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Chapter 4 
 
 

Benchmarking the Rendering Algorithms 
and Techniques  
 
 
 

Chapter 4 presents the critical analysis and benchmarking of the previously 
discussed rendering algorithms and techniques as utilised by our interactive 
rendering engine. The empirical analysis presented in this chapter allows us to 
explore in the next chapter the practicality and performance benefits of a dynamically 
scalable interactive rendering engine in which GPU-CPU utilisation, as a secondary 
proof of concept approach, has been unified. 

 
Outline: 
 
 Benchmarking mechanism  
 Evaluation criteria 
 Algorithm comparison 
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4.1 Benchmarking Mechanism 
 
Benchmarking entails running a computer program with the aim of assessing its 
performance. This action is normally hardware-centric and intended to measure the 
performance of numerous subsystems and/or execution routines. We use such a system 
to evaluate the previously discussed rendering subsystems. This benchmarking system 
basically functions as a plug-in to the previously discussed rendering engine where real-
time performance data are streamed to a file-based database for post-processing and 
analysis. Figure 4.1 gives a visual representation of this system. 
 

 
Figure 4.1 The rendering engine, benchmarking system and performance database. 
 
Critical analysis was performed via scripted camera movement, object and light source 
additions. This was done not only to ensure consistent testing, but also to ease future 
validation and replication of results.  
 
 
4.2 Rendering Subsystem Evaluation Criteria 
 
The set of criteria used to evaluate the presented rendering techniques (such as cube 
mapping, post-processing effects and stencil shadow volumes) is now presented. The 
given evaluation criteria were selected with the aim of assessing the relationship 
between rendering quality and performance. This assessment provides the basis of the 
system presented in Chapter 5 in which the dynamic selection of algorithms as well as 
CPU-GPU process allocation (for cube mapping and physics processing) is used to 
control performance and quality. Table 4.1 lists the proposed evaluation criteria in the 
first column, indicating in parenthesis whether its focus is on quality, performance or 
both. The second column provides motivation for the criterion’s inclusion. 
 
 
Evaluation Criteria Motivation 
Scalability  
(performance) 

Evaluating the performance of an algorithm based 
on the intensifying complexity of the rendered 
scene allows for the identification of algorithmic 
limits and the maximum threshold for scene and 
model complexity. (Analyse the overall 
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performance impact due to, for example, an 
increase in the number of light sources and the 
shadow casting model’s polygonal complexity). 

Rendering Accuracy and Detail 
(quality) 

Determining whether, for example, a shadow is 
cropped and/or skewed properly, and accurately 
projected onto other models and surfaces, or 
whether a reflection is accurate allows for the 
evaluation of rendering quality. 

CPU/GPU Utilisation 
(performance/quality) 

Comparing, where applicable, a standard GPU-
driven implementation to the same 
implementation being run on a CPU (with 
utilisation of modern multi-core architecture); 
allows for the evaluation of maximized parallelism 
versus conventionally GPU-based rendering.  

Table 4.1 Evaluation criteria 
 
 
4.3 Algorithm Comparison 
 
This section compares the presented engine’s core rendering elements. It also lists the 
observed results with specific emphasis on the most appropriate application areas. 
 
To gather the necessary results, all algorithms were implemented for a number of 
scenes. In each case, unless otherwise stated, the scene was a relatively simple cubic 
environment featuring a single movable 3D model and a variable number of light 
sources. The 3D models utilised are those provided as samples by the Microsoft DirectX 
SDK (Figure 4.2). The test system had the following configuration: 
 

NVIDIA GeForceTM GTX 570 (1280MB GDDR5) (Video Card), 
Intel Core i5 650 @ 3.2GHz+ (Dual Core Processor),  
4.0GB (Memory),  
1920x1080 (Screen Resolution).  
 

 
Figure 4.2 The 599-face ‘tiger’ mesh, 1628-face ‘car’ mesh, 4136-face ‘shapes’ mesh 
and a 9664-face ‘battleship’ mesh. 
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4.3.1 Shadows 
 
The presented evaluation focuses on a number shadow rendering algorithms (discussed 
in section 3.6), specifically the stencil shadow volume algorithm, the shadow mapping 
algorithm and a number of hybrid approaches such as McCool’s shadow volume 
reconstruction using depth maps, Chan and Durand’s hybrid algorithm for the efficient 
rendering of hard-edged shadows, Thakur et al’s elimination of various shadow volume 
testing phases and Rautenbach et al’s shadow volumes and spatial subdivision 
approach. Please note that the mean performance of each algorithm is shown 
(performance data has been average over the four models due to individual behaviour 
showing identical patterns). Also, for the detailed critical analysis, please see the MSc 
dissertation, An Empirically Derived System for High-Speed Shadow Rendering (2008). 
 
Starting out, it is important to note that Rautenbach et al’s spatial subdivision algorithm 
was analysed in a statically lit environment. This results in its relatively high performance 
when compared to the other algorithms. Its performance was found to be comparable to 
the basic stencil shadow volume algorithm in situations where dynamic lighting is 
implemented. This octree-based algorithm will thus outperform all other algorithms 
where light sources are not added, moved or removed.  
 
In Figure 4.3 the frame rates achieved via the implementation of spatial subdivision is 
compared to that obtained using the Heidmann algorithm. It is clear from the data that 
Rautenbach et al’s approach results in significantly better performance than the original 
stencil shadow volume algorithm (40% better for one light source and 200% better for 
eight). 
 
 

 
Figure 4.3 Comparison of Rautenbach et al’s spatial subdivision approach with the 
depth-fail stencil shadow volume approach. 
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In Figure 4.4, the frame rates attained from using spatial subdivision combined with the 
utilisation of the SSE2 instruction set is compared to that obtained from using the 
Heidmann algorithm. Comparing a standard C/Direct3D implementation to the utilisation 
of Intel’s SSE2 instruction set allows for the evaluation of maximised parallelism (as 
offered by these instruction sets) versus conventionally sequentially executed routines. 
Intel’s SSE stands for Streaming Single Instruction, Multiple Data Extensions. It is based 
on the principle of carrying out multiple computations with a single instruction in parallel 
(Intel, 2002). The SEE instruction set (specifically SSE2 found on the Pentium 4+ 
architecture) also adds 64-bit floating point and 8/16/32-bit integer support. 
 

 
Figure 4.4 Comparison of Rautenbach et al’s extended approach with the depth-fail 
stencil shadow volume approach. 
 
From the results given in Figure 4.4, it is clear that Rautenbach et al’s spatial subdivision 
approach combined with SSE offers the best performance for statically lit scenes. This 
algorithm does, however, require processing time for Octree-construction and the non-
Octree enhanced shadow volume algorithms perform much better in situations where 
light sources are dynamically added, moved or removed. The presented rendering 
engine will use the spatial subdivision approach coupled with SSE2 utilisation for all 
environmental areas lit using static light sources. 
 
From Figure 4.5, listing the mean performance comparison of all the shadow algorithms 
listed in section 3.6, it is clear that Chan and Durand’s (2004) algorithm is the second 
best algorithm when rendering high-quality shadows with only a single dedicated light 
source. This algorithm shows significant performance degradation when more light 
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sources are added. It does, however, outperform all the remaining shadow volume-
based algorithms for up to eight light sources. The presented rendering engine will use 
Chan and Durand’s algorithm for all scenes consisting of eight or less dynamic light 
sources when high-quality shadows are required.  
 
Furthermore, the shadow mapping algorithm is observed to perform only slightly worse 
than Chan and Durand’s (2004) algorithm (when rendering scenes consisting of just one 
light source). That said, the critical analysis implementation does render low-resolution 
shadow maps. However, increasing this shadow map resolution will have a net-negative 
impact on the scene’s overall rendering performance. Shadow mapping (with average 
shadow resolution) is used for all scenes consisting of two or more dynamic light 
sources and where the shadow casting objects are located a significant distance from 
the point-of-view. 
 
McCool’s (2000) algorithm is the second best choice when dealing with scenes featuring 
one to eight light sources and when high-quality shadows are required. We won’t be 
utilising this algorithm, rather opting for Chan and Durand’s hybrid approach. 
 

 
Figure 4.5 Comparison of all the shadow algorithms listed in Chapter 3 (1-8 light 
sources). 
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The previous comparison (given in Figure 4.5) only deals with a limited number of light 
sources. The choice between the most appropriate algorithms is, however, mostly 
superficial due to 200 frames per second and 60 frames per second displaying similar to 
the human eye. It is only when frame rates fall below 30 per second that we start to 
notice. Running the same simulations (but with the light source count ranging from nine 
to sixteen) shows a rapid decrease in the frames per second performance. Figure 4.6 
shows these results. 
 

 
Figure 4.6 Comparison of all the previously listed algorithms (9-16 light sources) – 
please note; Rautenbach et al’s spatial subdivision algorithm was analysed in a statically 
lit environment, thus resulting in its high performance (its performance is comparable to 
the basic stencil shadow volume algorithm in situations where dynamic lighting is 
implemented). 
 
Considering Figure 4.6, Rautenbach et al’s spatial subdivision approach coupled with 
the SSE2 instruction set is once again observed to outperform all the other algorithms. 
This algorithm is, as mentioned, only amenable to environments utilising static lighting – 
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making the comparison a bit bias. The presented rendering engine will, however, 
continue to use this algorithm for all environmental areas lit using static light sources. 
 
