
CHAPTERFIVE
FEATURE EXTRACTION

5.1 OVERVIEW

In this chapter, four different feature extraction methods that could be used on time series are

investigated. The chapter starts with a discussion on how a series of images are used to create a

time series of reflectance values for a particular geographical area. From there the feature extraction

methods are discussed, which are:

• EKF,

• least squares model fitting,

• M-estimator model fitting, and

• Fourier transform.

The EKF is a regression approach which uses a process model and an internal state space. The

least squares and M-estimator methods are regression approaches that aim to minimise the fitting error

(residuals) of a predefined model on a time series. The Fourier transform is a frequency analysis

approach, which decomposes time series into several harmonic frequencies.

5.2 TIME SERIES REPRESENTATION

A time series is a sequence of data points measured at successive (often uniformly spaced) time

intervals. A time seriesx of lengthI, is defined as

x = [~x1 ~x2 . . . ~xI ], (5.1)
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FIGURE 5.1: Multiple aerial photos are acquired in the Limpopo province at different time intervals
of the same geographical area. Natural vegetation and human settlement segments are mapped out to
form a set of time series.

with

~xi = [xi,1 xi,2 . . . xi,T ]. (5.2)

The variableT denotes the number of elements in vector~xi.

The analysis of time series comprises methods that attempt to understand the underlying structure

of the data gathered. Analysing the structure allows the identification of patterns and trends, detection

of change, clustering, modelling and forecasting [40]. A time series which is extracted from multiple

images is used in this chapter to illustrate various concepts.

Land cover example: In figure 5.1, multiple aerial photos are acquired of the same geographical area

with segments mapped out over a duration of time. These segments illustrate an example of

two different land cover types which do not change over time. The two land cover types are:

natural vegetation and human settlement. These hyper-temporal segments are processed to

provide a single reflectance value for a given geographical segment at each time interval. A
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FIGURE 5.2: Time series consisting of reflectance values reported through time for a single image
segment shown in figure 5.1.

single reflectance value is obtained from a linear mixture of all the intensities within a segment.

The reflectance values for a segment creates a time series shown in figure 5.2. It is observed that

the reflectance values in the time series undergo seasonal changes through the course of the year.

2

5.3 STATE-SPACE REPRESENTATION

Numerous real world systems are approximated with an underlying process description. This process

determines the output of a system which is driven by an internal state. The behaviour at time

i of such a system can be predicted based on the information observed from the system at time

(i − 1). This description of a system’s internal operation is known as a state-space model. It was

originally developed by control engineers [184, Ch. 3 p. 41]. A state-space model is a mathematical

representation frequently used to model a system with a set of state-space variables. The state-space

model uses a set of state-space variables to predict the next output of the system.

The state-space variables in most applications are a function of time; as such the use of a time
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domain representation is a convenient method for analysing the state-space model of a system [184,

Ch. 3 p. 41]. The current state is thus represented by a first order differential function in the time

domain. The assumption thus far has been that the process function used within the state-space model

and the set of state-space variables are known and that all the system’s internal operations have been

incorporated. This is usually not the case, as both should be estimated. This results in an erroneous

prediction of the output, which leads to assessing the accuracy of the system.

Assessing the accuracy of the state-space model requires the comparison of the actual system’s

output to the predicted output. The output is usually observed with the addition of noise [185, Ch. 1].

The noise is contributed by several factors, which include:

1. the limited description of the process function,

2. the state-space variables that are not estimated perfectly, and

3. any unknown internal or external source of noise.

This leads to two models required to express the dynamic model: the process model and observation

model. The process model is used to describe the adaptation of the state-space variables from time

(i− 1) to timei. The state-space variables are encapsulated at timei in a state-space vector~Wi as

~Wi = [Wi,1 Wi,2 . . . Wi,S], (5.3)

whereS denotes the number of elements in the state-space vector. The adaptation of the state-space

vector is known as the prediction step. The state-space vector~Wi for time i is predicted using the

transition equation, which is given as

~Wi = f( ~Wi−1) + ~zi−1. (5.4)

The relation between~Wi and ~Wi−1 is described by a known transition functionf . A process noise

vector ~zi−1 is added owing to the incomplete description ability inherent in functionf and/or any

previous incorrect estimates of the state-space vector~Wi−1. The noise vector~zi−1 is assumed to be a

stochastic vector with a zero-mean and covariance matrixQi−1.

