
 120

Part II

Maximising the Quality and Performance of
A Real-time Interactive Rendering System

 121

Chapter 4

Benchmarking the Rendering Algorithms
and Techniques

Chapter 4 presents the critical analysis and benchmarking of the previously
discussed rendering algorithms and techniques as utilised by our interactive
rendering engine. The empirical analysis presented in this chapter allows us to
explore in the next chapter the practicality and performance benefits of a dynamically
scalable interactive rendering engine in which GPU-CPU utilisation, as a secondary
proof of concept approach, has been unified.

Outline:

 Benchmarking mechanism
 Evaluation criteria
 Algorithm comparison

 122

4.1 Benchmarking Mechanism

Benchmarking entails running a computer program with the aim of assessing its
performance. This action is normally hardware-centric and intended to measure the
performance of numerous subsystems and/or execution routines. We use such a system
to evaluate the previously discussed rendering subsystems. This benchmarking system
basically functions as a plug-in to the previously discussed rendering engine where real-
time performance data are streamed to a file-based database for post-processing and
analysis. Figure 4.1 gives a visual representation of this system.

Figure 4.1 The rendering engine, benchmarking system and performance database.

Critical analysis was performed via scripted camera movement, object and light source
additions. This was done not only to ensure consistent testing, but also to ease future
validation and replication of results.

4.2 Rendering Subsystem Evaluation Criteria

The set of criteria used to evaluate the presented rendering techniques (such as cube
mapping, post-processing effects and stencil shadow volumes) is now presented. The
given evaluation criteria were selected with the aim of assessing the relationship
between rendering quality and performance. This assessment provides the basis of the
system presented in Chapter 5 in which the dynamic selection of algorithms as well as
CPU-GPU process allocation (for cube mapping and physics processing) is used to
control performance and quality. Table 4.1 lists the proposed evaluation criteria in the
first column, indicating in parenthesis whether its focus is on quality, performance or
both. The second column provides motivation for the criterion’s inclusion.

Evaluation Criteria Motivation
Scalability
(performance)

Evaluating the performance of an algorithm based
on the intensifying complexity of the rendered
scene allows for the identification of algorithmic
limits and the maximum threshold for scene and
model complexity. (Analyse the overall

 123

performance impact due to, for example, an
increase in the number of light sources and the
shadow casting model’s polygonal complexity).

Rendering Accuracy and Detail
(quality)

Determining whether, for example, a shadow is
cropped and/or skewed properly, and accurately
projected onto other models and surfaces, or
whether a reflection is accurate allows for the
evaluation of rendering quality.

CPU/GPU Utilisation
(performance/quality)

Comparing, where applicable, a standard GPU-
driven implementation to the same
implementation being run on a CPU (with
utilisation of modern multi-core architecture);
allows for the evaluation of maximized parallelism
versus conventionally GPU-based rendering.

Table 4.1 Evaluation criteria

4.3 Algorithm Comparison

This section compares the presented engine’s core rendering elements. It also lists the
observed results with specific emphasis on the most appropriate application areas.

To gather the necessary results, all algorithms were implemented for a number of
scenes. In each case, unless otherwise stated, the scene was a relatively simple cubic
environment featuring a single movable 3D model and a variable number of light
sources. The 3D models utilised are those provided as samples by the Microsoft DirectX
SDK (Figure 4.2). The test system had the following configuration:

NVIDIA GeForceTM GTX 570 (1280MB GDDR5) (Video Card),
Intel Core i5 650 @ 3.2GHz+ (Dual Core Processor),
4.0GB (Memory),
1920x1080 (Screen Resolution).

Figure 4.2 The 599-face ‘tiger’ mesh, 1628-face ‘car’ mesh, 4136-face ‘shapes’ mesh
and a 9664-face ‘battleship’ mesh.

 124

4.3.1 Shadows

The presented evaluation focuses on a number shadow rendering algorithms (discussed
in section 3.6), specifically the stencil shadow volume algorithm, the shadow mapping
algorithm and a number of hybrid approaches such as McCool’s shadow volume
reconstruction using depth maps, Chan and Durand’s hybrid algorithm for the efficient
rendering of hard-edged shadows, Thakur et al’s elimination of various shadow volume
testing phases and Rautenbach et al’s shadow volumes and spatial subdivision
approach. Please note that the mean performance of each algorithm is shown
(performance data has been average over the four models due to individual behaviour
showing identical patterns). Also, for the detailed critical analysis, please see the MSc
dissertation, An Empirically Derived System for High-Speed Shadow Rendering (2008).

Starting out, it is important to note that Rautenbach et al’s spatial subdivision algorithm
was analysed in a statically lit environment. This results in its relatively high performance
when compared to the other algorithms. Its performance was found to be comparable to
the basic stencil shadow volume algorithm in situations where dynamic lighting is
implemented. This octree-based algorithm will thus outperform all other algorithms
where light sources are not added, moved or removed.

In Figure 4.3 the frame rates achieved via the implementation of spatial subdivision is
compared to that obtained using the Heidmann algorithm. It is clear from the data that
Rautenbach et al’s approach results in significantly better performance than the original
stencil shadow volume algorithm (40% better for one light source and 200% better for
eight).

Figure 4.3 Comparison of Rautenbach et al’s spatial subdivision approach with the
depth-fail stencil shadow volume approach.

 125

In Figure 4.4, the frame rates attained from using spatial subdivision combined with the
utilisation of the SSE2 instruction set is compared to that obtained from using the
Heidmann algorithm. Comparing a standard C/Direct3D implementation to the utilisation
of Intel’s SSE2 instruction set allows for the evaluation of maximised parallelism (as
offered by these instruction sets) versus conventionally sequentially executed routines.
Intel’s SSE stands for Streaming Single Instruction, Multiple Data Extensions. It is based
on the principle of carrying out multiple computations with a single instruction in parallel
(Intel, 2002). The SEE instruction set (specifically SSE2 found on the Pentium 4+
architecture) also adds 64-bit floating point and 8/16/32-bit integer support.

Figure 4.4 Comparison of Rautenbach et al’s extended approach with the depth-fail
stencil shadow volume approach.

From the results given in Figure 4.4, it is clear that Rautenbach et al’s spatial subdivision
approach combined with SSE offers the best performance for statically lit scenes. This
algorithm does, however, require processing time for Octree-construction and the non-
Octree enhanced shadow volume algorithms perform much better in situations where
light sources are dynamically added, moved or removed. The presented rendering
engine will use the spatial subdivision approach coupled with SSE2 utilisation for all
environmental areas lit using static light sources.

From Figure 4.5, listing the mean performance comparison of all the shadow algorithms
listed in section 3.6, it is clear that Chan and Durand’s (2004) algorithm is the second
best algorithm when rendering high-quality shadows with only a single dedicated light
source. This algorithm shows significant performance degradation when more light

 126

sources are added. It does, however, outperform all the remaining shadow volume-
based algorithms for up to eight light sources. The presented rendering engine will use
Chan and Durand’s algorithm for all scenes consisting of eight or less dynamic light
sources when high-quality shadows are required.

Furthermore, the shadow mapping algorithm is observed to perform only slightly worse
than Chan and Durand’s (2004) algorithm (when rendering scenes consisting of just one
light source). That said, the critical analysis implementation does render low-resolution
shadow maps. However, increasing this shadow map resolution will have a net-negative
impact on the scene’s overall rendering performance. Shadow mapping (with average
shadow resolution) is used for all scenes consisting of two or more dynamic light
sources and where the shadow casting objects are located a significant distance from
the point-of-view.

McCool’s (2000) algorithm is the second best choice when dealing with scenes featuring
one to eight light sources and when high-quality shadows are required. We won’t be
utilising this algorithm, rather opting for Chan and Durand’s hybrid approach.

Figure 4.5 Comparison of all the shadow algorithms listed in Chapter 3 (1-8 light
sources).

 127

The previous comparison (given in Figure 4.5) only deals with a limited number of light
sources. The choice between the most appropriate algorithms is, however, mostly
superficial due to 200 frames per second and 60 frames per second displaying similar to
the human eye. It is only when frame rates fall below 30 per second that we start to
notice. Running the same simulations (but with the light source count ranging from nine
to sixteen) shows a rapid decrease in the frames per second performance. Figure 4.6
shows these results.

Figure 4.6 Comparison of all the previously listed algorithms (9-16 light sources) –
please note; Rautenbach et al’s spatial subdivision algorithm was analysed in a statically
lit environment, thus resulting in its high performance (its performance is comparable to
the basic stencil shadow volume algorithm in situations where dynamic lighting is
implemented).

Considering Figure 4.6, Rautenbach et al’s spatial subdivision approach coupled with
the SSE2 instruction set is once again observed to outperform all the other algorithms.
This algorithm is, as mentioned, only amenable to environments utilising static lighting –

 128

making the comparison a bit bias. The presented rendering engine will, however,
continue to use this algorithm for all environmental areas lit using static light sources.