The basic shadow mapping algorithm remains the best choice when dealing with 
dynamically lit environments, at least when working with fourteen or less light sources 
and when shadow rendering quality is not as important (see Figure 4.5 and 4.6). The 
presented rendering engine will use shadow mapping for all scenes consisting of more 
than two and less than fourteen dynamic light sources and where the shadow casting 
objects are located a significant distance from the point-of-view. Chan and Durant’s 
algorithm will, however, prove a better choice for both close range and distant objects 
when rendering scenes consisting of fourteen or more dynamic light sources. Chan and 
Durrand’s algorithm will also be used for all scenes consisting of nine or more dynamic 
light sources when high-quality shadows are required. 
 
Shadow selection is based on the optimisation of the rendering frame rate and shadow 
quality. The presented rendering engine will thus select shadow generation algorithms 
by taking not only the scene’s frames per second performance data into account but 
also by factoring in the viewer’s position in relation to the shadow being rendered. The 
rendering accuracy and detail of distant shadows will thus carry less weight than those 
rendered relatively close to the viewer. Table 4.2 summarises the algorithms of choice 
based on the algorithmic comparison and scene conditions such as view distance, 
dynamic/static light conditions and number of light sources. 
 
Most Appropriate Algorithm Conditions 
Rautenbach et al’s (2008) 
spatial subdivision approach 
coupled with SSE2 utilisation. 

All environmental areas lit using static light 
sources. 

Chan and Durand’s (2004) 
algorithm. 

Scenes consisting of eight or less dynamic light 
sources when high-quality shadows are required 
and where shadow casting objects are located 
near the point-of-view. 
Scenes consisting of more than two and less than 
fourteen dynamic light sources and where the 
shadow casting objects are located a significant 
distance from the point-of-view. 

Shadow mapping. 

Chan and Durant’s algorithm will, however, prove 
a better choice for both close range and distant 
objects when rendering scenes consisting of 
fourteen or more dynamic light sources. We will 
also use Chan and Durrand’s algorithm for all 
scenes consisting of nine or more dynamic light 
sources when high-quality shadows are required. 

McCool’s (2000) and Thakur et The second best choice when dealing with 
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al’s (2003) algorithm. scenes featuring one to eight light sources and 
when high-quality shadows are required. We 
won’t be utilising this algorithm, rather opting for 
Chan and Durand’s hybrid approach. The same 
goes for the classic stencil shadow volume 
algorithm and Thakur et al’s (2003) algorithm. 

Table 4.2 Algorithms of choice based on the presented critical analysis. 
 
 
4.3.2 Shaders  
 
The presented shader evaluation focuses on a number of shader implementations and 
lighting approaches (please refer to Appendix B and C, respectively, for a background 
discussion on shaders and lighting as well as various reflection models). These 
implementations, listed in Table 4.3, are organised into four shader effect quality groups 
based on each algorithm or technique’s standalone processor utilisation and visual 
effect quality. Algorithms and rendering approaches are grouped in order of increasing 
complexity. For example, basic directional lighting is a much simpler (and thus less 
computationally intensive) approach than a lighting model that adds ambient occlusion 
to a scene.  
 
Grouping/Description Rendered Scene Screenshot 
Low Shader Quality 
 
Consists of a simple light mapping shader 
implementation and a shader program 
enabling basic directional lighting (local 
illumination). 

 
Medium Shader Quality 
 
Extends the low shader quality grouping 
with the addition of a normal/bump 
mapping shader (as discussed in 
Appendix A, bump- or normal mapping is 
used for adding depth to pixels and thus 
creating a lighting-dependent bumpiness 
to a texture mapped), a shader used for 
the calculation and rendering of specular 
highlights (as discussed in Appendix C, 
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specular reflection is characterized by 
bright highlights on the surface of an 
object reflected in the direction of the 
view vector) and a shader enabling 
volumetric fog. 
High Shader Quality 
 
Similar to the Medium Shader Quality 
group but replaces light mapping with a 
detailed lighting model shader that adds a 
shader for ambient occlusion (as a way to 
enhance the ambient light term such that 
shadows and light emission from local 
features are included). 

Very High Shader Quality 
 
Extends the High Shader Quality 
selection by replacing the previous 
lighting model with High Dynamic Range 
Lighting and parallax mapping (an 
enhancement of bump/normal mapping; 
“bumpy” textures will have more apparent 
depth and will thus appear more realistic).

Table 4.3  Shader effect quality groupings. 
 
As discussed in section 3.5, high dynamic range lighting is the rendering of lighting using 
more than 256 colour shades for each of the primary colours. Thus, 16 to 32-bit colours 
per RGB channel are available for use (as opposed to the normal 8) – eliminating 
luminance and pixel intensity being clamped to a [0, 1] range. This allows the presented 
rendering engine the display of light sources over 100 000 times brighter than normally 
possible. HDR lighting results in the full visibility of both very dark and fully lit areas; 
unlike normal lighting, or low dynamic range lighting, where details are hidden in dark 
scenes when contrasted by a fully lit area. Using this form of lighting generally leads to a 
more vibrant looking scene. The inclusion of HDR Lighting (which, as shown, may 
greatly impact the performance of a scene) is controlled through the engine’s shader 
quality scaling (with quality relying on the GPU’s computational power).  
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Please see Figure 4.7 for the observed frames per second performance of each shader 
quality scaling group as the number of light source vary between 1 and 8. Figure 4.8 
shows the same as the light sources increase from 9 to 16. 
 

 
Figure 4.7 Comparison of all the previously listed quality scalings (1-8 light sources). 
 

 
Figure 4.8 Comparison of all the previously listed quality scalings (9-16 light sources). 
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The first quality grouping is the best performing configuration and perfectly suited as a 
performance-orientated selection in situations where the GPU is being over-utilised or 
when faced with limited computational resources. As with the other shader groupings, 
this combination shows significant performance degradation when more light sources 
are added. It does, however, outperform all the remaining groups (the only cost being 
rendering quality). 
 
The medium shader quality grouping performs only slightly worse than the first but given 
the visual quality benefits inherent to the utilisation of normal mapping, specular 
highlights and volumetric fog, it is clear that the first quality grouping should only be 
selected as a last resort effort to free up computational resources.  
 
The third grouping performs relatively well when dealing with scenes featuring one to 
eight light sources and when high-quality special effects are required. The presented 3D 
engine will only utilise this shader grouping for scenes consisting of 14 light sources or 
less (as the FPS performance drops off significantly given further light source additions). 
 
The final grouping gives similar performance figures and will only be utilised for scenes 
containing less than eight light sources and where the processing resources are 
available to facilitate HDR lighting and parallax mapping. That said, when there are few 
light sources, then, on the test system’s hardware configuration, the FPS performance 
for even the very high shader quality grouping is well above the level at which the 
human eye can perceive any slowdowns. Running the same simulations with the light 
source count ranging from nine to sixteen shows a rapid decrease in the frames per 
second performance. 
 
Shader selection is based on the optimisation of the rendering frame rate and rendering 
quality. The presented rendering engine will thus select the most appropriate shader 
grouping by taking not only the scene’s frames per second performance data into 
account but also by factoring in the viewer’s position in relation to the scene being 
rendered. The rendering accuracy and detail of distant objects (for instance, distant 
normal mapping calculations) will carry less weight than those rendered relatively close 
to the viewer. Table 4.4 summarises the most appropriate shader quality selections 
based on our algorithmic comparison and scene conditions such as view distance, 
dynamic/static light conditions and number of light sources. 
 
Most Appropriate Selection Conditions 
Low Shader Quality. The GPU is heavily overburdened (significant 

slowdowns or FPS drops are observed) and 
additional computational resources are required 
by other core rendering elements. 

Medium Shader Quality. The GPU is fully utilised (a GPU running at 100%) 
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but no additional computational resources are 
required (no slowdowns or noticeable FPS drops 
are observed). 

High Shader Quality. The GPU is not fully utilised and the scene 
consists of one to eight light sources and high-
quality special effects are required but Very High 
Shader Quality would overburden the GPU. 

Very High Shader Quality. The scene contains less than eight light sources 
and the computational resources are available to 
facilitate true HDR lighting and parallax mapping. 

Table 4.4 Shader quality selections based on the presented critical analysis. 
 
 
4.3.3 Local Illumination  
 
As discussed in the previous chapter, the presented rendering engine, in its most basic 
form, allows for the use of local illumination which, unlike global illumination, only 
considers the interaction between a light source and object. Local illumination is 
implemented using the diffuse reflection model, resulting in a uniformly lit scene. An 
HLSL pixel shader is implemented to calculate the lighting effect on each pixel in our 
scene. 
 
The evaluation focuses on two basic implementations (divided into two performance-
impacting groups, Low and High). Table 4.5 lists these two lighting scaling approaches 
with Figures 4.9 and 4.10 giving the observed performance of each.  
 
Grouping/Description Rendered Scene Screenshot 
Low Local Illumination 
 
Limits the number of light sources in an 
attempt to reduce GPU utilisation. 

 
 
 



 134

High Local Illumination 
 
Lifts the lighting limitation imposed by the low 
lighting group and occludes local light 
sources (a technique used to approximate 
the effect of environment lighting as an 
attempt to simulate the way light radiates in 
real life). 

Table 4.5  Lighting quality groupings. 
 

 
Figure 4.9 Comparison of all the previously listed quality scalings (5-25 light sources). 
 
The first quality grouping, limiting the number of light sources, is perfectly suited as a 
performance-orientated selection in situations where the GPU is being over-utilised or 
when faced with limited computational resources (especially when rendering scenes 
consisting of 25 light sources or more). As with the other quality grouping, basic local 
illumination shows significant performance degradation as more light sources are added. 
The cost is not so much the scene’s overall rendering quality as it is a limit on the 
scene’s overall atmosphere and ambience (as can be observed by comparing the 
screenshots given in Table 4.5). 
 
