
CHAPTERFOUR
UNSUPERVISED CLASSIFICATION

4.1 OVERVIEW

In this chapter a brief overview is given of the notion of grouping objects into different categories

without any supervision. The previous chapter described a supervised approach to grouping objects and

how the relationship between the desired class membership and input vectors was derived using labels.

The possibility is now explored of grouping objects based on their perceived intrinsic similarities.

A formal definition is provided on an unsupervised method known as clustering, followed by the

advantages of exploring an unsupervised approach. The design considerations behind producing good

clustering results are then explored, followed by the challenges inherent when using clustering methods

to solve real world problems.

Clustering algorithms are broadly divided into hierarchical and partitional clustering approaches

[40, 170]. Four popular hierarchical clustering methods and two partitional clustering methods are

discussed with their corresponding properties. The chapter concludes with a discussion on how clusters

can be converted to classes to obtain a supervised classifier.

4.2 CLUSTERING

Clustering is a form of conceptual clustering, which is an unsupervised method used for grouping

unlabelled input vectors into a set of categories. Clustering groups a set of input vectors through

perceived intrinsically similar or dissimilar characteristics.

Let {y k}, y k ∈ N, 1 ≤ y k ≤ K, denotes the set of cluster labels. LetFC : Rn → {y k} denote the

function that maps the input vector~̃x p, ~̃x p ∈ R
n, to a cluster label. The variablep denotes the index of

the vector within the input vector set. The functionFC is said to cluster the input vector set{~̃x p} into

K clusters.
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Several motivations exist to justify the use of clustering algorithms for many non-synthetic data

sets:

1. Significant costs are involved when gathering information about the data set to create reliable

class labels for supervised classification.

2. The underlying data structure of a large unlabelled data set can be captured to provide reliable

clustering on a smaller labelled data set.

3. Accommodate a dynamic input space. This is when the input space changes over time or in

response to a triggered event.

4. Assisting in creating a well-conditioned input vector from the input space to gain insight into

what improves the cluster label allocation.

4.2.1 Mapping of vectors to clusters

A cluster label is derived by evaluating several different input data sources from the input space. These

data sources are grouped together to form an input vector~̃x. These input vectors are the same as with

the supervised classifier and have descriptive forms that can be interpreted. The preprocessing and

postprocessing of the input and output vectors is an optional procedure used to improve the clustering

algorithm’s performance [136]. Using feature vectors~x and postprocessed output valuey is assumed

to improve the performance significantly and is used throughout this chapter.

The clustering algorithm constructs a functionFC to determine the cluster label and is based on the

set of feature vectors{~x p}. The mapping function is expressed as

yk = FC(~x
p). (4.1)

The clusters typically encapsulate properties of the non-synthetic data set; each cluster should have a

homogeneous set of feature vectors.

4.2.2 Creating meaningful clusters

No theoretical guideline exists on how to extract the optimal feature vector set from the input vector

set for a specific clustering application. Owing to the limited intrinsic information within the feature

vector set, it is difficult to design a clustering algorithm that will find clusters to match the desired

cluster labels.

This constraint is created by a clustering algorithm, as it tends to find clusters in the feature space

irrespective of whether any real clusters exist. This constraint motivates the notion that any two
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Chapter 4 Unsupervised classification

FIGURE 4.1: An aerial photo taken in the Limpopo province, South Africa of two different land cover
which are indicated by a natural vegetation segment and settlement segment. A segment is defined as
a collection of pixels within a predefined size bounding box.

arbitrary patterns can be made to appear equally similar when evaluating a large number of dimensions

of information in the feature space. This will result in defining a meaningless clustering function

FC. This makes clustering a subjective task in nature, which can be modified to fit any particular

application.

The advantage in this versatility is that the clustering algorithm can be used as either an exploratory

or a confirmatory analysis tool [170]. Clustering used as an exploratory analysis tool is there to explore

the underlying structures of the data. No predefined models or hypotheses are needed when exploring

the data set. Clustering used as a confirmatory analysis tool is to confirm any set of hypotheses or

assumptions. In certain applications, clustering is used as both; first to explore the underlying structures

to form new hypotheses. Second, to test these hypotheses by clustering the feature vector set. This

makes clustering a data-driven learning algorithm and any domain knowledge that is available can

improve the forming of clusters [170].

