
CHAPTERSEVEN
EXTENDED KALMAN FILTER FEATURES

7.1 OVERVIEW

In this chapter, the Extended Kalman filter (EKF) is used as a feature extraction method, and is studied

in-depth. The chapter discusses how the state space variables are used within the EKF, followed by

how these are used to separate a set of time series into several classes. The importance of the initial

parameters used to set the EKF is discussed in section 7.2.3, illustrating how the behaviour is dependent

on these initial parameters.

A novel criterion called the Bias-Variance Equilibrium Point (BVEP), is proposed in section 7.2.4,

which defines a desired set of initial parameters that will provide optimal performance. The BVEP

criterion is derived using both the temporal and spatial information to design a system with desirable

behaviour. A specifically designed search algorithm called the Bias-Variance Search Algorithm

(BVSA) is proposed that will adjust the Bias-Variance Score (BVS) to best satisfy the BVEP criterion

that will provide good initial parameters for the EKF. The chapter concludes by briefly overviewing

the Autocovariance Least Squares (ALS) method, which will be used as benchmark when evaluating

the method proposed in section 7.2.4.

7.2 CHANGE DETECTION METHOD: EXTENDED KALMAN FILTER

7.2.1 Introduction

An EKF is discussed as a feature extraction method in this section, which is based on the assumption

that the parameters of the underlying model can be used to separate a set of time series into different

classes. The model is based on the seasonal behaviour of a specific land cover class. It should be

noted that a certain model would better describe a particular land cover class than another and that

proper model selection must be done for each different land cover class. It follows that more separable
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parameters derived by the EKF make it easier to detect changesin the assigned classes.

Lhermitte et al. proposed a method that separates different land cover classes using a Fourier

analysis of NDVI time series [116]. It was concluded that good separation is achievable when

evaluating the magnitude of the coefficients of the Fourier transform associated with the NDVI signal’s

mean and amplitude components. Kleynhanset al.proposed a method which jointly estimates the mean

and seasonal component of the Fourier transform using a triply modulated cosine function [30]. The

EKF uses the triply modulated cosine function to model NDVI time series by updating the mean (µ),

amplitude (α), and phase (θ) parameters for each time increment.

The method proposed in this section expands on the method of Kleynhans [30]et al.by modelling

the spectral bands separately and addresses the second constraint of the manual estimation of the initial

parameters for the EKF to ensure proper tracking of the observation vectors. The initial parameters

include the initial state-space vector, process noise covariance matrix and observation noise covariance

matrix. An operator typically uses a training set to supervise the adjustment of the initial parameters

until acceptable performance is obtained for a set of time series.

7.2.2 The method

The EKF is a non-linear estimation method, which estimates the unobserved parameters using noisy

observation vectors of a related observation model. The EKF has been used in the remote sensing

community for parameter estimation of values related to physical, biogeochemical processes or

vegetation dynamics models [204, 205].

In figure 7.1, a Fourier transform is used to observe that the majority of the signal energy is

contained in the mean and seasonal component of the first spectral band. This implies that the time

series in spectral band 1 are well represented in the time domain as a single cosine function with a

mean offset, amplitude and phase, as shown in figure 7.2.

This single cosine model is, however, not a good representation if the time series is non-stationary,

which is often the case; for example, inter-annual variability or land cover change. The triply

modulated cosine function proposed in [30] is extended here to model a spectral band as

xi,k,b = µi,k,b + αi,k,b cos(2πfsampi+ θi,k,b) + vi,k,b. (7.1)

The variablexi,k,b denotes the observed value of thebth spectral band’s time series,b ∈ {1, 7}, of

thekth pixel, k ∈ [1, N ], at time indexi, i ∈ [1, I]. The noise sample of thekth pixel at timei for

each spectral band is denoted byvi,k,b. The noise is additive with an unknown distribution on all the

spectral bands. The cosine function model is separately fitted to each of the spectral bands and is based

on several different parameters; the frequencyfsamp can be explicitly calculated based on the annual
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(a) Time series of reflectance values recorded by the MODIS spectral band 1.
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(b) Discrete Fourier transform of the time series shown in (a).

