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EXTENDED KALMAN FILTER FEATURES

7.1 OVERVIEW

In this chapter, the Extended Kalman filter (EKF) is used as a feature extraction method, and is studie
in-depth. The chapter discusses how the state space variables are used within the EKF, followed b
how these are used to separate a set of time series into several classes. The importance of the initi
parameters used to set the EKF is discussed in section 7.2.3, illustrating how the behaviour is depende
on these initial parameters.

A novel criterion called the Bias-Variance Equilibrium Point (BVEP), is proposed in section 7.2.4,
which defines a desired set of initial parameters that will provide optimal performance. The BVEP
criterion is derived using both the temporal and spatial information to design a system with desirable
behaviour. A specifically designed search algorithm called the Bias-Variance Search Algorithm
(BVSA) is proposed that will adjust the Bias-Variance Score (BVS) to best satisfy the BVEP criterion
that will provide good initial parameters for the EKF. The chapter concludes by briefly overviewing
the Autocovariance Least Squares (ALS) method, which will be used as benchmark when evaluating

the method proposed in section 7.2.4.

7.2 CHANGE DETECTION METHOD: EXTENDED KALMAN FILTER

7.2.1 Introduction

An EKF is discussed as a feature extraction method in this section, which is based on the assumptio
that the parameters of the underlying model can be used to separate a set of time series into differel
classes. The model is based on the seasonal behaviour of a specific land cover class. It should k
noted that a certain model would better describe a particular land cover class than another and the

proper model selection must be done for each different land cover class. It follows that more separabl
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parameters derived by the EKF make it easier to detect chamgjes assigned classes.

Lhermitte et al. proposed a method that separates different land cover classes using a Fourier
analysis of NDVI time series [116]. It was concluded that good separation is achievable when
evaluating the magnitude of the coefficients of the Fourier transform associated with the NDVI signal’s
mean and amplitude components. Kleynhetred. proposed a method which jointly estimates the mean
and seasonal component of the Fourier transform using a triply modulated cosine function [30]. The
EKF uses the triply modulated cosine function to model NDVI time series by updating the mean (u),
amplitude (9, and phase (¢parameters for each time increment.

The method proposed in this section expands on the method of Kleynharet 80y modelling
the spectral bands separately and addresses the second constraint of the manual estimation of the init
parameters for the EKF to ensure proper tracking of the observation vectors. The initial parameters
include the initial state-space vector, process noise covariance matrix and observation noise covarianc
matrix. An operator typically uses a training set to supervise the adjustment of the initial parameters

until acceptable performance is obtained for a set of time series.

7.2.2 The method

The EKF is a non-linear estimation method, which estimates the unobserved parameters using nois
observation vectors of a related observation model. The EKF has been used in the remote sensin
community for parameter estimation of values related to physical, biogeochemical processes ot
vegetation dynamics models [204, 205].

In figure 7.1, a Fourier transform is used to observe that the majority of the signal energy is
contained in the mean and seasonal component of the first spectral band. This implies that the tim
series in spectral band 1 are well represented in the time domain as a single cosine function with ¢
mean offset, amplitude and phase, as shown in figure 7.2.

This single cosine model is, however, not a good representation if the time series is non-stationary
which is often the case; for example, inter-annual variability or land cover change. The triply

modulated cosine function proposed in [30] is extended here to model a spectral band as

Tigb = Mikp + Qikp COS(2T foampt + Ok p) + Vikp- (7.1)

The variablez; ;. , denotes the observed value of thié spectral band’s time series,c {1,7}, of

the k' pixel, k € [1, N], at time index;, i € [1,Z]. The noise sample of the" pixel at timei for

each spectral band is denoteddy.,. The noise is additive with an unknown distribution on all the
spectral bands. The cosine function model is separately fitted to each of the spectral bands and is bas

on several different parameters; the frequeligy,, can be explicitly calculated based on the annual
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(b) Discrete Fourier transform of the time series shown in (a)

FIGURE 7.1: The time series recorded by the first spectral band for a geographical area is shown in (a]
with the corresponding discrete Fourier transform shown in (b).

vegetation growth cycle, and the sampling rate of the MODIS sensor. Given the 8 daily composite
MCD43A4 MODIS data setf;.n,, is set toz:-. The non-zero mean of thé" spectral band of thg™
pixel at time index is denoted by, ;. ,, the amplitude byy, ., and the phase b ;. ,. The values of
Wik Cigp aNdé; i, are dependent on time and must be estimated for each jpixél, & € [1, N],
given the spectral band observation vectarg, for i, Vi, i € [1,Z], andb, b € {1, 7}.

