concluded from the experiments conducted that creating spherical clusters with minimum internal

variance preserves the inherent distance between feature vectors in the feature space. The algorithm

provided acceptable performance for all experiments conducted in the Limpopo province, with the

exception that acceptable performance was only observed for the first two spectral band experiments

in the Gauteng province.

K-means and EM clustering algorithms were investigated as representative partitional clustering

methods, with both methods performing very similarly. The experiments showed empirically that the

partitional clustering methods outperformed all the hierarchical clustering methods in the Limpopo

province. The partitional clustering methods had the same outcome as the Ward clustering method

in the Gauteng province, with similar poor performances in the NDVI- and seven spectral band

experiments. The partitional clustering methods were deemed to be better than the Ward clustering

method, as they presented classification accuracies with lower standard deviations. TheK-means

algorithm was the preferred partitional clustering method for its reduced computational complexity.

In the next section the change detection capabilities of the algorithms are explored. Only a few

methods were explored, since the change detection in this chapter is based on a post-classification

approach. The algorithms that provided acceptable classification performance, which will be explored

in the next section, are:

1. the Multilayer perceptron,

2. the Ward clustering method, and

3. theK-means algorithm.

8.7 CHANGE DETECTION

8.7.1 Simulated land cover change detection

A simulated land cover change data set was created to assess the land cover change detection algorithm

objectively. The time series data set is used to ensure that the change detection algorithm is able to

detect a transition between classes, while analysing the transition.

In table 8.18, the first set of change detection experiments are shown that were conducted in the

Limpopo province. All the viable classification approaches that yielded acceptable performance in

section 8.6 are shown in these experiments. Each entry in table 8.18 gives the average change detection
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Table 8.18: The land cover change detection accuracies are given on the simulated land cover change
data set in the Limpopo province. Each entry gives the true positives in percentage (false positives in
parentheses).

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 69.2 (30.0) 77.6 (22.4) 90.5 (9.6)
12 months 70.2 (29.5) 78.2 (21.3) 90.8 (9.4)
18 months 71.9 (29.2) 78.7 (20.7) 91.0 (8.9)

Least squares 12 months 68.4 (31.8) 77.5 (22.3) 90.0 (10.1)

M-estimator 12 months 69.0 (31.1) 77.2 (23.4) 90.2 (10.0)

EKF n/a 70.0 (30.3) 79.8 (20.2) 91.7 (8.7)

Ward clustering SFF 6 months 51.2 (50.5) 71.1 (25.7) 68.3 (30.5)
12 months 52.4 (48.5) 71.6 (25.5) 68.7 (30.3)
18 months 52.6 (42.8) 72.2 (24.5) 69.2 (30.1)

Least squares 12 months 65.4 (33.7) 69.8 (27.9) 67.6 (32.1)

M-estimator 12 months 65.8 (33.7) 70.1 (28.0) 67.7 (32.3)

EKF n/a 59.8 (38.1) 73.0 (22.2) 66.6 (30.8)

K-means SFF 6 months 50.0 (46.8) 71.3 (26.8) 64.3 (33.7)
12 months 52.7 (46.1) 72.6 (26.5) 65.0 (33.0)
18 months 53.5 (40.4) 72.9 (24.5) 65.7 (33.7)

Least squares 12 months 63.4 (36.1) 70.4 (29.8) 65.4 (35.8)

M-estimator 12 months 63.5 (36.3) 70.6 (29.5) 65.4 (35.8)

EKF n/a 57.9 (42.0) 72.8 (22.7) 64.8 (33.8)

accuracies, with the corresponding false alarm rate in parentheses.The change detection accuracies

(true positives) are measured on subset 1 and subset 2, which were discussed in section 8.2.4, and the

false alarm rates (false positives) are measured on subset 3 and subset 4.

The worst performing experiment was the method that employs the NDVI time series. The overall

change detection accuracies were well below 70%, with a reported false alarm rate higher than 30%. In

the first two spectral band experiments, acceptable performance was measured across all the methods,

with overall change detection accuracies of above 70%, and a reported false alarm rate usually below

26%.