The basic shadow mapping algorithm remains the best choice when dealing with
dynamically lit environments, at least when working with fourteen or less light sources
and when shadow rendering quality is not as important (see Figure 4.5 and 4.6). The
presented rendering engine will use shadow mapping for all scenes consisting of more
than two and less than fourteen dynamic light sources and where the shadow casting
objects are located a significant distance from the point-of-view. Chan and Durant’s
algorithm will, however, prove a better choice for both close range and distant objects
when rendering scenes consisting of fourteen or more dynamic light sources. Chan and
Durrand’s algorithm will also be used for all scenes consisting of nine or more dynamic
light sources when high-quality shadows are required.

Shadow selection is based on the optimisation of the rendering frame rate and shadow
quality. The presented rendering engine will thus select shadow generation algorithms
by taking not only the scene’s frames per second performance data into account but
also by factoring in the viewer’s position in relation to the shadow being rendered. The
rendering accuracy and detail of distant shadows will thus carry less weight than those
rendered relatively close to the viewer. Table 4.2 summarises the algorithms of choice
based on the algorithmic comparison and scene conditions such as view distance,
dynamic/static light conditions and number of light sources.

Most Appropriate Algorithm Conditions
Rautenbach et al’s (2008)
spatial subdivision approach
coupled with SSE2 utilisation.

All environmental areas lit using static light
sources.

Chan and Durand’s (2004)
algorithm.

Scenes consisting of eight or less dynamic light
sources when high-quality shadows are required
and where shadow casting objects are located
near the point-of-view.
Scenes consisting of more than two and less than
fourteen dynamic light sources and where the
shadow casting objects are located a significant
distance from the point-of-view.

Shadow mapping.

Chan and Durant’s algorithm will, however, prove
a better choice for both close range and distant
objects when rendering scenes consisting of
fourteen or more dynamic light sources. We will
also use Chan and Durrand’s algorithm for all
scenes consisting of nine or more dynamic light
sources when high-quality shadows are required.

McCool’s (2000) and Thakur et The second best choice when dealing with

 129

al’s (2003) algorithm. scenes featuring one to eight light sources and
when high-quality shadows are required. We
won’t be utilising this algorithm, rather opting for
Chan and Durand’s hybrid approach. The same
goes for the classic stencil shadow volume
algorithm and Thakur et al’s (2003) algorithm.

Table 4.2 Algorithms of choice based on the presented critical analysis.

4.3.2 Shaders

The presented shader evaluation focuses on a number of shader implementations and
lighting approaches (please refer to Appendix B and C, respectively, for a background
discussion on shaders and lighting as well as various reflection models). These
implementations, listed in Table 4.3, are organised into four shader effect quality groups
based on each algorithm or technique’s standalone processor utilisation and visual
effect quality. Algorithms and rendering approaches are grouped in order of increasing
complexity. For example, basic directional lighting is a much simpler (and thus less
computationally intensive) approach than a lighting model that adds ambient occlusion
to a scene.

Grouping/Description Rendered Scene Screenshot
Low Shader Quality

Consists of a simple light mapping shader
implementation and a shader program
enabling basic directional lighting (local
illumination).

Medium Shader Quality

Extends the low shader quality grouping
with the addition of a normal/bump
mapping shader (as discussed in
Appendix A, bump- or normal mapping is
used for adding depth to pixels and thus
creating a lighting-dependent bumpiness
to a texture mapped), a shader used for
the calculation and rendering of specular
highlights (as discussed in Appendix C,

 130

specular reflection is characterized by
bright highlights on the surface of an
object reflected in the direction of the
view vector) and a shader enabling
volumetric fog.
High Shader Quality

Similar to the Medium Shader Quality
group but replaces light mapping with a
detailed lighting model shader that adds a
shader for ambient occlusion (as a way to
enhance the ambient light term such that
shadows and light emission from local
features are included).

Very High Shader Quality

Extends the High Shader Quality
selection by replacing the previous
lighting model with High Dynamic Range
Lighting and parallax mapping (an
enhancement of bump/normal mapping;
“bumpy” textures will have more apparent
depth and will thus appear more realistic).

Table 4.3 Shader effect quality groupings.

As discussed in section 3.5, high dynamic range lighting is the rendering of lighting using
more than 256 colour shades for each of the primary colours. Thus, 16 to 32-bit colours
per RGB channel are available for use (as opposed to the normal 8) – eliminating
luminance and pixel intensity being clamped to a [0, 1] range. This allows the presented
rendering engine the display of light sources over 100 000 times brighter than normally
possible. HDR lighting results in the full visibility of both very dark and fully lit areas;
unlike normal lighting, or low dynamic range lighting, where details are hidden in dark
scenes when contrasted by a fully lit area. Using this form of lighting generally leads to a
more vibrant looking scene. The inclusion of HDR Lighting (which, as shown, may
greatly impact the performance of a scene) is controlled through the engine’s shader
quality scaling (with quality relying on the GPU’s computational power).

 131

Please see Figure 4.7 for the observed frames per second performance of each shader
quality scaling group as the number of light source vary between 1 and 8. Figure 4.8
shows the same as the light sources increase from 9 to 16.

Figure 4.7 Comparison of all the previously listed quality scalings (1-8 light sources).

Figure 4.8 Comparison of all the previously listed quality scalings (9-16 light sources).

 132

The first quality grouping is the best performing configuration and perfectly suited as a
performance-orientated selection in situations where the GPU is being over-utilised or
when faced with limited computational resources. As with the other shader groupings,
this combination shows significant performance degradation when more light sources
are added. It does, however, outperform all the remaining groups (the only cost being
rendering quality).

The medium shader quality grouping performs only slightly worse than the first but given
the visual quality benefits inherent to the utilisation of normal mapping, specular
highlights and volumetric fog, it is clear that the first quality grouping should only be
selected as a last resort effort to free up computational resources.

The third grouping performs relatively well when dealing with scenes featuring one to
eight light sources and when high-quality special effects are required. The presented 3D
engine will only utilise this shader grouping for scenes consisting of 14 light sources or
less (as the FPS performance drops off significantly given further light source additions).

The final grouping gives similar performance figures and will only be utilised for scenes
containing less than eight light sources and where the processing resources are
available to facilitate HDR lighting and parallax mapping. That said, when there are few
light sources, then, on the test system’s hardware configuration, the FPS performance
for even the very high shader quality grouping is well above the level at which the
human eye can perceive any slowdowns. Running the same simulations with the light
source count ranging from nine to sixteen shows a rapid decrease in the frames per
second performance.

Shader selection is based on the optimisation of the rendering frame rate and rendering
quality. The presented rendering engine will thus select the most appropriate shader
grouping by taking not only the scene’s frames per second performance data into
account but also by factoring in the viewer’s position in relation to the scene being
rendered. The rendering accuracy and detail of distant objects (for instance, distant
normal mapping calculations) will carry less weight than those rendered relatively close
to the viewer. Table 4.4 summarises the most appropriate shader quality selections
based on our algorithmic comparison and scene conditions such as view distance,
dynamic/static light conditions and number of light sources.

Most Appropriate Selection Conditions
Low Shader Quality. The GPU is heavily overburdened (significant

slowdowns or FPS drops are observed) and
additional computational resources are required
by other core rendering elements.

Medium Shader Quality. The GPU is fully utilised (a GPU running at 100%)

 133

but no additional computational resources are
required (no slowdowns or noticeable FPS drops
are observed).

High Shader Quality. The GPU is not fully utilised and the scene
consists of one to eight light sources and high-
quality special effects are required but Very High
Shader Quality would overburden the GPU.

Very High Shader Quality. The scene contains less than eight light sources
and the computational resources are available to
facilitate true HDR lighting and parallax mapping.

Table 4.4 Shader quality selections based on the presented critical analysis.

4.3.3 Local Illumination

As discussed in the previous chapter, the presented rendering engine, in its most basic
form, allows for the use of local illumination which, unlike global illumination, only
considers the interaction between a light source and object. Local illumination is
implemented using the diffuse reflection model, resulting in a uniformly lit scene. An
HLSL pixel shader is implemented to calculate the lighting effect on each pixel in our
scene.

The evaluation focuses on two basic implementations (divided into two performance-
impacting groups, Low and High). Table 4.5 lists these two lighting scaling approaches
with Figures 4.9 and 4.10 giving the observed performance of each.

Grouping/Description Rendered Scene Screenshot
Low Local Illumination

Limits the number of light sources in an
attempt to reduce GPU utilisation.

 134

High Local Illumination

Lifts the lighting limitation imposed by the low
lighting group and occludes local light
sources (a technique used to approximate
the effect of environment lighting as an
attempt to simulate the way light radiates in
real life).

Table 4.5 Lighting quality groupings.

Figure 4.9 Comparison of all the previously listed quality scalings (5-25 light sources).

The first quality grouping, limiting the number of light sources, is perfectly suited as a
performance-orientated selection in situations where the GPU is being over-utilised or
when faced with limited computational resources (especially when rendering scenes
consisting of 25 light sources or more). As with the other quality grouping, basic local
illumination shows significant performance degradation as more light sources are added.
The cost is not so much the scene’s overall rendering quality as it is a limit on the
scene’s overall atmosphere and ambience (as can be observed by comparing the
screenshots given in Table 4.5).