The observation model is used to describe the relation between the state-space vector~Wi and the

actual output of the system at timei. The actual output at timei is termed the observation vector~xi

and is used in the updating step. The updating step uses a measurement equation which is given as

~xi = h( ~Wi) + ~vi. (5.5)
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The state-space vector~Wi is related to the observation vector~xi by means of the known measurement

functionh. The measurement functionh and state-space vector~Wi might not be perfectly estimated.

This is compensated for by including an observation noise vector~vi, where the noise vector~vi

is a stochastic vector with zero mean and covariance matrixRi. Equations (5.4) and (5.5) are

known as the state-space form of a linear dynamic model. The time domain approach to state-space

model representation provides an iterative model that recursively processes each observation vector

sequentially.

It is assumed that both the noise vectors~zi−1, ~zi−1 ∼ Nu(0,Qi−1), and~vi, ~vi ∼ Nu(0,Ri), are

uncorrelated and distributed by a known distributionNu for all time increments. This property is

expressed as





~zi−1

~vi



 = Nu









0

0



 ,





Qi−1 0

0 Ri







 , ∀i. (5.6)

It is also assumed that the noise vectors are uncorrelated with the initial state-space vector~W0, which

is expressed as

E[ ~W0~zi−1] = E[ ~W0~vi] = 0, ∀i. (5.7)

The recursive nature of a linear dynamic model requires that a state-space vector must be adapted

at each time incrementi using the newest observation vector~xi. This requires the derivation of a

posterior probability density function of the state-space vector, given that all previous observation

vectors are available [185, Ch. 1]. This is accomplished by obtaining the initial state-space vector

P ( ~Wi), after which the posterior probability density functionp( ~Wi|~xi, ~xi−1, . . . ~x0) is recursively

estimated using the predict (equation (5.4)) and update (equation (5.5)) steps. The posterior probability

p( ~Wi|~xi−1, ~xi−2, . . . ~x0) is obtained using the Chapman-Kolmogoroff equation given as

p( ~Wi|~xi−1, ~xi−2, . . . ~x0) =

∫

p( ~Wi| ~Wi−1)p( ~Wi−1|~xi−1, ~xi−2, . . . ~x0)d ~Wi−1. (5.8)

The conditional probability density functionp( ~Wi| ~Wi−1) is estimated using the transition equation

shown in equation (5.4) and known covariance matrixQi−1. In this prediction step the transition

equation expands the current state-space probability density function. The measurement equation then

uses the newest observation vector~xi to tighten the state-space probability density function [185,

Ch. 1]. The state-space probability density function is updated using the observation vector~xi via

Bayes’ rule as
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p( ~Wi|~xi, ~xi−1, . . . ~x0) =
p(~xi| ~Wi)p( ~Wi|~xi−1, ~xi−2, . . . ~x0)

p(~xi|~xi−1, ~xi−2, . . . ~x0)
, (5.9)

which is expanded to

p( ~Wi|~xi, ~xi−1, . . . ~x0) =
p(~xi| ~Wi)p( ~Wi|~xi−1, ~xi−2, . . . ~x0)

∫

p(~xi| ~Wi)p( ~Wi|~xi−1, ~xi−2, . . . ~x0)d ~Wi

. (5.10)

The conditional probability density functionp(~xi| ~Wi) is calculated using equation (5.5) and known

covariance matrixRi. The accuracy of the state-space vector can be measured if knowledge of the

posterior probability density functionp( ~Wi|~xi, ~xi−1, . . . ~x0) is available [185, Ch. 1].

5.4 KALMAN FILTER

The Kalman filter was originally developed by Rudolf Kalman in 1960 and was published in two

journals [186, 187]. The Kalman filter was designed to recursively solve the state-space form of the

linear dynamic model given in equations (5.4) and (5.5). The Kalman filter assumes that the transition

functionf is a known linear matrixF and the process noise vector~zi−1, ~zi−1 ∼ N (0,Qi−1), is normally

distributed. This simplifies the transition equation given in equation (5.4) to

~Wi = F ~Wi−1 + ~zi−1. (5.11)

The Kalman filter also assumes that the measurement functionh is a known linear matrixH and the

observation noise vector~vi, ~vi ∼ N (0,Ri), is normally distributed. This simplifies the measurement

equation given in equation (5.5) to

~xi = H ~Wi + ~vi. (5.12)

The distributionsp( ~Wi|~xi−1, . . . , ~x0), p( ~Wi−1|~xi−1, . . . , ~x0) and p( ~Wi|~xi, . . . , ~x0) in equation

(5.8) and equation (5.10) are assumed to be normally distributed. The posterior probability

p( ~Wi|~xi−1, . . . ~x0) is thus expressed as

p( ~Wi|~xi−1, . . . ~x0) =
√

|2πP(i|i−1)| exp(A1), (5.13)

with

A1 = −
1

2
( ~Wi −

~̂
W(i|i−1))