The high lighting quality grouping performs only slightly worse than the first but given the 
quality benefits inherent to the utilisation of ambient occlusion (as a way to enhance the 
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ambient light term such that shadows and light emission from local features are 
included) and the relatively close FPS results when compared to basic local illumination, 
it is clear that the first quality grouping should only be selected as a last resort effort to 
free up computational resources. Thus, the presented 3D engine will use the high quality 
lighting grouping, unless the number of light sources increases above 50 (especially 
taking into account the overall performance impact of additional rendering algorithms 
and other GPU burdens such as physics processing). 
 
Running the same simulations with the light source count ranging from 55 to 65 shows a 
rapid decrease in the rendering frame rate. Figure 4.10 shows these results. 
 

 
Figure 4.10 Comparison of all the previously listed quality scalings (30-65 light 
sources) 
 
Lighting quality selection, as with shaders, is based on the optimisation of the rendering 
frame rate. Table 4.6 gives the most appropriate selection based on the presented 
algorithmic comparison. 
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Most Appropriate Selection Conditions 
Low Local Illumination. The GPU is heavily overburdened and additional 

computational resources are required by other 
core rendering elements/the scene contains more 
than fifty light sources. 

High Local Illumination. The GPU is not fully utilised and the scene 
consists of fifty light sources or less and high-
quality effects are required. 

Table 4.6 Local illumination quality selections based on the presented critical analysis. 
 
 
4.3.4 Reflection and Refraction 
 
The presented rendering environment extends the basic local illumination lighting model 
by adding reflection and refraction effects to result in more realistic and lifelike images. 
When computation processing power is not available, the engine will utilise basic 
environmental mapping which allows us to simulate reflections by mapping real-time 
computed texture images to the surface of an object. Each texture image used for 
environmental mapping stores a “snapshot” image of the environment surrounding the 
mapped object. The engine further supports refractive environmental mapping, the 
Fresnel effect (Wloka, 2002) and chromatic dispersion resulting in an object’s colour 
being blended with reflections from its cube map (section 3.4). Thus, when the 
processing power is available, the presented renderer’s basic reflections can be 
extended to appear more lifelike. 
 
The presented reflection quality evaluation focuses on a number of reflection and 
refraction implementations and approaches, specifically basic environmental mapping, 
CPU-based cube mapping, refractive environmental mapping and the extension of these 
reflection and refraction algorithms through the addition of the Fresnel effect and 
chromatic dispersion. Table 4.7 organises these implementation approaches into three 
reflection/refraction quality grouping: Low, Medium and High. 
 
Grouping/Description Rendered Scene Screenshot 
Low Reflection Quality 
 
Supports only GPU-based environmental 
mapping 
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Medium Reflection Quality 
 
Moves all environmental mapping 
computations off to the CPU (thus freeing the 
GPU in the process). 

High Reflection Quality 
 
Replaces basic environmental- or cube 
mapping with processor-intensive refractive 
environmental mapping supporting chromatic 
dispersion and the Fresnel effect. 

Table 4.7  Reflection and refraction quality groupings. 
 
Figures 4.11 and 4.12 give the observed performance of each reflection and refraction 
quality scaling group. 
 

 
Figure 4.11 Comparison of all the previously listed quality scalings (1-8 light sources). 
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The first quality grouping, concerned with basic environmental mapping, is the best 
performing configuration and perfectly suited as a performance-orientated selection in 
situations where the GPU is being over-utilised or when faced with limited computational 
resources. As with the other groupings, this combination shows significant performance 
degradation when more light sources are added. It does, however, outperform all the 
remaining groups (the only cost being rendering quality). 
 
The medium quality grouping performs only slightly worse than the first but given the fact 
that cube mapping is being performed on the CPU (thus freeing the GPU to perform 
other tasks) and that the frame rate is comparable to the same algorithm performed on 
the GPU, it is clear that CPU-based cube mapping is an excellent alternative to its only 
slightly better performing GPU-based counterpart.  
 
The third grouping performs relatively well when dealing with scenes featuring one to 
eight light sources and when high-quality special effects are required. The presented 
renderer will only be utilising this grouping for scenes consisting of 7 light sources or 
less and where the processing resources are available to facilitate refractive 
environmental mapping, the Fresnel effect and chromatic dispersion. Running the same 
simulations (but with the light source count ranging from nine to sixteen) shows a rapid 
decrease in our frames per second performance. Figure 4.12 shows these results. 
 

 
Figure 4.12 Comparison of all the previously listed quality scalings (9-16 light sources) 
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As with other shader implementations, reflection and refraction selection is based on the 
optimisation of the rendering frame rate and rendering quality. Also, rendering accuracy 
and reflection detail of distant objects (for instance, distant object reflections) carries less 
weight than those rendered relatively close to the viewer. Table 4.8 summarises the 
algorithms of choice based on the algorithmic comparison and scene conditions such as 
view distance, dynamic light conditions and number of light sources. 
 
Most Appropriate Selection Conditions 
Low Reflection Quality. The GPU is heavily overburdened, the CPU is 

fully utilised or cannot be utilised to lighten the 
GPU load and additional computational resources 
are required by other core rendering elements. 

Medium Reflection Quality. The GPU is fully utilised, additional computational 
resources are required and the CPU is not fully 
utilised and can be utilised to lighten the GPU 
load. 

High Reflection and Refraction 
Quality. 

The GPU is not fully utilised and the scene 
consists of one to seven light sources and high-
quality special effects are required. 

Table 4.8 Reflection and Refraction quality selections based on the presented critical 
analysis. 
 
 
4.3.5 Physics  
 
The presented rendering environment features not only basic physics simulations but 
also realistic object interaction based on Newton's Laws, a particle system inheriting 
from the physics system and realistic object interaction with all objects reacting based on 
the force exerted and environmental resistance. The engine’s physics quality scaling 
(with quality relying on the GPU and/or CPU’s computational power) is organised into 
performance-impacting selection categories ranging from Low to Very High. Specifically 
the categories which may be selected are either Off (very basic physics simulation), Low 
(75% Reduction in Physics Calculations), High (25% Reduction in Physics Calculations) 
or Very High (No Reduction in Physics Calculations). 
 
The evaluation focuses on a number of physics calculations, specifically object 
acceleration, force, linear momentum, gravitational pull, projectile simulation through 
trajectory paths, friction and collision detection. The computational requirements for 
each of these are now presented with Figures 4.13 (a) and (b) giving the observed 
performance of each calculation group. However, Appendix E, in addition to section 3.7, 
can be consulted should background information be needed on the simulation of 
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Newtonian physics through the use of quantities such as mass, acceleration, velocity, 
friction, momentum, force, etc. 
 

 
Figure 4.13 (a)  Comparison of all the previously listed quality scalings – GPU (25-125 
interacting objects). 
 
 

 
Figure 4.13 (b)  Comparison of all the previously listed quality scalings – CPU (25-125 
interacting objects). 
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Physics calculations performed on the GPU utilise NVIDIA’s PhysX real-time physics 
engine (without any multithreading optimisation) while those performed on the CPU are 
based on the x87 floating point subset of the x86 architecture instruction set. CPU 
calculations fully utilise SSE multithreaded technology while PhysX calculations are not 
natively optimised for SSE or multithreading, resulting in situations where a PhysX 
implementation can be outperformed by well-coded multithreaded CPU physics 
implementations. There are thus two calculation subsets – the non-SSE PhysX code 
performed on the GPU and the multithreaded x87 code utilising SSE executed on the 
CPU. Simply running PhysX code (in software mode) on the CPU leads to significant 
performance drops (as thread control is to be handled by the developer). 
 
The first quality selection, utilising only simple bounding boxes and basic edge detection 
and object interaction production rules, is the best performing configuration and perfectly 
suited as a performance-orientated selection in situations where the GPU and CPU are 
being over-utilised or when faced with limited computational resources. This selection 
shows a performance degradation as more objects are added. It does, not surprisingly, 
outperform all the remaining groups (the only cost being a lack in realism). 
 
The low physics simulation selection performs, as expected, significantly worse than the 
first but given the quality benefits inherent to the utilisation of Newtonian physics (albeit 
with a reduction in computational accuracy), it is clear that the first quality selection 
should only be selected as a last resort effort to free up computational resources.  
 
The third selection performs relatively well when dealing with scenes featuring up to 125 
interacting objects and when highly accurate physics calculations are required. The 
presented rendering engine will only be utilising this grouping when highly accurate 
physics calculations are not possible. Very High Physics Simulations give proportionally 
lower performance figures and will only be utilised when the necessary computational 
resources are not required for graphics processing.  
 
Physics selection is based on the optimisation of the rendering frame rate and rendering 
quality. The scene’s frames per second performance data as well as the viewer’s 
position in relation to the physics simulation are taken into account when selecting the 
most appropriate physics grouping. The accuracy of distant object simulations (for 
instance, two distant object colliding) will carry less weight than those rendered relatively 
close to the viewer. Table 4.9 summarises the groupings of choice based on our 
algorithmic comparison and scene conditions and number of objects. 
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Most Appropriate Selection Conditions 
Very Basic Physics Simulation. The GPU is heavily overburdened, the CPU is 

fully utilised or cannot be utilised to lighten the 
GPU load and additional computational resources 
are required by other core rendering elements. 

Low Physics Simulation. The GPU is fully utilised, the CPU is fully utilised 
or cannot be utilised to lighten the GPU load but 
no additional computational resources are 
required. 

High Physics Simulation. The GPU or CPU is not fully utilised and the 
scene consists of one to 125 objects and high-
quality physics are required but Very High 
Physics Simulation would overburden the GPU 
and/or GPU. 

