
 202

Appendix A

Fundamentals of the Graphics Pipeline Architecture

A pipeline is a series of data processing units arranged in a chain like manner with the
output of the one unit read as the input of the next. Figure A.1 shows the basic layout of
a pipeline.

Figure A.1 Logical representation of a pipeline.

The throughput (data transferred over a period of time) many any data processing
operations, graphical or otherwise, can be increased through the use of a pipeline.
However, as the physical length of the pipeline increases, so does the overall latency
(waiting time) of the system. That being said, pipelines are ideal for performing identical
operations on multiple sets of data as is often the case with computer graphics.

The graphics pipeline, also sometimes referred to as the rendering pipeline, implements
the processing stages of the rendering process (Kajiya, 1986). These stages include
vertex processing, clipping, rasterization and fragment processing. The purpose of the
graphics pipeline is to process a scene consisting of objects, light sources and a
camera, converting it to a two-dimensional image (pixel elements) via these four
rendering stages. The output of the graphics pipeline is the final image displayed on the
monitor or screen. The four rendering stages are illustrated in Figure A.2 and discussed
in detail below.

Figure A.2 A general graphics pipeline.

 203

Summarised we can describe the graphics pipeline as an overall process responsible for
transforming some object representation from local coordinate space, to world space,
view space, screen space and finally display space. These various coordinate spaces
are fully discussed in various introductory graphics programming texts and, for the
purpose of this discussion, it is sufficient to consider the local coordinate space as the
definition used to describe the objects of a scene as specified in our program’s source
code. The world space can be described as a coordinate space where we have a
reference to the viewer’s position with lighting added to our scene. View space is where
our scene’s objects are culled and clipped to determine whether an object is visible
based on the position of the viewer or camera. Screen space is where hidden surface
removal, shading and rasterization occur and it is the final stage before we enter the
display space where the produced pixel elements are displayed via some output device
(Sutherland et al, 1974). We will now look at the various stages of the graphics pipeline
in detail.

A.1 Vertex Processing

The first processing unit of the graphics pipeline is the vertex processor. This processor
is responsible for performing all geometric transformations and the computation of colour
values of every vertex or point making up an object.

Geometric transformations (such as translations and rotations) simply refer to the
process of converting the current spatial representation of an object to a different
coordinate system. For example, a geometric transformation is required to represent an
object, originally defined in terms of world coordinates (coordinates specified by the
programmer for object representation), in terms of display coordinates (the coordinate
system used by the graphics display). Each geometric transformation is defined using a
matrix with a series of transformations specified by concatenating each of these matrices
into a single one. Combining one matrix with another yields a third matrix that is once
again combined with some other transformation matrix – an operation that clearly
benefits from the use of a pipeline.

Three transformations are performed during the vertex processing stage. The first of
these, namely the modelling transformation, takes the geometric specification of three-
dimensional world objects as input. Every object, originally defined in local coordinate
space, is subsequently transformed to use world-space coordinates. Each object’s
independent local coordinate system has now been transformed into a global coordinate
system. This provides all the objects with a shared global coordinate space – i.e. one
object’s position can be described in terms of another’s and these user defined objects
can now be positioned within the same scene. All translations and rotations are
performed during this transformation step.

 204

The next transformation step, called the viewing transformation, transforms all world-
space coordinates to coordinates specified in terms of a viewer’s position and viewing
direction. This transformation step leads to a viewer or camera that can be moved and
rotated to any position within the world coordinate space. The original three-dimensional
scene is displayed from this viewer’s perspective (or point of view). Both culling (back-
face elimination) and clipping are carried out in view space.

The final transformation, called the projection transformation, transforms the view space
coordinates to two-dimensional image space or screen space so that the three-
dimensional scene can be displayed on a flat plane.

The final step of the vertex processor is to assign colours, per-vertex lighting and
shading to each of the vertices making up the scene (Swanson and Thayer, 1986). The
rasterization stage discussed below interpolates these per-vertex lighting values for the
creation of smoothly shaded lighting ranges between vertices.

A.2 Clipping and Culling

Clipping controls the field of view, i.e. managing the percentage of the world visible
based on the camera’s viewing angle and position. The lack of clipping does not hinder
the image formation process, it is, however, crucial to ensure that this process is
performed in a timely manner due to it eliminating the rendering of any unnecessary
primitives that would not be visible to the viewer or camera. We define a volume similar
to a stencil to block out objects not visible to the viewer. All objects and portions of
objects falling outside this stencil or volume do not appear in the final image.

Clipping, unlike vertex processing, should be done on a primitive-by-primitive rather than
a vertex-by-vertex basis. To accomplish this, sets of vertices are assembled into
primitives, such as polygons and lines based on the implementation of some clipping
algorithm such as the Cohen-Sutherland or Liang-Barsky line clipping algorithms or the
Sutherland-Hodgman polygon clipping algorithm. An example illustrating the importance
of clipping would be to consider a scene from a computer game consisting of numerous
buildings, cars, pedestrians, shops, etc. Each of these elements are physical models
stored in memory, requiring a lot of processing time for shading, texturing, animation,
etc. If the scene’s viewer or camera has a viewing angle of 110 degrees, then we
needn’t render any of the models or meshes located outside this viewing area – thus
saving a lot of rendering time in the process.

Culling, or back-face elimination, refers to the process where polygons or surfaces
pointing away from the camera or viewer are not rendered. For example; when a
building is viewed directly from the front, then the three sides hidden from the viewer are

 205

not drawn (shown in Figure A.3). This process, just like clipping, improves the rendering
speed of a scene by reducing the number of polygons or surfaces that needs to be
rendered without affecting the visual output.

Figure A.3 Back-face elimination.

A.3 Rasterization and Fragment Processing

The rasterization, or scan conversion process converts the primitives produced by the
clipper (consisting of vertices) to pixels for representation in the frame buffer and for
subsequent output to a monitor. For example, a solid rectangle consisting of four
vertices are transformed to two-dimensional pixels or points in the frame buffer, with
these two-dimensional pixels being coloured and shaded as appropriate. The result of
the rasterization process is a series of fragments for each of these primitives. A fragment
is nothing more than a pixel with additional information about its colour, position and
depth. The fragment’s depth information is used to determine whether a particular pixel
lies behind any of the other rasterized pixels. The matching pixel in the frame buffer is
updated with the information carried by this fragment. This process of updating the
pixels in the frame buffer with the fragments generated by the rasterizer is called
fragment processing. The colour of fragments are manipulated using techniques such as
texture mapping, bump mapping, texture filtering, environmental mapping, blending, per-
fragment lighting, etc.

A.4 Programmable Pipelines

Today’s graphics cards all have pipelines built into their graphics processing units. The
operations that could be performed by earlier graphics cards were standardised by the
device manufacturer with only a number of parameters and properties available for
modification. Modern graphics cards allow for not only the modification of a large
number of parameters, but also for complete control over the vertex and fragment

 206

processors. These programmable vertex and fragment processors enable the real time
rendering of various advanced techniques only previously achievable using large
rendering farms or not even possible in real-time at all (Möller and Haines, 2002). Bump
mapping (used for adding depth to pixels and thus creating a lighting-dependent
bumpiness to a texture mapped surface) and environmental mapping (used for the
generation of reflections by changing the texture coordinates based on the position of
the camera) are just two examples of techniques only possible off-line in the past (Blinn,
1976), but that have become commonplace in the games of today (Peercy et al, 1997).
Figure A.4 shows a bump mapped surface with Figure A.5 showing the application of
environmental mapping to simulate reflections on water.

Figure A.4 Bump mapping.

 207

Figure A.5 Reflections on water using environmental mapping.

We will now look at Direct3D 10’s programmable pipeline to fully understand the
implication and use of programmable pipelines for the generation of advanced real-time
graphical effects.

A.4.1 The Direct3D 10 Processing Pipeline

Each stage of the Direct3D 10 processing pipeline is configurable using the standard
Direct3D application programming interface. The vertex shader, geometry shader and
pixel shader are programmable using either Microsoft’s proprietary High Level Shader
Language (HLSL) or NVIDIA’s C for Graphics (Cg). Each of these programmable
processing units, including the pipeline processing states is discussed below. Figure A.6
illustrates the Direct3D 10 pipeline architecture.

 208

Figure A.6 Direct3D 10’s programmable pipeline.

The Input-Assembler Stage

The first stage of the programmable pipeline, namely the input assembler stage, is
responsible for propagating geometric input data consisting of points, lines and polygons
to the rest of the pipeline. This pipeline stage assembles the input data into primitives,
following this it forwards these assembled primitives to the next stage in the pipeline. For
example, when data is received from some buffer it contains information about a vertex
in three-dimensional space, the winding direction used for determining the vertex
assembly order (either clockwise or counter-clockwise) and an identifier specifying the
first vertex in a sequence of vertices. This information allows the input assembler to
create primitive types supported by Direct3D. Figure A.7 illustrates how this information
is used to create a supported primitive type.

 209

Figure A.7 Creating a triangle using three vertices, a clockwise winding direction and

a vertex identifier indicating the first vertex in a set of three vertices.

The input assembler is also responsible for attaching Shader System Values for use by
the shader core. These values (primitive id, vertex id, etc) lead to faster execution times
by allowing the shader stages to ignore primitives that have already been dealt with.

Initialising the input assembler stage requires the specification of a vertex and optional
index buffer that will be used for feeding the pipeline vertex data. The vertex buffer feeds
the vertex data into the pipeline with the index buffer specifying indices for the vertex
data stored in the vertex buffer. Creating a vertex buffer is relatively simple in Direct3D
10. We start by specifying the type of data that can be stored in the buffer (using the
D3D10_BUFFER_DESC structure) followed by reading data into the buffer to initialise it
(this data is specified using the D3D10_SUBRESOURCE_DATA structure). Once this is
done we simply create the buffer using these descriptors. The D3D10_BUFFER_DESC
structure describes the size of the buffer in bytes, the method how the buffer is to be
read from and written to, the nature of the buffer (as a vertex buffer, index buffer, shader
resource, etc), the kind of CPU access allowed (write, read, or 0 if no CPU access is
necessary) and a flag to identify less regularly used options (such as resource sharing
between various devices – 0 when not applicable). The D3D10.h header file specifies
the D3D10_BUFFER_DESC structure as follows:

typedef struct D3D10_BUFFER_DESC {
 UINT ByteWidth;

 D3D10_USAGE Usage;
 UINT BindFlags;

 UINT CPUAccessFlags;

 UINT MiscFlags;

} D3D10_BUFFER_DESC;

The default values, including the alternatives, for the members of the
D3D10_BUFFER_DESC structure are given in the following table:

Members Flags
ByteWidth Any number, for example: 64
Usage D3D10_USAGE_DEFAULT

 210

(won’t be read or written to by the CPU that often)

D3D10_USAGE_IMMUTABLE
(can’t be written to by the CPU at all)
D3D10_USAGE_DYNAMIC
(buffer will be written to by the CPU at least once per frame)
D3D10_USAGE_STAGING
(read from and write to the GPU)
D3D10_BIND_VERTEX_BUFFER
(specify the resource as a vertex buffer)
D3D10_BIND_INDEX_BUFFER
(specify the resource as an index buffer)
D3D10_BIND_CONSTANT_BUFFER
(specify the resource as a constant buffer which can only be updated
completely, not partially, and which has a limit on the buffer’s byte
size)
D3D10_BIND_SHADER_RESOURCE
(specify the buffer as a shader resource)
D3D10_BIND_STREAM_OUTPUT
(specify the resource as an output buffer for the stream output stage
discussed below)
D3D10_BIND_RENDER_TARGET
(specify the resource as a render target)

BindFlags

D3D10_BIND_DEPTH_STENCIL
(specify the resource as a depth-stencil buffer)
D3D10_CPU_ACCESS_READ
(the buffer’s contents can be read by the CPU)

CPUAccessFlags

D3D10_CPU_ACCESS_WRITE
(the CPU can change the buffer’s contents directly instead of using the
UpdateSubresource ID3D10Device interface)

MiscFlags D3D10_RESOURCE_MISC_GENERATE_MIPS
(species the creation of mipmaps for some texture resource using the
GenerateMips ID3D10Device interface)

 D3D10_RESOURCE_MISC_SHARED
(enables resource sharing between various devices)

 D3D10_RESOURCE_MISC_TEXTURECUBE
(specifies the creation of a cube texture – a three dimensional texture
in the shape of a cube constructed from six textures stored in a 2-D
texture array)

Table A.1 Describing a buffer resource using the D3D10_BUFFER_DESC structure.

Before initialising the D3D10_BUFFER_DESC structure, we first have to specify the
vertices for some geometric object. In this case our vertices will have both a spatial

 211

location and a colour value (using the D3DXVECTOR3 structure which has three
members, an x-, y- and z-coordinate of a vector in three-dimensional space):

struct TriangleVertex

{

 D3DXVECTOR3 Location;

 D3DXVECTOR3 Colour;

};

We can now initialise the D3D10_BUFFER_DESC structure as follows for the specification
of a vertex buffer description:

D3D10_BUFFER_DESC bufferDescription;

bufferDescription.Usage = D3D10_USAGE_DEFAULT;
bufferDescription.ByteWidth = sizeof(TriangleVertex) * 3;

bufferDescription.BindFlags = D3D10_BIND_VERTEX_BUFFER;
bufferDescription.CPUAccessFlags = 0;

bufferDescription.MiscFlags = 0;

Following this we create the vertex buffer using previously specified vertex data. The first
step of this process is to specify an array of vertex data elements:

TriangleVertex array_of_vertex_data [] =
{

D3DXVECTOR3(0.0f, 1.0f, 1.0f),

D3DXVECTOR3(0.0f, 0.0f, 0.5f),

D3DXVECTOR3(1.0f, -1.0f, 1.0f),

D3DXVECTOR3(1.0f, 0.0f, 0.0f),

D3DXVECTOR3(-1.0f, -1.0f, 1.0f),

D3DXVECTOR3(0.0f, 1.0f, 0.0f),

};

Next we have to initialise the D3D10_SUBRESOURCE_DATA structure. This data
structure initialises a sub-resource using predefined data. A sub-resource is a portion of
a resource that links back to the original resource data but with additional information
about the resource so that the pipeline can easily access the data contained within this
resource. The D3D10_SUBRESOURCE_DATA structure has three members, namely, a
pointer to the data used for initialising the sub-resource, a value used for specifying the
memory pitch in bytes required for two- and three-dimensional texture resources and the
memory slice pitch associated with three-dimensional texture resources. The D3D10.h
header file specifies this structure as follows:

 212

typedef struct D3D10_SUBRESOURCE_DATA {
 const void *pSysMem;

 UINT SysMemPitch;

 UINT SysMemSlicePitch;

} D3D10_SUBRESOURCE_DATA;

We initialise the D3D10_SUBRESOURCE_DATA structure using the previously defined
array of vertex data elements:

D3D10_SUBRESOURCE_DATA subresourceData;

subresourceData.pSysMem = array_of_vertex_data;
subresourceData.SysMemPitch = 0;

subresourceData.SysMemSlicePitch = 0;

The final step is to create the vertex buffer. We use the CreateBuffer
ID3D10Device interface to do this. This interface takes three parameters, the first
being a pointer to the previously defined D3D10_BUFFER_DESC structure, the second a
pointer to the D3D10_SUBRESOURCE_DATA structure with the third being the address of
a pointer to the ID3D10Buffer interface used for controlling our buffer resource
(be it either a vertex or index buffer). The CreateBuffer ID3D10Device interface is
declared as follows in the D3D10.h header:

HRESULT CreateBuffer(

 const D3D10_BUFFER_DESC *pDesc,
 const D3D10_SUBRESOURCE_DATA *pInitialData,
 ID3D10Buffer **ppBuffer

);

We can now call the CreateBuffer ID3D10Device interface to create the vertex
buffer:

ID3D10Device* g_id3dDevice;
ID3D10Buffer* vertexBuffer[2] = {NULL, NULL};

g_id3dDevice->CreateBuffer(&bufferDescription, &subresourceData, &vertexBuffer[0]);

Defining an index buffer is comparable to the creation of a vertex buffer, with the only
difference being the specification of the D3D10_BUFFER_DESC structure’s BindFlags
member, for example:

D3D10_BUFFER_DESC indexBufferDescription;

 213

indexBufferDescription.Usage = D3D10_USAGE_DEFAULT;
indexBufferDescription.ByteWidth = sizeof(TriangleVertex) * 3;

indexBufferDescription.BindFlags = D3D10_BIND_INDEX_BUFFER;
indexBufferDescription.CPUAccessFlags = 0;

indexBufferDescription.MiscFlags = 0;

We also have to specify an array containing index data. This array will be used to
initialise the D3D10_SUBRESOURCE_DATA structure:

UINT array_of_index_data [] = {0, 1, 2, 3, 4};

D3D10_SUBRESOURCE_DATA indexSubresourceData;

indexSubresourceData.pSysMem = array_of_index_data;
indexSubresourceData.SysMemPitch = 0;

indexSubresourceData.SysMemSlicePitch = 0;

The index buffer is created using the CreateBuffer ID3D10Device interface:

ID3D10Buffer* indexBuffer = NULL;

g_id3dDevice->CreateBuffer(&indexBufferDescription,
&indexSubresourceData,

&indexBuffer);

With the input buffers specified and properly initialised, we create the input-layout object
which will be used to control how vertex data is fed into the input-assembler stage (by
directly describing the input-buffer data). The type of the input vertex data is identified
and checked against shader parameter types ensuring both type compatibility and that
the needed shader data is actually stored in the buffer. We create the input-layout object
using the CreateInputLayout ID3D10Device interface via the specification of five
parameters. The first parameter is an array of the input-assembler stage input data type
described using the D3D10_INPUT_ELEMENT_DESC structure. The
D3D10_INPUT_ELEMENT_DESC structure is defined as follows in the D3D10.h header
file:

typedef struct D3D10_INPUT_ELEMENT_DESC {
 LPCSTR SemanticName;

 UINT SemanticIndex;

 DXGI_FORMAT Format;
 UINT InputSlot;

 UINT AlignedByteOffset;

 D3D10_INPUT_CLASSIFICATION InputSlotClass;

 214

 UINT InstanceDataStepRate;

} D3D10_INPUT_ELEMENT_DESC;

This structure gives a description of each input assembler stage element, specifically;
the High Level Shader Language (HLSL) semantic name of the element, the element’s
semantic index used when more than one element with the same semantic name exists,
the element’s data type, an integer value used for specifying the input-assembler’s input
slot (described below), the byte offset used to set the location of the element in the input
slot (counting in bytes from the beginning of the input slot), the input data class (either
vertex data using the D3D10_INPUT_CLASSIFICATION enumeration with the constant
set to either D3D10_INPUT_PER_VERTEX_DATA for per-vertex input data, or
D3D10_INPUT_PER_INSTANCE_DATA for per-instance input data) and the data step
rate controlling the number of instances of one element to draw (using the per-instance
input data) before moving on to the next buffer element – must be set 0 for elements
containing per-vertex data. Using the D3D10_INPUT_ELEMENT_DESC structure, we can
specify a vertex buffer containing two vertex-data elements as follows:

D3D10_INPUT_ELEMENT_DESC input_layout_description[] =
{

 {L"POSITION", 0, DXGI_FORMAT_R32G32B32_UINT, 0, 0, D3D10_INPUT_PER_VERTEX_DATA, 0},
 {L"COLOR", 0, DXGI_FORMAT_R32G32B32_UINT, 1, 6, D3D10_INPUT_PER_VERTEX_DATA, 0},
};

Data is fed into the input-assembler stage through a number of units referred to as input
slots. Each of these input-assembler input slots, shown in Figure A.8, are used as
storage for a vertex buffer, thus storing input data.

Figure A.8 The input-assembler’s input slots.

