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UNSUPERVISED CLASSIFICATION

4.1 OVERVIEW

In this chapter a brief overview is given of the notion of grouping objects into different categories
without any supervision. The previous chapter described a supervised approach to grouping objects ar
how the relationship between the desired class membership and input vectors was derived using label
The possibility is now explored of grouping objects based on their perceived intrinsic similarities.
A formal definition is provided on an unsupervised method known as clustering, followed by the
advantages of exploring an unsupervised approach. The design considerations behind producing goc
clustering results are then explored, followed by the challenges inherent when using clustering method
to solve real world problems.

Clustering algorithms are broadly divided into hierarchical and partitional clustering approaches
[40,170]. Four popular hierarchical clustering methods and two partitional clustering methods are
discussed with their corresponding properties. The chapter concludes with a discussion on how cluster

can be converted to classes to obtain a supervised classifier.

4.2 CLUSTERING

Clustering is a form of conceptual clustering, which is an unsupervised method used for grouping
unlabelled input vectors into a set of categories. Clustering groups a set of input vectors through
perceived intrinsically similar or dissimilar characteristics.

Let {y*}, y* € N, 1 < y* < K, denotes the set of cluster labels. I7et: R” — {y*} denote the
function that maps the input vectdF, 7 € R, to a cluster label. The variabledenotes the index of
the vector within the input vector set. The functi@ is said to cluster the input vector sgt?} into
K clusters.
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Chapter 4 Unsupervised classification

Several motivations exist to justify the use of clusteringoaithms for many non-synthetic data

sets:

1. Significant costs are involved when gathering information about the data set to create reliable

class labels for supervised classification.

2. The underlying data structure of a large unlabelled data set can be captured to provide reliable

clustering on a smaller labelled data set.

3. Accommodate a dynamic input space. This is when the input space changes over time or in

response to a triggered event.

4. Assisting in creating a well-conditioned input vector from the input space to gain insight into
what improves the cluster label allocation.

4.2.1 Mapping of vectors to clusters

A cluster label is derived by evaluating several different input data sources from the input space. These
data sources are grouped together to form an input vectdhese input vectors are the same as with
the supervised classifier and have descriptive forms that can be interpreted. The preprocessing ar
postprocessing of the input and output vectors is an optional procedure used to improve the clusterin
algorithm’s performance [136]. Using feature vect@rand postprocessed output valpes assumed
to improve the performance significantly and is used throughout this chapter.

The clustering algorithm constructs a functida to determine the cluster label and is based on the

set of feature vector§z?}. The mapping function is expressed as

y* = Fe(ZP). (4.1)

The clusters typically encapsulate properties of the non-synthetic data set; each cluster should have

homogeneous set of feature vectors.

4.2.2 Creating meaningful clusters

No theoretical guideline exists on how to extract the optimal feature vector set from the input vector
set for a specific clustering application. Owing to the limited intrinsic information within the feature
vector set, it is difficult to design a clustering algorithm that will find clusters to match the desired
cluster labels.

This constraint is created by a clustering algorithm, as it tends to find clusters in the feature space

irrespective of whether any real clusters exist. This constraint motivates the notion that any two
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FIGURE4.1: An aerial photo taken in the Limpopo province, South Africa of two different land cover
which are indicated by a natural vegetation segment and settlement segment. A segment is defined :
a collection of pixels within a predefined size bounding box.

arbitrary patterns can be made to appear equally similar when evaluating a large number of dimension
of information in the feature space. This will result in defining a meaningless clustering function
Fc. This makes clustering a subjective task in nature, which can be modified to fit any particular
application.

The advantage in this versatility is that the clustering algorithm can be used as either an exploratory
or a confirmatory analysis tool [170]. Clustering used as an exploratory analysis tool is there to explore
the underlying structures of the data. No predefined models or hypotheses are needed when explorir
the data set. Clustering used as a confirmatory analysis tool is to confirm any set of hypotheses o
assumptions. In certain applications, clustering is used as both; first to explore the underlying structure:
to form new hypotheses. Second, to test these hypotheses by clustering the feature vector set. Th
makes clustering a data-driven learning algorithm and any domain knowledge that is available car
improve the forming of clusters [170].

Domain knowledge is used to reduce complexity by aiding in processes such as feature selectiol
and feature extraction. Proper domain knowledge leads to good feature vector representation that wil
yield exceptional performance with the most common clustering algorithms, while incomplete domain
knowledge leads to poor feature vector representation that will only yield acceptable performance with
a complex clustering algorithm.