FIGURE 7.1: The time series recorded by the first spectral band for a geographical area is shown in (a)
with the corresponding discrete Fourier transform shown in (b).

vegetation growth cycle, and the sampling rate of the MODIS sensor. Given the 8 daily composite

MCD43A4 MODIS data set,fsamp is set to 8
365

. The non-zero mean of thebth spectral band of thekth

pixel at time indexi is denoted byµi,k,b, the amplitude byαi,k,b and the phase byθi,k,b. The values of

µi,k,b, αi,k,b andθi,k,b are dependent on time and must be estimated for each pixelk, ∀k, k ∈ [1, N ],

given the spectral band observation vectorsxi,k,b for i, ∀i, i ∈ [1, I], andb, b ∈ {1, 7}.

The MODIS spectral bands however are assumed to be uncorrelated and are treated independently

in this method. The indexb is omitted for convenience, with no loss in generality in the description of

this method. A state-space vector is estimated by the EKF at each time incrementi for each spectral

band and contains all the parameters. This is expressed as

~Wi,k = [Wi,k,1 Wi,k,2 Wi,k,3] = [Wi,k,µ Wi,k,α Wi,k,θ]. (7.2)

For the present example of land cover classification, it is assumed that the state-space vector~Wi,k

does not change significantly through time; hence, the process model is linear. The measurement

model, however, contains the cosine function and, as such, is evaluated via the standard Jacobian

formulation, through linear approximation of the non-linear measurement function around the current

state-space vector. The state-space vector~Wi,k is related to the observation vectorxi,k via a non-linear

measurement function. Both the transition function and measurement function are assumed to be
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(a) Extended Kalman filter tracking the observation vectors extracted from spectral band 1.
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(b) Extended Kalman filter tracking the observation vectors extracted from spectral band 2.

FIGURE 7.2: The tracking of the first two spectral bands using the triply modulated cosine function.

non-perfect, so the addition of process and observation noise is required.

Converting state-space vectors to land cover classes

A machine learning algorithm is used to process the estimated state-space vectors to assign class labels.

A class label is assigned to each state-space vector for each pixel at each time increment. This is

expressed as

Ci,k = FC(Wi,k,1, . . . ,Wi,k,S) = FC( ~Wi,k), (7.3)

where the functionFC denotes either a supervised or unsupervised classifier. The class label for the

kth pixel at timei is denoted byCi,k. Change is declared when a pixelk changes in class label as a

function of timei. This is expressed as

Ci,k 6= Cj,k, 0 ≤ i ≤ j, ∀i, j. (7.4)

The importance of the initial parameters will be discussed in the next section.
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7.2.3 Importance of the initial parameters

The EKF recursively solves the state-space form of a linear dynamic model [185, Ch. 1]. In this section

the importance of the initial estimates of the system’s variables is shown.

Let xk = {~xi,k}
i=I
i=1 , k ∈ [1, N ], denote thekth time series in the set of time series consisting

of observation vectors, with each observation vector denoted by~xi,k = xi,k as the spectral bands are

treated independently. Let~Wi,k = {Wi,k,s}
s=S
s=1 denote the corresponding state-space vector forxi,k.

Then it is said that the EKF solves the state-space form recursively using the transition equation given

as

~Wi,k = f( ~W(i−1),k) + z(i−1),k, (7.5)

and the measurement equation given as

~xi,k = h

(

~Wi,k

)

+ vi,k. (7.6)

The transition function is denoted byf and the measurement function is denoted byh. A brief

overview of the operations of the EKF which is shown in section 5.5 is revisited for convenience. It is

well known from estimation theory that many prediction results simplify when Gaussian distributions

are assumed. The process noise vector and observation noise vector are thus assumed to be Gaussian

distributed. The process noise vector is thus denoted byz(i−1),k, z(i−1),k ∼ N (0,Q(i−1),k), and the

observation noise vector is denoted byvi,k, vi,k ∼ N (0,Ri,k).

The EKF recursively adapts the state-space vector for each incoming observation vector by

predicting and updating the vector. In the prediction step the state-space vector~̂
W(i|i−1),k and

covariance matrixB(i|i−1),k are predicted. The predicted state-space vector’s estimate~̂
W(i|i−1),k is

computed as

~̂
W(i|i−1),k = f

(

~̂
W(i−1|i−1),k

)

, (7.7)

and the predicted covariance matrixB(i|i−1),k is computed as

B(i|i−1),k = Q(i−1),k + FestB(i−1|i−1),kF
T
est. (7.8)

The matrixFest is the local linearisation of the non-linear transition functionf . In the updating step,

the posterior estimate of the state-space vector~̂
W(i|i),k is computed as

~̂
W(i|i),k =

~̂
W(i|i−1),k + Ki,k

(

~xi,k − h

(

~Wi,k

)

)