The high lighting quality grouping performs only slightly worse than the first but given the
quality benefits inherent to the utilisation of ambient occlusion (as a way to enhance the

 135

ambient light term such that shadows and light emission from local features are
included) and the relatively close FPS results when compared to basic local illumination,
it is clear that the first quality grouping should only be selected as a last resort effort to
free up computational resources. Thus, the presented 3D engine will use the high quality
lighting grouping, unless the number of light sources increases above 50 (especially
taking into account the overall performance impact of additional rendering algorithms
and other GPU burdens such as physics processing).

Running the same simulations with the light source count ranging from 55 to 65 shows a
rapid decrease in the rendering frame rate. Figure 4.10 shows these results.

Figure 4.10 Comparison of all the previously listed quality scalings (30-65 light
sources)

Lighting quality selection, as with shaders, is based on the optimisation of the rendering
frame rate. Table 4.6 gives the most appropriate selection based on the presented
algorithmic comparison.

 136

Most Appropriate Selection Conditions
Low Local Illumination. The GPU is heavily overburdened and additional

computational resources are required by other
core rendering elements/the scene contains more
than fifty light sources.

High Local Illumination. The GPU is not fully utilised and the scene
consists of fifty light sources or less and high-
quality effects are required.

Table 4.6 Local illumination quality selections based on the presented critical analysis.

4.3.4 Reflection and Refraction

The presented rendering environment extends the basic local illumination lighting model
by adding reflection and refraction effects to result in more realistic and lifelike images.
When computation processing power is not available, the engine will utilise basic
environmental mapping which allows us to simulate reflections by mapping real-time
computed texture images to the surface of an object. Each texture image used for
environmental mapping stores a “snapshot” image of the environment surrounding the
mapped object. The engine further supports refractive environmental mapping, the
Fresnel effect (Wloka, 2002) and chromatic dispersion resulting in an object’s colour
being blended with reflections from its cube map (section 3.4). Thus, when the
processing power is available, the presented renderer’s basic reflections can be
extended to appear more lifelike.

The presented reflection quality evaluation focuses on a number of reflection and
refraction implementations and approaches, specifically basic environmental mapping,
CPU-based cube mapping, refractive environmental mapping and the extension of these
reflection and refraction algorithms through the addition of the Fresnel effect and
chromatic dispersion. Table 4.7 organises these implementation approaches into three
reflection/refraction quality grouping: Low, Medium and High.

Grouping/Description Rendered Scene Screenshot
Low Reflection Quality

Supports only GPU-based environmental
mapping

 137

Medium Reflection Quality

Moves all environmental mapping
computations off to the CPU (thus freeing the
GPU in the process).

High Reflection Quality

Replaces basic environmental- or cube
mapping with processor-intensive refractive
environmental mapping supporting chromatic
dispersion and the Fresnel effect.

Table 4.7 Reflection and refraction quality groupings.

Figures 4.11 and 4.12 give the observed performance of each reflection and refraction
quality scaling group.

Figure 4.11 Comparison of all the previously listed quality scalings (1-8 light sources).

 138

The first quality grouping, concerned with basic environmental mapping, is the best
performing configuration and perfectly suited as a performance-orientated selection in
situations where the GPU is being over-utilised or when faced with limited computational
resources. As with the other groupings, this combination shows significant performance
degradation when more light sources are added. It does, however, outperform all the
remaining groups (the only cost being rendering quality).

The medium quality grouping performs only slightly worse than the first but given the fact
that cube mapping is being performed on the CPU (thus freeing the GPU to perform
other tasks) and that the frame rate is comparable to the same algorithm performed on
the GPU, it is clear that CPU-based cube mapping is an excellent alternative to its only
slightly better performing GPU-based counterpart.

The third grouping performs relatively well when dealing with scenes featuring one to
eight light sources and when high-quality special effects are required. The presented
renderer will only be utilising this grouping for scenes consisting of 7 light sources or
less and where the processing resources are available to facilitate refractive
environmental mapping, the Fresnel effect and chromatic dispersion. Running the same
simulations (but with the light source count ranging from nine to sixteen) shows a rapid
decrease in our frames per second performance. Figure 4.12 shows these results.

Figure 4.12 Comparison of all the previously listed quality scalings (9-16 light sources)

 139

As with other shader implementations, reflection and refraction selection is based on the
optimisation of the rendering frame rate and rendering quality. Also, rendering accuracy
and reflection detail of distant objects (for instance, distant object reflections) carries less
weight than those rendered relatively close to the viewer. Table 4.8 summarises the
algorithms of choice based on the algorithmic comparison and scene conditions such as
view distance, dynamic light conditions and number of light sources.

Most Appropriate Selection Conditions
Low Reflection Quality. The GPU is heavily overburdened, the CPU is

fully utilised or cannot be utilised to lighten the
GPU load and additional computational resources
are required by other core rendering elements.

Medium Reflection Quality. The GPU is fully utilised, additional computational
resources are required and the CPU is not fully
utilised and can be utilised to lighten the GPU
load.

High Reflection and Refraction
Quality.

The GPU is not fully utilised and the scene
consists of one to seven light sources and high-
quality special effects are required.

Table 4.8 Reflection and Refraction quality selections based on the presented critical
analysis.

4.3.5 Physics

The presented rendering environment features not only basic physics simulations but
also realistic object interaction based on Newton's Laws, a particle system inheriting
from the physics system and realistic object interaction with all objects reacting based on
the force exerted and environmental resistance. The engine’s physics quality scaling
(with quality relying on the GPU and/or CPU’s computational power) is organised into
performance-impacting selection categories ranging from Low to Very High. Specifically
the categories which may be selected are either Off (very basic physics simulation), Low
(75% Reduction in Physics Calculations), High (25% Reduction in Physics Calculations)
or Very High (No Reduction in Physics Calculations).

The evaluation focuses on a number of physics calculations, specifically object
acceleration, force, linear momentum, gravitational pull, projectile simulation through
trajectory paths, friction and collision detection. The computational requirements for
each of these are now presented with Figures 4.13 (a) and (b) giving the observed
performance of each calculation group. However, Appendix E, in addition to section 3.7,
can be consulted should background information be needed on the simulation of

 140

Newtonian physics through the use of quantities such as mass, acceleration, velocity,
friction, momentum, force, etc.

Figure 4.13 (a) Comparison of all the previously listed quality scalings – GPU (25-125
interacting objects).

Figure 4.13 (b) Comparison of all the previously listed quality scalings – CPU (25-125
interacting objects).

 141

Physics calculations performed on the GPU utilise NVIDIA’s PhysX real-time physics
engine (without any multithreading optimisation) while those performed on the CPU are
based on the x87 floating point subset of the x86 architecture instruction set. CPU
calculations fully utilise SSE multithreaded technology while PhysX calculations are not
natively optimised for SSE or multithreading, resulting in situations where a PhysX
implementation can be outperformed by well-coded multithreaded CPU physics
implementations. There are thus two calculation subsets – the non-SSE PhysX code
performed on the GPU and the multithreaded x87 code utilising SSE executed on the
CPU. Simply running PhysX code (in software mode) on the CPU leads to significant
performance drops (as thread control is to be handled by the developer).

The first quality selection, utilising only simple bounding boxes and basic edge detection
and object interaction production rules, is the best performing configuration and perfectly
suited as a performance-orientated selection in situations where the GPU and CPU are
being over-utilised or when faced with limited computational resources. This selection
shows a performance degradation as more objects are added. It does, not surprisingly,
outperform all the remaining groups (the only cost being a lack in realism).

The low physics simulation selection performs, as expected, significantly worse than the
first but given the quality benefits inherent to the utilisation of Newtonian physics (albeit
with a reduction in computational accuracy), it is clear that the first quality selection
should only be selected as a last resort effort to free up computational resources.

The third selection performs relatively well when dealing with scenes featuring up to 125
interacting objects and when highly accurate physics calculations are required. The
presented rendering engine will only be utilising this grouping when highly accurate
physics calculations are not possible. Very High Physics Simulations give proportionally
lower performance figures and will only be utilised when the necessary computational
resources are not required for graphics processing.

Physics selection is based on the optimisation of the rendering frame rate and rendering
quality. The scene’s frames per second performance data as well as the viewer’s
position in relation to the physics simulation are taken into account when selecting the
most appropriate physics grouping. The accuracy of distant object simulations (for
instance, two distant object colliding) will carry less weight than those rendered relatively
close to the viewer. Table 4.9 summarises the groupings of choice based on our
algorithmic comparison and scene conditions and number of objects.

 142

Most Appropriate Selection Conditions
Very Basic Physics Simulation. The GPU is heavily overburdened, the CPU is

fully utilised or cannot be utilised to lighten the
GPU load and additional computational resources
are required by other core rendering elements.

Low Physics Simulation. The GPU is fully utilised, the CPU is fully utilised
or cannot be utilised to lighten the GPU load but
no additional computational resources are
required.

High Physics Simulation. The GPU or CPU is not fully utilised and the
scene consists of one to 125 objects and high-
quality physics are required but Very High
Physics Simulation would overburden the GPU
and/or GPU.

