
CHAPTERSIX
SEASONAL FOURIER FEATURES

6.1 OVERVIEW

In this chapter, the concept of extracting meaningful features from a time series is investigated. The

chapter starts by defining the difference between the concept of whole clustering and subsequence

clustering. It continues by exploring a fundamental pitfall inherent when using subsequence clustering

to analyse time series. This is motivated at the hand of an experiment presented by Keogh [29] and

a worked-out visual example. A key feature extraction method, that will extract the Seasonal Fourier

Features (SFF) is presented in section 6.4, which will overcome the disadvantage of using subsequence

clustering. The chapter concludes by defining how this SFF is used in a post-classification change

detection algorithm to detect change in time series.

6.2 TIME SERIES ANALYSIS

A time series is a sequence of measurements, typically recorded at successive time intervals [191].

Time series have a distinct natural temporal ordering. This induces a high correlation between

measurements taken at a shorter interval from a system, when compared to measurements taken at

a longer interval from the same system. Time series analysis comprises methods for analysing time

series to extract statistics and underlying characteristics. Several different types of analysis can be

applied to time series and are categorised as: exploration, description, prediction and forecasting.

1. Exploration provides in-depth information on serial dependence and any cyclic behaviour

patterns within time series. The time series can also be graphically examined to observe any

salient characteristics.
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2. Description provides information of underlying structures hidden within the time series.

Algorithms were developed to decompose time series into several components to examine any

hidden trends, seasonality, slow and fast variations, cyclic irregularities and anomalies.

3. Prediction provides information on any near future event in the time series and can be used as

feedback to control a system’s behaviour that is providing the data points of the time series.

4. Forecasting uses statistical models to generate variations of the time series to observe alternative

possible events that might occur in the future.

Clustering is the most frequently used exploration tool in data mining algorithms. The vast

quantities of important information typically hidden in time series have attracted substantial attention

[29]. Clustering is used in many algorithms as either: rule discovery [192], indexing [193],

classification [194], prediction [195], or anomaly detection [196]. Clustering of time series is broadly

divided into two categories:whole clusteringandsubsequence clustering[29].

Whole clustering: Whole clustering is similar to the conventional clustering of discrete objects. Each

time series is viewed as an individual discrete object and is thus clustered into groups with other

time series.2

Subsequence clustering:Subsequence clustering is when multiple individual time series (subse-

quences) are extracted with a sliding window from a single time series. Letx, x =

[~x1, ~x2, . . . , ~xI ], denote a time series of lengthI. A subsequence extracted from time series

x is given as

xp =
(

~xp, ~xp+1, . . . , ~xp+Q−1

)

, (6.1)

for 1 ≤ p ≤ I-Q+1, whereQ is the length of the subsequence. The sequential extraction of

subsequences in equation (6.1) is achieved by using a temporal sliding window that has a length

of Q and positionp, p ∈ N0, that is incremented with a natural numberN to extract sequential

subsequencesxp from x. This set of subsequences are clustered into groups, similar to how

whole clusteringclusters an entire time series.2

6.3 MEANINGLESS ANALYSIS

Recently the data mining community’s attention was drawn to a fundamental limitation in the clustering

of subsequences that are extracted with a sliding window from a time series [29]; the sliding window
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causes the clustering algorithms to create meaningless results. This is due to the fact that clusters

extracted from the subsequences are forced to obey a certain constraint that is pathologically unlikely

to be satisfied by any data set. The term meaningless originates from the effect of creating random

clusters when applying a clustering algorithm to such subsequences [29].

It should be noted that it is well understood that clustering in a high-dimensional feature space

usually produces useless results if proper design considerations are not followed [197, 198]. For

example, theK-nearest neighbour algorithm produces fewer useful clusters in higher dimensions.

This is because the ratio between the nearest neighbour and the average neighbour distance rapidly

converges to one in higher dimensions. However, the analysis on time series usually results in high

dimensionality, which typically has a low intrinsic dimensionality [199]. This is not the limitation that

will be discussed in this chapter.

Keogh and Lin [29] made a surprising claim, which called into question dozens of published

results. The problem identified lies in the way the features are extracted from the sliding window

when presented to the clustering algorithm. This claim is supported by the following experiment.

Experiment presented in [29]: The variability in the clusters formed will be tested using the same

clustering design considerations and methodology on different data sets containing time series. It

is shown that any partitional or hierarchical clustering algorithm would suffice in this experiment,

and under this assumption theK-means was used for its robustness in forming reliable clusters.

TheK-means clustering algorithm forms clusters, which are used to define a set of functions.

Let ϑ(a) = {ϑ1(a), ϑ2(a), . . . , ϑK(a)} denote the cluster centroids derived with theK-means

algorithm from the first data set.