An aerial photo is used to illustrate the clustering of different land cover types in figure 4.1. In this
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Cluster 1

Moisture

Cluster 2

\/

Reflectivity

FIGURE 4.2: A two-dimensional illustration of feature vectors within the feature space. The green
feature vectors represent the natural vegetation class and the red feature vectors represent the hum
settlement class.

image two land cover types are of interest: natural vegetation and human settlement.

Land cover example: In the case of the land cover example shown in figure 4.1, domain knowledge is
used for feature extraction and selection. Let it be assumed that the domain knowledge providec
information that the feature vector given in equation (4.2) will provide better separability

between the two categories.

Z = [(Moisture) (Reflectivity)]. (4.2)

The natural vegetation segments have feature vectors with low reflectivity and high moisture
levels, while the human settlement segments have feature vectors with high reflectivity and low
moisture levels. This is illustrated in a two-dimensional plot shown in figure 4.2. When natural
clusters exist in the feature space and the number of clusters is $6t2pa well-designed

clustering algorithm will produce two perfect clusters, as shown in figuret4.2.

Domain knowledge in many fields is incomplete or unavailable. Verifying the domain knowledge
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Chapter 4 Unsupervised classification

from actual (non-synthetic) data sets is extremely reseexpensive and is difficult to relate to the
feature space. The most practical approach for designing an unsupervised learning algorithm is t
learn from exampl¢l71]. Thelearning from examplapproach requires that the clustering algorithm

be subjected to an external evaluation process. The external evaluation is hampered by the fact th:
thousands of different clustering algorithms have been developed and evidence suggests that none
them is superior to any other [172]. This is addressed inrttpossibility theorem, which states three
criteria which no clustering algorithm can satisfy [172]. The three criteria to satisfy imih@essibility

theoremare:

1. Scale invariance; the scaling of the feature vectors should not change the assigned cluster label

2. Richness; the clustering algorithm must be able to achieve all possible partitions in the feature

space.

3. Consistency; the change in distance within all clusters will not change the assigned cluster labels

Based on th@mpossibility theorem, each clustering application is different and requires an unique
design to obtain good clustering results. This emphasises the importance of obtanemable
performancein the search for a clustering algorithm, as it is infeasible to search through all the
permutations of clustering designs. The admissibility criterion is a more practical approach to
consider when applying external evaluation to a clustering algorithm [170]. The admissibility criterion

comprises three important design considerations:

1. The manner in which the clusters are formed.
2. The intrinsic structure of the feature vectors.

3. The sensitivity of the clusters created.

4.2.3 Challenges of clustering

Humans cluster with ease in two and three dimensions, while a machine learning method is required tc
cluster in higher dimensions. Several design implications arise when clustering in higher dimensions
[171]:

- Determining the number of clusters (section 4.6).

- Determining whether the feature vectors carry representative information to produce clusters that

will hold a relation to the desired classes for the application (section 4.2.2).
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- Deciding which pairwise similarity metric should be used dwaluate the feature space
(section 4.3).

- Determining how the feature vectors should be evaluated to form clusters. Clustering algorithms
are broadly divided into hierarchical and partitional clustering approaches [40,170]. The first
approach is hierarchical clustering, which produces a nested hierarchy of clusters of discrete
groups (section 4.4). The second approach is partitional clustering, which creates an unneste
partitioning of the data points witk clusters [173] (section 4.5).

4.3 SIMILARITY METRIC

A clustering algorithm defines clusters with feature vectors that are similar to one another, and separat
them from feature vectors that are dissimilar. This similarity between feature vectors is usually
measured using a distance function.

Let {7}, © € R" denote a set oV-dimensional feature vectors. Lét : RY — R, denote the
distance function that calculates the distance between the vé&cardz?. The functionD is said to
return the distance (similarity metric) between the two feature vectors.

The properties of the distance functidhare:

Non-negative D (z?, #?) > 0.

Identity axiom,D(z?, ) = 0, iff p = q.

Triangle inequalityD(z°, &%) + D(2?,29) > D(Z°, 27).

Symmetry axiomD(z?,Z27) = D(Z%, £P).