The seven spectral band experiment yielded similar behaviour when compared to the results

observed in the classification accuracies. The MLP (supervised classifier) performed exceptionally

by reporting overall change detection accuracies above 90% and a false alarm rate below 10%. The

unsupervised classifiers, Ward clustering andK-means, reported change detection accuracies which

are lower in the higher dimensions (7 spectral bands) than in the lower dimensions (2 spectral bands).
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Table 8.19: The land cover change detection accuracies are given on the simulated land cover change
data set in the Gauteng province. Each entry gives the true positives in percentage (false positives in
parentheses).

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 81.2 (16.3) 89.7 (11.1) 97.3 (2.7)
12 months 83.8 (16.3) 91.8 (10.5) 98.5 (1.5)
18 months 83.9 (16.4) 92.0 (8.9) 98.5 (1.4)

Least squares 12 months 78.1 (20.2) 90.0 (13.4) 97.5 (3.4)

M-estimator 12 months 80.1 (18.9) 90.2 (13.0) 97.6 (3.2)

EKF n/a 82.5 (14.0) 93.2 (8.4) 98.4 (1.3)

Ward clustering SFF 6 months 27.7 (28.8) 77.6 (25.4) 32.6 (31.6)
12 months 33.2 (31.5) 80.0 (21.6) 36.9 (35.1)
18 months 35.6 (34.6) 81.1 (19.8) 39.3 (35.4)

Least squares 12 months 24.5 (17.4) 78.9 (19.7) 33.5 (28.6)

M-estimator 12 months 24.5 (17.0) 79.2 (19.4) 33.4 (28.7)

EKF n/a 25.1 (17.2) 86.1 (7.2) 42.7 (26.0)

K-means SFF 6 months 37.2 (42.9) 77.2 (26.6) 50.4 (41.3)
12 months 43.8 (41.6) 80.3 (23.4) 51.2 (46.9)
18 months 45.9 (46.7) 80.4 (24.6) 55.8 (38.7)

Least squares 12 months 28.6 (21.3) 74.6 (28.5) 50.6 (45.7)

M-estimator 12 months 28.6 (21.3) 75.0 (28.3) 51.3 (45.4)

EKF n/a 36.1 (37.8) 83.8 (5.9) 50.7 (40.8)

The reduction in change detection accuracies can be attributedto the reduction in classification

accuracies shown in section 8.6.4 and section 8.6.5. The remedy for this reduction in change detection

accuracy in the seven spectral band experiment is again either a more complex clustering algorithm

or a more detailed selection of features. The more complex clustering algorithm typically requires

a non-linear clustering region to obtain higher change detection accuracies. It is reported in the

literature that this shortcoming can typically be solved by over designing the clustering algorithm for a

particular data set. The second approach to remedy this reduction is to apply dimensionality reduction,

which implies selecting different combinations of spectral bands. The potential risk is that different

combinations of spectral bands will perform better on different data sets.

The emphasis in this thesis is placed on obtaining acceptable performance with the clustering

algorithm based on the impossibility theorem. Acceptable performance is reported for all methods

employing the first two spectral bands, and exceptional performance is reported for the MLP employing

all seven spectral bands.
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In table 8.19, the second set of change detection experiments areshown that were conducted in the

Gauteng province. The same setup is used in these experiments as in the experiments conducted in

the Limpopo province. The best performing algorithms were the methods that employ the MLP. The

overall change detection accuracies were above 80% with a false alarm rate below 17%. A significant

increase in change detection accuracy is observed when the two spectral bands are evaluated when

compared to the NDVI. Both the NDVI and two spectral bands’ experiments uses the same spectral

bands, which implies that using the two spectral bands separately is better.

The worst performing experiments were the methods that employed either the NDVI or all seven

spectral bands with an unsupervised classifier. It was observed that experiments conducted with the

first two spectral bands along with an unsupervised classifier yielded acceptable performance. The

reported overall change detection accuracies were above 75% with a false alarm rate below 30%.