Let ϑ(b) = {ϑ1(b), ϑ2(b), . . . , ϑK(b)} denote the cluster centroids derived with theK-means

algorithm from the second data set.

LetDed(ϑ
i, ϑj) denote the Euclidean distance between two cluster centroids. The distance metric

Ded(ϑ
i, ϑj) determines the shortest possible distance for an one-to-one mapping of two sets of

centroidsϑ(a) andϑ(b).

The difference between the two sets of cluster centroids is defined as

DM(ϑ(a), ϑ(b)) =
K
∑

i=1

min
j
[Ded(ϑ

i(a), ϑj(b))]. (6.2)

The consistency of a clustering algorithm to form similar sets of clusters is measured if the first

data set used to find cluster centroidsϑ(a) and the second data set used to find cluster centroids
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ϑ(b) is the same data set. A more important measurement is to determine the similarity between

the centroids when they are not the same data set.

Keogh and Lin [29] proposed a clustering meaningfulness index as

CM(ϑ(a), ϑ(b)) =
DM(ϑ(a), ϑ(a))

DM(ϑ(a), ϑ(b))
. (6.3)

The clustering meaningfulness index measures the similarity between two data sets’ clusters

despite the fact that two different data sets are used.

Intuitively, if proper clustering design considerations were applied the numerator in

equation (6.3) should converge to zero. In contrast to this statement, if the data sets are unrelated,

then the denominator should tend to a large number. This in effect naturally makes the clustering

meaningfulness indexCM(ϑ(a), ϑ(b)) → 0.

The results produced in this experiment were unexpected. When a random walk data set was

compared to a stock market data set, the clustering meaningfulness index averaged between 0.5

and 1 whensubsequence clusteringwas applied to the time series. This means that if clustering

was performed on the stock market data set, the centroids derived could be re-used for the random

walk data set and the difference in clustering results could not be observed.

The same was not true whenwhole clusteringwas used on these two data sets. The clustering

meaningfulness index converged to zero when the stock market data set and random walk data

set were clustered using awhole clusteringapproach. Several additional experiments were

conducted in [29] to motivate this behaviour as a property of the sliding window.2

The sliding window causes the clustering algorithm to create meaningless results, as it forms sine

wave cluster centroids regardless of the data set, which clearly makes it impossible to distinguish one

data set’s clusters from another. Furthermore, the sine waves within the cluster centroids are always

out of phase with each other by exactly1/K period [29]. The inability to produce meaningful cluster

centroids revealed a new question: how do the cluster centroids obtain this special structure [29]? In

this section a visual example is shown to illustrate why the clustering algorithm produces meaningless

results.

Visual example: Assume a triply modulated cosine function, which is given as

xi = µi + αi cos(2πfi+ θi), (6.4)
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FIGURE6.1: The five feature points, separated by a period ofπ
2
, are extracted from the sliding window,

and is denoted by the set{f1(p), f2(p), f3(p), f4(p), f5(p)}.

where the meanµi, amplitudeαi, frequencyf , and phaseθi are fixed for all time increments in

this example. A visual plot of this triply modulated cosine function is shown in figure 6.1. A

sliding window is placed on the time series with features extracted from the window at multiples

of π
2

of the period.

The five features are extracted at interval{0, π
2
, π, 3π

2
, 2π} from the sliding window and are

denoted by{f1(p), f2(p), f3(p), f4(p), f5(p)}. The position of the sliding window is denoted

by the variablep, p ∈ N0. This is mathematically expressed as

xp =
(

f1(p), f2(p), f3(p), f4(p), f5(p)
)

=
(

xpπ/2, x(p+1)π/2, x(p+2)π/2, x(p+3)π/2, x(p+4)π/2

)

.
(6.5)

The initial extracted features,p = 0, are extracted from the sliding window and are expressed as
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x0 =
(

f1(0), f2(0), f3(0), f4(0), f5(0)
)

=
(

x0, xπ/2, xπ, x3π/2, x2π

)

.
(6.6)

It should be noted that the length of the sliding window in this example is set atQ=5. The

position of the sliding window is incremented by 1 (equivalent shift ofπ
2
) to evaluate a new

range of observations in the time series (figure 6.2), which is expressed as

x1 =

(

f1(1), f2(1), f3(1), f4(1), f5(1)

)

=
(

xπ/2, xπ, x3π/2, x2π, x5π/2

)

.

