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Appendix A 

Fundamentals of the Graphics Pipeline Architecture 
 

 
A pipeline is a series of data processing units arranged in a chain like manner with the 
output of the one unit read as the input of the next. Figure A.1 shows the basic layout of 
a pipeline.  
 

 
Figure A.1 Logical representation of a pipeline. 
 
The throughput (data transferred over a period of time) many any data processing 
operations, graphical or otherwise, can be increased through the use of a pipeline. 
However, as the physical length of the pipeline increases, so does the overall latency 
(waiting time) of the system. That being said, pipelines are ideal for performing identical 
operations on multiple sets of data as is often the case with computer graphics.  
 
The graphics pipeline, also sometimes referred to as the rendering pipeline, implements 
the processing stages of the rendering process (Kajiya, 1986). These stages include 
vertex processing, clipping, rasterization and fragment processing. The purpose of the 
graphics pipeline is to process a scene consisting of objects, light sources and a 
camera, converting it to a two-dimensional image (pixel elements) via these four 
rendering stages. The output of the graphics pipeline is the final image displayed on the 
monitor or screen. The four rendering stages are illustrated in Figure A.2 and discussed 
in detail below. 
 

 
Figure A.2 A general graphics pipeline. 
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Summarised we can describe the graphics pipeline as an overall process responsible for 
transforming some object representation from local coordinate space, to world space, 
view space, screen space and finally display space. These various coordinate spaces 
are fully discussed in various introductory graphics programming texts and, for the 
purpose of this discussion, it is sufficient to consider the local coordinate space as the 
definition used to describe the objects of a scene as specified in our program’s source 
code. The world space can be described as a coordinate space where we have a 
reference to the viewer’s position with lighting added to our scene. View space is where 
our scene’s objects are culled and clipped to determine whether an object is visible 
based on the position of the viewer or camera. Screen space is where hidden surface 
removal, shading and rasterization occur and it is the final stage before we enter the 
display space where the produced pixel elements are displayed via some output device 
(Sutherland et al, 1974). We will now look at the various stages of the graphics pipeline 
in detail. 
 
 
A.1 Vertex Processing  
 
The first processing unit of the graphics pipeline is the vertex processor. This processor 
is responsible for performing all geometric transformations and the computation of colour 
values of every vertex or point making up an object. 
 
Geometric transformations (such as translations and rotations) simply refer to the 
process of converting the current spatial representation of an object to a different 
coordinate system. For example, a geometric transformation is required to represent an 
object, originally defined in terms of world coordinates (coordinates specified by the 
programmer for object representation), in terms of display coordinates (the coordinate 
system used by the graphics display). Each geometric transformation is defined using a 
matrix with a series of transformations specified by concatenating each of these matrices 
into a single one. Combining one matrix with another yields a third matrix that is once 
again combined with some other transformation matrix – an operation that clearly 
benefits from the use of a pipeline.  
 
Three transformations are performed during the vertex processing stage. The first of 
these, namely the modelling transformation, takes the geometric specification of three-
dimensional world objects as input. Every object, originally defined in local coordinate 
space, is subsequently transformed to use world-space coordinates. Each object’s 
independent local coordinate system has now been transformed into a global coordinate 
system. This provides all the objects with a shared global coordinate space – i.e. one 
object’s position can be described in terms of another’s and these user defined objects 
can now be positioned within the same scene. All translations and rotations are 
performed during this transformation step.  
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The next transformation step, called the viewing transformation, transforms all world-
space coordinates to coordinates specified in terms of a viewer’s position and viewing 
direction. This transformation step leads to a viewer or camera that can be moved and 
rotated to any position within the world coordinate space. The original three-dimensional 
scene is displayed from this viewer’s perspective (or point of view). Both culling (back-
face elimination) and clipping are carried out in view space.  
 
The final transformation, called the projection transformation, transforms the view space 
coordinates to two-dimensional image space or screen space so that the three-
dimensional scene can be displayed on a flat plane.  
 
The final step of the vertex processor is to assign colours, per-vertex lighting and 
shading to each of the vertices making up the scene (Swanson and Thayer, 1986). The 
rasterization stage discussed below interpolates these per-vertex lighting values for the 
creation of smoothly shaded lighting ranges between vertices. 
 
 
A.2 Clipping and Culling 
 
Clipping controls the field of view, i.e. managing the percentage of the world visible 
based on the camera’s viewing angle and position. The lack of clipping does not hinder 
the image formation process, it is, however, crucial to ensure that this process is 
performed in a timely manner due to it eliminating the rendering of any unnecessary 
primitives that would not be visible to the viewer or camera. We define a volume similar 
to a stencil to block out objects not visible to the viewer. All objects and portions of 
objects falling outside this stencil or volume do not appear in the final image.  
 
Clipping, unlike vertex processing, should be done on a primitive-by-primitive rather than 
a vertex-by-vertex basis. To accomplish this, sets of vertices are assembled into 
primitives, such as polygons and lines based on the implementation of some clipping 
algorithm such as the Cohen-Sutherland or Liang-Barsky line clipping algorithms or the 
Sutherland-Hodgman polygon clipping algorithm. An example illustrating the importance 
of clipping would be to consider a scene from a computer game consisting of numerous 
buildings, cars, pedestrians, shops, etc. Each of these elements are physical models 
stored in memory, requiring a lot of processing time for shading, texturing, animation, 
etc. If the scene’s viewer or camera has a viewing angle of 110 degrees, then we 
needn’t render any of the models or meshes located outside this viewing area – thus 
saving a lot of rendering time in the process. 
 
Culling, or back-face elimination, refers to the process where polygons or surfaces 
pointing away from the camera or viewer are not rendered. For example; when a 
building is viewed directly from the front, then the three sides hidden from the viewer are 
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not drawn (shown in Figure A.3). This process, just like clipping, improves the rendering 
speed of a scene by reducing the number of polygons or surfaces that needs to be 
rendered without affecting the visual output. 
 

 
Figure A.3 Back-face elimination. 
 
 
A.3 Rasterization and Fragment Processing  
 
The rasterization, or scan conversion process converts the primitives produced by the 
clipper (consisting of vertices) to pixels for representation in the frame buffer and for 
subsequent output to a monitor. For example, a solid rectangle consisting of four 
vertices are transformed to two-dimensional pixels or points in the frame buffer, with 
these two-dimensional pixels being coloured and shaded as appropriate. The result of 
the rasterization process is a series of fragments for each of these primitives. A fragment 
is nothing more than a pixel with additional information about its colour, position and 
depth. The fragment’s depth information is used to determine whether a particular pixel 
lies behind any of the other rasterized pixels. The matching pixel in the frame buffer is 
updated with the information carried by this fragment. This process of updating the 
pixels in the frame buffer with the fragments generated by the rasterizer is called 
fragment processing. The colour of fragments are manipulated using techniques such as 
texture mapping, bump mapping, texture filtering, environmental mapping, blending, per-
fragment lighting, etc. 
 
 
A.4 Programmable Pipelines  
 
Today’s graphics cards all have pipelines built into their graphics processing units. The 
operations that could be performed by earlier graphics cards were standardised by the 
device manufacturer with only a number of parameters and properties available for 
modification. Modern graphics cards allow for not only the modification of a large 
number of parameters, but also for complete control over the vertex and fragment 
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processors. These programmable vertex and fragment processors enable the real time 
rendering of various advanced techniques only previously achievable using large 
rendering farms or not even possible in real-time at all (Möller and Haines, 2002). Bump 
mapping (used for adding depth to pixels and thus creating a lighting-dependent 
bumpiness to a texture mapped surface) and environmental mapping (used for the 
generation of reflections by changing the texture coordinates based on the position of 
the camera) are just two examples of techniques only possible off-line in the past (Blinn, 
1976), but that have become commonplace in the games of today (Peercy et al, 1997). 
Figure A.4 shows a bump mapped surface with Figure A.5 showing the application of 
environmental mapping to simulate reflections on water. 
 

 
Figure A.4 Bump mapping. 
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Figure A.5 Reflections on water using environmental mapping. 
 
We will now look at Direct3D 10’s programmable pipeline to fully understand the 
implication and use of programmable pipelines for the generation of advanced real-time 
graphical effects. 
 
 
A.4.1 The Direct3D 10 Processing Pipeline 
 
Each stage of the Direct3D 10 processing pipeline is configurable using the standard 
Direct3D application programming interface. The vertex shader, geometry shader and 
pixel shader are programmable using either Microsoft’s proprietary High Level Shader 
Language (HLSL) or NVIDIA’s C for Graphics (Cg). Each of these programmable 
processing units, including the pipeline processing states is discussed below. Figure A.6 
illustrates the Direct3D 10 pipeline architecture. 
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Figure A.6 Direct3D 10’s programmable pipeline. 
 
 
The Input-Assembler Stage 
 
The first stage of the programmable pipeline, namely the input assembler stage, is 
responsible for propagating geometric input data consisting of points, lines and polygons 
to the rest of the pipeline. This pipeline stage assembles the input data into primitives, 
following this it forwards these assembled primitives to the next stage in the pipeline. For 
example, when data is received from some buffer it contains information about a vertex 
in three-dimensional space, the winding direction used for determining the vertex 
assembly order (either clockwise or counter-clockwise) and an identifier specifying the 
first vertex in a sequence of vertices. This information allows the input assembler to 
create primitive types supported by Direct3D. Figure A.7 illustrates how this information 
is used to create a supported primitive type. 
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Figure A.7 Creating a triangle using three vertices, a clockwise winding direction and 

a vertex identifier indicating the first vertex in a set of three vertices. 
 
The input assembler is also responsible for attaching Shader System Values for use by 
the shader core. These values (primitive id, vertex id, etc) lead to faster execution times 
by allowing the shader stages to ignore primitives that have already been dealt with. 
 
Initialising the input assembler stage requires the specification of a vertex and optional 
index buffer that will be used for feeding the pipeline vertex data. The vertex buffer feeds 
the vertex data into the pipeline with the index buffer specifying indices for the vertex 
data stored in the vertex buffer. Creating a vertex buffer is relatively simple in Direct3D 
10. We start by specifying the type of data that can be stored in the buffer (using the 
D3D10_BUFFER_DESC structure) followed by reading data into the buffer to initialise it 
(this data is specified using the D3D10_SUBRESOURCE_DATA structure). Once this is 
done we simply create the buffer using these descriptors. The D3D10_BUFFER_DESC 
structure describes the size of the buffer in bytes, the method how the buffer is to be 
read from and written to, the nature of the buffer (as a vertex buffer, index buffer, shader 
resource, etc), the kind of CPU access allowed (write, read, or 0 if no CPU access is 
necessary) and a flag to identify less regularly used options (such as resource sharing 
between various devices – 0 when not applicable). The D3D10.h header file specifies 
the D3D10_BUFFER_DESC structure as follows: 
 
typedef struct D3D10_BUFFER_DESC { 
    UINT ByteWidth; 

    D3D10_USAGE Usage; 
    UINT BindFlags; 

    UINT CPUAccessFlags; 

    UINT MiscFlags; 

} D3D10_BUFFER_DESC; 
 
The default values, including the alternatives, for the members of the 
D3D10_BUFFER_DESC structure are given in the following table: 
 
Members Flags 
ByteWidth Any number, for example: 64 
Usage D3D10_USAGE_DEFAULT  
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(won’t be read or written to by the CPU that often) 

D3D10_USAGE_IMMUTABLE  
(can’t be written to by the CPU at all) 
D3D10_USAGE_DYNAMIC 
(buffer will be written to by the CPU at least once per frame) 
D3D10_USAGE_STAGING  
(read from and write to the GPU) 
D3D10_BIND_VERTEX_BUFFER 
(specify the resource as a vertex buffer) 
D3D10_BIND_INDEX_BUFFER 
(specify the resource as an index buffer) 
D3D10_BIND_CONSTANT_BUFFER 
(specify the resource as a constant buffer which can only be updated 
completely, not partially, and which has a limit on the buffer’s byte 
size)  
D3D10_BIND_SHADER_RESOURCE 
(specify the buffer as a shader resource) 
D3D10_BIND_STREAM_OUTPUT 
(specify the resource as an output buffer for the stream output stage 
discussed below) 
D3D10_BIND_RENDER_TARGET 
(specify the resource as a render target) 

BindFlags 

D3D10_BIND_DEPTH_STENCIL 
(specify the resource as a depth-stencil buffer) 
D3D10_CPU_ACCESS_READ 
(the buffer’s contents can be read by the CPU) 

CPUAccessFlags 

D3D10_CPU_ACCESS_WRITE 
(the CPU can change the buffer’s contents directly instead of using the 
UpdateSubresource ID3D10Device interface) 

MiscFlags D3D10_RESOURCE_MISC_GENERATE_MIPS 
(species the creation of mipmaps for some texture resource using the 
GenerateMips ID3D10Device interface) 

 D3D10_RESOURCE_MISC_SHARED 
(enables resource sharing between various devices) 

 D3D10_RESOURCE_MISC_TEXTURECUBE 
(specifies the creation of a cube texture – a three dimensional texture 
in the shape of a cube constructed from six textures stored in a 2-D 
texture array) 

Table A.1 Describing a buffer resource using the D3D10_BUFFER_DESC structure. 
 
Before initialising the D3D10_BUFFER_DESC structure, we first have to specify the 
vertices for some geometric object. In this case our vertices will have both a spatial 
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location and a colour value (using the D3DXVECTOR3 structure which has three 
members, an x-, y- and z-coordinate of a vector in three-dimensional space): 
 
struct TriangleVertex 

{ 

    D3DXVECTOR3 Location; 

    D3DXVECTOR3 Colour; 

}; 

 
We can now initialise the D3D10_BUFFER_DESC structure as follows for the specification 
of a vertex buffer description: 
 
D3D10_BUFFER_DESC bufferDescription; 
 

bufferDescription.Usage = D3D10_USAGE_DEFAULT; 
bufferDescription.ByteWidth = sizeof(TriangleVertex) * 3; 

bufferDescription.BindFlags = D3D10_BIND_VERTEX_BUFFER; 
bufferDescription.CPUAccessFlags = 0; 

bufferDescription.MiscFlags = 0; 

 
Following this we create the vertex buffer using previously specified vertex data. The first 
step of this process is to specify an array of vertex data elements: 
 
TriangleVertex array_of_vertex_data [] = 
{ 

D3DXVECTOR3( 0.0f, 1.0f, 1.0f ), 

D3DXVECTOR3( 0.0f, 0.0f, 0.5f ), 

D3DXVECTOR3( 1.0f, -1.0f, 1.0f ), 

D3DXVECTOR3( 1.0f, 0.0f, 0.0f ), 

D3DXVECTOR3( -1.0f, -1.0f, 1.0f ), 

D3DXVECTOR3( 0.0f, 1.0f, 0.0f ), 

}; 

 
Next we have to initialise the D3D10_SUBRESOURCE_DATA structure. This data 
structure initialises a sub-resource using predefined data. A sub-resource is a portion of 
a resource that links back to the original resource data but with additional information 
about the resource so that the pipeline can easily access the data contained within this 
resource. The D3D10_SUBRESOURCE_DATA structure has three members, namely, a 
pointer to the data used for initialising the sub-resource, a value used for specifying the 
memory pitch in bytes required for two- and three-dimensional texture resources and the 
memory slice pitch associated with three-dimensional texture resources. The D3D10.h 
header file specifies this structure as follows: 
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typedef struct D3D10_SUBRESOURCE_DATA { 
    const void *pSysMem; 

    UINT SysMemPitch; 

    UINT SysMemSlicePitch; 

} D3D10_SUBRESOURCE_DATA; 
 
We initialise the D3D10_SUBRESOURCE_DATA structure using the previously defined 
array of vertex data elements: 
 
D3D10_SUBRESOURCE_DATA subresourceData; 
 

subresourceData.pSysMem = array_of_vertex_data; 
subresourceData.SysMemPitch = 0; 

subresourceData.SysMemSlicePitch = 0; 

 
The final step is to create the vertex buffer. We use the CreateBuffer 
ID3D10Device interface to do this. This interface takes three parameters, the first 
being a pointer to the previously defined D3D10_BUFFER_DESC structure, the second a 
pointer to the D3D10_SUBRESOURCE_DATA structure with the third being the address of 
a pointer to the ID3D10Buffer interface used for controlling our buffer resource 
(be it either a vertex or index buffer). The CreateBuffer ID3D10Device interface is 
declared as follows in the D3D10.h header: 
 
HRESULT CreateBuffer( 

  const D3D10_BUFFER_DESC *pDesc, 
  const D3D10_SUBRESOURCE_DATA *pInitialData, 
  ID3D10Buffer **ppBuffer 

); 

 
We can now call the CreateBuffer ID3D10Device interface to create the vertex 
buffer: 
 
ID3D10Device* g_id3dDevice; 
ID3D10Buffer* vertexBuffer[2] = {NULL, NULL}; 

 

g_id3dDevice->CreateBuffer(&bufferDescription, &subresourceData, &vertexBuffer[0]); 
 
Defining an index buffer is comparable to the creation of a vertex buffer, with the only 
difference being the specification of the D3D10_BUFFER_DESC structure’s BindFlags 
member, for example: 
 
D3D10_BUFFER_DESC indexBufferDescription; 
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indexBufferDescription.Usage = D3D10_USAGE_DEFAULT; 
indexBufferDescription.ByteWidth = sizeof(TriangleVertex) * 3; 

indexBufferDescription.BindFlags = D3D10_BIND_INDEX_BUFFER; 
indexBufferDescription.CPUAccessFlags = 0; 

indexBufferDescription.MiscFlags = 0; 

 
We also have to specify an array containing index data. This array will be used to 
initialise the D3D10_SUBRESOURCE_DATA structure: 
 
UINT array_of_index_data [] = {0, 1, 2, 3, 4}; 
 

D3D10_SUBRESOURCE_DATA indexSubresourceData; 
 

indexSubresourceData.pSysMem = array_of_index_data; 
indexSubresourceData.SysMemPitch = 0; 

indexSubresourceData.SysMemSlicePitch = 0; 

 
The index buffer is created using the CreateBuffer ID3D10Device interface: 
 
ID3D10Buffer* indexBuffer = NULL; 

 

g_id3dDevice->CreateBuffer(&indexBufferDescription,  
&indexSubresourceData,  

&indexBuffer); 

 
With the input buffers specified and properly initialised, we create the input-layout object 
which will be used to control how vertex data is fed into the input-assembler stage (by 
directly describing the input-buffer data). The type of the input vertex data is identified 
and checked against shader parameter types ensuring both type compatibility and that 
the needed shader data is actually stored in the buffer. We create the input-layout object 
using the CreateInputLayout ID3D10Device interface via the specification of five 
parameters. The first parameter is an array of the input-assembler stage input data type 
described using the D3D10_INPUT_ELEMENT_DESC structure. The 
D3D10_INPUT_ELEMENT_DESC structure is defined as follows in the D3D10.h header 
file: 
 
typedef struct D3D10_INPUT_ELEMENT_DESC { 
    LPCSTR SemanticName; 

    UINT SemanticIndex; 

    DXGI_FORMAT Format; 
    UINT InputSlot; 

    UINT AlignedByteOffset; 

    D3D10_INPUT_CLASSIFICATION InputSlotClass; 

 
 
 



 214

    UINT InstanceDataStepRate; 

} D3D10_INPUT_ELEMENT_DESC; 
 
This structure gives a description of each input assembler stage element, specifically; 
the High Level Shader Language (HLSL) semantic name of the element, the element’s 
semantic index used when more than one element with the same semantic name exists, 
the element’s data type, an integer value used for specifying the input-assembler’s input 
slot (described below), the byte offset used to set the location of the element in the input 
slot (counting in bytes from the beginning of the input slot), the input data class (either 
vertex data using the D3D10_INPUT_CLASSIFICATION enumeration with the constant 
set to either D3D10_INPUT_PER_VERTEX_DATA for per-vertex input data, or 
D3D10_INPUT_PER_INSTANCE_DATA for per-instance input data) and the data step 
rate controlling the number of instances of one element to draw (using the per-instance 
input data) before moving on to the next buffer element – must be set 0 for elements 
containing per-vertex data. Using the D3D10_INPUT_ELEMENT_DESC structure, we can 
specify a vertex buffer containing two vertex-data elements as follows: 
 
D3D10_INPUT_ELEMENT_DESC input_layout_description[] = 
{ 

    {L"POSITION", 0, DXGI_FORMAT_R32G32B32_UINT, 0, 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, 
    {L"COLOR", 0, DXGI_FORMAT_R32G32B32_UINT, 1, 6, D3D10_INPUT_PER_VERTEX_DATA, 0}, 
}; 

 
Data is fed into the input-assembler stage through a number of units referred to as input 
slots. Each of these input-assembler input slots, shown in Figure A.8, are used as 
storage for a vertex buffer, thus storing input data.  
 