, (7.9)
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using the optimal Kalman gain denoted byKi,k which is computed as

Ki,k = B(i|i−1),kH
T
estS

−1
i,k . (7.10)

The matrixHest is the local linearisation of the non-linear measurement functionh. The matrixSi,k

denotes the innovation term, which is computed as

Si,k = HestB(i|i−1),kH
T
est +Ri,k. (7.11)

The posterior estimate of the covariance matrixB(i|i),k is computed as

B(i|i),k = B(i|i−1),k − Ki,kSi,kK
T
i,k. (7.12)

The tracking performance of the EKF is assessed by evaluating the stability of the state-space

vector and error in estimating the observation vector. The error in estimating the observation vector is

computed as the absolute error between the estimated observation vector~̂xi,k and the actual observation

vector~xi,k. This is expressed as

E~x,i,k = |~xi,k − ~̂xi,k| =
∣

∣

∣~xi,k − h

(

~W(i|i),k

)∣

∣

∣. (7.13)

In equation (7.13), it is observed that the state-space vector~̂
W(i|i),k determines the observation

errorE~x,i,k. Thus the state-space vector~̂W(i|i),k can be selected to minimise the observation error. The

MODIS spectral bands are assumed to be uncorrelated and only produce a single reflectance value for

each pixel. This simplifies equation (7.13) to

E~x,i,k = |xi,k − x̂i,k| =
∣

∣

∣
xi,k − h

(

~W(i|i),k

)∣

∣

∣
. (7.14)

The observation error is easily minimised by significantly varying~̂
W(i|i),k to accommodate the

fluctuation in observation vectors. This does not bode well if the underlying structure of the system

is also being analysed. A significantly varying state-space vector~̂
W(i|i),k is indicative of an unstable

model. The conclusion is that the state-space model must be kept stable, while also attempting to

minimise equation (7.14).

The initial estimates provided to the EKF will now be discussed to illustrate their importance. A

stable state-space vector requires a small adaptation from~̂
W(i−1|i−1),k to ~̂

W(i|i),k. The initial estimated

state-space vector~̂W(0|0),k,
~̂
W(0|0),k ∈ W, at the first observation vector~x0,k is optimised using a local

search method or domain knowledge which satisfies
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~̂
W(0|0),k = argmin

~̂
W∈W

{

∣

∣

∣
~x0,k − h

(

~̂
W
)∣

∣

∣

}

, (7.15)

then

E~x,0,k =
∣

∣

∣
~x0,k − h

(

~̂
W(0|0),k,b

)∣

∣

∣
. (7.16)

The recursive adaptation of the state-space vector’s estimate~̂
W(i|i),k is then calculated using the

predicted step given in equation (7.7) and the updating step in equation (7.9). Equation (7.7) is

substituted into equation (7.9) to yield

~̂
W(i|i),k = f

(

~̂
W(i−1|i−1),k

)

+ Ki,k

(

~xi,k − h

(

f

(

~̂
W(i−1|i−1),k

)))

. (7.17)

The Kalman gainKi,k determines the rate of change in the error between the predicted and estimated

state-space vector. If the observation error is large and the Kalman gain is large, then large changes

will be made to the current state-space vector. If the observation error is large and the Kalman gain

is small, then the state-space’s estimate~̂
W(i|i),k will adapt slowly, which typically leads to a large

observation errorE~x,i,k (equation (7.13)) until it eventually converges. If the observation error is small

and the Kalman gain is large, then the state-space vector will struggle to converge, as it will continually

overshoot the desired state-space vector that will minimise equation (7.13). Substituting the optimal

Kalman gain given in equation (7.10) into equation (7.17) expands it to

~̂
W(i|i),k = f

( ~̂
W(i−1|i−1),k

)

+B(i|i−1),kH
T
estS

−1
i,k

(

~xi,k − h

(

f

(

~̂
W(i−1|i−1),k

)))

. (7.18)

The Kalman gain is dependent on the predicted covariance matrixB(i|i−1),k and innovation termSi,k.