TP−1
(i|i−1)(

~Wi −
~̂
W(i|i−1)). (5.14)

The matrixP(i|i−1) denotes the covariance matrix at timei, given all the previous covariance matrices
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up to and including time(i− 1). The vector~̂W(i|i−1) denotes the estimate of the state-space vector~W

at timei, given all estimates of state-space vectors up to and including time(i−1). The other posterior

probability given in equation (5.8) is expressed as

p( ~Wi−1|~xi−1, . . . ~x0) =
√

|2πP(i−1|i−1)| exp(A2), (5.15)

with

A2 = −
1

2
( ~Wi−1 −

~̂
W(i−1|i−1))

TP−1
(i−1|i−1)(

~Wi−1 −
~̂
W(i−1|i−1)). (5.16)

The matrixP(i−1|i−1) denotes the covariance matrix at time(i − 1), given all the previous covariance

matrices up to and including time(i− 1). The vector~̂W(i−1|i−1) denotes the estimate of the state-space

vector ~W time (i− 1), given all the previous estimates of state-space vectors up to and including time

(i− 1). The posterior probability given in equation (5.10) is expressed as

p( ~Wi|~xi, . . . ~x0) =
√

|2πP(i|i)| exp

(

−
1

2
( ~Wi −

~̂
W(i|i))

TP−1
(i|i)(

~Wi −
~̂
W(i|i))

)

, (5.17)

whereP(i|i) denotes the covariance matrix at timei, given all the previous covariance matrices up to

and including timei. The vector~̂W(i|i) denotes the estimate of the state-space vector~W at timei, given

all estimates of state-space vectors up to and including timei.

The Kalman filter recursively estimates the probability density functions given in equations

(5.13)–(5.17). The prediction parameters used in the prediction step (equation (5.4)) include

the predicted state-space vector~̂W(i|i−1) and predicted covariance matrixP(i|i−1). The predicted

state-space vector’s estimate~̂W(i|i−1) is computed as

~̂
W(i|i−1) = F

~̂
W(i−1|i−1), (5.18)

and the predicted estimate of the covariance matrix is computed with

P(i|i−1) = Qi−1 + FP(i−1|i−1)F
T. (5.19)

The parameters used in the updating step (equation (5.5)) include the posterior estimate of the

state-space vector~̂W(i|i) and posterior estimate of the covariance matrixP(i|i). These parameters

require the computation of the innovation term and optimal Kalman gain. The innovation termSi

is computed as

Si = HP(i|i−1)H
T +Ri. (5.20)
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The optimal Kalman gainKi is computed as

Ki = P(i|i−1)H
TS−1

i . (5.21)

The posterior estimate of the state-space vector~̂
W(i|i) is computed as

~̂
W(i|i) =

~̂
W(i|i−1) + Ki(~xi −H

~̂
W(i|i−1)), (5.22)

and the posterior estimate of the covariance matrixP(i|i) is computed as

P(i|i) = P(i|i−1) − KiSiK
T
i . (5.23)

If the process function is precise and the initial estimates of~̂
W(0|0) andP(0|0) are accurate, then the

following five properties will hold. The first two properties, which are relevant to the state-space

vector’s estimate, are

E[ ~Wi −
~̂
W(i|i)] = E[ ~Wi −

~̂
W(i|i−1)] = 0, (5.24)

E[~xi −H
~̂
W(i|i−1)] = 0. (5.25)

The last three properties hold a relation to the covariance matrices, which accurately reflect the

estimated covariance as

P(i|i) = cov( ~Wi −
~̂
W(i|i)), (5.26)

P(i|i−1) = cov( ~Wi −
~̂
W(i|i−1)), (5.27)

Si = cov(~xi −H
~̂
W(i|i−1)). (5.28)

The performance of the Kalman filter is usually inhibited by the poor estimation of the observation

noise’s covariance matrixRi and the process noise’s covariance matrixQi−1. The Kalman filter is

unable to compute the mean and covariance of the Gaussian posterior probabilityp( ~Wi|~xi, ~xi−1, . . . ~x0)

accurately if poor initial estimates are made of the observation and process noise’s covariance matrices.
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5.5 EXTENDED KALMAN FILTER

The EKF is the non-linear extension of the standard Kalman filter in estimation theory. The EKF

has been considered to be the de facto standard in the theory of non-linear state estimate, navigation

systems and global positioning system (GPS) [188].