The MODIS spectral bands however are assumed to be uncorrelated and are treated independent
in this method. The indekis omitted for convenience, with no loss in generality in the description of
this method. A state-space vector is estimated by the EKF at each time increfoeatich spectral

band and contains all the parameters. This is expressed as

Wi,k = [Wik1 Wikze Wiksl = Wik Wika Wikl (7.2)

For the present example of land cover classification, it is assumed that the state-spacﬁfygctor
does not change significantly through time; hence, the process model is linear. The measuremer
model, however, contains the cosine function and, as such, is evaluated via the standard Jacobie
formulation, through linear approximation of the non-linear measurement function around the current
state-space vector. The state-space vdétgris related to the observation vectar, via a non-linear

measurement function. Both the transition function and measurement function are assumed to b
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FIGURE 7.2: The tracking of the first two spectral bands using the triply modulated cosine function.

non-perfect, so the addition of process and observation noise is required.

Converting state-space vectors to land cover classes

A machine learning algorithm is used to process the estimated state-space vectors to assign class labe

A class label is assigned to each state-space vector for each pixel at each time increment. This i
expressed as

-

Ci =FcWikr, - s Wirs) =Fe(Wik), (7.3)

where the functionF: denotes either a supervised or unsupervised classifier. The class label for the

k™ pixel at timei is denoted byC; .. Change is declared when a pi¥ethanges in class label as a
function of time:. This is expressed as

The importance of the initial parameters will be discussed in the next section.
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7.2.3 Importance of the initial parameters

The EKF recursively solves the state-space form of a linear dynamic model [185, Ch. 1]. In this section
the importance of the initial estimates of the system’s variables is shown.

Let x, = {Zix}i=f, k € [1, N], denote thek'" time series in the set of time series consisting
of observation vectors, with each observation vector denoted by= x;; as the spectral bands are
treated independently. Léf/i,k = {W,x.+}:=7 denote the corresponding state-space vector fpr
Then it is said that the EKF solves the state-space form recursively using the transition equation giver

as

Wik = f<W(i—1),k;) + Z(i-1) k> (7.5)

and the measurement equation given as

Tip = h<Wzk> + Vi k- (7.6)

The transition function is denoted Hyand the measurement function is denotedhbyA brief
overview of the operations of the EKF which is shown in section 5.5 is revisited for convenience. It is
well known from estimation theory that many prediction results simplify when Gaussian distributions
are assumed. The process noise vector and observation noise vector are thus assumed to be Gauss
distributed. The process noise vector is thus denoted by, 1, z;—1)x ~ N(0, Q;-1)), and the
observation noise vector is denoteddby, v; . ~ N (0, R; ).

The EKF recursively adapts the state-space vector for each incoming observation vector by
predicting and updating the vector. In the prediction step the state-space v%@poﬁ),k and
covariance matri¥3; ;) are predicted. The predicted state-space vector’s estivﬁgml),k is

computed as

LT f(W(iflﬁfl),k)a (7.7)

and the predicted covariance mati¥y;;_) ; is computed as

Biji-n)k = Qi-1)k + FestBim1)i—1) ;s F st (7.8)

The matrixF; is the local linearisation of the non-linear transition functforin the updating step,

the posterior estimate of the state-space veiégr, . is computed as

W(z‘h‘),k = W(z‘ﬁ—l),k: + Rk (fzk - h(mk))a (7.9)
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using the optimal Kalman gain denoted 8y, which is computed as

Rik = sB(z‘\zel),kHT Sl_kl (7.10)

est

The matrixH.g is the local linearisation of the non-linear measurement fundiioithe matrixs;
denotes the innovation term, which is computed as

Sik = HestB i1y s Hogy + Ri- (7.11)

)

The posterior estimate of the covariance ma®iy);) ., is computed as

Bk = Biji—1)k — ﬁzkszkﬁ;rk (7.12)

The tracking performance of the EKF is assessed by evaluating the stability of the state-space
vector and error in estimating the observation vector. The error in estimating the observation vector is
computed as the absolute error between the estimated observation?\/gg(ztod the actual observation

vectorz; .. This is expressed as

Zie =B (Wi ) | (7.13)