Very High Physics Simulation. The necessary computational resources (CPU 
and/or GPU) are not required for graphics 
processing and the necessary physics 
calculations does not cause a noticeable drop in 
the perceivable smoothness of the scene being 
rendered. 

Table 4.9 Physics quality selections based on the presented critical analysis. 
 
 
4.3.6 Particle Effects  
 
Particle effects, with the particle system inheriting from the physics system, allows for 
the simulation of natural phenomena such as fire, smoke, sparks, explosions, dust, trail 
effects, etc. As discussed in sections 3.7.2 and 3.7.3, the particle system is implemented 
using three stages, namely, the setup stage, the simulation stage and the rendering 
stage.  
 
The setup stage involves specification of the particle system’s spatial position and area 
of constraint – parameters controlled by the emitter. The emitter also controls the particle 
creation rate, that is, the rate at which new particles are injected into the system. Each 
particle has a specific time to live, after which it is destroyed.  
 
The simulation stage takes care of particle rendering rates, particle spawning position 
(mostly randomised between some minimum and maximum coordinate range), particle 
properties (such as particle colour, velocity, etc) and positioning of the emitter. This 
stage also keeps track of each particle to check whether a specific particle has 
exceeded its lifetime. Each particle has an initial velocity and is translated based on 
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some sort of physics model or simply by adding velocity to its current spatial position. 
Collision detection is also possible at this stage but rarely implemented.  
 
Following the simulation state, each particle is rendered as either a coloured point, 
polygon or as a mesh. 
 
The engine’s particle system, based on the rules of physics, uses the following standard 
equations to calculate each particle’s velocity and position: 
 

taVV oldnew ×+=  

),
2
1()( 2tatvPosPos oldoldnew ××+×+=  

 
The above given equations factor in the initial motion of the particle, its trajectory and the 
overall effect of gravity where 

 Posnew is the particle’s final position,  
 Posold its initial position,  
 Vnew its final velocity,  
 Vold its initial velocity,  
 a the particle’s acceleration and  
 t the change in time.  

 
Using these equations we start by initialising each particle’s initial position and velocity. 
These values will be assigned to a particle when it is generated by the emitter. The 
quality scaling (with quality of explosions, dust, tread marks, beams, etc relying on the 
CPU and GPU’s computational power) of the rendering engine’s particle effects is, as 
with physics, organised into performance-impacting selections ranging from Low to Very 
High. Table 4.10 lists these particle effects scaling approaches with Figures  4.14 (a) 
and (b) giving the mean performance of each calculation group as executed on the CPU 
and GPU, respectively. 
 
Grouping/Description Rendered Scene Screenshot 
Low Particle Simulation 
 
75% reduction in effect quality. 
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Medium Particle Simulation 
 
50% reduction in effect quality. 

High Particle Simulation 
 
25% reduction in effect quality. 

Very High Particle Simulation 
 
No reduction in effect quality. 

Table 4.10  Particle effects quality groupings. 
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Figure 4.14 (a)  Comparison of all the previously listed quality scalings – GPU  
 

 
Figure 4.14 (b)  Comparison of all the previously listed quality scalings – CPU. 
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As with physics, particle calculations – velocity and position – performed on the GPU 
utilises NVIDIA’s PhysX real-time physics engine while those performed on the CPU are 
based on the x87 floating point subset of the x86 architecture instruction set. 
 
The first quality selection, representing a 75% reduction in effect quality, is the best 
performing configuration and perfectly suited as a performance-orientated selection in 
situations where the GPU and CPU are being over-utilised or when faced with limited 
computational resources. As with the other performance selections, this combination 
shows a performance degradation as the number of particles increase. Unsurprisingly, it 
outperforms all the remaining selections (the only cost being a lack in visual quality and 
realism). 
 
The medium particle simulation selection performs, as expected, slightly worse than the 
first but given the quality benefits inherent to the utilisation of more accurate Newtonian 
physics (albeit with a reduction in computational accuracy), it is clear that the first quality 
selection should only be selected as a last resort effort to free up computational 
resources.  
 
The third selection performs relatively well when dealing with effects consisting of 1500 
to 7500 particles and when highly accurate physics calculations are required. The 
presented 3D engine will only be utilising this selection when very high particle 
simulations are not possible. The final selection gives proportionally lower performance 
figures and will only be utilised when the necessary computational resources are not 
required for graphics processing.  
 
Table 4.11 summarises the algorithms of choice based on our algorithmic comparison, 
scene conditions and number of particles. 
 
Most Appropriate Selection Conditions 
Low Particle Simulation. The GPU is heavily overburdened, the CPU is 

fully utilised or cannot be utilised to lighten the 
GPU load and additional computational resources 
are required by other core rendering elements. 

Medium Particle Simulation. The GPU is fully utilised, the CPU is fully utilised 
or cannot be utilised to lighten the GPU load but 
no additional computational resources are 
required. 

High Particle Simulation. The GPU or CPU is not fully utilised and the effect 
consists of 1500 to 7500 particles and high-quality 
physics are required but Very High Particle 
Simulation would overburden the GPU and/or 
GPU. 
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Very High Particle Simulation. The necessary computational resources (CPU 
and/or GPU) are not required for graphics 
processing and the necessary Newtonian 
calculations does not cause a noticeable drop in 
the perceivable smoothness of the scene being 
rendered. 

Table 4.11 Effect quality selections based on our critical analysis. 
 
 
4.3.7 Post-Processing  
 
The presented rendering engine uses post-processing or quality-improvement image 
processing (through the use of pixel shaders) to add additional effects such as bloom 
lighting (the effect of producing light fringes around ultra-bright objects – an object with a 
bright light behind it will be “overlapped” by the light and thus appear more lifelike), 
motion blur (the streaking of rapid moving objects), ambient occlusion (the global effect 
of approximating the radiation of light by the casting of rays in every direction from an 
object’s surface), depth of field (the variance in sharpness between the nearest and 
farthest objects in a scene), displacement mapping (as an alternative to normal mapping 
– used to displace surface points; giving surfaces great depth and detail) and halo 
effects (artificial glow added to light “emitting” objects such as light bulbs or a glowing 
red button). The engine’s post-processing quality scaling relies on the GPU’s 
computational power and consists of three quality groups: Low, Medium and High. Table 
4.12 lists these scaling approaches with Figure 4.15 showing the mean performance of 
each post-processing quality scaling group. 
 
Grouping/Description Rendered Scene Screenshot 
Low Post-Processing 
 
Adds Minimal Intensity Bloom Effects and 
Displacement Mapping to the rendered 
scene. 
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Medium Post-Processing 
 
Adds Ambient Occlusion (along with High 
Intensity Bloom Effects and Displacement 
Mapping). 

High Post-Processing 
 
Adds Depth of Field and Halo Effects to 
the rendered scene. 

Table 4.12  Post-Processing effects quality groupings. 
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Figure 4.15 Comparison of all the previously listed quality scalings (5-25 light sources). 
 
The first quality grouping, consisting of displacement mapping and bloom effects, is the 
best performing configuration and is well suited as a performance-orientated selection in 
situations where the GPU is being over-utilised or when faced with limited computational 
resources. As with the other groupings, this combination shows significant performance 
degradation as more light sources are added. It does, however, outperform all the 
remaining groups (the cost is not so much a loss in rendering detail as it is one where 
there are “less” special effects than when using the others; this selection simply 
excludes ambient occlusion, depth of field and halo effects). 
 
The medium post-processing quality grouping performs somewhat worse than the first 
but given the global lighting benefits inherent to the utilisation of ambient occlusion, it is 
clear that the first quality grouping should only be selected as a last resort effort to free 
up computational resources.  
 
The final grouping performs relatively well when dealing with scenes featuring one to ten 
light sources and when high-quality special effects are required. This grouping will be 
utilised for scenes consisting of 15 light sources or less and where the processing 
resources are available to facilitate ambient occlusion, depth of field, displacement 
mapping and halo and bloom effects. 
 
The presented rendering engine selects the most appropriate grouping given the 
processing power available. Also, the rendering accuracy and detail of distant objects 
(for instance, distant displacement mapping or bloom calculations) carry less weight than 
those rendered relatively close to the viewer. Table 4.13 summarises the algorithms of 
choice based on our algorithmic comparison and scene conditions such as view 
distance, dynamic/static light conditions and number of light sources. 
 
Most Appropriate Selection Conditions 
Low Post-Processing. The GPU is heavily overburdened and additional 

computational resources are required by other 
core rendering elements. 

Medium Post-Processing. The GPU is fully utilised but no additional 
computational resources are required. 

Very High Post-Processing. The scene contains less than fifteen light sources 
and the computational resources are available to 
facilitate ambient occlusion, depth of field, 
displacement mapping and halo and bloom 
effects. 

Table 4.13 Post-Processing quality selections based on our critical analysis. 
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4.4  Summary 
 
In the chapter we started by presenting a benchmarking mechanism and a set of criteria 
for the evaluation of rendering algorithms and techniques. The given evaluation criteria 
were selected with the aim of assessing the relationship between rendering quality and 
performance – in turn allowing for, where applicable, the isolation of key algorithmic 
weaknesses and possible bottleneck areas. 
 
Specific shadow algorithms benchmarked and analysed include: the basic stencil 
shadow volume algorithm, the basic hardware shadow mapping algorithm, McCool’s 
shadow volume reconstruction using depth maps, Chan and Durand’s hybrid algorithm 
for the efficient rendering of hard-edged shadows, Thakur el al’s algorithm based on the 
elimination of various shadow volume testing phases and Rautenbach et al’s algorithm 
based on shadow volumes, spatial subdivision and instruction set utilisation.  
 