The EKF is similar to the standard Kalman filter as a state-space vector~Wi is estimated at each time

incrementi. The state-space vector~Wi is estimated at timei recursively by using the set of observation

vectors{~xi, ~xi−1, . . . , ~x0}. The state-space model’s equations are reformulated for the EKF in this

section. The transition equation in equation (5.11) is rewritten as

~Wi = f( ~Wi−1) + ~zi−1. (5.29)

The transition function f is a non-linear function, and the process noise vector

~zi−1, ~zi−1 ∼ N (0,Qi−1), is assumed to be normally distributed. The measurement equation

in equation (5.12) is rewritten as

~xi = h( ~Wi) + ~vi. (5.30)

The measurement functionh is a non-linear function and the observation noise vector

~vi, ~vi ∼ N (0,Ri) is assumed to be normally distributed. The idea behind the EKF is that the

non-linear transition functionf and non-linear measurement functionh can be sufficiently described

using local linearisation of the two functions.

The posterior probability density functionp( ~Wi|~xi, . . . , ~x0) is approximated by means of a

Gaussian distribution, which implies that equations (5.13)–(5.17) described in the Kalman filter section

(section 5.4) still hold. Prediction parameters and updating parameters are reformulated to take

into account the non-linear transition and measurement functions. The predicted state-space vector’s

estimate~̂W(i|i−1) is expressed as

~̂
W(i|i−1) = f(

~̂
W(i−1|i−1)), (5.31)

wheref denotes the non-linear transition function. The predicted estimate of the covariance matrix

P(i|i−1) is expressed as

P(i|i−1) = Qi−1 + FestP(i−1|i−1)F
T
est. (5.32)

The matrixFest is the local linearisation of the non-linear transition functionf . The matrixFest is

defined as the Jacobian evaluated at~̂
W(i−1|i−1) as [185, Ch. 2]
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Fest =

∥

∥

∥

∥

[

∂

∂Wi,1

. . .
∂

∂Wi,S

]

f
T( ~Wi)

∥

∥

∥

∥

~Wi=
~̂
W(i−1|i−1)

. (5.33)

In the case of the updating parameters, the posterior estimate of the state-space vector~̂
W(i|i) is

expressed as

~̂
W(i|i) =

~̂
W(i|i−1) + Ki(~xi − h(

~̂
W(i|i−1))). (5.34)

The functionh denotes the non-linear measurement function andKi denotes the EKF’s optimal Kalman

gain given as

Ki = P(i|i−1)H
T
estS

−1
i . (5.35)

The matrixHest is the local linearisation of the non-linear measurement functionh. The matrixHest

is defined as the Jacobian evaluated at~̂
W(i|i−1) as [185, Ch. 2]

Hest =

∥

∥

∥

∥

[

∂

∂Wi,1

. . .
∂

∂Wi,S

]

h
T( ~Wi)

∥

∥

∥

∥

~Wi=
~̂
W(i|i−1)

. (5.36)

The innovation term for the EKF is defined as

Si = HestP(i|i−1)H
T
est +Ri. (5.37)

The posterior estimate of the covariance matrixP(i|i) is expressed as

P(i|i) = P(i|i−1) − KiSiK
T
i . (5.38)

Land cover example: The time series example given in figure 5.1 produces a time series which is

shown in figure 5.2. Kleynhanset al. proposed a triply modulated cosine function for the process

function [30]. The triply modulated cosine function is expressed as

~xi = µi + αi cos(2πfsampi+ θi). (5.39)

The variablei denotes the time index andfsamp denotes the temporal sampling rate of the image

acquisitions. The cosine function is characterised by three variables:µi, αi andθi. These three

variables form the state-space vector, which is defined as

~Wi = [Wi,1 Wi,2 Wi,3] = [Wi,µ Wi,α Wi,θ]. (5.40)
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FIGURE 5.3: The Extended Kalman filter estimates the parameters of the state-space vector~Wi to fit
the triply modulated cosine function onto the time series shown in figure 5.2. The estimated state-space
vector is used to create a fitted process function to measure the accuracy of the fit.

The triply modulated cosine function is a non-linear function and the EKF was proposed to solve

the state-space model. It is assumed that the state-space vector remains constant from one time

increment to the next. This reduces the transition equation given in equation (5.29) to

~Wi = ~Wi−1 + ~zi−1. (5.41)

The measurement equation shown in equation (5.30) is defined for this example as

~xi = h( ~Wi) + ~vi, (5.42)

where the measurement functionh is the triply modulated cosine function given in equation

(5.39) as

h( ~Wi) = Wi,µ +Wi,α cos(2πfsampi+Wi,θ). (5.43)
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FIGURE5.4: The Extended Kalman filter estimates the parameters in the state-space vector~Wi. Figure
(a) shows the mean parameterµi estimates. Figure (b) shows the amplitude parametersαi estimates.
Figure (c) shows the phase parameterθi estimates. Figure (d) shows the absolute error in tracking the
output of the system.