Esik = |Tik — Tig| =

In equation (7.13), it is observed that the state-space vé&%k determines the observation
error&;z,; . Thus the state-space vect&)}w),k can be selected to minimise the observation error. The
MODIS spectral bands are assumed to be uncorrelated and only produce a single reflectance value fi
each pixel. This simplifies equation (7.13) to

Exif = |Tig — Tig| =

Ti — h(v”vw),k) ( (7.14)

The observation error is easily minimised by significantly varyiﬁgm,k to accommodate the
fluctuation in observation vectors. This does not bode well if the underlying structure of the system
is also being analysed. A significantly varying state-space vé/:éfg@lr),k Is indicative of an unstable
model. The conclusion is that the state-space model must be kept stable, while also attempting t
minimise equation (7.14).

The initial estimates provided to the EKF will now be discussed to illustrate their importance. A
stable state-space vector requires a small adaptationvffgmh,l),k to I/f/(i‘i%k. The initial estimated
state-space vectdx?/(mo),k, I/ff(0|0),k € W, at the first observation vectay ;, is optimised using a local

search method or domain knowledge which satisfies
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W(O|O),k = argmin { ‘fU,k - h(W) ‘}, (715)
Wew
then
Esok = |Tok — h<W(0|O),k,b> ) (7.16)

The recursive adaptation of the state-space vector’s estiffigtg;, is then calculated using the
predicted step given in equation (7.7) and the updating step in equation (7.9). Equation (7.7) is
substituted into equation (7.9) to yield

— —

Wx = f<ﬁ’/(ifl|i71),k> + Rik <fzk - h<f (W(iflﬁfl),k)))- (7.17)

The Kalman gairR, , determines the rate of change in the error between the predicted and estimated
state-space vector. If the observation error is large and the Kalman gain is large, then large change
will be made to the current state-space vector. If the observation error is large and the Kalman gair
is small, then the state-space’s estimgf@|i)7k will adapt slowly, which typically leads to a large
observation erro€; ; ;. (equation (7.13)) until it eventually converges. If the observation error is small
and the Kalman gain is large, then the state-space vector will struggle to converge, as it will continually
overshoot the desired state-space vector that will minimise equation (7.13). Substituting the optimal

Kalman gain given in equation (7.10) into equation (7.17) expands it to

Wik = £ (Wisyione) + B (5i—1)1 Ho Si1 (fm — h(f (W(i—1|i—1),k>>>~ (7.18)

The Kalman gain is dependent on the predicted covariance nMaix ), and innovation ternd; ..
The innovation term controls the trust region within the state-space vector’s space. This is dependen
on the predicted covariance matflx;;_,), and observation covariance noiRg;. Substituting the

innovation term given in equation (7.11) into equation (7.18) results in

—

Wanr = f(W(i—lli—l),k) + B iji— 1) s Hosg (Hest B (ifi—1) s Ho +

est

Rix) " (fm - h<f <I/f/(i71\i71),k>>)- (7.19)

The last term to evaluate is the predicted covariance maigjy_.) . The predicted covariance

matrix ‘B ;1. IS substituted to yield an updated state-space vector as
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—

Wi = f<W(z‘—1|i—1),k> + (Qi—1)k + FestBi1)i-1) 1 Fose) Hogt
(Hest (Qim1) 1 + Fest%(i—lﬁ—l),kFeTst)Hg;t +Rix)”!

<fi,k — h<f <V:[)/(i71|i71),k>)>~ (7.20)

The transition functiorf and measurement functidn are assumed to be known. The observation
vector 7; ;. is supplied by the real system. The only variables left within equation (7.20) are: (1)
previous state-space vector’s estimﬁ}g_m_l),k, (2) process noise’s covariance mat@;_1) x, (3)
previous estimate of covariance mat#; ;1) », and (4) observation noise’s covariance maix..