The innovation term controls the trust region within the state-space vector’s space. This is dependent

on the predicted covariance matrixB(i|i−1),k and observation covariance noiseRi,k. Substituting the

innovation term given in equation (7.11) into equation (7.18) results in

~̂
W(i|i),k = f

( ~̂
W(i−1|i−1),k

)

+B(i|i−1),kH
T
est(HestB(i|i−1),kH

T
est +

Ri,k)
−1
(

~xi,k − h

(

f

(

~̂
W(i−1|i−1),k

)))

. (7.19)

The last term to evaluate is the predicted covariance matrixB(i|i−1),k. The predicted covariance

matrixB(i|i−1),k is substituted to yield an updated state-space vector as
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~̂
W(i|i),k = f

(

~̂
W(i−1|i−1),k

)

+ (Q(i−1),k + FestB(i−1|i−1),kF
T
est)H

T
est

(Hest(Q(i−1),k + FestB(i−1|i−1),kF
T
est)H

T
est +Ri,k)

−1

(

~xi,k − h

(

f

(

~̂
W(i−1|i−1),k

)))

. (7.20)

The transition functionf and measurement functionh are assumed to be known. The observation

vector ~xi,k is supplied by the real system. The only variables left within equation (7.20) are: (1)

previous state-space vector’s estimate~̂
W(i−1|i−1),k, (2) process noise’s covariance matrixQ(i−1),k, (3)

previous estimate of covariance matrixB(i−1|i−1),k, and (4) observation noise’s covariance matrixRi,k.

The previous estimation of the covariance matrixB(i−1|i−1),k will be briefly explored, as it is part

of equation (7.20). The covariance matrixB(i−1|i−1),k is updated with

B(i−1|i−1),k = B(i−1|i−2),k − K(i−1),kS(i−1),kK
T
(i−1),k. (7.21)

Substituting the Kalman gain of equation (7.10) into equation (7.21) yields

B(i−1|i−1),k = B(i−1|i−2),k − (B(i−1|i−2),kH
T
estS

−1
(i−1),k)S(i−1),k(B(i−1|i−2),kH

T
estS

−1
(i−1),k,b)

T. (7.22)

Substituting the innovation term of equation (7.11) into equation (7.22) yields

B(i−1|i−1),k = B(i−1|i−2),k − (B(i−1|i−2),kH
T
est(HestB(i−1|i−2),kH

T
est +R(i−1),k)

−1)

(HestB(i−1|i−2),kH
T
est +R(i−1),k)(B(i−1|i−2),kH

T
est(HestB(i−1|i−2),k

H
T
est +R(i−1),k)

−1)T. (7.23)

The predicted covariance matrixB(i−1|i−2),k given in equation (7.8) is substituted into equation (7.23),

which yields

B(i−1|i−1),k = (Q(i−2),k + FestB(i−2|i−2),kF
T
est)− ((Q(i−2),k + FestB(i−2|i−2),kF

T
est)H

T
est

(Hest(Q(i−2),k + FestB(i−2|i−2),kF
T
est)H

T
est +R(i−1),k)

−1)(Hest(Q(i−2),k +

FestB(i−2|i−2),kF
T
est)H

T
est +R(i−1),k)((Q(i−2),k + FestB(i−2|i−2),kF

T
est)H

T
est

(Hest(Q(i−2),k + FestB(i−2|i−2),kF
T
est)H

T
est +R(i−1),k)

−1)T. (7.24)
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Equation (7.20) is computed for every newly obtained observation vector. The state-space vector’s

estimate ~̂
W(i|i),k requires the results from equation (7.24) to compute the current estimates. The

transition functionFest and measurement functionHest are known, then the only variables left to

compute in equation (7.24) are: (1) initial covariance matrixB(0|0),k, (2) process covariance matrix

Q(i−1),k, and (3) observation noise’s covariance matrixRi,k. The conclusion from equation (7.20) and

equation (7.24) is that the initial parameters of importance are:

1. the initial state-space vector’s estimate~̂W(0|0),k,

2. the initial covariance matrix estimateB(0|0),k,

3. the process covariance matrixQ(i−1),k, and

4. the observation covariance matrixRi,k.

The initial state-space vector’s estimate~̂W(0|0),k is initialised using equation (7.15). Even if an

incorrect estimate is used, the state-space vector~̂
W(i|i),k should converge to the correct vector asi →

∞. The same is true about the initial covariance matrixB(0|0),k. As i → ∞, the covariance matrix

B(i|i),k should tend to converge to the correct matrix. The usual operation of the EKF sets the initial

covariance matrix equal to an identity matrix.