The subsequent shader evaluation, in turn, focused on a number of shader 
implementations and lighting approaches, after which two local illumination 
configurations were investigated. The first of these limiting the number of light sources in 
an attempt to reduce GPU utilisation with the second lifting this limitation while occluding 
local light sources (a technique used to approximate the effect of environment lighting as 
an attempt to simulate the way light radiates in real life). This evaluation was later 
extended with the inclusion of HDR lighting. 
 
Next the evaluation focused on a number of reflection and refraction implementations 
and approaches, specifically: basic environmental mapping, CPU-based cube mapping, 
refractive environmental mapping and the extension of these reflection and refraction 
algorithms through the addition of the Fresnel effect and chromatic dispersion. 
 
The chapter then shifted focus to the evaluation of a number of physics calculations 
such as object acceleration, force, linear momentum, gravitational pull, projectile 
simulation through trajectory paths, friction and collision detection followed by the 
benchmarking of our engine’s dynamically allocated particle generator. 
 
Chapter 4 concluded with the performance analysis of a number of post-processing 
shader implementations and lighting approaches, specifically displacement mapping, 
bloom effects, ambient occlusion, depth of field and halo effects. 
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Chapter 5 
 
 
 

An Empirically Derived System for 
Distributed Rendering 
 
 
 

Chapter 5 presents our empirically derived system for distributed rendering. This 
analysis highlights not only the performance benefits inherent to the utilisation of this 
system, but also the practicality of such an implementation. 

 
 

In this chapter we will investigate: 
 
 Dynamic algorithm selection  
 Rules for selection of rendering algorithms 
 Fuzzy rules for selection of the most appropriate rendering algorithm 
 Construction of the algorithm selection mechanism 
 Results obtained from our benchmarking environment 
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5.1  Introduction 
 
The presented real-time rendering engine continuously analyses a dataset to determine 
the best solution to a given rendering problem – as in, the best algorithm or shader to 
use for a specific scene or a specific object in a scene. This selection system consists of 
an empirically ascertained dataset (containing the previously obtained algorithmic 
performance data), a collection of rules to analyse the data and information of various 
elements pertaining to the scene currently being rendered.  
 
The rendering engine uses a selection engine to control the real-time selection of 
rendering algorithms and, when performing cube mapping or physics calculations, to 
effectively distribute processing between the CPU and GPU. The knowledge base of this 
engine, consisting of production rules, is derived from experimental results obtained 
through the critical analysis of numerous real-time rendering algorithms, as discussed in 
Chapter 4. These production rules are used by an inference engine which, in turn, is 
tasked with the selection of the most appropriate algorithm based on certain properties 
of the scene being rendered. For instance, the presented system could contain the 
following production rule:  

if there are a lot of light sources in a scene and the scene has a high geometric 
complexity, then enable a hybrid stencil shadow volume/shadow mapping 
algorithm.  

The notions “a lot of light sources” and “high geometric complexity” are not quantitative 
facts. Fuzzy logic provides a solution to this problem by assigning quantitative values 
and/or ranges to these concepts (Salton, 1987). The concepts “a lot of light sources” and 
“high geometric complexity” can also be combined into the new one “overly complex”, 
resulting in a new production rule. The presented engine combines production rules with 
fuzzy logic to explicitly symbolise data. This is followed by the selection of the most 
appropriate rendering algorithm.  
 
The next section presents this selection engine implementation in detail. Following this, 
a critical analysis of the empirically derived system for the high-speed rendering of 
complex 3D environments is performed. This analysis will convey not only the 
performance benefits inherent in the utilisation of this system, but also the practicality of 
such an implementation.  
 
 
5.2  The Selection Engine and the Dynamic Selection and Allocation of 

Algorithms 
 
The empirically derived system for high-speed rendering consists of a fuzzy logic based 
selection engine and several rendering algorithms and approaches. The selection 
engine controls, as mentioned, the selection and allocation of these algorithms by 
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correlating the properties of the scene being rendered with the previously obtained 
algorithmic performance data. 
 
The selection engine consists of the following modules: 

• An inference engine. 
• A fact database. 
• A knowledge base. 
• An explanation/debugging system. 

 
The selection engine’s knowledge base consists of experimental results obtained 
through the critical analysis of numerous real-time rendering algorithms. The inference 
engine is in turn used to select the most appropriate algorithm based on certain 
properties of the scene being rendered. The knowledge base is nothing more than a 
database of rules. These rules symbolise the stored knowledge. The fact database 
embodies the selection engine inputs (properties and performance statistics of the scene 
being rendered) which are subsequently used to make decisions and/or to take certain 
actions. The inference engine makes the actual decision by combining these selection 
engine rules and facts. The explanation system, implemented only in skeletal form 
should future developers require debugging information, generates information about the 
manner in which a decision was made. Figure 5.1 illustrates the architecture of the 
presented selection engine. 
 

 
Fig 5.1 Architecture of the selection engine. 
 
The selection engine’s inference engine and explanation system are contained within a 
“shell” written for this study. The knowledge base and fact database are connected to 
this shell in a plugin-like fashion. The selection engine shell is used to define a generic 
algorithm selection system, with the selection engine’s functionality controlled by the 
connected fact database and knowledge base.  
 
The selection engine implementation utilises a forward chaining strategy to determine 
results from a collection of rules and facts. The process basically starts by reading the 
selection engine inputs from the fact database followed by a comparison between the 
read inputs and the rules within the rule database. Now, if an input fact matches all the 
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antecedents of a rule, then the rule is triggered with its conclusion added to the fact 
database. 
 
As mentioned in Chapter 4, the selection and/or allocation of algorithms is based on the 
continuous optimisation of the rendering frame rate and overall rendering quality. The 
implemented selection engine will thus select the most appropriate algorithms by taking 
not only the scene’s frames per second performance data (dynamically changing as one 
moves through the scene) into account but also by factoring in the viewer’s position in 
relation to the object or effect being rendered or calculated. The rendering accuracy and 
detail of distant objects or effects will thus carry less weight than those rendered 
relatively close to the viewer. The next section presents the dynamic selection and 
allocation (where applicable) of the algorithms and rendering approaches discussed in 
Chapter 3. 
 
 
5.2.1 Shadows 
 
The following rules can be defined for selecting the most appropriate shadow rendering 
algorithm (these rules are derived from the algorithmic comparison given in Chapter 4 – 
Table 4.4 summarises the shadow algorithms of choice based on this algorithmic 
comparison as well as scene conditions such as view distance, dynamic/static light 
conditions and number of light sources): 
 
 Rule #1 
  If the environment/sub-environment consists of only static light sources,  
   Then render all shadows via Rautenbach et al's spatial subdivision/SSE2 

algorithm. 
 
 Rule #2 
  If the scene consists of eight or less dynamic light sources, 
  And high-quality shadows are required (shadow casting objects are located 

near the point-of-view), 
   Then render all shadows via Chan and Durand’s algorithm. 
  
 Rule #3 
  If the scene consists of more than two and less than fourteen dynamic light 

sources, 
  And low-quality shadows are required (shadow casting objects are located a 

significant distance from the point-of-view), 
   Then render all shadows via the basic Shadow mapping algorithm. 
 
 Rule #4 
  If the scene consists of fourteen or more dynamic light sources, 
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  And either low- or high-quality shadows are required (for both close range and 
distant objects), 

   Then render all shadows via Chan and Durand’s algorithm. 
 
 Rule #5 
  If the scene consists of nine or more dynamic light sources, 
  And high-quality shadows are required (shadow casting objects are located 

near the point-of-view), 
   Then render all shadows via Chan and Durand’s algorithm. 
 
An interesting aspect of the presented selection engine implementation is its fuzzy logic-
based nature. As a fuzzy logic based selection engine, it utilises a set of linguistic 
variables (related to the problem) and several membership functions. Fuzzy rules are 
derived from these variables as well as the knowledge base. These rules are applied by 
means of Mamdani fuzzy inference. Mamdani inference applies a set of fuzzy rules on a 
set of traditional precise inputs to obtain a precise output value (such as an action 
recommendation). 
 
The presented fuzzy logic based selection engine will thus contain the following 
redefined, “fuzzified” rules for selection of the most appropriate shadow rendering 
algorithm (these rules are screen resolution independent, lower resolutions will simply 
imply faster overall graphics performance with the shadow generation phases remaining 
consistent): 
 
 Rule #1 
  If the environment/sub-environment consists of stationary light sources,  
   Then render all shadows via Rautenbach et al’s spatial subdivision/SSE2 

algorithm. 
 
 Rule #2 
  If the scene consists of an average number of dynamic light sources, 
  And high-quality shadows are required (shadow casting objects are located 

near the point-of-view), 
   Then render all shadows via Chan and Durand’s algorithm. 
  
 Rule #3 
  If the scene consists of few or and less than an above average number of 

dynamic light sources, 
  And low-quality shadows are required (shadow casting objects are located a 

significant distance from the point-of-view), 
   Then render all shadows via the basic Shadow mapping algorithm. 
 
 Rule #4 
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  If the scene consists of many dynamic light sources, 
  And either low- or high-quality shadows are required (for both close range and 

distant objects), 
   Then render all shadows via Chan and Durand’s algorithm. 
 
 Rule #5 
  If the scene consists of an average or greater than average number of 

dynamic light sources, 
  And high-quality shadows are required (shadow casting objects are located 

near the point-of-view), 
   Then render all shadows via Chan and Durand’s algorithm. 
 