 
Figure A.8 The input-assembler’s input slots. 
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The second parameter of the CreateInputLayout ID3D10Device interface is an 
integer value specifying the number of input-data types making up the input-elements 
array. The third parameter is a pointer to the compiled shader code with the fourth 
parameter specifying the byte size of this compiled shader code. The final parameter is 
a pointer to the input-layout object that will be used as output. This 
CreateInputLayout ID3D10Device interface is defined as follows in the D3D10.h 
header file: 
 
HRESULT CreateInputLayout ( 

const D3D10_INPUT_ELEMENT_DESC  *pInputElementDescs,  
UINT NumElements,  

const void *pShaderBytecodeWithInputSignature,  

SIZE_T BytecodeLength,  
ID3D10InputLayout **ppInputLayout); 

 
We can now bind this newly created input-layout object to the input-assembler stage, 
after which we can call the draw functions. This object binding is done using the 
IASetVertexBuffers and IASetInputLayout ID3D10Device interfaces. The 
IASetVertexBuffers interface binds a vertex buffer array to the input-assembler 
stage by specifying the input slot, the total number of buffers in the vertex buffer array, a 
pointer to the vertex buffer array, a pointer to an array containing values indicating the 
byte size of elements to be read from the vertex buffer (referred to as stride values) and 
a pointer to an array containing so called offset values (with one offset value 
representing the number of bytes to be read from the first element stored in the vertex 
buffer to the element being accessed). This IASetVertexBuffers ID3D10Device 
interface is defined as follows in the D3D10.h header file: 
 
void IASetVertexBuffers(UINT StartSlot, UINT NumBuffers, 

ID3D10Buffer *const *ppVertexBuffers, 

const UINT *pStrides, 

const UINT *pOffsets); 

 
The IASetInputLayout interface, taking a pointer to the input-layout object, is 
responsible for binding this object to the input-assembler stage. The following code 
sample illustrates this process: 
 
UINT start_input_slot = 0; 
UINT number_buffers_in_array = 1; 
UINT offset_value = 0; 
UINT stride_value = sizeof(TriangleVertex); 
 

g_id3dDevice->IASetVertexBuffers(start_input_slot, 
 number_buffers_in_array, 
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 &vertexBuffer, 

 &stride_value, 
 &offset_value); 
 
The input-layout takes a pointer to the ID3D10Device object: 
 
ID3D10InputLayout* inputLayoutObject = NULL; 

 

g_id3dDevice->IASetInputLayout(inputLayoutObject); 
 
The only remaining step is to specify the assembling of vertices into primitives and to 
send these primitives (controlling the rendering of vertex data to the screen) to the next 
step of the pipeline. This is done using the IASetPrimitiveTopology 
ID3D10Device interface. This interface takes one parameter, namely the primitive type 
specified using the D3D10_PRIMITIVE_TOPOLOGY enumerator. For example, the 
following code specifies the primitive type as a list of lines: 
 
g_id3dDevice->IASetPrimitiveTopology( D3D10_PRIMITIVE_TOPOLOGY_LINELIST); 
 
Table A.2 lists possible primitive types: 
 

Constant Description 
D3D10_PRIMITIVE_TOPOLOGY_UNDEFINED A primitive topology is not 

specified for the Input-

assembler stage. 
D3D10_PRIMITIVE_TOPOLOGY_LINELIST The vertex data is interpreted 

as a list of lines. 
D3D10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ The vertex data is interpreted 

as a list of lines with adjacency 

data. 
D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP The vertex data is interpreted 

as a line strip. 
D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ The vertex data is interpreted 

as a line strip with adjacency 

data. 
D3D10_PRIMITIVE_TOPOLOGY_POINTLIST The vertex data is interpreted 

as a list of points. 
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST The vertex data is interpreted 

as a list of triangles. 
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ The vertex data is interpreted 

as a list of triangles with 

adjacency data. 
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP The vertex data is interpreted 
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as a triangle strip. 
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ The vertex data is interpreted 

as a triangle strip with 

adjacency data. 

Table A.2 Specifying a primitive type using the D3D10_PRIMITIVE_TOPOLOGY 
enumerator. 
 
We can now draw these pipeline bound primitives using various ID3D10Device 
functions such as Draw, DrawAuto, DrawIndexed, DrawInstanced and 
DrawIndexedInstanced. 
 
 
The Vertex-Shader Stage 
 
Per-vertex operations are performed during this pipeline processing stage. Examples of 
such operations include per-vertex lighting, texture sampling operations, geometric 
transformations, etc. Per-vertex lighting allows us to specify distinct light sources, 
including the interaction of these light sources with adjacent surfaces. These interactions 
and reflections are considered on a per-vertex basis with the lighting values between 
vertices being approximated. This stage takes one vertex as input, modifies it according 
to some predefined operation and outputs it for further processing. There might also be 
cases where no vertex processing is required, leading to the definition of a pass-through 
vertex shader. This pass-through vertex shader forwards the input vertex data to the 
geometry-shader stage unmodified. 
 
Input vertex data generally consist of anything from one to sixteen 32-bit vectors made 
up of one to four elements each. The input assembler basically feeds two data elements 
into the vertex-shader stage, namely; the vertex ID and the instance ID. These IDs are 
generated by the graphics hardware and can only be handled during this pipeline stage.  
 
 
The Geometry-Shader Stage 
 
Primitives such as vertices, lines and polygons are processed during this pipeline stage. 
The geometry-shader stage takes these primitives as input, and processes them based 
on some programmatically defined algorithm, forwarding these newly modified or, in 
some cases, newly generated primitives to either the stream-output stage or rasterizer 
stage. The geometry-shader stage takes full primitives as input, for example; lines 
consisting of two vertices, quads constructed out of four vertices, etc (Stam and Loop, 
2003). This is in contrast with vertex shaders which only accept a single vertex as input. 
 
One useful feature of the geometry-shader is its ability to handle edge-adjacent 
primitives. For example, say we have a quad as input; then the vertex data of all 
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primitives adjacent to the quad can also be read as input. Figure A.9 shows such a quad 
with four adjacent quads. 
 

 
Figure A.9 A quad with edge-adjacent primitives. 
 
The geometry-shader’s generated primitives are returned as an output stream object. 
This output stream can be declared as a LineStream (creating a line strip output 
topology), TriangleStream (creating a triangle strip output topology) or 
PointStream (creating a point list output topology) based on the original primitive 
object type. We create a primitive strip by appending output vertices using the Append 
interface method. The appending of vertices is necessary since the geometry-shader 
only outputs one vertex data element at a time – requiring this vertex data to be 
reconstructed into primitives. The RestartStrip method is used to terminate the 
current primitive strip construction process, signalling the geometry-shader to start the 
creation of a new primitive strip. The following non-functional code sample shows the 
creation of a TriangleStream output object via the declaration of a geometry-shader. 
 
We start by setting the maximum number of vertices to output using the 
MaxVertexCount attribute type (causing the geometry-shader to terminate once the 
specified number of vertices has been generated): 
 
[MaxVertexCount(6)] 

 
Next we declare the geometry-shader, GS_Sample, to take a triangle strip or triangle list 
(triangle float4 inputPar[3]) as input; with a TriangleStream object as output 
(the inout keyword declares the stream object, outputPar, as both an input and 
output): 
 
void GS_Sample(triangle float4 inputPar [3], inout TriangleStream<float2> outputPar) 
{ 

 //function body 

 //e.g. using Append and RestartStrip: 

outputPar.Append(...); 
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outputPar.RestartStrip(); 

} 

 
Modern day computer games are increasingly making use of geometric shaders, mostly 
due to the exponential advances being made in graphics hardware and the power given 
to developers in controlling this hardware at a functional level using shading languages 
such as HLSL, Cg and the OpenGL Shading Language (GLSL). Examples of effects 
derived from programming DirectX 10’s geometry-shader include shadow volume 
generation, fur animation, advanced dynamic particle systems, cube mapping, point 
sprite expansion and various other per-primitive operations. 
 
 
Stream Output Stage 
 
The stream output stage streams primitives from the geometry-shader stage to 
predefined buffers in system memory or memory present on the graphics card. This data 
can either be fed back into the input-assembler stage or alternatively loaded directly into 
shaders via load functions, or circulated to the CPU, for example (Figure A.10). The 
adjacency data associated with primitives outputted by the geometry-shader stage is 
discarded when output is directed to the stream output stage. Triangle and line strips are 
also converted to triangle and line lists when streamed to the buffer resources in 
memory.  
 

 
Figure A.10 Streaming of data to predefined buffers in system/GPU memory. 
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One or multiple buffers can be linked to the stream output stage. When one buffer is 
linked, then anything from 1 to 64 scalar per-vertex data elements can be written to the 
buffer (assuming a total size less than 257 bytes for the per-vertex output data 
elements). The use of multiple buffers, with each catching a single per-vertex data 
element, enables us to output data to a maximum of four buffers concurrently. When 
using multiple buffers it is not required for all the buffers to have the same size. The 
output of data to these varying sized buffers terminate the moment the smallest buffer is 
full (unable to receive any more primitives as input). 
 
 
The Pixel-Shader Stage 
 
The rasterizer stage rasterizes primitives produced by the geometry-shader stage into 
pixels via the interpolation of vertex values for representation in the frame buffer and for 
subsequent output to a monitor. The shading and colour of these pixel values need to be 
calculated so that each primitive are correctly rendered to the display device. The 
rasterizer stage calls the pixel-shader stage for the computation of these per-pixel 
values. Various per-pixel shading techniques such as lighting, fog, bump mapping, 
shadows, distortion effects and shading are performed during this stage (Legakis, 1998). 
In addition to these effect-based per-pixel techniques,  the pixel shader is also used for 
implementing level-of-detail algorithms and during the process of anisotropic filtering 
crucial for enhancing the image quality of distant located textures. 
 
Programs defining pixel-shader operations are called shader programs and can be 
written in any of the following languages: Assembly, Cg, HLSL or GLSL. These 
programs normally take colour values, the interpolated per-vertex data produced by the 
rasterizer stage, and some user defined variables as input, producing the final pixel 
values that are forwarded to the output-merger stage. 
 
 
The Output-Merger Stage 
 
This final stage of the Direct3D 10 programmable pipeline combines both the output 
generated by the pixel-shader stage with depth- and stencil buffer values to produce the 
final pixel colour and shading values. The output-merger stage is directly responsible for 
determining the visibility of pixels based on the process of depth testing. The blending of 
pixel data (combining two or more pixel colour values), in addition to depth- and stencil 
testing, is also controlled during this pipeline stage. 
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Appendix B 
Shaders 
 
 
A shader is a grouping of instructions processed by the graphics accelerator to perform 
some form of special effect or rendering. The previous section presented the concept of 
programmable pipelines, in particular focusing on the Direct3D 10 and OpenGL 
processing pipelines. An application program allowing direct interaction with these 
previously discussed programming pipelines is called a shader. These shader programs, 
written in a shading language such as NVIDIA’s Cg or Microsoft’s High Level Shader 
Language, control the movement, composition, form and appearance of objects through 
direct manipulation of the graphics processing unit is programmable pipelines.  
 
The instructions listed in a shader program are executed at a specific point in the 
rendering pipeline – thus leading to user-defined manipulation of vertex or pixel data, for 
example. More specifically, three types of shader programs can be written, namely, 
vertex shaders, pixel shaders and geometry shaders.  
 
Vertex shaders, operating on vertex data, are executed as part of the graphics pipeline’s 
geometric stage and are used to alter the geometric parameters (shape) of an object. A 
vertex shader program is fundamental for certain special effects such as grass blowing 
in the wind where the real time manipulation, transformation and displacement of per-
vertex material attributes are necessary. The vertices produced by this shader are 
forwarded as input to a geometry shader. 
 
Geometry shaders are executed just prior to the rasterizer and stream output pipeline 
stages. These shaders group numerous vertices into a geometric object that can be 
modified by a pixel shader program. Geometry shaders are extremely important in the 
detection of silhouetted-edges and shadow volume extrusion. These shaders, 
performing per-primitive computations, are also vital in the generation of new primitives. 
The primitives generated by the geometry shader stage are rasterized into fragments 
during the pipeline’s rasterizer stage. These fragments are then sent to the pixel shader 
as input. 
 
Pixel shaders, also known as fragment shaders and performing per-pixel processing, 
operate on the discrete pixels of a primitive, applying some effect to a primitive (such as 
bump mapping, shadowing, fog, etc) during the pixel shader stage. Per-pixel lighting and 
shadowing has greatly contributed to the realism of modern computer games. Examples 
of effects made possible through this form of per-pixel processing include texture 
blending, environmental mapping, normal mapping, real-time shadows (stencil shadow 
volumes) and reflections (Levoy and Hanrahan, 1996). 
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These three types of shaders are unified by the Direc3D 10 architecture – known as 
Shader Model 4.0. Unified shaders provide the application programmer with a uniform 
instruction set independent of whether a pixel shader or vertex shader is being 
implemented. This unified architecture is made possible through Windows Vista’s 
Windows Display Driver Model and the coupled DirectX 10 API. Previous architectures 
required different instruction sets for both pixel and vertex shaders due to specific 
hardware architectural requirements. By unifying the independent shader instruction 
sets, GPU programming has become much more flexible. This unified model also allows 
workload sharing amongst the various pipeline processors, for example, when the GPU 
is mainly performing basic geometry rendering with little or no per-pixel processing being 
done, then the pixel shader can be assigned vertex processing. The first GPU offering 
support for this unified shader model was NVIDIA’s GeForce 8 series – specifically the 
GeForce 8800 GTX and GTS.  
 
The term used to describe this unified shader architecture, Shader Model 4.0, 
encapsulates the features offered by the specific shader version in question. For 
example, Shader Model 3.0 (as supported by Direct3D 9.0c) limits the number of 
executing instructions to 65536 while Direct3D 10’s Shader Model 4.0 allows for an 
unlimited number of executing instructions. Shader Model 2.0 (the original Direct3D 9.0 
shader specification) limits the number of executing instructions to 32 texture instructions 
and 64 arithmetic instructions. The version number of instructions is specified in terms of 
the shader’s version number (ps_mainVersion_subVersion for pixel shaders and 
vs_mainVersion_subVersion for vertex shaders). For example, a vertex shader 
based on Shader Model 3.0 (DirectX 9.0c) will be declared as vs_3_0, a DirectX 9.0b 
Shader Model 2.0 pixel shader as ps_2_b, with a Shader Model 4.0 pixel shader 
declared as ps_4_0. NVIDIA’s GeForce FX series of GPUs provide an optimised model 
for Shader Model 2.0 and we can thus define a vertex shader based on this model as 
vs_2_a. 
 
The capabilities of shader programs are heavily dependent on the available graphics 
hardware. Older graphics hardware such as first-generation GPUs (NVIDIA’s RIVA 
TNT2 and ATI’s Rage series implementing the DirectX 6 feature set) were only capable 
of accelerating texture mapping operations as well as the rasterization of certain 
primitives such as triangles. These GPUs alleviated the CPU from updating individual 
pixels but vertex transformations such as rotation, translation and scaling were still CPU 
dependant. These GPUs, although slightly configurable, were not programmable. 
 
The second-generation of GPUs, introduced in 1999/2000 with the release of NVIDIAs 
GeForce 256 GPU and also including the GeForce2 and ATI’s Radeon 7500, relieved 
the CPU from 3-D vertex transformations and lighting computations. Both the OpenGL 
and DirectX 7 APIs supported these hardware vertex transformations, however, 
although highly configurable in the sense of offering support for certain effects such as 
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cube mapping for textures and per-pixel colouring, these GPUs were still not strictly 
speaking programmable.  
 
The first truly programmable GPUs were NVIDIA’s third-generation GeForce3, GeForce4 
Ti and ATI’s Radeon 8500 series. These GPUs offered programmable vertex pipelines, 
thus allowing an application program to control vertex transformations and lighting. 
These GPUs also featured a higher level of per-pixel configurability, although not yet 
offering pixel pipeline programmability. DirectX 8 and the ARB_vertex_program 
OpenGL extension allowed access to the vertex programmability offered by these 
GPUs. Pixel shaders could be written using the DirectX 8 pixel shader functionality and 
numerous OpenGL extensions. These pixel shaders were obviously nothing as powerful 
as today’s pixel shader programs, and were based on configuring the pixel pipeline, 
rather than freeing the CPU of pixel-shading operations. 
 
Both per-vertex and per-pixel programmability have been available since the release of 
NVIDIA’s GeForce FX and ATI’s Radeon 9700 family of GPUs. Application developers 
were, with the release of these GPUs, for the first time able to assign the GPU for both 
vertex transformations and pixel operations. With these operations offloaded to the 
GPU, the CPU is free to perform other calculations. The DirectX 9 API and several 
OpenGL extensions give access the pixel and vertex programmability offered by these 
GPUs. A vertex shader replaces the configurable fixed-function operations performed by 
the vertex processor with instructions defined by the shader along with a pixel shader 
executing after the rasterizer stage. This pixel shader takes the fragments processed by 
the fragment processor/pixel shader stage as input, performing some operation on them. 
Fragments are processed based on some configurable fixed function in the absence of a 
pixel shader program.  
 
Table B.1 highlights some key features introduced with certain milestone GPU releases 
as well as their respective DirectX and OpenGL version support.  
 
GPU Main Feature(s) API support 
- NVIDIA RIVA 128 - Basic vertex acceleration. DirectX 5, 

OpenGL 1.0. 
- NVIDIA RIVA TNT 
- NVIDIA RIVA TNT2  
- ATI Rage 128 

- Multitexturing (applying more than 
one texture to a polygon, e.g. 
graffiti art or ‘bullet holes’ on a 
textured wall). 

DirectX 6,  
OpenGL 1.1. 

- NVIDIA GeForce 256 
- NVIDIA GeForce2 
- ATI R100 (Radeon 32, 

64, 7000 and 7500) 

- Hardware Transformations, 
Clipping and Lighting.  

- Cube mapping. 
- Fixed-function vertex processing. 
- Register combiners. 

DirectX 7,  
OpenGL 1.2 (ATI 
supporting OpenGL 
1.3) 

- NVIDIA GeForce3 - Quadtexturing (using four pixel DirectX 8, 
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 pipelines for the rendering of four 
independently textured pixels or 
alternatively two multitextured 
pixels) 

- Texture shaders. 
- Shader Model 1.1. 
- ARB_vertex_program (OpenGL 

extension for vertex shaders on 
both ATI and NVIDIA chipsets). 

OpenGL 1.4. 

- NVIDIA GeForce4 Ti 
- ATI Radeon R200 

(Radeon 8500 to 9250) 

- Hardware anti-aliasing. 
- Pixel Shader 1.2, 1.3 or 1.4. 
- Vertex Shader 1.1. 
- ATI_fragment_shader (OpenGL 

extension for fragment shaders on 
ATI cards only). 

DirectX 8.1, 
OpenGL 1.4. 

- NVIDIA GeForce FX 
- ATI Radeon R300 

(Radeon 9500 to 9800 
XT and including Radeon 
X1050) 

- Full support for vertex and fragment 
shader programs. 

- Floating-point pixel processing. 
- Shader Model 2.0, 2.0a or 2.0b. 
- OpenGL Shading Language. 

DirectX 9.0b, 
OpenGL 1.4 (NVIDIA 
chipsets featured 
limited support for 
OpenGL 2.0 with ATI 
chipsets offering full 
support). 

- NVIDIA GeForce 6 
- ATI Radeon R500 

(Xbox 360 Xenos, 
Radeon X1300 to Radeon 
X1950 XTX) 

- Hardware accelerated transparency.
- Scalable Link Interface (SLI – 

parallel graphics processing using 
two or more graphics accelerators 
interlinked). 

- Shader Model 3.0. 
- OpenGL Shading Language 

Improved. 

DirectX 9.0c, 
OpenGL 2.0. 

- NVIDIA GeForce 7 - High Dynamic Range Lighting. DirectX 9.0c, 
OpenGL 2.0. 

- NVIDIA GeForce 8 
- Radeon R600 (Radeon 

HD 2400 to Radeon HD 
2900 XT) 

- Unified Shaders. 
- Shader Model 4.0. 

DirectX 10, 
OpenGL 2.1. 

- NVIDIA GeForce 
9/100/250/260-295 

- Atomic functions (thread-safe) 
- Coverage Sample AA 
- 128 bit OpenEXR 

DirectX 10, 
OpenGL 3.3. 

- NVIDIA GeForce 
210/220/240/300 

- Shader Model 4.1 DirectX 10.1, 
OpenGL 3.3. 

- NVIDIA GeForce 
400/500 

- Shader Model 5.0 DirectX 11, OpenGL 
4.1, OpenCL 1.0 
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Table B.1 Features introduced by selected GPUs and DirectX and OpenGL versions. 
 
B.1  The Hardware Graphics Pipeline Revisited 
 
We previously described a pipeline as a series of parallel stages with each stage 
processing the output of the previous stage, in turn sending its output to a successive 
stage, and so forth. The graphics pipeline consists of a number of stages such as vertex 
processing, clipping, rasterization and fragment processing. These stages are 
responsible for converting some geometrically defined scene into a two-dimensional 
image (pixel elements) via a number rendering stages – each physically organised as a 
pipeline processing unit. We will now revisit our previous graphics pipeline architecture 
discussion, expanding on it by focussing more on the programmable graphics pipeline’s 
physical (hardware-level) organisation. 
 
A modern-day GPU is sent a grouping of vertices organised into a geometric primitive 
such as a sequence of points, lines or a triangle, for example. Each of these vertices has 
a number of attributes. Attributes can range from the vertex’s individual colour value, its 
texture coordinates, a normal vector used during lighting calculations to spatial 
coordinates used for the positioning of the vertex. A generic graphics hardware pipeline 
is show in Figure B.1. 
 

 
Figure B.1  A generic graphics hardware pipeline. 
 
The vertex transformation stage performs a series of operations on each of the vertices 
sent to the GPU for processing. Operations include the transformation of a vertex’s 
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coordinate system into one that can be used by the rasterizer, per-vertex lighting, 
colouring and the generation of texture coordinates, etc. 
 
The primitive assembly and rasterization stage assembles the vertices being passed 
from the vertex transformation stage into geometric primitives. The type of assembled 
primitive (line, polygon, triangle, etc) depends on the primitive topology data 
accompanying a set of vertices. Clipping to the visible view frustum is performed during 
this stage, resulting in the elimination of any unnecessary primitives that would not be 
visible to the viewer or camera (Liang and Barsky, 1984). The rasterization stage also 
eliminates polygons or surfaces pointing away from the camera or viewer (vertex-by-
vertex culling). Following these operations, primitives are rasterized into pixels for 
representation in the frame buffer (Sutherland and Hodgman, 1974). Rasterization is 
performed according to a specific set of rules defined for each of the primitive 
topologies. The rasterization stage produces a set of pixels, each one mapped to a 
specific location, as well as a set of fragments (previously defined as a pixel with 
additional information about its colour, position and depth). Building on our previous 
definition we can now define a fragment as a state necessary for the update of a specific 
pixel in the frame buffer. During the rasterization process geometric primitives are 
broken down into pixel-sized fragments. Each fragment holds information about the 
pixel’s location, depth, colour and texture coordinates. This information is then used to 
update a matching pixel in the frame buffer.  
 