8.7.2 Real land cover change detection

Table 8.20: The land cover change detection accuracy on the real land cover change data set in the
Limpopo province. Each entry gives the true positives in percentage (false positives in parentheses).

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 65.4 (32.5) 75.1 (19.5) 84.8 (9.3)
12 months 66.1 (28.2) 75.3 (18.9) 85.3 (7.9)
18 months 68.0 (28.7) 76.0 (18.8) 85.3 (8.2)

Least squares 12 months 64.8 (28.6) 73.8 (23.1) 84.3 (10.1)

M-estimator 12 months 64.7 (29.9) 73.4 (22.8) 84.3 (9.9)

EKF n/a 64.2 (24.6) 78.6 (16.7) 86.8 (8.7)

Ward clustering SFF 6 months 38.8 (44.7) 67.3 (26.7) 58.7 (35.5)
12 months 40.3 (52.1) 70.7 (25.9) 63.0 (32.9)
18 months 40.5 (50.3) 70.0 (25.2) 63.3 (32.6)

Least squares 12 months 57.6 (36.8) 65.4 (29.0) 62.8 (32.8)

M-estimator 12 months 57.0 (36.3) 65.4 (28.5) 62.2 (32.8)

EKF n/a 52.8 (41.7) 71.8 (26.4) 63.5 (31.1)

K-means SFF 6 months 44.8 (41.1) 70.2 (25.8) 59.8 (29.8)
12 months 46.0 (42.0) 70.5 (25.4) 60.6 (31.1)
18 months 46.9 (42.3) 70.5 (25.4) 61.0 (31.4)

Least squares 12 months 59.8 (37.3) 68.4 (31.1) 61.0 (32.0)

M-estimator 12 months 59.0 (36.5) 69.0 (30.3) 61.5 (33.4)

EKF n/a 51.7 (40.1) 72.0 (24.4) 63.0 (29.9)
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In this section, the real land cover change data set (section 8.2.2)is used to measure the performance

of the land cover change detection algorithms. This data set is used to test the validity of the algorithms

for real world applications [127].

In table 8.20, the first set of change detection experiments are reported that were conducted

in the Limpopo province. In these experiments all the viable classifiers identified in section 8.6.7

are explored. Each entry in table 8.20 gives the change detection accuracies (true positives), with

corresponding false alarm rates (false positives) in parentheses.

The worst performing methods were those that employed the NDVI spectral band. Overall

change detection accuracies in these experiments were observed to be well below 70%. On the other

hand, acceptable performance was reported across all the methods using the first two spectral bands,

except for the unsupervised classifiers operating on the features extracted with the least squares, and

M-estimator.

Table 8.21: The land cover change detection accuracy on the real land cover change data set in the
Gauteng province. Each entry gives the true positives in percentage (false positives in parentheses).

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 82.3 (20.5) 86.5 (9.8) 94.3 (2.2)
12 months 82.3 (16.8) 90.0 (8.8) 95.1 (1.1)
18 months 83.7 (15.3) 90.4 (8.9) 95.1 (1.0)

Least squares 12 months 80.0 (16.7) 87.7 (11.8) 94.3 (2.5)

M-estimator 12 months 80.0 (17.5) 87.7 (10.9) 92.9 (2.8)

EKF n/a 83.4 (17.0) 92.1 (9.9) 95.5 (1.6)

Ward clustering SFF 6 months 15.8 (24.2) 80.1 (21.2) 28.7 (29.8)
12 months 20.7 (27.0) 80.3 (21.5) 31.3 (30.1)
18 months 21.2 (28.8) 80.3 (21.4) 31.3 (30.3)

Least squares 12 months 18.8 (18.0) 78.0 (23.1) 29.7 (29.4)

M-estimator 12 months 18.1 (17.7) 75.5 (22.2) 30.5 (29.6)

EKF n/a 17.8 (17.5) 82.3 (11.3) 38.8 (24.8)