Domain knowledge is used to reduce complexity by aiding in processes such as feature selection

and feature extraction. Proper domain knowledge leads to good feature vector representation that will

yield exceptional performance with the most common clustering algorithms, while incomplete domain

knowledge leads to poor feature vector representation that will only yield acceptable performance with

a complex clustering algorithm.

An aerial photo is used to illustrate the clustering of different land cover types in figure 4.1. In this

Department of Electrical, Electronic and Computer Engineering 68

University of Pretoria

 
 
 



Chapter 4 Unsupervised classification

FIGURE 4.2: A two-dimensional illustration of feature vectors within the feature space. The green
feature vectors represent the natural vegetation class and the red feature vectors represent the human
settlement class.

image two land cover types are of interest: natural vegetation and human settlement.

Land cover example: In the case of the land cover example shown in figure 4.1, domain knowledge is

used for feature extraction and selection. Let it be assumed that the domain knowledge provided

information that the feature vector given in equation (4.2) will provide better separability

between the two categories.

~x = [(Moisture) (Reflectivity)]. (4.2)

The natural vegetation segments have feature vectors with low reflectivity and high moisture

levels, while the human settlement segments have feature vectors with high reflectivity and low

moisture levels. This is illustrated in a two-dimensional plot shown in figure 4.2. When natural

clusters exist in the feature space and the number of clusters is set toK=2, a well-designed

clustering algorithm will produce two perfect clusters, as shown in figure 4.2.2

Domain knowledge in many fields is incomplete or unavailable. Verifying the domain knowledge
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from actual (non-synthetic) data sets is extremely resource-expensive and is difficult to relate to the

feature space. The most practical approach for designing an unsupervised learning algorithm is to

learn from example[171]. Thelearning from exampleapproach requires that the clustering algorithm

be subjected to an external evaluation process. The external evaluation is hampered by the fact that

thousands of different clustering algorithms have been developed and evidence suggests that none of

them is superior to any other [172]. This is addressed in theimpossibility theorem, which states three

criteria which no clustering algorithm can satisfy [172]. The three criteria to satisfy in theimpossibility

theoremare:

1. Scale invariance; the scaling of the feature vectors should not change the assigned cluster labels.

2. Richness; the clustering algorithm must be able to achieve all possible partitions in the feature

space.

3. Consistency; the change in distance within all clusters will not change the assigned cluster labels.

Based on theimpossibility theorem, each clustering application is different and requires an unique

design to obtain good clustering results. This emphasises the importance of obtainingacceptable

performancein the search for a clustering algorithm, as it is infeasible to search through all the

permutations of clustering designs. The admissibility criterion is a more practical approach to

consider when applying external evaluation to a clustering algorithm [170]. The admissibility criterion

comprises three important design considerations:

1. The manner in which the clusters are formed.

2. The intrinsic structure of the feature vectors.

3. The sensitivity of the clusters created.

4.2.3 Challenges of clustering

Humans cluster with ease in two and three dimensions, while a machine learning method is required to

cluster in higher dimensions. Several design implications arise when clustering in higher dimensions

[171]:

- Determining the number of clustersK (section 4.6).

- Determining whether the feature vectors carry representative information to produce clusters that

will hold a relation to the desired classes for the application (section 4.2.2).
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- Deciding which pairwise similarity metric should be used toevaluate the feature space

(section 4.3).

- Determining how the feature vectors should be evaluated to form clusters. Clustering algorithms

are broadly divided into hierarchical and partitional clustering approaches [40, 170]. The first

approach is hierarchical clustering, which produces a nested hierarchy of clusters of discrete

groups (section 4.4). The second approach is partitional clustering, which creates an unnested

partitioning of the data points withK clusters [173] (section 4.5).

4.3 SIMILARITY METRIC

A clustering algorithm defines clusters with feature vectors that are similar to one another, and separate

them from feature vectors that are dissimilar. This similarity between feature vectors is usually

measured using a distance function.

Let {~x}, ~x ∈ R
N denote a set ofN -dimensional feature vectors. LetD : RN → R+ denote the

distance function that calculates the distance between the vector~x p and~x q. The functionD is said to

return the distance (similarity metric) between the two feature vectors.