With a primitive successfully rasterized into a series of fragments, we can move on to 
the fragment processing stage. Fragment processing, as previously explained, is the 
process of updating pixels in the frame buffer with the fragments generated during the 
rasterization stage. The fragment processing unit is responsible for setting the colour 
values of fragments, their texturing as well as the interpolation of fragment parameters. 
These operations are modified and/or combined for numerous texturing effects such as 
bump mapping, texture filtering, blending, environmental mapping and so forth. Apart 
from calculating the fragment’s final colour value, this pipeline stage can also discard a 
fragment based on some calculation or predefined parameter, hence resulting in the 
corresponding frame buffer pixel not being updated.  
 
The final number of fragment centric operations, based on the functionality of Direct3D 
and OpenGL, are performed during the raster processing stage. These operations, such 
as depth testing (the removal of hidden surfaces), blending, stencil testing for the 
generation of stencil shadow volumes and stencil based reflections, etc, are performed 
prior to the frame buffer update. A number of tests are conducted during this pipeline 
stage; for example, a scissor test culls all the fragments located outside a user-specified 
rectangle positioned within the render target area, with an alpha test determining 
whether fragments are written to the render target area based on some predefined 
alpha-test function. A fragment is discarded whenever any of these tests fail. When 
passing a specific test, one of the pixel’s property values (such as depth for depth 
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testing) is updated with that of the fragment. The blending operation stage reads the 
fragment’s colour value and combines it with the colour value of the matching pixel. We 
can also dither the colour values of fragments and pixels to create the illusion of colour 
depth in low-colour images by approximating colours not available in the palette through 
the diffusion of the available palette’s colour values. The final operation is to write the 
new blended/dithered fragment colour value out to the appropriate pixel in the frame 
buffer. This raster processing stage, consisting of a series of pipeline stages (raster 
operations and tests), is shown in Figure B.2. 
 

 
Figure B.2  Direct3D and OpenGL raster processing operations. 
 
 
B.2  The Programmable Graphics Pipeline Revisited 
 
This section extends the previous discussion of the Direct3D processing pipeline by 
investigating the underlying hardware configuration that makes the pipeline stages of a 
GPU programmable. Previous generation GPUs have separate vertex and pixel shader 
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processing units. The GeForce 8 GPU (and better) does not follow this approach, rather 
offering eight shader units, with none of them limited to vertex or pixel processing. This 
architectural change is the product of recognising that the future of GPU design lies with 
programmable processing. By unifying the shaders we’re not just only able to use the 
same instruction set for both pixel and vertex shaders or to enable workload sharing 
amongst these pipeline processors, but this new architecture also makes it easier to 
extend our current shader model with future shader types. As illustrated in Table B.1, 
GPU architecture has evolved from supporting configurable vertex and fragment 
processors, to programmable vertex processors, then fully programmable vertex and 
fragments processors to the current unified architecture. Extending the generic graphics 
hardware pipeline, we can show both vertex and fragment processing units as simple 
add-ons to this generic pipeline (Figure B.3). 
 

 
Figure B.3  Example of a hardware programmable graphics pipeline. 
 
The unified shader architecture considered, vertex and fragment processing can still be 
broken down into logical programmable units; with a programmable vertex processor, 
the processing unit responsible for the execution of a HLSL, Cg or GLSL vertex program 
and a programmable fragment processor, the processing unit tasked with execution of a 
HLSL, Cg or GLSL fragment program. 
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Focussing on the programmable vertex processor, we can summarise its functionality 
into a number of stages. The first stage feeds vertex attributes such as coordinates, 
colour values and depth information into the vertex processor for processing. These 
vertex attributes are stored in the vertex attribute register banks. Vertex shaders actually 
make use of a several registers for the storage of position, data and colour data, for 
example. The vertex program, consisting of a sequence of instructions, is stored in 
memory. The vertex processor accesses this program, decoding one instruction at a 
time until the program terminates. Results generated from computations, the 
transformed vertex data, are stored in the output result registers with intermediate data, 
still being read by instructions, stored in the temporary register banks. Figure B.4 shows 
the classic flow of control for a programmable vertex processor. 
 
Programmable fragment processors are extremely useful for manipulating texture 
coordinates as well as to set the final colour of a pixel. These processors also support 
several of the vector math operations performed by vertex processors. For example, a 
fragment processor can be programmed to read the texture coordinates of a textured 
image and to subsequently perform some operation on these values – returning a 
filtered sample of the texture. Similar to a vertex processor, fragment processors operate 
by executing a set of instructions stored in a program file – the fragment program. These 
instructions are executed until the fragment program terminates (when there aren’t any 
more instructions to fetch). The fragment program reads untransformed interpolated 
fragments as input, storing these values in input register banks. Results generated from 
applying the specified instructions on input data are stored in the output registers. 
Intermediate data, just as with vertex processing, is stored in the temporary register 
banks. The output values can range from a fragment’s new colour to a transformed 
depth value.  
 
A texture is nothing more than a two-dimensional array consisting of colour values with 
each of these colour values referred to as a texel, or texture element. Each texel, being 
an element in this colour array, is thus assigned a unique address in the texture (simply 
a column and row value). Fragment processors generally include a texture fetch 
instruction. This instruction is used to compute the address of a texture, fetch texture 
elements, determine its Level-of-Detail and to perform texture filtering. Examples of 
texture filtering include nearest-point sampling, linear texture filtering, anisotropic texture 
filtering, bilinear filtering and filtering via mipmaps. Figure B.5 illustrates the flow of 
control for a typical programmable fragment processor. 
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Figure B.4  Flow of control for a programmable vertex processor. 
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Figure B.5  Flow of control for a programmable fragment processor. 
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B.3 High Level Shader Language (HLSL) 
 
Microsoft’s High Level Shader Language is a proprietary Direct3D shading language 
analogous to NIVIDIA’s Cg. The Direct3D 10 High Level Shader Language allows for the 
creation of three types of shader programs, namely, vertex shaders, geometry shaders 
and pixel shaders. Similar to Cg, HLSL shaders can be compiled either statically or 
dynamically, depending on the preference of the developer and intended application for 
the shader.  
 
As mentioned, Direct3D 10 shaders are unified to provide the application programmer 
with a uniform instruction set independent of whether a pixel, vertex or geometric shader 
is being implemented. These different shaders, offering the same core functionality, are 
implemented by the Shader Model 4.0 common shader core. Building on the core 
functionality, each shader implementation offers its own unique functionality such as 
stencilling done via pixel shaders or the generation of new primitives and the 
manipulation of 3-D models on a per-primitive basis by a geometric shader. This 
common shader core data-flow is shown in Figure B.6. 
 

 
Figure B.6  Common shader core architecture. 
 
The stages given in the above depicted data-flow model can be summarised as follows: 
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1) Input data is sent to the vertex, pixel or geometry shader for processing with 
the vertex shader receiving data from the input assembler stage and the 
pixel and geometry shaders receiving their input data from the previous 
shader stage. 

2) The shaders can now perform some arithmetic or flow control operation on 
the read data. 

a. Texel data is either directly read without any filtering or sampling 
using the Load HLSL function or alternatively filtered and sampled by 
binding up to 16 HLSL samplers to the shader. 

b. General buffers are also accessed from system memory, allowing the 
shader program to bind up to 128 texture elements and buffer 
resources to the shader. 

c. Shader constant buffers can also be bound to a shader stage. These 
buffers are frequently updated by the CPU and are larger in size and 
layout than the general buffers. 

3) The output generated by the shader code is passed to the next stage in the 
graphics pipeline. 

 
 
B.3.1 The HLSL Compiler 
 
HLSL programs have to be compiled into a GPU executable form. Compilation is based 
on the translation of a vertex, pixel or geometry shader program into a form readable by 
Direct3D. This translation of the original HLSL program is sent to the Direct3D API driver 
which converts it to instructions that can be processed by the GPU. 
 
We can perform static compilation using the FXC shader compiler (fxc.exe) to compile 
our shader program once and thus eliminating the need to compile it again. The FXC 
HLSL compiler is invoked with its executable name followed by one or more options, the 
shader model profile label and the filename. For example, to compile a shader program 
saved in the file shader.fx, we can do a release build for shader model 4.0 as follows: 
 
fxc /T fx_4_0 /Fo shader.fxo shader.fx 
 
In this example fx_4_0 specifies the target profile as a shader model 4.0 effect (shader 
model 2.0 effects are set using the fx_2_0 profile). An effect shader can contain a 
combination of pixel, vertex and geometry shaders. Alternatively we could have 
specified the shader type as a vertex shader, pixel shader or texture shader (tx_1_0). 
These HLSL shader profiles are used to compile a shader to a specific shader model, 
thus ensuring hardware compatibility by limiting the supported shader model feature set. 
Possible Direct3D 10 vertex shader profiles include vs_1_1, vs_2_0, vs_2_a, 
vs_2_sw, vs_3_0, vs_3_sw and vs_4_0 with pixel shader profiles ranging from 
ps_2_0, ps_2_a, ps_2_b, ps_2_sw, ps_3_0 and ps_3_sw to ps_4_0. The ‘/T’ switch 
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option specifies the HLSL profile to compile against. The 
D3D10GetVertexShaderProfile, D3D10GetPixelShaderProfile and 
D3D10GetGeometryShaderProfile shader functions can be called to determine the 
best profile suited for a given device to compile against. These functions all take a 
pointer to an ID3D10Device interface device, returning either the best vertex shader 
profile, pixel shader profile or geometry shader profile depending on the function called. 
Shader functions can be used after including the D3D10Shader.h header file. The next 
switch option, ‘/Fo’, is used to set the output object file name used to store the compiled 
shader effect. 
 
We can alternatively compile a shader using debug mode. Debug mode is similar to that 
found in Visual Studio, allowing the generation of debug information and additional 
processing data that can be used to narrow down errors and possible bottleneck areas. 
We can compile the shader program saved in the shader.fx file using debug mode in the 
following manner: 
 
fxc /Zi /Od /T fx_4_0 /Fo shader.fxo shader.fx 
 
The ‘/Zi’ switch option enables debugging information with the ‘/Od’ switch disabling 
any code-based optimisations that would normally be performed by the compiler. 
 
 
B.3.2 Initialising the High Level Shader Language 
 
This section focuses on the initialisation of the High Level Shader Language so that a 
Direct3D application program can bind the shader program to the appropriate pipeline 
stage. The steps of this initialisation process are as follows: 
 

1) Compilation of the shader to ensure that the HLSL statements are 
syntactically correct. 

2) Create a vertex, pixel or geometry shader object. 
3) Set the created shader object to bind the shader to the proper pipeline 

stage. 
 
A shader program is compiled by calling the D3D10CompileShader shader function, 
declared as follows in the D3D10Shader.h header file: 
 
HRESULT D3D10CompileShader( 

  LPCSTR pSrcData, 

  SIZE_T SrcDataLen, 
  LPCSTR pFileName, 

  CONST D3D10_SHADER_MACRO *pDefines, 
  LPD3D10INCLUDE *pInclude, 
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  LPCSTR pFunctionName, 

  LPCSTR pProfile, 

  UINT Flags, 

  ID3D10Blob **ppShader, 

  ID3D10Blob **ppErrorMsgs 

); 

 
Its first parameter, pSrcData, takes a pointer to the string holding the shader source 
code. The second parameter, SrcDataLen, specifies the size of the pSrcData 
parameter in bytes with the next parameter, pFileName, the name of the shader 
program file. The pDefines parameter takes a pointer to a D3D10_SHADER_MACRO 
shader macro array. This Null-terminated array of macro definitions, enabling the 
application program to define tokens at runtime, is optional and can be set to ‘NULL’. A 
D3D10_SHADER_MACRO macro definition can be specified in the following manner: 
 
D3D10_SHADER_MACRO Macro[1] = {"ten", "10"}; 
 
The D3D10_SHADER_MACRO shader structure has two members, Name and 
Definition. The Name member holds the macro name and the Definition member 
the macro definition. 
 
D3D10CompileShader’s next parameter, pInclude, takes a pointer to the 
ID3D10Include interface allowing the opening and closing of included files when 
loading an effect from memory. For example, a shader program can include a file using 
the #include directive, and by calling the Close or Open ID3D10Include members 
we can open this file for reading and subsequently close it when done. Specification of 
the pInclude parameter is optional and set to ‘NULL’ when the shader does not 
contain any #include directives. The next parameter, pFunctionName, takes a 
pointer to a string holding the shader entry point function name indicating the function to 
begin the shader execution at. The pProfile parameter is used for setting the shader 
model profile with the Flags parameter setting the shader compile options (possible 
options are listed in Table B.2). The first of the final two parameters, ppShader, takes a 
pointer to an ID3D10Blob interface containing the debug information and compiled 
shader. A blob is a data buffer used for the storage of vertex, adjacency and material 
data. Blobs also return error/debug messages and object code during the compilation of 
pixel, vertex and geometry shaders. The last parameter, ppErrorMsgs, also takes a 
pointer to an ID3D10Blob interface, this time one containing errors and warning 
messages generated during the compilation process. 
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Compile Options Description 

D3D10_SHADER_AVOID_FLOW_CONTROL 
The HLSL compiler will disable flow control as 
far possible. 

D3D10_SHADER_DEBUG 
The HLSL compiler enables the generation of 
debug information. 

D3D10_SHADER_ENABLE_BACKWARDS_ 
COMPATIBILITY 

The HLSL compiler will compile older shaders to 
the shader model 4.0 spec. 

D3D10_SHADER_ENABLE_STRICTNESS 
The HLSL compiler enables strictness on 
deprecated shader syntax. 

D3D10_SHADER_FORCE_PS_SOFTWARE_ 
NO_OPT 

The HLSL compiler will compile a pixel shader 
to the next best shader profile, enabling 
debugging and disabling compiler optimisations. 

D3D10_SHADER_FORCE_VS_SOFTWARE_ 
NO_OPT 

The HLSL compiler will compile a vertex shader 
to the next best shader profile, enabling 
debugging and disabling compiler optimisations. 

D3D10_SHADER_IEEE_STRICTNESS 

The HLSL compiler enables IEEE strictness – 
thus conforming to a pre-defined set of 
standards. 

D3D10_SHADER_NO_PRESHADER 

The HLSL compiler disables the use of 
preshaders – an optimisation where constant 
expressions are replaced with references to the 
GPU’s registers and memory addresses. 

D3D10_SHADER_OPTIMIZATION_ 
LEVEL0 

The HLSL compiler enables level 0 warnings. 

D3D10_SHADER_OPTIMIZATION_ 
LEVEL1 

The HLSL compiler enables level 1 warnings. 

D3D10_SHADER_OPTIMIZATION_ 
LEVEL2 

The HLSL compiler enables level 2 warnings. 

D3D10_SHADER_OPTIMIZATION_ 
LEVEL3 

The HLSL compiler enables level 3 warnings. 

D3D10_SHADER_PACK_MATRIX_COLUMN_MAJOR 

The HLSL compiler packs the matrixes in 
column-major order – leading to more efficiency 
since matrix manipulations can be performed 
via a series of dot-products. 

D3D10_SHADER_PACK_MATRIX_ROW_ 
MAJOR 

The HLSL compiler packs the matrixes in row-
major order. 

D3D10_SHADER_PARTIAL_PRECISION 

The compiler sets all calculations to be done 
with partial precision which will lead to some 
performance gains. 

D3D10_SHADER_PREFER_FLOW_ 
CONTROL 

The HLSL compiler will enable flow control as 
far possible. 

D3D10_SHADER_SKIP_OPTIMIZATION The HLSL compiler will disable optimisations. 
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D3D10_SHADER_SKIP_VALIDATION 

The HLSL compiler will disable the validation of 
code against common constraints and capability 
limits. 

Table B.2 HLSL compile options. 
 
Before calling the D3D10CompileShader shader function, we first have to create an 
ID3D10Blob interface: 
 
IPD3D10Blob * pShaderBlob; 

 
We can, for instance, compile a vertex shader stored in the file vertex_shader.vsh as 
follows: 
 
D3D10CompileShader(strPath, strlen(strPath),  

 "vertex_shader.vsh", NULL, NULL, "EffectFunctionName", "vs_4_0",  
 D3D10_SHADER_ENABLE_STRICTNESS, &pShaderBlob, NULL); 

 
The shader function, EffectFunctionName, could have been declared in the shader 
program like this (taking one input parameter and returning a vertex shader structure. 
The declaration of shader functions, their basic, vector, texture, struct and matrix data 
types as well as sampler type syntax are all dealt with in the next section): 
 
VS_OUTPUT EffectFunctionName (in float2 vertexPosition : POSITION) 
 
A pointer to the compiled shader code is returned via the pShaderBlob ID3D10Blob 
interface. This pointer is used to create the vertex shader object using the 
CreateVertexShader function (for this example) or alternatively 
CreatePixelShader to create a pixel shader object or the CreateGeometryShader 
ID3D10Device interface function for geometry shaders. The CreateVertexShader 
function is declared in the D3D10.h header file as follows: 
 
HRESULT CreateVertexShader(const void *pShaderBytecode, SIZE_T BytecodeLength, 
   ID3D10VertexShader **ppVertexShader); 

 
Its first parameter, pShaderBytecode, takes a pointer to the compiled shader retrieved 
using the GetBufferPointer ID3D10Blob interface function. The BytecodeLength 
parameter takes the size of the compiled shader determined via the GetBufferSize 
ID3D10Blob interface function. The final parameter, ppVertexShader, is the address 
of a pointer to an ID3D10VertexShader interface.  
 
The CreateGeometryShader and the CreatePixelShader ID3D10Device 
interface functions have the same first two parameters as CreateVertexShader. 
These functions only differ in respect to the last parameter which takes a pointer to an 
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ID3D10PixelShader interface in the case of the CreatePixelShader function and 
an ID3D10GeometryShader interface for the CreateGeometryShader function.  
 
Continuing with our vertex shader program, before calling the CreateVertexShader 
function, we specify a shader object by first declaring an ID3D10VertexShader 
interface: 
 
ID3D10VertexShader **ppOurVertexShader; 

 
We create the vertex shader object using the CreateVertexShader function (using 
the previously declared ID3D10Device* interface, g_id3dDevice): 
 
hresult_ = g_id3dDevice->CreateVertexShader((DWORD*) pShaderBlob->GetBufferPointer(), 
         pShaderBlob->GetBufferSize(),  

 &ppOurVertexShader); 

 
We must also remember to release the pointer to the compiled shader source: 
 
pShaderBlob->Release(); 

 
The final step requires us to set this newly created shader object to the pipeline stage. 
To set the vertex shader to the device, we call the VSSetShader ID3D10Device 
interface function. This function takes one parameter, namely, a pointer to the 
ID3D10VertexShader vertex shader: 
 
g_id3dDevice->VSSetShader(pOurVertexShader); 

 
The vertex shader stage is now initialised with the compiled vertex shader code. To 
initialise the pixel shader stage we need to call the PSSetShader ID3D10Device 
interface function (using an ID3D10PixelShader interface as parameter). The 
GSSetShader ID3D10Device interface function is called for setting a geometry shader 
to a device (using an ID3D10GeometryShader interface as parameter). 
 
 
B.3.3 Creating HLSL shaders 
 
Pixel, vertex and geometry shaders each make out a different stage of the Direct3D 10 
programmable pipeline. These shaders, operating on input data and sending their 
results to subsequent pipeline stages, are created in the form of program files that can 
be compiled and executed on the GPU. To recap, vertex shaders operate on vertex data 
with pixel shaders reading fragments (pixels) as input and geometry shaders processing 
primitives as input.  
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Vertex shaders process a vertex read as input and generates some output in the form of 
a transformed vertex. Vertex data are passed to the GPU via a vertex buffer. Each 
vertex element stored in this vertex buffer is then sent to the vertex shader for 
processing. For example, the following vertex shader function returns its input data as 
output without doing any processing on it: 
 
float4 VertexShader(float4 Position : POSITION) : SV_POSITION 
{ 

 return Position; 

} 

 
The vertex shader function, labelled VertexShader, with the return type float4 
takes a parameter, Position, of type float4 as input – float4 being a four-
component HLSL vector type with each of its vector components a floating-point value. 
As with Cg the declaration of the input and output parameters are followed by a colon 
and binding semantic to further describe the data type. The input parameter is set to the 
POSITION semantic (the input vertex’s clip-space coordinates) with the output value 
semantic set to SV_POSITION. Semantics using the ‘SV_’ prefix are referred to as 
system-value semantics meaning they are system generated values and can be used for 
both input and output data. The SV_POSITION semantic are, for example, processed 
during the rasterization stage and in this case used to notify the graphics pipeline that 
the output data will also be in the form of clip-space coordinates. 
 