 215

The second parameter of the CreateInputLayout ID3D10Device interface is an
integer value specifying the number of input-data types making up the input-elements
array. The third parameter is a pointer to the compiled shader code with the fourth
parameter specifying the byte size of this compiled shader code. The final parameter is
a pointer to the input-layout object that will be used as output. This
CreateInputLayout ID3D10Device interface is defined as follows in the D3D10.h
header file:

HRESULT CreateInputLayout (

const D3D10_INPUT_ELEMENT_DESC *pInputElementDescs,
UINT NumElements,

const void *pShaderBytecodeWithInputSignature,

SIZE_T BytecodeLength,
ID3D10InputLayout **ppInputLayout);

We can now bind this newly created input-layout object to the input-assembler stage,
after which we can call the draw functions. This object binding is done using the
IASetVertexBuffers and IASetInputLayout ID3D10Device interfaces. The
IASetVertexBuffers interface binds a vertex buffer array to the input-assembler
stage by specifying the input slot, the total number of buffers in the vertex buffer array, a
pointer to the vertex buffer array, a pointer to an array containing values indicating the
byte size of elements to be read from the vertex buffer (referred to as stride values) and
a pointer to an array containing so called offset values (with one offset value
representing the number of bytes to be read from the first element stored in the vertex
buffer to the element being accessed). This IASetVertexBuffers ID3D10Device
interface is defined as follows in the D3D10.h header file:

void IASetVertexBuffers(UINT StartSlot, UINT NumBuffers,

ID3D10Buffer *const *ppVertexBuffers,

const UINT *pStrides,

const UINT *pOffsets);

The IASetInputLayout interface, taking a pointer to the input-layout object, is
responsible for binding this object to the input-assembler stage. The following code
sample illustrates this process:

UINT start_input_slot = 0;
UINT number_buffers_in_array = 1;
UINT offset_value = 0;
UINT stride_value = sizeof(TriangleVertex);

g_id3dDevice->IASetVertexBuffers(start_input_slot,
 number_buffers_in_array,

 216

 &vertexBuffer,

 &stride_value,
 &offset_value);

The input-layout takes a pointer to the ID3D10Device object:

ID3D10InputLayout* inputLayoutObject = NULL;

g_id3dDevice->IASetInputLayout(inputLayoutObject);

The only remaining step is to specify the assembling of vertices into primitives and to
send these primitives (controlling the rendering of vertex data to the screen) to the next
step of the pipeline. This is done using the IASetPrimitiveTopology
ID3D10Device interface. This interface takes one parameter, namely the primitive type
specified using the D3D10_PRIMITIVE_TOPOLOGY enumerator. For example, the
following code specifies the primitive type as a list of lines:

g_id3dDevice->IASetPrimitiveTopology(D3D10_PRIMITIVE_TOPOLOGY_LINELIST);

Table A.2 lists possible primitive types:

Constant Description
D3D10_PRIMITIVE_TOPOLOGY_UNDEFINED A primitive topology is not

specified for the Input-

assembler stage.
D3D10_PRIMITIVE_TOPOLOGY_LINELIST The vertex data is interpreted

as a list of lines.
D3D10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ The vertex data is interpreted

as a list of lines with adjacency

data.
D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP The vertex data is interpreted

as a line strip.
D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ The vertex data is interpreted

as a line strip with adjacency

data.
D3D10_PRIMITIVE_TOPOLOGY_POINTLIST The vertex data is interpreted

as a list of points.
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST The vertex data is interpreted

as a list of triangles.
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ The vertex data is interpreted

as a list of triangles with

adjacency data.
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP The vertex data is interpreted

 217

as a triangle strip.
D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ The vertex data is interpreted

as a triangle strip with

adjacency data.

Table A.2 Specifying a primitive type using the D3D10_PRIMITIVE_TOPOLOGY
enumerator.

We can now draw these pipeline bound primitives using various ID3D10Device
functions such as Draw, DrawAuto, DrawIndexed, DrawInstanced and
DrawIndexedInstanced.

The Vertex-Shader Stage

Per-vertex operations are performed during this pipeline processing stage. Examples of
such operations include per-vertex lighting, texture sampling operations, geometric
transformations, etc. Per-vertex lighting allows us to specify distinct light sources,
including the interaction of these light sources with adjacent surfaces. These interactions
and reflections are considered on a per-vertex basis with the lighting values between
vertices being approximated. This stage takes one vertex as input, modifies it according
to some predefined operation and outputs it for further processing. There might also be
cases where no vertex processing is required, leading to the definition of a pass-through
vertex shader. This pass-through vertex shader forwards the input vertex data to the
geometry-shader stage unmodified.

Input vertex data generally consist of anything from one to sixteen 32-bit vectors made
up of one to four elements each. The input assembler basically feeds two data elements
into the vertex-shader stage, namely; the vertex ID and the instance ID. These IDs are
generated by the graphics hardware and can only be handled during this pipeline stage.

The Geometry-Shader Stage

Primitives such as vertices, lines and polygons are processed during this pipeline stage.
The geometry-shader stage takes these primitives as input, and processes them based
on some programmatically defined algorithm, forwarding these newly modified or, in
some cases, newly generated primitives to either the stream-output stage or rasterizer
stage. The geometry-shader stage takes full primitives as input, for example; lines
consisting of two vertices, quads constructed out of four vertices, etc (Stam and Loop,
2003). This is in contrast with vertex shaders which only accept a single vertex as input.

One useful feature of the geometry-shader is its ability to handle edge-adjacent
primitives. For example, say we have a quad as input; then the vertex data of all

 218

primitives adjacent to the quad can also be read as input. Figure A.9 shows such a quad
with four adjacent quads.

Figure A.9 A quad with edge-adjacent primitives.

The geometry-shader’s generated primitives are returned as an output stream object.
This output stream can be declared as a LineStream (creating a line strip output
topology), TriangleStream (creating a triangle strip output topology) or
PointStream (creating a point list output topology) based on the original primitive
object type. We create a primitive strip by appending output vertices using the Append
interface method. The appending of vertices is necessary since the geometry-shader
only outputs one vertex data element at a time – requiring this vertex data to be
reconstructed into primitives. The RestartStrip method is used to terminate the
current primitive strip construction process, signalling the geometry-shader to start the
creation of a new primitive strip. The following non-functional code sample shows the
creation of a TriangleStream output object via the declaration of a geometry-shader.

We start by setting the maximum number of vertices to output using the
MaxVertexCount attribute type (causing the geometry-shader to terminate once the
specified number of vertices has been generated):

[MaxVertexCount(6)]

Next we declare the geometry-shader, GS_Sample, to take a triangle strip or triangle list
(triangle float4 inputPar[3]) as input; with a TriangleStream object as output
(the inout keyword declares the stream object, outputPar, as both an input and
output):

void GS_Sample(triangle float4 inputPar [3], inout TriangleStream<float2> outputPar)
{

 //function body

 //e.g. using Append and RestartStrip:

outputPar.Append(...);

 219

outputPar.RestartStrip();

}

Modern day computer games are increasingly making use of geometric shaders, mostly
due to the exponential advances being made in graphics hardware and the power given
to developers in controlling this hardware at a functional level using shading languages
such as HLSL, Cg and the OpenGL Shading Language (GLSL). Examples of effects
derived from programming DirectX 10’s geometry-shader include shadow volume
generation, fur animation, advanced dynamic particle systems, cube mapping, point
sprite expansion and various other per-primitive operations.

Stream Output Stage

The stream output stage streams primitives from the geometry-shader stage to
predefined buffers in system memory or memory present on the graphics card. This data
can either be fed back into the input-assembler stage or alternatively loaded directly into
shaders via load functions, or circulated to the CPU, for example (Figure A.10). The
adjacency data associated with primitives outputted by the geometry-shader stage is
discarded when output is directed to the stream output stage. Triangle and line strips are
also converted to triangle and line lists when streamed to the buffer resources in
memory.

Figure A.10 Streaming of data to predefined buffers in system/GPU memory.

 220

One or multiple buffers can be linked to the stream output stage. When one buffer is
linked, then anything from 1 to 64 scalar per-vertex data elements can be written to the
buffer (assuming a total size less than 257 bytes for the per-vertex output data
elements). The use of multiple buffers, with each catching a single per-vertex data
element, enables us to output data to a maximum of four buffers concurrently. When
using multiple buffers it is not required for all the buffers to have the same size. The
output of data to these varying sized buffers terminate the moment the smallest buffer is
full (unable to receive any more primitives as input).

The Pixel-Shader Stage

The rasterizer stage rasterizes primitives produced by the geometry-shader stage into
pixels via the interpolation of vertex values for representation in the frame buffer and for
subsequent output to a monitor. The shading and colour of these pixel values need to be
calculated so that each primitive are correctly rendered to the display device. The
rasterizer stage calls the pixel-shader stage for the computation of these per-pixel
values. Various per-pixel shading techniques such as lighting, fog, bump mapping,
shadows, distortion effects and shading are performed during this stage (Legakis, 1998).
In addition to these effect-based per-pixel techniques, the pixel shader is also used for
implementing level-of-detail algorithms and during the process of anisotropic filtering
crucial for enhancing the image quality of distant located textures.

Programs defining pixel-shader operations are called shader programs and can be
written in any of the following languages: Assembly, Cg, HLSL or GLSL. These
programs normally take colour values, the interpolated per-vertex data produced by the
rasterizer stage, and some user defined variables as input, producing the final pixel
values that are forwarded to the output-merger stage.

The Output-Merger Stage

This final stage of the Direct3D 10 programmable pipeline combines both the output
generated by the pixel-shader stage with depth- and stencil buffer values to produce the
final pixel colour and shading values. The output-merger stage is directly responsible for
determining the visibility of pixels based on the process of depth testing. The blending of
pixel data (combining two or more pixel colour values), in addition to depth- and stencil
testing, is also controlled during this pipeline stage.

 221

Appendix B
Shaders

A shader is a grouping of instructions processed by the graphics accelerator to perform
some form of special effect or rendering. The previous section presented the concept of
programmable pipelines, in particular focusing on the Direct3D 10 and OpenGL
processing pipelines. An application program allowing direct interaction with these
previously discussed programming pipelines is called a shader. These shader programs,
written in a shading language such as NVIDIA’s Cg or Microsoft’s High Level Shader
Language, control the movement, composition, form and appearance of objects through
direct manipulation of the graphics processing unit is programmable pipelines.

The instructions listed in a shader program are executed at a specific point in the
rendering pipeline – thus leading to user-defined manipulation of vertex or pixel data, for
example. More specifically, three types of shader programs can be written, namely,
vertex shaders, pixel shaders and geometry shaders.

Vertex shaders, operating on vertex data, are executed as part of the graphics pipeline’s
geometric stage and are used to alter the geometric parameters (shape) of an object. A
vertex shader program is fundamental for certain special effects such as grass blowing
in the wind where the real time manipulation, transformation and displacement of per-
vertex material attributes are necessary. The vertices produced by this shader are
forwarded as input to a geometry shader.

Geometry shaders are executed just prior to the rasterizer and stream output pipeline
stages. These shaders group numerous vertices into a geometric object that can be
modified by a pixel shader program. Geometry shaders are extremely important in the
detection of silhouetted-edges and shadow volume extrusion. These shaders,
performing per-primitive computations, are also vital in the generation of new primitives.
The primitives generated by the geometry shader stage are rasterized into fragments
during the pipeline’s rasterizer stage. These fragments are then sent to the pixel shader
as input.

Pixel shaders, also known as fragment shaders and performing per-pixel processing,
operate on the discrete pixels of a primitive, applying some effect to a primitive (such as
bump mapping, shadowing, fog, etc) during the pixel shader stage. Per-pixel lighting and
shadowing has greatly contributed to the realism of modern computer games. Examples
of effects made possible through this form of per-pixel processing include texture
blending, environmental mapping, normal mapping, real-time shadows (stencil shadow
volumes) and reflections (Levoy and Hanrahan, 1996).

 222

These three types of shaders are unified by the Direc3D 10 architecture – known as
Shader Model 4.0. Unified shaders provide the application programmer with a uniform
instruction set independent of whether a pixel shader or vertex shader is being
implemented. This unified architecture is made possible through Windows Vista’s
Windows Display Driver Model and the coupled DirectX 10 API. Previous architectures
required different instruction sets for both pixel and vertex shaders due to specific
hardware architectural requirements. By unifying the independent shader instruction
sets, GPU programming has become much more flexible. This unified model also allows
workload sharing amongst the various pipeline processors, for example, when the GPU
is mainly performing basic geometry rendering with little or no per-pixel processing being
done, then the pixel shader can be assigned vertex processing. The first GPU offering
support for this unified shader model was NVIDIA’s GeForce 8 series – specifically the
GeForce 8800 GTX and GTS.

The term used to describe this unified shader architecture, Shader Model 4.0,
encapsulates the features offered by the specific shader version in question. For
example, Shader Model 3.0 (as supported by Direct3D 9.0c) limits the number of
executing instructions to 65536 while Direct3D 10’s Shader Model 4.0 allows for an
unlimited number of executing instructions. Shader Model 2.0 (the original Direct3D 9.0
shader specification) limits the number of executing instructions to 32 texture instructions
and 64 arithmetic instructions. The version number of instructions is specified in terms of
the shader’s version number (ps_mainVersion_subVersion for pixel shaders and
vs_mainVersion_subVersion for vertex shaders). For example, a vertex shader
based on Shader Model 3.0 (DirectX 9.0c) will be declared as vs_3_0, a DirectX 9.0b
Shader Model 2.0 pixel shader as ps_2_b, with a Shader Model 4.0 pixel shader
declared as ps_4_0. NVIDIA’s GeForce FX series of GPUs provide an optimised model
for Shader Model 2.0 and we can thus define a vertex shader based on this model as
vs_2_a.

The capabilities of shader programs are heavily dependent on the available graphics
hardware. Older graphics hardware such as first-generation GPUs (NVIDIA’s RIVA
TNT2 and ATI’s Rage series implementing the DirectX 6 feature set) were only capable
of accelerating texture mapping operations as well as the rasterization of certain
primitives such as triangles. These GPUs alleviated the CPU from updating individual
pixels but vertex transformations such as rotation, translation and scaling were still CPU
dependant. These GPUs, although slightly configurable, were not programmable.

The second-generation of GPUs, introduced in 1999/2000 with the release of NVIDIAs
GeForce 256 GPU and also including the GeForce2 and ATI’s Radeon 7500, relieved
the CPU from 3-D vertex transformations and lighting computations. Both the OpenGL
and DirectX 7 APIs supported these hardware vertex transformations, however,
although highly configurable in the sense of offering support for certain effects such as

 223

cube mapping for textures and per-pixel colouring, these GPUs were still not strictly
speaking programmable.

The first truly programmable GPUs were NVIDIA’s third-generation GeForce3, GeForce4
Ti and ATI’s Radeon 8500 series. These GPUs offered programmable vertex pipelines,
thus allowing an application program to control vertex transformations and lighting.
These GPUs also featured a higher level of per-pixel configurability, although not yet
offering pixel pipeline programmability. DirectX 8 and the ARB_vertex_program
OpenGL extension allowed access to the vertex programmability offered by these
GPUs. Pixel shaders could be written using the DirectX 8 pixel shader functionality and
numerous OpenGL extensions. These pixel shaders were obviously nothing as powerful
as today’s pixel shader programs, and were based on configuring the pixel pipeline,
rather than freeing the CPU of pixel-shading operations.

Both per-vertex and per-pixel programmability have been available since the release of
NVIDIA’s GeForce FX and ATI’s Radeon 9700 family of GPUs. Application developers
were, with the release of these GPUs, for the first time able to assign the GPU for both
vertex transformations and pixel operations. With these operations offloaded to the
GPU, the CPU is free to perform other calculations. The DirectX 9 API and several
OpenGL extensions give access the pixel and vertex programmability offered by these
GPUs. A vertex shader replaces the configurable fixed-function operations performed by
the vertex processor with instructions defined by the shader along with a pixel shader
executing after the rasterizer stage. This pixel shader takes the fragments processed by
the fragment processor/pixel shader stage as input, performing some operation on them.
Fragments are processed based on some configurable fixed function in the absence of a
pixel shader program.

Table B.1 highlights some key features introduced with certain milestone GPU releases
as well as their respective DirectX and OpenGL version support.

GPU Main Feature(s) API support
- NVIDIA RIVA 128 - Basic vertex acceleration. DirectX 5,

OpenGL 1.0.
- NVIDIA RIVA TNT
- NVIDIA RIVA TNT2
- ATI Rage 128

- Multitexturing (applying more than
one texture to a polygon, e.g.
graffiti art or ‘bullet holes’ on a
textured wall).

DirectX 6,
OpenGL 1.1.

- NVIDIA GeForce 256
- NVIDIA GeForce2
- ATI R100 (Radeon 32,

64, 7000 and 7500)

- Hardware Transformations,
Clipping and Lighting.

- Cube mapping.
- Fixed-function vertex processing.
- Register combiners.

DirectX 7,
OpenGL 1.2 (ATI
supporting OpenGL
1.3)

- NVIDIA GeForce3 - Quadtexturing (using four pixel DirectX 8,

 224

 pipelines for the rendering of four
independently textured pixels or
alternatively two multitextured
pixels)

- Texture shaders.
- Shader Model 1.1.
- ARB_vertex_program (OpenGL

extension for vertex shaders on
both ATI and NVIDIA chipsets).

OpenGL 1.4.

- NVIDIA GeForce4 Ti
- ATI Radeon R200

(Radeon 8500 to 9250)

- Hardware anti-aliasing.
- Pixel Shader 1.2, 1.3 or 1.4.
- Vertex Shader 1.1.
- ATI_fragment_shader (OpenGL

extension for fragment shaders on
ATI cards only).

DirectX 8.1,
OpenGL 1.4.

- NVIDIA GeForce FX
- ATI Radeon R300

(Radeon 9500 to 9800
XT and including Radeon
X1050)

- Full support for vertex and fragment
shader programs.

- Floating-point pixel processing.
- Shader Model 2.0, 2.0a or 2.0b.
- OpenGL Shading Language.

DirectX 9.0b,
OpenGL 1.4 (NVIDIA
chipsets featured
limited support for
OpenGL 2.0 with ATI
chipsets offering full
support).

- NVIDIA GeForce 6
- ATI Radeon R500

(Xbox 360 Xenos,
Radeon X1300 to Radeon
X1950 XTX)

- Hardware accelerated transparency.
- Scalable Link Interface (SLI –

parallel graphics processing using
two or more graphics accelerators
interlinked).

- Shader Model 3.0.
- OpenGL Shading Language

Improved.

DirectX 9.0c,
OpenGL 2.0.

- NVIDIA GeForce 7 - High Dynamic Range Lighting. DirectX 9.0c,
OpenGL 2.0.

- NVIDIA GeForce 8
- Radeon R600 (Radeon

HD 2400 to Radeon HD
2900 XT)

- Unified Shaders.
- Shader Model 4.0.

DirectX 10,
OpenGL 2.1.

- NVIDIA GeForce
9/100/250/260-295

- Atomic functions (thread-safe)
- Coverage Sample AA
- 128 bit OpenEXR

DirectX 10,
OpenGL 3.3.

- NVIDIA GeForce
210/220/240/300

- Shader Model 4.1 DirectX 10.1,
OpenGL 3.3.

- NVIDIA GeForce
400/500

- Shader Model 5.0 DirectX 11, OpenGL
4.1, OpenCL 1.0

 225

Table B.1 Features introduced by selected GPUs and DirectX and OpenGL versions.

B.1 The Hardware Graphics Pipeline Revisited

We previously described a pipeline as a series of parallel stages with each stage
processing the output of the previous stage, in turn sending its output to a successive
stage, and so forth. The graphics pipeline consists of a number of stages such as vertex
processing, clipping, rasterization and fragment processing. These stages are
responsible for converting some geometrically defined scene into a two-dimensional
image (pixel elements) via a number rendering stages – each physically organised as a
pipeline processing unit. We will now revisit our previous graphics pipeline architecture
discussion, expanding on it by focussing more on the programmable graphics pipeline’s
physical (hardware-level) organisation.

A modern-day GPU is sent a grouping of vertices organised into a geometric primitive
such as a sequence of points, lines or a triangle, for example. Each of these vertices has
a number of attributes. Attributes can range from the vertex’s individual colour value, its
texture coordinates, a normal vector used during lighting calculations to spatial
coordinates used for the positioning of the vertex. A generic graphics hardware pipeline
is show in Figure B.1.

Figure B.1 A generic graphics hardware pipeline.

The vertex transformation stage performs a series of operations on each of the vertices
sent to the GPU for processing. Operations include the transformation of a vertex’s

 226

coordinate system into one that can be used by the rasterizer, per-vertex lighting,
colouring and the generation of texture coordinates, etc.

The primitive assembly and rasterization stage assembles the vertices being passed
from the vertex transformation stage into geometric primitives. The type of assembled
primitive (line, polygon, triangle, etc) depends on the primitive topology data
accompanying a set of vertices. Clipping to the visible view frustum is performed during
this stage, resulting in the elimination of any unnecessary primitives that would not be
visible to the viewer or camera (Liang and Barsky, 1984). The rasterization stage also
eliminates polygons or surfaces pointing away from the camera or viewer (vertex-by-
vertex culling). Following these operations, primitives are rasterized into pixels for
representation in the frame buffer (Sutherland and Hodgman, 1974). Rasterization is
performed according to a specific set of rules defined for each of the primitive
topologies. The rasterization stage produces a set of pixels, each one mapped to a
specific location, as well as a set of fragments (previously defined as a pixel with
additional information about its colour, position and depth). Building on our previous
definition we can now define a fragment as a state necessary for the update of a specific
pixel in the frame buffer. During the rasterization process geometric primitives are
broken down into pixel-sized fragments. Each fragment holds information about the
pixel’s location, depth, colour and texture coordinates. This information is then used to
update a matching pixel in the frame buffer.