The previous estimation of the covariance mafiy_, ;) will be briefly explored, as it is part
of equation (7.20). The covariance mat#; ;1) iS updated with

Bi—1)i—)k = Bli—1i—2)k — ﬁ(iq),ks(iq),kﬁa_l),k- (7.21)

Substituting the Kalman gain of equation (7.10) into equation (7.21) yields

Bio1ji-1)k = Bli-1)i—2)k — (53(1'71“72),1{1‘16“3: 1.1 S=1)k (B i-1]i-2) kHestS(lll kb)T- (7.22)

Substituting the innovation term of equation (7.11) into equation (7.22) yields

B ti-ne = Btk — (Buotji—) s Hey HestB 11— s Ho + Ri—nyx) )
(Hest%(ifl\ifQ),kHeSt + Rii—1)) (B i—1)i—2) 5 Hogt (Hest B (i—1)i—2)
H, + R )T (7.23)

The predicted covariance matfi;_;_2) » given in equation (7.8) is substituted into equation (7.23),
which yields

Bitji-ng = (Qu-2k + FestBiioaioyxFast) — ((Qui2) s + FestBi—oio) 1 Fase ) Hy
(Hest(Qi—2) + FestBi—2i—2) kFost) Hogt + Rii—1)) ") (Hest (Qi—2y 1 +
FostB (i—2)i—2), kFest)HeTst—f—Rz ,5) ((Qi—2)k + Fest B (i—2)i—2) kFest)H st

JH

(Hest<Q(i—2),k+Fest% —2[i—2) k:Fest est+R(z 1), ) l)T- (724)
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Equation (7.20) is computed for every newly obtained obsemvavector. The state-space vector’s
estimateI/f/(i|i),k requires the results from equation (7.24) to compute the current estimates. The
transition functionF.; and measurement functidd.; are known, then the only variables left to
compute in equation (7.24) are: (1) initial covariance ma®ixo) ., (2) process covariance matrix
Q(i—1),k» and (3) observation noise’s covariance maRix.. The conclusion from equation (7.20) and

equation (7.24) is that the initial parameters of importance are:

1. the initial state-space vector’s estimaitgo) x,
2. the initial covariance matrix estima®®)o) .,
3. the process covariance matg;_,) , and

4. the observation covariance matfx .

The initial state-space vector’s estim&fQ0|0)7k Is initialised using equation (7.15). Even if an
incorrect estimate is used, the state-space vé%tqm should converge to the correct vectorias
oo. The same is true about the initial covariance maix|) . Asi — oo, the covariance matrix
B;1»,» Should tend to converge to the correct matrix. The usual operation of the EKF sets the initial
covariance matrix equal to an identity matrix.

The initial covariance matrig o), Will stabilise, as equation (7.8) is known as a discrete Riccati
equation, and under certain circumstances will converge, which results in equation (7.24) converging

to a stable state [206]. The conditions for convergences of the discrete Riccati equation are:

1. the process covariance matg;_,) ., is a positive definite matrix,
2. the observation covariance matR, k is a positive definite matrix,

3. the pair (Eq, z;—1),%) is controllablej.e.,

rank [Z(i—l),k|Festz(i—1),k‘F(Qgstz(i—l),k‘ c. ’Fg;lz(i_l)k} = N, (725)

4. and the pair (E;, H.y) is observable,e.,

rank [HT

est

|FeTstH;rst (F;Fst)zH;Fst SR |(FeTst)N_1HeTst} = N, (7-26)

with N € N. Under the above conditions, the predicted covariance matyjx ), converges to a

constant matrix
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Hm Bk = Beonst (7.27)

whereB, ...« IS a symmetric positive definite matrif.....; iS a unique positive definite solution of the
discrete Riccati equation arl...; is independent of the initial distribution of the initial state-space
vector’s estimaté%(0|0),k.

The system can also estimaﬁéom),k and*B ), using an offline training phase. Offline refers
to observation vectors that are stored and are used recursively for estimation. The process covarianc
matrix Q(;_1), and observation covariance matfk; ; are assumed to be constant throughout the
recursive estimation of the observation vector. This is usually manually set by a system analyst in ar

offline training phase through successive adjustments. In this thesis the initial EKF is defined as:
1. The initial state-space vectfﬁ}(mowC is estimated offline.
2. The initial covariance matri® ) iS estimated offline.
3. The process covariance matg;_) . is set to a fixed matrix.
4. The observation covariance matf  is set to a fixed matrix.

The EKF will track the observation vectors with minimum residual and have a stable internal

state-space vector if all initial parameters are properly estimated.

7.2.4 Bias-Variance Equilibrium Point

The general approach to estimating and initialising the state-space vectors, as well as the observatic
and process noise’s covariance matrices for the EKF, is usually for an analyst to determine these offlin
using a training data set. Proper estimation of the initial parameters through various methods leads t
good feature vectors from the EKF, while improper estimation could cause system instability, which
leads to delayed tracking or abnormal system behaviour.