Very High Physics Simulation. The necessary computational resources (CPU
and/or GPU) are not required for graphics
processing and the necessary physics
calculations does not cause a noticeable drop in
the perceivable smoothness of the scene being
rendered.

Table 4.9 Physics quality selections based on the presented critical analysis.

4.3.6 Particle Effects

Particle effects, with the particle system inheriting from the physics system, allows for
the simulation of natural phenomena such as fire, smoke, sparks, explosions, dust, trail
effects, etc. As discussed in sections 3.7.2 and 3.7.3, the particle system is implemented
using three stages, namely, the setup stage, the simulation stage and the rendering
stage.

The setup stage involves specification of the particle system’s spatial position and area
of constraint – parameters controlled by the emitter. The emitter also controls the particle
creation rate, that is, the rate at which new particles are injected into the system. Each
particle has a specific time to live, after which it is destroyed.

The simulation stage takes care of particle rendering rates, particle spawning position
(mostly randomised between some minimum and maximum coordinate range), particle
properties (such as particle colour, velocity, etc) and positioning of the emitter. This
stage also keeps track of each particle to check whether a specific particle has
exceeded its lifetime. Each particle has an initial velocity and is translated based on

 143

some sort of physics model or simply by adding velocity to its current spatial position.
Collision detection is also possible at this stage but rarely implemented.

Following the simulation state, each particle is rendered as either a coloured point,
polygon or as a mesh.

The engine’s particle system, based on the rules of physics, uses the following standard
equations to calculate each particle’s velocity and position:

taVV oldnew ×+=

),
2
1()(2tatvPosPos oldoldnew ××+×+=

The above given equations factor in the initial motion of the particle, its trajectory and the
overall effect of gravity where

 Posnew is the particle’s final position,
 Posold its initial position,
 Vnew its final velocity,
 Vold its initial velocity,
 a the particle’s acceleration and
 t the change in time.

Using these equations we start by initialising each particle’s initial position and velocity.
These values will be assigned to a particle when it is generated by the emitter. The
quality scaling (with quality of explosions, dust, tread marks, beams, etc relying on the
CPU and GPU’s computational power) of the rendering engine’s particle effects is, as
with physics, organised into performance-impacting selections ranging from Low to Very
High. Table 4.10 lists these particle effects scaling approaches with Figures 4.14 (a)
and (b) giving the mean performance of each calculation group as executed on the CPU
and GPU, respectively.

Grouping/Description Rendered Scene Screenshot
Low Particle Simulation

75% reduction in effect quality.

 144

Medium Particle Simulation

50% reduction in effect quality.

High Particle Simulation

25% reduction in effect quality.

Very High Particle Simulation

No reduction in effect quality.

Table 4.10 Particle effects quality groupings.

 145

Figure 4.14 (a) Comparison of all the previously listed quality scalings – GPU

Figure 4.14 (b) Comparison of all the previously listed quality scalings – CPU.

 146

As with physics, particle calculations – velocity and position – performed on the GPU
utilises NVIDIA’s PhysX real-time physics engine while those performed on the CPU are
based on the x87 floating point subset of the x86 architecture instruction set.

The first quality selection, representing a 75% reduction in effect quality, is the best
performing configuration and perfectly suited as a performance-orientated selection in
situations where the GPU and CPU are being over-utilised or when faced with limited
computational resources. As with the other performance selections, this combination
shows a performance degradation as the number of particles increase. Unsurprisingly, it
outperforms all the remaining selections (the only cost being a lack in visual quality and
realism).

The medium particle simulation selection performs, as expected, slightly worse than the
first but given the quality benefits inherent to the utilisation of more accurate Newtonian
physics (albeit with a reduction in computational accuracy), it is clear that the first quality
selection should only be selected as a last resort effort to free up computational
resources.

The third selection performs relatively well when dealing with effects consisting of 1500
to 7500 particles and when highly accurate physics calculations are required. The
presented 3D engine will only be utilising this selection when very high particle
simulations are not possible. The final selection gives proportionally lower performance
figures and will only be utilised when the necessary computational resources are not
required for graphics processing.

Table 4.11 summarises the algorithms of choice based on our algorithmic comparison,
scene conditions and number of particles.

Most Appropriate Selection Conditions
Low Particle Simulation. The GPU is heavily overburdened, the CPU is

fully utilised or cannot be utilised to lighten the
GPU load and additional computational resources
are required by other core rendering elements.

Medium Particle Simulation. The GPU is fully utilised, the CPU is fully utilised
or cannot be utilised to lighten the GPU load but
no additional computational resources are
required.

High Particle Simulation. The GPU or CPU is not fully utilised and the effect
consists of 1500 to 7500 particles and high-quality
physics are required but Very High Particle
Simulation would overburden the GPU and/or
GPU.

 147

Very High Particle Simulation. The necessary computational resources (CPU
and/or GPU) are not required for graphics
processing and the necessary Newtonian
calculations does not cause a noticeable drop in
the perceivable smoothness of the scene being
rendered.

Table 4.11 Effect quality selections based on our critical analysis.

4.3.7 Post-Processing

The presented rendering engine uses post-processing or quality-improvement image
processing (through the use of pixel shaders) to add additional effects such as bloom
lighting (the effect of producing light fringes around ultra-bright objects – an object with a
bright light behind it will be “overlapped” by the light and thus appear more lifelike),
motion blur (the streaking of rapid moving objects), ambient occlusion (the global effect
of approximating the radiation of light by the casting of rays in every direction from an
object’s surface), depth of field (the variance in sharpness between the nearest and
farthest objects in a scene), displacement mapping (as an alternative to normal mapping
– used to displace surface points; giving surfaces great depth and detail) and halo
effects (artificial glow added to light “emitting” objects such as light bulbs or a glowing
red button). The engine’s post-processing quality scaling relies on the GPU’s
computational power and consists of three quality groups: Low, Medium and High. Table
4.12 lists these scaling approaches with Figure 4.15 showing the mean performance of
each post-processing quality scaling group.

Grouping/Description Rendered Scene Screenshot
Low Post-Processing

Adds Minimal Intensity Bloom Effects and
Displacement Mapping to the rendered
scene.

 148

Medium Post-Processing

Adds Ambient Occlusion (along with High
Intensity Bloom Effects and Displacement
Mapping).

High Post-Processing

Adds Depth of Field and Halo Effects to
the rendered scene.

Table 4.12 Post-Processing effects quality groupings.

 149

Figure 4.15 Comparison of all the previously listed quality scalings (5-25 light sources).

The first quality grouping, consisting of displacement mapping and bloom effects, is the
best performing configuration and is well suited as a performance-orientated selection in
situations where the GPU is being over-utilised or when faced with limited computational
resources. As with the other groupings, this combination shows significant performance
degradation as more light sources are added. It does, however, outperform all the
remaining groups (the cost is not so much a loss in rendering detail as it is one where
there are “less” special effects than when using the others; this selection simply
excludes ambient occlusion, depth of field and halo effects).

The medium post-processing quality grouping performs somewhat worse than the first
but given the global lighting benefits inherent to the utilisation of ambient occlusion, it is
clear that the first quality grouping should only be selected as a last resort effort to free
up computational resources.

The final grouping performs relatively well when dealing with scenes featuring one to ten
light sources and when high-quality special effects are required. This grouping will be
utilised for scenes consisting of 15 light sources or less and where the processing
resources are available to facilitate ambient occlusion, depth of field, displacement
mapping and halo and bloom effects.

The presented rendering engine selects the most appropriate grouping given the
processing power available. Also, the rendering accuracy and detail of distant objects
(for instance, distant displacement mapping or bloom calculations) carry less weight than
those rendered relatively close to the viewer. Table 4.13 summarises the algorithms of
choice based on our algorithmic comparison and scene conditions such as view
distance, dynamic/static light conditions and number of light sources.

Most Appropriate Selection Conditions
Low Post-Processing. The GPU is heavily overburdened and additional

computational resources are required by other
core rendering elements.

Medium Post-Processing. The GPU is fully utilised but no additional
computational resources are required.

Very High Post-Processing. The scene contains less than fifteen light sources
and the computational resources are available to
facilitate ambient occlusion, depth of field,
displacement mapping and halo and bloom
effects.

Table 4.13 Post-Processing quality selections based on our critical analysis.

 150

4.4 Summary

In the chapter we started by presenting a benchmarking mechanism and a set of criteria
for the evaluation of rendering algorithms and techniques. The given evaluation criteria
were selected with the aim of assessing the relationship between rendering quality and
performance – in turn allowing for, where applicable, the isolation of key algorithmic
weaknesses and possible bottleneck areas.

Specific shadow algorithms benchmarked and analysed include: the basic stencil
shadow volume algorithm, the basic hardware shadow mapping algorithm, McCool’s
shadow volume reconstruction using depth maps, Chan and Durand’s hybrid algorithm
for the efficient rendering of hard-edged shadows, Thakur el al’s algorithm based on the
elimination of various shadow volume testing phases and Rautenbach et al’s algorithm
based on shadow volumes, spatial subdivision and instruction set utilisation.