We can now create a pixel shader function to take the output produced by the above 
defined vertex shader function as input (a float4 type coupled with the SV_POSITION 
semantic). This pixel shader then returns an output colour (red) using the SV_TARGET 
semantic that denotes the output as a render target format: 
 
 
float4 PixelShader(float4 Position : SV_POSITION): SV_TARGET 
{ 

    return float4(1.0f, 0.0f, 0.0f, 1.0f); //red 

} 

 
The next step is to specify an effect technique definition used for setting the previously 
defined vertex and pixel shaders. Such an effect technique, starting with the syntax, 
technique10 to label it as a Direct3D 10 technique, is a set of rendering passes. Each 
rendering pass specifies the shader states used to render the geometry of a scene. An 
effect is thus a way for Direct3D to organise the states responsible for setting the stages 
of the graphics pipeline. The technique10 label is followed by the name of the 
technique, TechniqueName and the name of the rendering pass, P0, containing the 
callback function(s) such as SetPixelShader, SetVertexShader or 
SetGeometryShader used to set the device state from an effect. Other states that can 
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be set include the blend state (SetBlendState) and depth-stencil state 
(SetDepthStencilState). We can create the following effect technique for the above 
defined vertex and fragment shaders: 
 
technique10 TechniqueName 

{ 

    pass P0 

    { 

        SetGeometryShader(NULL); 

 SetVertexShader(CompileShader(ps_4_0, VertexShader())); 
        SetPixelShader(CompileShader(ps_4_0, PixelShader())); 
 } 

} 

 
The SetPixelShader, SetVertexShader and SetGeometryShader functions take 
a compiled shader as parameter, setting it to the appropriate render state. The geometry 
shader is in this case set to ‘NULL’ because it has not yet been defined. The vertex and 
pixel shaders, as well as the effect technique, are stored in an effect file (using the ‘.fx’ 
file extension). 
 
Returning to our Direct3D application, all that remains is to create the effect object and 
technique object that will be used for performing the rendering operation. We call the 
D3DX10CreateEffectFromFile function to create an effect from the specified effect 
file. This D3DX function is specified as follows in the D3DX10Effect.h header file: 
 
HRESULT D3DX10CreateEffectFromFile( 

  LPCTSTR pFileName, 

  CONST D3D10_SHADER_MACRO *pDefines, 
  ID3D10Include *pInclude, 

  LPCSTR pProfile, 

  UINT HLSLFlags, 

  UINT FXFlags, 

  ID3D10Device *pDevice, 

  ID3D10EffectPool *pEffectPool, 

  ID3DX10ThreadPump *pPump, 

  ID3D10Effect **ppEffect, 

  ID3D10Blob **ppErrors 

); 
 
This function’s first parameter, pFileName, takes a pointer to a string containing the 
name of the effect file. The next parameter, pDefines, takes a pointer to a 
D3D10_SHADER_MACRO shader macro array with the pInclude parameter requiring a 
pointer to an ID3D10Include include interface as previously described. The shader 
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profile, as a string value, is set via the pProfile parameter with the HLSL compilation 
options being set by the HLSLFlags parameter. The sixth parameter, FXFlags, allows 
us to set the effect compilation options and it can be set to any of the following 
D3D10_EFFECT constants: D3D10_EFFECT_COMPILE_CHILD_EFFECT (the ‘.fx’ file is 
compiled as a child effect, thus not initialising any shared data due to all shared values 
being set in the effect pool), D3D10_EFFECT_COMPILE_ALLOW_SLOW_OPS (compiles 
the effect file without performance mode) or D3D10_EFFECT_SINGLE_THREADED (the 
effect thread is not synchronised with other effects in the effect pool). An effect pool 
facilitates the sharing of variables, textures and shaders between different effects. The 
next parameter, pDevice, takes a pointer to an ID3D10Device interface that will use 
the resources to create a shader. The pEffectPool parameter takes a pointer to an 
ID3D10EffectPool effect pool interface signifying the memory pool used for the 
sharing of variables and resources between effects. The next parameter, pPump, is a 
pointer to an ID3DX10ThreadPump thread pump interface used for the asynchronous 
execution of routines; we will generally set this parameter to ‘NULL’ so that the 
D3DX10CreateEffectFromFile function completes its operation before returning. 
The second last parameter, ppEffect, takes the address of the pointer to the 
ID3D10Effect created effect. The ID3D10Effect interface is responsible for 
managing the shaders, state objects and resources constituting the effect. The 
ppErrors parameter is set to the address of a pointer to an ID3D10Blob interface. 
This final parameter is used for storing debug and compile-time error information. 
 
We can create the effect using this D3DX10CreateEffectFromFile function in the 
following manner: 
 
ID3D10Effect* g_id3dEffect = NULL; 
 

D3DX10CreateEffectFromFile(L"file_name.fx", NULL, NULL,  
 D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY,  
 0, g_id3dDevice, NULL, NULL, &g_id3dEffect, NULL); 

 
Following the effect creation we must obtain the effect technique using the 
GetTechniqueByName ID3D10Effect interface function. This function takes a string 
value containing the name of the technique as parameter, returning a pointer to the 
ID3D10EffectTechnique interface: 
 
ID3D10EffectTechnique* g_id3dTechnique = NULL; 
 

g_id3dTechnique = g_id3dEffect->GetTechniqueByName("TechniqueName"); 

 
A useful feature of effects is the ability to define multiple passes (subsets of a technique 
and a render state set – for example ‘P0‘ in the above shown technique). We can thus 
define multiple passes to implement multi-pass rendering. To understand multi-pass 
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rendering, consider the following example. Say we have a geometry object with a texture 
and we decide to render some three-dimensional mesh on top of it, then we can render 
and texture the geometry in the first pass with the second pass being responsible for 
rendering the mesh on top of it. By specifying each phase as a render pass we can 
render both passes simultaneously during the render loop. Techniques are also useful 
when designing a shader to run across a vast range of hardware, for example, a 
technique can be specified using a pixel, vertex and geometry shader for the newest 
DirectX 10 hardware while another can be specified to limit the implementation to only 
vertex and pixel shaders so that the program can run on DirectX 9 hardware. 
 
 
B.3.4 Common HLSL Data Types 
 
HLSL features all the C++ derived scalar types such as bool, int, float, string, 
double, uint and half (a 16-bit floating point type). Shader Model 4.0 features two 
additional types derived from the float type, namely, unorm float (a 32-bit unsigned 
floating point value normalised to the range [-1, 1]) and snorm float (a 32-bit 
unsigned floating point value normalised to the range [0, 1]). 
 
HLSL also allows for the use of vector and matrix types. Vector types can contain 
anything from one to four components with matrix types containing up to sixteen 
components. Matrix types are declared using the form ScalartypeRowxColumn, for 
example, a floating point matrix, fMatrixVar, consisting out of four rows and three 
columns can be declared as follows: 
 
float4x3 fMatrixVar; 

 
This matrix variable can be initialised in the following manner: 
 
fMatrixVar = {1.5f, 5.5f, 0.1f, 

 0.4f, 0.1f, 2.7f, 

 0.3f, 2.6f, 0.2f, 

 0.9f, 0.5f, 4.2f }; 

 
Matrix types can also be declared using the following syntax: 
 
matrix <scalar type, number of rows, number of columns> MatrixVariableName 

 
We can create the same matrix as the fMatrixVar one defined above using this 
alternate syntax: 
 
matrix <float, 4, 3> fMatrixVar = {1.5f, 5.5f, 0.1f, 

0.4f, 0.1f, 2.7f, 
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0.3f, 2.6f, 0.2f, 

0.9f, 0.5f, 4.2f }; 

 
Vector types are declared using the syntax Scalartype VectorVariableName, for 
example, a floating point vector holding four components can be declared in the 
following manner: 
 
float4 fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f}; 

 
There is also, as with matrix types, an alternative syntax for the declaration of vector 
types: 
 
vector <vector type, number of components> VectorVariableName 

 
We can create the same vector, fVectorVar, using this alternate syntax: 
 
vector <float, 4> fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f}; 

 
HLSL also allows for the definition of structures in the following manner: 
 
struct structName 

{ 

 float variable1; 

 int variable2;  

 

 float4 fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f}; 

 matrix <float, 4, 3> fMatrixVar = {1.5f, 5.5f, 0.1f, 

  0.4f, 0.1f, 2.7f, 

  0.3f, 2.6f, 0.2f, 

  0.9f, 0.5f, 4.2f }; 

 ...etc 

} 
 
The HLSL further supports a number of operators clearly inherited from the C 
programming language. The most commonly used ones are listed in Table B.3. 
 
Operator Type Operators Usage Examples 
Additive  

+, -  

int x = 5; 

int y = 7; 

int z = x – y; 

int k = z + y; 
Multiplicative  

*, %, / 

int x = 5; 

int y = 7; 
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int z = x * y; 

float k = z / y; 

int l = z % y; 
Array Selection  

[i] 

int array[2] = {3,4}; 

array[0] = 2; 
Assignment  

+=, =, *=, -=, %=, /=  

int x = 5; 

int y = 7; 

int z += 3; 
Bitwise 

~, &, |, ^, <<, >>, <<=, 
|=, >>=, &=, ^= 

z>>y //shifts the bits of z 

right y positions (5 >> 2 

equals 1) 
Boolean 

||, &&, ?: 

bool a = false; 

bool b = true; 

bool c = a && b; 
Comparison 

==, !=, <, >, <=, >= 

if (diffuseLight <= 0) 

 specularLight = 0; 
Prefix/Postfix 
Incrementing/ 
Decrementing 

++, -- 

int x = 0; 

x++; 

--x; 
Type Cast 

(scalar type) 

float x = 0.5; 

int y; 

y = (int)x; 
Unary 

+, -, !  
bool a = true; 
bool b = !a;    

Table B.3 HLSL Operators 
 
 
B.3.5 Utilising a Created HLSL Effect 
 
After compiling and creating an effect by loading the effect file into the effects framework 
(using the D3DX10CreateEffectFromFile function), we can proceed to initialise a 
number of effect constants before setting the effect state. Effects that have not yet been 
compiled will be compiled when they are loaded into the effects framework. Effect 
constants and variables are first declared in the effect/shader file(s), for example: 
 
int numberOfLightSources; 

 

float3 incomingAmbientLightColour[3]; 

float4 incomingDiffuseLightColour[3]; 

float3 objectspaceLightPosition[3]; 

 

float4x4 modelviewProjection; 

float4x4 worldviewProjection; 
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Texture2D meshTexture; 

 
These variables, declared using the HLSL data types, are set by the Direct3D 
application. We must thus declare variables in our application that will be used to update 
the shader variables: 
 
int numberOfLights; 

 

D3DXVECTOR3 vIncomingAmbientLightColour [3]; 

D3DXVECTOR4 vIncomingDiffuseLightColour [3]; 

D3DXVECTOR3 vObjectspaceLightPosition [3]; 

 

D3DXMATRIX mWorldviewProjectionMatrix; 

D3DXMATRIX mModelviewProjectionMatrix; 

 
Before we can set the HLSL variable values using the ID3D10EffectVariable 
update methods we first have to obtain the effect variables via ID3D10Effect retrieval 
functions for each of the above defined shader variables (this operation is similar to the 
retrieval of technique objects): 
 
ID3D10EffectScalarVariable* g_pNumberOfLightSources; 
g_pNumberOfLightSources = g_id3dEffect 
 ->GetVariableByName("numberOfLightSources")->AsScalar(); 

 
ID3D10EffectVectorVariable* g_pIncomingAmbientLightColour; 
g_pIncomingAmbientLightColour = g_id3dEffect 
 ->GetVariableByName("incomingAmbientLightColour")->AsVector(); 
 

ID3D10EffectVectorVariable* g_pIncomingDiffuseLightColour; 
g_pIncomingDiffuseLightColour = g_id3dEffect 
 ->GetVariableByName("incomingDiffuseLightColour")->AsVector(); 

 

ID3D10EffectVectorVariable* g_pObjectspaceLightPosition; 
g_pObjectspaceLightPosition = g_id3dEffect 
 ->GetVariableByName("objectspaceLightPosition")->AsVector(); 
 

ID3D10EffectMatrixVariable* g_pWorldviewProjectionMatrix; 
g_pWorldviewProjectionMatrix = g_id3dEffect 
 ->GetVariableByName("worldviewProjection")->AsMatrix(); 

 

ID3D10EffectMatrixVariable* g_pModelviewProjectionMatrix; 
g_pModelviewProjectionMatrix = g_id3dEffect 
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 ->GetVariableByName("modelviewProjection")->AsMatrix(); 

 

ID3D10EffectShaderResourceVariable* g_pMeshTexture; 
g_pMeshTexture = g_id3dEffect 
 ->GetVariableByName("meshTexture")->AsShaderResource(); 

 
The GetVariableByName ID3D10Effect interface function takes a string value 
containing the name of the variable declared in the shader/effect program as parameter, 
returning a pointer to the ID3D10EffectVariable interface. The AsVector 
ID3D10EffectVariable interface function casts this returned 
ID3D10EffectVariable interface to an ID3D10EffectVectorVariable interface 
so that we can access the vector type. The AsScalar interface function casts the 
returned interface to an ID3D10EffectScalarVariable interface used for accessing 
a scalar variable with the AsMatrix function casting it to an 
ID3D10EffectMatrixVariable interface so that we can read the shader variable as 
a matrix type.  
 
Other frequently used ID3D10EffectVariable interface casting methods include: 
AsBlend (casts to an ID3D10EffectBlendVariable interface used for accessing 
blend-state variables), AsDepthStencil (casts to an 
ID3D10EffectDepthStencilVariable interface used for accessing depth-stencil 
variables), AsRasterizer (casts to an ID3D10EffectRasterizerVariable 
interface used for accessing rasterizer-state variables), AsShader (casts to an 
ID3D10EffectShaderVariable interface used for accessing shader variables), 
AsShaderResource (casts to an ID3D10EffectShaderResourceVariable 
interface used for accessing shader-resource variables) and AsString (casts to an 
ID3D10EffectStringVariable interface used for accessing string variables). 
 
We can now set the values of the shader/effect variables using the following 
ID3D10EffectVariable, ID3D10EffectVectorVariable, 
ID3D10EffectMatrixVariable and ID3D10EffectScalarVariable methods: 
SetRawValue for generic array items, SetFloatVectorArray for four-component 
vector arrays containing floating point elements, SetBoolVectorArray for four-
component vector arrays containing Boolean elements, SetIntVector for four-
component vectors containing integer elements, SetIntVectorArray for four-
component vector arrays containing integer elements, SetMatrix for a floating-point 
matrix, SetMatrixArray for an array of floating-point matrices, SetFloat for normal 
floating-point variables and SetInt for integer variables: 
 
g_pNumberOfLightSources->SetInt(numberOfLights); 
 

g_pIncomingAmbientLightColour->SetRawValue(vIncomingAmbientLightColour, 0,  
 sizeof(D3DXVECTOR3) * 3); 
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g_pIncomingDiffuseLightColour->SetFloatVectorArray((float*)vIncomingDiffuseLightColour, 
  0, 3); 

 

g_pObjectspaceLightPosition->SetFloatVectorArray((float*)vObjectspaceLightPosition,  
 0, 3); 

 

g_pWorldviewProjectionMatrix->SetMatrix((float*)&mWorldviewProjectionMatrix)); 
 

g_pModelviewProjectionMatrix->SetMatrix((float*)&mModelviewProjectionMatrix)); 
 
The SetInt ID3D10EffectScalarVariable function takes a pointer to an integer 
variable as parameter. The SetRawValue ID3D10EffectVariable function has 
three parameters, the first taking a pointer to the variable being set, the second 
specifying the offset in bytes from the beginning of the input data being set and the third 
the number of bytes to set from the offset value. The ID3D10EffectVectorVariable 
SetFloatVectorArray method also takes three parameters as input, namely, a 
pointer to the first element of a vector array, the vector offset from the start of the array 
to the first vector that is to be set and the number of array elements, in that order. The 
SetMatrix ID3D10EffectMatrixVariable interface function sets a floating-point 
matrix and is passed a pointer to the first element of a matrix as parameter.  
 
That is it, the values declared in the shader program are now set and can be changed 
during each rendering pass. The final step is to set the effect state within the device 
itself. This is done by invoking the effect state from within the render loop by selecting a 
technique and subsequently setting the state for each of the passes: 
 
We start by calling the GetDesc ID3D10EffectTechnique function on the previously 
defined technique object which is used for storing the returned 
D3D10_TECHNIQUE_DESC structure, i.e. the structure describing the technique: 
 
ID3D10EffectTechnique* g_pd3d10EffectTechnique = NULL; 
 

/*  obtain the D3D10_TECHNIQUE_DESC effect-variable description */ 
D3D10_TECHNIQUE_DESC technique; 
g_pd3d10EffectTechnique->GetDesc(&technique); 
 
The GetPassByIndex ID3D10EffectTechnique interface method is now called to 
acquire an effect pass object representing the first pass of the technique: 
 
/* apply the effect state by looping over the number of technique passes */ 

for(int i = 0; i < technique.Passes; ++i) 

{ 
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 g_pd3d10EffectTechnique->GetPassByIndex(i)->Apply(0); 
 ...etc 

} 
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Appendix C 
Lighting and Reflection 

 
 
C.1 Lighting 
 
Before considering shadows, it is very important to briefly discuss the concepts of 
lighting and reflection (as there can be no shadows without light). The lack of lighting 
results in dull, flat looking object surfaces. Texture mapping helps to enhance the overall 
appearance of an object but fails to convey any real sense of depth. For example, when 
looking at the two flat objects in Figure C.1 (a), it is clear that the three-dimensional 
nature of the scene, a wall positioned perpendicular on a floor, isn’t being conveyed 
properly. Figure C.1 (b) shows this same scene illuminated by a properly defined light 
source. 
 

 
Figure C.1 (a) Two rendered rectangles, the one representing a floor, the other a facing 
wall. (b) The same rectangles with lighting enabled. 
 
This lack of depth is the result of uniform lighting, i.e. the equal illumination of all 
surfaces. Figure C.2 (a) shows a uniform lit sphere and Figure C.2 (b) the same sphere 
with basic lighting enabled. The shaded sphere is the result of graduations in the 
sphere’s colour based on the colour of the light source. In this case the colour grey is 
incrementally decreased from dark grey to white. 
 

 
Figure C.2 (a) A uniformly lit sphere and (b) a properly lit and shaded sphere. 
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Light can be emitted through either self-emission or reflection (Rautenbach, 2008). 
When looking at a light bulb it is obvious that we are predominantly dealing with self-
emission. Light sources are categorised by their light emitting direction and the energy 
emitted at each wavelength – determining the colour of the light.  
 
As also mentioned previously, objects can absorb or reflect light emitted from a light 
source depending on the reflecting object’s material properties. Light will thus only be 
“visible” when illuminated surfaces have the ability to reflect or absorb said light. Objects 
in computer generated graphical scenes are assigned so-called Material properties. 
These are user defined parameters built around rules determining the amount of 
scattering or reflection of incident light. Some surfaces, like a mirror, might reflect an 
incoming ray of light perfectly (hence appear shiny) while a carpet might reflect light in 
so many directions that it appears matte.  
 
The type of light source also plays an important role in addition to the object’s material 
properties. A light type property specifies the type of light to place in a scene. This 
property simply denotes a light source as a point light, spotlight or directional light (also 
called a parallel light). Lighting can thus be described as the interaction between a light 
source and an object’s surface based on a pre-defined set of material properties. We will 
focus on each of these light source types in subsequent sub-sections. 
 
A light source can be considered a geometric object, i.e. a simple light emitting surface. 
We can define a light emitting point on this surface (x, y, z) characterised by a 
wavelength energy value )(λ  and an emitting direction ( )φθ ,  as shown in Figure C.3.  
 

 
Figure C.3 A basic light source characterised via six elements. 
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By combining these variables, we are able to define the illumination 
function ),,,,,( λφθzyxI  used to describe any light source in terms of six variables. For 
example, say a surface is being illuminated by a light source; then we can calculate the 
overall illumination on this surface by integrating across the surface of the light source – 
thus incorporating the effect of the angle between the light source and reflection surface 
as well as the falloff distance (the distance from the light source to the reflecting 
surface). Figure C.4 shows two distinct illumination functions for a pair of points located 
on the surface of a light source. 
 

 
Figure C.4 Two distinct illumination functions for a single light source. 
 
Numerous colour intensities or shades can be described by additively combining various 
intensities of red, green and blue. Building on this, light sources can be defined using a 
similar red, green and blue colour component model. Each light source component is 
subsequently used to calculate the corresponding colour component of an illuminated 
surface. This three-component description is called luminance or intensity, and can be 
written using standard matrix notation with each component representing the intensity of 
either the red, green or blue colour component of the light source: 
 

 
 
Furthermore, the overall lighting effect can be characterised by a lighting model 
(Whitted, 1980). A lighting model defines light-object interactions based on the type of 
light source and the material properties of the object. There are a number of commonly 
implemented lighting models and it is important to note that the basic graphics pipeline is 
constrained to the use of just one lighting model, namely, the fixed-function lighting 
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model. This lighting model is basically an extended version of the Phong lighting model. 
The dawn of shader programming allows for full programmability of the graphics 
pipeline, thus facilitating the implementation of custom user-specified lighting models 
such as Lambertian lighting, anisotropic lighting, Fresnel lighting and Blinn lighting. 
 
 
C.1.1 Point Lights 
 
A point light emits light uniformly in 360 degrees. Point lights have fixed colour and 
position values and are omnidirectional in nature. The objects illuminated by this light 
type appear either oversaturated (overly bright with a high contrast) or too dark – a side 
effect easily corrected through the addition of ambient lights (Newman and Sproull, 
1973). The primary factor influencing brightness is the distance between the illuminated 
surface and the point light. Point lights are the easiest of all light types to implement, 
resulting in their widespread use regardless of their unrealistic simulation of real-life light 
sources. Figure C.5 illustrates the effect of a point light illuminating a surface. 
 

 
Figure C.5 Point light illumination. 
 
Using the previously discussed luminance function, we can define a point light located at 
point P1 as follows: 
 

 
 
Using this luminance function, we can calculate the level of illumination at a specific 
point, k, on a surface by multiplying the intensity of the light with the inverse square 
distance between the light source and illuminated surface: 
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C.1.2 Spotlights 
 
Spotlights are specified by a colour, spatial position and some specific direction and 
range in which light is emitted. A spotlight is basically a point light with its emitting light 
constrained within an angle range. This range is defined using two cones: a bright inner 
cone and an encircling outer cone. The inner cone has a high intensity (correlating to the 
user-defined luminescence of the light source), with the outer cone used for fading or 
attenuating the light source’s intensity in an outwards direction. This gradual reduction of 
light intensity is referred to as falloff. Falloff governs the decrease in light intensity from 
the inner cone to the outer cone and a falloff value of 1.0 generally denotes an evenly 
distributed light intensity decrease. Figure C.6 illustrates this diminishing property. 
 