A novel BVEP criterion is proposed in this section that will use temporal and spatial information
to design a parameter space where desirable system behaviour is expected. This is accomplishe
by first observing the dependencies between the initial parameters. The proposed criterion uses a
unsupervised BVSA to adjust the BVS iteratively to determine proper initial parameters for the EKF.
The characteristics of the initial parameters are first explored before describing the criterion. The first
parameter is the observation covariance ma®jx. The observation covariance matf ;, is defined
as

)
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This is due to the fact that the spectral bands are assumed uadoerelated and that the MODIS
sensor only produces a single reflectance value per pixel per spectral band. The second parameter

the process covariance matdk ;.. The process covariance matg ., is defined as

E(Wika—EWi 1) Wik1—EWira)] .. El(Wix1—E[Wiki1])(Wiks—E[Wis)]
Qip = : : . (7.29)
E(Wik,s—EWiks)) Wir1—EWir1)] .. E{(Wikrs—EWiks]) Wiks—E[Wik,s)]

The state-space variables within the state-space vector are assumed to be uncorrelated; the proce

covariance matrix simplifies to

Q; = diag{ E[(W;s—E[Wiks])?]}, Vs. (7.30)

The setting of the initial parameters has a major effect on the overall system performance. The
initial state-space vectdf/(o‘o),k for the first observation vectaf, ;, is optimised using equation (7.15).
The initial estimated covariance matf o) is usually set to the identity matrix. This only leaves
the estimation of the observation covariance maiix, and process covariance matd ;. Let the
uncorrelated observation covariance matrix’s diagonals be placed into a vector called the observatiol

candidate vectol' r ; ,, wereYr ; is selected from the space, and it is expressed as

TR,k = 104+, (7.31)

with

Gie = 101ogyy (E[(Zip—E[Z:])?])- (7.32)
Let the uncorrelated process covariance matrix’s diagonals be placed into a vector called the proces
candidate vectol o ; ,, wereY o, is selected from spae,, which is expressed as
Toin = 1005081 - Sik,s1/10 — 1051',k/10’ (7.33)

with

Sis = 1010810 (E[(Wiks—EWips])?]). (7.34)

It should be noted that the EKF only updates recursively the state-space V%@@;Qr;, and

covariance matrixs ;) .. The time index of the observation covariance matdy. has been left
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inserted to emphasise the time effect in a dynamic lineaesystThe EKF, however, does not alter the
observation covariance matrix at each time increment and is thus constant for all time indices. This
is formally stated a®=9;, Vi. The process covariance matrix is also retained as a constant for all
time indices and this is stated &=R;, Vi. This concludes that the observation covariance matrix
and process covariance matrix are independent of time. This property allows the observation candidat

vector to be rewritten as

Trx = 10%/10 vk, (7.35)

and the process candidate vector rewritten as

Tor = 100s%.1 -+ Sk,51/10 — 15k/10 /. (7.36)

It was stated earlier that the performance of the Kalman filter is measured by the residual error in
tracking the observation vectors and the internal stability of the state-space vector. A parameter spac
is thus defined to describe the system behaviour.

The first desired behaviour is the tracking of the observation vector with minimal residual. This
desired behaviour is expressed as the minimal achievable sum of absolute residualsch is

computed as

[M] =

N
Og = min g
TRJCEUR,TQ’)CEUQ B

& — xzkH}, (7.37)

,_.

-
I

_

then

N I
Roe, Qoe] = argmin { Z Z ||£Zk — xzkH} (7.38)

TrrEVR, Yo kEVQ

Thuso¢ is the minimal residual, anfR,,, Q.| represents the parameters required to achieve this

value. The minimal residual is computed as

N I
Og = Z Z H@zk - SCzkH

k=1 i=1

(7.39)

R:Ro'éwQ:chg
The second criterion is to have internal stability of the state-space vector. This can be measured a
the variations in each of the state-space variables. The second desired behaviour is expressed as |

minimal achievable absolute deviation in state-space variables, which is computed as
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N T
Os = min { Z Z HVVZ ks — E[Wik.s) || }, Vs, (7.40)
=1

T cevr,T €v
R,k R>1 Ok Q k=1

then

7
[Rﬂsa Qo’s] = argmin { Z Z HWzks - zks H} VS. (741)

TR r€EVR, Lo rEVQ

Thuso, is the minimal absolute deviation in the state-space variablkhe sefR,., Q,.] represents

the parameters required to achieve this value. The minimal absolute deviation is computed as