The properties of the distance functionD are:

- Non-negative,D(~x p, ~x q) ≥ 0.

- Identity axiom,D(~x p, ~x q) = 0, iff p = q.

- Triangle inequality,D(~x o, ~x p) +D(~x p, ~x q) ≥ D(~x o, ~x q).

- Symmetry axiom,D(~x p, ~x q) = D(~x q, ~x p).

The non-negative and identity axioms produce a positive definite function. The distance metric is

as important in the design as the clustering algorithm itself. Proper selection of a distance metric

will result in the distance between feature vectors of the same cluster being smaller than the distance

between the feature vectors of other clusters.

Choosing a distance function opens a broad class of distance metrics. The first to consider is the

general Minkowski distance, which is used to derive some of the most common distance functions used

in clustering applications. The Minkowski distanceDmink is expressed as

Dmink(~x
p, ~x q) =

(

N
∑

n=1

|x p
n − x q

n|
m

) 1
m

. (4.3)
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The variablem,m ∈ N, is the Minkowski parameter that is used to adjust the nature of the distance

metric. The Minkowski distance simplifies to the popular Euclidean distanceDed if the Minkowski

parameterm is set to 2 in equation (4.3). The Euclidean distance is computed as

Ded(~x
p, ~x q) =

√

√

√

√

N
∑

n=1

|x p
n − x q

n|2. (4.4)

The advantage of the Euclidean distance is that it is invariant to translation or rotation of the feature

vector~x. The Euclidean distance however does vary under an arbitrary linear transformation.

The squared Euclidean distance is an alteration to the Euclidean distance, as it places a greater

weight on a set of vectors that are considered to be outliers in the vector space. The squared Euclidean

distance is expressed as

Dsq(~x
p, ~x q) =

N
∑

n=1

|x p
n − x q

n|
2. (4.5)

If the Minkowski parameter is set tom=1, equation (4.3) simplifies to the Manhattan distance. The

Manhattan distance is the sum of the absolute difference between vectors. The Manhattan distance is

expressed as

Dman(~x
p, ~x q) =

N
∑

n=1

|x p
n − x q

n|. (4.6)

The Mahalanobis distance metric is used in statistics to measure the correlations between

multivariante vectors. The Mahalanobis distance metricDmahal is expressed as

Dmahal(~x
p, ~x q) =

√

(~x p − ~x q)G−1
mahal(~x

p − ~x q), (4.7)

whereGmahal denotes the covariance matrix.

4.4 HIERARCHICAL CLUSTERING ALGORITHMS

A clustering algorithm uses a set of feature vectors{~x p}, cluster parameters and a similarity metric

to construct a mapping functionFC. Let ϑ = (∪Q
q=1ϑ

q) denote the set of cluster parameters that the

clustering algorithm needs to determine when constructingFC.

As stated previously, clustering algorithms are broadly divided into either a hierarchical or

partitional clustering approach [40, 170]. The hierarchical clustering approach produces a nested

hierarchy of clusters of discrete groups according to a certain linkage criterion. The nested clusters are
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recursively linked in either an agglomerative mode or divisive mode. The second approach to clustering

is partitional clustering, which creates an unnested partitioning of the vectors intoK clusters [173]. In

hierarchical clustering using an agglomerative mode, the clustering parameter set{ϑ} is determined

iteratively in four steps:

Step 1: The clustering algorithm starts by allocating each feature vector to its own cluster. The

initialisation phase is defined as

ϑp
I = ~x p, ∀p and I = 0. (4.8)

The variableϑp
I denotes thepth set of cluster parameters at epochI, with I set to zero for the

initialisation phase. The vector~x p denotes thepth feature vector.

Step 2: The similarity between two clusters is defined by a linkage criterion. The linkage criterion

evaluates two clusters using a similarity metric (section 4.3) to compute the dendrogrammatic

distanceT (ϑl
I , ϑ

k
I ). The dendrogrammatic distance is computed as

T (ϑl
I , ϑ

k
I ) = β(ϑl

I , ϑ
k
I ), (4.9)

where the linkage criterion is denoted by the functionβ, β ∈ {Tsing, Tcom, Tave, Tward}.