The subsequent shader evaluation, in turn, focused on a number of shader
implementations and lighting approaches, after which two local illumination
configurations were investigated. The first of these limiting the number of light sources in
an attempt to reduce GPU utilisation with the second lifting this limitation while occluding
local light sources (a technique used to approximate the effect of environment lighting as
an attempt to simulate the way light radiates in real life). This evaluation was later
extended with the inclusion of HDR lighting.

Next the evaluation focused on a number of reflection and refraction implementations
and approaches, specifically: basic environmental mapping, CPU-based cube mapping,
refractive environmental mapping and the extension of these reflection and refraction
algorithms through the addition of the Fresnel effect and chromatic dispersion.

The chapter then shifted focus to the evaluation of a number of physics calculations
such as object acceleration, force, linear momentum, gravitational pull, projectile
simulation through trajectory paths, friction and collision detection followed by the
benchmarking of our engine’s dynamically allocated particle generator.

Chapter 4 concluded with the performance analysis of a number of post-processing
shader implementations and lighting approaches, specifically displacement mapping,
bloom effects, ambient occlusion, depth of field and halo effects.

 151

Chapter 5

An Empirically Derived System for
Distributed Rendering

Chapter 5 presents our empirically derived system for distributed rendering. This
analysis highlights not only the performance benefits inherent to the utilisation of this
system, but also the practicality of such an implementation.

In this chapter we will investigate:

 Dynamic algorithm selection
 Rules for selection of rendering algorithms
 Fuzzy rules for selection of the most appropriate rendering algorithm
 Construction of the algorithm selection mechanism
 Results obtained from our benchmarking environment

 152

5.1 Introduction

The presented real-time rendering engine continuously analyses a dataset to determine
the best solution to a given rendering problem – as in, the best algorithm or shader to
use for a specific scene or a specific object in a scene. This selection system consists of
an empirically ascertained dataset (containing the previously obtained algorithmic
performance data), a collection of rules to analyse the data and information of various
elements pertaining to the scene currently being rendered.

The rendering engine uses a selection engine to control the real-time selection of
rendering algorithms and, when performing cube mapping or physics calculations, to
effectively distribute processing between the CPU and GPU. The knowledge base of this
engine, consisting of production rules, is derived from experimental results obtained
through the critical analysis of numerous real-time rendering algorithms, as discussed in
Chapter 4. These production rules are used by an inference engine which, in turn, is
tasked with the selection of the most appropriate algorithm based on certain properties
of the scene being rendered. For instance, the presented system could contain the
following production rule:

if there are a lot of light sources in a scene and the scene has a high geometric
complexity, then enable a hybrid stencil shadow volume/shadow mapping
algorithm.

The notions “a lot of light sources” and “high geometric complexity” are not quantitative
facts. Fuzzy logic provides a solution to this problem by assigning quantitative values
and/or ranges to these concepts (Salton, 1987). The concepts “a lot of light sources” and
“high geometric complexity” can also be combined into the new one “overly complex”,
resulting in a new production rule. The presented engine combines production rules with
fuzzy logic to explicitly symbolise data. This is followed by the selection of the most
appropriate rendering algorithm.

The next section presents this selection engine implementation in detail. Following this,
a critical analysis of the empirically derived system for the high-speed rendering of
complex 3D environments is performed. This analysis will convey not only the
performance benefits inherent in the utilisation of this system, but also the practicality of
such an implementation.

5.2 The Selection Engine and the Dynamic Selection and Allocation of

Algorithms

The empirically derived system for high-speed rendering consists of a fuzzy logic based
selection engine and several rendering algorithms and approaches. The selection
engine controls, as mentioned, the selection and allocation of these algorithms by

 153

correlating the properties of the scene being rendered with the previously obtained
algorithmic performance data.

The selection engine consists of the following modules:

• An inference engine.
• A fact database.
• A knowledge base.
• An explanation/debugging system.

The selection engine’s knowledge base consists of experimental results obtained
through the critical analysis of numerous real-time rendering algorithms. The inference
engine is in turn used to select the most appropriate algorithm based on certain
properties of the scene being rendered. The knowledge base is nothing more than a
database of rules. These rules symbolise the stored knowledge. The fact database
embodies the selection engine inputs (properties and performance statistics of the scene
being rendered) which are subsequently used to make decisions and/or to take certain
actions. The inference engine makes the actual decision by combining these selection
engine rules and facts. The explanation system, implemented only in skeletal form
should future developers require debugging information, generates information about the
manner in which a decision was made. Figure 5.1 illustrates the architecture of the
presented selection engine.

Fig 5.1 Architecture of the selection engine.

The selection engine’s inference engine and explanation system are contained within a
“shell” written for this study. The knowledge base and fact database are connected to
this shell in a plugin-like fashion. The selection engine shell is used to define a generic
algorithm selection system, with the selection engine’s functionality controlled by the
connected fact database and knowledge base.

The selection engine implementation utilises a forward chaining strategy to determine
results from a collection of rules and facts. The process basically starts by reading the
selection engine inputs from the fact database followed by a comparison between the
read inputs and the rules within the rule database. Now, if an input fact matches all the

 154

antecedents of a rule, then the rule is triggered with its conclusion added to the fact
database.

As mentioned in Chapter 4, the selection and/or allocation of algorithms is based on the
continuous optimisation of the rendering frame rate and overall rendering quality. The
implemented selection engine will thus select the most appropriate algorithms by taking
not only the scene’s frames per second performance data (dynamically changing as one
moves through the scene) into account but also by factoring in the viewer’s position in
relation to the object or effect being rendered or calculated. The rendering accuracy and
detail of distant objects or effects will thus carry less weight than those rendered
relatively close to the viewer. The next section presents the dynamic selection and
allocation (where applicable) of the algorithms and rendering approaches discussed in
Chapter 3.

5.2.1 Shadows

The following rules can be defined for selecting the most appropriate shadow rendering
algorithm (these rules are derived from the algorithmic comparison given in Chapter 4 –
Table 4.4 summarises the shadow algorithms of choice based on this algorithmic
comparison as well as scene conditions such as view distance, dynamic/static light
conditions and number of light sources):

 Rule #1
 If the environment/sub-environment consists of only static light sources,
 Then render all shadows via Rautenbach et al's spatial subdivision/SSE2

algorithm.

 Rule #2
 If the scene consists of eight or less dynamic light sources,
 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),
 Then render all shadows via Chan and Durand’s algorithm.

 Rule #3
 If the scene consists of more than two and less than fourteen dynamic light

sources,
 And low-quality shadows are required (shadow casting objects are located a

significant distance from the point-of-view),
 Then render all shadows via the basic Shadow mapping algorithm.

 Rule #4
 If the scene consists of fourteen or more dynamic light sources,

 155

 And either low- or high-quality shadows are required (for both close range and
distant objects),

 Then render all shadows via Chan and Durand’s algorithm.

 Rule #5
 If the scene consists of nine or more dynamic light sources,
 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),
 Then render all shadows via Chan and Durand’s algorithm.

An interesting aspect of the presented selection engine implementation is its fuzzy logic-
based nature. As a fuzzy logic based selection engine, it utilises a set of linguistic
variables (related to the problem) and several membership functions. Fuzzy rules are
derived from these variables as well as the knowledge base. These rules are applied by
means of Mamdani fuzzy inference. Mamdani inference applies a set of fuzzy rules on a
set of traditional precise inputs to obtain a precise output value (such as an action
recommendation).

The presented fuzzy logic based selection engine will thus contain the following
redefined, “fuzzified” rules for selection of the most appropriate shadow rendering
algorithm (these rules are screen resolution independent, lower resolutions will simply
imply faster overall graphics performance with the shadow generation phases remaining
consistent):

 Rule #1
 If the environment/sub-environment consists of stationary light sources,
 Then render all shadows via Rautenbach et al’s spatial subdivision/SSE2

algorithm.

 Rule #2
 If the scene consists of an average number of dynamic light sources,
 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),
 Then render all shadows via Chan and Durand’s algorithm.

 Rule #3
 If the scene consists of few or and less than an above average number of

dynamic light sources,
 And low-quality shadows are required (shadow casting objects are located a

significant distance from the point-of-view),
 Then render all shadows via the basic Shadow mapping algorithm.

 Rule #4

 156

 If the scene consists of many dynamic light sources,
 And either low- or high-quality shadows are required (for both close range and

distant objects),
 Then render all shadows via Chan and Durand’s algorithm.

 Rule #5
 If the scene consists of an average or greater than average number of

dynamic light sources,
 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),
 Then render all shadows via Chan and Durand’s algorithm.

Mamdani inference is used to “fuzzify” all precise input values via the definition of fuzzy
sets. Here we assume a representation of the number of light sources through the range
[0, 20], the nature of a scene’s light sources via the values 1 for dynamic and 0 for static
and the distance from the viewer via the range [0, 90] (in world units). The presented
implementation also defines the following linguistic variables: Stationary, Dynamic,
Average, Few and Many. The system is thus based on Mamdani inference to apply a
set of fuzzy rules on a set of traditional precise inputs to obtain a precise output value,
specifically an action recommendation (the shadow algorithm to utilise).