(7.42)

gillvms— Wil |

The spatial information is included through the use of a set of time series all located in a specific

R:Ro's 7Q:Q03

geographical area. The set 8f time series for a geographical area is denoted By.}. Letg; ¢
denote the probability density function derived at time ind&om the residuals given over the set of
observationgz; ; }*=) such thatPla < £ < ] = fabf(e)de = fabf(e,R, Q)dei.e.,

b b
Pla<&<b = / q(e, R, Q)de = / ¢i.ede. (7.43)

Let ¢; s denote the probability density function for the state-space variati&ived at time index
i from the deviations given over the set of state-space ve¢tdis . }#*=V such thatP[a < s < b] =
ff d’—fstQ)dsle

b b
Pla<s<l] = / q(s', R, Q)ds" = / i sds’. (7.44)

A conditioned observation probability density functigfy is defined as the probability density
functiong; ¢ in equation (7.43), which uses the §8},., Q.. ] to satisfy the condition given in equation
(7.39) as

b b
Pla<&<b = / q(e, Rop, Qo )de = / q; ¢de. (7.45)

A conditioned process probability density functign is defined as the probability density function
¢;.s in equation (7.44), which uses the §&t,., Q.| to satisfy the condition given in equation (7.42) as

b b
Pla < s <b) :/ q(s', Ry, Qo,)ds' :/ q; ,ds’. (7.46)

The performance of the current estimatg , and Yo, is defined by a criterion that evaluates how
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well the conditions stated in equation (7.37) and equatiofO(7are satisfied. The current estimates
are recursively updated and are denotedmyk andTLQJC, where. denotes the iteration number. The
current estimateﬁ%k and Tﬂg,k are used to derive the set of probability density functidffs }, Vi,
and{¢q; .}, Vi.

A f-divergent distance known as the Hellinger distance [207, 208] is used to measure the similarity

between the probability density functiofis: andg; .. The modified Hellinger distancl, ¢, ;s €

'H@g = 1 — 1 — ’ I/ (Lag ngde, (747)

where a value of{; s — 1 means high similarity betweejj . andgq; ., while H; s — 0 means low

[0, 1], is computed as

similarity. The modified Hellinger distance is also used to measure the similarity for the state-space
variables. The modified Hellinger distantg ;, H; s € [0, 1], is computed as

His=1— 41— 1// 4t s q; 48, (7.48)

where a value of; ; — 1 means high similarity betweejj, . andg;, ,, while ; ; — 0 means low

similarity.

The BVS is defined to encapsulates all similarity metrics as

T, = min ({'Hi,s}ng U {Hi,g}) (7.49)

Finding optimal estimates forf:, and T,, requires a stable covariance matri® .
Equation (7.27) states that the predicted covariance n8gix . should converge to a constant matrix
under certain prerequisite conditions. Bt 7 < Z, denote the number of time steps required to
ensure that the predicted covariance mabix, |z, 1), converges to ensure a stable covariance matrix

B 1,17k The BVS is deemed accurateZat, which is defined as

Pz, = min ({Hz, 1125 U {Hrre}). (7.50)

The BVEP criterion is defined as the BVS, which optimally maximises the conditions. The BVEP
criterion is defined as

[7, = max {T'z.}. (7.51)

T/:R'ICEUR,TLQ’kEUQ

If the reflectance values of the spectral bands are correlated, then the BVS is expanded to compensa
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for this as

Tz, = min { {Hzr0.} 25 1) (HarneiF ). (7.52)

In this thesis however it was assumed that the spectral bands were uncorrelated.

7.2.5 Bias-Variance Search algorithm

The BVSA is proposed in this section, which will attempt to estiniéfg, and T, , to satisfy the
BVEP criterion using the BVS given in equation (7.50). The BVSA starts by creating ideal operating
conditions for each parameter in the EKF, followed by using a hill-climbing algorithm to search for a
set ofT;zyk and“i”g,k that will satisfy at best the ideal operating conditions for all the parameters within
the EKF.

The first ideal condition is a system that employs perfect tracking of the observation vectors. This

ideal condition is used to create the probability density funcifgn This is obtained by

Ge = {tie  {G} = —00; {Gs} — 00,V s}. (7.53)

Under perfect conditions the probability density functigiz should tend to be an impulse of unity
power situated around the zero position, meaning zero error residual is measured.