This expression states that all the feature vectors in clusteryl must be compared to all the feature

vectors in clusteryk using a predefined argument. The linkage criterion’s functionβ returns a

dendrogrammatic distance between the two clusters.

Step 3: Select the shortest dendrogrammatic distanceT (ϑl
I , ϑ

k
I ) between all pairs of clusters. Letϑl∗

I and

ϑk∗

I be selected such that

[ϑl∗

I , ϑ
k∗

I ] = argmin
l,k∈ [1,K];l 6=k

T (ϑl
I , ϑ

k
I ). (4.10)

Step 4: Merge the two clusters with indexl∗ andk∗ as

ϑl∗

(I+1) =

(

ϑl∗

I ∪ ϑk∗

I

)

, (4.11)

ϑk∗

(I+1) = ∅. (4.12)

Steps 2–4 are repeated until all the clusters are merged into a single cluster. The sequence of

merging clusters can be graphically presented by a tree diagram, called a dendrogram. The dendrogram

is a multi-level hierarchy with two clusters merging at each level.
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FIGURE 4.3: An alternative selection of five new segments of the aerial photo taken in the Limpopo
province which indicates different types of land cover types.

Land cover example: Five new segments are defined in figure 4.3. A hierarchical clustering

algorithm operating in agglomerative mode creates a dendrogram shown in figure 4.4 when

applied to the five segments. In the first iteration the similarity between segment 4 and segment

5 is the highest (shortest dendrogrammatic distance). These segments are merged to form a

new cluster. The dendrogrammatic distances between the merging clusters are indicated on the

vertical axis. The shorter the distance on the vertical axis, the more similar the two joining

clusters. In the second iteration, segment 1 and segment 3 are joined as being the next most

similar clusters. These two newly formed clusters are joined together, as they are more similar

to each other than to segment 2. Segment 2 is joined to form a single cluster containing all

segments, which completes the dendrogram.

In the divisive mode, the clustering algorithm starts by placing the entire feature vector set in a

single cluster. In this mode, a comparison is made between all the feature vectors within the cluster

to determine which feature vectors are the most dissimilar and split the cluster into two separate

clusters. This process is repeated until every single cluster retains a single feature vector. The sequence

of separating the clusters is also represented on a dendrogram. Only the agglomerative mode was

considered, as it is a bottom-up approach and the concept could easily be derived for a divisive mode

with the same methodology in a top-down approach.
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FIGURE 4.4: An illustration of an hierarchical clustering approach operating in agglomerative mode.

4.4.1 Linkage criteria

4.4.1.1 Single linkage criterion

The merging of clusters is based on the dendrogrammatic distance between clusters. The

dendrogrammatic distance is computed using a linkage criterion. The single linkage criterion is the

first linkage criterion that is considered, as it searches for the shortest distance between two feature

vectors; each residing in two different clusters. The single linkage criterionTsing(ϑ
l
I , ϑ

k
I ) is expressed

as

Tsing(ϑ
l
I , ϑ

k
I ) = min{D(~x p, ~x q)} ∀~x p ∈ ϑl

I , ~x
q ∈ ϑk

I and l 6= k. (4.13)

The variable~x p denotes thepth feature vector and~x q denotes theqth feature vector. The similarity

metrics shown in section 4.3 (equation (4.3)–(4.7)) or any other distance metric found in the literature

can be used as the distance metricD(~x p, ~x q). The single linkage criterion has a chaining effect as a

characteristic trait when forming clusters. This results in clusters that are straggly and elongated in

shape [174]. The advantage of elongated clusters is that they can extract spherical clusters from the

feature space.

4.4.1.2 Complete linkage criterion

The complete linkage criterion computes a dendrogrammatic distance by finding the maximum

possible distance between two feature vectors that reside in different clusters. The complete linkage
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criterionTcom(ϑ
l
I , ϑ

k
I ) is expressed as

Tcom(ϑ
l
I , ϑ

k
I ) = max{D(~x p, ~x q)} ∀~x p ∈ ϑl

I , ~x
q ∈ ϑk

I and l 6= k. (4.14)

The variable~x p denotes thepth feature vector and~x q denotes theqth feature vector. The complete

linkage criterion has the characteristic trait of forming tightly bounded compact clusters. The complete

linkage criterion creates more useful clusters in many actual (non-synthetic) data sets than the single

linkage criterion [170, 175].