The presented Mamdani implementation will thus load the critical analysis performance
data, read the pre-programmed fuzzy sets and rules, associate the observed data with
the fuzzy sets, run through each case for each and every fuzzy rule, calculate the rule-
based fuzzy values, combine the calculated fuzzy values and finally calculate an exact
value from the set of fuzzy values. For a thorough evaluation of these rules, please see
the MSc dissertation, An Empirically Derived System for High-Speed Shadow Rendering
(2008).

5.2.2 Shaders

As in the previous section, we can define several rules for the selection of the most
appropriate shader quality scaling (section 4.3.2 presents the shader comparison, based
on scene conditions such as view distance and the number of light sources, upon which
these rules are based):

 Rule #1
 If the GPU is heavily overburdened,

And additional computational resources are required by other core rendering
elements

 Then render the scene using the Low Shader Quality grouping.

 157

 Rule #2
 If the GPU is fully utilised
 And no additional computational resources are required
 Then render the scene using the Medium Shader Quality grouping.

 Rule #3
 If the GPU is not fully utilised,
 And the scene consists of a few or less than a below average number of light

sources,
 And high-quality special effects are required,
 And Very High Shader Quality would overburden the GPU,
 Then render the scene using the High Shader Quality grouping.

 Rule #4
 If the scene contains a below average number of light sources
 And the computational resources are available to facilitate true HDR lighting,

translucent shadows, parallax mapping and volumetric materials,
 Then render the scene using the Very High Shader Quality grouping.

5.2.3 Local Illumination

The following fuzzy rules, based on the comparison given in section 4.3.3, deal with the
dynamic selection of the most appropriate local illumination quality approach:

 Rule #1
 If the GPU is heavily overburdened,

And additional computational resources are required by other core rendering
elements

Or the scene contains a great number of light sources
 Then render the scene using the Low Local Illumination grouping.

 Rule #2
 If the GPU is not fully utilised,
 And the scene contains less than a very high number of light sources,
 And high-quality special effects are required,
 Then render the scene using the High Local Illumination grouping.

5.2.4 Reflection and Refraction

The most appropriate reflection and refraction quality approaches, as presented in
section 4.3.4, can now selected in real-time using the following fuzzy rules:

 158

 Rule #1
 If the GPU is heavily overburdened,
 And the CPU is fully utilised
 Or cannot be utilised to lighten the GPU load,

And additional computational resources are required by other core rendering
elements

 Then render the scene using the Low Reflection Quality grouping.

 Rule #2
 If the GPU is fully utilised,
 And additional computational resources are required,
 And the CPU is not fully utilised,
 And can be utilised to lighten the GPU load,
 Then render the scene using the Medium Reflection Quality grouping.

 Rule #3
 If the GPU is not fully utilised,
 And the scene consists of a few or less than a below average number of light

sources,
 And high-quality special effects are required,

 Then render the scene using the High Reflection and Refraction Quality
grouping.

5.2.5 Physics

The following fuzzy rules control the selection of the most appropriate physics simulation
approach based on the presented algorithmic comparison (section 4.3.5):

 Rule #1
 If the GPU is heavily overburdened,
 And the CPU is fully utilised
 Or cannot be utilised to lighten the GPU load,

And additional computational resources are required by other core rendering
elements

 Then implement physics using the Very Basic Physics Simulation grouping.

 Rule #2
 If the GPU is fully utilised Or If the CPU is fully utilised Or cannot be utilised to

lighten the GPU load,
 And no additional computational resources are required,
 Then implement physics using the Low Physics Simulation grouping.

 159

 Rule #3
 If the GPU is not fully utilised Or If the CPU is not fully utilised
 And the scene consists of less than an above average number of objects,
 And high-quality physics are required,

And Very High Physics Simulation would overburden the GPU and/or
GPU,

 Then implement physics using the High Physics Simulation grouping.

 Rule #4
 If the necessary computational resources (CPU and/or GPU) are not required

for graphics processing,
 And the necessary physics calculations does not cause a noticeable drop in

the perceivable smoothness of the scene being rendered,
 Then render the scene using the Very High Physics Simulation grouping.

5.2.6 Particle Effects

The most appropriate particle simulation selection (controlled using scene conditions
and number of particles, as noted in section 4.3.6) is determined using the following set
of rules:

 Rule #1
 If the GPU is heavily overburdened,
 And the CPU is fully utilised
 Or cannot be utilised to lighten the GPU load,

And additional computational resources are required by other core rendering
elements

 Then implement particle effects using the Low Particle Simulation grouping.

 Rule #2
 If the GPU is fully utilised
 And the CPU is fully utilised
 Or cannot be utilised to lighten the GPU load,
 And no additional computational resources are required,

Then implement particle effects using the Medium Particle Simulation
grouping.

 Rule #3
 If the GPU is not fully utilised Or If the CPU is not fully utilised
 And the effect consists of a medium to high number of particles,
 And high-quality physics are required,

 160

And Very High Particle Simulation would overburden the GPU and/or GPU,
 Then implement physics using the High Physics Simulation grouping.

 Rule #4
 If the necessary computational resources (CPU and/or GPU) are not required

for graphics processing,
 And the necessary Newtonian calculations does not cause a noticeable drop

in the perceivable smoothness of the scene being rendered,
 Then render the scene using the Very High Particle Simulation grouping.

5.2.7 Post-Processing

Table 4.13 summarises the algorithms of choice based on our algorithmic comparison
and scene conditions such as view distance, dynamic/static light conditions and number
of light sources. Further defining our selection engine, we can create the following fuzzy
rules for selection of the most appropriate post-processing quality approach:

 Rule #1
 If the GPU is heavily overburdened,

And additional computational resources are required by other core rendering
elements

 Then render the scene using the Low Post-Processing Quality grouping.

 Rule #2
 If the GPU is fully utilised
 And no additional computational resources are required
 Then render the scene using the Medium Post-Processing Quality grouping.

 Rule #3
 If the GPU is not fully utilised,
 And the computational resources are available to facilitate ambient occlusion,

depth of field, displacement mapping and halo and bloom effects
 And the scene consists of a less than average number of light sources,
 Then render the scene using the Very High Post-Processing Quality

grouping.

5.3 Construction of the Algorithm Selection Mechanism

The performance data gathered during the previously discussed critical analysis allows
for the construction of a fuzzy logic-based selection and allocation system. This system,
as mentioned, controls the real-time selection of rendering algorithms and quality

 161

groupings based on environmental conditions. The gathered data (algorithm, shader and
rendering performance) is stored in a comma-delimited format with the rendering engine
loading it into memory via the in-game loop (section 2.2) upon execution. Each
implemented algorithm/rendering approach is, in turn, loaded into the engine via a
dynamic link library. DLLs are based on Microsoft’s shared library concept and can
contain source code, data and resources. These libraries are generally loaded at
runtime, a process referred to as run-time dynamic linking – thus allowing us to replace
or change DLLs without recompiling the main executable. For example, the shadow
rendering DLL contains the implementation details of the basic stencil shadow volume
algorithm, the basic hardware shadow mapping algorithm, McCool’s shadow volume
reconstruction using depth maps, Eric Chan and Frédo Durand’s hybrid algorithm for the
efficient rendering of hard-edged shadows, Thakur et al’s algorithm based on the
elimination of various shadow volume testing phases and Rautenbach et al’s algorithm
based on shadow volumes, spatial subdivision and instruction set utilisation.

CPU utilisation monitoring is performed using Intel’s CPUUsage class (Intel, 2010). This
class, wrapping Microsoft’s Performance Data Helper (PDH) API (used to collect
performance data of various performance counters or system instances), provides an
interface for the calculation of maximum, minimum and average CPU utilisation over a
period of time. As stated by Intel (2010), CPU utilisation is a key metric for optimisation,
performance analysis, and workload evaluation. However, the built-in Windows facilities
for tracking CPU utilisation provide limited flexibility. The CPUUsage class attempts to
alleviate this issue by providing a simple interface that can be used to programmatically
track CPU percentage. The level of control provided by the CPUUsage class allows
virtually unlimited CPU utilisation monitoring options for the application developer.

NVIDIA’s PerfKit (and the PerfSDK API) is, in turn, used by the rendering engine to
access the physical GPU hardware counters and GPU usage data in real-time. The
NVPerfKit is actually a collection of performance monitoring, debugging and profiling
utilities focused on accessing the low-level performance indicating components of the
graphics driver and the GPU itself (assuming an NVIDIA GPU is being used). These low-
level components are known as performance counters. They give information on the
application’s overall frames per second rendering, the video memory used in MB, the
graphics driver’s sleep time, the polygon count, etc (NVIDIA, 2011). Using the NVPerfKit,
we are thus able to profile the rendering engine in terms of its GPU, driver and memory
usage. A useful component of NVPerfKit is called PerfHUD, a real-time Direct3D and
OpenGL application profiler that generates its output in the form of a heads-up display
(shown in Figure 5.2).

 162

Figure 5.2 Nvidia’s PerfHUD.