Mamdani inference is used to “fuzzify” all precise input values via the definition of fuzzy 
sets. Here we assume a representation of the number of light sources through the range 
[0, 20], the nature of a scene’s light sources via the values 1 for dynamic and 0 for static 
and the distance from the viewer via the range [0, 90] (in world units). The presented 
implementation also defines the following linguistic variables: Stationary, Dynamic, 
Average, Few and Many. The system is thus based on Mamdani inference to apply a 
set of fuzzy rules on a set of traditional precise inputs to obtain a precise output value, 
specifically an action recommendation (the shadow algorithm to utilise). 
 
The presented Mamdani implementation will thus load the critical analysis performance 
data, read the pre-programmed fuzzy sets and rules, associate the observed data with 
the fuzzy sets, run through each case for each and every fuzzy rule, calculate the rule-
based fuzzy values, combine the calculated fuzzy values and finally calculate an exact 
value from the set of fuzzy values. For a thorough evaluation of these rules, please see 
the MSc dissertation, An Empirically Derived System for High-Speed Shadow Rendering 
(2008). 
 
 
5.2.2 Shaders 
 
As in the previous section, we can define several rules for the selection of the most 
appropriate shader quality scaling (section 4.3.2 presents the shader comparison, based 
on scene conditions such as view distance and the number of light sources, upon which 
these rules are based): 
 
 Rule #1 
  If the GPU is heavily overburdened,  

And additional computational resources are required by other core rendering 
elements 

   Then render the scene using the Low Shader Quality grouping. 
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 Rule #2 
  If the GPU is fully utilised 
  And no additional computational resources are required 
   Then render the scene using the Medium Shader Quality grouping. 
  
 Rule #3 
  If the GPU is not fully utilised, 
  And the scene consists of a few or less than a below average number of light 

sources, 
  And high-quality special effects are required, 
  And Very High Shader Quality would overburden the GPU, 
   Then render the scene using the High Shader Quality grouping. 
 
 Rule #4 
  If the scene contains a below average number of light sources 
  And the computational resources are available to facilitate true HDR lighting, 

translucent shadows, parallax mapping and volumetric materials, 
   Then render the scene using the Very High Shader Quality grouping. 
 
 
5.2.3 Local Illumination  
 
The following fuzzy rules, based on the comparison given in section 4.3.3, deal with the 
dynamic selection of the most appropriate local illumination quality approach: 
 
 Rule #1 
  If the GPU is heavily overburdened,  

And additional computational resources are required by other core rendering 
elements 

Or the scene contains a great number of light sources 
   Then render the scene using the Low Local Illumination grouping. 
 
 Rule #2 
  If the GPU is not fully utilised, 
  And the scene contains less than a very high number of light sources, 
  And high-quality special effects are required, 
   Then render the scene using the High Local Illumination grouping. 
 
 
5.2.4 Reflection and Refraction  
 
The most appropriate reflection and refraction quality approaches, as presented in 
section 4.3.4, can now selected in real-time using the following fuzzy rules: 
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 Rule #1 
  If the GPU is heavily overburdened,  
  And the CPU is fully utilised  
   Or cannot be utilised to lighten the GPU load, 

And additional computational resources are required by other core rendering 
elements 

   Then render the scene using the Low Reflection Quality grouping. 
 
 Rule #2 
  If the GPU is fully utilised, 
  And additional computational resources are required, 
  And the CPU is not fully utilised, 
   And can be utilised to lighten the GPU load, 
   Then render the scene using the Medium Reflection Quality grouping. 
 
 Rule #3 
  If the GPU is not fully utilised, 
  And the scene consists of a few or less than a below average number of light 

sources, 
  And high-quality special effects are required, 

   Then render the scene using the High Reflection and Refraction Quality 
grouping. 

 
 
5.2.5 Physics  
 
The following fuzzy rules control the selection of the most appropriate physics simulation 
approach based on the presented algorithmic comparison (section 4.3.5): 
 
 Rule #1 
  If the GPU is heavily overburdened,  
  And the CPU is fully utilised  
   Or cannot be utilised to lighten the GPU load, 

And additional computational resources are required by other core rendering 
elements 

   Then implement physics using the Very Basic Physics Simulation grouping. 
 
 Rule #2 
  If the GPU is fully utilised Or If the CPU is fully utilised Or cannot be utilised to 

lighten the GPU load, 
  And no additional computational resources are required, 
   Then implement physics using the Low Physics Simulation grouping. 
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 Rule #3 
  If the GPU is not fully utilised Or If the CPU is not fully utilised 
  And the scene consists of less than an above average number of objects, 
  And high-quality physics are required, 

And Very High Physics Simulation would overburden the GPU and/or 
GPU, 

   Then implement physics using the High Physics Simulation grouping. 
 
 Rule #4 
  If the necessary computational resources (CPU and/or GPU) are not required 

for graphics processing, 
  And the necessary physics calculations does not cause a noticeable drop in 

the perceivable smoothness of the scene being rendered, 
   Then render the scene using the Very High Physics Simulation grouping. 

 
 
5.2.6 Particle Effects 
 
The most appropriate particle simulation selection (controlled using scene conditions 
and number of particles, as noted in section 4.3.6) is determined using the following set 
of rules: 
 
 Rule #1 
  If the GPU is heavily overburdened,  
  And the CPU is fully utilised  
   Or cannot be utilised to lighten the GPU load, 

And additional computational resources are required by other core rendering 
elements 

   Then implement particle effects using the Low Particle Simulation grouping. 
 
 Rule #2 
  If the GPU is fully utilised  
   And the CPU is fully utilised  
    Or cannot be utilised to lighten the GPU load, 
  And no additional computational resources are required, 

Then implement particle effects using the Medium Particle Simulation 
grouping. 

 
 Rule #3 
  If the GPU is not fully utilised Or If the CPU is not fully utilised 
  And the effect consists of a medium to high number of particles, 
  And high-quality physics are required, 
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And Very High Particle Simulation would overburden the GPU and/or GPU, 
   Then implement physics using the High Physics Simulation grouping. 
 
 Rule #4 
  If the necessary computational resources (CPU and/or GPU) are not required 

for graphics processing, 
  And the necessary Newtonian calculations does not cause a noticeable drop 

in the perceivable smoothness of the scene being rendered, 
   Then render the scene using the Very High Particle Simulation grouping. 

 
 
5.2.7 Post-Processing 
 
Table 4.13 summarises the algorithms of choice based on our algorithmic comparison 
and scene conditions such as view distance, dynamic/static light conditions and number 
of light sources. Further defining our selection engine, we can create the following fuzzy 
rules for selection of the most appropriate post-processing quality approach: 
 
 Rule #1 
  If the GPU is heavily overburdened,  

And additional computational resources are required by other core rendering 
elements 

   Then render the scene using the Low Post-Processing Quality grouping. 
 
 Rule #2 
  If the GPU is fully utilised 
  And no additional computational resources are required 
   Then render the scene using the Medium Post-Processing Quality grouping. 
  
 Rule #3 
  If the GPU is not fully utilised, 
  And the computational resources are available to facilitate ambient occlusion, 

depth of field, displacement mapping and halo and bloom effects 
  And the scene consists of a less than average number of light sources, 
   Then render the scene using the Very High Post-Processing Quality 

grouping. 
 
 
5.3 Construction of the Algorithm Selection Mechanism 
 
The performance data gathered during the previously discussed critical analysis allows 
for the construction of a fuzzy logic-based selection and allocation system. This system, 
as mentioned, controls the real-time selection of rendering algorithms and quality 
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groupings based on environmental conditions. The gathered data (algorithm, shader and 
rendering performance) is stored in a comma-delimited format with the rendering engine 
loading it into memory via the in-game loop (section 2.2) upon execution. Each 
implemented algorithm/rendering approach is, in turn, loaded into the engine via a 
dynamic link library. DLLs are based on Microsoft’s shared library concept and can 
contain source code, data and resources. These libraries are generally loaded at 
runtime, a process referred to as run-time dynamic linking – thus allowing us to replace 
or change DLLs without recompiling the main executable. For example, the shadow 
rendering DLL contains the implementation details of the basic stencil shadow volume 
algorithm, the basic hardware shadow mapping algorithm, McCool’s shadow volume 
reconstruction using depth maps, Eric Chan and Frédo Durand’s hybrid algorithm for the 
efficient rendering of hard-edged shadows, Thakur et al’s algorithm based on the 
elimination of various shadow volume testing phases and Rautenbach et al’s algorithm 
based on shadow volumes, spatial subdivision and instruction set utilisation. 
 
CPU utilisation monitoring is performed using Intel’s CPUUsage class (Intel, 2010). This 
class, wrapping Microsoft’s Performance Data Helper (PDH) API (used to collect 
performance data of various performance counters or system instances), provides an 
interface for the calculation of maximum, minimum and average CPU utilisation over a 
period of time. As stated by Intel (2010), CPU utilisation is a key metric for optimisation, 
performance analysis, and workload evaluation. However, the built-in Windows facilities 
for tracking CPU utilisation provide limited flexibility. The CPUUsage class attempts to 
alleviate this issue by providing a simple interface that can be used to programmatically 
track CPU percentage. The level of control provided by the CPUUsage class allows 
virtually unlimited CPU utilisation monitoring options for the application developer.  
 
NVIDIA’s PerfKit (and the PerfSDK API) is, in turn, used by the rendering engine to 
access the physical GPU hardware counters and GPU usage data in real-time. The 
NVPerfKit is actually a collection of performance monitoring, debugging and profiling 
utilities focused on accessing the low-level performance indicating components of the 
graphics driver and the GPU itself (assuming an NVIDIA GPU is being used). These low-
level components are known as performance counters. They give information on the 
application’s overall frames per second rendering, the video memory used in MB, the 
graphics driver’s sleep time, the polygon count, etc (NVIDIA, 2011). Using the NVPerfKit, 
we are thus able to profile the rendering engine in terms of its GPU, driver and memory 
usage. A useful component of NVPerfKit is called PerfHUD, a real-time Direct3D and 
OpenGL application profiler that generates its output in the form of a heads-up display 
(shown in Figure 5.2). 
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Figure 5.2  Nvidia’s PerfHUD. 
 