K-means SFF 6 months 32.9 (34.4) 79.2 (24.2) 40.9 (38.9)
12 months 38.3 (35.1) 79.2 (24.1) 44.7 (42.0)
18 months 36.0 (34.7) 80.8 (22.7) 46.2 (40.4)

Least squares 12 months 24.3 (23.9) 75.1 (26.6) 42.3 (40.1)

M-estimator 12 months 22.8 (23.1) 75.1 (26.2) 44.7 (42.0)

EKF n/a 33.3 (29.8) 80.6 (9.8) 43.5 (43.2)

The MLP performed better, by reporting overall change detection accuracies above 84% when

using all seven spectral bands. The unsupervised classifiers performed better on the first two spectral
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bands than on all seven spectral bands. This was expected, as a similartrend was observed in the

classification accuracies.

In table 8.21, the same set of experiments for the real land cover change data set were conducted in

Gauteng results are reported. The best performing set of experiments is again the methods that employ

the MLP. The overall change detection accuracies are above 80% with false alarm rates below 20%. A

significant increase in change detection accuracy is observed when the two spectral spectral bands are

evaluated when compared to the NDVI. Because both the NDVI and two spectral bands’ experiments

uses the same spectral bands, it can be concluded that using the two spectral bands separately is better.

This claim is supported by all the previous experiments in this chapter.

The worst performing methods are those that employ either the NDVI or all seven spectral bands

with an unsupervised classifier. Meanwhile, similar experiments conducted with the first two spectral

bands with an unsupervised classifier yielded acceptable performance. The reported overall change

detection accuracies were above 75%, with a false alarm rate below 25%.

The conclusion from both sets of experiments is that using the first two spectral bands with any

change detection methods yields acceptable performance. At the same time, experiments using all

seven spectral bands with a supervised classifier offered the best reported performance.

8.7.3 Effective change detection delay

In this section, the effective change detection delay∆τ is reported. The results of the experiments

are presented in table 8.22 for the Limpopo province, and table 8.23 for the Gauteng province. The

experiments’ results are reported in the average number of days (1 MODIS sample = 8 days) for the

ensemble of time series in the simulated land cover change data set.

The MLP was deemed the best performing classifier, as it achieved the shortest effective change

detection delay. The MLP’s effective change detection delay improved as more spectral bands were

included. The best performing feature extraction method was the SFF with a temporal sliding window

length of 6 months. The overall trend was that a shorter temporal sliding window length had a shorter

effective change detection delay. This is intuitive as fewer data points contribute to the current state of

the output class membership. The SFFs outperform the least squares and M-estimator using a similar

temporal sliding window length of 12 months.

The unsupervised classifiers (Ward clustering method andK-means) reported an overall increase

in effective change detection delay when compared to the MLP classifier. A similar observation

is made here as in the discussion of classification accuracy in section 8.6.7. The first two spectral

bands outperformed the NDVI and all seven spectral band combinations. This is due to the improved
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Table 8.22: Effective change detection delay for simulated landcover change conducted in the
Limpopo province. Each entry gives the average number of days for each study area, calculated over
10 repeated independent experiments.

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 88 76 73
12 months 117 101 92
18 months 178 120 106

Least squares 12 months 130 109 102

M-estimator 12 months 146 118 109

EKF n/a 110 96 91

Ward clustering SFF 6 months 132 92 116
12 months 177 113 160
18 months 253 176 218

Least squares 12 months 185 130 166

M-estimator 12 months 189 125 186

EKF n/a 163 104 151

K-means SFF 6 months 127 94 119
12 months 169 107 154
18 months 233 164 216

Least squares 12 months 186 127 165

M-estimator 12 months 186 123 179

EKF n/a 166 105 151

classification accuracies reported in section 8.6.3–8.6.6 forthe first two spectral bands.

Most experiments conducted in the Limpopo province had theK-means algorithm producing

shorter effective change detection delays than the Ward clustering method, while no distinguishing

difference was observed in the Gauteng province. In these experiments a clear improvement in the

effective change detection delay is observed when the SFF is compared to the least squares and

M-estimator with a similar sliding window length.