It should be noted that the measurement function produces a vector with a single dimension.

Thus for this example, equation (5.42) is further reduced to a single output as

xi = h( ~Wi) + vi. (5.44)

The predicted state-space vector’s estimate~̂
W(i|i−1) shown in equation (5.31) is rewritten by

substituting the transition function with the identity matrix for the example as

~̂
W(i|i−1) = f(

~̂
W(i−1|i−1)) =

~̂
W(i−1|i−1). (5.45)

The matrixFest is an identity matrix, which simplifies the predicted estimate for the covariance

matrixP(i|i−1) shown in equation (5.32) to
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P(i|i−1) = Qi−1 + FestP(i−1|i−1)F
T
est = Qi−1 +P(i−1|i−1). (5.46)

The posterior estimate of the state-space vector~̂
W(i|i) shown in equation (5.34) is expressed for

this example as

~̂
W(i|i) =

~̂
W(i|i−1) + Ki(~xi − h(

~̂
W(i|i−1))) (5.47)

=
~̂
W(i|i−1) + Ki(~xi −Hest(

~̂
W(i|i−1)))

=
~̂
W(i|i−1) + Ki

(

~xi −

∥

∥

∥

∥

[

∂hT( ~Wi)

∂Wi,µ

∂hT( ~Wi)

∂Wi,α

∂hT( ~Wi)

∂Wi,θ

]∥

∥

∥

∥

~Wi=
~̂
W(i|i−1)

)

,

with

∂h( ~Wi)

∂Wi,µ

= 1 (5.48)

∂h( ~Wi)

∂Wi,α

= cos(2πfsampi+
~̂
W(i|i−1),θ) (5.49)

∂h( ~Wi)

∂Wi,θ

= −
~̂
W(i|i−1),α

[

sin(2πfsampi) cos(
~̂
W(i|i−1),θ) +

cos(2πfsampi) sin(
~̂
W(i|i−1),θ)

]

. (5.50)

The time series shown in figure 5.2 is fitted with the triply modulated cosine function by

estimating a state-space vector~Wi for each time increment. The estimated output of the EKF,

using the newest available observation vector at timei, is plotted with the actual observation

vector~xi in figure 5.3. It is observed that the EKF requires an initial number of observations

before the state-space vector starts to stabilise. The stabilised state-space vector corresponds to

a more accurate tracking of the actual observations.

The progressive estimation of the state-space vectors is shown in figure 5.4. Figure 5.4(a)

illustrates the estimation of the mean parameterµi (the first element in the state-space vector

denoted byWi,µ). Figure 5.4(b) illustrates the estimation of the amplitude parameterαi (the

second element in the state-space vector denoted byWi,α). Figure 5.4(c) illustrates the estimation

of the phase parameterθi (the third element in the state-space vector denoted byWi,θ). The

absolute error in the tracking of the output is illustrated in figure 5.4(d).
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FIGURE 5.5: Least squares estimates the parameter vector~Wi to fit the model onto the time series.

5.6 LEAST SQUARES MODEL FITTING

The least squares method was first discovered by Carl Friedrich Gauss in 1795 and was later published

by the French mathematician Legendre in 1805. The least squares is a method used to fit the triply

modulated cosine model with a parameter vector~Wi. It estimates the parameter vector by evaluating

the fit of the model to the actual observation vector. The parameter vector in this context can be viewed

as the state-space vector defined in the state-space model and the model can be viewed as the process

function (section 5.3).

The least squares is a linear regression method, which uses a modelh to predict a set of dependent

parameter vectors{ ~Wi} from a set of independent observation vectors{~xi}. The least squares’ goal is

to find a parameter vector~Wi that will minimise the sum of squares between the observation vectors

~xi and the model’s estimated output vector~̂xi. The sum of squares is computed as a summation of the

error residuals to measure the performance and is expressed as

ELS =
I
∑

i=1

(~xi − ~̂xi)
2 =

I
∑

i=1

(~xi − h(~xi, ~Wi))
2. (5.51)
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FIGURE 5.6: Least squares estimates the parameter vector~Wi by shifting the model over the time
series.