4.4.1.3 Average linkage criterion

The average linkage criterion is the most intuitive linkage criterion, as it calculates a dendrogrammatic

distance between two clusters by finding the average distance among all pairs of feature vectors residing

in different clusters. The average linkage criterionTave(ϑ
l
I , ϑ

k
I ) is expressed as

Tave(ϑ
l
I , ϑ

k
I ) =

1

|ϑl
I ||ϑ

k
I |

∑

~x p∈ϑl
I

∑

~x q∈ϑk
I

D(~x p, ~x q), l 6= k. (4.15)

|ϑl
I | denotes the number of feature vectors in clusterϑl

I and|ϑk
I | denotes the number of feature vectors

in clusterϑk
I . The average linkage criterion is a compromise between the complete linkage criterion’s

sensitivity to outliers and the chaining effect produced by the single linkage criterion.

4.4.1.4 Ward criterion

The Ward criterion computes a dendrogrammatic distance between clusters by finding the clusters that

will maximise the coefficient of determinationR2 [176]. The Ward criterionTward(ϑ
l
I , ϑ

k
I ) is expressed

as

Tward(ϑ
l
I , ϑ

k
I ) =

∑

p∈
(

ϑl
I
∪ϑk

I

)

∥

∥

∥~x p − E
[

ϑl
I ∪ ϑk

I

]

∥

∥

∥

2

−
∑

p∈ϑl
I

∥

∥

∥~x p − E
[

ϑl
I

]

∥

∥

∥

2

−

∑

p∈ϑk
I

∥

∥

∥
~x p − E

[

ϑk
I

]

∥

∥

∥

2

. (4.16)

The expected value of the feature vectors in the cluster is denoted byE[~x p]. The Ward criterion

attempts to minimise the variance between theK clusters and only uses the Euclidean distance. Most

linkage criteria in the literature are variants of the single linkage, complete linkage, average linkage or

Ward criterion.
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4.4.2 Cophenetic correlation coefficient

A dendrogram is created iteratively as the functionFC is derived with a hierarchical clustering

algorithm. The dendrogram illustrates the dendrogrammatic distances obtained with the linkage

criterion (section 4.4.1). The cophenetic correlation coefficient is a statistical measure of correlation

between the dendrogrammatic distances and the similarity distances for all pairs of feature vectors

[177]. The cophenetic correlation coefficient is computed as

Dcc =

∑P
q=2

∑q
p=1(D(~x p, ~x q)− E[D(~x p, ~x q)])(T (ϑl

0, ϑ
k
0)− E[T (ϑl

0, ϑ
k
0)])

√

∑P
q=2

∑q
p=1(D(~x p, ~x q)− E[D(~x p, ~x q)])2(T (ϑl

0, ϑ
k
0)− E[T (ϑl

0, ϑ
k
0)])

2

, (4.17)

with ~x p ∈ ϑl
0 and~x q ∈ ϑk

0. The functionD(~x p, ~x q) denotes the distance between the feature vector

~x p and~x q as shown in section 4.3. TheT (ϑl
0, ϑ

k
0), ~x

p ∈ ϑl
0, ~x

q ∈ ϑk
0, denotes the dendrogrammatic

distance between the feature vector~x p and~x q as shown in equation (4.9). The higher the correlation,

the better the dendrogram preserves the information of the feature space when using a particular

linkage criterion. The cophenetic correlation coefficient is used to evaluate several different distance

metrics and linkage criteria that will best retain the original distances of the feature space in the

dendrogram [177].

4.5 PARTITIONAL CLUSTERING ALGORITHMS

A partitional clustering algorithm operates on the actual feature vectors, which significantly reduces

the required space and computations to operate, which makes it more suitable for larger data sets when

compared to hierarchical clustering [173].

Let {yk}, k ∈ N, 1 ≤ k ≤ K denote the set of cluster labels. LetFC : RN → {yk} denote the

function that maps feature vectors{~x}, {~x} ∈ R
N , onto the clusters. ThenFC is said to cluster~x into

K clusters.

In a general case of partitional clustering, a set of clustering parameters is determined when

constructing the mapping functionFC. Let {ϑk
I}, {ϑk

I} ∈ Ωϑ, denote the set of clustering parameters.