8.7.4 Summary of change detection results

In this section the results of the change detection experiments are summarised. In section 8.7.1, true

positives and false positives were reported for the experiments conducted on the simulated land cover

change data set. In section 8.7.2, the true positives were reported for the experiments conducted on the

real land cover change data set. In section 8.7.3, the average effective change detection delays were

reported for the experiments conducted on the simulated land cover change data set.
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Table 8.23: Effective change detection delay for simulated landcover change conducted in the Gauteng
province. Each entry gives the average number of days for each study area, calculated over 10 repeated
independent experiments.

Algorithm Feature Window length Spectral Band
extraction NDVI 2 Bands 7 Bands

MLP SFF 6 months 84 69 65
12 months 111 87 81
18 months 153 114 109

Least squares 12 months 122 98 94

M-estimator 12 months 127 99 97

EKF n/a 108 89 81

Ward clustering SFF 6 months 117 84 102
12 months 146 103 139
18 months 168 140 168

Least squares 12 months 155 120 146

M-estimator 12 months 164 123 154

EKF n/a 151 97 138

K-means SFF 6 months 118 88 110
12 months 139 112 143
18 months 172 157 189

Least squares 12 months 153 126 149

M-estimator 12 months 157 128 153

EKF n/a 137 106 134

The MLP was considered the best classifier used for change detection.The MLP had better change

detection accuracies and effective change detection delays when using more spectral bands. It was

also found that a trade-off existed in the length of the temporal sliding window when comparing the

difference between change detection accuracy and effective change detection delay. A longer temporal

sliding window length improves the classification accuracy at the cost of a longer effective change

detection delay. A shorter temporal sliding window length reacts faster to change in the time series at

the loss in change detection accuracy.

Poor performance with the unsupervised methods used for clustering on the NDVI time series

and all seven spectral bands’ time series indicated that classes could not be well encapsulated in the

clusters. The first two spectral bands, on the other hand, resulted in acceptable performance across all

the change detection experiments and effective change detection delay’s experiments.

TheK-means algorithm and Ward clustering method performed similarly in all the experiments,

except that the Ward clustering method had slightly higher change detection accuracies while the
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Table 8.24: A list of different combinations of change detectionalgorithms that will be tested at a
regional scale.

Feature Sliding window Spectral Machine learning method
extraction length band
SFF 12 months 2 Bands, 7 Bands MLP

12 months 2 Bands Ward clustering method

12 months 2 Bands K-meansalgorithm

EKF 2 Bands, 7 Bands MLP

2 Bands Ward clustering method

2 Bands K-meansalgorithm

K-means algorithm had a shorter effective change detection delay. This observation could be attributed

to the K-means classification experiments, which yielded a very small standard deviation when

compared to the Ward clustering method. In all the experiments conducted in this section (section 8.7),

it was observed that the SFFs and EKF features outperformed the least squares and M-estimator

features in the performance metrics. It is concluded from these experiments that the combinations

given in table 8.24 yielded the best performance and will be evaluated on a regional scale.

8.8 CHANGE DETECTION ALGORITHM COMPARISON

In this section the change detection accuracies measured in section 8.7 are compared to other change

detection algorithms found in the literature. The change detection methods used for comparison are:

• the annual NDVI differencing method (denoted by NDVICDM) [19],

• the EKF change detection method (denoted by EKFCDM) [120], and

• the ACF change detection method (denoted by ACFCDM) [121].

All three these methods listed above are supervised in nature, as a training data set is required to

set a threshold, which is used to declare change. These three methods are compared in table 8.25 to a

few methods listed in table 8.24.

The worst performing method was the NDVICDM method, having a change detection accuracy of

69% with a false alarm rate of 13% in the Limpopo province, and a change detection accuracy of

57% with a false alarm rate of 14% in the Gauteng province. A possible explanation for this poor

performance is given in [224], which is that the method assumes that the annual NDVI difference

between years is normally distributed, which could imply that it has difficulty in detecting land cover
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Table 8.25: Comparison of the change detection accuracies in percentage(false alarm rate in
parentheses) of the proposed change detection algorithms to other change detection algorithms found
in the literature.