The non-negative and identity axioms produce a positive definite function. The distance metric is
as important in the design as the clustering algorithm itself. Proper selection of a distance metric
will result in the distance between feature vectors of the same cluster being smaller than the distanc
between the feature vectors of other clusters.

Choosing a distance function opens a broad class of distance metrics. The first to consider is the
general Minkowski distance, which is used to derive some of the most common distance functions usec
in clustering applications. The Minkowski distanBg,;, is expressed as

n=1

N o
Diink (TP, Z9) = (Z |zP — x;g|m> . (4.3)
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The variablem, m € N, is the Minkowski parameter that is used to adjust the nature of the distance
metric. The Minkowski distance simplifies to the popular Euclidean distdhgaf the Minkowski

parametern is set to 2 in equation (4.3). The Euclidean distance is computed as

N

Dea(#%, 5% = | Y |k — x|, (4.4)

n=1
The advantage of the Euclidean distance is that it is invariant to translation or rotation of the feature
vector®. The Euclidean distance however does vary under an arbitrary linear transformation.
The squared Euclidean distance is an alteration to the Euclidean distance, as it places a great:
weight on a set of vectors that are considered to be outliers in the vector space. The squared Euclidec

distance is expressed as

Dy (7P, Z7) Zymp zI?. (4.5)

If the Minkowski parameter is set ta=1, equation (4.3) simplifies to the Manhattan distance. The
Manhattan distance is the sum of the absolute difference between vectors. The Manhattan distance

expressed as

Dan (2P, Z9) Z]mp—xq| (4.6)

The Mahalanobis distance metric is used in statistics to measure the correlations betweer

multivariante vectors. The Mahalanobis distance mdjg;.. is expressed as

Do (77, 79) = ([ (77 = £0) Gl (77 — 79), (.7)

whereG .. denotes the covariance matrix.

4.4 HIERARCHICAL CLUSTERING ALGORITHMS

A clustering algorithm uses a set of feature vectorg}, cluster parameters and a similarity metric
to construct a mapping functiafe. Letd = (U?Zlﬁq) denote the set of cluster parameters that the
clustering algorithm needs to determine when construcking

As stated previously, clustering algorithms are broadly divided into either a hierarchical or
partitional clustering approach [40,170]. The hierarchical clustering approach produces a nestec

hierarchy of clusters of discrete groups according to a certain linkage criterion. The nested clusters ar

Department of Electrical, Electronic and Computer Engineering 72
University of Pretoria



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

=

&

ﬂ UNIVERSITEIT VAN PRETORIA
Qe

Chapter 4 Unsupervised classification

recursively linked in either an agglomerative mode or didsnode. The second approach to clustering

is partitional clustering, which creates an unnested partitioning of the vector&’inbosters [173]. In

hierarchical clustering using an agglomerative mode, the clustering parame{er} sstdetermined

iteratively in four steps:

Step 1:

Step 2:

Step 3:

Step 4:

The clustering algorithm starts by allocating each feature vector to its own cluster. The

initialisation phase is defined as
W = TP, Vpand I = 0. (4.8)

The variabled? denotes the' set of cluster parameters at epakhwith I set to zero for the

initialisation phase. The vectai® denotes the'" feature vector.

The similarity between two clusters is defined by a linkage criterion. The linkage criterion
evaluates two clusters using a similarity metric (section 4.3) to compute the dendrogrammatic

distancel’(¥}, 9¥%). The dendrogrammatic distance is computed as
T(9y,97) = B, 07), (4.9)

where the linkage criterion is denoted by the functions € {Tiing, Teom, Lave, Tward }-

This expression states that all the feature vectors in clyStaust be compared to all the feature
vectors in cluster” using a predefined argument. The linkage criterion’s functioeturns a

dendrogrammatic distance between the two clusters.

Select the shortest dendrogrammatic distaiég %) between all pairs of clusters. Léf and
%" be selected such that

[191;,19];*]: argmin T(z?ll,ﬁ]}). (4.10)
Lk € [LK]:1#£k

Merge the two clusters with indExandk* as
i) = (ﬁl; g 19’;*), (4.11)

gy = 0. (4.12)

Steps 2—4 are repeated until all the clusters are merged into a single cluster. The sequence

merging clusters can be graphically presented by a tree diagram, called a dendrogram. The dendrogra

is a multi-level hierarchy with two clusters merging at each level.
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FIGURE 4.3: An alternative selection of five new segments of the aerial photo taken in the Limpopo
province which indicates different types of land cover types.