The variablek, 1 ≤ k ≤ K, denotes the index in the set{ϑk
I} which refers to the cluster labelyk.

The variableI denotes the current epoch. The partitional clustering algorithm uses a distance metric

D(~x p, ϑk
I ) to measure the distance between thepth feature vector~x p and clusteryk. The feature vector

~x p is then mapped onto{yk} using the functionFC, such that
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FC(~x
p) = argmin

yk∈{yk}

{

D(~x p, ϑk
I )

}

. (4.18)

Intuitively, the functionFC maps a vector~x p to the nearest cluster.

The functionFC is constructed by determining the set of cluster parameters{ϑk
I} to minimise the

overall distance between a given set of feature vectors{~x} and theK corresponding clusters. One

possible definition of this process is

{

ϑk∗
I

}

= argmin
{

ϑk
I

}

∈Ωϑ

{

P
∑

p=1

D
(

~x p, ϑ
FC(~x

p)
I

)

}

. (4.19)

The clustering algorithm simultaneously determines the parametersϑk
I of each cluster, as well as the

cluster assignment of each feature vector~x p.

4.5.1 K-means algorithm

The first partitional clustering algorithm explored is the popularK-means algorithm [178]. The

K-means algorithm attempts to find the center points of the natural clusters. TheK-means clustering

algorithm accomplishes this by partitioning the feature vectors intoK mutually exclusive clusters.

K-means is a heuristic, hill-climbing algorithm that attempts to converge to the center mass point

of the natural clusters. It can be viewed as a gradient descent approach which attempts to minimise the

sum of squared error of each feature vector to the nearest cluster centroid [179]. The clusters created

with theK-means algorithm are compact and isolated in nature.

Minimising the SSE has been shown to be a NP-hard problem, even for a two-cluster problem [180].

This gives rise to a variety of heuristic approaches to solving the problem for practical applications.

The most common method of implementing theK-means algorithm is the Lloyd’s approach. The

Lloyd’s approach is an iterative method which comprises three steps:

Step 1: Initialise a set ofK centroids{ϑk
I}.

Step 2: Assign each feature vector to its closest centroid. This is accomplished by creatingK empty sets

~s k = ∅, k = 1, 2, . . . , K, for each of the corresponding centroids{ϑk
I}. The assignment step is

expressed as

~s k =

{

{~x p} : D(~x p, ϑk
I ) < D(~x p, ϑl

I), ∀l 6= k

}

. (4.20)

The vector~x p denotes thepth feature vector andD denotes the distance function.

Step 3: The update step adjusts the centroids’ position to minimise the sum of distance given in
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equation (4.19). The adjustment is made for each centroid as

ϑk
(I+1) =

1

|~s k|

∑

~x p∈~s k

~x p, ∀ k. (4.21)

|~s k| denotes the number of elements in the set.

Steps 2–3 are repeated until all the feature vectors within each cluster remain unchanged or a predefined

stopping criterion is reached.

The performance of theK-means algorithm is dependent on the density distribution of the feature

vectors in the feature space.K-means will minimise the SSE with high probability to the global

minimum if the feature vectors are well separated [181]. The ability of theK-means algorithm to

handle a large number of feature vectors enables the parallel execution of multiple replications with

different initial seeds to avoid local minima. TheK-means clustering algorithm is usually used as a

benchmark against other algorithms, and has been used successfully in many other fields [171].

4.5.2 Expectation-maximisation algorithm

The Expectation-Maximisation (EM) algorithm is another partitional clustering algorithm, which

attempts to fit a mixture of probability distributions on the set of feature vectors [182]. The EM

algorithm was designed on the assumption that the feature vectors are extracted from a feature space

with a multi-modal distribution.