The initial covariance matrixB(0|0),k will stabilise, as equation (7.8) is known as a discrete Riccati

equation, and under certain circumstances will converge, which results in equation (7.24) converging

to a stable state [206]. The conditions for convergences of the discrete Riccati equation are:

1. the process covariance matrixQ(i−1),k is a positive definite matrix,

2. the observation covariance matrixRi, k is a positive definite matrix,

3. the pair (Fest, z(i−1),k) is controllable,i.e.,

rank
[

z(i−1),k|Festz(i−1),k|F
2
estz(i−1),k| . . . |F

N−1
est z(i−1),k

]

= N, (7.25)

4. and the pair (Fest,Hest) is observable,i.e.,

rank
[

H
T
est|F

T
estH

T
est|(F

T
est)

2
H

T
est| . . . |(F

T
est)

N−1
H

T
est

]

= N, (7.26)

with N ∈ N. Under the above conditions, the predicted covariance matrixB(i|i−1),k converges to a

constant matrix
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lim
i→∞

B(i|i−1),k = Bconst, (7.27)

whereBconst is a symmetric positive definite matrix.Bconst is a unique positive definite solution of the

discrete Riccati equation andBconst is independent of the initial distribution of the initial state-space

vector’s estimate~̂W(0|0),k.

The system can also estimate~̂W(0|0),k andB(0|0),k using an offline training phase. Offline refers

to observation vectors that are stored and are used recursively for estimation. The process covariance

matrix Q(i−1),k and observation covariance matrixRi,k are assumed to be constant throughout the

recursive estimation of the observation vector. This is usually manually set by a system analyst in an

offline training phase through successive adjustments. In this thesis the initial EKF is defined as:

1. The initial state-space vector~̂W(0|0),k is estimated offline.

2. The initial covariance matrixB(0|0),k is estimated offline.

3. The process covariance matrixQ(i−1),k is set to a fixed matrix.

4. The observation covariance matrixRi,k is set to a fixed matrix.

The EKF will track the observation vectors with minimum residual and have a stable internal

state-space vector if all initial parameters are properly estimated.

7.2.4 Bias-Variance Equilibrium Point

The general approach to estimating and initialising the state-space vectors, as well as the observation

and process noise’s covariance matrices for the EKF, is usually for an analyst to determine these offline

using a training data set. Proper estimation of the initial parameters through various methods leads to

good feature vectors from the EKF, while improper estimation could cause system instability, which

leads to delayed tracking or abnormal system behaviour.

A novel BVEP criterion is proposed in this section that will use temporal and spatial information

to design a parameter space where desirable system behaviour is expected. This is accomplished

by first observing the dependencies between the initial parameters. The proposed criterion uses an

unsupervised BVSA to adjust the BVS iteratively to determine proper initial parameters for the EKF.

The characteristics of the initial parameters are first explored before describing the criterion. The first

parameter is the observation covariance matrixRi,k. The observation covariance matrixRi,k is defined

as

Ri,k = E[(xi,k−E[xi,k])
2]. (7.28)
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This is due to the fact that the spectral bands are assumed to beuncorrelated and that the MODIS

sensor only produces a single reflectance value per pixel per spectral band. The second parameter is

the process covariance matrixQi,k. The process covariance matrixQi,k is defined as

Qi,k =











E[(Wi,k,1−E[Wi,k,1])(Wi,k,1−E[Wi,k,1)] . . . E[(Wi,k,1−E[Wi,k,1])(Wi,k,S−E[Wi,k,S)]
...

. . .
...

E[(Wi,k,S−E[Wi,k,S ])(Wi,k,1−E[Wi,k,1)] . . . E[(Wi,k,S−E[Wi,k,S ])(Wi,k,S−E[Wi,k,S)]











. (7.29)

The state-space variables within the state-space vector are assumed to be uncorrelated; the process

covariance matrix simplifies to

Qi,k = diag
{

E[(Wi,k,s−E[Wi,k,s])
2]
}

, ∀s. (7.30)

The setting of the initial parameters has a major effect on the overall system performance. The

initial state-space vector~W(0|0),k for the first observation vector~x0,k is optimised using equation (7.15).

The initial estimated covariance matrixB(0|0),k is usually set to the identity matrix. This only leaves

the estimation of the observation covariance matrixRi,k and process covariance matrixQi,k. Let the

uncorrelated observation covariance matrix’s diagonals be placed into a vector called the observation

candidate vectorΥR,i,k, wereΥR,k is selected from the spaceυR, and it is expressed as

ΥR,i,k = 10 ζi,k/10, (7.31)

with

ζi,k = 10 log10
(

E[(~xi,k−E[~xi,k])
2]
)

. (7.32)