Land cover example: Five new segments are defined in figure 4.3. A hierarchical clustering
algorithm operating in agglomerative mode creates a dendrogram shown in figure 4.4 when
applied to the five segments. In the first iteration the similarity between segment 4 and segment
5 is the highest (shortest dendrogrammatic distance). These segments are merged to form
new cluster. The dendrogrammatic distances between the merging clusters are indicated on th
vertical axis. The shorter the distance on the vertical axis, the more similar the two joining
clusters. In the second iteration, segment 1 and segment 3 are joined as being the next mos
similar clusters. These two newly formed clusters are joined together, as they are more similar
to each other than to segment 2. Segment 2 is joined to form a single cluster containing all

segments, which completes the dendrogram.

In the divisive mode, the clustering algorithm starts by placing the entire feature vector set in a
single cluster. In this mode, a comparison is made between all the feature vectors within the clustel
to determine which feature vectors are the most dissimilar and split the cluster into two separate
clusters. This process is repeated until every single cluster retains a single feature vector. The sequen
of separating the clusters is also represented on a dendrogram. Only the agglomerative mode we
considered, as it is a bottom-up approach and the concept could easily be derived for a divisive mode

with the same methodology in a top-down approach.
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2.5

1.5

Dendrogrammatic distance

4 5 1 3 2
Cluster index

FIGURE4.4: An illustration of an hierarchical clustering approach operating in agglomerative mode.

4.4.1 Linkage criteria

4.4.1.1 Single linkage criterion

The merging of clusters is based on the dendrogrammatic distance between clusters. The
dendrogrammatic distance is computed using a linkage criterion. The single linkage criterion is the
first linkage criterion that is considered, as it searches for the shortest distance between two featur
vectors; each residing in two different clusters. The single linkage critdtign(v’, v%) is expressed

as

Ting (95, 9%) = min{D(z?, 79} VZ? € ¥}, 79 € 9% and | # k. (4.13)

The variablez? denotes the'" feature vector and? denotes the'" feature vector. The similarity
metrics shown in section 4.3 (equation (4.3)—(4.7)) or any other distance metric found in the literature
can be used as the distance mefigc?, 7). The single linkage criterion has a chaining effect as a
characteristic trait when forming clusters. This results in clusters that are straggly and elongated in
shape [174]. The advantage of elongated clusters is that they can extract spherical clusters from th
feature space.

4.4.1.2 Complete linkage criterion

The complete linkage criterion computes a dendrogrammatic distance by finding the maximum

possible distance between two feature vectors that reside in different clusters. The complete linkage
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criterion T, (¥, 9%) is expressed as

Toom (05, 9%) = max{D(z?, 9} VP € ¥}, 77 € V% and | # k. (4.14)

The variablez? denotes the'" feature vector and'? denotes the'" feature vector. The complete
linkage criterion has the characteristic trait of forming tightly bounded compact clusters. The complete
linkage criterion creates more useful clusters in many actual (non-synthetic) data sets than the singl
linkage criterion [170, 175].

4.4.1.3 Average linkage criterion

The average linkage criterion is the most intuitive linkage criterion, as it calculates a dendrogrammatic
distance between two clusters by finding the average distance among all pairs of feature vectors residin
in different clusters. The average linkage criteriog. (v}, 9%) is expressed as

Tovel0), %) = W S5 D), £k (4.15)
I I

zrevl Facyk
9% | denotes the number of feature vectors in clugteand || denotes the number of feature vectors

in clusterd%. The average linkage criterion is a compromise between the complete linkage criterion’s
sensitivity to outliers and the chaining effect produced by the single linkage criterion.

4.4.1.4 Ward criterion

The Ward criterion computes a dendrogrammatic distance between clusters by finding the clusters the
will maximise the coefficient of determinatid#? [176]. The Ward criteriof..q(v, ¥%) is expressed
as

Tl ) = 3 |l B ua]|| - 3 e - Bl -
pE (WIUW}) pev]
3 fp—E[ﬂ’ﬂHQ. (4.16)
pevh

The expected value of the feature vectors in the cluster is denotdd#8}. The Ward criterion
attempts to minimise the variance between ghelusters and only uses the Euclidean distance. Most
linkage criteria in the literature are variants of the single linkage, complete linkage, average linkage or
Ward criterion.
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4.4.2 Cophenetic correlation coefficient