 
5.4  Results 
 
By dynamically cycling through algorithms and quality groupings to compensate for 
performance-impacting changes in the presented rendering environment, we are able to 
bridge an existing gap between quality and high-speed rendering. The performance 
gains inherent in this system’s use, when compared to traditional implementations, is 
subsequently highlighted.  
 
We now describe the behaviour of the rendering engine when subjected to different 
scenarios, each performed independently of one another, that were designed to test its 
transition behaviour in respect of the various transition rules described above. The 
collective overall effect is a highly optimised rendering engine (the accompanying CD 
contains a high-definition video showcasing the rendering engine and the combined 
overall effect of dynamic quality selection and process allocation). Figure 5.3 shows a 
collage of the rendering engine in action. 
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Figure 5.3 Various screenshots of the presented 3D engine. 
 
 
Shadows 
 
Starting with the engine’s shadow quality scaling, as discussed in Rautenbach (2008), 
the presented benchmarking environment initially consisted of a number of static light 
sources. We then added a number of dynamic light sources (six) with shadow casting 
objects positioned relatively close to the viewer. This allowed us to analyse the transition 
from the spatial subdivision/SSE2 algorithm to Chan and Durand’s algorithm.  
 
Following this we increased the number of dynamic light sources to thirteen with the 
shadow casting objects translated to a significant distance from the point-of-view. All 
shadows previously rendered using Chan and Durand’s algorithm were now rendered 
via shadow mapping.  
 
Next we systematically increased the number of light sources to sixteen while leaving 
the shadow casting objects at their previous position – this caused a reselection of Chan 
and Durand’s algorithm.  
 
The shadow casting objects were subsequently translated back to their previous position 
(relatively close to the viewer) with the scene’s lighting reset to nine dynamic light 
sources (with shadow casting objects located near the point-of-view) – Chan and 
Durand’s algorithm was successfully selected.  
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Figure 5.4 shows the performance data obtained (for this specific instance) for up to 
eight light sources with Figure 5.5 showing the results obtained for nine to sixteen light 
sources.  
 

 
Figure 5.4 Shadow performance data for up to eight light sources. 
 

 
Figure 5.5 Shadow performance data for nine to sixteen light sources. 
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The experiment can be repeated in reverse order – that is, by starting with nine dynamic 
light sources (with shadow casting objects located near the point-of-view). Our 
benchmarking environment selected Chan and Durand’s algorithm as its initial shadow 
rendering algorithm.  
 
Next we systematically increased the number of light sources to sixteen while leaving 
the shadow casting objects at their previous position – Chan and Durand’s algorithm 
was still the algorithm of choice and no alternative shadow rendering algorithms was 
selected.  
 
Following this we decreased the number of dynamic light sources to thirteen with the 
shadow casting objects translated to a significant distance from the point-of-view. All 
shadows previously rendered using Chan and Durand’s algorithm were now rendered 
via shadow mapping.  
 
We now decreased the number of dynamic light sources to six with the shadow casting 
objects positioned relatively close to the viewer. This allowed us to analyse the transition 
from Chan and Durand’s algorithm to the spatial subdivision/SSE2 algorithm.  
 
Our final action was to set all the dynamic light sources to static. Figure 5.6 shows the 
performance data obtained for sixteen to nine light sources with Figure 5.7 showing the 
results obtained for eight to a single light source.  
 

 
Figure 5.6 Shadow performance data for sixteen to nine light sources. 
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Figure 5.7 Shadow performance data for eight to a single light source. 
 
 
Shaders 
 
Similarly, for shader quality scaling, the presented benchmarking environment initially 
consisted of a single light source. We then added seven additional light sources with a 
number of objects positioned relatively close to the viewer. This allowed us to analyse 
the transition from the Very High Shader Quality grouping to the High Shader Quality 
Grouping.  
 
Following this we increased the number of dynamic light sources to thirteen. The scene 
previously rendered using the High Shader Quality grouping were now rendered using 
simplified High Dynamic Range Lighting, normal maps, specular highlights and 
volumetric fog (the Medium Quality Grouping).  
 
Next we systematically increased the number of light sources to sixteen. This caused a 
selection of the Low Shader Quality grouping.  
 
The scene’s lighting was now reset to seven dynamic light sources – the Very High 
Shader Quality grouping was successfully selected.  
 
Figure 5.8 shows the performance data obtained (for this specific instance) for up to 
eight light sources with Figure 5.9 showing the results obtained for nine to sixteen light 
sources. 
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Figure 5.8 Shader performance data for up to eight light sources. 
 

 
Figure 5.9 Shader performance data for nine to sixteen light sources. 
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Local Illumination 
 
For local illumination quality scaling, the benchmarking environment (excluding all other 
special effects) consisted of five dynamic light sources. Fifty additional light sources 
were then progressively added (with a number of objects positioned relatively close to 
the viewer). This allowed the transition from the High Local Illumination Quality grouping 
to the Low Local Illumination Quality Grouping to be analysed.  
 
The scene’s lighting was now reset to twenty dynamic light sources – the High Local 
Illumination Quality grouping was successfully selected.  
 
Figure 5.10 shows the performance data obtained (for this specific instance) for up to 
twenty-five light sources with Figure 5.11 showing the results obtained for thirty to sixty-
five light sources. 
 

 
Figure 5.10 Shader performance data for up to twenty-five light sources. 
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Figure 5.11 Shader performance data for thirty to sixty-five light sources. 
 
 
Reflection and Refraction 
 
Benchmarking the renderer’s reflection and refraction quality scaling mechanism 
commenced with a test environment consisting of a single light source. Seven additional 
light sources, with a number of objects positioned relatively close to the viewer, were 
subsequently added. This allowed us to analyse the transition from the High Reflection 
and Refraction Quality grouping to the Medium Reflection and Refraction Quality 
Grouping.  
 
Following this we increased the number of dynamic light sources to thirteen. The scene 
previously rendered using the Medium Reflection and Refraction Quality grouping were 
now rendered using the Low Reflection Quality Grouping.  
 
The scene’s lighting was now reset to seven dynamic light sources – the Very High 
Shader Quality grouping was successfully selected.  
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Figure 5.12 shows the performance data obtained (for this specific instance) for up to 
eight light sources with Figure 5.13 showing the results obtained for nine to sixteen light 
sources. 
 

 
Figure 5.12 Reflection and Refraction performance data for up to eight light sources. 
 

 
Figure 5.13 Reflection and Refraction performance data for nine to sixteen light 
sources. 
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Physics 
 
Next, considering the renderer’s physics quality scaling, our benchmarking environment 
consisted of a relatively simple cubic environment featuring 3D models and a simulated 
environment allowing for object interaction and collision.  
 
We started with twenty-five objects then added fifty additional interacting objects. This 
allowed us to analyse the transition from the Very High Physics Simulation selection to 
the High Physics Simulation selection (with processes efficiently distributed between the 
CPU and GPU).  
 
Following this we increased the number of objects to one hundred and twenty-five. The 
scene previously rendered using the High Physics Simulation selection were now 
rendered using the Low Physics Simulation selection.  
 
The scene’s object-count was now reset to fifty – Very High Physics Simulation was 
successfully selected.  
 
Figure 5.14 shows the performance data obtained (for this specific instance) for up to 
one hundred and twenty-five objects. 
 

 
Figure 5.14 Physics performance data for up to 125 interacting objects. 
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Particles 
 
As previously discussed, the particle system’s evaluation focuses on a number of 
particle simulations (organised into performance-impacting selections ranging from Low 
to Very High). To gather the necessary results, we implemented our particle system for a 
basic scene – a relatively simple cubic environment featuring 3D models and a 
simulated environment with particle effects added to simulate explosions, dust, tread 
marks, beams, etc (the number of particles used per simulation range from 1500 to 
7500).  
 
The experiment started with one thousand five hundred particles. Four thousand five 
hundred additional particles were subsequently added. This allowed us to analyse the 
transition from the Very High Particle Simulation selection to the High Particle Simulation 
selection (with physics calculations efficiently distributed between the CPU and GPU).  
 
Following this we increased the number of particles to one nine thousand. The scene 
previously rendered using High Particle Simulation were now rendered using Medium 
Particle Simulation.  
 
The scene’s particle-count was now reset to three thousand – Very High Particle 
Simulation was successfully selected.  
 
Figure 5.15 shows the performance data obtained (for this specific instance) for up to 
nine thousand particles. Similar results are observed when repeating the experiment in 
reverse order. 
 

 
Figure 5.15 Particle performance data for up to 9000 particles. 
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Post-Processing 
 
Post-Processing quality scaling benchmarking started with a basic 5 light source 
environment. Ten additional light sources were then added (with a number of objects 
positioned relatively close to the viewer). A transition from the High Post-Processing 
Quality grouping to the Medium Post-Processing Quality grouping was observed.  
 
Following this we increased the number of dynamic light sources to twenty-five. The 
scene previously rendered using the Medium Post-Processing Quality grouping were 
now rendered using the Low Post-Processing Quality grouping.  
 
The scene’s lighting-count was now reset to seven dynamic light sources – the High 
Post-Processing Quality grouping was successfully selected.  
 
Figure 5.16 shows the performance data obtained for up to twenty-five light sources. 
Similar results, as with all the other algorithms and approaches, are observed when 
repeating the experiment in reverse order. 
 