With a primitive successfully rasterized into a series of fragments, we can move on to
the fragment processing stage. Fragment processing, as previously explained, is the
process of updating pixels in the frame buffer with the fragments generated during the
rasterization stage. The fragment processing unit is responsible for setting the colour
values of fragments, their texturing as well as the interpolation of fragment parameters.
These operations are modified and/or combined for numerous texturing effects such as
bump mapping, texture filtering, blending, environmental mapping and so forth. Apart
from calculating the fragment’s final colour value, this pipeline stage can also discard a
fragment based on some calculation or predefined parameter, hence resulting in the
corresponding frame buffer pixel not being updated.

The final number of fragment centric operations, based on the functionality of Direct3D
and OpenGL, are performed during the raster processing stage. These operations, such
as depth testing (the removal of hidden surfaces), blending, stencil testing for the
generation of stencil shadow volumes and stencil based reflections, etc, are performed
prior to the frame buffer update. A number of tests are conducted during this pipeline
stage; for example, a scissor test culls all the fragments located outside a user-specified
rectangle positioned within the render target area, with an alpha test determining
whether fragments are written to the render target area based on some predefined
alpha-test function. A fragment is discarded whenever any of these tests fail. When
passing a specific test, one of the pixel’s property values (such as depth for depth

 227

testing) is updated with that of the fragment. The blending operation stage reads the
fragment’s colour value and combines it with the colour value of the matching pixel. We
can also dither the colour values of fragments and pixels to create the illusion of colour
depth in low-colour images by approximating colours not available in the palette through
the diffusion of the available palette’s colour values. The final operation is to write the
new blended/dithered fragment colour value out to the appropriate pixel in the frame
buffer. This raster processing stage, consisting of a series of pipeline stages (raster
operations and tests), is shown in Figure B.2.

Figure B.2 Direct3D and OpenGL raster processing operations.

B.2 The Programmable Graphics Pipeline Revisited

This section extends the previous discussion of the Direct3D processing pipeline by
investigating the underlying hardware configuration that makes the pipeline stages of a
GPU programmable. Previous generation GPUs have separate vertex and pixel shader

 228

processing units. The GeForce 8 GPU (and better) does not follow this approach, rather
offering eight shader units, with none of them limited to vertex or pixel processing. This
architectural change is the product of recognising that the future of GPU design lies with
programmable processing. By unifying the shaders we’re not just only able to use the
same instruction set for both pixel and vertex shaders or to enable workload sharing
amongst these pipeline processors, but this new architecture also makes it easier to
extend our current shader model with future shader types. As illustrated in Table B.1,
GPU architecture has evolved from supporting configurable vertex and fragment
processors, to programmable vertex processors, then fully programmable vertex and
fragments processors to the current unified architecture. Extending the generic graphics
hardware pipeline, we can show both vertex and fragment processing units as simple
add-ons to this generic pipeline (Figure B.3).

Figure B.3 Example of a hardware programmable graphics pipeline.

The unified shader architecture considered, vertex and fragment processing can still be
broken down into logical programmable units; with a programmable vertex processor,
the processing unit responsible for the execution of a HLSL, Cg or GLSL vertex program
and a programmable fragment processor, the processing unit tasked with execution of a
HLSL, Cg or GLSL fragment program.

 229

Focussing on the programmable vertex processor, we can summarise its functionality
into a number of stages. The first stage feeds vertex attributes such as coordinates,
colour values and depth information into the vertex processor for processing. These
vertex attributes are stored in the vertex attribute register banks. Vertex shaders actually
make use of a several registers for the storage of position, data and colour data, for
example. The vertex program, consisting of a sequence of instructions, is stored in
memory. The vertex processor accesses this program, decoding one instruction at a
time until the program terminates. Results generated from computations, the
transformed vertex data, are stored in the output result registers with intermediate data,
still being read by instructions, stored in the temporary register banks. Figure B.4 shows
the classic flow of control for a programmable vertex processor.

Programmable fragment processors are extremely useful for manipulating texture
coordinates as well as to set the final colour of a pixel. These processors also support
several of the vector math operations performed by vertex processors. For example, a
fragment processor can be programmed to read the texture coordinates of a textured
image and to subsequently perform some operation on these values – returning a
filtered sample of the texture. Similar to a vertex processor, fragment processors operate
by executing a set of instructions stored in a program file – the fragment program. These
instructions are executed until the fragment program terminates (when there aren’t any
more instructions to fetch). The fragment program reads untransformed interpolated
fragments as input, storing these values in input register banks. Results generated from
applying the specified instructions on input data are stored in the output registers.
Intermediate data, just as with vertex processing, is stored in the temporary register
banks. The output values can range from a fragment’s new colour to a transformed
depth value.

A texture is nothing more than a two-dimensional array consisting of colour values with
each of these colour values referred to as a texel, or texture element. Each texel, being
an element in this colour array, is thus assigned a unique address in the texture (simply
a column and row value). Fragment processors generally include a texture fetch
instruction. This instruction is used to compute the address of a texture, fetch texture
elements, determine its Level-of-Detail and to perform texture filtering. Examples of
texture filtering include nearest-point sampling, linear texture filtering, anisotropic texture
filtering, bilinear filtering and filtering via mipmaps. Figure B.5 illustrates the flow of
control for a typical programmable fragment processor.

 230

Figure B.4 Flow of control for a programmable vertex processor.

 231

Figure B.5 Flow of control for a programmable fragment processor.

 232

B.3 High Level Shader Language (HLSL)

Microsoft’s High Level Shader Language is a proprietary Direct3D shading language
analogous to NIVIDIA’s Cg. The Direct3D 10 High Level Shader Language allows for the
creation of three types of shader programs, namely, vertex shaders, geometry shaders
and pixel shaders. Similar to Cg, HLSL shaders can be compiled either statically or
dynamically, depending on the preference of the developer and intended application for
the shader.

As mentioned, Direct3D 10 shaders are unified to provide the application programmer
with a uniform instruction set independent of whether a pixel, vertex or geometric shader
is being implemented. These different shaders, offering the same core functionality, are
implemented by the Shader Model 4.0 common shader core. Building on the core
functionality, each shader implementation offers its own unique functionality such as
stencilling done via pixel shaders or the generation of new primitives and the
manipulation of 3-D models on a per-primitive basis by a geometric shader. This
common shader core data-flow is shown in Figure B.6.

Figure B.6 Common shader core architecture.

The stages given in the above depicted data-flow model can be summarised as follows:

 233

1) Input data is sent to the vertex, pixel or geometry shader for processing with
the vertex shader receiving data from the input assembler stage and the
pixel and geometry shaders receiving their input data from the previous
shader stage.

2) The shaders can now perform some arithmetic or flow control operation on
the read data.

a. Texel data is either directly read without any filtering or sampling
using the Load HLSL function or alternatively filtered and sampled by
binding up to 16 HLSL samplers to the shader.

b. General buffers are also accessed from system memory, allowing the
shader program to bind up to 128 texture elements and buffer
resources to the shader.

c. Shader constant buffers can also be bound to a shader stage. These
buffers are frequently updated by the CPU and are larger in size and
layout than the general buffers.

3) The output generated by the shader code is passed to the next stage in the
graphics pipeline.

B.3.1 The HLSL Compiler

HLSL programs have to be compiled into a GPU executable form. Compilation is based
on the translation of a vertex, pixel or geometry shader program into a form readable by
Direct3D. This translation of the original HLSL program is sent to the Direct3D API driver
which converts it to instructions that can be processed by the GPU.

We can perform static compilation using the FXC shader compiler (fxc.exe) to compile
our shader program once and thus eliminating the need to compile it again. The FXC
HLSL compiler is invoked with its executable name followed by one or more options, the
shader model profile label and the filename. For example, to compile a shader program
saved in the file shader.fx, we can do a release build for shader model 4.0 as follows:

fxc /T fx_4_0 /Fo shader.fxo shader.fx

In this example fx_4_0 specifies the target profile as a shader model 4.0 effect (shader
model 2.0 effects are set using the fx_2_0 profile). An effect shader can contain a
combination of pixel, vertex and geometry shaders. Alternatively we could have
specified the shader type as a vertex shader, pixel shader or texture shader (tx_1_0).
These HLSL shader profiles are used to compile a shader to a specific shader model,
thus ensuring hardware compatibility by limiting the supported shader model feature set.
Possible Direct3D 10 vertex shader profiles include vs_1_1, vs_2_0, vs_2_a,
vs_2_sw, vs_3_0, vs_3_sw and vs_4_0 with pixel shader profiles ranging from
ps_2_0, ps_2_a, ps_2_b, ps_2_sw, ps_3_0 and ps_3_sw to ps_4_0. The ‘/T’ switch

 234

option specifies the HLSL profile to compile against. The
D3D10GetVertexShaderProfile, D3D10GetPixelShaderProfile and
D3D10GetGeometryShaderProfile shader functions can be called to determine the
best profile suited for a given device to compile against. These functions all take a
pointer to an ID3D10Device interface device, returning either the best vertex shader
profile, pixel shader profile or geometry shader profile depending on the function called.
Shader functions can be used after including the D3D10Shader.h header file. The next
switch option, ‘/Fo’, is used to set the output object file name used to store the compiled
shader effect.

We can alternatively compile a shader using debug mode. Debug mode is similar to that
found in Visual Studio, allowing the generation of debug information and additional
processing data that can be used to narrow down errors and possible bottleneck areas.
We can compile the shader program saved in the shader.fx file using debug mode in the
following manner:

fxc /Zi /Od /T fx_4_0 /Fo shader.fxo shader.fx

The ‘/Zi’ switch option enables debugging information with the ‘/Od’ switch disabling
any code-based optimisations that would normally be performed by the compiler.

B.3.2 Initialising the High Level Shader Language

This section focuses on the initialisation of the High Level Shader Language so that a
Direct3D application program can bind the shader program to the appropriate pipeline
stage. The steps of this initialisation process are as follows:

1) Compilation of the shader to ensure that the HLSL statements are
syntactically correct.

2) Create a vertex, pixel or geometry shader object.
3) Set the created shader object to bind the shader to the proper pipeline

stage.

A shader program is compiled by calling the D3D10CompileShader shader function,
declared as follows in the D3D10Shader.h header file:

HRESULT D3D10CompileShader(

 LPCSTR pSrcData,

 SIZE_T SrcDataLen,
 LPCSTR pFileName,

 CONST D3D10_SHADER_MACRO *pDefines,
 LPD3D10INCLUDE *pInclude,

 235

 LPCSTR pFunctionName,

 LPCSTR pProfile,

 UINT Flags,

 ID3D10Blob **ppShader,

 ID3D10Blob **ppErrorMsgs

);

Its first parameter, pSrcData, takes a pointer to the string holding the shader source
code. The second parameter, SrcDataLen, specifies the size of the pSrcData
parameter in bytes with the next parameter, pFileName, the name of the shader
program file. The pDefines parameter takes a pointer to a D3D10_SHADER_MACRO
shader macro array. This Null-terminated array of macro definitions, enabling the
application program to define tokens at runtime, is optional and can be set to ‘NULL’. A
D3D10_SHADER_MACRO macro definition can be specified in the following manner:

D3D10_SHADER_MACRO Macro[1] = {"ten", "10"};

The D3D10_SHADER_MACRO shader structure has two members, Name and
Definition. The Name member holds the macro name and the Definition member
the macro definition.

D3D10CompileShader’s next parameter, pInclude, takes a pointer to the
ID3D10Include interface allowing the opening and closing of included files when
loading an effect from memory. For example, a shader program can include a file using
the #include directive, and by calling the Close or Open ID3D10Include members
we can open this file for reading and subsequently close it when done. Specification of
the pInclude parameter is optional and set to ‘NULL’ when the shader does not
contain any #include directives. The next parameter, pFunctionName, takes a
pointer to a string holding the shader entry point function name indicating the function to
begin the shader execution at. The pProfile parameter is used for setting the shader
model profile with the Flags parameter setting the shader compile options (possible
options are listed in Table B.2). The first of the final two parameters, ppShader, takes a
pointer to an ID3D10Blob interface containing the debug information and compiled
shader. A blob is a data buffer used for the storage of vertex, adjacency and material
data. Blobs also return error/debug messages and object code during the compilation of
pixel, vertex and geometry shaders. The last parameter, ppErrorMsgs, also takes a
pointer to an ID3D10Blob interface, this time one containing errors and warning
messages generated during the compilation process.

 236

Compile Options Description

D3D10_SHADER_AVOID_FLOW_CONTROL
The HLSL compiler will disable flow control as
far possible.

D3D10_SHADER_DEBUG
The HLSL compiler enables the generation of
debug information.

D3D10_SHADER_ENABLE_BACKWARDS_
COMPATIBILITY

The HLSL compiler will compile older shaders to
the shader model 4.0 spec.

D3D10_SHADER_ENABLE_STRICTNESS
The HLSL compiler enables strictness on
deprecated shader syntax.

D3D10_SHADER_FORCE_PS_SOFTWARE_
NO_OPT

The HLSL compiler will compile a pixel shader
to the next best shader profile, enabling
debugging and disabling compiler optimisations.

D3D10_SHADER_FORCE_VS_SOFTWARE_
NO_OPT

The HLSL compiler will compile a vertex shader
to the next best shader profile, enabling
debugging and disabling compiler optimisations.

D3D10_SHADER_IEEE_STRICTNESS

The HLSL compiler enables IEEE strictness –
thus conforming to a pre-defined set of
standards.

D3D10_SHADER_NO_PRESHADER

The HLSL compiler disables the use of
preshaders – an optimisation where constant
expressions are replaced with references to the
GPU’s registers and memory addresses.

D3D10_SHADER_OPTIMIZATION_
LEVEL0

The HLSL compiler enables level 0 warnings.

D3D10_SHADER_OPTIMIZATION_
LEVEL1

The HLSL compiler enables level 1 warnings.

D3D10_SHADER_OPTIMIZATION_
LEVEL2

The HLSL compiler enables level 2 warnings.

D3D10_SHADER_OPTIMIZATION_
LEVEL3

The HLSL compiler enables level 3 warnings.

D3D10_SHADER_PACK_MATRIX_COLUMN_MAJOR

The HLSL compiler packs the matrixes in
column-major order – leading to more efficiency
since matrix manipulations can be performed
via a series of dot-products.

D3D10_SHADER_PACK_MATRIX_ROW_
MAJOR

The HLSL compiler packs the matrixes in row-
major order.

D3D10_SHADER_PARTIAL_PRECISION

The compiler sets all calculations to be done
with partial precision which will lead to some
performance gains.

D3D10_SHADER_PREFER_FLOW_
CONTROL

The HLSL compiler will enable flow control as
far possible.

D3D10_SHADER_SKIP_OPTIMIZATION The HLSL compiler will disable optimisations.

 237

D3D10_SHADER_SKIP_VALIDATION

The HLSL compiler will disable the validation of
code against common constraints and capability
limits.

Table B.2 HLSL compile options.

Before calling the D3D10CompileShader shader function, we first have to create an
ID3D10Blob interface:

IPD3D10Blob * pShaderBlob;

We can, for instance, compile a vertex shader stored in the file vertex_shader.vsh as
follows:

D3D10CompileShader(strPath, strlen(strPath),

 "vertex_shader.vsh", NULL, NULL, "EffectFunctionName", "vs_4_0",
 D3D10_SHADER_ENABLE_STRICTNESS, &pShaderBlob, NULL);

The shader function, EffectFunctionName, could have been declared in the shader
program like this (taking one input parameter and returning a vertex shader structure.
The declaration of shader functions, their basic, vector, texture, struct and matrix data
types as well as sampler type syntax are all dealt with in the next section):

VS_OUTPUT EffectFunctionName (in float2 vertexPosition : POSITION)

A pointer to the compiled shader code is returned via the pShaderBlob ID3D10Blob
interface. This pointer is used to create the vertex shader object using the
CreateVertexShader function (for this example) or alternatively
CreatePixelShader to create a pixel shader object or the CreateGeometryShader
ID3D10Device interface function for geometry shaders. The CreateVertexShader
function is declared in the D3D10.h header file as follows:

HRESULT CreateVertexShader(const void *pShaderBytecode, SIZE_T BytecodeLength,
 ID3D10VertexShader **ppVertexShader);

Its first parameter, pShaderBytecode, takes a pointer to the compiled shader retrieved
using the GetBufferPointer ID3D10Blob interface function. The BytecodeLength
parameter takes the size of the compiled shader determined via the GetBufferSize
ID3D10Blob interface function. The final parameter, ppVertexShader, is the address
of a pointer to an ID3D10VertexShader interface.

The CreateGeometryShader and the CreatePixelShader ID3D10Device
interface functions have the same first two parameters as CreateVertexShader.
These functions only differ in respect to the last parameter which takes a pointer to an

 238

ID3D10PixelShader interface in the case of the CreatePixelShader function and
an ID3D10GeometryShader interface for the CreateGeometryShader function.

Continuing with our vertex shader program, before calling the CreateVertexShader
function, we specify a shader object by first declaring an ID3D10VertexShader
interface:

ID3D10VertexShader **ppOurVertexShader;

We create the vertex shader object using the CreateVertexShader function (using
the previously declared ID3D10Device* interface, g_id3dDevice):

hresult_ = g_id3dDevice->CreateVertexShader((DWORD*) pShaderBlob->GetBufferPointer(),
 pShaderBlob->GetBufferSize(),

 &ppOurVertexShader);

We must also remember to release the pointer to the compiled shader source:

pShaderBlob->Release();

The final step requires us to set this newly created shader object to the pipeline stage.
To set the vertex shader to the device, we call the VSSetShader ID3D10Device
interface function. This function takes one parameter, namely, a pointer to the
ID3D10VertexShader vertex shader:

g_id3dDevice->VSSetShader(pOurVertexShader);

The vertex shader stage is now initialised with the compiled vertex shader code. To
initialise the pixel shader stage we need to call the PSSetShader ID3D10Device
interface function (using an ID3D10PixelShader interface as parameter). The
GSSetShader ID3D10Device interface function is called for setting a geometry shader
to a device (using an ID3D10GeometryShader interface as parameter).

B.3.3 Creating HLSL shaders

Pixel, vertex and geometry shaders each make out a different stage of the Direct3D 10
programmable pipeline. These shaders, operating on input data and sending their
results to subsequent pipeline stages, are created in the form of program files that can
be compiled and executed on the GPU. To recap, vertex shaders operate on vertex data
with pixel shaders reading fragments (pixels) as input and geometry shaders processing
primitives as input.

 239

Vertex shaders process a vertex read as input and generates some output in the form of
a transformed vertex. Vertex data are passed to the GPU via a vertex buffer. Each
vertex element stored in this vertex buffer is then sent to the vertex shader for
processing. For example, the following vertex shader function returns its input data as
output without doing any processing on it:

float4 VertexShader(float4 Position : POSITION) : SV_POSITION
{

 return Position;

}

The vertex shader function, labelled VertexShader, with the return type float4
takes a parameter, Position, of type float4 as input – float4 being a four-
component HLSL vector type with each of its vector components a floating-point value.
As with Cg the declaration of the input and output parameters are followed by a colon
and binding semantic to further describe the data type. The input parameter is set to the
POSITION semantic (the input vertex’s clip-space coordinates) with the output value
semantic set to SV_POSITION. Semantics using the ‘SV_’ prefix are referred to as
system-value semantics meaning they are system generated values and can be used for
both input and output data. The SV_POSITION semantic are, for example, processed
during the rasterization stage and in this case used to notify the graphics pipeline that
the output data will also be in the form of clip-space coordinates.