(6.7)

As the position is incremented, the five features extracted from the time series in set

{f1(p), f2(p), f3(p), f4(p), f5(p)} are presented to a clustering method. To understand the claim

of Keogh [29], focus will only be placed on the first featuref1(p) without loss of generality. The

feature extracted at pointf1(p) for the sliding window at positionp is expressed as

f1(p) = xpπ/2. (6.8)

Equation (6.8) is used to create a time seriesf1 for all the values off1(p) for all positionsp of

the sliding window and is expressed as

f1 =
(

x0, xπ/2, xπ, . . . x(I−Q)π/2

)

. (6.9)

The values of the triply modulated cosine function is substituted intof1 as

f1 =
(

αi, µi, −αi, µi, αi . . . αi

)

. (6.10)

This shows that inadvertly all the features are sequentially presented to every dimension of

the feature vector. The fundamental problem becomes intuitive, as every feature dimension is

sequentially attempting to learn the same thing. This is better illustrated by tabulating the set of

features{f1(p), f2(p), f3(p), f4(p), f5(p)}. Table 6.1 shows what each feature point measures as

a function of the sliding window increments.2
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FIGURE 6.2: Two sets of five feature points{f1(p), f2(p), f3(p), f4(p), f5(p)}, are separated by a
period of π

2
, are shown to be extracted by two sliding windows.

Table 6.1: The sequence of features extracted as a function of the sliding window’s position from
figure 6.2.

Sliding window Time Feature points
position increment f1 f2 f3 f4 f5

0 0 αi µi -αi µi αi

1 π
2

µi -αi µi αi µi

2 π -αi µi αi µi -αi

3 3π
2

µi αi µi -αi µi

4 2π αi µi -αi µi αi

The intuition behind understanding this problem is to imagine an arbitrary data point somewhere

in the time series which enters the sliding window and the contribution this data point makes to the

overall mean of the sliding window. As the sliding window passes by, the data point first appears as the

rightmost value in the window and then sequentially appears exactly once in every possible location

within the sliding window. Thus all feature points will present the same information at different times

and different dimensions to the clustering algorithm. This is equivalent to only presenting one data
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FIGURE 6.3: Two sets of five feature points{f1(p), f2(p), f3(p), f4(p), f5(p)}, are separated by a
period of2π, are shown to be extracted by two sliding windows.

point to a clustering algorithm and sequentially shifting through the time series.

Several ideas were formulated on how to create meaningful clusters [29]. The first idea was to

increment the position of the sliding window by more than the length of the sliding window. This does

not solve the problem, as thesubsequence clusteringbecomes awhole clusteringapplication. The

second idea considered by Keogh and Lin [29] was to set the number of clusters much higher than

the true number of clusters within the data set. Empirically this only worked if the number of clusters

was set impractically high. The authors concluded that there is no simple solution to the problem of

subsequence clustering.

Proposition 6.3.1 A tentative solution was presented by Keogh and Lin [29] to find meaningful

clusters using subsequence clustering. The example is in essence whole clustering, but it does

emphasise an interesting property. The tentative solution proposes a single time series with a repetitive

pattern, as shown in figure 6.3. The sliding window is shifted by exactly one period of the repetitive

pattern within the time series. The new features are extracted and presented to the clustering algorithm.

The solution becomes more intuitive if the features are tabulated in sequence of extraction.
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Table 6.2: The sequence of features extracted as a function ofthe sliding window’s position from
figure 6.3.

Sliding window Time Feature points
position increment f1 f2 f3 f4 f5

0 0 αi µi -αi µi αi

1 2π αi µi -αi µi αi

2 4π αi µi -αi µi αi

3 6π αi µi -αi µi αi

4 8π αi µi -αi µi αi

Table 6.2 now shows that each feature point is acquiring a single property of the time series.

Through feature selection it becomes apparent that featuresf3–f5 can be discarded. This tentative

solution provides meaningful clusters when the sliding window positionp is incremented by the period

of the repetitive pattern.

This however becomes awhole clusteringsolution if the sliding window’s position is incremented

by more than its length. This results in analysing non-overlapping sliding windows.2

Since remote sensing time series data have a strong periodic component due to the seasonal

vegetation dynamics, the extracted sequential time series could potentially be processed to yield usable

features. A feature extraction method is proposed in the next section that will reduce the feature space’s

dimensionality and removes the restriction of the tentative solution proposed in [29]. The removal of

the restriction on the sliding window’s positionp will enable effective subsequence clustering that does

not suffer from the afore-mentioned limitations.

6.4 MEANINGFUL CLUSTERING

In this section a method is shown that will create usable features from a subsequencexp extracted

from a MODIS MCD43A4 time series data set. The fixed acquisition rate of the MODIS product and

the seasonality of the vegetation in the study area make for an annual periodic signalx that has a

phase offset that is correlated with rainfall seasonality and vegetation phenology. The FFT [200] ofxp

is computed, which decomposes the time sequence’s values into components of different frequencies

with phase offsets. This is often referred to as the frequency (Fourier) spectrum of the time series.