5.4 Results

By dynamically cycling through algorithms and quality groupings to compensate for
performance-impacting changes in the presented rendering environment, we are able to
bridge an existing gap between quality and high-speed rendering. The performance
gains inherent in this system’s use, when compared to traditional implementations, is
subsequently highlighted.

We now describe the behaviour of the rendering engine when subjected to different
scenarios, each performed independently of one another, that were designed to test its
transition behaviour in respect of the various transition rules described above. The
collective overall effect is a highly optimised rendering engine (the accompanying CD
contains a high-definition video showcasing the rendering engine and the combined
overall effect of dynamic quality selection and process allocation). Figure 5.3 shows a
collage of the rendering engine in action.

 163

Figure 5.3 Various screenshots of the presented 3D engine.

Shadows

Starting with the engine’s shadow quality scaling, as discussed in Rautenbach (2008),
the presented benchmarking environment initially consisted of a number of static light
sources. We then added a number of dynamic light sources (six) with shadow casting
objects positioned relatively close to the viewer. This allowed us to analyse the transition
from the spatial subdivision/SSE2 algorithm to Chan and Durand’s algorithm.

Following this we increased the number of dynamic light sources to thirteen with the
shadow casting objects translated to a significant distance from the point-of-view. All
shadows previously rendered using Chan and Durand’s algorithm were now rendered
via shadow mapping.

Next we systematically increased the number of light sources to sixteen while leaving
the shadow casting objects at their previous position – this caused a reselection of Chan
and Durand’s algorithm.

The shadow casting objects were subsequently translated back to their previous position
(relatively close to the viewer) with the scene’s lighting reset to nine dynamic light
sources (with shadow casting objects located near the point-of-view) – Chan and
Durand’s algorithm was successfully selected.

 164

Figure 5.4 shows the performance data obtained (for this specific instance) for up to
eight light sources with Figure 5.5 showing the results obtained for nine to sixteen light
sources.

Figure 5.4 Shadow performance data for up to eight light sources.

Figure 5.5 Shadow performance data for nine to sixteen light sources.

 165

The experiment can be repeated in reverse order – that is, by starting with nine dynamic
light sources (with shadow casting objects located near the point-of-view). Our
benchmarking environment selected Chan and Durand’s algorithm as its initial shadow
rendering algorithm.

Next we systematically increased the number of light sources to sixteen while leaving
the shadow casting objects at their previous position – Chan and Durand’s algorithm
was still the algorithm of choice and no alternative shadow rendering algorithms was
selected.

Following this we decreased the number of dynamic light sources to thirteen with the
shadow casting objects translated to a significant distance from the point-of-view. All
shadows previously rendered using Chan and Durand’s algorithm were now rendered
via shadow mapping.

We now decreased the number of dynamic light sources to six with the shadow casting
objects positioned relatively close to the viewer. This allowed us to analyse the transition
from Chan and Durand’s algorithm to the spatial subdivision/SSE2 algorithm.

Our final action was to set all the dynamic light sources to static. Figure 5.6 shows the
performance data obtained for sixteen to nine light sources with Figure 5.7 showing the
results obtained for eight to a single light source.

Figure 5.6 Shadow performance data for sixteen to nine light sources.

 166

Figure 5.7 Shadow performance data for eight to a single light source.

Shaders

Similarly, for shader quality scaling, the presented benchmarking environment initially
consisted of a single light source. We then added seven additional light sources with a
number of objects positioned relatively close to the viewer. This allowed us to analyse
the transition from the Very High Shader Quality grouping to the High Shader Quality
Grouping.

Following this we increased the number of dynamic light sources to thirteen. The scene
previously rendered using the High Shader Quality grouping were now rendered using
simplified High Dynamic Range Lighting, normal maps, specular highlights and
volumetric fog (the Medium Quality Grouping).

Next we systematically increased the number of light sources to sixteen. This caused a
selection of the Low Shader Quality grouping.

The scene’s lighting was now reset to seven dynamic light sources – the Very High
Shader Quality grouping was successfully selected.

Figure 5.8 shows the performance data obtained (for this specific instance) for up to
eight light sources with Figure 5.9 showing the results obtained for nine to sixteen light
sources.

 167

Figure 5.8 Shader performance data for up to eight light sources.

Figure 5.9 Shader performance data for nine to sixteen light sources.

 168

Local Illumination

For local illumination quality scaling, the benchmarking environment (excluding all other
special effects) consisted of five dynamic light sources. Fifty additional light sources
were then progressively added (with a number of objects positioned relatively close to
the viewer). This allowed the transition from the High Local Illumination Quality grouping
to the Low Local Illumination Quality Grouping to be analysed.

The scene’s lighting was now reset to twenty dynamic light sources – the High Local
Illumination Quality grouping was successfully selected.

Figure 5.10 shows the performance data obtained (for this specific instance) for up to
twenty-five light sources with Figure 5.11 showing the results obtained for thirty to sixty-
five light sources.

Figure 5.10 Shader performance data for up to twenty-five light sources.

 169

Figure 5.11 Shader performance data for thirty to sixty-five light sources.

Reflection and Refraction

Benchmarking the renderer’s reflection and refraction quality scaling mechanism
commenced with a test environment consisting of a single light source. Seven additional
light sources, with a number of objects positioned relatively close to the viewer, were
subsequently added. This allowed us to analyse the transition from the High Reflection
and Refraction Quality grouping to the Medium Reflection and Refraction Quality
Grouping.

Following this we increased the number of dynamic light sources to thirteen. The scene
previously rendered using the Medium Reflection and Refraction Quality grouping were
now rendered using the Low Reflection Quality Grouping.

The scene’s lighting was now reset to seven dynamic light sources – the Very High
Shader Quality grouping was successfully selected.

 170

Figure 5.12 shows the performance data obtained (for this specific instance) for up to
eight light sources with Figure 5.13 showing the results obtained for nine to sixteen light
sources.

Figure 5.12 Reflection and Refraction performance data for up to eight light sources.

Figure 5.13 Reflection and Refraction performance data for nine to sixteen light
sources.

 171

Physics

Next, considering the renderer’s physics quality scaling, our benchmarking environment
consisted of a relatively simple cubic environment featuring 3D models and a simulated
environment allowing for object interaction and collision.

We started with twenty-five objects then added fifty additional interacting objects. This
allowed us to analyse the transition from the Very High Physics Simulation selection to
the High Physics Simulation selection (with processes efficiently distributed between the
CPU and GPU).

Following this we increased the number of objects to one hundred and twenty-five. The
scene previously rendered using the High Physics Simulation selection were now
rendered using the Low Physics Simulation selection.

The scene’s object-count was now reset to fifty – Very High Physics Simulation was
successfully selected.

Figure 5.14 shows the performance data obtained (for this specific instance) for up to
one hundred and twenty-five objects.

Figure 5.14 Physics performance data for up to 125 interacting objects.

 172

Particles

As previously discussed, the particle system’s evaluation focuses on a number of
particle simulations (organised into performance-impacting selections ranging from Low
to Very High). To gather the necessary results, we implemented our particle system for a
basic scene – a relatively simple cubic environment featuring 3D models and a
simulated environment with particle effects added to simulate explosions, dust, tread
marks, beams, etc (the number of particles used per simulation range from 1500 to
7500).

The experiment started with one thousand five hundred particles. Four thousand five
hundred additional particles were subsequently added. This allowed us to analyse the
transition from the Very High Particle Simulation selection to the High Particle Simulation
selection (with physics calculations efficiently distributed between the CPU and GPU).

Following this we increased the number of particles to one nine thousand. The scene
previously rendered using High Particle Simulation were now rendered using Medium
Particle Simulation.

The scene’s particle-count was now reset to three thousand – Very High Particle
Simulation was successfully selected.

Figure 5.15 shows the performance data obtained (for this specific instance) for up to
nine thousand particles. Similar results are observed when repeating the experiment in
reverse order.

Figure 5.15 Particle performance data for up to 9000 particles.

 173

Post-Processing

Post-Processing quality scaling benchmarking started with a basic 5 light source
environment. Ten additional light sources were then added (with a number of objects
positioned relatively close to the viewer). A transition from the High Post-Processing
Quality grouping to the Medium Post-Processing Quality grouping was observed.

Following this we increased the number of dynamic light sources to twenty-five. The
scene previously rendered using the Medium Post-Processing Quality grouping were
now rendered using the Low Post-Processing Quality grouping.

The scene’s lighting-count was now reset to seven dynamic light sources – the High
Post-Processing Quality grouping was successfully selected.

Figure 5.16 shows the performance data obtained for up to twenty-five light sources.
Similar results, as with all the other algorithms and approaches, are observed when
repeating the experiment in reverse order.

Figure 5.16 particle performance data for up to 25 light sources.

5.5 Summary

This chapter presented the general architecture of our empirically derived system for
high-speed rendering – the dynamic process allocation and selection system being the

 174

main focus. Fuzzy logic-based reasoning for the explicit symbolisation of data was also
looked at.

The final section summarised the results obtained by dynamically cycling through
algorithms and quality groupings to compensate for performance-impacting changes in
our rendering environment. These results illustrated the performance gains to be derived
by the proposed system. The next chapter gives an overall summary of our work. It
closes by discussing possible future work based on the presented research.