The variableELS denotes the sum of squares andh denotes the model. The sum of squares can be

minimised using standard approaches, which evaluate the partial derivatives. The partial derivative of

the sum of squares is solved as

dELS

d ~Wi

= 2
I
∑

j=1

(~xj − ~̂xj)
d(~xj − ~̂xj)

d ~Wi

= 0, ∀i. (5.52)

Several variations of the least squares exist; the most popular method is the ordinary least squares

(OLS) algorithm. The OLS assumes the observation noise vector~vi is normally distributed and the

modelh is linear.

The least squares is considered optimal when a set of criteria is met in the estimates of the parameter

vector. These criteria are:

1. The observation vectors are randomly sampled from a well defined data set.

2. The underlying structure within the data set is linear.

3. The difference between the observation vector~xi and the fitted model has an expected zero mean.
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FIGURE5.7: Least squares estimates the parameter vector~Wi to fit triply modulated cosine model onto
a time series.

4. The parameter vector’s variables are linearly independent from each other.

5. The difference between the observation vector~xi and the fitted model is normally distributed and

uncorrelated to the parameter vector.

In addition to the five criteria stated, if the Gauss-Markov condition also holds; then the OLS

estimates are considered to be equivalent to the maximum likelihood estimates of the parameter vectors.

More sophisticated adaptations have been made to the OLS and the most frequently used of these are:

the weighted least squares, alternating least squares and partial least squares.

The OLS can be extended to include the field of non-linear models. The drawback is that the

standard approach of evaluating the derivative of a non-linear model in equation (5.52) is not always

possible. This is because the derivatives ofd(~xj − ~̂xj)/d ~Wi are functions which are dependent on both

the observation vectors{~xi} and the parameter vectors{ ~Wi}.

This changes the least squares from a closed-form solution for the linear case to a non closed-form

solution for the non-linear case. This requires that the estimation of the set of parameter vectors{ ~Wi}

is derived using an analytical iterative algorithm. The algorithm iterates through the parameter vector’s
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FIGURE5.8: Least squares estimates the parameter vector~Wi to fit triply modulated cosine model onto
a time series.

space using the derivative of the sum of squaresELS at each epoch. The gradient descent algorithm is

a popular iterative method used in this case.

Land cover example: In this example the least squares predicts the set of parameter vectors for the

time series shown in figure 5.2. The problem lies in the fact that the least squares requires a

set of observation vectors{~xi} to estimate a single parameter vector~Wi. The lowest number of

observation vectors required to estimate the parameter vector is(| ~Wi|+ 1).

This concept is illustrated in figure 5.5 by using a set of observation vectors the length of

a single year. In figure 5.5(a) the time series in figure 5.2 is shown with a time index

of interest. The parameter vector~Wi for observation vector~xi is estimated using the

set {~xi−N , ~xi−N+1, . . . , ~xi+N−1, ~xi+N} of observation vectors. The variableN is chosen to

encapsulate the entire period of the model shown in figure 5.5(b). The parameter vector~Wi

is then determined using the least squares to minimise the sum of squares to produce the fitted

model shown in figure 5.5(c).

The next step is to estimate a parameter vector~Wi, ∀i. This is accomplished by moving the
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model across the time index. The parameter vector~Wi+c for observation vector~xi+c is estimated

using the set{~xi−N+c, ~xi−N+c+1, . . . , ~xi+N+c−1, ~xi+N+c}. This iterative approach to moving the

model is shown in three different figures in figure 5.6.

After shifting through the entire time series, the predicted output of the least squares is plotted,

along with the actual observation vectors in figure 5.7.

The progressive estimation of the parameter vectors is shown in figure 5.8. Figure 5.8(a)

illustrates the estimation of the model’s mean parameterµi. Figure 5.8(b) illustrates the

estimation of the model’s amplitude parameterαi. Figure 5.8(c) illustrates the estimation of

the model’s phase parameterθi. The absolute error in tracking of the output is illustrated in

figure 5.8(d).2

5.7 M-ESTIMATE MODEL FITTING

Various attempts have been made to create robust statistical estimators, which are used to fit models.

M-estimates rely on the maximum likelihood approach to estimate the parameters of a particular

statistical model. An M-estimator is generally defined as a zero of the estimating function, while

the estimating function is usually the derivative of a statistical function of interest. The advantage of a

M-estimator is that it does not assume that the residuals are normally distributed. M-estimators attempt

to minimise the mean absolute deviation in the residuals for a given distribution using a maximum

likelihood approach.