Algorithm Province
Limpopo province Gauteng province

EKFCDM [19] 89%(13%) 75% (13%)
ACFCDM [120] 81% (12%) 92% (15%)
NDVICDM [121] 69% (13%) 57% (14%)
EKFBVEP, MLP, 7 spectral bands 87% (9%) 96% (2%)
EKFBVEP, MLP, 2 spectral bands 79% (23%) 92% (10%)
EKFBVEP, K-means, 2 spectral bands 72% (24%) 81% (10%)
EKFBVEP, Ward clustering, 2 spectral bands 72% (26%) 82% (11%)

change in heterogeneous areas. The method performed the poorestin the Gauteng province owing to

the land cover diversity [224].

The EKFCDM had the highest change detection accuracy of 89% in the Limpopo province, with

a false alarm rate of 13%. This was attributed to the fact that most of the province is covered by

natural vegetation, which is the result of the high correlation between the parameter sequences of

the neighbouring pixels in the spatio-temporal window [224]. The relative difference between the

change and no change parameter streams was high enough to detect change. The EKFCDM method’s

performance was lower in the Gauteng province, which was attributed in [224] to the land cover

diversity.

The ACFCDM exploits the non-stationary property of the change time series when compared to

the no change time series. The method was applied to the 4th spectral band of MODIS, as it offered

the best performance [224]. The method reported a higher change detection accuracy in the Gauteng

province when compared to the Limpopo province.

The performance of the two unsupervised classifiers (K-means and Ward clustering) operating on

the first two spectral bands was similar. Both methods had better change detection accuracies and false

alarm rates when compared to the NDVICDM method. The methods had a 6% higher change detection

accuracy when compared to the EKFCDM in the Gauteng province, but a 17% decrease in the Limpopo

province.

The MLP operating on the EKFBVEP features computed from the first two spectral bands had the

same change detection accuracy as the ACFCDM in the Gauteng province, but had the advantage of

having a 5% lower false alarm rate. The reverse was observed in the Limpopo province, as the MLP

operating on the first two spectral bands had a 2% lower change detection accuracy and 11% higher

false alarm rate when compared to the ACFCDM method.
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The MLP operating on the EKFBVEP features computed on all seven spectral bands was deemed the

best change detection method in this section. The method had the highest change detection accuracy

and lowest false alarm rate in the Gauteng province. It had the second highest change detection

accuracy (2% lower than the highest) and the lowest false alarm rate in the Limpopo province.

8.9 PROVINCIAL EXPERIMENTS

A list of the best performing change detection algorithms is given in table 8.24, which is to be evaluated

on a regional scale. The areas that will be evaluated are the entire Limpopo and Gauteng provinces.

FIGURE 8.13: A classification/ change detection map of the entire Limpopo province.

The results obtained from processing the entire Limpopo province are presented in table 8.26. The

table divides the results into three categories: natural vegetation, human settlements, and change. An

illustration of one of these experiments is shown in figure 8.13, which represents the Limpopo province.

The overall trend throughout all the methods was that natural vegetation covered 85%–88% of the

province, and that human settlement covered 9%–12% of the province. This signifies that majority of

the province is still largely covered by natural vegetation. The land cover change that is reported here is

the transformation of natural vegetation to human settlement. The land cover change that was reported

ranged from 1%–4% of the total area in the province. This is a significant area that has changed in
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the province over the past decade, since the total human settlementclass has expanded by 12%–40%

in the study period. This suggests that some of the algorithms might be too sensitive towards change

events or that the labelled data set should be expanded to incorporate a larger variety of classes. On

the other hand, it should be noted that the controlled experiments that were conducted on the labelled

data set involved land cover that transformed from natural vegetation to human settlement. This did

not include any examples of other land cover transformations, which could exist in the province.