 
Figure C.6 Spotlight falloff. 
 
The intensity of a spotlight can be calculated by considering the angle between the 
direction of the light source and a vector to the point being illuminated. The simplest way 
of formulating this intensity is to calculate the cosine, to the power of e, of the direction 
angle: 
 

 
 
We can also calculate the dot product of the spotlight’s direction vector and the vector to 
the point being illuminated. This calculation results in the cosine of the angle between 
these two vectors (shown in Figure C.7): 
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Figure C.7 The relationship between the direction vector and the vector to the point 
being illuminated. 
 
 
C.1.3 Ambient Lights 
 
Ambient lighting provides a uniform level of illumination throughout a scene. Numerous 
large light sources are generally positioned in such a way as to scatter emitted light in all 
directions, thus making it impossible to determine the original position of the light source. 
Even though ambient light hitting a surface is scattered equally in all directions, we can 
still determine the ambient intensity at each point on the surface.  
 
This type of illumination has a luminance, I, which is the same for all points in the scene 
(with the manner of reflection being completely dependent on the material properties of 
a surface): 
 

 
 
 
C.1.4 Parallel Lights 
 
A parallel or directional light illuminates objects through a series of parallel light rays. 
These light sources can be considered as point lights located a significant distance from 
the surface of an object. Moving from one closely located object to another has little 
influence on the direction at which light hits the object. Sunlight can be considered a 
parallel light source due to it illuminating closely located objects at the same angle. 
Thus, the vector to the point being illuminated does not change a great deal when 
moving from one object to the next. We also use this direction vector to describe the 
light source. Figure C.8 illustrates a parallel light source. 
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Figure C.8 A parallel light. 
 
Parallel lights do not exhibit attenuation or range properties. Consequently, they do not 
require any calculations dealing with illumination effects such as falloff. They are thus 
excellent light sources when computational overhead is being considered. 
 
 
C.1.5 Emissive Light 
 
Emissive light is radiated (can be considered self-reflecting) light originating from an 
object’s surface. This type of light blends with our other light types, resulting in a surface 
smoothly coloured through the combination of all global light colour components. An 
object coloured using emissive light appears flat and unshaded; this is due to emissive 
reflection not considering vertex normals or “incoming” light direction. We can describe 
emissive lighting using a three-component intensity function: 
 

 
 
 
C.2 Reflection 
 
A surface is only visible when it has the ability to reflect or absorb light. This ability is the 
result of the surface’s material properties, i.e. rules determining the amount of scattering 
and/or reflection of incident light (Rautenbach, 2008). We can specify material properties 
for any surface, the most common types being the Phong reflection model, ambient 
reflection, diffuse reflection, specular reflection and transparency (Schlick, 1993).  
 
The basic lighting model can be considered as a high-level equation summing an 
ambient, diffuse and specular component to calculate the colour of an object’s surface 
(Sillion and Puech, 1989): 
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Surface colour = ambient lighting term + specular lighting term + diffuse lighting term. 
 
This surface colour is actually equal to the overall amount of light present in a scene, 
commonly called global illumination and extended to include an emissive lighting term, 
resulting in the following lighting model equation used to simulate a wide range of 
lighting conditions (Walter et al, 1997): 
 

Global illumination = ambient lighting term  
 + specular lighting term  
 + diffuse lighting term 
 + emissive lighting term. 
 
We will now look at each of these lighting/reflectance components as functions of 
material properties (e.g. surface reflectance, colour) and light source properties (e.g. 
light direction, colour, position, attenuation). 
 
 
C.2.1 Ambient Reflection Model 
 
Ambient reflection, also called continuous reflection, occurs whenever light emitted from 
a source is reflected so much that its origin is impossible to determine. Ambient light is 
omnidirectional in nature. Omnidirectional light is radiated uniformly in all directions, or 
more commonly, it is light scattered uniformly in all directions (Warn, 1983). This is also 
the reason for ambient reflection being described as continuous reflection – it being 
continuous in all directions, affecting the entire surface in an equal fashion. Thus, some 
of the light hitting a surface is absorbed while the rest is reflected – resulting in ambient 
reflection. Also, every point in a scene receives the same amount of ambient lighting, 
with only the reflection of this light varying. Figure C.9 illustrates this concept.  
 

 
Figure C.9 Ambient reflection 
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The problem with ambient reflection is that illuminated objects appear rather flat and 
unshaded; Figures C.1 (a) and C.2(a) show the classic appearance of ambient lit 
surfaces.  
 
This ‘flatness’ is the result of ambient lighting not factoring in vertex normals or the 
direction, position, range, and additional light source properties such as attenuation or 
falloff. Ambient reflection is thus the most computationally efficient of all the reflection 
models. The ambient reflection coefficient is an indication of the reflected amount and is 
comprised out of red, blue, and green ambient reflection coefficients collectively. The 
equation for calculating ambient lighting factors in the material’s ambient reflectance and 
the colour of the incoming ambient light: 
 

Ambient lighting term = material’s ambient reflectance x incoming ambient light colour. 
 
We can also define the intensity of ambient reflection using the ambient luminance 
function (IA), the incoming ambient light colour (I) and the material’s ambient reflectance 
consisting of three reflection coefficients – RAr, RAg and RAb, representing the red, 
green, and blue ambient reflection coefficients, respectively: 
 

 
 

 
C.2.2 Specular Reflection Model 
 
Specular reflection occurs whenever light, from a single incoming direction, is reflected 
at a single outgoing direction (Torrance and Sparrow, 1967). Specular reflection is 
characterized by bright highlights on the surface of an object reflected in the direction of 
the view vector. This concept is illustrated in Figure C.10. 
 

 
Figure C.10 Specular reflection 
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Specularity can be defined the amount of shininess exhibited by an object with the level 
of specular reflection attributed to a user definable value, namely, the shininess 
coefficient. The bigger this coefficient, the smoother the object’s surface and the closer 
we are to a perfect mirror. For example, values ranging from 100 to 500 represent most 
metallic surfaces while smaller values represent materials with broader highlights such 
as plastic and wood. Figure C.11 shows several spheres with specular highlights. 
 

 
Figure C.11 Examples of specular highlights 
 
To calculate specular reflection we need information about both the incoming light 
direction and location of the viewer as well as the colour properties of the material, light 
source and shininess of the surface. The equation for calculating specularity is: 
 

Specular lighting term = material’s specular colour 
 x colour of incoming specular light 
 x geometryFacingFlag 
 x (max(normalized surface normal  
  • normalized halfway vector,0))shininess 
 
The geometryFacingFlag element is a flag ensuring that specular highlights are limited 
to geometry facing a light source – its value is calculated by taking the dot product 
between the normalized surface normal and the normalized vector pointing to the light 
source. If this dot product is greater than zero then the geometryFacingFlag element is 
set to 1, otherwise 0. The normalized halfway vector element is the vector halfway 
between the normalized vector pointing towards the viewpoint and the normalized vector 
pointing in the direction of the light source. Specular highlights are prominent when the 
angle between these two vectors is small. Figure C.12 shows the vectors used in the 
calculation of this specular term. 
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Figure C.12 Vectors used in the calculation of the specular term 
 
Alternatively we can define the intensity of specular reflection using the specular 
luminance function (IS); the angle between the reflection vector (the direction of a 
perfectly reflected ray) and the vector directed at the viewpoint; the intensity of the 
specular light, I; the shininess coefficient, α; and Rs, the fraction of the incoming 
specular light being reflected: 
 

 
 
 
C.2.3 Diffuse Reflection Model 
 
Diffuse reflections occur when incoming light is reflected in arbitrary directions (Goral et 
al, 1984). The main contributing factor to this form of reflection is an uneven or rough 
surface. A diffuse surface appears identical to all viewers, regardless of their respective 
point of view. This type of reflection is common for matte or uneven surfaces (such as 
carpets or brushed metal) and is used for shading surfaces in such a way as to convey a 
sense of depth. 
 
Diffuse reflection is a function of the incoming light direction and surface normal, in other 
words, the reflection of incoming light is dependent on the surface roughness and 
incoming light angle (Hall, 1989). The equation for calculating diffuse lighting is: 
 

Diffuse lighting term = material’s diffuse color 
 x color of incoming diffuse light 
 x max(normalized surface normal  
   • normalized vector towards light,0) 
 
The dot product between the normalized surface normal and normalized vector pointing 
towards the light source gives the measure of incident light received by the surface – the 
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smaller the angle between these two vectors, the greater the dot product result, and the 
greater the amount of incident light falling on the surface. The max (normalized surface 
normal. normalized vector towards light, 0) element in the equation ensures that only 
surfaces facing a light source reflect some diffuse lighting – surfaces facing away from a 
light source result in a negative dot product. Figure C.13 shows a diffuse surface with 
the normalized surface normal and normalized vector pointing at the light source. 
 

 
Figure C.13 Diffuse reflections 
 
We can also define perfect diffuse surfaces, i.e. surfaces reflecting light in no particular 
direction. These surfaces, also called Lambertian surfaces, are generally so rough that it 
is mathematically impossible to determine a preferred angle of reflection. Also, 
Lambertian light has a consistent intensity regardless of the distance between the 
reflecting surface and light source. 
 
Perfect diffuse reflection can be modelled using Lambert’s cosine law. This law states 
that the reflection or radiance observed from a perfect diffuse surface is directly relative 
to the cosine of the angle between the vector directed at the light source and the surface 
normal: 
 

 
 
Simply put, Lambert’s law states that a perfectly diffuse surface always reflects the same 
amount of light, regardless of the viewing angle. For example, say a surface is being 
illuminated using a parallel light source, when this light is positioned perpendicular to the 
surface; the surface will appear brightly lit. Placing this light source at, say, a 135 degree 
angle will result in a more dimly lit surface due to the light rays covering a larger surface 
area. Figure C.14 illustrates Lambert’s cosine law. 
 

 
 
 



 261

 
Figure C.14 A perfect diffuse surface being illuminated by (a) a light source positioned 
perpendicular to the surface and (b) a light source positioned at a 135 degree angle 
 
 
C.2.4 The Phong Reflection Model 
 
The Phong reflection model, also loosely called Phong shading, was developed in 1973 
by Bui Tuong Phong (the late computer graphics researcher and pioneer) and later 
extended to include a halfway vector in the calculation of the specular term by Jim Blinn. 
The Phong model is an illumination model that controls the shading of individual pixels; it 
is computationally efficient and leads to realistic looking reflections. Phong’s goal was to 
create realistic looking objects in as close to real time as possible. The Phong reflection 
model basically combines ambient, specular and diffuse lighting components to closely 
approximate real world reflections. This concept is shown in Figure C.15. We can 
consequently write the combination of these lighting terms as: 
 

 
 

 
Figure C.15 Combining the lighting terms, producing a Phong reflection 
 
Mathematically, the Phong reflection model considers reflected light as a function of the 
cosine between the surface normal and the incoming light direction. More precisely, the 
colour value of a point on the surface being illuminated is a function of four vectors, as 
shown in Figure C.16: the normal vector at this point, the vector directed at the 
viewpoint, a vector directed at the light source, and the reflection vector (indicating the 
direction of a perfectly reflected ray). 
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Figure C.16 Vectors used in the calculation of the Phong reflection model 
 
The following equation can be used to calculate the Phong reflection of a point on the 
surface of an object: 
 

 
 
with ka the material’s ambient reflectance, ia the colour of incoming ambient light, kd the 
material’s diffuse reflectance, L the vector directed at light source, N the surface normal, 
id the colour of incoming diffuse light, ks the material’s specular reflectance, R the 
reflection vector, V the vector directed at the viewpoint, a the shininess coefficient and is 
the colour of incoming specular light. The Phong reflection, using this equation, is 
typically calculated for individual intensities of red, green, and blue. The sum component 
in the above given equation defines a set of light sources. The effect of each light 
source, on the point being illuminated, is thus considered by the equation. 
 

 
 
 



 263

Appendix D 
Real-time Shadow Generation 
 
 
D.1  Introduction  
 
Real-time shadow generation contributes heavily towards the realism and ambience of 
any scene being rendered. Research dealing with the calculation of shadows has been 
conducted since the late 1960s and has picked up great momentum with the evolution of 
high-end dedicated graphics hardware. Shadows are produced by opaque or semi-
opaque objects obstructing light from reaching other objects or surfaces. A shadow is a 
two-dimensional projection of at least one object onto another object or surface (Crow, 
1977). The size of a shadow is dependent on the angle between the light vector and 
light blocking object. The intensity of a shadow is in turn influenced by the opacity of the 
light-blocking object. An opaque object is completely impenetrable to light and will thus 
cast a darker shadow than a semi-opaque object. The number of light sources will also 
affect the number of shadows in a scene (with the darkness of a shadow intensifying 
where multiple shadows overlap). Figure D.1 illustrates shadow generation, specifically 
the implementation of stencil shadow volumes – a popular shadow rendering technique. 
 

 
Figure D.1 Example of stencil shadowing – note the darkening of overlapping 
shadows. 
 
The drive towards realism has led to the development of many shadowing algorithms. 
Some of these algorithms, like shadow mapping and shadow volumes, are more 
successful than others. The success of an algorithm is dependent on the balance 
between speed and realism and techniques like shadow mapping and stencil shadow 
volumes are particularly amenable to hardware implementation – thus freeing the CPU 
of a substantial processing burden and making the real-time rendering of shadows 
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feasible (Kilgard, 1999). Other shadowing approaches, such as the one proposed by 
Boulanger et al (2003), have in turn focussed on visually pleasing approximations for 
computationally expensive natural scenes. 
 
Looking at shadows from a foundational perspective reveals them as a product of an 
environment’s lighting. Shadows can have either hard or soft edges. This is dependent 
on the type of light source used and the distance between the light source and object. In 
the case of soft shadows we differentiate between both an umbra and penumbra. The 
darkest area of a shadow, receiving no light at all, is referred to as the umbra with the 
penumbra, receiving a small amount of light, indicating the partially shadowed edge 
(Akenine-Möller et al, 2002). Figure D.2 illustrates a shadow’s umbra and penumbra. 
 

 
Figure D.2 A soft shadow with related umbra and penumbra. 
 
It should be noted that there is always a gradual intensity transformation from the umbra 
to penumbra (Akenine-Möller et al, 2002). However, the fading of the shadow (as its 
distance from the casting object increases) need not necessarily be gradual. Point lights 
will, for example, produce non-fading hard-edged shadows, with ambient light sources 
producing soft-edged shadows fading into the distance. The area of a light source also 
affects the gradual softening of shadows. The larger the light source’s area, the more 
quickly the shadow grades off. Figure D.3 shows the difference between shadows 
produced by point and ambient light sources. 
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Figure D.3 (a) Hard-edged shadow produced by a point light source. (b) Soft-edged 
shadow produced by an ambient light source. 
 
We will now investigate several shadowing algorithms, including the fundamentals of 
shadow volumes and shadow mapping. The first two algorithms, namely scan-line 
polygon projection and Blinn’s shadow polygons, are historic in nature. We describe 
these algorithms here not only for the sake of completeness but also since some of the 
elements introduced by them form the basis of general shadow computation. These first 
two techniques aren’t suited for real-time implementations. However, more recent 
algorithms such as stencil shadow volumes and hardware shadow mapping remedy this 
situation by emphasising the balance between processor efficiency and realism.  
 
It is necessary to note, before continuing, that shadowing remains one of the most 
processor intensive tasks and despite each technique’s limitations, it is important to 
consider each algorithm with its intended application area in mind. 
 
 
D.2 Shadow Rendering Algorithms 
 
D.2.1 Scan-Line Polygon Projection 
 
A quite complex, and now mostly redundant shadow algorithm was introduced by Appel 
(1968) and further developed by Bouknight and Kelley (1970). This algorithm, commonly 
known as scan line polygon projection, adds shadow generation to scan-line rendering 
(Lane et al, 1980). A scan-line algorithm operates on a row-by-row basis, as opposed to 
a pixel-by-pixel or polygon-by-polygon basis. A scan-line itself is a single line or row 
composed of a series of successive pixels stored in an array or list. The overall image is 
rendered as a result of the consecutive downwards repositioning of the scan-line 
(Bresenham, 1987). To enable both pre-rendered and real-time shadow generation via 
scan-line algorithms, it is necessary to append the original algorithm with a pre-
processing stage. This pre-processing stage builds up a secondary data structure linking 
all the polygons that will cast a shadow on some other polygon.  
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The scan-line projection algorithm has an additional stage where all the polygons of a 
scene are projected onto a sphere centred at the light source (the centre of projection). 
This allows for the identification of all polygons casting shadows on other polygons. It is 
important to remember that, in a scene with k polygons, one will have at most k(k – 1) 
shadows – the detection and elimination of polygon groups not interacting are thus of 
crucial importance. With all the shadow casting polygons linked in a secondary data 
structure, we can now project the edges of these polygons onto polygons intersecting 
the scan-line. A pixel’s colour value is modified wherever the scan-line traverses one of 
these shadow edges. Hence, the light source (at the centre of projection) and shadow 
polygon cast a shadow onto the polygon intersected by the scan-line. The following 
cases denote whether a given pixel is in shadow or not:   
  

1) The scan-line algorithm continues normally if no shadow casting polygon for 
the given pixel exists. 

2) Decrease the brightness of the scan-line segment’s pixels if a shadow 
casting polygon fully overlaps the intersected polygon. 

3) If a shadow casting polygon partially overlaps the intersected polygon, 
subdivide the intersecting scan-line segment recursively until condition 1 or 2 
is reached. 

 
Scan-line polygon projection only allows for the generation of hard-edged shadows via 
point light sources. Figure D.4 illustrates the above described process. 
 

 
Figure D.4 Scan-line polygon projection. 
 
 
D.2.2 Blinn’s Shadow Polygons 
 
An extremely easy to use shadow generation technique was described by Blinn (1988). 
This method simply calculates the projection of an object on some base-plane. In short, 
a shadow cast by a point light and a polygon onto another polygon can be rendered by 
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projecting the first polygon onto the plane of the second polygon (Blinn, 1988). The point 
light is in this case at the centre of projection and the resulting shadow is referred to as a 
shadow polygon. Figure D.5 illustrates the projection of a shadow polygon (onto the xy-
plane) with the light source located at the centre of projection. 
 

 
Figure D.5 Shadow polygon with a point light source at the centre of projection. 
 
The local illumination approximation states that if we have an infinitely positioned point 
light source, then we can consider its light rays as parallel (Phong, 1975). These rays, 
emanating from a light source located at the point ( )lll zyx ,, , will cast a shadow at the 
point ( )sss zyx ,,  based on the intersection of any point ( )ooo zyx ,,  located on an object 
positioned between the light source and some plane. 
 
Generally though, if we have some finitely positioned point light, then we can translate 
the scene by some matrix, ( )lll zyxT −−− ,, , so that the light source is positioned at the 
centre of projection. This translation yields the following projection matrix: 
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After applying this projection matrix we have to translate the scene back to its original 
position with the generic translation ( )lll zyxT ,, . By concatenating the two translation 
matrices with the projection matrix, we are able to define the shadow projection 
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The following steps outline the process of creating a shadow polygon: 
 

1) Define and initialise the shadow projection matrix M. 
2) Render the polygon normally. 
3) Translate the light to the origin (centre of projection). 
4) Calculate the projection of the object with the shadow projection matrix. 
5) Translate everything back to their original positions. 
6) Render the shadow polygon. 

 
This method is often utilised to render the shadows of single polygons (Blinn, 1988). It is, 
however, only useful for the projection of shadows on flat surfaces, not for inter-object 
shadows. We will much rather implement an alternative method whenever objects are 
expected to cast shadows on other objects. For example, we could create a relatively 
uncomplicated shadow algorithm by simply modifying a hidden surface removal 
algorithm. The premise behind our modification would be that shadows are in fact areas 
hidden from light sources.  
 
 
D.2.3 Shadow Mapping 
 
Lance Williams introduced the concept of shadow mapping in 1978. His primary aim was 
the rendering of shadows on curved surfaces. Shadow mapping adds shadows to a 
scene by testing whether a particular pixel is hidden from a light source. It does this by 
first constructing a separate shadow Z-buffer for every light source and then storing the 
depth information of a scene in this buffer with the light source as view point. This depth 
information leads to a depth image or shadow map consisting of all the polygons not 
hidden from the light source (Shade et al, 1998). Hidden pixels are discovered through a 
comparison with this depth image (Everitt et al, 2001). The shadow map partitions a 
light’s view volume into shadowed and non-shadowed regions and we store this depth 
buffer image (shadow map) as a texture in the 3-D accelerator’s texture unit. This texture 
is subsequently projected onto an area and/or object(s) for the shadow effect.  
 
Although the shadow map is now stored in the display adaptor’s texture memory, it must 
still be updated every time changes are made to the scene’s light sources, geometry or 
object positions. However, no updating of the shadow map is required when altering the 
camera’s point of view. We will typically partition the scene when implementing shadow 
maps, thus limiting the time it takes to update the depth image.  
 
The final step of the algorithm is to render the scene via a Z-buffer algorithm. More 
specifically, if a pixel is not hidden from the light source then the related vertex is 
translated from the view point’s screen space to light space (screen space with the light 
at the centre of projection). After all the vertices of an object have been translated, we 
have the object’s spatial location from the light source’s point of view.  
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The x- and y- coordinates of a translated vertex are used to index the shadow Z-buffer. 
Its z-component is used during the depth comparison test. This test simply compares a 
vertex’s depth value to the corresponding value stored in the shadow map, determining 
whether the specific vertex will be shadowed or not. More explicitly, the vertex is in 
shadow if its depth value is greater than the value stored in the shadow map. For all 
other cases we can say that the vertex is closer to the light source than another arbitrary 
shadow casting surface and will thus be rendered without a shadow. Figure D.6 shows a 
3-D object and its resulting shadow map. 
 