The assessment of different distributions in the M-estimator allow for different weighting functions

to be associated with outliers. Normally distributed residuals usually associate greater weights to

outliers when compared to a Lorentzian distribution of residuals [189, Ch. 15]. This deviant behaviour

in relative weighting points in a model makes it difficult to apply standard gradient descent. The

Nelder-Mead method is thus the chosen optimisation method, as it only requires function evaluations

and not the derivatives [189, Ch. 15].

The Nelder-Mead algorithm was first proposed by John Nelder and Roger Mead in 1965 [190].

The Nelder-Mead algorithm is a non-linear method which estimates the parameter vector~Wi for a

particular model. The Nelder-Mead algorithm is a well-defined numerical method that operates on a

twice differentiable, unimodal, multi-dimensional function. The method makes use of a direct search

by evaluating a function at the vertices of a simplex. AN -simplex is aN -dimensional polytope which

is the convex hull of (N+1) vertices. The algorithm then iteratively moves and scales the simplex’s

vertices through the set of dimensions in search of the minimum. It continually attempts to improve

the evaluated function until a predefined bound is reached.
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FIGURE 5.9: M-estimator estimates the parameter vector~Wi to fit the triply modulated cosine model
onto a time series.

Each epoch requires the execution of six steps to compute the new position of the simplex. The

algorithm in summary starts with initialising the vertices of the simplex. It then iteratively rejects

and replaces the worst performing vertex point with a new vertex point. This process of setting new

vertex points creates a sequence of newN -simplexes. The initialisation with a small initialN -simplex

converges rapidly to a local minimum, while a largeN -simplex becomes trapped in non-stationary

points in the vector space.

Land cover example: In this example the M-estimator predicts a set of parameter vectors for the time

series shown in figure 5.2. The same problem exists for the M-estimator, as for the least squares,

when estimating the sequence of parameter vectors. The parameter vector~Wi for observation

vector~xi is estimated using the set{~xi−N , ~xi−N+1, . . . , ~xi+N−1, ~xi+N} of observation vectors.

This is rectified by shifting the model through all the time indices. The initial estimate of the

M-estimator is contained in a certain parameter space by using the mean and standard deviation

of the time series as the initial parameter vector for the model. The previous parameter vector

~Wi−1 is then used to initialise the M-estimator when determining the current parameter vector

~Wi.
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FIGURE 5.10: M-estimator estimates the parameter vector~Wi to fit the triply modulated cosine model
onto a time series.

The predicted output of the M-estimator is plotted with the actual observation vectors~xi in

figure 5.9.

The progressive estimation of the parameter vectors are shown in figure 5.10. Figure 5.10(a)

illustrates the estimation of the model’s mean parameterµi. Figure 5.10(b) illustrates the

estimation of the model’s amplitude parameterαi. Figure 5.10(c) illustrates the estimation of

the model’s phase parameterθi. The absolute error in the tracking of the output is illustrated in

figure 5.10(d).2

5.8 FOURIER TRANSFORM

The Fourier transform of a discrete time series is a representation of the sequence in terms of the

complex exponential sequence{ej2πfi}, wheref is the frequency variable. The Fourier transform

representation of a time series, if it exists, is unique and the original time series can be recovered by

applying an inverse Fourier transform [115, Ch. 3].

Department of Electrical, Electronic and Computer Engineering 103

University of Pretoria

 
 
 



Chapter 5 Feature extraction

Let x, x = [x1 x2 . . . xI ], denote the time series and letI → ∞, then the Fourier transform

X (ej2πf ) is defined as

X (ej2πf ) =
∞
∑

i=−∞

x(I/2)e
j2πfi. (5.53)

The Fourier transformX (ej2πf ) is a complex function and is written in rectangular form as

X (ej2πf) = Xreal(e
j2πf ) + jXimag(e

j2πf ), (5.54)

whereXreal(e
j2πf ) denotes the real part andXimag(e

j2πf ) denotes the imaginary part ofX (ej2πf ). The

components of the rectangular form are expressed as

Xreal(e
j2πf ) = |X (ej2πf )| cos θX , (5.55)

Ximag(e
j2πf ) = |X (ej2πf)| sin θX . (5.56)

The quantity|X (ej2πf )| denotes the magnitude function of the Fourier transform. The quantityθX

denotes the phase function, which is given as

θX = arctan

(

Ximag(e
j2πf )

Xreal(ej2πf )

)

. (5.57)

In the case of a finite length time seriesx, x = [x1 x2 . . . xI ], I ∈ N, I < ∞, there is a simpler

relation between the time series and its corresponding Fourier transformX (ej2πf ) [115, Ch. 3]. For

a time seriesx of lengthI, only I values ofX (ej2πf ) at I distinct harmonic functions at frequency

points,0 ≤ f ≤ I, are sufficient to construct the unique time seriesx. This leads to the concept of a

second transform domain representation that operates on a finite length time series [115, Ch. 3].