This could be rectified, as the algorithms are versatile enough to include other classes to improve

the classification, and in turn change detection accuracies. Future expansion of the work could entail

collecting agricultural land cover information in each of the provinces.

Table 8.26: The classification and change detection results produced for the entire Limpopo province.
The results are presented in percentage cover of total area in the province.

Feature Algorithm Spectral Band Class allocation [%]
extraction Natural Human Land cover

vegetation settlement change
SFF MLP 2 Bands 86.94 10.31 2.75

7 Bands 87.69 10.61 1.70

Ward clustering 2 Bands 86.33 9.64 4.03

K-means 2 Bands 86.05 10.02 3.93

EKF MLP 2 Bands 85.74 11.57 2.69
7 Bands 86.33 12.11 1.56

Ward clustering 2 Bands 86.20 10.32 3.48

K-means 2 Bands 85.81 10.90 3.29

Closer inspection of table 8.26 allows the deduction of some interestingtrends. These trends

cannot be confirmed, as no ground truth exists for the current results, which are only based on

observations. The MLP consistently detected more human settlement than the unsupervised classifiers,

while indicating a reduced number of detected land cover changes. This puts emphasis on the

classification at the beginning of the time series, as both the detected land cover change class and

the human settlement class agree that the time series ends in the human settlement class. This could be

attributed to the fact that the province experienced a rainfall shortage in 2001/2002 (beginning of the

study period).

The unsupervised classifiers detected more land cover change when compared to the MLP. In some

experiments the size of changed areas that were reported almost doubled. Another observation among

the unsupervised classifiers is that the Ward clustering method flagged more land cover changes than

theK-means algorithm. This trend was also observed in the controlled experiments and was deduced
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FIGURE 8.14: A classification/ change detection map of the entire Gauteng province.

from the observation that the Ward clustering method had a wider standard deviation in its classification

accuracies than theK-means.

Table 8.27: The classification and change detection results produced for the entire Gauteng province.
The results are presented in percentage cover of total area in the province.

Feature Algorithm Spectral Band Class allocation [%]
extraction Natural Human Land cover

vegetation settlement change
SFF MLP 2 Bands 76.65 20.12 3.23

7 Bands 77.33 21.39 1.28

Ward clustering 2 Bands 75.53 19.90 4.57

K-means 2 Bands 75.43 20.46 4.11

EKF MLP 2 Bands 76.01 20.92 3.07
7 Bands 76.89 21.46 1.17

Ward clustering 2 Bands 76.22 19.56 4.22

K-means 2 Bands 76.08 19.96 3.96

The same experiment was conducted in the Gauteng province andits results are presented in
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table 8.27. The results were produced by processing the entireGauteng province into the three defined

categories. An illustration of one of these experiments is shown in figure 8.14, which represents

the Gauteng province. The overall trend in this province was significantly different from the results

produced in the Limpopo province, as this province is mostly urbanised. The natural vegetation class

covered 75%–78% of the province, while human settlements covered 19%–22%. This result supports

the concept that Gauteng is a heavily urbanised province.

The land cover change which was flagged ranged from 1%–5% of the total area in the province.

This is a significant large area that has changed in the study period, as the total human settlement class

has expanded by 5%–23% in the province. The same trends that were observed in the results produced

for the Limpopo province with regard to the nature of the change detection algorithm were observed

in the Gauteng province.

8.10 COMPUTATIONAL COMPLEXITY

In this section a comparison is made of the complexity of extracting the EKF features and the SFFs. A

time seriesx of lengthI, is defined as

x = [~x1 ~x2 . . . ~xI ], (8.1)

with

~xi = [xi,1 xi,2 . . . xi,T ]. (8.2)

The variableT denotes the number of elements in vector~xi. If the state-space vector~Wi used in the

EKF hasS elements, then the complexity of filtering a single time series is at leastO(IS2)+O(IT 2.4).

In the case of the EKF features extracted from a triply modulated cosine function on uncorrelated

spectral bands,S=3 andT=1.