 
Figure 5.16 particle performance data for up to 25 light sources. 
 
 
5.5 Summary  
 
This chapter presented the general architecture of our empirically derived system for 
high-speed rendering – the dynamic process allocation and selection system being the 
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main focus. Fuzzy logic-based reasoning for the explicit symbolisation of data was also 
looked at. 
 
The final section summarised the results obtained by dynamically cycling through 
algorithms and quality groupings to compensate for performance-impacting changes in 
our rendering environment. These results illustrated the performance gains to be derived 
by the proposed system. The next chapter gives an overall summary of our work. It 
closes by discussing possible future work based on the presented research. 

 
 
 



 175

Chapter 6 
 
 
 

Summary and Conclusion 
 
 
 

Chapter 6 features an overall summary of our work. It closes by discussing 
possible future work based on the presented research. 
 
 
In this chapter we will present: 
 
 An overall summary of our work 
 Concluding remarks and future work 
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6.1  Summary  
 
The thesis presented a study performed through the implementation of a wide and 
representative range of rendering and physics algorithms (organised into performance-
impacting groups). A platform supporting the swapping out of rendering algorithms and 
physics calculations as well as the transfer of specific tasks between the CPU/GPU was 
built. This platform enabled the detailed benchmarking of the various implemented 
algorithms which, in turn, allowed for the definition of a fuzzy-logic based expert system 
that was embedded into a real-time rendering engine. The rendering engine analyses 
the 3D environment being rendered and uses the benchmarked performance data that 
has been encapsulated in the fuzzy-logic based selection engine to determine the best 
solution to a given problem at any given moment. Whenever appropriate and for cube 
mapping and physics calculations, it augments the computational power of the parallel 
compute engine in modern GPUs with that of multi-core CPUs. This allowed for the 
rendering of complex geometric environments through the real-time swapping of 
rendering algorithms and, as proof of concept, through the effective distribution of 
specific processing tasks between the CPU and GPU. 
 
The thesis was divided into two parts. Part I provided the background material deemed 
necessary to arrive at the final result. It started by looking at game engine architecture in 
general, highlighting the importance of software componentry, and the difference 
between game-engine code and game-specific code. Following this it focussed on a 
number of game engine architectures, specifically ad-hoc, modular and the directed 
acyclic graphs architecture (DAG).  
 
Next it considered the first step invoked whenever a game is executed, namely 
initialisation. Initialisation was described as the stage responsible for resource and 
device acquisition, memory allocation, setup of the game’s GUI, loading of art assets, 
etc. Following front-end initialisation, it discussed the exit state and the game loop for 
the uninterrupted execution of a game. 
 
Following this, the thesis dealt with the general design and implementation of a generic 
game engine which serves as the core of the presented dynamically scalable interactive 
rendering engine. 
 
The thesis then introduced our modular rendering engine as a scalable interactive 
testing environment and complete solution for the rendering of computationally intensive 
3D environments. A detailed discussion of the presented interactive environment’s core 
rendering elements was subsequently given. These elements were grouped into the 
following rendering or computation categories: shaders, local illumination, reflection and 
refraction, shadows, physics, particles and post-processing special effects. This was the 
end of Part I.  
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Part II of the thesis categorised the presented algorithms and rendering groupings based 
on the level-of-detail/rendering quality and the associated computational impact. It also 
focused on the critical analysis and detailed benchmarking of the presented rendering 
and simulation techniques – the data used by the presented fuzzy-based selection and 
allocation system.  
 
Part II commenced with a discussion of the proposed benchmarking mechanism as well 
as a set of criteria for the evaluation of rendering algorithms and techniques. The given 
evaluation criteria were selected with the aim of assessing the relationship between 
rendering quality and performance – in turn allowing for, where applicable, the isolation 
of key algorithmic weaknesses and possible bottleneck areas.  
 
Drawn from the MSc dissertation preceding this thesis (2008), the shadow algorithms 
benchmarked and analysed include: the basic stencil shadow volume algorithm, the 
basic hardware shadow mapping algorithm, McCool’s shadow volume reconstruction 
using depth maps, Chan and Durand’s hybrid algorithm for the efficient rendering of 
hard-edged shadows, Thakur el al’s algorithm based on the elimination of various 
shadow volume testing phases and Rautenbach et al’s algorithm based on shadow 
volumes, spatial subdivision and instruction set utilisation.  
 
Shader evaluation subsequently focused on a number of shader implementations and 
lighting approaches. Following this, two local illumination configurations were 
investigated – the first of these limiting the number of light sources in an attempt to 
reduce GPU utilisation with the second lifting this limitation while occluding local light 
sources (a technique used to approximate the effect of environment lighting as an 
attempt to simulate the way light radiates in real life). 
 
Next the evaluation focused on a number of reflection and refraction implementations 
and approaches, specifically: basic environmental mapping, CPU-based cube mapping, 
refractive environmental mapping and the extension of these reflection and refraction 
algorithms through the addition of the Fresnel effect and chromatic dispersion. 
 
The thesis then shifted focus to the evaluation of a number of physics calculations such 
as object acceleration, force, linear momentum, gravitational pull, projectile simulation 
through trajectory paths, friction and collision detection followed by the benchmarking of 
the presented rendering engine’s dynamically allocated particle generator. 
 
The benchmarking exercise concluded with the performance analysis of a number of 
post-processing shader implementations and lighting approaches, specifically 
displacement mapping, bloom effects, ambient occlusion, depth of field and halo effects. 
 
The thesis closed by presenting the general architecture of the proposed dynamically 
scalable interactive rendering engine – the dynamic process allocation and selection 
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system being the main focus. It also looked at fuzzy logic-based reasoning for the 
explicit symbolisation of data. The results obtained by dynamically cycling through and 
offloading algorithms and quality groupings to compensate for performance-impacting 
changes in a rendering environment were subsequently given. These results illustrated 
the performance gains inherent to the proposed system’s use.  
 
 
6.2 Concluding Remarks and Future Work 
 
The computer graphics industry has developed immensely during the past decade. 
Looking at the area of computer games one can easily see technological leaps being 
made on a yearly basis. However, most of the currently available rendering algorithms 
are only amenable to specific rendering conditions and/or situations.  
 
A viable solution to GPU and, to a limited degree, CPU over- and/or underutilisation 
(depending on the scene being rendered) was to perform a critical analysis of numerous 
rendering algorithms with the aim of assessing the relationship between rendering 
quality and performance. Using this performance data gathered during the analysis of 
various algorithms, we were able to define a fuzzy logic-based selection engine to 
control the real-time selection of rendering algorithms and special effects groupings  
based on environmental conditions (as discussed in Chapter 4 and 5). This system 
ensures the following: nearby effects are always of high-quality (where computational 
resources are available), distant effects are, under certain conditions, rendered at a 
lower quality and the frames per second rendering performance is always maximised. 
Furthermore, as a secondary objective, we have shown that the unification of the parallel 
compute engine present in modern GPUs with that of multi-core CPUs to allow for the 
rendering of complex geometric environments is a viable solution for the management of 
scarce computational resources and that improved rendering quality and performance 
can be achieved through load-balancing between the CPU and GPU.  
 
It is important to note that this engine and its selective utilisation of the CPU in an 
attempt to free up GPU resources and, in turn, to accelerate graphics performance is, in 
principle, also adaptable for use with 3D capable mobile devices (such as the iPhone, 
IPad and iPod Touch); it is expected to give these devices the ability to render special 
effects not previously possible by maximising the utilisation of both CPU and GPU. 
Further experimentation in this regard would seem appropriate. 
 
We have also demonstrated that the use of a relatively simple fuzzy-logic based expert 
system can serve as a viable solution to the problem of selecting between and 
distributing competing algorithms in real-time. This resulted in the optimisation of GPU 
usage by ensuring that the quality of special effects is appropriately tuned. 
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This work is also, in some sense, similar to current research on software evolution in the 
context of MAUS (Mobile and Ubiquitous Systems) which investigates how on-the-fly 
architectural reconfigurations are needed for such systems as context changes due to 
their mobility (Autili et al, 2010). Our work can inform theirs in as much as it points to the 
utility of a fuzzy-logic based expert system to determine which changes to make as the 
context changes. 
 
It is also important to note that, despite all the rendering algorithms and approaches 
available, a lot of work remains in the field. More algorithms could, as future work, be 
benchmarked and added to our selection engine’s knowledge base. Special effects 
groupings could also be assigned collective weights based on the groups overall impact 
on rendering performance (for example, the post-processing effects group will have a 
bigger overall performance impact that the local illumination group). The implemented 
rendering engine is also highly expandable and alternate rendering solutions, whether 
GPU or CPU based, can be implemented and loaded into the engine as additional 
dynamic link libraries. Alternate algorithmic performance improvements can also be 
pursued.  
 
Furthermore, utilising a selection system such as the one in this thesis will allow modern 
engines to not only do away with their performance setup screens (thus freeing users 
from the cumbersome task of fine-tuning the game’s graphics performance) but will 
guarantee a rendering environment that is running at the most optimised level possible 
by not just lowering “drawing distance” or “texture quality” but by actually selecting the 
most appropriate rendering approach and shader implementation for the current scene 
being rendered.  
 
Immersive rendering approaches used in conjunction with AI subsystems, game 
networking and logic, physics processing and other special effects (such as post-
processing shader effects) are immensely processor intensive and can only be 
collectively implemented on high-end hardware. This thesis has illustrated that by 
cycling and distributing algorithms based on environmental conditions and by the 
exploitation of algorithmic strengths, that a vast array of high-quality real-time special 
effects and highly accurate calculations can become as common as texture mapping. 
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