Let the uncorrelated process covariance matrix’s diagonals be placed into a vector called the process

candidate vectorΥQ,i,k, wereΥQ,k is selected from spaceυQ, which is expressed as

ΥQ,i,k = 10[ςi,k,1 ... ςi,k,S ]/10 = 10~ςi,k/10, (7.33)

with

ςi,k,s = 10 log10
(

E[(Wi,k,s−E[Wi,k,s])
2]
)

. (7.34)

It should be noted that the EKF only updates recursively the state-space vector~W(i|i),k, and

covariance matrixB(i|i),k. The time index of the observation covariance matrixQi,k has been left
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inserted to emphasise the time effect in a dynamic linear system. The EKF, however, does not alter the

observation covariance matrix at each time increment and is thus constant for all time indices. This

is formally stated asQ=Qi, ∀i. The process covariance matrix is also retained as a constant for all

time indices and this is stated asR=Ri, ∀i. This concludes that the observation covariance matrix

and process covariance matrix are independent of time. This property allows the observation candidate

vector to be rewritten as

ΥR,k = 10 ζk/10 ∀k, (7.35)

and the process candidate vector rewritten as

ΥQ,k = 10[ςk,1 ... ςk,S ]/10 = 10~ςk/10 ∀k. (7.36)

It was stated earlier that the performance of the Kalman filter is measured by the residual error in

tracking the observation vectors and the internal stability of the state-space vector. A parameter space

is thus defined to describe the system behaviour.

The first desired behaviour is the tracking of the observation vector with minimal residual. This

desired behaviour is expressed as the minimal achievable sum of absolute residualsσE , which is

computed as

σE = min
ΥR,k∈υR,ΥQ,k∈υQ

{

N
∑

k=1

I
∑

i=1

∥

∥x̂i,k − xi,k

∥

∥

}

, (7.37)

then

[RσE
,QσE

] = argmin
ΥR,k∈υR,ΥQ,k∈υQ

{

N
∑

k=1

I
∑

i=1

∥

∥x̂i,k − xi,k

∥

∥

}

. (7.38)

ThusσE is the minimal residual, and[RσE
,QσE

] represents the parameters required to achieve this

value. The minimal residual is computed as

σE =
N
∑

k=1

I
∑

i=1

∥

∥x̂i,k − xi,k

∥

∥

∣

∣

∣

∣

∣

R=RσE
,Q=QσE

. (7.39)

The second criterion is to have internal stability of the state-space vector. This can be measured as

the variations in each of the state-space variables. The second desired behaviour is expressed as the

minimal achievable absolute deviation in state-space variables, which is computed as
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σs = min
ΥR,k∈υR,ΥQ,k∈υQ

{

N
∑

k=1

I
∑

i=1

∥

∥Wi,k,s − E[Wi,k,s]
∥

∥

}

, ∀s, (7.40)

then

[Rσs
,Qσs

] = argmin
ΥR,k∈υR,ΥQ,k∈υQ

{

N
∑

k=1

I
∑

i=1

∥

∥Wi,k,s − E[Wi,k,s]
∥

∥

}

, ∀s. (7.41)

Thusσs is the minimal absolute deviation in the state-space variables. The set[Rσs
,Qσs

] represents

the parameters required to achieve this value. The minimal absolute deviation is computed as

σs =
N
∑

k=1

I
∑

i=1

∥

∥Wi,k,s − E[Wi,k,s]
∥

∥

∣

∣

∣

∣

∣

R=Rσs ,Q=Qσs

. (7.42)

The spatial information is included through the use of a set of time series all located in a specific

geographical area. The set ofN time series for a geographical area is denoted by{~xi,k}. Let qi,E

denote the probability density function derived at time indexi from the residuals given over the set of

observations{xi,k}
k=N
k=1 such thatP [a ≤ E ≤ b] =

∫ b

a
f(e)de =

∫ b

a
f(e,R,Q)de i.e.,

P [a ≤ E ≤ b] =

∫ b

a

q(e,R,Q)de =

∫ b

a

qi,Ede. (7.43)

Let qi,s denote the probability density function for the state-space variables derived at time index

i from the deviations given over the set of state-space vectors{Wi,k,s}
k=N
k=1 such thatP [a ≤ s ≤ b] =

∫ b

a
f(s′)ds′ =

∫ b

a
f(s′,R,Q)ds′ i.e.,

P [a ≤ s ≤ b] =

∫ b

a

q(s′,R,Q)ds′ =

∫ b

a

qi,sds
′. (7.44)