We can now create a pixel shader function to take the output produced by the above
defined vertex shader function as input (a float4 type coupled with the SV_POSITION
semantic). This pixel shader then returns an output colour (red) using the SV_TARGET
semantic that denotes the output as a render target format:

float4 PixelShader(float4 Position : SV_POSITION): SV_TARGET
{

 return float4(1.0f, 0.0f, 0.0f, 1.0f); //red

}

The next step is to specify an effect technique definition used for setting the previously
defined vertex and pixel shaders. Such an effect technique, starting with the syntax,
technique10 to label it as a Direct3D 10 technique, is a set of rendering passes. Each
rendering pass specifies the shader states used to render the geometry of a scene. An
effect is thus a way for Direct3D to organise the states responsible for setting the stages
of the graphics pipeline. The technique10 label is followed by the name of the
technique, TechniqueName and the name of the rendering pass, P0, containing the
callback function(s) such as SetPixelShader, SetVertexShader or
SetGeometryShader used to set the device state from an effect. Other states that can

 240

be set include the blend state (SetBlendState) and depth-stencil state
(SetDepthStencilState). We can create the following effect technique for the above
defined vertex and fragment shaders:

technique10 TechniqueName

{

 pass P0

 {

 SetGeometryShader(NULL);

 SetVertexShader(CompileShader(ps_4_0, VertexShader()));
 SetPixelShader(CompileShader(ps_4_0, PixelShader()));
 }

}

The SetPixelShader, SetVertexShader and SetGeometryShader functions take
a compiled shader as parameter, setting it to the appropriate render state. The geometry
shader is in this case set to ‘NULL’ because it has not yet been defined. The vertex and
pixel shaders, as well as the effect technique, are stored in an effect file (using the ‘.fx’
file extension).

Returning to our Direct3D application, all that remains is to create the effect object and
technique object that will be used for performing the rendering operation. We call the
D3DX10CreateEffectFromFile function to create an effect from the specified effect
file. This D3DX function is specified as follows in the D3DX10Effect.h header file:

HRESULT D3DX10CreateEffectFromFile(

 LPCTSTR pFileName,

 CONST D3D10_SHADER_MACRO *pDefines,
 ID3D10Include *pInclude,

 LPCSTR pProfile,

 UINT HLSLFlags,

 UINT FXFlags,

 ID3D10Device *pDevice,

 ID3D10EffectPool *pEffectPool,

 ID3DX10ThreadPump *pPump,

 ID3D10Effect **ppEffect,

 ID3D10Blob **ppErrors

);

This function’s first parameter, pFileName, takes a pointer to a string containing the
name of the effect file. The next parameter, pDefines, takes a pointer to a
D3D10_SHADER_MACRO shader macro array with the pInclude parameter requiring a
pointer to an ID3D10Include include interface as previously described. The shader

 241

profile, as a string value, is set via the pProfile parameter with the HLSL compilation
options being set by the HLSLFlags parameter. The sixth parameter, FXFlags, allows
us to set the effect compilation options and it can be set to any of the following
D3D10_EFFECT constants: D3D10_EFFECT_COMPILE_CHILD_EFFECT (the ‘.fx’ file is
compiled as a child effect, thus not initialising any shared data due to all shared values
being set in the effect pool), D3D10_EFFECT_COMPILE_ALLOW_SLOW_OPS (compiles
the effect file without performance mode) or D3D10_EFFECT_SINGLE_THREADED (the
effect thread is not synchronised with other effects in the effect pool). An effect pool
facilitates the sharing of variables, textures and shaders between different effects. The
next parameter, pDevice, takes a pointer to an ID3D10Device interface that will use
the resources to create a shader. The pEffectPool parameter takes a pointer to an
ID3D10EffectPool effect pool interface signifying the memory pool used for the
sharing of variables and resources between effects. The next parameter, pPump, is a
pointer to an ID3DX10ThreadPump thread pump interface used for the asynchronous
execution of routines; we will generally set this parameter to ‘NULL’ so that the
D3DX10CreateEffectFromFile function completes its operation before returning.
The second last parameter, ppEffect, takes the address of the pointer to the
ID3D10Effect created effect. The ID3D10Effect interface is responsible for
managing the shaders, state objects and resources constituting the effect. The
ppErrors parameter is set to the address of a pointer to an ID3D10Blob interface.
This final parameter is used for storing debug and compile-time error information.

We can create the effect using this D3DX10CreateEffectFromFile function in the
following manner:

ID3D10Effect* g_id3dEffect = NULL;

D3DX10CreateEffectFromFile(L"file_name.fx", NULL, NULL,
 D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY,
 0, g_id3dDevice, NULL, NULL, &g_id3dEffect, NULL);

Following the effect creation we must obtain the effect technique using the
GetTechniqueByName ID3D10Effect interface function. This function takes a string
value containing the name of the technique as parameter, returning a pointer to the
ID3D10EffectTechnique interface:

ID3D10EffectTechnique* g_id3dTechnique = NULL;

g_id3dTechnique = g_id3dEffect->GetTechniqueByName("TechniqueName");

A useful feature of effects is the ability to define multiple passes (subsets of a technique
and a render state set – for example ‘P0‘ in the above shown technique). We can thus
define multiple passes to implement multi-pass rendering. To understand multi-pass

 242

rendering, consider the following example. Say we have a geometry object with a texture
and we decide to render some three-dimensional mesh on top of it, then we can render
and texture the geometry in the first pass with the second pass being responsible for
rendering the mesh on top of it. By specifying each phase as a render pass we can
render both passes simultaneously during the render loop. Techniques are also useful
when designing a shader to run across a vast range of hardware, for example, a
technique can be specified using a pixel, vertex and geometry shader for the newest
DirectX 10 hardware while another can be specified to limit the implementation to only
vertex and pixel shaders so that the program can run on DirectX 9 hardware.

B.3.4 Common HLSL Data Types

HLSL features all the C++ derived scalar types such as bool, int, float, string,
double, uint and half (a 16-bit floating point type). Shader Model 4.0 features two
additional types derived from the float type, namely, unorm float (a 32-bit unsigned
floating point value normalised to the range [-1, 1]) and snorm float (a 32-bit
unsigned floating point value normalised to the range [0, 1]).

HLSL also allows for the use of vector and matrix types. Vector types can contain
anything from one to four components with matrix types containing up to sixteen
components. Matrix types are declared using the form ScalartypeRowxColumn, for
example, a floating point matrix, fMatrixVar, consisting out of four rows and three
columns can be declared as follows:

float4x3 fMatrixVar;

This matrix variable can be initialised in the following manner:

fMatrixVar = {1.5f, 5.5f, 0.1f,

 0.4f, 0.1f, 2.7f,

 0.3f, 2.6f, 0.2f,

 0.9f, 0.5f, 4.2f };

Matrix types can also be declared using the following syntax:

matrix <scalar type, number of rows, number of columns> MatrixVariableName

We can create the same matrix as the fMatrixVar one defined above using this
alternate syntax:

matrix <float, 4, 3> fMatrixVar = {1.5f, 5.5f, 0.1f,

0.4f, 0.1f, 2.7f,

 243

0.3f, 2.6f, 0.2f,

0.9f, 0.5f, 4.2f };

Vector types are declared using the syntax Scalartype VectorVariableName, for
example, a floating point vector holding four components can be declared in the
following manner:

float4 fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f};

There is also, as with matrix types, an alternative syntax for the declaration of vector
types:

vector <vector type, number of components> VectorVariableName

We can create the same vector, fVectorVar, using this alternate syntax:

vector <float, 4> fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f};

HLSL also allows for the definition of structures in the following manner:

struct structName

{

 float variable1;

 int variable2;

 float4 fVectorVar = {1.5f, 1.7f, 0.5f, 1.0f};

 matrix <float, 4, 3> fMatrixVar = {1.5f, 5.5f, 0.1f,

 0.4f, 0.1f, 2.7f,

 0.3f, 2.6f, 0.2f,

 0.9f, 0.5f, 4.2f };

 ...etc

}

The HLSL further supports a number of operators clearly inherited from the C
programming language. The most commonly used ones are listed in Table B.3.

Operator Type Operators Usage Examples
Additive

+, -

int x = 5;

int y = 7;

int z = x – y;

int k = z + y;
Multiplicative

*, %, /

int x = 5;

int y = 7;

 244

int z = x * y;

float k = z / y;

int l = z % y;
Array Selection

[i]

int array[2] = {3,4};

array[0] = 2;
Assignment

+=, =, *=, -=, %=, /=

int x = 5;

int y = 7;

int z += 3;
Bitwise

~, &, |, ^, <<, >>, <<=,
|=, >>=, &=, ^=

z>>y //shifts the bits of z

right y positions (5 >> 2

equals 1)
Boolean

||, &&, ?:

bool a = false;

bool b = true;

bool c = a && b;
Comparison

==, !=, <, >, <=, >=

if (diffuseLight <= 0)

 specularLight = 0;
Prefix/Postfix
Incrementing/
Decrementing

++, --

int x = 0;

x++;

--x;
Type Cast

(scalar type)

float x = 0.5;

int y;

y = (int)x;
Unary

+, -, !
bool a = true;
bool b = !a;

Table B.3 HLSL Operators

B.3.5 Utilising a Created HLSL Effect

After compiling and creating an effect by loading the effect file into the effects framework
(using the D3DX10CreateEffectFromFile function), we can proceed to initialise a
number of effect constants before setting the effect state. Effects that have not yet been
compiled will be compiled when they are loaded into the effects framework. Effect
constants and variables are first declared in the effect/shader file(s), for example:

int numberOfLightSources;

float3 incomingAmbientLightColour[3];

float4 incomingDiffuseLightColour[3];

float3 objectspaceLightPosition[3];

float4x4 modelviewProjection;

float4x4 worldviewProjection;

 245

Texture2D meshTexture;

These variables, declared using the HLSL data types, are set by the Direct3D
application. We must thus declare variables in our application that will be used to update
the shader variables:

int numberOfLights;

D3DXVECTOR3 vIncomingAmbientLightColour [3];

D3DXVECTOR4 vIncomingDiffuseLightColour [3];

D3DXVECTOR3 vObjectspaceLightPosition [3];

D3DXMATRIX mWorldviewProjectionMatrix;

D3DXMATRIX mModelviewProjectionMatrix;

Before we can set the HLSL variable values using the ID3D10EffectVariable
update methods we first have to obtain the effect variables via ID3D10Effect retrieval
functions for each of the above defined shader variables (this operation is similar to the
retrieval of technique objects):

ID3D10EffectScalarVariable* g_pNumberOfLightSources;
g_pNumberOfLightSources = g_id3dEffect
 ->GetVariableByName("numberOfLightSources")->AsScalar();

ID3D10EffectVectorVariable* g_pIncomingAmbientLightColour;
g_pIncomingAmbientLightColour = g_id3dEffect
 ->GetVariableByName("incomingAmbientLightColour")->AsVector();

ID3D10EffectVectorVariable* g_pIncomingDiffuseLightColour;
g_pIncomingDiffuseLightColour = g_id3dEffect
 ->GetVariableByName("incomingDiffuseLightColour")->AsVector();

ID3D10EffectVectorVariable* g_pObjectspaceLightPosition;
g_pObjectspaceLightPosition = g_id3dEffect
 ->GetVariableByName("objectspaceLightPosition")->AsVector();

ID3D10EffectMatrixVariable* g_pWorldviewProjectionMatrix;
g_pWorldviewProjectionMatrix = g_id3dEffect
 ->GetVariableByName("worldviewProjection")->AsMatrix();

ID3D10EffectMatrixVariable* g_pModelviewProjectionMatrix;
g_pModelviewProjectionMatrix = g_id3dEffect

 246

 ->GetVariableByName("modelviewProjection")->AsMatrix();

ID3D10EffectShaderResourceVariable* g_pMeshTexture;
g_pMeshTexture = g_id3dEffect
 ->GetVariableByName("meshTexture")->AsShaderResource();

The GetVariableByName ID3D10Effect interface function takes a string value
containing the name of the variable declared in the shader/effect program as parameter,
returning a pointer to the ID3D10EffectVariable interface. The AsVector
ID3D10EffectVariable interface function casts this returned
ID3D10EffectVariable interface to an ID3D10EffectVectorVariable interface
so that we can access the vector type. The AsScalar interface function casts the
returned interface to an ID3D10EffectScalarVariable interface used for accessing
a scalar variable with the AsMatrix function casting it to an
ID3D10EffectMatrixVariable interface so that we can read the shader variable as
a matrix type.

Other frequently used ID3D10EffectVariable interface casting methods include:
AsBlend (casts to an ID3D10EffectBlendVariable interface used for accessing
blend-state variables), AsDepthStencil (casts to an
ID3D10EffectDepthStencilVariable interface used for accessing depth-stencil
variables), AsRasterizer (casts to an ID3D10EffectRasterizerVariable
interface used for accessing rasterizer-state variables), AsShader (casts to an
ID3D10EffectShaderVariable interface used for accessing shader variables),
AsShaderResource (casts to an ID3D10EffectShaderResourceVariable
interface used for accessing shader-resource variables) and AsString (casts to an
ID3D10EffectStringVariable interface used for accessing string variables).

We can now set the values of the shader/effect variables using the following
ID3D10EffectVariable, ID3D10EffectVectorVariable,
ID3D10EffectMatrixVariable and ID3D10EffectScalarVariable methods:
SetRawValue for generic array items, SetFloatVectorArray for four-component
vector arrays containing floating point elements, SetBoolVectorArray for four-
component vector arrays containing Boolean elements, SetIntVector for four-
component vectors containing integer elements, SetIntVectorArray for four-
component vector arrays containing integer elements, SetMatrix for a floating-point
matrix, SetMatrixArray for an array of floating-point matrices, SetFloat for normal
floating-point variables and SetInt for integer variables:

g_pNumberOfLightSources->SetInt(numberOfLights);

g_pIncomingAmbientLightColour->SetRawValue(vIncomingAmbientLightColour, 0,
 sizeof(D3DXVECTOR3) * 3);

 247

g_pIncomingDiffuseLightColour->SetFloatVectorArray((float*)vIncomingDiffuseLightColour,
 0, 3);

g_pObjectspaceLightPosition->SetFloatVectorArray((float*)vObjectspaceLightPosition,
 0, 3);

g_pWorldviewProjectionMatrix->SetMatrix((float*)&mWorldviewProjectionMatrix));

g_pModelviewProjectionMatrix->SetMatrix((float*)&mModelviewProjectionMatrix));

The SetInt ID3D10EffectScalarVariable function takes a pointer to an integer
variable as parameter. The SetRawValue ID3D10EffectVariable function has
three parameters, the first taking a pointer to the variable being set, the second
specifying the offset in bytes from the beginning of the input data being set and the third
the number of bytes to set from the offset value. The ID3D10EffectVectorVariable
SetFloatVectorArray method also takes three parameters as input, namely, a
pointer to the first element of a vector array, the vector offset from the start of the array
to the first vector that is to be set and the number of array elements, in that order. The
SetMatrix ID3D10EffectMatrixVariable interface function sets a floating-point
matrix and is passed a pointer to the first element of a matrix as parameter.

That is it, the values declared in the shader program are now set and can be changed
during each rendering pass. The final step is to set the effect state within the device
itself. This is done by invoking the effect state from within the render loop by selecting a
technique and subsequently setting the state for each of the passes:

We start by calling the GetDesc ID3D10EffectTechnique function on the previously
defined technique object which is used for storing the returned
D3D10_TECHNIQUE_DESC structure, i.e. the structure describing the technique:

ID3D10EffectTechnique* g_pd3d10EffectTechnique = NULL;

/* obtain the D3D10_TECHNIQUE_DESC effect-variable description */
D3D10_TECHNIQUE_DESC technique;
g_pd3d10EffectTechnique->GetDesc(&technique);

The GetPassByIndex ID3D10EffectTechnique interface method is now called to
acquire an effect pass object representing the first pass of the technique:

/* apply the effect state by looping over the number of technique passes */

for(int i = 0; i < technique.Passes; ++i)

{

 248

 g_pd3d10EffectTechnique->GetPassByIndex(i)->Apply(0);
 ...etc

}

 249

Appendix C
Lighting and Reflection

C.1 Lighting

Before considering shadows, it is very important to briefly discuss the concepts of
lighting and reflection (as there can be no shadows without light). The lack of lighting
results in dull, flat looking object surfaces. Texture mapping helps to enhance the overall
appearance of an object but fails to convey any real sense of depth. For example, when
looking at the two flat objects in Figure C.1 (a), it is clear that the three-dimensional
nature of the scene, a wall positioned perpendicular on a floor, isn’t being conveyed
properly. Figure C.1 (b) shows this same scene illuminated by a properly defined light
source.

Figure C.1 (a) Two rendered rectangles, the one representing a floor, the other a facing
wall. (b) The same rectangles with lighting enabled.

This lack of depth is the result of uniform lighting, i.e. the equal illumination of all
surfaces. Figure C.2 (a) shows a uniform lit sphere and Figure C.2 (b) the same sphere
with basic lighting enabled. The shaded sphere is the result of graduations in the
sphere’s colour based on the colour of the light source. In this case the colour grey is
incrementally decreased from dark grey to white.

Figure C.2 (a) A uniformly lit sphere and (b) a properly lit and shaded sphere.

 250

Light can be emitted through either self-emission or reflection (Rautenbach, 2008).
When looking at a light bulb it is obvious that we are predominantly dealing with self-
emission. Light sources are categorised by their light emitting direction and the energy
emitted at each wavelength – determining the colour of the light.

As also mentioned previously, objects can absorb or reflect light emitted from a light
source depending on the reflecting object’s material properties. Light will thus only be
“visible” when illuminated surfaces have the ability to reflect or absorb said light. Objects
in computer generated graphical scenes are assigned so-called Material properties.
These are user defined parameters built around rules determining the amount of
scattering or reflection of incident light. Some surfaces, like a mirror, might reflect an
incoming ray of light perfectly (hence appear shiny) while a carpet might reflect light in
so many directions that it appears matte.

The type of light source also plays an important role in addition to the object’s material
properties. A light type property specifies the type of light to place in a scene. This
property simply denotes a light source as a point light, spotlight or directional light (also
called a parallel light). Lighting can thus be described as the interaction between a light
source and an object’s surface based on a pre-defined set of material properties. We will
focus on each of these light source types in subsequent sub-sections.

A light source can be considered a geometric object, i.e. a simple light emitting surface.
We can define a light emitting point on this surface (x, y, z) characterised by a
wavelength energy value)(λ and an emitting direction ()φθ , as shown in Figure C.3.

Figure C.3 A basic light source characterised via six elements.

 251

By combining these variables, we are able to define the illumination
function),,,,,(λφθzyxI used to describe any light source in terms of six variables. For
example, say a surface is being illuminated by a light source; then we can calculate the
overall illumination on this surface by integrating across the surface of the light source –
thus incorporating the effect of the angle between the light source and reflection surface
as well as the falloff distance (the distance from the light source to the reflecting
surface). Figure C.4 shows two distinct illumination functions for a pair of points located
on the surface of a light source.

Figure C.4 Two distinct illumination functions for a single light source.

Numerous colour intensities or shades can be described by additively combining various
intensities of red, green and blue. Building on this, light sources can be defined using a
similar red, green and blue colour component model. Each light source component is
subsequently used to calculate the corresponding colour component of an illuminated
surface. This three-component description is called luminance or intensity, and can be
written using standard matrix notation with each component representing the intensity of
either the red, green or blue colour component of the light source:

Furthermore, the overall lighting effect can be characterised by a lighting model
(Whitted, 1980). A lighting model defines light-object interactions based on the type of
light source and the material properties of the object. There are a number of commonly
implemented lighting models and it is important to note that the basic graphics pipeline is
constrained to the use of just one lighting model, namely, the fixed-function lighting

 252

model. This lighting model is basically an extended version of the Phong lighting model.
The dawn of shader programming allows for full programmability of the graphics
pipeline, thus facilitating the implementation of custom user-specified lighting models
such as Lambertian lighting, anisotropic lighting, Fresnel lighting and Blinn lighting.

C.1.1 Point Lights

A point light emits light uniformly in 360 degrees. Point lights have fixed colour and
position values and are omnidirectional in nature. The objects illuminated by this light
type appear either oversaturated (overly bright with a high contrast) or too dark – a side
effect easily corrected through the addition of ambient lights (Newman and Sproull,
1973). The primary factor influencing brightness is the distance between the illuminated
surface and the point light. Point lights are the easiest of all light types to implement,
resulting in their widespread use regardless of their unrealistic simulation of real-life light
sources. Figure C.5 illustrates the effect of a point light illuminating a surface.

Figure C.5 Point light illumination.

Using the previously discussed luminance function, we can define a point light located at
point P1 as follows:

Using this luminance function, we can calculate the level of illumination at a specific
point, k, on a surface by multiplying the intensity of the light with the inverse square
distance between the light source and illuminated surface:

 253

C.1.2 Spotlights

Spotlights are specified by a colour, spatial position and some specific direction and
range in which light is emitted. A spotlight is basically a point light with its emitting light
constrained within an angle range. This range is defined using two cones: a bright inner
cone and an encircling outer cone. The inner cone has a high intensity (correlating to the
user-defined luminescence of the light source), with the outer cone used for fading or
attenuating the light source’s intensity in an outwards direction. This gradual reduction of
light intensity is referred to as falloff. Falloff governs the decrease in light intensity from
the inner cone to the outer cone and a falloff value of 1.0 generally denotes an evenly
distributed light intensity decrease. Figure C.6 illustrates this diminishing property.