Given a set of observable vectors{~x} and unknown variables{yk}, the EM algorithm finds the

maximum likelihood or maximumaposteriorestimates for the parameters~ω, ~ω ∈ Ω. The maximum

likelihood estimation of the parameters~ωML is expressed as

~ωML = argmax
~ω∈Ω

{

log p(~x|~ω)

}

= argmax
~ω∈Ω

{

J (~ω)

}

. (4.22)

The log-likelihood of the conditional probability in equation (4.22) is expanded to incorporate the

unknown variablesyk as

J (~ω) = log p(~x|~ω) = log
∑

k

p(~x, yk|~ω) = log
∑

k

q(yk|~x, ~ω)
p(~x, yk|~ω)

q(yk|~x, ~ω)
. (4.23)

The functionq(yk|~x, ~ω) is an arbitrary density overyk. Considering the following lower bound

inequality to equation (4.23) as

log
∑

k

q(yk|~x, ~ω)
p(~x, yk|~ω)

q(yk|~x, ~ω)
≥
∑

k

q(yk|~x, ~ω) log
p(~x, yk|~ω)

q(yk|~x, ~ω)
, (4.24)
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which for convenience is rewritten as

J (~ω) ≥
∑

k

q(yk|~x, ~ω) log
p(~x, yk|~ω)

q(yk|~x, ~ω)
. (4.25)

It is easier if the EM algorithm instead attempts to maximise the lower bound shown in equation (4.25).

The EM algorithm iteratively adjusts the parameters of the distributions in two steps. The first step

is the expectation step (E-step) which calculates the log likelihood function, with respect to the

conditional distribution ofyk given~x with the current estimate of the parameter~ω as

q(yk|~x, ~ω)new = argmax
q(yk|~x,~ω)

{

∑

k

q(yk|~x, ~ω) log
p(~x, yk|~ω)

q(yk|~x, ~ω)

}

. (4.26)

Calculating the E-step requires the vector~ω to be fixed while attempting to optimise over the space of

distributions. The second step is the maximisation step (M-step), which tries to maximise the vector~ω

using the result from equation (4.26). The M-step is computed as

~ωnew = argmax
~ω

{

∑

k

q(yk|~x, ~ω)new log
p(~x, yk|~ω)

q(yk|~x, ~ω)new

}

. (4.27)

The EM algorithm iterates through both steps until it converges to a local maximum. The feature vector

is assigned to a cluster that maximises theaposteriorprobabilities of a given distribution.

The disadvantage of the EM algorithm is that even though the probability of the feature vectors

does not decrease, it does not guarantee that the algorithm will converge to the global maximum for a

multi-modal distribution. This implies that the EM algorithm can converge to a local maximum. This

can be avoided with multiple replications of the algorithm executed with different initial seeds. The

EM algorithm is well suited to operate on data sets that contain missing vectors and data sets with low

feature space dimensionality.

4.6 DETERMINING THE NUMBER OF CLUSTERS

The most difficult design consideration is to determine the correct number of clusters that should be

extracted from the data set. Hundreds of methods have been developed to determine the number of

clusters within a data set. The choice in determining the number of clustersK is always ambiguous

and is a distinct issue from the process of actually solving the unsupervised clustering problem.

The problem if the number of clustersK is increased without penalty in the design phase (which

defeats the purpose of clustering), is that the number of incorrect cluster assignments will steadily

decrease to zero. In the extreme case; each feature vector is assigned to its own cluster, which results

in zero incorrect clustering allocations. Intuitively this makes the choice in the number of clusters a
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balance between the maximum compression of the feature vectors into a single cluster and complete

accuracy by assigning each feature vector to it own cluster.

The silhouette value is used as a measure of how close each feature vector is to its own cluster

when compared to feature vectors in neighbouring clusters [183]. The silhouette valueS(~x p, K) for

the feature vector~x p is computed as

S(~x p, K) =
min{SBD(~x

p, l)− SWD(~x
p)}

max{SWD(~x p),min{SBD(~x p, k)}}
, ∀k, l. (4.28)

The functionSWD(~x
p) denotes the average distance for the feature vector~x p to the other feature vectors

in the same cluster. The cluster index is denoted byk, k ∈ N, 1 ≤ k ≤ K, andSBD(~x
p, k) denotes the

average distance for the feature vector~x p to the feature vectors in thekth cluster. The average distance

within the same clusterSWD(~x
p) for the feature vector~x p is computed as

SWD(~x
p) =

{ |ϑFC(~x p)|
∑

q=1

D(~x p, ~x q)

|ϑFC(~x p)| − 1
: ∀~x q ∈ ϑFC(~x

p)\~x p

}

. (4.29)

The variable|ϑFC(~x
p)| denotes the number of feature vectors in the cluster where~x p reside. The average

distance between the feature vector~x p and thekth cluster is computed as

SBD(~x
p, k) =

{ |ϑFC(~x q)|
∑

q=1

D(~x p, ~x q)

|ϑFC(~x q)|
: ∀~x q ∈ ϑFC(~x

q), ~x q 6∈ ϑFC(~x
p),FC(~x

q) = yk
}

. (4.30)

The variable|ϑFC(~x
q)| denotes the number of feature vectors within thekth cluster.