A conditioned observation probability density functionq∗i,E is defined as the probability density

functionqi,E in equation (7.43), which uses the set[RσE
,QσE

] to satisfy the condition given in equation

(7.39) as

P [a ≤ E ≤ b] =

∫ b

a

q(e,RσE
,QσE

)de =

∫ b

a

q∗i,Ede. (7.45)

A conditioned process probability density functionq∗i,s is defined as the probability density function

qi,s in equation (7.44), which uses the set[Rσs
,Qσs

] to satisfy the condition given in equation (7.42) as

P [a ≤ s ≤ b] =

∫ b

a

q(s′,Rσs
,Qσs

)ds′ =

∫ b

a

q∗i,sds
′. (7.46)

The performance of the current estimateΥR,k andΥQ,k is defined by a criterion that evaluates how
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well the conditions stated in equation (7.37) and equation (7.40) are satisfied. The current estimates

are recursively updated and are denoted byΥ̂ι
R,k andΥ̂ι

Q,k, whereι denotes the iteration number. The

current estimateŝΥι
R,k andΥ̂ι

Q,k are used to derive the set of probability density functions{q̂ιi,E}, ∀i,

and{q̂ιi,s}, ∀i.

A f-divergent distance known as the Hellinger distance [207, 208] is used to measure the similarity

between the probability density functionsq̂ιi,E andq∗i,E . The modified Hellinger distanceHi,E , Hi,E ∈

[0, 1], is computed as

Hi,E = 1−

√

√

√

√1−

√

∫ ∞

−∞

q̂ιi,E q
∗
i,Ede, (7.47)

where a value ofHi,E → 1 means high similarity between̂qιi,E andq∗i,E , while Hi,E → 0 means low

similarity. The modified Hellinger distance is also used to measure the similarity for the state-space

variables. The modified Hellinger distanceHi,s, Hi,s ∈ [0, 1], is computed as

Hi,s = 1−

√

√

√

√1−

√

∫ ∞

−∞

q̂ιi,s q
∗
i,sds

′, (7.48)

where a value ofHi,s → 1 means high similarity between̂qιi,b,s andq∗i,b,s, while Hi,s → 0 means low

similarity.

The BVS is defined to encapsulates all similarity metrics as

Γi = min
(

{Hi,s}
s=S
s=1 ∪ {Hi,E}

)

. (7.49)

Finding optimal estimates for̂Υι
R,k and Υ̂ι

Q,k requires a stable covariance matrixB(i|i),k.

Equation (7.27) states that the predicted covariance matrixB(i|i),k should converge to a constant matrix

under certain prerequisite conditions. LetIT , IT ≪ I, denote the number of time steps required to

ensure that the predicted covariance matrixB(IT |IT−1),k converges to ensure a stable covariance matrix

B(IT |IT ),k. The BVS is deemed accurate atIT , which is defined as

ΓIT = min
(

{HIT ,s}
s=S
s=1 ∪ {HIT ,E}

)

. (7.50)

The BVEP criterion is defined as the BVS, which optimally maximises the conditions. The BVEP

criterion is defined as

Γ∗
IT

= max
Υι

R,k
∈υR,Υι

Q,k
∈υQ

{ΓIT }. (7.51)

If the reflectance values of the spectral bands are correlated, then the BVS is expanded to compensate
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for this as

ΓIT = min
{

{

{HIT ,b,s}
s=S
s=1

}b=B

b=1
{HIT ,b,E}

b=B
b=1

}

. (7.52)

In this thesis however it was assumed that the spectral bands were uncorrelated.

7.2.5 Bias-Variance Search algorithm

The BVSA is proposed in this section, which will attempt to estimateΥ̂ι
R,k and Υ̂ι

Q,k to satisfy the

BVEP criterion using the BVS given in equation (7.50). The BVSA starts by creating ideal operating

conditions for each parameter in the EKF, followed by using a hill-climbing algorithm to search for a

set ofΥ̂ι
R,k andΥ̂ι

Q,k that will satisfy at best the ideal operating conditions for all the parameters within

the EKF.

The first ideal condition is a system that employs perfect tracking of the observation vectors. This

ideal condition is used to create the probability density functionq∗i,E . This is obtained by

q∗i,E =
{

qi,E : {ζk} → −∞; {ςk,s} → ∞, ∀ s
}

. (7.53)

Under perfect conditions the probability density functionq∗i,E should tend to be an impulse of unity

power situated around the zero position, meaning zero error residual is measured.