Figure C.6 Spotlight falloff.

The intensity of a spotlight can be calculated by considering the angle between the
direction of the light source and a vector to the point being illuminated. The simplest way
of formulating this intensity is to calculate the cosine, to the power of e, of the direction
angle:

We can also calculate the dot product of the spotlight’s direction vector and the vector to
the point being illuminated. This calculation results in the cosine of the angle between
these two vectors (shown in Figure C.7):

 254

Figure C.7 The relationship between the direction vector and the vector to the point
being illuminated.

C.1.3 Ambient Lights

Ambient lighting provides a uniform level of illumination throughout a scene. Numerous
large light sources are generally positioned in such a way as to scatter emitted light in all
directions, thus making it impossible to determine the original position of the light source.
Even though ambient light hitting a surface is scattered equally in all directions, we can
still determine the ambient intensity at each point on the surface.

This type of illumination has a luminance, I, which is the same for all points in the scene
(with the manner of reflection being completely dependent on the material properties of
a surface):

C.1.4 Parallel Lights

A parallel or directional light illuminates objects through a series of parallel light rays.
These light sources can be considered as point lights located a significant distance from
the surface of an object. Moving from one closely located object to another has little
influence on the direction at which light hits the object. Sunlight can be considered a
parallel light source due to it illuminating closely located objects at the same angle.
Thus, the vector to the point being illuminated does not change a great deal when
moving from one object to the next. We also use this direction vector to describe the
light source. Figure C.8 illustrates a parallel light source.

 255

Figure C.8 A parallel light.

Parallel lights do not exhibit attenuation or range properties. Consequently, they do not
require any calculations dealing with illumination effects such as falloff. They are thus
excellent light sources when computational overhead is being considered.

C.1.5 Emissive Light

Emissive light is radiated (can be considered self-reflecting) light originating from an
object’s surface. This type of light blends with our other light types, resulting in a surface
smoothly coloured through the combination of all global light colour components. An
object coloured using emissive light appears flat and unshaded; this is due to emissive
reflection not considering vertex normals or “incoming” light direction. We can describe
emissive lighting using a three-component intensity function:

C.2 Reflection

A surface is only visible when it has the ability to reflect or absorb light. This ability is the
result of the surface’s material properties, i.e. rules determining the amount of scattering
and/or reflection of incident light (Rautenbach, 2008). We can specify material properties
for any surface, the most common types being the Phong reflection model, ambient
reflection, diffuse reflection, specular reflection and transparency (Schlick, 1993).

The basic lighting model can be considered as a high-level equation summing an
ambient, diffuse and specular component to calculate the colour of an object’s surface
(Sillion and Puech, 1989):

 256

Surface colour = ambient lighting term + specular lighting term + diffuse lighting term.

This surface colour is actually equal to the overall amount of light present in a scene,
commonly called global illumination and extended to include an emissive lighting term,
resulting in the following lighting model equation used to simulate a wide range of
lighting conditions (Walter et al, 1997):

Global illumination = ambient lighting term
 + specular lighting term
 + diffuse lighting term
 + emissive lighting term.

We will now look at each of these lighting/reflectance components as functions of
material properties (e.g. surface reflectance, colour) and light source properties (e.g.
light direction, colour, position, attenuation).

C.2.1 Ambient Reflection Model

Ambient reflection, also called continuous reflection, occurs whenever light emitted from
a source is reflected so much that its origin is impossible to determine. Ambient light is
omnidirectional in nature. Omnidirectional light is radiated uniformly in all directions, or
more commonly, it is light scattered uniformly in all directions (Warn, 1983). This is also
the reason for ambient reflection being described as continuous reflection – it being
continuous in all directions, affecting the entire surface in an equal fashion. Thus, some
of the light hitting a surface is absorbed while the rest is reflected – resulting in ambient
reflection. Also, every point in a scene receives the same amount of ambient lighting,
with only the reflection of this light varying. Figure C.9 illustrates this concept.

Figure C.9 Ambient reflection

 257

The problem with ambient reflection is that illuminated objects appear rather flat and
unshaded; Figures C.1 (a) and C.2(a) show the classic appearance of ambient lit
surfaces.

This ‘flatness’ is the result of ambient lighting not factoring in vertex normals or the
direction, position, range, and additional light source properties such as attenuation or
falloff. Ambient reflection is thus the most computationally efficient of all the reflection
models. The ambient reflection coefficient is an indication of the reflected amount and is
comprised out of red, blue, and green ambient reflection coefficients collectively. The
equation for calculating ambient lighting factors in the material’s ambient reflectance and
the colour of the incoming ambient light:

Ambient lighting term = material’s ambient reflectance x incoming ambient light colour.

We can also define the intensity of ambient reflection using the ambient luminance
function (IA), the incoming ambient light colour (I) and the material’s ambient reflectance
consisting of three reflection coefficients – RAr, RAg and RAb, representing the red,
green, and blue ambient reflection coefficients, respectively:

C.2.2 Specular Reflection Model

Specular reflection occurs whenever light, from a single incoming direction, is reflected
at a single outgoing direction (Torrance and Sparrow, 1967). Specular reflection is
characterized by bright highlights on the surface of an object reflected in the direction of
the view vector. This concept is illustrated in Figure C.10.

Figure C.10 Specular reflection

 258

Specularity can be defined the amount of shininess exhibited by an object with the level
of specular reflection attributed to a user definable value, namely, the shininess
coefficient. The bigger this coefficient, the smoother the object’s surface and the closer
we are to a perfect mirror. For example, values ranging from 100 to 500 represent most
metallic surfaces while smaller values represent materials with broader highlights such
as plastic and wood. Figure C.11 shows several spheres with specular highlights.

Figure C.11 Examples of specular highlights

To calculate specular reflection we need information about both the incoming light
direction and location of the viewer as well as the colour properties of the material, light
source and shininess of the surface. The equation for calculating specularity is:

Specular lighting term = material’s specular colour
 x colour of incoming specular light
 x geometryFacingFlag
 x (max(normalized surface normal
 • normalized halfway vector,0))shininess

The geometryFacingFlag element is a flag ensuring that specular highlights are limited
to geometry facing a light source – its value is calculated by taking the dot product
between the normalized surface normal and the normalized vector pointing to the light
source. If this dot product is greater than zero then the geometryFacingFlag element is
set to 1, otherwise 0. The normalized halfway vector element is the vector halfway
between the normalized vector pointing towards the viewpoint and the normalized vector
pointing in the direction of the light source. Specular highlights are prominent when the
angle between these two vectors is small. Figure C.12 shows the vectors used in the
calculation of this specular term.

 259

Figure C.12 Vectors used in the calculation of the specular term

Alternatively we can define the intensity of specular reflection using the specular
luminance function (IS); the angle between the reflection vector (the direction of a
perfectly reflected ray) and the vector directed at the viewpoint; the intensity of the
specular light, I; the shininess coefficient, α; and Rs, the fraction of the incoming
specular light being reflected:

C.2.3 Diffuse Reflection Model

Diffuse reflections occur when incoming light is reflected in arbitrary directions (Goral et
al, 1984). The main contributing factor to this form of reflection is an uneven or rough
surface. A diffuse surface appears identical to all viewers, regardless of their respective
point of view. This type of reflection is common for matte or uneven surfaces (such as
carpets or brushed metal) and is used for shading surfaces in such a way as to convey a
sense of depth.

Diffuse reflection is a function of the incoming light direction and surface normal, in other
words, the reflection of incoming light is dependent on the surface roughness and
incoming light angle (Hall, 1989). The equation for calculating diffuse lighting is:

Diffuse lighting term = material’s diffuse color
 x color of incoming diffuse light
 x max(normalized surface normal
 • normalized vector towards light,0)

The dot product between the normalized surface normal and normalized vector pointing
towards the light source gives the measure of incident light received by the surface – the

 260

smaller the angle between these two vectors, the greater the dot product result, and the
greater the amount of incident light falling on the surface. The max (normalized surface
normal. normalized vector towards light, 0) element in the equation ensures that only
surfaces facing a light source reflect some diffuse lighting – surfaces facing away from a
light source result in a negative dot product. Figure C.13 shows a diffuse surface with
the normalized surface normal and normalized vector pointing at the light source.

Figure C.13 Diffuse reflections

We can also define perfect diffuse surfaces, i.e. surfaces reflecting light in no particular
direction. These surfaces, also called Lambertian surfaces, are generally so rough that it
is mathematically impossible to determine a preferred angle of reflection. Also,
Lambertian light has a consistent intensity regardless of the distance between the
reflecting surface and light source.

Perfect diffuse reflection can be modelled using Lambert’s cosine law. This law states
that the reflection or radiance observed from a perfect diffuse surface is directly relative
to the cosine of the angle between the vector directed at the light source and the surface
normal:

Simply put, Lambert’s law states that a perfectly diffuse surface always reflects the same
amount of light, regardless of the viewing angle. For example, say a surface is being
illuminated using a parallel light source, when this light is positioned perpendicular to the
surface; the surface will appear brightly lit. Placing this light source at, say, a 135 degree
angle will result in a more dimly lit surface due to the light rays covering a larger surface
area. Figure C.14 illustrates Lambert’s cosine law.

 261

Figure C.14 A perfect diffuse surface being illuminated by (a) a light source positioned
perpendicular to the surface and (b) a light source positioned at a 135 degree angle

C.2.4 The Phong Reflection Model

The Phong reflection model, also loosely called Phong shading, was developed in 1973
by Bui Tuong Phong (the late computer graphics researcher and pioneer) and later
extended to include a halfway vector in the calculation of the specular term by Jim Blinn.
The Phong model is an illumination model that controls the shading of individual pixels; it
is computationally efficient and leads to realistic looking reflections. Phong’s goal was to
create realistic looking objects in as close to real time as possible. The Phong reflection
model basically combines ambient, specular and diffuse lighting components to closely
approximate real world reflections. This concept is shown in Figure C.15. We can
consequently write the combination of these lighting terms as:

Figure C.15 Combining the lighting terms, producing a Phong reflection

Mathematically, the Phong reflection model considers reflected light as a function of the
cosine between the surface normal and the incoming light direction. More precisely, the
colour value of a point on the surface being illuminated is a function of four vectors, as
shown in Figure C.16: the normal vector at this point, the vector directed at the
viewpoint, a vector directed at the light source, and the reflection vector (indicating the
direction of a perfectly reflected ray).

 262

Figure C.16 Vectors used in the calculation of the Phong reflection model

The following equation can be used to calculate the Phong reflection of a point on the
surface of an object:

with ka the material’s ambient reflectance, ia the colour of incoming ambient light, kd the
material’s diffuse reflectance, L the vector directed at light source, N the surface normal,
id the colour of incoming diffuse light, ks the material’s specular reflectance, R the
reflection vector, V the vector directed at the viewpoint, a the shininess coefficient and is
the colour of incoming specular light. The Phong reflection, using this equation, is
typically calculated for individual intensities of red, green, and blue. The sum component
in the above given equation defines a set of light sources. The effect of each light
source, on the point being illuminated, is thus considered by the equation.

 263

Appendix D
Real-time Shadow Generation

D.1 Introduction

Real-time shadow generation contributes heavily towards the realism and ambience of
any scene being rendered. Research dealing with the calculation of shadows has been
conducted since the late 1960s and has picked up great momentum with the evolution of
high-end dedicated graphics hardware. Shadows are produced by opaque or semi-
opaque objects obstructing light from reaching other objects or surfaces. A shadow is a
two-dimensional projection of at least one object onto another object or surface (Crow,
1977). The size of a shadow is dependent on the angle between the light vector and
light blocking object. The intensity of a shadow is in turn influenced by the opacity of the
light-blocking object. An opaque object is completely impenetrable to light and will thus
cast a darker shadow than a semi-opaque object. The number of light sources will also
affect the number of shadows in a scene (with the darkness of a shadow intensifying
where multiple shadows overlap). Figure D.1 illustrates shadow generation, specifically
the implementation of stencil shadow volumes – a popular shadow rendering technique.

Figure D.1 Example of stencil shadowing – note the darkening of overlapping
shadows.

The drive towards realism has led to the development of many shadowing algorithms.
Some of these algorithms, like shadow mapping and shadow volumes, are more
successful than others. The success of an algorithm is dependent on the balance
between speed and realism and techniques like shadow mapping and stencil shadow
volumes are particularly amenable to hardware implementation – thus freeing the CPU
of a substantial processing burden and making the real-time rendering of shadows

 264

feasible (Kilgard, 1999). Other shadowing approaches, such as the one proposed by
Boulanger et al (2003), have in turn focussed on visually pleasing approximations for
computationally expensive natural scenes.

Looking at shadows from a foundational perspective reveals them as a product of an
environment’s lighting. Shadows can have either hard or soft edges. This is dependent
on the type of light source used and the distance between the light source and object. In
the case of soft shadows we differentiate between both an umbra and penumbra. The
darkest area of a shadow, receiving no light at all, is referred to as the umbra with the
penumbra, receiving a small amount of light, indicating the partially shadowed edge
(Akenine-Möller et al, 2002). Figure D.2 illustrates a shadow’s umbra and penumbra.

Figure D.2 A soft shadow with related umbra and penumbra.

It should be noted that there is always a gradual intensity transformation from the umbra
to penumbra (Akenine-Möller et al, 2002). However, the fading of the shadow (as its
distance from the casting object increases) need not necessarily be gradual. Point lights
will, for example, produce non-fading hard-edged shadows, with ambient light sources
producing soft-edged shadows fading into the distance. The area of a light source also
affects the gradual softening of shadows. The larger the light source’s area, the more
quickly the shadow grades off. Figure D.3 shows the difference between shadows
produced by point and ambient light sources.

 265

Figure D.3 (a) Hard-edged shadow produced by a point light source. (b) Soft-edged
shadow produced by an ambient light source.

We will now investigate several shadowing algorithms, including the fundamentals of
shadow volumes and shadow mapping. The first two algorithms, namely scan-line
polygon projection and Blinn’s shadow polygons, are historic in nature. We describe
these algorithms here not only for the sake of completeness but also since some of the
elements introduced by them form the basis of general shadow computation. These first
two techniques aren’t suited for real-time implementations. However, more recent
algorithms such as stencil shadow volumes and hardware shadow mapping remedy this
situation by emphasising the balance between processor efficiency and realism.

It is necessary to note, before continuing, that shadowing remains one of the most
processor intensive tasks and despite each technique’s limitations, it is important to
consider each algorithm with its intended application area in mind.

D.2 Shadow Rendering Algorithms

D.2.1 Scan-Line Polygon Projection

A quite complex, and now mostly redundant shadow algorithm was introduced by Appel
(1968) and further developed by Bouknight and Kelley (1970). This algorithm, commonly
known as scan line polygon projection, adds shadow generation to scan-line rendering
(Lane et al, 1980). A scan-line algorithm operates on a row-by-row basis, as opposed to
a pixel-by-pixel or polygon-by-polygon basis. A scan-line itself is a single line or row
composed of a series of successive pixels stored in an array or list. The overall image is
rendered as a result of the consecutive downwards repositioning of the scan-line
(Bresenham, 1987). To enable both pre-rendered and real-time shadow generation via
scan-line algorithms, it is necessary to append the original algorithm with a pre-
processing stage. This pre-processing stage builds up a secondary data structure linking
all the polygons that will cast a shadow on some other polygon.

 266

The scan-line projection algorithm has an additional stage where all the polygons of a
scene are projected onto a sphere centred at the light source (the centre of projection).
This allows for the identification of all polygons casting shadows on other polygons. It is
important to remember that, in a scene with k polygons, one will have at most k(k – 1)
shadows – the detection and elimination of polygon groups not interacting are thus of
crucial importance. With all the shadow casting polygons linked in a secondary data
structure, we can now project the edges of these polygons onto polygons intersecting
the scan-line. A pixel’s colour value is modified wherever the scan-line traverses one of
these shadow edges. Hence, the light source (at the centre of projection) and shadow
polygon cast a shadow onto the polygon intersected by the scan-line. The following
cases denote whether a given pixel is in shadow or not:

1) The scan-line algorithm continues normally if no shadow casting polygon for
the given pixel exists.

2) Decrease the brightness of the scan-line segment’s pixels if a shadow
casting polygon fully overlaps the intersected polygon.

3) If a shadow casting polygon partially overlaps the intersected polygon,
subdivide the intersecting scan-line segment recursively until condition 1 or 2
is reached.

Scan-line polygon projection only allows for the generation of hard-edged shadows via
point light sources. Figure D.4 illustrates the above described process.

Figure D.4 Scan-line polygon projection.

D.2.2 Blinn’s Shadow Polygons

An extremely easy to use shadow generation technique was described by Blinn (1988).
This method simply calculates the projection of an object on some base-plane. In short,
a shadow cast by a point light and a polygon onto another polygon can be rendered by

 267

projecting the first polygon onto the plane of the second polygon (Blinn, 1988). The point
light is in this case at the centre of projection and the resulting shadow is referred to as a
shadow polygon. Figure D.5 illustrates the projection of a shadow polygon (onto the xy-
plane) with the light source located at the centre of projection.

Figure D.5 Shadow polygon with a point light source at the centre of projection.

The local illumination approximation states that if we have an infinitely positioned point
light source, then we can consider its light rays as parallel (Phong, 1975). These rays,
emanating from a light source located at the point ()lll zyx ,, , will cast a shadow at the
point ()sss zyx ,, based on the intersection of any point ()ooo zyx ,, located on an object
positioned between the light source and some plane.

Generally though, if we have some finitely positioned point light, then we can translate
the scene by some matrix, ()lll zyxT −−− ,, , so that the light source is positioned at the
centre of projection. This translation yields the following projection matrix:

.

0010

0100
0010
0001

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

ly

M

After applying this projection matrix we have to translate the scene back to its original
position with the generic translation ()lll zyxT ,, . By concatenating the two translation
matrices with the projection matrix, we are able to define the shadow projection

),,(sss zyx of the original point ()ooo zyx ,, as:

).
/)(

,0,
/)(

(
ll

l
l

ll

l
l yyy

zz
z

yyy
xx

x
−
−

−
−
−

−

 268

The following steps outline the process of creating a shadow polygon:

1) Define and initialise the shadow projection matrix M.
2) Render the polygon normally.
3) Translate the light to the origin (centre of projection).
4) Calculate the projection of the object with the shadow projection matrix.
5) Translate everything back to their original positions.
6) Render the shadow polygon.

This method is often utilised to render the shadows of single polygons (Blinn, 1988). It is,
however, only useful for the projection of shadows on flat surfaces, not for inter-object
shadows. We will much rather implement an alternative method whenever objects are
expected to cast shadows on other objects. For example, we could create a relatively
uncomplicated shadow algorithm by simply modifying a hidden surface removal
algorithm. The premise behind our modification would be that shadows are in fact areas
hidden from light sources.

D.2.3 Shadow Mapping

Lance Williams introduced the concept of shadow mapping in 1978. His primary aim was
the rendering of shadows on curved surfaces. Shadow mapping adds shadows to a
scene by testing whether a particular pixel is hidden from a light source. It does this by
first constructing a separate shadow Z-buffer for every light source and then storing the
depth information of a scene in this buffer with the light source as view point. This depth
information leads to a depth image or shadow map consisting of all the polygons not
hidden from the light source (Shade et al, 1998). Hidden pixels are discovered through a
comparison with this depth image (Everitt et al, 2001). The shadow map partitions a
light’s view volume into shadowed and non-shadowed regions and we store this depth
buffer image (shadow map) as a texture in the 3-D accelerator’s texture unit. This texture
is subsequently projected onto an area and/or object(s) for the shadow effect.

Although the shadow map is now stored in the display adaptor’s texture memory, it must
still be updated every time changes are made to the scene’s light sources, geometry or
object positions. However, no updating of the shadow map is required when altering the
camera’s point of view. We will typically partition the scene when implementing shadow
maps, thus limiting the time it takes to update the depth image.

The final step of the algorithm is to render the scene via a Z-buffer algorithm. More
specifically, if a pixel is not hidden from the light source then the related vertex is
translated from the view point’s screen space to light space (screen space with the light
at the centre of projection). After all the vertices of an object have been translated, we
have the object’s spatial location from the light source’s point of view.