 
Figure D.6 (a) Object as seen from the light’s point of view (b) Object’s depth map 
from the light’s point of view (c) Shadow polygon rendered via the horizontal projection 
of the depth map. 
 
Shadow mapping can be implemented as either a single- or multi-pass algorithm (Everitt 
et al, 2001). That is, if a fragment shader is used to render shadows by performing the 
depth comparison test, then we will not require additional passes to produce the shadow 
maps (Fernando et al, 2001). However, if we do not make use of programmable shaders 
(such as NVIDIA’s Cg or DirectX’s High Level Shader Language) then we won’t have 
access to predefined lighting models (lit or shadowed) and will consequently have to 
implement an additional shadow map generation pass for each light source (Lauritzen, 
2006). In more complete terms, we can outline the dual-pass shadow mapping process 
as follows: 
 

1) Create the shadow map by rendering the Z-buffer with regard to the light’s 
point of view. 

2) Draw the scene from the viewer’s point of view. 
3) For each rasterized fragment, calculate the fragment’s coordinate position 

with regard to the light’s point of view. 
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4) Use the x- and y- coordinates of step 3’s translated vertex to index the 
shadow Z-buffer. 

5) Do the depth comparison test, if the translated vertex’s depth value (the z-
value of step 3’s translated vertex) is greater than the value stored in the 
shadow Z-buffer, then the fragment is shadowed, else it is lit. 

 
Shadow mapping suffers from aliasing errors due to the use of a projection 
transformation mapping shadowed pixels to screen pixels, often causing changes in a 
pixel’s screen size. This is a direct result of the Z-buffer algorithm’s use of point 
sampling. The rendered shadow’s edges are often jagged due to point sampling errors 
occurring during the calculation phase of the shadow Z-buffer. These errors are further 
amplified when accessing the shadow Z-buffer for the projection of pixels onto the 
shadow Z-buffer map. The only way of minimising the visibility of a shadow’s jagged 
edges is to implement some form of pre-filtering and to use very large (high resolution) 
shadow maps.  
 
 
D.2.4 Shadow Volumes 
 
A shadow volume is a volumetric area defined by light rays extending outwards about 
the silhouette edge of an object (Crow, 1977). All the objects positioned within a shadow 
volume are hidden from the light source and are thus in either full or partial shadow. The 
contour of an object’s surface is defined as a silhouette edge when the normal vector of 
the surface is perpendicular to the view vector (Everitt et al, 2002). A silhouette edge 
can more generally be considered as an outline or edge separating a front- and back-
facing surface (Heidmann, 1991). The shape of the shadow volume is determined by the 
shape of the object’s silhouette edge and a shadow volume is made up of so-called 
“invisible” shadow polygons. We refer to these shadow polygons as “invisible” since they 
are never rendered and only used to determine the shadowed areas. Shadow volumes 
are theoretically infinite volumes produced by polygons; however, for practical usability 
we intersect an infinite shadow volume with the view volume to produce a finite front- 
and back-capped shadow volume. Figure D.y shows the silhouette edge of a cube with 
Figure D.8 illustrating the capping of a semi-infinite shadow volume.  
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Figure D.7 A simple silhouette edge.  
 

 
Figure D.8 Construction of finite shadow volume. 
 
The original shadow volume concept was introduced by Frank Crow in 1977. He defined 
a shadow volume as three-dimensional area occluding objects and surfaces from a light 
source. This original approach has since been extended to incorporate the generation of 
soft-edged shadows, including revision of the algorithm to utilise modern-day 3-D 
acceleration capabilities. The advent of dedicated 3-D acceleration hardware and the 
direct control of this hardware via APIs such as OpenGL and Direct3D have significantly 
contributed to the use of shadow volumes in modern computer games such as id 
Software’s Doom 3 and Bioware’s Neverwinter Nights (Carmack, 2000).  
 
The first feasible real-time shadow volume algorithm was introduced by Tim Heidmann 
in 1991. His algorithm made use of the 3-D accelerator’s stencil buffer – effectively 
limiting the render area (called stencilling). The stencil buffer controls rendering by 
enabling or disabling drawing to a specific pixel. Heidmann discovered that the stencil 
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buffer could be used to count the number of front- and back-facing shadows in front of 
an object if we rendered the shadow surfaces in two passes. By counting these shadow 
surfaces we are able to determine whether an object’s surface is in shadow or not. 
Heidmann’s technique became known as the depth-pass stencil mask generation 
algorithm.  
 
The general Heidmann stencil shadow volume process is summarised by the following 
phases: 
 

1) Assume the scene in entirely shadowed. 
2) Render the shadowed scene. 
3) Calculate the shadowed scene’s depth information. 
4) Use this depth information to define a mask via the stencil buffer to indicate 

the lit areas.  
5) Assume the scene is entirely lit. 
6) Render the lit scene, applying the stencil buffer mask to cast the shadows. 

 
There are two variations to the depth-pass technique, namely, depth-fail and exclusive-
or (the latter of which is omitted due to its failure in dealing with intersecting shadow 
volumes). All shadow volume algorithms follow the above described shadow generation 
process and differ only in their approach of calculating the stencil mask. The depth-pass 
and depth-fail stencil shadow volume algorithms are described in detail below.  
  
 
Depth-pass 
 
Shadow volume algorithms operate on a per-pixel basis, performing a shadow test for 
every pixel in the frame buffer. We refer to all the data needed for the rendering of a 
pixel (stored in the frame buffer) as a fragment. Our algorithms will thus focus on all 
rasterized fragments to determine whether a specific fragment is in shadow or not. In 
more complete terms, we can write the above outlined stencil shadow volume process 
as follows: 
 

1) For each rasterized fragment, render the fragment using ambient lighting, 
updating the Z-buffer after each fragment has been rendered. 

2) Now we have to compute which fragments are in shadow. We once again 
look at each rasterized fragment, rendering the fragment as lit if not 
shadowed. 

 
We can use the depth-pass method to test whether a fragment is in shadow or not. This 
method computes the fragments in shadow by generating a stencil mask. Using the 
stencil buffer, we count the number of front- and back-facing shadows in front of an 
object by rendering the front- and back-faces of the shadow surfaces in two passes. By 
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counting these shadow surfaces we are able to determine whether an object’s surface is 
in shadow or not. If there are more front-facing shadow surfaces than back-facing ones, 
then we can conclude that a shadow is projected onto an object. The following process 
is used to compute the number of fragments in shadow: 
 

1) For each rasterized fragment, render the fragment using ambient lighting, 
updating the Z-buffer after each fragment has been rendered. 

2) Determine the silhouette edges of a shadow casting object. Following this 
the shadow volume polygons (shadow surfaces) are calculated (from the 
light source using the silhouette edges of the shadow casting object). These 
two steps are performed for each shadow casting object. 

3) Now deal with the front- and back-facing shadow surfaces with regard to the 
point of view, incrementing the stencil buffer value for each front facing 
shadow surface if the depth-test passes (depth-pass using the Z-buffer) – 
counting the shadows in front of the object. Following the test for front-facing 
shadow surfaces, we focus on each back-facing shadow surface with regard 
to the view point – decrementing the stencil buffer value if the depth-test for 
a specific shadow surface passes. 

 
Following the above process, we simply have to check the stencil buffer value for each 
fragment to identify the fragments in shadow. If a fragment’s stencil buffer value is 
greater than zero then we need not draw this fragment during the second rendering pass 
– hence causing the fragment to be in shadow. Figure D.9 illustrates the above 
described process: 
 

 
Figure D.9 Testing whether a fragment is in shadow. 
 
The described depth-pass process is extremely efficient; however, certain issues 
become apparent upon implementation. The most common problem occurs whenever 
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the point of view (camera or viewer) is positioned within a shadow volume. This leads to 
visibility of the shadow’s back-face. The depth-test will pass in this case, causing the 
stencil buffer value to be decremented, thus becoming -1 due to a back-face being 
visible prior to any front-facing shadow surfaces. This problem is referred to as stencil 
counting inversion and it can be resolved by capping the front of the shadow volume. 
Alternatively we can initialise the stencil buffer to 2K-1, with K the precision of the stencil 
buffer. These approaches are, however, less than efficient and the depth-fail technique 
is generally implemented as an alternative. 
 
 
Depth-fail 
 
The depth-pass approach computes the stencil buffer values by incrementing for front- 
and decrementing for back-facing shadow surfaces. The depth-fail approach modifies 
this calculation process (originally counting from the point of view) by counting from 
infinity. So, by reversing the depth and counting the shadow surfaces behind an object 
instead of those in front of it, we no longer face the stencil counting inversion issue. The 
only general issue with this approach is that we must cap the end of the shadow volume 
to avoid the condition where shadows point to infinity. The following process is used to 
compute the number of fragments in shadow: 
 

1) For each rasterized fragment, render the fragments using ambient lighting, 
updating the Z-buffer after each fragment has been rendered. 

2) Determine the silhouette edges of a shadow casting object. Following this 
the shadow volume polygons (shadow surfaces) are calculated (from the 
light source using the silhouette edges of the shadow casting object). These 
two steps are performed for each shadow casting object. 

3) Now deal with the front- and back-facing shadow surfaces with regard to the 
point of view, decrementing the stencil buffer value for each front facing 
shadow surface if the depth-test fails (depth-fail using the Z-buffer). 
Following the test for front-facing shadow surfaces, we focus on each back-
facing shadow surface with regard to the view point – incrementing the 
stencil buffer value if the depth-test for a specific shadow surface fails. 

 
Although the depth-fail method effectively avoids the stencil counting inversion issue it 
still requires the additional back-capping of shadow volumes. This results in some extra 
rasterization time which can lead to considerable performance slowdowns under certain 
conditions. It is thus in some cases more advantageous to use the depth-pass method 
while explicitly dealing with the cases where the point of view is located within a shadow 
volume. It is also often possible to increase the performance of a stencil shadow volume 
implementation by utilising some hardware extension such as NVIDIA’s depth bounds 
test enabling the culling of shadow volume sections not affecting the visible area. 
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It is interesting to mention though that Kolic el al (2004) developed a shadowing 
technique purely focussing on the utilisation of current GPU advances. Their algorithm 
specifically deals with the casting of shadows on concave complex objects such as 
trees. Koloc et al (2004) formally state that “for those objects, silhouette calculation that 
is usually preformed by other shadow volume algorithms is complicated and poorly 
justified. Instead of calculations, it is better to assume a worst case scenario and use all 
of the edges for construction of the shadow volume mesh, skipping silhouette 
determination entirely. The achieved benefit is that all procedures, i.e. the object and 
shadow calculation and rendering, could be done on GPU. The proposed solution for 
shadow casting allows open edges. Indexed vertex blending is used for shadow 
projections, and the only calculation required is determining projection matrices. Once 
created, shadow volume is treated like any other mesh.” When Crow implemented and 
defined the original shadow volume model back in 1977, he simply did not have access 
to any of these modern hardware acceleration aids and hence did not develop the now 
commonly used stencil shadow volume algorithm with modern day graphics accelerators 
in mind.  
 
Thakur et al (2003) also developed a discrete algorithm for improving the Heidmann 
original. Chapter 3 deals with this algorithm in detail. Another significant algorithmic 
improvement over the Heidmann original was made by Chan and Durand (2004). They 
specifically combined the strengths of shadow maps and shadow volumes to produce a 
hybrid algorithm for the efficient rendering of pixel-accurate hard-edged shadows. Their 
method uses a shadow map to identify pixels located near shadow discontinuities, using 
the stencil shadow volume algorithm only at these pixels.  
 
 
Soft-edged Shadows using Penumbra Wedges 
 
Implementation of the above discussed shadow volume techniques always result in 
pixel-accurate hard-edged shadows. Soft-edged shadows can be simulated through the 
construction of several shadow volumes by translating the original light source to various 
positions close to that of the original. Following this we simply have to combine the 
resulting shadows. The problem with this approach is rendering performance due to 
shadow volume construction taking up a substantial amount of processor time. One 
solution is the calculation of penumbra wedges as proposed by Akenine-Möller and 
Assarsson (2002). A penumbra wedge is defined in place of a shadow polygon for each 
silhouette edge of an object – combining a series of these penumbra wedges result in 
the creation of a soft-edged shadow. 
 
The penumbra wedge algorithm calculates the amount of light that reaches a certain 
point p. This amount of light intensity ranges from ‘0’ to ‘1’. When the light intensity is ‘0’ 
we can define the point p as fully shadowed or conversely as fully lit with a light intensity 
of ‘1’. For all other values we can define point p located within the penumbra region. The 
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light intensity inside the penumbra region is calculated using a signed 16-bit buffer. This 
light intensity buffer is simply a high precision stencil buffer. The lower the number of bits 
used for the buffer, the higher the implementation’s performance and the lower the 
number of shades in the penumbra region. The varying shade levels in the penumbra 
region are created by multiplying each light intensity value stored in this buffer with some 
value s. This value is normally chosen as ‘255’ since colour buffers allow for 8-bits per 
component, leading to at least ‘256’ on-screen penumbra wedges. The following process 
is used for calculation of the penumbra wedges (illustrated in Figure D.10): 
 

1) Initialise the light intensity buffer to ‘255’ – indicating that the viewer is now 
positioned outside of the shadow volume. 

2) Draw the scene using both specular and diffuse lighting.  
3) Draw the penumbra wedges using the following algorithm: 

a. For some light ray, compute the entry and exit points on the outside 
penumbra wedge. This must be done for each visible fragment. The 
entry point is defined by an x- and y-coordinate, with the 
corresponding z-value stored in the Z-buffer. 

b. Transform this point to world space coordinates (the point’s 
independent local coordinate system has now been transformed into 
a global coordinate system. This provides all the points with a shared 
global coordinate space – i.e. one point’s position can be described in 
terms of another’s and all user defined points can now be positioned 
within the same scene). 

c. Test whether the point is located within the penumbra region. 
i. If the point is located within the penumbra region, compute the 

light intensity of this point and the entry point, scaling the light 
intensity by subtracting the computed light intensity of the point 
located within the wedge from the entry point and multiplying 
this result by ‘255’.  

ii. Add the above calculated light intensity to the light intensity 
buffer. 

4) Add ambient lighting to the rendered scene. 
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Figure D.10 Locating a point within the penumbra region. 
 
The possibility of overlapping penumbra wedges exists in situations where the volume is 
entered more than once. Such cases result in negative light intensity values, thus 
requiring the clamping of the values stored in the light intensity buffer to the range [0, 
255]. It is also possible to leave the volume more than once whenever the viewer is 
located within the volume. By setting the maximum possible light intensity value to ‘255’, 
we effectively avoid higher light intensities than that of the areas outside the volume – 
which clearly isn’t possible. 
 
Akenine-Möller and Assarsson’s penumbra wedges algorithm (Akenine-Möller and  
Assarsson, 2002) can be implemented using either OpenGL or Direct3D. The main 
problem is the large vertex and pixel shader programs required, making true real-time 
performance only achievable on extremely high-end hardware. The following steps 
outline a hardware-accelerated implementation of the penumbra wedge algorithm: 
 

1) Render the scene using either OpenGL or Direct3D. 
2) Implement the wedge rasterization, initialising the Z-buffer prior to 

rasterization. 
3) Rasterize the front facing triangles of the penumbra wedges – the entry 

point’s plane is now identified. 
4) Identify the exit point by calculating the ray’s intersection with the back 

facing planes and picking the one closest to the ray. 
5) Specify the point in world space coordinates via a transformation based on 

the Z-value. 
6) Determine whether this currently selected point falls within a penumbra 

wedge or not by substituting the point’s coordinates into the plane equations: 
a. If the point falls within a wedge, calculate the intersection distances 

from the point to the planes. 
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Brotman and Badler (1984) developed a similar algorithm for the generation of soft-
edged shadows (adding penumbras to hard-edged shadows). They proposed the use of 
an enhanced Z-buffer algorithm, thus retaining the benefits inherent to the Z-buffer 
rendering approach. They extended the Z-buffer to represent a pixel location as a record 
of five fields. During the shadow polygon rendering phase, these pixel records are 
modified based on whether a point is lit or not. The penumbras are created by 
representing a distributed light source as a series of point light sources. This approach is 
processor intensive due to the combination of shadow volume calculations with Z-buffer 
memory access costs. Crowe’s ideas were also extended by Bergeron (1985) to include 
non-planar polygons and objects. 
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Appendix E 
Physics 
 
 
Simulating Newtonian physics through the use of quantities such as mass, acceleration, 
velocity, friction, momentum, force, etc allows for the prediction of object behaviour 
under certain conditions (Halliday et al, 2007). For example, through physics modelling 
we can simulate the expected behaviour of several stacked barrels falling over or even 
an explosion ripping through a bunker complex. 
 
Physics modelling is generally implemented as part of a physics engine. Physics 
engines are classified into two classes: real-time engines such as the Havok physics 
engine and high-precision physics engines such as those used by scientists. Real-time 
physics engines “approximate” physics modelling to balance computational accuracy 
with the speed of the simulation (as the case with our quality scaling). Scientific physics 
engines are employed by organisations like NASA and universities for various 
simulations, for example, Figure E.1 shows the computational fluid dynamics model 
used for simulating the air flow around a space shuttle during atmospheric re-entry. 
 

 
Figure E.1 Simulated air flow around a space shuttle during atmospheric re-entry. 
 
The shown computational fluid dynamics model requires an incredible amount of 
processing power to simulate (Belleman et al, 2008). This is mostly due to the use of 
numerical methods and advanced algorithms when analysing the flow of particles – each 
particle is assigned a force vector which are then combined across the entire region to 
illustrate the resulting particle flow (Reeves, 1983).  
 
When adding Newtonian physics to a game we must always keep processing 
constraints in mind. Our biggest problem is not performing the physics calculations but 
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dealing with a fluctuating frame rate and rounding errors that can result in unrealistic 
motion (Witken and Heckbert, 1994). On the other hand, increasing data precision will 
solve the problem of rounding errors (Reeves and Blau, 1985) but with a significant 
impact on CPU and/or GPU usage. 
 
We will now model Newtonian physics by looking at the conservation and transfer of 
momentum as well as the modelling of gravitational pull, trajectories, friction and object 
collision. 
 
 
E.1 Linear Momentum 
 
Action-oriented games without collisions would simply not work. Whether it is a projectile 
fired from a weapon striking a monster, a car skidding across the Daytona Speedway or 
the player activating a switch; without the ability to simulate one object striking another 
we would simply not “have game”.  
 
At the core of collision simulation is the conservation and transfer of momentum (Moore 
and Wilhelms, 1988). The conservation of momentum is described as a rule of nature 
stating that if we have a closed system of objects, without any external interaction, then 
the total momentum of this system will remain constant. This rule links back to Newton’s 
first law of motion, that is, a body in motion will remain in motion unless a net force is 
exerted upon it. Building on this; Newton’s third law of motion states that for every action 
there is an equal and opposite reaction – a law that can be proven by considering the 
conservation of momentum.  
 
To understand conservation of momentum, consider a game of squash in a perfect 
world where no energy is lost when the ball hits the squash court’s wall (in the real word 
energy will be released in the form of sound, heat and deformation the moment the ball 
hits the wall, thus resulting in a slower velocity (and less momentum) after the collision 
than before. However, in a perfect world we don’t consider loss in momentum and the 
velocity of the ball remains the same after the collision than as before.  
 
The transfer of momentum describes the situation where a collision occurs and 
momentum is transferred from the one object to the other. Thus, the lost of momentum 
at the one side must equal the momentum gained at the other (assuming conservation 
of kinetic energy as well as momentum before and after the collision). This concept is 
described mathematically as follows: 
 

,21 objectobject pp Δ−=Δ  where pΔ is the change in momentum of each object. 
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A well known example demonstrating the conservation and transfer of momentum is 
Newton's cradle – a device consisting of five (or more) pendulums neighbouring one 
another. Figure E.2 shows Newton’s cradle, when the midair pendulum is released, it will 
collide with the left-most static pendulum. On impact, energy is transferred from one 
pendulum to the other until the right-most pendulum is pushed outwards by the 
transferred force. The motion will eventually cease due to a continuous energy loss 
(mostly released as sound energy i.e. “clacking” sounds). 
 

 
Figure E.2 Newton’s cradle used for demonstrating the conservation/transfer of 
momentum and energy. 
 
To fully understand perfect collisions and the conservation of momentum, consider the 
two objects shown in Figure E.3. 
 

 
Figure E.3 Collision and the transfer of momentum. 
 
Both objects have a mass (mobject1 and mobject2) and initial velocity (vinitial1 and vinitial2). 
After collision each will have a new velocity – two unknown values at this stage (vafter1 
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and vafter2). Using these variables we can now describe the conservation of momentum 
mathematically using the following equation:  
 

22112211 afterobjectafterobjectinitialobjectinitialobject vmvmvmvm ×+×=×+×  

 
One problem with this equation is that we normally wish to calculate each object’s vector 
velocity after the collision, something which is impossible because we’ll always end up 
with two unknowns. For example, say object 1 has a mass of 250kg and an initial 
velocity of 1200m/s while object 2 has a mass of 300kg and an initial velocity of 
2400m/s, then by substituting these values in the above equation, we get: 
 

21 300250/2400300/1200250 afterafter vkgvkgsmkgsmkg ×+×=×+×  

 
The only logical approach is to combine this equation with something we already know, 
in this case the conservation of energy, specifically the conservation of kinetic energy. 
 