The silhouette valueS(~x p, K) ranges from -1 to 1. A silhouette valueS(~x p, K) → 1 indicates that

the feature vector~x p is very distant from the neighbouringK clusters. A silhouette valueS(~x p, K) →

0 indicates the feature vector~x p is close to the decision boundary between two clusters. A silhouette

valueS(~x p, K) → −1 indicates that the feature vector~x p is probably in the wrong cluster.

A silhouette graph is a visual representation of the silhouette values and is a visual aid used to

determine the number of clusters. The x-axis denotes the silhouette values and the y-axis denotes the

cluster labels. The silhouette graph shown in figure 4.5 was created from a larger set of segments

defined in the example of land cover classification (figure 4.3). In this silhouette graph; cluster 3 has

high silhouette values present, which implies that the current feature vectors within cluster 3 are well

separated from the other two clusters. Cluster 1 also has high silhouette values, but with a few feature

vectors considered to be ill-positioned. Cluster 2 has significantly lower silhouette values and most

of its feature vectors are closely positioned at the boundary between clusters. This might suggest that
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FIGURE 4.5: A silhouette plot of 3 clusters formed of example given in figure 4.3.

cluster 2 can be subdivided into two separate clusters.

An analytical method of deciding on the correct number of clustersK, is the computation of the

average of the silhouette value. The average silhouette value is calculated as

Save({~x}, K) =
Pmax
∑

p=1

S(~x p, K), (4.31)

wherePmax denotes the total number of feature vectors in set{~x}. A range ofK can be evaluated

without any prior knowledge to determine the performance of the clustering algorithm. The number of

clustersK that produces the highest average silhouette value is then selected.

4.7 CLASSIFICATION OF CLUSTER LABELS

Clusters typically encapsulate properties of the feature vector set and this homogeneous property

motivates the assignment of class labels to the clusters. The class labels are assigned using a supervised

classifier, which assigns a set of class labels{Ck} to theK cluster labels [171].

The supervised classifier assigns a class label to a cluster with the most frequently occurring

class label from the labelled training data set. Assigning the class labels to the cluster labels with

a supervised classifier is expressed as

Ck = Z(y k). (4.32)
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Owing to the fact that there is noone cluster represents one classproperty, feature vectors of a certain

class might end up in the incorrect cluster and therefore be assigned the wrong class label.

Land cover example: The clustering algorithm uses a functionFC to assign a cluster label to each of

the two segments in figure 4.1. The supervised classifier is then used to assign a class label to

each of the clusters. In this example the number of clustersK is set to two and the supervised

classifier will assign either the natural vegetation class or the human settlement class to the

cluster label. This is accomplished by mapping the cluster labelyk, as

Ck =







C1(natural vegetation) if yk = 1

C2(human settlement) if yk = 2.
(4.33)

The cluster labelyk is classified as natural vegetation when the label is in the first cluster and

human settlement when the label is in the second cluster.2

4.8 SUMMARY

In this chapter a methodology was presented to aid in the design process of an unsupervised classifier.

The way in which a clustering method tends to find clusters in the feature space irrespective of whether

any real clusters exist was discussed. This shows that proper design criteria must be adhered to and the

most practical approach to designing a clustering method is tolearn from example[171].

The design of the clustering method requires the simultaneous optimisation of the:

• feature extraction and feature selection,

• clustering algorithm, and

• similarity metric.

Six popular clustering algorithms were explored. These algorithms are based on basic concepts, which

explore the properties of the feature vectors. Thousands of clustering algorithms have been developed

in the last couple of decades and most of them only use different permutations and combinations of the

concepts defined in these six clustering algorithms. These basic concepts will provide insight into the

intrinsic properties of the feature vectors that populate a high-dimensional feature space.
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