This second transform is known as the discrete Fourier transform (DFT). The relation between a

finite length time seriesx, x = [x1 x2 . . . xI ], and its corresponding Fourier transformX (ej2πf ) is

obtained by uniformly samplingX (ej2πf ) on the frequency domain between0 ≤ f ≤ 1 at increments

of f = i/I, 0 ≤ i ≤ (I − 1). The DFT is computed by sampling equation (5.53) uniformly as

Xi = X (ej2πf )
∣

∣

∣

f=i/I
=

I−1
∑

n=0

xne
j2πin/I , 0 ≤ i ≤ (I − 1). (5.58)

The inverse discrete Fourier transform (IDFT) is given by
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FIGURE 5.11: Fast Fourier transform (FFT) estimates the parameters of the vector~Wi to fit multiple
harmonics onto time seriesx.

xn =
I−1
∑

i=0

Xie
−j2πin/I , 0 ≤ n ≤ (I − 1). (5.59)

The computation of the DFT and IDFT requiresO(I2) complex multiplications andO(I2 − I)

complex additions. A fast Fourier transform (FFT) refers to an algorithm that has been developed to

reduce the computational complexity of computing the DFT to aboutO(I(log2 I)) operations. As

there is no loss in precision in using these fast computing algorithms, they will be used throughout this

thesis when referring to the DFT of a time series. Similarly, an inverse fast Fourier transform (IFFT)

algorithm has been developed to compute the IDFT efficiently.

The FFT function is denoted byF and is mathematically computed as

X = F(x). (5.60)

The sequenceX is the DFT of the time seriesx. The time seriesx is a process in the time domain and

the value ofx is dependent on the corresponding time indexi. The DFTX , on the other hand, is a

process in the frequency domain by which the process is defined by the amplitude|xf | and phase∠xf
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FIGURE 5.12: Fast Fourier transform (FFT) estimates the parameters of the vector~Wi to fit multiple
harmonics onto time seriesx.

of harmonic frequency samplesf , f ∈ {−∞,∞}.

The inverse Fourier transform is denoted byF−1 and is mathematically computed as

x = F−1(X ). (5.61)

The conversion to the frequency domain allows the analysis of periodic (such as seasonal) effects and

trends within the time seriesx.

Land cover example: In this example the fast Fourier transform is used to predict a set of Fourier

components for the time series shown in figure 5.2.

The Fourier components are stored in a vector~Wi for observation vector~xi and are estimated

using the set{~xi−N , ~xi−N+1, . . . , ~xi+N−1, ~xi+N} of observation vectors. The variableN is

chosen to capture enough energy in each harmonic function of interest. This happens to be

the entire process function of a complete phenological cycle of one year.

A set of harmonic functions is stored in the state-space model as
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~Wi = [Wi,1 Wi,2 Wi,3] = [Wi,µ Wi,α Wi,θ] = [|X1| 2|X2| ∠(X2)]. (5.62)

The next step is to estimate a vector~Wi, ∀i. This is accomplished by moving a window

across the time index. The vector~Wi+c for observation vector~xi+c is estimated using the

set{~xi−N+c, ~xi−N+c+1, . . . , ~xi+N+c−1, ~xi+N+c}. This iterative approach moves the window of

the DFT similar to the least squares and M-estimator. The predicted output of the Fourier

components is plotted along with the actual observation vectors in figure 5.11.

The progressive estimation of the vectors is shown in figure 5.12. Figure 5.12(a) illustrates the

estimation of the magnitude of the first frequency component inX . Figure 5.12(b) illustrates the

estimation of the magnitude of the second frequency component inX . Figure 5.12(c) illustrates

the phase of the second frequency componentX . The absolute error in tracking of the output is

illustrated in figure 5.12(d).2

5.9 SUMMARY

In this chapter, four different feature extraction methods were investigated. The feature extraction

methods are all based on the same principle of fitting a cosine model to the time series. The first three

methods; EKF, least squares model fitting and M-estimator model fitting, are regression approaches,

which attempt to estimate the mean, amplitude, and phase component of the cosine function. All three

features are comparable among the three regression methods. The Fourier transform method is similar

to the other three methods, except for the fact that a complex vector is estimated, which contains the

combined power of both a cosine and sine function. The feature vectors extracted using these methods

will be used by machine learning methods to determine the corresponding class labels.
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