Kinetic energy is energy stored in a moving object, or more specifically, the mechanical 
work needed to accelerate this object from rest to its current state. Mechanical work is 
the total amount of energy transferred to an object through the application of force. The 
simplest way of calculating work, measured in joule (J), is to use the following formula: 
 

,FdW =  where F is the force exerted on the object and d the distance travelled by the 
object. 
 
This formula can also be written as: 
 

,
2
1 2mvW =  with m the mass of the object and v its velocity. 

 
Applying external work to an object causes a change in its kinetic energy. For example, 
say an object has an initial kinetic energy of Ek_initial and some force is applied to it 
resulting in a new kinetic energy, Ek_final, then we can represent the relation between 
work and kinetic energy as follows: 
 

kEW Δ=  
 initialkfinalk EE __ −=  

 
Kinetic energy (Ek) is the ability to do work and can easily be calculated using the 
following equation: 
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,
2
1 2mvEk =  with m the mass of the object in kilograms and v its velocity in meters per 

second. 
 
Kinetic energy, akin to work, is measured in Joules (J), with one Joule being equal to 
one kilogram-meter squared per second squared (kgm2/s2). This energy remains 
constant before and after a collision – a condition described as the conservation of 
kinetic energy. In the real world energy will of course be lost in the form of sound, heat 
and deformation; however, this is only something that will be considered for the 
implementation of a scientific physics engine. Using this conservation property we can 
now describe the total kinetic energy before and after a collision via the following 
equation: 
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afterobjectafterobjectinitialobjectinitialobject vmvmvmvm ×+×=×+×  

 
We can now use this equation in combination with the previous listed one describing the 
conservation of momentum to solve the given example’s two unknown velocities 
following the collision: 
 

21 300250/2400300/1200250 afterafter vkgvkgsmkgsmkg ×+×=×+×  
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afterafter vkgvkgsmkgsmkg +=+  

 
The simplest approach would be to write Vafter1 in terms of Vafter2 for the second equation, 
substituting it into the first equation and solving Vafter2. 
 
Our treatment of particles extends this discussion by looking at the simulation of 
bouncing objects and inter-object collision detection and response. 
 
 
E.2 Gravitational Pull 
 
When looking at any early 1990s side-scrolling game, such as Super Mario World or 
Commander Keen, one can quickly see the effect of gravity on the player. For example, 
jumping vertically into the air is quickly followed by the game character returning to its 
previous position. This is an early example of gravity in games with modern games 
modelling gravity much more closely.  
 

 
 
 



 284

Gravity is the natural phenomenon where objects attract each other due to each object 
being surrounded by a gravitational field. This field, interpreted as an attractive power, 
exerts a pulling force on all surrounding objects, as shown in Figure E.4. 
 

 
Figure E.4 The gravitational pull between two objects of mass ma and mb, 
respectively. 
 
Each of the two objects shown in Figure E.5 will experience the effect of gravity, with the 
exact gravitational force between the two objects given by the following equation: 
 

,2r
mmGF ba ××

=  where G is the universal gravitational constant (equal to 6.67x10-

11Nm2/kg2), ma the mass of the one object and mb the mass of the other with r the 
distance in meters between the two objects. 
 
Simulating gravity in games does not generally require advanced calculations that 
involve the universal gravitational constant or the exact mass of an object. For example, 
when modelling gravity for an object being dropped to the ground, we can start with the 
assumption that the acceleration of this object will be 9.8m/s2 regardless of its mass 
(standard acceleration due to the earth’s gravitational field). We can now define the 
velocity and position of this object as follows: 
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tVV oldnew )8.9(+=  
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Now, let’s assume a crate is dropped at an initial velocity of 0 m/s from a position located 
at coordinates (0, 17, 0) as shown in Figure E.5. 
 

 
Figure E.5 Gravitational attraction of an object towards the zx-plane. 
 
Substituting these values into the above given equations yield the following equations 
(assuming the coordinate y = 17 equates to a virtual height of 17 meters): 
 

tsmVnew )8.9(/0 +=  
 t8.9=  
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We can now implement these equations in the following manner – thus simulating 
gravity: 
 
/* initialise the object’s initial position */ 

float objectXPos = 0; 

float objectYPos = 17; 

float objectZPos = 0; 
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/* set the object’s initial velocity */ 

float objectXVelocity = 0; 

float objectYVelocity = 0; 

float objectZVelocity = 0; 

 

/* initialise the object’s rate of fall – hence its gravity */ 

float worldGravityConstant = 1.5f; 

 

/* use a loop to update the object’s position and velocity until the zx-plane is  

 reached */ 

while(objectYPos > 0) 

{ 

 /* increase the velocity as the object falls */ 

 objectYVelocity = objectYVelocity + worldGravityConstant; 

 

 /* calculate the object’s new position */ 

 objectYPos = objectYPos + objectYVelocity; 

} 

 
This object will only fall in a straight vertical line, by incrementally adjusting its x-
coordinate in the loop, for example, we can simulate a curved falling trajectory as shown 
in Figure E.6. 
 

 
Figure E.6 Gravitational attraction of an object thrown in the x-direction. 
 
We can now modify the above listed code snipped to simulate a curved falling trajectory 
as follows: 
 
/* initialise the object’s initial position */ 

float objectXPos = 0; 

float objectYPos = 17; 

float objectZPos = 0; 
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/* set the object’s initial velocity */ 

float objectXVelocity = 0; 

float objectYVelocity = 0; 

float objectZVelocity = 0; 

 

/* initialise the object’s rate of fall – hence its gravity */ 

float worldGravityConstant = 1.5f; 

 

/* use a loop to update the object’s position and velocity until the zx-plane is  

 reached */ 

while(objectYPos > 0) 

{ 

 /* increase the velocity as the object falls */ 

 objectYVelocity = objectYVelocity + worldGravityConstant; 

 

 /* calculate the object’s new y-position */ 

 objectYPos = objectYPos + objectYVelocity; 

  

 /* calculate the object’s new x-position by adding a constant x velocity */ 

 objectXPos = objectXPos + 3; 

} 

 
 
E.3 Trajectory Paths 
 
Without accurate projectile simulation, we would not be able to model bomb drops from 
aeroplanes, a kick off in a football game or the trajectory of a baseball after being hit by 
a batter. Figure E.7 shows the trajectory path of a ball being kicked in the positive x-
direction. 
 

 
Figure E.7 The trajectory path of a ball being kicked in the positive x-direction. 
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Trajectory can be described as the path or course travelled by an object. Calculating this 
path often requires the consideration of gravitational forces, aerodynamic factors, wind 
shear, etc. For most game-based implementations we’ll assume uniform gravity while 
negating wind and other aerodynamic factors. For example, to model the trajectory path 
shown in Figure E.7 we can define the ball’s initial velocity in terms of an x- and y-
component as follows (with θ the inclination angle): 
 

θcos×= initialx VV  
θsin×= initialy VV  

 
We can also assume that Vy will equal “0” at the apex of the arch (the maximum height 
reached by the projectile). 
 
Modelling a trajectory path involves applying a constant velocity along the x-axis (in the 
case of the above shown path) as well as the effect of gravity in the direction of the 
negative y-axis. We also factor in air resistance without needlessly complicating our 
simulation. The following code sample simulates a trajectory path as illustrated in Figure 
E.7: 
 
/* initialise the object’s initial position */ 
float objectXPos = 0; 

float objectYPos = 0; 

float objectZPos = 0; 

 

/* set the object’s initial velocity */ 

float objectXVelocity = 0; 

float objectYVelocity = 0; 

float objectZVelocity = 0; 

 

/* initialise the object’s rate of fall – hence its gravity */ 

float worldGravityConstant = 1.5f; 

 

/* set the inclination angle to 45 degrees in radians */ 

float initialAngle = 0.79 

 

/* set the air resistance that will be factored in to simulate the deceleration of the  

 projectile */ 

float airResistance = 0.01f 

 

/* calculate the velocity’s x- and y-component */ 

objectXVelocity = objectXVelocity*cos(initialAngle); 

objectYVelocity = objectYVelocity*sin(initialAngle); 
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/* use a loop to update the object’s position and velocity until the zx-plane is  

 reached */ 

while(objectYPos > 0) 

{ 

  /* update the object’s velocity */ 

 objectYVelocity = objectYVelocity + worldGravityConstant; 

 objectXVelocity = objectXVelocity - airResistance; 

 

 /* calculate the object’s new y-position */ 

 objectYPos = objectYPos + objectYVelocity; 

  

 /* calculate the object’s new x-position */ 

 objectXPos = objectXPos + objectXVelocity; 

} 

 
 
E.4 Friction 
 
Friction, stemming from electromagnetic forces between atomic particles, is an energy 
consuming force between two objects in contact. The most common form of friction is 
known as Coulomb friction. Coulomb friction is an approximation stating that the 
maximum force exerted by friction (Ff) is always less than or equal to the direct normal 
force (Fn) between two objects multiplied by the material’s friction coefficient (µ): 
 

μ×≤ nf FF  

 
The normal force (shown in Figure E.8) is a force component perpendicular to the 
surface of contact with the coefficient of friction an empirically determined constant that 
varies depending on the type of material surface and whether the surface is perfectly 
clean, etc.  
 

 
Figure E.8 The normal, friction and applied (sliding) forces exerted on an object. 
 
Table E.1 gives some of the most common friction coefficients; also note that friction 
varies depending on whether an object is static or in motion. 
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Material Static In Motion (kinetic) 
Aluminium on aluminium 1,05-1,35 1,4 
Aluminium on steel 0,61 0,47 
Copper on cast iron 1,05 0,29 
Copper on steel 0,53 0,36 
Glass on glass 0,9 - 1,0 0,4 
Glass on nickel 0,78 0,56 
Leather on wood (along the grain) 0,61 0,52 
Nickel on nickel 0,7-1,1 0,53 
Nylon on nylon 0,15 - 0,25   
Steel on steel (high level hardness) 0,78 0,42 
Steel on steel (relative hardness) 0,74 0,57 
Wood on wood (against the grain) 0,54 0,32 
Wood on wood (along the grain) 0,62 0,48 

Table E.1 Common coefficients of friction. 
 
We generally calculate the force required to move a static object via the following 
equation: 
 

,staticf gmF μ××=  where m is the mass of the object, g the gravitational constant 
(9.8m/s2) and µ the material’s static friction coefficient. 
 
The object will only move once a force greater than Ff is applied to it, after which its 
friction coefficient normally decreases. For example, consider an aluminium object 
weighing 90 kilograms placed on a flat polished steel surface – we can calculate the 
maximum force exerted by friction as follows: 
 

staticf gmF μ××=  

 61.0/8.990 2 ××= smkg  
 N02.538=  
 
We will thus require a force of at least 538.03N to move this object, once it is in motion 
we can recalculate it frictional force using aluminium on steel’s kinetic friction coefficient: 
 

kineticf gmF μ××=  

 0.47/8.990 2 ××= smkg  
 N54.414=  
 
Friction on a flat plane can be modelled just like air resistance (which is in fact a form of 
friction): 
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/* initialise the object’s initial position */ 

float objectXPos = 0; 

float objectYPos = 0; 

float objectZPos = 0; 

 

/* set the object’s initial velocity */ 

float objectXVelocity = 15; 

float objectYVelocity = 0; 

float objectZVelocity = 0; 

 

/* set the friction value */ 

float friction = 1.5f 

 

/* use a loop to update the object’s position and velocity  until the object’s speed  

 reaches zero */ 

while(objectXVelocity > 0) 

{ 

  /* update the object’s velocity */ 

 objectXVelocity = objectXVelocity - friction; 

 

 /* calculate the object’s new x-position */ 

 objectXPos = objectXPos + objectXVelocity; 

} 

 
 
E.5 Simulating Object Collisions 
 
Let’s start with a two dimensional “asteroid field” from Atari’s 1979 cult-hit, Asteroids. 
This game, as shown in Figure E.9, is heavily dependent on object collisions such as 
asteroids colliding with other asteroids, alien spaceships or with the player’s ship. 
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Figure E.9 Screenshot of Atari’s arcade game Asteroids. 
 
The game Asteroids illustrates the basic problem of collision detection and response in 
one of the simplest forms possible. Before, however, discussing object-to-object collision 
response as encountered in Asteroids, let’s look at the game Breakout.  
 
Breakout features a ball that can either bounce from the boundaries of the game window 
or movable paddle while also destroying bricks upon collision. Bouncing the ball off the 
screen boundaries requires very basic collision detection mainly because we already 
know where the boundaries of the screen are while at the same time only considering 
collisions with two horizontal and two vertical edges. Also, an object such as the ball in 
Breakout will always reflect at an angle equal and opposite to its initial incoming angle 
(illustrated in Figure E.10). 
 

 
Figure E.10 A ball always reflects at an angle equal and opposite to its initial incoming 
angle. 
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Now, considering the shown image; it can be deduced that when the ball hits either 
vertical edge, then its direction can be changed by reversing the x-component of its 
velocity. Similarly, reversing the y-component of the ball’s velocity upon collision with 
one of the horizontal edges will result in a perfect direction change: 
 
/* initialise the object’s initial position */ 

float objectXPos = 5; 

float objectYPos = 2; 

float objectZPos = 0; 

 

/* set the object’s initial velocity */ 

float objectXVelocity = 15; 

float objectYVelocity = 20; 

float objectZVelocity = 0; 

 

/* update the object’s velocity due to a vertical collision */ 

if(objectXPos > LEFT_EDGE || objectXPos < RIGHT_EDGE) 
{ 

  /* update the object’s velocity */ 

 objectXVelocity = -objectXVelocity; 

 

 /* calculate the object’s new x-position */ 

 objectXPos = objectXPos + objectXVelocity; 

} 

 

/*update the object’s velocity due to a horizontal collision*/ 

if(objectYPos > BOTTOM_EDGE || objectYPos < TOP_EDGE) 
{ 

  /* update the object’s velocity */ 

 objectYVelocity = -objectYVelocity; 

 

 /* calculate the object’s new y-position */ 

 objectYPos = objectYPos + objectYVelocity; 

} 

 
This technique can now be extended to simulate one object bouncing off another. The 
simplest approach would be to test for horizontal and vertical collisions with the sides of 
a bounding volume. For example, consider the screenshot of the Asteroids clone in 
Figure E.11 where the bounding volume of each object is shown (these volumes are 
specified using the contained object’s minimum and maximum x- and y-values). 
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Figure E.11 Using bounding boxes to simulate inter-object collisions. 
 
We can implement this approach in much the same way as with our horizontal and 
vertical screen boundary collision example – for instance, when we have a ball bouncing 
off objects as shown in Figure E.12, then we can change its direction by reversing the x-
component of its velocity when it hits a vertical edge of another object. Similarly, 
reversing the y-component of the ball’s velocity upon collision with one of the horizontal 
edges will result in a perfect direction change. 
 

 
Figure E.12 Inter-object collisions – the same rules hold true as with screen boundary 
collisions. 
 
The above given object collision approach works extremely well for horizontal and 
vertical surfaces, but in nearly all action-oriented games written today we’ll need to 
calculate vector reflections for arbitrarily rotated surfaces. For example, consider the 
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object shown in Figure E.13. This object has several flat planes, with each of these 
positioned at an arbitrary angle.  
 

 
Figure E.13 An object with numerous arbitrarily positioned faces (the normal of each 
shown). 
 
The core of collision detection, when dealing with arbitrarily positioned faces, is vector 
calculations; specifically the calculation of a reflection vector when we have an initial 
vector direction and a normal to the plane (Blinn, 1977). We’ve already looked at vector 
and normal calculations in Appendix C and will now look at an example to illustrate 
vector-based object reflections for arbitrarily rotated surfaces. 
 
Figure E.14 illustrates our vector reflection problem; showing an incoming vector I, the 
surface normal N and the unknown reflection vector R.  
 

 
Figure E.14 Vector reflection for an arbitrarily rotated surface. 
 
We use vector addition to create a third, composite vector. This process involves 
summing the related scalar components of two successive vectors (using the head-to-
tail rule). In Figure E.14 we have three vectors, namely, I, N and R; using these vectors 
we define a third and forth vector, P and Q (the resultant of I and N and R and N 
respectively) by summing the scalars of vector I and N and R and N in the following 
manner (graphically illustrated in Figure E.15): 
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P = I + N 
    = (Ix + Nx, Iy + Ny, Iz + Nz) 
 = (Px, Py, Pz). 
 
Q = R + N 
    = (Rx + Nx, Ry + Ny, Rz + Nz) 
 = (Qx, Qy, Qz). 
 

 
Figure E.15 The head-to-tail rule, creating a third composite vector. 
 
Using the above given information, we can now algebraically calculate the reflection 
vector by stating that P = Q and substituting the first equation into the second: 
 
I + N = R + N 
     R = N + (I + N) 
         = 2N + I 
 
Returning to our example, if the object has an incoming speed with an x-component of -
16 and a y-component of 8 then we can calculate the vector of reflection (thus the 
exiting speed of the object) in the following manner (the normal in this case equals y = 
1): 
 
R = 2N + I 
 = 2(-I . |N|)*|N| + I 
 = 2[(Ix, Iy) . |(Nx, Ny)|]*|(Nx, Ny)| + (Ix, Iy) 
 = 2[-(-16, 8) . |(0, 1)|]*|(0, 1)| + (-16, 8) 
 = 2[(16, -8) . |(0, 1)|]*|(0, 1)| + (-16, 8) 
 = 2(16*0 – 8*1)*|(0, 1)| + (-16, 8) 
 = 2(– 8)*|(0, 1)| + (-16, 8) 
 = -16*(0, -1) + (-16, 8) 
 = (0, 16) + (-16, 8) 
 = (0 – 16, 16 + 8) 
 = (– 16, 24). 
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Collision detection and response in modern games often require considerable resources 
to implement. A number of collision detection algorithms (such as the detection of 
collisions using hierarchy trees) have consequently been developed to simulate 
collisions at various degrees of accuracy. The study of these algorithms is, however, 
beyond the scope of this thesis and our physics engine implementation. 
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Appendix F 

The DXUT Framework 
 
 
The Direct3D Utility Framework, or DXUT, is a high-level framework built on top of 
Direct3D. This framework provides a series of functions, call-backs, structures, 
constants and enumerations to reduce the complexity of low-level Direct3D routines. It 
encapsulates the Win32 and Direct3D APIs for ease of use, making it easier to create 
Direct3D applications. To summarise, DXUT allows simplified window creation, enables 
rapid Direct3D device setup and initialisation as well as the easy handling of Windows 
messages.  
 
The DXUT framework provides a vast array of functionality, from basic window creation, 
Direct3D device initialisation and the control of these components to more advanced 
elements such as 3-D mesh control, camera control and the creation of graphical user 
interfaces. We will now look at the most important functional components provided by 
this framework. 
 
The process of window creation and control using the DXUT framework is relatively 
simple when compared to using the Win32 API which entails created a window, 
registering a window class, creating a window object and handling messages to and 
from the window. The DXUT framework simplifies this process in the sense that it is not 
necessary to register the window class (using the WNDCLASSEX structure) or to create 
the window using the AdjustWindowRect, CreateWindow and ShowWindow 
functions. The following series of DXUT function calls manages this entire window 
creation process: 
 
/ * initialise the DXUT framework */ 

DXUTInit(true, true, NULL); 

 

/* configure mouse cursor settings for full-screen usage */ 

DXUTSetCursorSettings(true, true); 

 

/* create the application window */ 

DXUTCreateWindow( L"DXUT Sample", NULL, NULL, NULL, NULL,  

 NULL); 

 

/* create the Direct3D device */ 

DXUTCreateDevice(true, 800, 600); 

 

/* enter the main DXUT framework render loop */ 

DXUTMainLoop(NULL); 
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The DXUTInit function initialises DXUT by taking three parameters, namely a Boolean 
value used for the processing of command-line arguments (with the most common ones 
listed in Table F.1), another Boolean parameter controlling whether an error message 
box is to be displayed whenever an error occurs and a string value for the specification 
of additional command-line parameters. 
 
Argument Description 
-adapter:X Defines the specific hardware adapter to use. 

-automation 
Enables user interface navigation via the keyboard 
(enabled by default) 

-constantframetime 

Defines a specific time per frame lapse when the 
desired effect is to render some scene at a FPS value 
less than real-time. 

-forceapi:X 
Forces the application to use either the Direct3D 9 or 
Direct3D 10 API. 

-forcehal Forces the use of a HAL device type. 

-forcehwvp 

Forces the use of hardware vertex processing (not 
applicable for Direct3D 10 – only supported by the 
Direct3D 9 API). 

-forcepurehwvp 

Forces the use of pure hardware vertex processing (not 
applicable for Direct3D 10 – only supported by the 
Direct3D 9 API). 

-forceref Forces the use of a reference device type. 

-forceswvp 

Forces the use of software vertex processing (not 
applicable for Direct3D 10 – only supported by the 
Direct3D 9 API). 

-forcevsync:X 
Specifies whether vertical sync is to be used (X is set to 
‘0’ to disable vertical sync). 

-fullscreen Forces the application into full-screen mode on startup. 
-height:X Specifies the default window height. 
-noerrormsgboxes Disables DXUT’s error message boxes. 

-nostats 
Disables the display of statistics such as the current 
number of frames per second. 

-output:X 
Forces the use of a specific adapter output (only 
supported by the Direct3D 10 API) 

-quitafterframe:X 

Sets an exit frame – i.e. forcing the application to 
terminate after the specified frame, X, has been 
rendered. 

-startx:# 
Sets the x-coordinate of the window’s upper left corner 
when running in windowed mode. 

-starty:# 
Sets the y-coordinate of the window’s upper left corner 
when running in windowed mode. 
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-width:X Specifies the default window width. 
-windowed Forces the application into windowed mode on startup. 

Table F.1 DXUTInit command-line parameters. 
 