The second ideal condition is a system that employs a stable state-space variable. This idee
condition is used to create the probability density functipn This is obtained by

Q;s = {Qi,s : {Ck} — OQ; {gk,{s}\s} — OQ; {gk:,s} — _OO} (754)

This condition creates an environment which attempts to track the state-space vanalhethe
smallest variation.

After the ideal observation conditions’ probability density functiafg and ¢;, have been
computed, a hill-climbing search algorithm is applied to find a set of initial parameters that will best
satisfy all these ideal conditions. The BVSA iteratively searches the parameter space and is describe

briefly below.
Step 1: The BVSA starts with the initial parameters setgs= 0dB, Y k, ands) , = 0dB,V k, s.

Step 2: Compute the state-space vect/Ef(IT‘IT),k at timeZr using the samé?;m = (j and“fbgﬁk, =

{¢L )5z for every time series in the sék;, }i=V.

Step 3: Obtain the probability density function of the residual erigrsover thelN time series at time

indexZr.
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Step 4: Obtain the probability density function of the residual errgrsof the state-space variabie

over theN time series at time indeX;.
Step 5: Compute the modified Hellinger distant&;, ¢ as shown in equation (7.47).
Step 6: Compute the modified Hellinger distant&.,. s as shown in equation (7.48).

Step 7: Determine the best performing conditi®fy,..; as
Hbcst = max {{KHIT@} {/HIT,s}}' (7.55)
Step 8: Determine the worst performing conditiGty,.,s; as

Hworst = min {{HZT,:S'} {HIT,S}}- (756)

Step 9: Adjust the new(; according to its relative position to the best and worst performing parameters
using a thresholgy,, py, € [0,1], p» € R. The adjustment is made as

<]g +’YL |f (HIT,S_Hworst > p%)

Hiest —Hworst

+1
. H —Hwors
Cli ’YL if < - ot < p#)

: (7.57)

Hbcst —Hworst

The variabley* is a decreasing scalar measured in decibels and is a non-negative real number.

Step 10: Adjust the newg; according to its relative position to the best and worst performing
parameters using a threshald, p € [0, 1], p» € R. The adjustment is made as

L L H Hz 7sfl?LLworst
+1 — gk’s + ,Y If <Hb:st_Hworst > pH)

Sk,s H H
’ L AL Zr1,s Ttworst
gk"g ’}/ If <,Hbest*’Hworst S pH)

(7.58)

The variabley* is a decreasing scalar measured in decibels and is a non-negative real number.

Repeat steps 2—10 until one of the parameleas ¢, , stabilises. After the search algorithm converges,

the estimated’; , and T4, are used to initialise the EKF.

7.3 AUTOCOVARIANCE LEAST SQUARES METHOD

In this section a method known as the ALS is investigated as an alternative for setting the initial

parameters of the EKF. If complete system knowledge about the measurement furartibtransition
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functionf were known, then the EKF only requires knowledge of the observation covariance matrix
‘R and process covariance matdx Several different approaches have been formulated to solve the
estimation of these covariance matrices [209-211]. All these methods assumed that the noise-shapir
matrix in the transition equation is known. In the absence of information on the noise-shaping matrix
the linear dynamic model is modelled as a Gaussian noise vector. The method that is investigated i
the ALS method, which operates in the absence of information on the noise shaping matrix [212]. The

ALS method assumes that:

1. both the measurement functibrand transition functiofi are known,

2. enough observation vectors are available to ensure internal covariance atriecomes

stable, and

3. the residuals at different time increments are uncorrelated.

The method estimates the observation covariance mRtr@nd process covariance matdx by
minimising an objective function [212]. The objective function is a function of the measurement
functionh, transition functiorf and the noise-shaping matrix (if present). The motivation for using this
method is that it avoids a complicated non-linear estimation approach used by methods that employ

maximum likelihood estimation approach [213].

7.4 SUMMARY

In this chapter a novel BVEP criterion was proposed, which computes the process covariance matri
and observation covariance matrix using spatial and temporal information. This criterion could easily
be extended, as shown in equation (7.52), to include spectral information if the spectral bands are
correlated.

The derived matrices in the BVS were then used to initialise the EKF, which is used as a feature
extraction method. The BVSA provides covariance matrices that could be used for a variety of different
applications. A variety of different search algorithms can be used with the BVEP criterion, such as
interior point, active set, simulated annealing, etc. These methods will be explored in chapter 8.
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