 269

The x- and y- coordinates of a translated vertex are used to index the shadow Z-buffer.
Its z-component is used during the depth comparison test. This test simply compares a
vertex’s depth value to the corresponding value stored in the shadow map, determining
whether the specific vertex will be shadowed or not. More explicitly, the vertex is in
shadow if its depth value is greater than the value stored in the shadow map. For all
other cases we can say that the vertex is closer to the light source than another arbitrary
shadow casting surface and will thus be rendered without a shadow. Figure D.6 shows a
3-D object and its resulting shadow map.

Figure D.6 (a) Object as seen from the light’s point of view (b) Object’s depth map
from the light’s point of view (c) Shadow polygon rendered via the horizontal projection
of the depth map.

Shadow mapping can be implemented as either a single- or multi-pass algorithm (Everitt
et al, 2001). That is, if a fragment shader is used to render shadows by performing the
depth comparison test, then we will not require additional passes to produce the shadow
maps (Fernando et al, 2001). However, if we do not make use of programmable shaders
(such as NVIDIA’s Cg or DirectX’s High Level Shader Language) then we won’t have
access to predefined lighting models (lit or shadowed) and will consequently have to
implement an additional shadow map generation pass for each light source (Lauritzen,
2006). In more complete terms, we can outline the dual-pass shadow mapping process
as follows:

1) Create the shadow map by rendering the Z-buffer with regard to the light’s
point of view.

2) Draw the scene from the viewer’s point of view.
3) For each rasterized fragment, calculate the fragment’s coordinate position

with regard to the light’s point of view.

 270

4) Use the x- and y- coordinates of step 3’s translated vertex to index the
shadow Z-buffer.

5) Do the depth comparison test, if the translated vertex’s depth value (the z-
value of step 3’s translated vertex) is greater than the value stored in the
shadow Z-buffer, then the fragment is shadowed, else it is lit.

Shadow mapping suffers from aliasing errors due to the use of a projection
transformation mapping shadowed pixels to screen pixels, often causing changes in a
pixel’s screen size. This is a direct result of the Z-buffer algorithm’s use of point
sampling. The rendered shadow’s edges are often jagged due to point sampling errors
occurring during the calculation phase of the shadow Z-buffer. These errors are further
amplified when accessing the shadow Z-buffer for the projection of pixels onto the
shadow Z-buffer map. The only way of minimising the visibility of a shadow’s jagged
edges is to implement some form of pre-filtering and to use very large (high resolution)
shadow maps.

D.2.4 Shadow Volumes

A shadow volume is a volumetric area defined by light rays extending outwards about
the silhouette edge of an object (Crow, 1977). All the objects positioned within a shadow
volume are hidden from the light source and are thus in either full or partial shadow. The
contour of an object’s surface is defined as a silhouette edge when the normal vector of
the surface is perpendicular to the view vector (Everitt et al, 2002). A silhouette edge
can more generally be considered as an outline or edge separating a front- and back-
facing surface (Heidmann, 1991). The shape of the shadow volume is determined by the
shape of the object’s silhouette edge and a shadow volume is made up of so-called
“invisible” shadow polygons. We refer to these shadow polygons as “invisible” since they
are never rendered and only used to determine the shadowed areas. Shadow volumes
are theoretically infinite volumes produced by polygons; however, for practical usability
we intersect an infinite shadow volume with the view volume to produce a finite front-
and back-capped shadow volume. Figure D.y shows the silhouette edge of a cube with
Figure D.8 illustrating the capping of a semi-infinite shadow volume.

 271

Figure D.7 A simple silhouette edge.

Figure D.8 Construction of finite shadow volume.

The original shadow volume concept was introduced by Frank Crow in 1977. He defined
a shadow volume as three-dimensional area occluding objects and surfaces from a light
source. This original approach has since been extended to incorporate the generation of
soft-edged shadows, including revision of the algorithm to utilise modern-day 3-D
acceleration capabilities. The advent of dedicated 3-D acceleration hardware and the
direct control of this hardware via APIs such as OpenGL and Direct3D have significantly
contributed to the use of shadow volumes in modern computer games such as id
Software’s Doom 3 and Bioware’s Neverwinter Nights (Carmack, 2000).

The first feasible real-time shadow volume algorithm was introduced by Tim Heidmann
in 1991. His algorithm made use of the 3-D accelerator’s stencil buffer – effectively
limiting the render area (called stencilling). The stencil buffer controls rendering by
enabling or disabling drawing to a specific pixel. Heidmann discovered that the stencil

 272

buffer could be used to count the number of front- and back-facing shadows in front of
an object if we rendered the shadow surfaces in two passes. By counting these shadow
surfaces we are able to determine whether an object’s surface is in shadow or not.
Heidmann’s technique became known as the depth-pass stencil mask generation
algorithm.

The general Heidmann stencil shadow volume process is summarised by the following
phases:

1) Assume the scene in entirely shadowed.
2) Render the shadowed scene.
3) Calculate the shadowed scene’s depth information.
4) Use this depth information to define a mask via the stencil buffer to indicate

the lit areas.
5) Assume the scene is entirely lit.
6) Render the lit scene, applying the stencil buffer mask to cast the shadows.

There are two variations to the depth-pass technique, namely, depth-fail and exclusive-
or (the latter of which is omitted due to its failure in dealing with intersecting shadow
volumes). All shadow volume algorithms follow the above described shadow generation
process and differ only in their approach of calculating the stencil mask. The depth-pass
and depth-fail stencil shadow volume algorithms are described in detail below.

Depth-pass

Shadow volume algorithms operate on a per-pixel basis, performing a shadow test for
every pixel in the frame buffer. We refer to all the data needed for the rendering of a
pixel (stored in the frame buffer) as a fragment. Our algorithms will thus focus on all
rasterized fragments to determine whether a specific fragment is in shadow or not. In
more complete terms, we can write the above outlined stencil shadow volume process
as follows:

1) For each rasterized fragment, render the fragment using ambient lighting,
updating the Z-buffer after each fragment has been rendered.

2) Now we have to compute which fragments are in shadow. We once again
look at each rasterized fragment, rendering the fragment as lit if not
shadowed.

We can use the depth-pass method to test whether a fragment is in shadow or not. This
method computes the fragments in shadow by generating a stencil mask. Using the
stencil buffer, we count the number of front- and back-facing shadows in front of an
object by rendering the front- and back-faces of the shadow surfaces in two passes. By

 273

counting these shadow surfaces we are able to determine whether an object’s surface is
in shadow or not. If there are more front-facing shadow surfaces than back-facing ones,
then we can conclude that a shadow is projected onto an object. The following process
is used to compute the number of fragments in shadow:

1) For each rasterized fragment, render the fragment using ambient lighting,
updating the Z-buffer after each fragment has been rendered.

2) Determine the silhouette edges of a shadow casting object. Following this
the shadow volume polygons (shadow surfaces) are calculated (from the
light source using the silhouette edges of the shadow casting object). These
two steps are performed for each shadow casting object.

3) Now deal with the front- and back-facing shadow surfaces with regard to the
point of view, incrementing the stencil buffer value for each front facing
shadow surface if the depth-test passes (depth-pass using the Z-buffer) –
counting the shadows in front of the object. Following the test for front-facing
shadow surfaces, we focus on each back-facing shadow surface with regard
to the view point – decrementing the stencil buffer value if the depth-test for
a specific shadow surface passes.

Following the above process, we simply have to check the stencil buffer value for each
fragment to identify the fragments in shadow. If a fragment’s stencil buffer value is
greater than zero then we need not draw this fragment during the second rendering pass
– hence causing the fragment to be in shadow. Figure D.9 illustrates the above
described process:

Figure D.9 Testing whether a fragment is in shadow.

The described depth-pass process is extremely efficient; however, certain issues
become apparent upon implementation. The most common problem occurs whenever

 274

the point of view (camera or viewer) is positioned within a shadow volume. This leads to
visibility of the shadow’s back-face. The depth-test will pass in this case, causing the
stencil buffer value to be decremented, thus becoming -1 due to a back-face being
visible prior to any front-facing shadow surfaces. This problem is referred to as stencil
counting inversion and it can be resolved by capping the front of the shadow volume.
Alternatively we can initialise the stencil buffer to 2K-1, with K the precision of the stencil
buffer. These approaches are, however, less than efficient and the depth-fail technique
is generally implemented as an alternative.

Depth-fail

The depth-pass approach computes the stencil buffer values by incrementing for front-
and decrementing for back-facing shadow surfaces. The depth-fail approach modifies
this calculation process (originally counting from the point of view) by counting from
infinity. So, by reversing the depth and counting the shadow surfaces behind an object
instead of those in front of it, we no longer face the stencil counting inversion issue. The
only general issue with this approach is that we must cap the end of the shadow volume
to avoid the condition where shadows point to infinity. The following process is used to
compute the number of fragments in shadow:

1) For each rasterized fragment, render the fragments using ambient lighting,
updating the Z-buffer after each fragment has been rendered.

2) Determine the silhouette edges of a shadow casting object. Following this
the shadow volume polygons (shadow surfaces) are calculated (from the
light source using the silhouette edges of the shadow casting object). These
two steps are performed for each shadow casting object.

3) Now deal with the front- and back-facing shadow surfaces with regard to the
point of view, decrementing the stencil buffer value for each front facing
shadow surface if the depth-test fails (depth-fail using the Z-buffer).
Following the test for front-facing shadow surfaces, we focus on each back-
facing shadow surface with regard to the view point – incrementing the
stencil buffer value if the depth-test for a specific shadow surface fails.

Although the depth-fail method effectively avoids the stencil counting inversion issue it
still requires the additional back-capping of shadow volumes. This results in some extra
rasterization time which can lead to considerable performance slowdowns under certain
conditions. It is thus in some cases more advantageous to use the depth-pass method
while explicitly dealing with the cases where the point of view is located within a shadow
volume. It is also often possible to increase the performance of a stencil shadow volume
implementation by utilising some hardware extension such as NVIDIA’s depth bounds
test enabling the culling of shadow volume sections not affecting the visible area.

 275

It is interesting to mention though that Kolic el al (2004) developed a shadowing
technique purely focussing on the utilisation of current GPU advances. Their algorithm
specifically deals with the casting of shadows on concave complex objects such as
trees. Koloc et al (2004) formally state that “for those objects, silhouette calculation that
is usually preformed by other shadow volume algorithms is complicated and poorly
justified. Instead of calculations, it is better to assume a worst case scenario and use all
of the edges for construction of the shadow volume mesh, skipping silhouette
determination entirely. The achieved benefit is that all procedures, i.e. the object and
shadow calculation and rendering, could be done on GPU. The proposed solution for
shadow casting allows open edges. Indexed vertex blending is used for shadow
projections, and the only calculation required is determining projection matrices. Once
created, shadow volume is treated like any other mesh.” When Crow implemented and
defined the original shadow volume model back in 1977, he simply did not have access
to any of these modern hardware acceleration aids and hence did not develop the now
commonly used stencil shadow volume algorithm with modern day graphics accelerators
in mind.

Thakur et al (2003) also developed a discrete algorithm for improving the Heidmann
original. Chapter 3 deals with this algorithm in detail. Another significant algorithmic
improvement over the Heidmann original was made by Chan and Durand (2004). They
specifically combined the strengths of shadow maps and shadow volumes to produce a
hybrid algorithm for the efficient rendering of pixel-accurate hard-edged shadows. Their
method uses a shadow map to identify pixels located near shadow discontinuities, using
the stencil shadow volume algorithm only at these pixels.

Soft-edged Shadows using Penumbra Wedges

Implementation of the above discussed shadow volume techniques always result in
pixel-accurate hard-edged shadows. Soft-edged shadows can be simulated through the
construction of several shadow volumes by translating the original light source to various
positions close to that of the original. Following this we simply have to combine the
resulting shadows. The problem with this approach is rendering performance due to
shadow volume construction taking up a substantial amount of processor time. One
solution is the calculation of penumbra wedges as proposed by Akenine-Möller and
Assarsson (2002). A penumbra wedge is defined in place of a shadow polygon for each
silhouette edge of an object – combining a series of these penumbra wedges result in
the creation of a soft-edged shadow.

The penumbra wedge algorithm calculates the amount of light that reaches a certain
point p. This amount of light intensity ranges from ‘0’ to ‘1’. When the light intensity is ‘0’
we can define the point p as fully shadowed or conversely as fully lit with a light intensity
of ‘1’. For all other values we can define point p located within the penumbra region. The

 276

light intensity inside the penumbra region is calculated using a signed 16-bit buffer. This
light intensity buffer is simply a high precision stencil buffer. The lower the number of bits
used for the buffer, the higher the implementation’s performance and the lower the
number of shades in the penumbra region. The varying shade levels in the penumbra
region are created by multiplying each light intensity value stored in this buffer with some
value s. This value is normally chosen as ‘255’ since colour buffers allow for 8-bits per
component, leading to at least ‘256’ on-screen penumbra wedges. The following process
is used for calculation of the penumbra wedges (illustrated in Figure D.10):

1) Initialise the light intensity buffer to ‘255’ – indicating that the viewer is now
positioned outside of the shadow volume.

2) Draw the scene using both specular and diffuse lighting.
3) Draw the penumbra wedges using the following algorithm:

a. For some light ray, compute the entry and exit points on the outside
penumbra wedge. This must be done for each visible fragment. The
entry point is defined by an x- and y-coordinate, with the
corresponding z-value stored in the Z-buffer.

b. Transform this point to world space coordinates (the point’s
independent local coordinate system has now been transformed into
a global coordinate system. This provides all the points with a shared
global coordinate space – i.e. one point’s position can be described in
terms of another’s and all user defined points can now be positioned
within the same scene).

c. Test whether the point is located within the penumbra region.
i. If the point is located within the penumbra region, compute the

light intensity of this point and the entry point, scaling the light
intensity by subtracting the computed light intensity of the point
located within the wedge from the entry point and multiplying
this result by ‘255’.

ii. Add the above calculated light intensity to the light intensity
buffer.

4) Add ambient lighting to the rendered scene.

 277

Figure D.10 Locating a point within the penumbra region.

The possibility of overlapping penumbra wedges exists in situations where the volume is
entered more than once. Such cases result in negative light intensity values, thus
requiring the clamping of the values stored in the light intensity buffer to the range [0,
255]. It is also possible to leave the volume more than once whenever the viewer is
located within the volume. By setting the maximum possible light intensity value to ‘255’,
we effectively avoid higher light intensities than that of the areas outside the volume –
which clearly isn’t possible.

Akenine-Möller and Assarsson’s penumbra wedges algorithm (Akenine-Möller and
Assarsson, 2002) can be implemented using either OpenGL or Direct3D. The main
problem is the large vertex and pixel shader programs required, making true real-time
performance only achievable on extremely high-end hardware. The following steps
outline a hardware-accelerated implementation of the penumbra wedge algorithm:

1) Render the scene using either OpenGL or Direct3D.
2) Implement the wedge rasterization, initialising the Z-buffer prior to

rasterization.
3) Rasterize the front facing triangles of the penumbra wedges – the entry

point’s plane is now identified.
4) Identify the exit point by calculating the ray’s intersection with the back

facing planes and picking the one closest to the ray.
5) Specify the point in world space coordinates via a transformation based on

the Z-value.
6) Determine whether this currently selected point falls within a penumbra

wedge or not by substituting the point’s coordinates into the plane equations:
a. If the point falls within a wedge, calculate the intersection distances

from the point to the planes.

 278

Brotman and Badler (1984) developed a similar algorithm for the generation of soft-
edged shadows (adding penumbras to hard-edged shadows). They proposed the use of
an enhanced Z-buffer algorithm, thus retaining the benefits inherent to the Z-buffer
rendering approach. They extended the Z-buffer to represent a pixel location as a record
of five fields. During the shadow polygon rendering phase, these pixel records are
modified based on whether a point is lit or not. The penumbras are created by
representing a distributed light source as a series of point light sources. This approach is
processor intensive due to the combination of shadow volume calculations with Z-buffer
memory access costs. Crowe’s ideas were also extended by Bergeron (1985) to include
non-planar polygons and objects.

 279

Appendix E
Physics

Simulating Newtonian physics through the use of quantities such as mass, acceleration,
velocity, friction, momentum, force, etc allows for the prediction of object behaviour
under certain conditions (Halliday et al, 2007). For example, through physics modelling
we can simulate the expected behaviour of several stacked barrels falling over or even
an explosion ripping through a bunker complex.

Physics modelling is generally implemented as part of a physics engine. Physics
engines are classified into two classes: real-time engines such as the Havok physics
engine and high-precision physics engines such as those used by scientists. Real-time
physics engines “approximate” physics modelling to balance computational accuracy
with the speed of the simulation (as the case with our quality scaling). Scientific physics
engines are employed by organisations like NASA and universities for various
simulations, for example, Figure E.1 shows the computational fluid dynamics model
used for simulating the air flow around a space shuttle during atmospheric re-entry.

Figure E.1 Simulated air flow around a space shuttle during atmospheric re-entry.

The shown computational fluid dynamics model requires an incredible amount of
processing power to simulate (Belleman et al, 2008). This is mostly due to the use of
numerical methods and advanced algorithms when analysing the flow of particles – each
particle is assigned a force vector which are then combined across the entire region to
illustrate the resulting particle flow (Reeves, 1983).

When adding Newtonian physics to a game we must always keep processing
constraints in mind. Our biggest problem is not performing the physics calculations but

 280

dealing with a fluctuating frame rate and rounding errors that can result in unrealistic
motion (Witken and Heckbert, 1994). On the other hand, increasing data precision will
solve the problem of rounding errors (Reeves and Blau, 1985) but with a significant
impact on CPU and/or GPU usage.

We will now model Newtonian physics by looking at the conservation and transfer of
momentum as well as the modelling of gravitational pull, trajectories, friction and object
collision.

E.1 Linear Momentum

Action-oriented games without collisions would simply not work. Whether it is a projectile
fired from a weapon striking a monster, a car skidding across the Daytona Speedway or
the player activating a switch; without the ability to simulate one object striking another
we would simply not “have game”.

At the core of collision simulation is the conservation and transfer of momentum (Moore
and Wilhelms, 1988). The conservation of momentum is described as a rule of nature
stating that if we have a closed system of objects, without any external interaction, then
the total momentum of this system will remain constant. This rule links back to Newton’s
first law of motion, that is, a body in motion will remain in motion unless a net force is
exerted upon it. Building on this; Newton’s third law of motion states that for every action
there is an equal and opposite reaction – a law that can be proven by considering the
conservation of momentum.

To understand conservation of momentum, consider a game of squash in a perfect
world where no energy is lost when the ball hits the squash court’s wall (in the real word
energy will be released in the form of sound, heat and deformation the moment the ball
hits the wall, thus resulting in a slower velocity (and less momentum) after the collision
than before. However, in a perfect world we don’t consider loss in momentum and the
velocity of the ball remains the same after the collision than as before.

The transfer of momentum describes the situation where a collision occurs and
momentum is transferred from the one object to the other. Thus, the lost of momentum
at the one side must equal the momentum gained at the other (assuming conservation
of kinetic energy as well as momentum before and after the collision). This concept is
described mathematically as follows:

,21 objectobject pp Δ−=Δ where pΔ is the change in momentum of each object.

 281

A well known example demonstrating the conservation and transfer of momentum is
Newton's cradle – a device consisting of five (or more) pendulums neighbouring one
another. Figure E.2 shows Newton’s cradle, when the midair pendulum is released, it will
collide with the left-most static pendulum. On impact, energy is transferred from one
pendulum to the other until the right-most pendulum is pushed outwards by the
transferred force. The motion will eventually cease due to a continuous energy loss
(mostly released as sound energy i.e. “clacking” sounds).

Figure E.2 Newton’s cradle used for demonstrating the conservation/transfer of
momentum and energy.

To fully understand perfect collisions and the conservation of momentum, consider the
two objects shown in Figure E.3.

Figure E.3 Collision and the transfer of momentum.

Both objects have a mass (mobject1 and mobject2) and initial velocity (vinitial1 and vinitial2).
After collision each will have a new velocity – two unknown values at this stage (vafter1

 282

and vafter2). Using these variables we can now describe the conservation of momentum
mathematically using the following equation:

22112211 afterobjectafterobjectinitialobjectinitialobject vmvmvmvm ×+×=×+×

One problem with this equation is that we normally wish to calculate each object’s vector
velocity after the collision, something which is impossible because we’ll always end up
with two unknowns. For example, say object 1 has a mass of 250kg and an initial
velocity of 1200m/s while object 2 has a mass of 300kg and an initial velocity of
2400m/s, then by substituting these values in the above equation, we get:

21 300250/2400300/1200250 afterafter vkgvkgsmkgsmkg ×+×=×+×

The only logical approach is to combine this equation with something we already know,
in this case the conservation of energy, specifically the conservation of kinetic energy.