A dendrogram is created iteratively as the functifp is derived with a hierarchical clustering

algorithm. The dendrogram illustrates the dendrogrammatic distances obtained with the linkage
criterion (section 4.4.1). The cophenetic correlation coefficient is a statistical measure of correlation
between the dendrogrammatic distances and the similarity distances for all pairs of feature vector:

[177]. The cophenetic correlation coefficient is computed as

D = = — , (4.17)

with 77 € ¥} andz? € ¥%. The functionD(z?, #7) denotes the distance between the feature vector
P and 7 as shown in section 4.3. TH&W,, V%), 7 € 9}, £ € 9%, denotes the dendrogrammatic
distance between the feature vectdrandz'¢ as shown in equation (4.9). The higher the correlation,
the better the dendrogram preserves the information of the feature space when using a particula
linkage criterion. The cophenetic correlation coefficient is used to evaluate several different distance
metrics and linkage criteria that will best retain the original distances of the feature space in the

dendrogram [177].

4.5 PARTITIONAL CLUSTERING ALGORITHMS

A partitional clustering algorithm operates on the actual feature vectors, which significantly reduces
the required space and computations to operate, which makes it more suitable for larger data sets whe
compared to hierarchical clustering [173].

Let {y*}, k € N, 1 < k < K denote the set of cluster labels. LBt : RV — {y*} denote the
function that maps feature vectofg}, {¥} € RY, onto the clusters. TheR; is said to clustef into
K clusters.

In a general case of partitional clustering, a set of clustering parameters is determined when
constructing the mapping functioRe. Let {94}, {94} € Qy, denote the set of clustering parameters.
The variablek, 1 < k < K, denotes the index in the s€f¥} which refers to the cluster labgf.

The variablel denotes the current epoch. The partitional clustering algorithm uses a distance metric
D(z?,9%) to measure the distance betweenitfefeature vector® and cluster/*. The feature vector

ZP is then mapped ontfy”*} using the functionF;, such that
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Fe(ZP) = argmin {D(fp, 19’})} (4.18)

yre{yr}
Intuitively, the functionF. maps a vectof’® to the nearest cluster.
The functionF; is constructed by determining the set of cluster paramét&is to minimise the
overall distance between a given set of feature vecfdisand theK corresponding clusters. One

possible definition of this process is

P

{19];*} = argmin { Z D(z®, ﬁfC(ip)) } (4.19)
{ﬁlf}eﬂg p=1

The clustering algorithm simultaneously determines the paramétesteach cluster, as well as the

cluster assignment of each feature veatdr

4.5.1 K-means algorithm

The first partitional clustering algorithm explored is the poputdmeans algorithm [178]. The
K-means algorithm attempts to find the center points of the natural clusterdy-theans clustering
algorithm accomplishes this by partitioning the feature vectorsintautually exclusive clusters.

K-means is a heuristic, hill-climbing algorithm that attempts to converge to the center mass point
of the natural clusters. It can be viewed as a gradient descent approach which attempts to minimise th
sum of squared error of each feature vector to the nearest cluster centroid [179]. The clusters create
with the K-means algorithm are compact and isolated in nature.

Minimising the SSE has been shown to be a NP-hard problem, even for a two-cluster problem [180].
This gives rise to a variety of heuristic approaches to solving the problem for practical applications.
The most common method of implementing tRemeans algorithm is the Lloyd’s approach. The

Lloyd’s approach is an iterative method which comprises three steps:

Step 1: Initialise a set ok centroids{v¥}.

Step 2: Assign each feature vector to its closest centroid. This is accomplished by ciéatimgty sets
sk =0k=1,2,..., K, for each of the corresponding centroid&}. The assignment step is
expressed as

FF = {{f”} . D(Z?,9%) < D(Z?,9%),VI # k:} (4.20)

The vectorz? denotes the'™ feature vector and denotes the distance function.

Step 3: The update step adjusts the centroids’ position to minimise the sum of distance given in
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equation (4.19). The adjustment is made for each centroid as

D) = |ﬁk| > & v k. (4.21)

rresk

|5%| denotes the number of elements in the set.

Steps 2—3 are repeated until all the feature vectors within each cluster remain unchanged or a predefine
stopping criterion is reached.