The second ideal condition is a system that employs a stable state-space variable. This ideal

condition is used to create the probability density functionq∗i,s. This is obtained by

q∗i,s =
{

qi,s : {ζk} → ∞; {ςk,{s}\s} → ∞; {ςk,s} → −∞
}

. (7.54)

This condition creates an environment which attempts to track the state-space variables with the

smallest variation.

After the ideal observation conditions’ probability density functionsq∗i,E and q∗i,s have been

computed, a hill-climbing search algorithm is applied to find a set of initial parameters that will best

satisfy all these ideal conditions. The BVSA iteratively searches the parameter space and is described

briefly below.

Step 1: The BVSA starts with the initial parameters set asζ0k = 0dB, ∀ k, andς0k,s = 0dB,∀ k, s.

Step 2: Compute the state-space vector~W(IT |IT ),k at timeIT using the samêΥι
R,k = ζ ιk andΥ̂ι

Q,k =

{ζ ιk}
s=S
s=1 for every time series in the set{xk}

k=N
k=1 .

Step 3: Obtain the probability density function of the residual errorsqιi,E over theN time series at time

indexIT .
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Step 4: Obtain the probability density function of the residual errorsqιi,s of the state-space variables

over theN time series at time indexIT .

Step 5: Compute the modified Hellinger distanceHIT ,E as shown in equation (7.47).

Step 6: Compute the modified Hellinger distanceHIT ,s as shown in equation (7.48).

Step 7: Determine the best performing conditionHbest as

Hbest = max
{

{HIT ,E} {HIT ,s}
}

. (7.55)

Step 8: Determine the worst performing conditionHworst as

Hworst = min
{

{HIT ,E} {HIT ,s}
}

. (7.56)

Step 9: Adjust the newζ ιk according to its relative position to the best and worst performing parameters

using a thresholdρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment is made as

ζ ι+1
k =







ζ ιk + γι if
(

HIT ,E−Hworst

Hbest−Hworst
> ρH

)

ζ ιk − γι if
(

HIT ,E−Hworst

Hbest−Hworst
≤ ρH

) . (7.57)

The variableγι is a decreasing scalar measured in decibels and is a non-negative real number.

Step 10: Adjust the newς ιk according to its relative position to the best and worst performing

parameters using a thresholdρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment is made as

ς ι+1
k,s =







ς ιk,s + γι if
(

HIT ,s−Hworst

Hbest−Hworst
> ρH

)

ς ιk,s − γι if
(

HIT ,s−Hworst

Hbest−Hworst
≤ ρH

) . (7.58)

The variableγι is a decreasing scalar measured in decibels and is a non-negative real number.

Repeat steps 2–10 until one of the parametersζk or ςk,s stabilises. After the search algorithm converges,

the estimateŝΥι
R,k andΥ̂ι

Q,k are used to initialise the EKF.

7.3 AUTOCOVARIANCE LEAST SQUARES METHOD

In this section a method known as the ALS is investigated as an alternative for setting the initial

parameters of the EKF. If complete system knowledge about the measurement functionh and transition
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function f were known, then the EKF only requires knowledge of the observation covariance matrix

R and process covariance matrixQ. Several different approaches have been formulated to solve the

estimation of these covariance matrices [209–211]. All these methods assumed that the noise-shaping

matrix in the transition equation is known. In the absence of information on the noise-shaping matrix

the linear dynamic model is modelled as a Gaussian noise vector. The method that is investigated is

the ALS method, which operates in the absence of information on the noise shaping matrix [212]. The

ALS method assumes that:

1. both the measurement functionh and transition functionf are known,

2. enough observation vectors are available to ensure internal covariance matrixB(i|i) becomes

stable, and

3. the residuals at different time increments are uncorrelated.

The method estimates the observation covariance matrixR and process covariance matrixQ by

minimising an objective function [212]. The objective function is a function of the measurement

functionh, transition functionf and the noise-shaping matrix (if present). The motivation for using this

method is that it avoids a complicated non-linear estimation approach used by methods that employ a

maximum likelihood estimation approach [213].

7.4 SUMMARY

In this chapter a novel BVEP criterion was proposed, which computes the process covariance matrix

and observation covariance matrix using spatial and temporal information. This criterion could easily

be extended, as shown in equation (7.52), to include spectral information if the spectral bands are

correlated.

The derived matrices in the BVS were then used to initialise the EKF, which is used as a feature

extraction method. The BVSA provides covariance matrices that could be used for a variety of different

applications. A variety of different search algorithms can be used with the BVEP criterion, such as

interior point, active set, simulated annealing, etc. These methods will be explored in chapter 8.
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