The next called function, DXUTSetCursorSettings, sets the visibility and clipping of 
the mouse cursor when used in full-screen mode. This function takes two parameters, 
the first a Boolean value specifying whether the mouse cursor will be visible for a 
window in full-screen mode (true if yes), and the second, also a Boolean value, 
defining whether the cursor will be limited from leaving the screen boundaries for a full-
screen window (true if yes). 
 
DXUTCreateWindow creates the application window through the initialisation of six 
parameters, namely, a string value defining the window’s caption, a HINSTANCE handle 
to the application instance (‘NULL’ by default), a HICON handle to the window’s icon 
(‘NULL’ by default), a HMENU handle to the window’s menu resource (‘NULL’ for no 
menu) and the upper left x- and y- window coordinates. 
 
We create the actual Direct3D 10 device by calling the DXUTCreateDevice function. 
Its first parameter takes a Boolean value specifying whether the application will launch in 
windowed (true) or full-screen mode (false). DXUTCreateDevice‘s final two 
parameters set the initial width and height of the back buffer, respectively.  
 
The DXUTMainLoop function enters the main DXUT framework render loop (the main 
message loop), updating and rendering each frame via callbacks to the application. It 
takes one parameter, namely a handle to an accelerator table – this parameter is set to 
‘NULL’ when no accelerator table is defined. Accelerator tables are created as resources 
and used for the translation of keyboard messages received from the message queue. 
One example of a common accelerator is the “Ctrl+S” key combination used as shortcut 
for the “File Save” menu item.  
 
All these functions return the value “S_OK” if successful. In the event of a failure they 
return one of the error codes listed in Table F.2. Calling the DXUTGetExitCode function 
returns an exit code with ‘0’ indicating successful execution. 
 
Error code Description 
DXUTERR_CREATINGDEVICE Unable to create a Direct3D device. 
DXUTERR_CREATINGDEVICEOBJECTS A problem has been encountered 

while creating the Direct3D device 
objects. 

DXUTERR_DEVICEREMOVED The initialised Direct3D device is no 
longer accessible. 

DXUTERR_MEDIANOTFOUND The requisite media could not be 
loaded. 

 
 
 



 301

DXUTERR_NOCOMPATIBLEDEVICES Unable to find any Direc3D capable 
devices. 

DXUTERR_NODIRECT3D Direct3D could not be initialised. 
DXUTERR_NONZEROREFCOUNT The Direct3D device was not properly 

released by a previous application. 
DXUTERR_RESETTINGDEVICE Unable to reset the Direct3D device. 
DXUTERR_RESETTINGDEVICEOBJECTS An issue was encountered while 

resetting the Direct3D device objects. 
Table F.2 Error codes returned by DXUT functions. 
 
Using the Win32 API, after registering the window class and creating the window, we 
enter the main message loop by declaring an empty MSG structure, msg, and passing it 
as parameter to the WndProc function. Using DXUT we no longer need to define a MSG 
structure or WndProc function for the handling of messages sent to and from the 
window. We will now rather create a series of callback functions, passing each one as a 
parameter to the appropriate DXUTSetCallback* DXUT function. For example, the 
following callback function handles all keyboard events: 
 
void CALLBACK OnKeyPress(UINT nChar, bool bKeyDown,  

 bool bAltDown, void* pUserContext) 

{ 

 /* test whether some key is being pressed */ 

    if(bKeyDown) 

    { 

        switch(nChar) 

        { 

            case VK_TAB: //if ‘Tab’ is pressed do something 
 break; 

        } 

    } 

} 

 
This keyboard event callback function, OnKeyPress, is then passed as parameter to the 
DXUTSetCallbackKeyboard function: 
 
DXUTSetCallbackKeyboard(OnKeyPress, NULL); 

 
This function, initialising the previously defined callback function, takes two parameters, 
the first being a pointer to a LPDXUTCALLBACKKEYBOARD keyboard event callback 
function, and the second a pointer to some user-specific variable passed to the callback 
function – by default set to ‘NULL’.  
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The LPDXUTCALLBACKKEYBOARD DXUT keyboard event callback function is called 
every time a keyboard event occurs. It is declared as follows in the DXUT.h header file: 
 
VOID LPDXUTCALLBACKKEYBOARD( 

  UINT nChar, 

  bool bKeyDown, 

  bool bAltDown, 

  void* pUserContext 

); 

 
Its first parameter holds a virtual-key code describing the pressed key (the most 
commonly used virtual-key codes are given in Table F.3). The second parameter, 
bKeyDown, holds the Boolean value ‘true’ if a key is currently being pressed with the 
bAltDown parameter set to ‘true’ if the ‘Alt’ key is also being pressed. The last 
parameter, pUserContext, takes a pointer to a user-specific variable passed to the 
callback function – by default set to ‘NULL’.  
 
Constant Description 
VK_LBUTTON Left mouse button. 
VK_RBUTTON Right mouse button. 
VK_BACK Backspace key. 
VK_TAB Tab key. 
VK_RETURN Enter key. 
VK_ESCAPE Escape key. 
VK_UP, VK_DOWN, VK_LEFT, 
VK_RIGHT  

Up, down, left and right keys respectively. 

VK_NUMPAD0 to VK_NUMPAD9  Numeric keypad keys ‘0’ to ‘9’. 
VK_F1 to VK_F24 F1 to F24 keys. 

Table F.3 Virtual-Key codes. 
 
DXUT provides a number of these so-called application-defined callback functions. The 
above defined OnKeyPress function is, for example, a LPDXUTCALLBACKKEYBOARD 
keyboard event callback. These DXUT event callback functions simplify the message 
handling process. In addition to a keyboard event callback we also have to define a 
device acceptable callback function (set using the 
DXUTSetCallbackD3D10DeviceAcceptable DXUT initialisation function), a device 
created callback function (set via DXUTSetCallbackD3D10DeviceCreated), a swap 
chain resized callback function (set using 
DXUTSetCallbackD3D10SwapChainResized), a swap chain release callback 
function (set via DXUTSetCallbackD3D10SwapChainReleasing), a device 
destroyed callback function (set via DXUTSetCallbackD3D10DeviceDestroyed) and 
a frame render callback function (set through the 
DXUTSetCallbackD3D10FrameRender DXUT initialisation function). In addition to 
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these callback functions we also need to create a window message callback function 
dealing with Windows messages (set using DXUTSetCallbackMsgProc), a callback 
function dealing with frame updates (set by DXUTSetCallbackFrameMove) and a 
callback function that allows for the change of device settings before the creation of the 
device (set through the DXUTSetCallbackDeviceChanging DXUT initialisation 
function). 
 
DXUTSetCallbackD3D10DeviceAcceptable initialises the application specific 
callback function responsible for building an enumerated list of Direct3D 10 capable 
devices. It takes two parameters, namely, a pointer to a 
LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function and a pointer to a 
user-defined variable passed to the callback function – ‘NULL’ by default. 
 
The LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function returns true for 
each acceptable Direct3D device. All acceptable Direct3D 10 devices are enumerated 
into a list by the DXUTSetCallbackD3D10DeviceAcceptable function. DXUT then 
selects the best rendering device from this list. This callback is declared as follows in the 
DXUT.h header file: 
 
bool LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE( 

  UINT Adapter, 

  UINT Output, 

  D3D10_DRIVER_TYPE DeviceType, 
  DXGI_FORMAT BackBufferFormat, 
  bool bWindowed, 

  void* pUserContext 

); 

 
Its first parameter, Adapter, holds a value indicating the position of the current Direct3D 
10 device in a series of enumerated Direct3D 10 video adapters. The second parameter, 
Output, holds an index value of the current enumerated video adapter’s output (such as 
a monitor). The DeviceType parameter holds the current Direct3D 10 capable video 
adaptor’s driver type (commonly set to D3D10_DRIVER_TYPE_HARDWARE for a 
hardware device and D3D10_DRIVER_TYPE_REFERENCE for a reference device). The 
BackBufferFormat parameter indicates the back buffer format of the Direct3D 10 
device (such as a four-component, 64-bit floating-point format). The next parameter 
takes a Boolean value that is set to ‘true’ for windowed application and ‘false’ for those 
running in full-screen mode. The final parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function – ‘NULL’ by default unless context 
information for the callback function is needed. 
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We create a LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function which 
is passed as first parameter to the DXUTSetCallbackD3D10DeviceAcceptable 
DXUT function as follows: 
 
/* return ‘true’ for all acceptable D3D10 devices passed to it */ 

bool CALLBACK OnDeviceAcceptable(UINT Adapter, UINT Output, 

 D3D10_DRIVER_TYPE DeviceType,  
 DXGI_FORMAT BufferFormat,  
 bool bWindowed, void* pUserContext ) 

{ 

 return true; 

} 

 
DXUTSetCallbackD3D10DeviceAcceptable(OnDeviceAcceptable,NULL); 

 
The DXUTSetCallbackD3D10DeviceCreated function sets the created 
ID3D10Device device. This device interface is used for the rendering of primitives as 
well as the creation of shaders and resources. The callback is used for the allocation of 
resources and the initialisation of buffers. The 
DXUTSetCallbackD3D10DeviceCreated function takes two parameters, namely, a 
pointer to a LPDXUTCALLBACKD3D10DEVICECREATED callback function and a pointer 
to a user-define variable passed to the callback function – ‘NULL’ by default. This 
function is declared as follows: 
 
VOID DXUTSetCallbackD3D10DeviceCreated( 
  LPDXUTCALLBACKD3D10DEVICECREATED pCallback, 
  void* pUserContext 
); 
 
The associated LPDXUTCALLBACKD3D10DEVICECREATED callback function is declared 
as follows: 
 
HRESULT LPDXUTCALLBACKD3D10DEVICECREATED( 

  ID3D10Device * pd3dDevice, 

  CONST DXGI_SURFACE_DESC * pBackBufferSurfaceDesc, 
  void* pUserContext 

); 

 
This resource callback function forwards a pointer to the newly created ID3D10Device 
interface – the Direct3D 10 device. This pointer, sent to the 
DXUTSetCallbackD3D10DeviceCreated function, is defined as the first parameter. 
The second parameter is a DXGI_SURFACE_DESC structure with four members 
describing the width, height, format and multisampling parameters of the surface 
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resource respectively. The third parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function – ‘NULL’ by default unless context 
information for the callback function is needed. 
 
A LPDXUTCALLBACKD3D10DEVICECREATED callback function can be defined in the 
following manner: 
 
HRESULT CALLBACK OnCreateDevice(ID3D10Device* pd3dDevice,  

 const DXGI_SURFACE_DESC *pBufferSurfaceDesc,  
 void* pUserContext) 

{ 

 /* - set up, create and set the input layout    

    - create and set the vertex buffer 

    - create and set the index buffer 

    - specify the primitive topology 

    - load all texture resources 

    - initialise the world and view matrices */ 

} 

 
This function is now set using the DXUTSetCallbackD3D10DeviceCreated DXUT 
initialisation function: 
 
DXUTSetCallbackD3D10DeviceCreated(OnCreateDevice, NULL); 

 
We also have to deal with the callbacks sent to the application whenever the Direct3D 
10 swap chain is resized (see section 4.5.2), this is done using the 
DXUTSetCallbackD3D10SwapChainResized function. This function has two 
parameters, the first a pointer to a LPDXUTCALLBACKD3D10SWAPCHAINRESIZED 
callback function with the second a pointer to a user-specific variable passed to the 
callback function – ‘NULL’ by default.  
 
The LPDXUTCALLBACKD3D10SWAPCHAINRESIZED callback function commonly used to 
set resources dependent on the back buffer – such as perspective projection matrices 
based on the field-of-view is declared as follows: 
 
HRESULT LPDXUTCALLBACKD3D10SWAPCHAINRESIZED( 

  ID3D10Device * pd3dDevice, 

  IDXGISwapChain * pSwapChain, 

  CONST D3DSURFACE_DESC * pBackBufferSurfaceDesc, 
  void* pUserContext 

); 
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Its first parameter, pd3dDevice, is a pointer to the newly created Direct3D 10 device 
(ID3D10Device). The second parameter is a pointer to an IDXGISwapChain interface 
(see section 4.5.2) with the third holding a pointer to a structure describing the back 
buffer surface’s format. The last parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function. 
 
This LPDXUTCALLBACKD3D10SWAPCHAINRESIZED swap chain resized callback 
function, passed to DXUTSetCallbackD3D10SwapChainResized, can be defined in 
the following manner: 
 
HRESULT CALLBACK OnSwapChainResize(ID3D10Device* pd3dDevice,  

 IDXGISwapChain *pSwapChain,  

 const DXGI_SURFACE_DESC* pBufferSurfaceDesc,  
 void* pUserContext) 

{ 

 /* - reset the aspect ratio using the back buffer’s new width and height 

- set the perspective projection matrix using the  

  new aspect ratio */ 

} 

 
We set this callback function using DXUTSetCallbackD3D10SwapChainResized: 
 
DXUTSetCallbackD3D10SwapChainResized(OnSwapChainResize); 

 
All the Direct3D 10 device resources created in the 
LPDXUTCALLBACKD3D10SWAPCHAINRESIZED callback function must also be released. 
This is done using a LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback which is 
set using the DXUTSetCallbackD3D10SwapChainReleasing swap chain releasing 
function. This DXUT function takes two parameters, a pointer to a 
LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback function and a pointer to a 
user-specific variable passed to the callback function – ‘NULL’ by default: 
 
HRESULT DXUTSetCallbackD3D10SwapChainReleasing( 
  LPDXUTCALLBACKD3D10SWAPCHAINRELEASING pCallback, 
  void* pUserContext 
); 
 
The LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback function has only one 
parameter, a pointer to a user-specific variable passed to the callback function when 
context information for the callback function is needed: 
 
VOID LPDXUTCALLBACKD3D10SWAPCHAINRELEASING( 

  void* pUserContext 
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); 

 
This LPDXUTCALLBACKD3D10SWAPCHAINRELEASING swap chain releasing callback 
function, called whenever the swap chain created in OnSwapChainResize is being 
released can be defined as follows: 
 
void CALLBACK OnSwapChainReleasing(void* pUserContext ) 

{ 

 /* release all the Direct3D 10 resources created in  

    OnSwapChainResize */ 

} 

 
We can now set the OnSwapChainReleasing callback function via the 
DXUTSetCallbackD3D10SwapChainReleasing DXUT function: 
 
DXUTSetCallbackD3D10SwapChainReleasing(OnSwapChainReleasing); 

 
We also require a callback function to release the Direct3D 10 resources created in the 
OnCreateDevice callback function. This resource deletion callback, 
LPDXUTCALLBACKD3D10DEVICEDESTROYED, is executed by the DXUT framework 
immediately after the Direct3D 10 device has been destroyed. The 
DXUTSetCallbackD3D10DeviceDestroyed function, with its first parameter taking a 
pointer to a LPDXUTCALLBACKD3D10DEVICEDESTROYED function, sets the device 
destroyed callback. Its second parameter is a pointer to a user-specific variable passed 
to the callback function whenever context information is needed: 
 
VOID DXUTSetCallbackD3D10DeviceDestroyed( 

  LPDXUTCALLBACKD3D10DEVICEDESTROYED pCallback, 

  void* pUserContext 

);  

 
The LPDXUTCALLBACKD3D10DEVICEDESTROYED callback function specifies only one 
parameter, namely a pointer to a user-specific variable for the gathering of context 
information, pUserContext: 
 
VOID LPDXUTCALLBACKD3D10DEVICEDESTROYED( 

  void* pUserContext 

); 

 
A LPDXUTCALLBACKD3D10DEVICEDESTROYED resource deletion callback function can 
be defined as follows: 
 
void CALLBACK OnDeviceDestroy(void* pUserContext) 
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{ 

 /* release all the Direct3D 10 resources created in the  

    OnCreateDevice callback function */  

} 

 
This callback function is then subsequently set using the 
DXUTSetCallbackD3D10DeviceDestroyed DXUT function: 
 
DXUTSetCallbackD3D10DeviceDestroyed(OnDeviceDestroy); 

 
Another significant DXUT callback function is one that deals with frame rendering. This 
LPDXUTCALLBACKD3D10FRAMERENDER callback function renders a scene using the 
created Direct3D 10 device by clearing the back buffer, depth-stencil buffer, updating all 
variable changes per frame and rendering the geometric objects constituting the scene. 
This function has four parameters and is declared as follows in the DXUT.h header file: 
 
VOID LPDXUTCALLBACKD3D10FRAMERENDER( 

  ID3D10Device * pd3dDevice, 

  DOUBLE fTime, 

  FLOAT fElapsedTime, 

  void* pUserContext 

); 

 
Its first parameter, pd3dDevice, is a pointer to an ID3D10Device interface – the 
rendering device. The second parameter, fTime, holds the time that has elapsed since 
initialisation of the application with the third parameter, fElapsedTime, holding the time 
that has passed since the last frame update. Both these time values are given in 
seconds. The final parameter holds a pointer to the user-specific variable that is passed 
to the callback function whenever context information is needed. Just as with all the 
other DXUT callback functions, we will also set this one to ‘NULL’. 
 
Such a LPDXUTCALLBACKD3D10FRAMERENDER callback function can be declared as 
follows: 
 
void CALLBACK OnRenderFrame( ID3D10Device* pd3dDevice,  

 double fTime, float fElapsedTime,  

 void* pUserContext) 

{ 

 /* - clear the back buffer using ClearRenderTargetView 

    - clear the depth-stencil buffers using  

  ClearDepthStencilView 

    - update all changed variables 

    - render all geometric objects */ 
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} 

 

This OnRenderFrame callback function is set by the DXUTSetCallbackD3D10FrameRender function: 

 

DXUTSetCallbackD3D10FrameRender(OnRenderFrame); 

 
All that remains now is to handle all process messages originating from the DXUT 
message pump and to set the callback function responsible for doing the frame updates 
for the scene. We also require a facility that allows us to change the settings of a device 
before it is created.  
 
Processing messages for the DXUT message pump requires the declaration of a 
LPDXUTCALLBACKMSGPROC callback function similar to the previously defined WinProc 
function. This function takes six parameters, the first being a handle to the window, the 
second an integer value identifying the message to process, the third and fourth 
parameters specifying additional message information, with the fifth a Boolean value that 
controls whether further message processing should be done (‘true’ preventing further 
message handling). The final parameter is a pointer to a user-specific variable passed to 
the callback function whenever context information is needed: 
 
LRESULT LPDXUTCALLBACKMSGPROC( 

  HWND hWnd, 

  UINT uMsg, 

  WPARAM wParam, 

  LPARAM lParam, 

  bool * pbNoFurtherProcessing, 

  void* pUserContext 

); 

 

We can declare a LPDXUTCALLBACKMSGPROC callback function as follows: 

 

LRESULT CALLBACK MsgProcCallback( HWND hWnd, UINT uMsg,  

 WPARAM wParam,  

 PARAM lParam,  

 bool* pbNoFurtherProcessing,  

 void* pUserContext) 

{ 

     /* handle all messages sent to the application */ 

} 

 
The DXUTSetCallbackMsgProc DXUT function sets this window message callback 
function with its first parameter a pointer to the LPDXUTCALLBACKMSGPROC function and 
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its second a pointer to a user-specific variable passed to the callback function whenever 
context information is needed: 
 
DXUTSetCallbackMsgProc(MsgProcCallback); 

 
Frame updates of the scene are done via the LPDXUTCALLBACKFRAMEMOVE callback 
function. This function takes three parameters, namely, the time that has elapsed since 
initialisation of the application, the time elapsed since the previous frame and a pointer 
to a user-specific variable passed to the callback function whenever context information 
is needed: 
 
VOID LPDXUTCALLBACKFRAMEMOVE( 

  DOUBLE fTime, 

  FLOAT fElapsedTime, 

  void* pUserContext 

); 

 
Such a LPDXUTCALLBACKFRAMEMOVE callback function handling updates to a scene 
can be declared as follows: 
 
void CALLBACK OnMoveFrame( double fTime, float fElapsedTime,  

 void* pUserContext) 

{ 

 /* update the scene */ 

} 

 
This callback function is subsequently set using the DXUTSetCallbackFrameMove 
DXUT function: 
 
DXUTSetCallbackFrameMove(OnMoveFrame, NULL); 
 
One final callback function is needed for the modification of Direct3D device settings as 
required. This callback function, LPDXUTCALLBACKMODIFYDEVICESETTINGS, takes a 
pointer to a DXUTDeviceSettings structure storing the settings of our Direct3D 10 
device, and a pointer to a user-specific variable passed to the callback function 
whenever context information is needed: 
 
bool LPDXUTCALLBACKMODIFYDEVICESETTINGS(DXUTDeviceSettings * pDeviceSettings, 

   void* pUserContext); 

 
An example of a LPDXUTCALLBACKMODIFYDEVICESETTINGS callback function is 
given here: 
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bool CALLBACK ModDevSettings(DXUTDeviceSettings* pDeviceSettings, void* pUserContext) 

{ 

 /* allow modification of device settings */ 

 return true; 

} 

 
This callback function is called just before the creation of the Direct3D device. It returns 
a ‘true’ indicating that DXUT can proceed to create the device, and a ‘false’ indicating 
otherwise. The DXUTSetCallbackDeviceChanging function sets this callback 
function, allowing the application program to modify the device settings as needed. This 
function takes two parameters, a pointer to a 
LPDXUTCALLBACKMODIFYDEVICESETTINGS callback function and a pointer to a user-
specific variable passed to the callback function whenever context information is 
needed: 
 
DXUTSetCallbackDeviceChanging(ModDevSettings, NULL); 

 
The functions presented in this section illustrate the fundamentals of the DXUT 
framework. This framework is useful for experimental applications where the desire is to 
minimise the amount of time spent on setting up a Direct3D environment. Although the 
DXUT framework’s effectiveness in the simplification of Direct3D API calls cannot be 
disputed, it must be used with utmost caution as it does impose some level of 
performance overhead. 
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