The performance of th&-means algorithm is dependent on the density distribution of the feature
vectors in the feature spacds<-means will minimise the SSE with high probability to the global
minimum if the feature vectors are well separated [181]. The ability offhmeans algorithm to
handle a large number of feature vectors enables the parallel execution of multiple replications with
different initial seeds to avoid local minima. THé-means clustering algorithm is usually used as a
benchmark against other algorithms, and has been used successfully in many other fields [171].

4.5.2 Expectation-maximisation algorithm

The Expectation-Maximisation (EM) algorithm is another partitional clustering algorithm, which
attempts to fit a mixture of probability distributions on the set of feature vectors [182]. The EM
algorithm was designed on the assumption that the feature vectors are extracted from a feature spas
with a multi-modal distribution.

Given a set of observable vectofg} and unknown variable§y*}, the EM algorithm finds the
maximum likelihood or maximunaposteriorestimates for the parametefss € 2. The maximum

likelihood estimation of the parameteds;;, is expressed as

WML, = argmax { logp(:?w)} = argmax {j(ﬁ)} (4.22)

BeN BeN
The log-likelihood of the conditional probability in equation (4.22) is expanded to incorporate the
unknown variableg” as
p(&, y*|&)
J (@) = log p(Z|) logZp Z, y*|D) logz q(y*|%, ) | o) (4.23)
The functiong(y*|#,&) is an arbitrary density oveg*. Considering the following lower bound

inequality to equation (4.23) as

- k= = k=
N oA Tl ) k= - P(T YD)

log Q(yk|xaw)ﬁ > q(y"|%, &) log ————=—1, (4.24)
zk: q(y*|7, &) zk: q(y*|7, &)
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which for convenience is rewritten as

7@) 2 Y aleHi.3)1og BLLIL (4.25)
k

Itis easier if the EM algorithm instead attempts to maximise the lower bound shown in equation (4.25).
The EM algorithm iteratively adjusts the parameters of the distributions in two steps. The first step
is the expectation step (E-step) which calculates the log likelihood function, with respect to the

conditional distribution of/* givenZ with the current estimate of the paramefeas

— k —
k| =2 -—\new k= — p(l’,y ’C‘U)

A1, @) = argmax{ 1z, ) 1ogT}. (4.26)
9(y*|7.5) zk: q(y*|%, &)

Calculating the E-step requires the vectoio be fixed while attempting to optimise over the space of

distributions. The second step is the maximisation step (M-step), which tries to maximise thedvector

using the result from equation (4.26). The M-step is computed as

— k| —
@'Y = argmax { Z q(y*| %, &)™ log M} (4.27)

w

The EM algorithm iterates through both steps until it converges to a local maximum. The feature vector
is assigned to a cluster that maximisesdpesteriorprobabilities of a given distribution.

The disadvantage of the EM algorithm is that even though the probability of the feature vectors
does not decrease, it does not guarantee that the algorithm will converge to the global maximum for &
multi-modal distribution. This implies that the EM algorithm can converge to a local maximum. This
can be avoided with multiple replications of the algorithm executed with different initial seeds. The
EM algorithm is well suited to operate on data sets that contain missing vectors and data sets with low

feature space dimensionality.

4.6 DETERMINING THE NUMBER OF CLUSTERS

The most difficult design consideration is to determine the correct number of clusters that should be
extracted from the data set. Hundreds of methods have been developed to determine the number
clusters within a data set. The choice in determining the number of clustéssalways ambiguous
and is a distinct issue from the process of actually solving the unsupervised clustering problem.

The problem if the number of clusters is increased without penalty in the design phase (which
defeats the purpose of clustering), is that the number of incorrect cluster assignments will steadily
decrease to zero. In the extreme case; each feature vector is assigned to its own cluster, which resul

in zero incorrect clustering allocations. Intuitively this makes the choice in the number of clusters a
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balance between the maximum compression of the featurerganto a single cluster and complete
accuracy by assigning each feature vector to it own cluster.