 175

Chapter 6

Summary and Conclusion

Chapter 6 features an overall summary of our work. It closes by discussing
possible future work based on the presented research.

In this chapter we will present:

 An overall summary of our work
 Concluding remarks and future work

 176

6.1 Summary

The thesis presented a study performed through the implementation of a wide and
representative range of rendering and physics algorithms (organised into performance-
impacting groups). A platform supporting the swapping out of rendering algorithms and
physics calculations as well as the transfer of specific tasks between the CPU/GPU was
built. This platform enabled the detailed benchmarking of the various implemented
algorithms which, in turn, allowed for the definition of a fuzzy-logic based expert system
that was embedded into a real-time rendering engine. The rendering engine analyses
the 3D environment being rendered and uses the benchmarked performance data that
has been encapsulated in the fuzzy-logic based selection engine to determine the best
solution to a given problem at any given moment. Whenever appropriate and for cube
mapping and physics calculations, it augments the computational power of the parallel
compute engine in modern GPUs with that of multi-core CPUs. This allowed for the
rendering of complex geometric environments through the real-time swapping of
rendering algorithms and, as proof of concept, through the effective distribution of
specific processing tasks between the CPU and GPU.

The thesis was divided into two parts. Part I provided the background material deemed
necessary to arrive at the final result. It started by looking at game engine architecture in
general, highlighting the importance of software componentry, and the difference
between game-engine code and game-specific code. Following this it focussed on a
number of game engine architectures, specifically ad-hoc, modular and the directed
acyclic graphs architecture (DAG).

Next it considered the first step invoked whenever a game is executed, namely
initialisation. Initialisation was described as the stage responsible for resource and
device acquisition, memory allocation, setup of the game’s GUI, loading of art assets,
etc. Following front-end initialisation, it discussed the exit state and the game loop for
the uninterrupted execution of a game.

Following this, the thesis dealt with the general design and implementation of a generic
game engine which serves as the core of the presented dynamically scalable interactive
rendering engine.

The thesis then introduced our modular rendering engine as a scalable interactive
testing environment and complete solution for the rendering of computationally intensive
3D environments. A detailed discussion of the presented interactive environment’s core
rendering elements was subsequently given. These elements were grouped into the
following rendering or computation categories: shaders, local illumination, reflection and
refraction, shadows, physics, particles and post-processing special effects. This was the
end of Part I.

 177

Part II of the thesis categorised the presented algorithms and rendering groupings based
on the level-of-detail/rendering quality and the associated computational impact. It also
focused on the critical analysis and detailed benchmarking of the presented rendering
and simulation techniques – the data used by the presented fuzzy-based selection and
allocation system.

Part II commenced with a discussion of the proposed benchmarking mechanism as well
as a set of criteria for the evaluation of rendering algorithms and techniques. The given
evaluation criteria were selected with the aim of assessing the relationship between
rendering quality and performance – in turn allowing for, where applicable, the isolation
of key algorithmic weaknesses and possible bottleneck areas.

Drawn from the MSc dissertation preceding this thesis (2008), the shadow algorithms
benchmarked and analysed include: the basic stencil shadow volume algorithm, the
basic hardware shadow mapping algorithm, McCool’s shadow volume reconstruction
using depth maps, Chan and Durand’s hybrid algorithm for the efficient rendering of
hard-edged shadows, Thakur el al’s algorithm based on the elimination of various
shadow volume testing phases and Rautenbach et al’s algorithm based on shadow
volumes, spatial subdivision and instruction set utilisation.

Shader evaluation subsequently focused on a number of shader implementations and
lighting approaches. Following this, two local illumination configurations were
investigated – the first of these limiting the number of light sources in an attempt to
reduce GPU utilisation with the second lifting this limitation while occluding local light
sources (a technique used to approximate the effect of environment lighting as an
attempt to simulate the way light radiates in real life).

Next the evaluation focused on a number of reflection and refraction implementations
and approaches, specifically: basic environmental mapping, CPU-based cube mapping,
refractive environmental mapping and the extension of these reflection and refraction
algorithms through the addition of the Fresnel effect and chromatic dispersion.

The thesis then shifted focus to the evaluation of a number of physics calculations such
as object acceleration, force, linear momentum, gravitational pull, projectile simulation
through trajectory paths, friction and collision detection followed by the benchmarking of
the presented rendering engine’s dynamically allocated particle generator.

The benchmarking exercise concluded with the performance analysis of a number of
post-processing shader implementations and lighting approaches, specifically
displacement mapping, bloom effects, ambient occlusion, depth of field and halo effects.

The thesis closed by presenting the general architecture of the proposed dynamically
scalable interactive rendering engine – the dynamic process allocation and selection

 178

system being the main focus. It also looked at fuzzy logic-based reasoning for the
explicit symbolisation of data. The results obtained by dynamically cycling through and
offloading algorithms and quality groupings to compensate for performance-impacting
changes in a rendering environment were subsequently given. These results illustrated
the performance gains inherent to the proposed system’s use.

6.2 Concluding Remarks and Future Work

The computer graphics industry has developed immensely during the past decade.
Looking at the area of computer games one can easily see technological leaps being
made on a yearly basis. However, most of the currently available rendering algorithms
are only amenable to specific rendering conditions and/or situations.

A viable solution to GPU and, to a limited degree, CPU over- and/or underutilisation
(depending on the scene being rendered) was to perform a critical analysis of numerous
rendering algorithms with the aim of assessing the relationship between rendering
quality and performance. Using this performance data gathered during the analysis of
various algorithms, we were able to define a fuzzy logic-based selection engine to
control the real-time selection of rendering algorithms and special effects groupings
based on environmental conditions (as discussed in Chapter 4 and 5). This system
ensures the following: nearby effects are always of high-quality (where computational
resources are available), distant effects are, under certain conditions, rendered at a
lower quality and the frames per second rendering performance is always maximised.
Furthermore, as a secondary objective, we have shown that the unification of the parallel
compute engine present in modern GPUs with that of multi-core CPUs to allow for the
rendering of complex geometric environments is a viable solution for the management of
scarce computational resources and that improved rendering quality and performance
can be achieved through load-balancing between the CPU and GPU.

It is important to note that this engine and its selective utilisation of the CPU in an
attempt to free up GPU resources and, in turn, to accelerate graphics performance is, in
principle, also adaptable for use with 3D capable mobile devices (such as the iPhone,
IPad and iPod Touch); it is expected to give these devices the ability to render special
effects not previously possible by maximising the utilisation of both CPU and GPU.
Further experimentation in this regard would seem appropriate.

We have also demonstrated that the use of a relatively simple fuzzy-logic based expert
system can serve as a viable solution to the problem of selecting between and
distributing competing algorithms in real-time. This resulted in the optimisation of GPU
usage by ensuring that the quality of special effects is appropriately tuned.

 179

This work is also, in some sense, similar to current research on software evolution in the
context of MAUS (Mobile and Ubiquitous Systems) which investigates how on-the-fly
architectural reconfigurations are needed for such systems as context changes due to
their mobility (Autili et al, 2010). Our work can inform theirs in as much as it points to the
utility of a fuzzy-logic based expert system to determine which changes to make as the
context changes.

It is also important to note that, despite all the rendering algorithms and approaches
available, a lot of work remains in the field. More algorithms could, as future work, be
benchmarked and added to our selection engine’s knowledge base. Special effects
groupings could also be assigned collective weights based on the groups overall impact
on rendering performance (for example, the post-processing effects group will have a
bigger overall performance impact that the local illumination group). The implemented
rendering engine is also highly expandable and alternate rendering solutions, whether
GPU or CPU based, can be implemented and loaded into the engine as additional
dynamic link libraries. Alternate algorithmic performance improvements can also be
pursued.

Furthermore, utilising a selection system such as the one in this thesis will allow modern
engines to not only do away with their performance setup screens (thus freeing users
from the cumbersome task of fine-tuning the game’s graphics performance) but will
guarantee a rendering environment that is running at the most optimised level possible
by not just lowering “drawing distance” or “texture quality” but by actually selecting the
most appropriate rendering approach and shader implementation for the current scene
being rendered.

Immersive rendering approaches used in conjunction with AI subsystems, game
networking and logic, physics processing and other special effects (such as post-
processing shader effects) are immensely processor intensive and can only be
collectively implemented on high-end hardware. This thesis has illustrated that by
cycling and distributing algorithms based on environmental conditions and by the
exploitation of algorithmic strengths, that a vast array of high-quality real-time special
effects and highly accurate calculations can become as common as texture mapping.

 180

	Front
	Part-I
	PART-II
	Chapter 4
	4.1 Benchmarking Mechanism
	4.2 Rendering Subsystem Evaluation Criteria
	4.3 Algorithm Comparison
	4.4 Summary

	Chapter 5
	5.1 Introduction
	5.2 The Selection Engine and the Dynamic Selection and Allocation of Algorithms
	5.3 Construction of the Algorithm Selection Mechanism
	5.4 Results
	5.5 Summary

	Chapter 6
	6.1 Summary
	6.2 Concluding Remarks and Future Work

	References
	Appendices