Because the time seriesxp is annually periodic, this would translate into frequency components in the

frequency spectrum that have fixed positions with varying phase offsets. The varying phases limits

the shifting of the sliding window’s positionp to exactly a periodic cycle [29], except if the clustering

algorithm can cater for the varying phases.
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FIGURE 6.4: The feature componentsXp(f) extracted from two sliding windows at random positions
using equation (6.11) yields similar features.

This limitation is addressed by computing the magnitude of all the FFT components, which

removes all the phase offsets. This makes it possible to compensate for both the restrictive position

p of the sliding window and the seasonality. This means thatp, which is the position of the sliding

window, does not have to be incremented by only a fixed annual period, but can be incremented by any

natural number. The features for the clustering method are extracted from the sliding windowxp by

the methodology discussed above, and are termed as the SFFXp. The SFF is computed as

Xp = |F(xp ) |, (6.11)

whereF(·) represents the Fourier transform. From the discussion above, a sliding window of any

length can be applied to the MODIS time series and moved along the time axis at any rate as long as

the feature extraction rule in equation (6.11) is applied. Figure 6.4 illustrates how the SFFs that are

extracted using two different sliding window positions in time maintain their position in the feature

space, even though the two sliding windows are arbitrarily positioned in time.

The seasonal attribute typically associated with MODIS time series and the slow temporal variation

relative to the acquisition interval [15], makes the first few FFT components dominate the frequency

spectrum. This reduces the number of features needed to represent the feature space and thus reduces

the dimensionality, making clustering an even more feasible option [201].

The mean and annual FFT components from equation (6.11) were considered, as it was shown

by Lhermitte [116] that considerable class separation can be achieved from these components. Many
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FFT-based classification and segmentation methods consequently only consider a few FFT components

[116, 202, 203].

6.5 CHANGE DETECTION METHOD USING THE SEASONAL FOURIER

FEATURES

In this section the meaningful clustering approach discussed in section 6.4 is incorporated into a land

cover change detection method. The change detection method operates on multiple spectral bands, as

shown in figure 6.5.

FIGURE6.5: Temporal sliding window used to define a subsequence of the time series for classification
and change detection.

The meanµ and annualα component of the SFF were considered from each of the MODIS spectral

bands. These features are expressed using the same methodology discussed above as

Xbp = |Fbµ(xbp) Fbα(xbp ) |, (6.12)

whereFbµ denotes the mean component extracted from thebth spectral band’s Fourier transform. The

functionFbα denotes the annual component extracted from thebth spectral band’s Fourier transform.

The subsequencexbp is extracted from thebth spectral band at positionp.

This selection of frequency components reduces the number of features to represent the feature

space and thus reduces the dimensionality. A feature vector is defined to encapsulate multiple spectral

bands’ SFF. The feature vector is defined as
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FIGURE 6.6: Subsequences of the time series extracted from the two spectral MODIS bands are
processed for clustering and change detection.

XN
p = [X1p X2p . . .XNp ]. (6.13)

HereN denotes the number of spectral bands, andp, p ∈ [1, (I − Q)], the position of the sliding

window. The first feature vector is the NDVI time series (N=1), which is denoted byX 1
p . This is

where the NDVI is computed forXbp in equation (6.1), which uses a combination of the first two

spectral bands (RED and NIR spectral bands) of the MODIS instrument. The second feature vector is

to use the first two spectral bands separately (N=2), which is denoted byX 2
p . The last feature vector

uses all seven spectral bands separately (N=7), which is denoted byX 7
p .

These SFFs are processed by a machine learning algorithm to detect change. The processing chain

for the two spectral bands feature vectorX 2
p is shown as an illustration in figure 6.6. The outputs

produced a time series of classifications for a given pixel as a function of the sliding window position

p. Land cover change is defined then as the transition in class label of a pixel’s time series from one

class to another class, after which it remains in the newly assigned class for the remainder of the time
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series.

6.6 SUMMARY

In this chapter a detailed overview was given of the pitfall of creating meaningless clusters. An example

was presented to illustrate the real limitation of subsequence clustering, followed by a few tentative

solutions proposed by Keogh and Lin [29] to solve this problem. Keogh and Lin admit that these

solutions are not a fully worked out solution to the problem, but with further investigation a possible

solution could be identified. In section 6.5, the SFF was proposed as a solution for a particular data set,

which in this case was a time series that had inherent seasonal variations. The SFF will be one of the

extracted features used in chapter 8 to detect land cover change.
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