The silhouette value is used as a measure of how close each feature vector is to its own cluste
when compared to feature vectors in neighbouring clusters [183]. The silhouetteSyaltie’) for

the feature vectar? is computed as

min{Spp (£, 1) — Swp (L)}
maX{SWD(QZ”P), min{SBD<fp7 k)}} ’

The functionSyp (27) denotes the average distance for the feature veétt the other feature vectors

S(@, K) = Vi, . (4.28)

in the same cluster. The cluster index is denoted Byc N, 1 < k < K, andSgp(Z?, k) denotes the
average distance for the feature vectérto the feature vectors in the" cluster. The average distance

within the same cluste$y, (z?) for the feature vectar? is computed as

[97e@P)] =
D(@",79) e
2P — 2 L34 c(@P)\E
Swo (T )_{ 2; TR 1 VI e } (4.29)
q:
The variablg¥”<#”)| denotes the number of feature vectors in the cluster witereside. The average

distance between the feature vectérand thek™ cluster is computed as

§Fe@ED)
Sep (77, k) = { | 2 l% Yl e 9@ g4 g 9@ Fo(71) = yk} (4.30)
—

The variabldy”¢@*)| denotes the number of feature vectors withintHecluster.

The silhouette valu€(z”?, K') ranges from -1 to 1. A silhouette valsgz?, k') — 1 indicates that
the feature vectar? is very distant from the neighbouring clusters. A silhouette valug(z?, K) —

0 indicates the feature vecta@? is close to the decision boundary between two clusters. A silhouette
valueS(z?, K) — —1 indicates that the feature vectof is probably in the wrong cluster.

A silhouette graph is a visual representation of the silhouette values and is a visual aid used tc
determine the number of clusters. The x-axis denotes the silhouette values and the y-axis denotes tt
cluster labels. The silhouette graph shown in figure 4.5 was created from a larger set of segment:
defined in the example of land cover classification (figure 4.3). In this silhouette graph; cluster 3 has
high silhouette values present, which implies that the current feature vectors within cluster 3 are well
separated from the other two clusters. Cluster 1 also has high silhouette values, but with a few featur:
vectors considered to be ill-positioned. Cluster 2 has significantly lower silhouette values and most

of its feature vectors are closely positioned at the boundary between clusters. This might suggest the
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FIGURE4.5: A silhouette plot of 3 clusters formed of example given in figure 4.3.

cluster 2 can be subdivided into two separate clusters.
An analytical method of deciding on the correct number of cluskérss the computation of the

average of the silhouette value. The average silhouette value is calculated as

Pmax

Swe{T}, K) =) S(7*, K), (4.31)

where P,,., denotes the total number of feature vectors in{s8t A range of K can be evaluated
without any prior knowledge to determine the performance of the clustering algorithm. The number of

clustersK that produces the highest average silhouette value is then selected.

4.7 CLASSIFICATION OF CLUSTER LABELS

Clusters typically encapsulate properties of the feature vector set and this homogeneous propert
motivates the assignment of class labels to the clusters. The class labels are assigned using a supervis
classifier, which assigns a set of class lai{€ls} to the K cluster labels [171].

The supervised classifier assigns a class label to a cluster with the most frequently occurring
class label from the labelled training data set. Assigning the class labels to the cluster labels with

a supervised classifier is expressed as

Ce=Z(y"). (4.32)
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Owing to the fact that there is rame cluster represents one clga®perty, feature vectors of a certain

class might end up in the incorrect cluster and therefore be assigned the wrong class label.

Land cover example: The clustering algorithm uses a functi@f to assign a cluster label to each of
the two segments in figure 4.1. The supervised classifier is then used to assign a class label t
each of the clusters. In this example the number of clugters set to two and the supervised
classifier will assign either the natural vegetation class or the human settlement class to the
cluster label. This is accomplished by mapping the cluster lghels

C;(natural vegetation) if y* =1
Cy(human settlement) if y* = 2.
The cluster label* is classified as natural vegetation when the label is in the first cluster and

human settlement when the label is in the second cluster.

4.8 SUMMARY

In this chapter a methodology was presented to aid in the design process of an unsupervised classifie
The way in which a clustering method tends to find clusters in the feature space irrespective of whethel
any real clusters exist was discussed. This shows that proper design criteria must be adhered to and tl
most practical approach to designing a clustering methodlesato from exampl¢l71].

The design of the clustering method requires the simultaneous optimisation of the:

e feature extraction and feature selection,
e clustering algorithm, and

e similarity metric.

Six popular clustering algorithms were explored. These algorithms are based on basic concepts, whic
explore the properties of the feature vectors. Thousands of clustering algorithms have been develope
in the last couple of decades and most of them only use different permutations and combinations of the
concepts defined in these six clustering algorithms. These basic concepts will provide insight into the

intrinsic properties of the feature vectors that populate a high-dimensional feature space.
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