The complexity of extracting the SFF is based on the complexity of the FFT algorithm and the

length of the temporal sliding window. If the time series is lengthI and the length of the temporal

sliding window isQ, then the processing of a single time series is equal toO((I −Q)Q log2 Q), with

Q ≪ I.

A timing experiment was conducted on a cluster node to calculate the computational time of both

feature extraction methods and the results are reported in table 8.28. The computer’s specifications

used for this experiment are:

• Dell PowerEdge 1955 blade, Intel Xeon 5355 (Quad-Core) 2.66 GHz, 8 GB RAM, 1333 MHz
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Table 8.28: The computational time required to extract featuresfrom 25000 time series using either
the EKF feature extraction method or SFF extraction method. The results is reported in milliseconds
per time series.

Feature Millisecond per time series
SFF 0.47
EKF 22.81

FSB, Gigabit Ethernet, 4x 2.1 kW redundant power supplies (3+1),2x Gigabit Switch Modules,

1x Avocent Digital Access KVM switch, Software Debian Testing AMD64 with MATLAB

R2012a.

The experiment was conducted over 25000 time series and it was concluded that the SFF could be

extracted from the time series 48.5 times faster than the EKF features. The next requirement addressed

is the time required to optimise the EKF features using the BVEP criterion. The BVSA is an iterative

search algorithm that sets the EKF parameters within the BVS in an attempt to best satisfy the BVEP

criterion. If the BVSA requiresEBVSA iterations to set the EKF parameters, the the extraction of

EKFBVEP features takes at least 48.5EBVSA times longer than the SFF. The typical range of iterations

used forEBVSA in these experiments were between 20 and 30.

8.11 SUMMARY

In this section a summary is provided of the observarions made in this chapter. It was found that the

supervised classifier outperformed the unsupervised methods. The downside was the costs involved

in producing a labelled training data set. The best performance was obtained when the MLP was

optimally set to operate on all seven spectral bands of MODIS. The training method adopted was the

iteratively retrained mode, which compensates for the inter-annual variability. A temporal sliding

window length of 12 months used on either the SFF, least squares, or M-estimator offered the

best trade-off between parameter variability, effective change detection delay and change detection

accuracy. Similar gains were obtained in the trade-off with the EKF features if the parameters were

optimised with the BVEP criterion.

The change detection algorithms yielded better performance in the Gauteng province than the

Limpopo province. This could be attributed to the more dense natural vegetation found in the Gauteng

province. Figure 8.15 illustrates a difference between the informal settlements and natural vegetation

found in both provinces. The Gauteng province houses more compact informal settlements and more

dense natural vegetation when compared to the Limpopo province.
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(a) Natural vegetation located in the
Limpopoprovince.

(b) Informal settlements located in the
Limpopoprovince.

(c) Natural vegetation located in the
Gautengprovince.

(d) Informal settlements located in the
Gautengprovince.

FIGURE 8.15: Four high resolution images acquired in the two provinces; Limpopo and Gauteng. (a)
A natural vegetation area located in the Limpopo province. (b) An informal settlement located in the
Limpopo province. (c) A natural vegetation area located in the Gauteng province. (d) An informal
settlement located in the Gauteng province. (courtesy of GoogleTMEarth).

A general trend of performance improvement was observed when the first two spectral bands (Red

and NIR spectral bands) were used instead of the NDVI. The use of the first two spectral bands as input

was deemed superior, as the same spectral bands are used to compute the NDVI. Further improvement

was observed when using all seven spectral bands with a supervised classifier.

The SFFs and EKF features yield better performance in detecting land cover change when

compared to the features extracted using least squares and M-estimator methods. The EKF features

only provided better separation between classes than the SFFs when the BVEP criterion was used to

set the EKF parameters. The consequence of this is that the SFF was deemed the better approach

when compared to the EKF features, as the EKF-extracted features required the computation of the

covariance matrices using the BVEP criterion. This improvement into separation in classes was not

significant, and the SFF was deemed better owing to its lower computational time (section 8.10).
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