Kinetic energy is energy stored in a moving object, or more specifically, the mechanical
work needed to accelerate this object from rest to its current state. Mechanical work is
the total amount of energy transferred to an object through the application of force. The
simplest way of calculating work, measured in joule (J), is to use the following formula:

,FdW = where F is the force exerted on the object and d the distance travelled by the
object.

This formula can also be written as:

,
2
1 2mvW = with m the mass of the object and v its velocity.

Applying external work to an object causes a change in its kinetic energy. For example,
say an object has an initial kinetic energy of Ek_initial and some force is applied to it
resulting in a new kinetic energy, Ek_final, then we can represent the relation between
work and kinetic energy as follows:

kEW Δ=
 initialkfinalk EE __ −=

Kinetic energy (Ek) is the ability to do work and can easily be calculated using the
following equation:

 283

,
2
1 2mvEk = with m the mass of the object in kilograms and v its velocity in meters per

second.

Kinetic energy, akin to work, is measured in Joules (J), with one Joule being equal to
one kilogram-meter squared per second squared (kgm2/s2). This energy remains
constant before and after a collision – a condition described as the conservation of
kinetic energy. In the real world energy will of course be lost in the form of sound, heat
and deformation; however, this is only something that will be considered for the
implementation of a scientific physics engine. Using this conservation property we can
now describe the total kinetic energy before and after a collision via the following
equation:

2
22

2
11

2
22

2
11 2

1
2
1

2
1

2
1

afterobjectafterobjectinitialobjectinitialobject vmvmvmvm ×+×=×+×

We can now use this equation in combination with the previous listed one describing the
conservation of momentum to solve the given example’s two unknown velocities
following the collision:

21 300250/2400300/1200250 afterafter vkgvkgsmkgsmkg ×+×=×+×

2
2

2
1

22)300(
2
1)250(

2
1)/2400)(300(

2
1)/1200)(250(

2
1

afterafter vkgvkgsmkgsmkg +=+

The simplest approach would be to write Vafter1 in terms of Vafter2 for the second equation,
substituting it into the first equation and solving Vafter2.

Our treatment of particles extends this discussion by looking at the simulation of
bouncing objects and inter-object collision detection and response.

E.2 Gravitational Pull

When looking at any early 1990s side-scrolling game, such as Super Mario World or
Commander Keen, one can quickly see the effect of gravity on the player. For example,
jumping vertically into the air is quickly followed by the game character returning to its
previous position. This is an early example of gravity in games with modern games
modelling gravity much more closely.

 284

Gravity is the natural phenomenon where objects attract each other due to each object
being surrounded by a gravitational field. This field, interpreted as an attractive power,
exerts a pulling force on all surrounding objects, as shown in Figure E.4.

Figure E.4 The gravitational pull between two objects of mass ma and mb,
respectively.

Each of the two objects shown in Figure E.5 will experience the effect of gravity, with the
exact gravitational force between the two objects given by the following equation:

,2r
mmGF ba ××

= where G is the universal gravitational constant (equal to 6.67x10-

11Nm2/kg2), ma the mass of the one object and mb the mass of the other with r the
distance in meters between the two objects.

Simulating gravity in games does not generally require advanced calculations that
involve the universal gravitational constant or the exact mass of an object. For example,
when modelling gravity for an object being dropped to the ground, we can start with the
assumption that the acceleration of this object will be 9.8m/s2 regardless of its mass
(standard acceleration due to the earth’s gravitational field). We can now define the
velocity and position of this object as follows:

 285

tVV oldnew)8.9(+=

),
2
1()(2tatvPosPos oldoldnew ××+×+=

)/8.9
2
1()(22 tsmtvPos oldold ××+×+=

Now, let’s assume a crate is dropped at an initial velocity of 0 m/s from a position located
at coordinates (0, 17, 0) as shown in Figure E.5.

Figure E.5 Gravitational attraction of an object towards the zx-plane.

Substituting these values into the above given equations yield the following equations
(assuming the coordinate y = 17 equates to a virtual height of 17 meters):

tsmVnew)8.9(/0 +=
 t8.9=

),/8.9
2
1()/0(17 22 tsmtsmmPosnew ××+×+=

)/8.9
2
1(17 22 tsmm ××+=

We can now implement these equations in the following manner – thus simulating
gravity:

/* initialise the object’s initial position */

float objectXPos = 0;

float objectYPos = 17;

float objectZPos = 0;

 286

/* set the object’s initial velocity */

float objectXVelocity = 0;

float objectYVelocity = 0;

float objectZVelocity = 0;

/* initialise the object’s rate of fall – hence its gravity */

float worldGravityConstant = 1.5f;

/* use a loop to update the object’s position and velocity until the zx-plane is

 reached */

while(objectYPos > 0)

{

 /* increase the velocity as the object falls */

 objectYVelocity = objectYVelocity + worldGravityConstant;

 /* calculate the object’s new position */

 objectYPos = objectYPos + objectYVelocity;

}

This object will only fall in a straight vertical line, by incrementally adjusting its x-
coordinate in the loop, for example, we can simulate a curved falling trajectory as shown
in Figure E.6.

Figure E.6 Gravitational attraction of an object thrown in the x-direction.

We can now modify the above listed code snipped to simulate a curved falling trajectory
as follows:

/* initialise the object’s initial position */

float objectXPos = 0;

float objectYPos = 17;

float objectZPos = 0;

 287

/* set the object’s initial velocity */

float objectXVelocity = 0;

float objectYVelocity = 0;

float objectZVelocity = 0;

/* initialise the object’s rate of fall – hence its gravity */

float worldGravityConstant = 1.5f;

/* use a loop to update the object’s position and velocity until the zx-plane is

 reached */

while(objectYPos > 0)

{

 /* increase the velocity as the object falls */

 objectYVelocity = objectYVelocity + worldGravityConstant;

 /* calculate the object’s new y-position */

 objectYPos = objectYPos + objectYVelocity;

 /* calculate the object’s new x-position by adding a constant x velocity */

 objectXPos = objectXPos + 3;

}

E.3 Trajectory Paths

Without accurate projectile simulation, we would not be able to model bomb drops from
aeroplanes, a kick off in a football game or the trajectory of a baseball after being hit by
a batter. Figure E.7 shows the trajectory path of a ball being kicked in the positive x-
direction.

Figure E.7 The trajectory path of a ball being kicked in the positive x-direction.

 288

Trajectory can be described as the path or course travelled by an object. Calculating this
path often requires the consideration of gravitational forces, aerodynamic factors, wind
shear, etc. For most game-based implementations we’ll assume uniform gravity while
negating wind and other aerodynamic factors. For example, to model the trajectory path
shown in Figure E.7 we can define the ball’s initial velocity in terms of an x- and y-
component as follows (with θ the inclination angle):

θcos×= initialx VV
θsin×= initialy VV

We can also assume that Vy will equal “0” at the apex of the arch (the maximum height
reached by the projectile).

Modelling a trajectory path involves applying a constant velocity along the x-axis (in the
case of the above shown path) as well as the effect of gravity in the direction of the
negative y-axis. We also factor in air resistance without needlessly complicating our
simulation. The following code sample simulates a trajectory path as illustrated in Figure
E.7:

/* initialise the object’s initial position */
float objectXPos = 0;

float objectYPos = 0;

float objectZPos = 0;

/* set the object’s initial velocity */

float objectXVelocity = 0;

float objectYVelocity = 0;

float objectZVelocity = 0;

/* initialise the object’s rate of fall – hence its gravity */

float worldGravityConstant = 1.5f;

/* set the inclination angle to 45 degrees in radians */

float initialAngle = 0.79

/* set the air resistance that will be factored in to simulate the deceleration of the

 projectile */

float airResistance = 0.01f

/* calculate the velocity’s x- and y-component */

objectXVelocity = objectXVelocity*cos(initialAngle);

objectYVelocity = objectYVelocity*sin(initialAngle);

 289

/* use a loop to update the object’s position and velocity until the zx-plane is

 reached */

while(objectYPos > 0)

{

 /* update the object’s velocity */

 objectYVelocity = objectYVelocity + worldGravityConstant;

 objectXVelocity = objectXVelocity - airResistance;

 /* calculate the object’s new y-position */

 objectYPos = objectYPos + objectYVelocity;

 /* calculate the object’s new x-position */

 objectXPos = objectXPos + objectXVelocity;

}

E.4 Friction

Friction, stemming from electromagnetic forces between atomic particles, is an energy
consuming force between two objects in contact. The most common form of friction is
known as Coulomb friction. Coulomb friction is an approximation stating that the
maximum force exerted by friction (Ff) is always less than or equal to the direct normal
force (Fn) between two objects multiplied by the material’s friction coefficient (µ):

μ×≤ nf FF

The normal force (shown in Figure E.8) is a force component perpendicular to the
surface of contact with the coefficient of friction an empirically determined constant that
varies depending on the type of material surface and whether the surface is perfectly
clean, etc.

Figure E.8 The normal, friction and applied (sliding) forces exerted on an object.

Table E.1 gives some of the most common friction coefficients; also note that friction
varies depending on whether an object is static or in motion.

 290

Material Static In Motion (kinetic)
Aluminium on aluminium 1,05-1,35 1,4
Aluminium on steel 0,61 0,47
Copper on cast iron 1,05 0,29
Copper on steel 0,53 0,36
Glass on glass 0,9 - 1,0 0,4
Glass on nickel 0,78 0,56
Leather on wood (along the grain) 0,61 0,52
Nickel on nickel 0,7-1,1 0,53
Nylon on nylon 0,15 - 0,25
Steel on steel (high level hardness) 0,78 0,42
Steel on steel (relative hardness) 0,74 0,57
Wood on wood (against the grain) 0,54 0,32
Wood on wood (along the grain) 0,62 0,48

Table E.1 Common coefficients of friction.

We generally calculate the force required to move a static object via the following
equation:

,staticf gmF μ××= where m is the mass of the object, g the gravitational constant
(9.8m/s2) and µ the material’s static friction coefficient.

The object will only move once a force greater than Ff is applied to it, after which its
friction coefficient normally decreases. For example, consider an aluminium object
weighing 90 kilograms placed on a flat polished steel surface – we can calculate the
maximum force exerted by friction as follows:

staticf gmF μ××=

 61.0/8.990 2 ××= smkg
 N02.538=

We will thus require a force of at least 538.03N to move this object, once it is in motion
we can recalculate it frictional force using aluminium on steel’s kinetic friction coefficient:

kineticf gmF μ××=

 0.47/8.990 2 ××= smkg
 N54.414=

Friction on a flat plane can be modelled just like air resistance (which is in fact a form of
friction):

 291

/* initialise the object’s initial position */

float objectXPos = 0;

float objectYPos = 0;

float objectZPos = 0;

/* set the object’s initial velocity */

float objectXVelocity = 15;

float objectYVelocity = 0;

float objectZVelocity = 0;

/* set the friction value */

float friction = 1.5f

/* use a loop to update the object’s position and velocity until the object’s speed

 reaches zero */

while(objectXVelocity > 0)

{

 /* update the object’s velocity */

 objectXVelocity = objectXVelocity - friction;

 /* calculate the object’s new x-position */

 objectXPos = objectXPos + objectXVelocity;

}

E.5 Simulating Object Collisions

Let’s start with a two dimensional “asteroid field” from Atari’s 1979 cult-hit, Asteroids.
This game, as shown in Figure E.9, is heavily dependent on object collisions such as
asteroids colliding with other asteroids, alien spaceships or with the player’s ship.

 292

Figure E.9 Screenshot of Atari’s arcade game Asteroids.

The game Asteroids illustrates the basic problem of collision detection and response in
one of the simplest forms possible. Before, however, discussing object-to-object collision
response as encountered in Asteroids, let’s look at the game Breakout.

Breakout features a ball that can either bounce from the boundaries of the game window
or movable paddle while also destroying bricks upon collision. Bouncing the ball off the
screen boundaries requires very basic collision detection mainly because we already
know where the boundaries of the screen are while at the same time only considering
collisions with two horizontal and two vertical edges. Also, an object such as the ball in
Breakout will always reflect at an angle equal and opposite to its initial incoming angle
(illustrated in Figure E.10).

Figure E.10 A ball always reflects at an angle equal and opposite to its initial incoming
angle.

 293

Now, considering the shown image; it can be deduced that when the ball hits either
vertical edge, then its direction can be changed by reversing the x-component of its
velocity. Similarly, reversing the y-component of the ball’s velocity upon collision with
one of the horizontal edges will result in a perfect direction change:

/* initialise the object’s initial position */

float objectXPos = 5;

float objectYPos = 2;

float objectZPos = 0;

/* set the object’s initial velocity */

float objectXVelocity = 15;

float objectYVelocity = 20;

float objectZVelocity = 0;

/* update the object’s velocity due to a vertical collision */

if(objectXPos > LEFT_EDGE || objectXPos < RIGHT_EDGE)
{

 /* update the object’s velocity */

 objectXVelocity = -objectXVelocity;

 /* calculate the object’s new x-position */

 objectXPos = objectXPos + objectXVelocity;

}

/*update the object’s velocity due to a horizontal collision*/

if(objectYPos > BOTTOM_EDGE || objectYPos < TOP_EDGE)
{

 /* update the object’s velocity */

 objectYVelocity = -objectYVelocity;

 /* calculate the object’s new y-position */

 objectYPos = objectYPos + objectYVelocity;

}

This technique can now be extended to simulate one object bouncing off another. The
simplest approach would be to test for horizontal and vertical collisions with the sides of
a bounding volume. For example, consider the screenshot of the Asteroids clone in
Figure E.11 where the bounding volume of each object is shown (these volumes are
specified using the contained object’s minimum and maximum x- and y-values).

 294

Figure E.11 Using bounding boxes to simulate inter-object collisions.

We can implement this approach in much the same way as with our horizontal and
vertical screen boundary collision example – for instance, when we have a ball bouncing
off objects as shown in Figure E.12, then we can change its direction by reversing the x-
component of its velocity when it hits a vertical edge of another object. Similarly,
reversing the y-component of the ball’s velocity upon collision with one of the horizontal
edges will result in a perfect direction change.

Figure E.12 Inter-object collisions – the same rules hold true as with screen boundary
collisions.

The above given object collision approach works extremely well for horizontal and
vertical surfaces, but in nearly all action-oriented games written today we’ll need to
calculate vector reflections for arbitrarily rotated surfaces. For example, consider the

 295

object shown in Figure E.13. This object has several flat planes, with each of these
positioned at an arbitrary angle.

Figure E.13 An object with numerous arbitrarily positioned faces (the normal of each
shown).

The core of collision detection, when dealing with arbitrarily positioned faces, is vector
calculations; specifically the calculation of a reflection vector when we have an initial
vector direction and a normal to the plane (Blinn, 1977). We’ve already looked at vector
and normal calculations in Appendix C and will now look at an example to illustrate
vector-based object reflections for arbitrarily rotated surfaces.

Figure E.14 illustrates our vector reflection problem; showing an incoming vector I, the
surface normal N and the unknown reflection vector R.

Figure E.14 Vector reflection for an arbitrarily rotated surface.

We use vector addition to create a third, composite vector. This process involves
summing the related scalar components of two successive vectors (using the head-to-
tail rule). In Figure E.14 we have three vectors, namely, I, N and R; using these vectors
we define a third and forth vector, P and Q (the resultant of I and N and R and N
respectively) by summing the scalars of vector I and N and R and N in the following
manner (graphically illustrated in Figure E.15):

 296

P = I + N
 = (Ix + Nx, Iy + Ny, Iz + Nz)
 = (Px, Py, Pz).

Q = R + N
 = (Rx + Nx, Ry + Ny, Rz + Nz)
 = (Qx, Qy, Qz).

Figure E.15 The head-to-tail rule, creating a third composite vector.

Using the above given information, we can now algebraically calculate the reflection
vector by stating that P = Q and substituting the first equation into the second:

I + N = R + N
 R = N + (I + N)
 = 2N + I

Returning to our example, if the object has an incoming speed with an x-component of -
16 and a y-component of 8 then we can calculate the vector of reflection (thus the
exiting speed of the object) in the following manner (the normal in this case equals y =
1):

R = 2N + I
 = 2(-I . |N|)*|N| + I
 = 2[(Ix, Iy) . |(Nx, Ny)|]*|(Nx, Ny)| + (Ix, Iy)
 = 2[-(-16, 8) . |(0, 1)|]*|(0, 1)| + (-16, 8)
 = 2[(16, -8) . |(0, 1)|]*|(0, 1)| + (-16, 8)
 = 2(16*0 – 8*1)*|(0, 1)| + (-16, 8)
 = 2(– 8)*|(0, 1)| + (-16, 8)
 = -16*(0, -1) + (-16, 8)
 = (0, 16) + (-16, 8)
 = (0 – 16, 16 + 8)
 = (– 16, 24).

 297

Collision detection and response in modern games often require considerable resources
to implement. A number of collision detection algorithms (such as the detection of
collisions using hierarchy trees) have consequently been developed to simulate
collisions at various degrees of accuracy. The study of these algorithms is, however,
beyond the scope of this thesis and our physics engine implementation.

 298

Appendix F

The DXUT Framework

The Direct3D Utility Framework, or DXUT, is a high-level framework built on top of
Direct3D. This framework provides a series of functions, call-backs, structures,
constants and enumerations to reduce the complexity of low-level Direct3D routines. It
encapsulates the Win32 and Direct3D APIs for ease of use, making it easier to create
Direct3D applications. To summarise, DXUT allows simplified window creation, enables
rapid Direct3D device setup and initialisation as well as the easy handling of Windows
messages.

The DXUT framework provides a vast array of functionality, from basic window creation,
Direct3D device initialisation and the control of these components to more advanced
elements such as 3-D mesh control, camera control and the creation of graphical user
interfaces. We will now look at the most important functional components provided by
this framework.

The process of window creation and control using the DXUT framework is relatively
simple when compared to using the Win32 API which entails created a window,
registering a window class, creating a window object and handling messages to and
from the window. The DXUT framework simplifies this process in the sense that it is not
necessary to register the window class (using the WNDCLASSEX structure) or to create
the window using the AdjustWindowRect, CreateWindow and ShowWindow
functions. The following series of DXUT function calls manages this entire window
creation process:

/ * initialise the DXUT framework */

DXUTInit(true, true, NULL);

/* configure mouse cursor settings for full-screen usage */

DXUTSetCursorSettings(true, true);

/* create the application window */

DXUTCreateWindow(L"DXUT Sample", NULL, NULL, NULL, NULL,

 NULL);

/* create the Direct3D device */

DXUTCreateDevice(true, 800, 600);

/* enter the main DXUT framework render loop */

DXUTMainLoop(NULL);

 299

The DXUTInit function initialises DXUT by taking three parameters, namely a Boolean
value used for the processing of command-line arguments (with the most common ones
listed in Table F.1), another Boolean parameter controlling whether an error message
box is to be displayed whenever an error occurs and a string value for the specification
of additional command-line parameters.

Argument Description
-adapter:X Defines the specific hardware adapter to use.

-automation
Enables user interface navigation via the keyboard
(enabled by default)

-constantframetime

Defines a specific time per frame lapse when the
desired effect is to render some scene at a FPS value
less than real-time.

-forceapi:X
Forces the application to use either the Direct3D 9 or
Direct3D 10 API.

-forcehal Forces the use of a HAL device type.

-forcehwvp

Forces the use of hardware vertex processing (not
applicable for Direct3D 10 – only supported by the
Direct3D 9 API).

-forcepurehwvp

Forces the use of pure hardware vertex processing (not
applicable for Direct3D 10 – only supported by the
Direct3D 9 API).

-forceref Forces the use of a reference device type.

-forceswvp

Forces the use of software vertex processing (not
applicable for Direct3D 10 – only supported by the
Direct3D 9 API).

-forcevsync:X
Specifies whether vertical sync is to be used (X is set to
‘0’ to disable vertical sync).

-fullscreen Forces the application into full-screen mode on startup.
-height:X Specifies the default window height.
-noerrormsgboxes Disables DXUT’s error message boxes.

-nostats
Disables the display of statistics such as the current
number of frames per second.

-output:X
Forces the use of a specific adapter output (only
supported by the Direct3D 10 API)

-quitafterframe:X

Sets an exit frame – i.e. forcing the application to
terminate after the specified frame, X, has been
rendered.

-startx:#
Sets the x-coordinate of the window’s upper left corner
when running in windowed mode.

-starty:#
Sets the y-coordinate of the window’s upper left corner
when running in windowed mode.

 300

-width:X Specifies the default window width.
-windowed Forces the application into windowed mode on startup.

Table F.1 DXUTInit command-line parameters.

The next called function, DXUTSetCursorSettings, sets the visibility and clipping of
the mouse cursor when used in full-screen mode. This function takes two parameters,
the first a Boolean value specifying whether the mouse cursor will be visible for a
window in full-screen mode (true if yes), and the second, also a Boolean value,
defining whether the cursor will be limited from leaving the screen boundaries for a full-
screen window (true if yes).

DXUTCreateWindow creates the application window through the initialisation of six
parameters, namely, a string value defining the window’s caption, a HINSTANCE handle
to the application instance (‘NULL’ by default), a HICON handle to the window’s icon
(‘NULL’ by default), a HMENU handle to the window’s menu resource (‘NULL’ for no
menu) and the upper left x- and y- window coordinates.

We create the actual Direct3D 10 device by calling the DXUTCreateDevice function.
Its first parameter takes a Boolean value specifying whether the application will launch in
windowed (true) or full-screen mode (false). DXUTCreateDevice‘s final two
parameters set the initial width and height of the back buffer, respectively.

The DXUTMainLoop function enters the main DXUT framework render loop (the main
message loop), updating and rendering each frame via callbacks to the application. It
takes one parameter, namely a handle to an accelerator table – this parameter is set to
‘NULL’ when no accelerator table is defined. Accelerator tables are created as resources
and used for the translation of keyboard messages received from the message queue.
One example of a common accelerator is the “Ctrl+S” key combination used as shortcut
for the “File Save” menu item.

All these functions return the value “S_OK” if successful. In the event of a failure they
return one of the error codes listed in Table F.2. Calling the DXUTGetExitCode function
returns an exit code with ‘0’ indicating successful execution.

Error code Description
DXUTERR_CREATINGDEVICE Unable to create a Direct3D device.
DXUTERR_CREATINGDEVICEOBJECTS A problem has been encountered

while creating the Direct3D device
objects.

DXUTERR_DEVICEREMOVED The initialised Direct3D device is no
longer accessible.

DXUTERR_MEDIANOTFOUND The requisite media could not be
loaded.

 301

DXUTERR_NOCOMPATIBLEDEVICES Unable to find any Direc3D capable
devices.

DXUTERR_NODIRECT3D Direct3D could not be initialised.
DXUTERR_NONZEROREFCOUNT The Direct3D device was not properly

released by a previous application.
DXUTERR_RESETTINGDEVICE Unable to reset the Direct3D device.
DXUTERR_RESETTINGDEVICEOBJECTS An issue was encountered while

resetting the Direct3D device objects.
Table F.2 Error codes returned by DXUT functions.

Using the Win32 API, after registering the window class and creating the window, we
enter the main message loop by declaring an empty MSG structure, msg, and passing it
as parameter to the WndProc function. Using DXUT we no longer need to define a MSG
structure or WndProc function for the handling of messages sent to and from the
window. We will now rather create a series of callback functions, passing each one as a
parameter to the appropriate DXUTSetCallback* DXUT function. For example, the
following callback function handles all keyboard events:

void CALLBACK OnKeyPress(UINT nChar, bool bKeyDown,

 bool bAltDown, void* pUserContext)

{

 /* test whether some key is being pressed */

 if(bKeyDown)

 {

 switch(nChar)

 {

 case VK_TAB: //if ‘Tab’ is pressed do something
 break;

 }

 }

}

This keyboard event callback function, OnKeyPress, is then passed as parameter to the
DXUTSetCallbackKeyboard function:

DXUTSetCallbackKeyboard(OnKeyPress, NULL);

This function, initialising the previously defined callback function, takes two parameters,
the first being a pointer to a LPDXUTCALLBACKKEYBOARD keyboard event callback
function, and the second a pointer to some user-specific variable passed to the callback
function – by default set to ‘NULL’.

 302

The LPDXUTCALLBACKKEYBOARD DXUT keyboard event callback function is called
every time a keyboard event occurs. It is declared as follows in the DXUT.h header file:

VOID LPDXUTCALLBACKKEYBOARD(

 UINT nChar,

 bool bKeyDown,

 bool bAltDown,

 void* pUserContext

);

Its first parameter holds a virtual-key code describing the pressed key (the most
commonly used virtual-key codes are given in Table F.3). The second parameter,
bKeyDown, holds the Boolean value ‘true’ if a key is currently being pressed with the
bAltDown parameter set to ‘true’ if the ‘Alt’ key is also being pressed. The last
parameter, pUserContext, takes a pointer to a user-specific variable passed to the
callback function – by default set to ‘NULL’.

Constant Description
VK_LBUTTON Left mouse button.
VK_RBUTTON Right mouse button.
VK_BACK Backspace key.
VK_TAB Tab key.
VK_RETURN Enter key.
VK_ESCAPE Escape key.
VK_UP, VK_DOWN, VK_LEFT,
VK_RIGHT

Up, down, left and right keys respectively.

VK_NUMPAD0 to VK_NUMPAD9 Numeric keypad keys ‘0’ to ‘9’.
VK_F1 to VK_F24 F1 to F24 keys.

Table F.3 Virtual-Key codes.

DXUT provides a number of these so-called application-defined callback functions. The
above defined OnKeyPress function is, for example, a LPDXUTCALLBACKKEYBOARD
keyboard event callback. These DXUT event callback functions simplify the message
handling process. In addition to a keyboard event callback we also have to define a
device acceptable callback function (set using the
DXUTSetCallbackD3D10DeviceAcceptable DXUT initialisation function), a device
created callback function (set via DXUTSetCallbackD3D10DeviceCreated), a swap
chain resized callback function (set using
DXUTSetCallbackD3D10SwapChainResized), a swap chain release callback
function (set via DXUTSetCallbackD3D10SwapChainReleasing), a device
destroyed callback function (set via DXUTSetCallbackD3D10DeviceDestroyed) and
a frame render callback function (set through the
DXUTSetCallbackD3D10FrameRender DXUT initialisation function). In addition to

 303

these callback functions we also need to create a window message callback function
dealing with Windows messages (set using DXUTSetCallbackMsgProc), a callback
function dealing with frame updates (set by DXUTSetCallbackFrameMove) and a
callback function that allows for the change of device settings before the creation of the
device (set through the DXUTSetCallbackDeviceChanging DXUT initialisation
function).

DXUTSetCallbackD3D10DeviceAcceptable initialises the application specific
callback function responsible for building an enumerated list of Direct3D 10 capable
devices. It takes two parameters, namely, a pointer to a
LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function and a pointer to a
user-defined variable passed to the callback function – ‘NULL’ by default.

The LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function returns true for
each acceptable Direct3D device. All acceptable Direct3D 10 devices are enumerated
into a list by the DXUTSetCallbackD3D10DeviceAcceptable function. DXUT then
selects the best rendering device from this list. This callback is declared as follows in the
DXUT.h header file:

bool LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE(

 UINT Adapter,

 UINT Output,

 D3D10_DRIVER_TYPE DeviceType,
 DXGI_FORMAT BackBufferFormat,
 bool bWindowed,

 void* pUserContext

);

Its first parameter, Adapter, holds a value indicating the position of the current Direct3D
10 device in a series of enumerated Direct3D 10 video adapters. The second parameter,
Output, holds an index value of the current enumerated video adapter’s output (such as
a monitor). The DeviceType parameter holds the current Direct3D 10 capable video
adaptor’s driver type (commonly set to D3D10_DRIVER_TYPE_HARDWARE for a
hardware device and D3D10_DRIVER_TYPE_REFERENCE for a reference device). The
BackBufferFormat parameter indicates the back buffer format of the Direct3D 10
device (such as a four-component, 64-bit floating-point format). The next parameter
takes a Boolean value that is set to ‘true’ for windowed application and ‘false’ for those
running in full-screen mode. The final parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function – ‘NULL’ by default unless context
information for the callback function is needed.

 304

We create a LPDXUTCALLBACKISD3D10DEVICEACCEPTABLE callback function which
is passed as first parameter to the DXUTSetCallbackD3D10DeviceAcceptable
DXUT function as follows:

/* return ‘true’ for all acceptable D3D10 devices passed to it */

bool CALLBACK OnDeviceAcceptable(UINT Adapter, UINT Output,

 D3D10_DRIVER_TYPE DeviceType,
 DXGI_FORMAT BufferFormat,
 bool bWindowed, void* pUserContext)

{

 return true;

}

DXUTSetCallbackD3D10DeviceAcceptable(OnDeviceAcceptable,NULL);

The DXUTSetCallbackD3D10DeviceCreated function sets the created
ID3D10Device device. This device interface is used for the rendering of primitives as
well as the creation of shaders and resources. The callback is used for the allocation of
resources and the initialisation of buffers. The
DXUTSetCallbackD3D10DeviceCreated function takes two parameters, namely, a
pointer to a LPDXUTCALLBACKD3D10DEVICECREATED callback function and a pointer
to a user-define variable passed to the callback function – ‘NULL’ by default. This
function is declared as follows:

VOID DXUTSetCallbackD3D10DeviceCreated(
 LPDXUTCALLBACKD3D10DEVICECREATED pCallback,
 void* pUserContext
);

The associated LPDXUTCALLBACKD3D10DEVICECREATED callback function is declared
as follows:

HRESULT LPDXUTCALLBACKD3D10DEVICECREATED(

 ID3D10Device * pd3dDevice,

 CONST DXGI_SURFACE_DESC * pBackBufferSurfaceDesc,
 void* pUserContext

);

This resource callback function forwards a pointer to the newly created ID3D10Device
interface – the Direct3D 10 device. This pointer, sent to the
DXUTSetCallbackD3D10DeviceCreated function, is defined as the first parameter.
The second parameter is a DXGI_SURFACE_DESC structure with four members
describing the width, height, format and multisampling parameters of the surface

 305

resource respectively. The third parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function – ‘NULL’ by default unless context
information for the callback function is needed.

A LPDXUTCALLBACKD3D10DEVICECREATED callback function can be defined in the
following manner:

HRESULT CALLBACK OnCreateDevice(ID3D10Device* pd3dDevice,

 const DXGI_SURFACE_DESC *pBufferSurfaceDesc,
 void* pUserContext)

{

 /* - set up, create and set the input layout

 - create and set the vertex buffer

 - create and set the index buffer

 - specify the primitive topology

 - load all texture resources

 - initialise the world and view matrices */

}

This function is now set using the DXUTSetCallbackD3D10DeviceCreated DXUT
initialisation function:

DXUTSetCallbackD3D10DeviceCreated(OnCreateDevice, NULL);

We also have to deal with the callbacks sent to the application whenever the Direct3D
10 swap chain is resized (see section 4.5.2), this is done using the
DXUTSetCallbackD3D10SwapChainResized function. This function has two
parameters, the first a pointer to a LPDXUTCALLBACKD3D10SWAPCHAINRESIZED
callback function with the second a pointer to a user-specific variable passed to the
callback function – ‘NULL’ by default.

The LPDXUTCALLBACKD3D10SWAPCHAINRESIZED callback function commonly used to
set resources dependent on the back buffer – such as perspective projection matrices
based on the field-of-view is declared as follows:

HRESULT LPDXUTCALLBACKD3D10SWAPCHAINRESIZED(

 ID3D10Device * pd3dDevice,

 IDXGISwapChain * pSwapChain,

 CONST D3DSURFACE_DESC * pBackBufferSurfaceDesc,
 void* pUserContext

);

 306

Its first parameter, pd3dDevice, is a pointer to the newly created Direct3D 10 device
(ID3D10Device). The second parameter is a pointer to an IDXGISwapChain interface
(see section 4.5.2) with the third holding a pointer to a structure describing the back
buffer surface’s format. The last parameter, pUserContext, is a pointer to a user-
specific variable passed to the callback function.

This LPDXUTCALLBACKD3D10SWAPCHAINRESIZED swap chain resized callback
function, passed to DXUTSetCallbackD3D10SwapChainResized, can be defined in
the following manner:

HRESULT CALLBACK OnSwapChainResize(ID3D10Device* pd3dDevice,

 IDXGISwapChain *pSwapChain,

 const DXGI_SURFACE_DESC* pBufferSurfaceDesc,
 void* pUserContext)

{

 /* - reset the aspect ratio using the back buffer’s new width and height

- set the perspective projection matrix using the

 new aspect ratio */

}

We set this callback function using DXUTSetCallbackD3D10SwapChainResized:

DXUTSetCallbackD3D10SwapChainResized(OnSwapChainResize);

All the Direct3D 10 device resources created in the
LPDXUTCALLBACKD3D10SWAPCHAINRESIZED callback function must also be released.
This is done using a LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback which is
set using the DXUTSetCallbackD3D10SwapChainReleasing swap chain releasing
function. This DXUT function takes two parameters, a pointer to a
LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback function and a pointer to a
user-specific variable passed to the callback function – ‘NULL’ by default:

HRESULT DXUTSetCallbackD3D10SwapChainReleasing(
 LPDXUTCALLBACKD3D10SWAPCHAINRELEASING pCallback,
 void* pUserContext
);

The LPDXUTCALLBACKD3D10SWAPCHAINRELEASING callback function has only one
parameter, a pointer to a user-specific variable passed to the callback function when
context information for the callback function is needed:

VOID LPDXUTCALLBACKD3D10SWAPCHAINRELEASING(

 void* pUserContext

 307

);

This LPDXUTCALLBACKD3D10SWAPCHAINRELEASING swap chain releasing callback
function, called whenever the swap chain created in OnSwapChainResize is being
released can be defined as follows:

void CALLBACK OnSwapChainReleasing(void* pUserContext)

{

 /* release all the Direct3D 10 resources created in

 OnSwapChainResize */

}

We can now set the OnSwapChainReleasing callback function via the
DXUTSetCallbackD3D10SwapChainReleasing DXUT function:

DXUTSetCallbackD3D10SwapChainReleasing(OnSwapChainReleasing);

We also require a callback function to release the Direct3D 10 resources created in the
OnCreateDevice callback function. This resource deletion callback,
LPDXUTCALLBACKD3D10DEVICEDESTROYED, is executed by the DXUT framework
immediately after the Direct3D 10 device has been destroyed. The
DXUTSetCallbackD3D10DeviceDestroyed function, with its first parameter taking a
pointer to a LPDXUTCALLBACKD3D10DEVICEDESTROYED function, sets the device
destroyed callback. Its second parameter is a pointer to a user-specific variable passed
to the callback function whenever context information is needed:

VOID DXUTSetCallbackD3D10DeviceDestroyed(

 LPDXUTCALLBACKD3D10DEVICEDESTROYED pCallback,

 void* pUserContext

);

The LPDXUTCALLBACKD3D10DEVICEDESTROYED callback function specifies only one
parameter, namely a pointer to a user-specific variable for the gathering of context
information, pUserContext:

VOID LPDXUTCALLBACKD3D10DEVICEDESTROYED(

 void* pUserContext

);

A LPDXUTCALLBACKD3D10DEVICEDESTROYED resource deletion callback function can
be defined as follows:

void CALLBACK OnDeviceDestroy(void* pUserContext)

 308

{

 /* release all the Direct3D 10 resources created in the

 OnCreateDevice callback function */

}

This callback function is then subsequently set using the
DXUTSetCallbackD3D10DeviceDestroyed DXUT function:

DXUTSetCallbackD3D10DeviceDestroyed(OnDeviceDestroy);

Another significant DXUT callback function is one that deals with frame rendering. This
LPDXUTCALLBACKD3D10FRAMERENDER callback function renders a scene using the
created Direct3D 10 device by clearing the back buffer, depth-stencil buffer, updating all
variable changes per frame and rendering the geometric objects constituting the scene.
This function has four parameters and is declared as follows in the DXUT.h header file:

VOID LPDXUTCALLBACKD3D10FRAMERENDER(

 ID3D10Device * pd3dDevice,

 DOUBLE fTime,

 FLOAT fElapsedTime,

 void* pUserContext

);

Its first parameter, pd3dDevice, is a pointer to an ID3D10Device interface – the
rendering device. The second parameter, fTime, holds the time that has elapsed since
initialisation of the application with the third parameter, fElapsedTime, holding the time
that has passed since the last frame update. Both these time values are given in
seconds. The final parameter holds a pointer to the user-specific variable that is passed
to the callback function whenever context information is needed. Just as with all the
other DXUT callback functions, we will also set this one to ‘NULL’.

Such a LPDXUTCALLBACKD3D10FRAMERENDER callback function can be declared as
follows:

void CALLBACK OnRenderFrame(ID3D10Device* pd3dDevice,

 double fTime, float fElapsedTime,

 void* pUserContext)

{

 /* - clear the back buffer using ClearRenderTargetView

 - clear the depth-stencil buffers using

 ClearDepthStencilView

 - update all changed variables

 - render all geometric objects */

 309

}

This OnRenderFrame callback function is set by the DXUTSetCallbackD3D10FrameRender function:

DXUTSetCallbackD3D10FrameRender(OnRenderFrame);

All that remains now is to handle all process messages originating from the DXUT
message pump and to set the callback function responsible for doing the frame updates
for the scene. We also require a facility that allows us to change the settings of a device
before it is created.

Processing messages for the DXUT message pump requires the declaration of a
LPDXUTCALLBACKMSGPROC callback function similar to the previously defined WinProc
function. This function takes six parameters, the first being a handle to the window, the
second an integer value identifying the message to process, the third and fourth
parameters specifying additional message information, with the fifth a Boolean value that
controls whether further message processing should be done (‘true’ preventing further
message handling). The final parameter is a pointer to a user-specific variable passed to
the callback function whenever context information is needed:

LRESULT LPDXUTCALLBACKMSGPROC(

 HWND hWnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam,

 bool * pbNoFurtherProcessing,

 void* pUserContext

);

We can declare a LPDXUTCALLBACKMSGPROC callback function as follows:

LRESULT CALLBACK MsgProcCallback(HWND hWnd, UINT uMsg,

 WPARAM wParam,

 PARAM lParam,

 bool* pbNoFurtherProcessing,

 void* pUserContext)

{

 /* handle all messages sent to the application */

}

The DXUTSetCallbackMsgProc DXUT function sets this window message callback
function with its first parameter a pointer to the LPDXUTCALLBACKMSGPROC function and

 310

its second a pointer to a user-specific variable passed to the callback function whenever
context information is needed:

DXUTSetCallbackMsgProc(MsgProcCallback);

Frame updates of the scene are done via the LPDXUTCALLBACKFRAMEMOVE callback
function. This function takes three parameters, namely, the time that has elapsed since
initialisation of the application, the time elapsed since the previous frame and a pointer
to a user-specific variable passed to the callback function whenever context information
is needed:

VOID LPDXUTCALLBACKFRAMEMOVE(

 DOUBLE fTime,

 FLOAT fElapsedTime,

 void* pUserContext

);

Such a LPDXUTCALLBACKFRAMEMOVE callback function handling updates to a scene
can be declared as follows:

void CALLBACK OnMoveFrame(double fTime, float fElapsedTime,

 void* pUserContext)

{

 /* update the scene */

}

This callback function is subsequently set using the DXUTSetCallbackFrameMove
DXUT function:

DXUTSetCallbackFrameMove(OnMoveFrame, NULL);

One final callback function is needed for the modification of Direct3D device settings as
required. This callback function, LPDXUTCALLBACKMODIFYDEVICESETTINGS, takes a
pointer to a DXUTDeviceSettings structure storing the settings of our Direct3D 10
device, and a pointer to a user-specific variable passed to the callback function
whenever context information is needed:

bool LPDXUTCALLBACKMODIFYDEVICESETTINGS(DXUTDeviceSettings * pDeviceSettings,

 void* pUserContext);

An example of a LPDXUTCALLBACKMODIFYDEVICESETTINGS callback function is
given here:

 311

bool CALLBACK ModDevSettings(DXUTDeviceSettings* pDeviceSettings, void* pUserContext)

{

 /* allow modification of device settings */

 return true;

}

This callback function is called just before the creation of the Direct3D device. It returns
a ‘true’ indicating that DXUT can proceed to create the device, and a ‘false’ indicating
otherwise. The DXUTSetCallbackDeviceChanging function sets this callback
function, allowing the application program to modify the device settings as needed. This
function takes two parameters, a pointer to a
LPDXUTCALLBACKMODIFYDEVICESETTINGS callback function and a pointer to a user-
specific variable passed to the callback function whenever context information is
needed:

DXUTSetCallbackDeviceChanging(ModDevSettings, NULL);

The functions presented in this section illustrate the fundamentals of the DXUT
framework. This framework is useful for experimental applications where the desire is to
minimise the amount of time spent on setting up a Direct3D environment. Although the
DXUT framework’s effectiveness in the simplification of Direct3D API calls cannot be
disputed, it must be used with utmost caution as it does impose some level of
performance overhead.

	Front
	Part-I
	Part-II
	References
	APPENDICES
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

