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Chapter 1 
 

 

Introduction 
 
 
 

Chapter 1 presents the general research domain, research problem and overall 
dissertation structure. 
 
 
Outline: 
 
 The research domain 
 The research problem 
 A general outline of the work addressing the problem 
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1.1  Research Domain  
 
In order to contextualise high-performance 3D rendering and engine design within its 
historical context, this chapter starts by offering a brief overview of computer gaming – 
the primary driving force behind the continued advancement of real-time rendering 
systems such as the one developed for this thesis. Note that portions of this section are 
sourced from the author’s textbook, 3D Game Programming Using DirectX 10 and 
OpenGL (Rautenbach, 2008). 
 
The first computer game ever was a crude noughts and crosses simulation written in 
1952 (Winter, 2004). This game, called OXO, was developed by Sandy Douglas using 
an EDSAC computer (one of the first stored program electronic computers). The user 
used a rotary telephone dial for input with the output being generated on a 35 by 16 pixel 
cathode ray tube display (Campbell-Kelly, 2006). Figure 1.1 shows an emulation of the 
original program. 
 

 
Figure 1.1 A screenshot of the game OXO. 
 
William Higinbotham, an American physicist, created Tennis for Two in 1958 using an 
oscilloscope (OSTI, 1981). This game showed a side view of a tennis court and the 
player was required to hit a gravity affected ball over a net. Tennis for Two is considered 
by many as the first computer game due to the EDSAC computer being mainly limited to 
the University of Cambridge Mathematical Laboratory in England. Figure 1.2 shows 
Tennis for Two running on an oscilloscope. 
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Figure 1.2 A photograph of the game Tennis for Two. 
 
The 1960s saw the advent of computer gaming on mainframe computers. Most of these 
games were text-based adventures with MUDs (Multi-User Dungeons) appearing in the 
late 1970s (Klietz, 1992). These MUDs, existing to this very day, were some of the first 
networked games, with the original MUDs requiring a connection to an academic 
network. A MUD typically combines elements of role-playing and chat room style social 
interaction. All actions and dialog in the environment are text driven. Modern MMOGs 
(Massively Multiplayer Online Games) such as World of Warcraft, Guildwars and 
Dungeons & Dragons Online have several similarities to early MUDs and can loosely be 
considered as graphical next-generation MUDs. 
 
PONG, designed by Nolan Busnell, led to the birth of Atari Interactive and was mainly 
distributed via coin-operated arcade machines and home consoles (Miller, 2005). The 
original PONG was related to Higinbotham’s Tennis for Two, but was based on the sport 
of table tennis and had a top down view. PONG made use of solid lines to represent 
paddles, a dotted line to represent the net and a square to represent the ball. Many 
versions of the original Atari classic have been made over the years and the entire genre 
of ball-and-bat video games have become known as Pong games. Note the lower case 
spelling. Figure 1.3 shows a clone of the original classic using DirectDraw. 
 

 
Figure 1.3 A PONG clone. 
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The Atari 2600 (Figure 1.4), released in 1977, allowed for the use of plug-in cartridges 
(Yarusso, 2007). Dedicated consoles offering one or two games were the norm before 
then and having one console supporting a theoretically unlimited number of games, such 
as Breakout, Donkey Kong, Pac-Man and Space Invaders, was extremely popular with 
the buying market and contributed heavily towards the growth of computer gaming.  
 

 
Figure 1.4 The Atari 2600. 
 
The term personal computer game or PC game surfaced with the release of the Apple II 
(see Figure 1.5) in 1977 (Weyhrich, 2002). Although the Apple II offered some 
productivity and business applications such as a spreadsheet and word processor, it 
was designed specifically with educational and personal use in mind. The Apple II was 
shipped with two well-documented and easy to learn BASIC programming languages, 
Applesoft and Integer, resulting in the Apple II being used by many computer 
enthusiasts to learn how to program. Applesoft BASIC, created by Microsoft, supported 
floating point arithmetic and was initially offered as an upgrade to Integer BASIC and 
later included with the release of the Apple II Plus. The Apple II enjoyed a phenomenal 
user base and grew into the most popular game development platform of the time with 
hundreds of titles shipped. Two of the world’s most respected and prolific game 
developers, John Romero and John Carmack (responsible for genre-defining games 
such as Doom and Quake), started their careers programming games for the Apple II 
(Kushner, 2003:23-24,33-37,41). 
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Figure 1.5 One of the first Apple II computers. 
 
The 1980s saw the advent of the IBM PC (and compatibles), Commodore 64, Atari ST, 
etc (Reimer, 2005). The general idea behind all these systems was ‘a personal 
computer for the masses’. The original IBM PCs of the early 1980s (an example is 
shown in Figure 1.6) were priced out of the reach of most home users but gained 
significant market share in the business sector. IBM PCs featured Microsoft BASIC as 
programming language and an open architecture allowing other manufacturers to 
develop both peripherals and software for it. This open architecture was the primary 
reason for the growth in popularity of the PC at that stage. The Commodore 64 featured 
impressive graphics and sound capabilities compared to the Apple II and IBM PCs of the 
time. It was also priced much more aggressively than its counterparts. The Commodore 
64 also competed against video game consoles such as the Atari 2600 by allowing 
direct connectivity with a television set. The ‘video game crash of 1983’ led to the 
bankruptcy of numerous video game, console and home computer manufacturers 
(Taylor, 1982). This industry crash was the direct result of the video game market being 
swamped by a large number of sub-quality games and the availability of competitively 
priced personal computer systems fulfilling multiple educational, business and 
entertainment roles. With video game console companies collapsing, PC games quickly 
took the place of their console counterparts.  
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Figure 1.6 The IBM PC Junior released in 1983. 
 
The Atari ST (see Figure 1.7) was released in 1985 and was especially suited for PC 
gaming due to its colourful graphics, good sound, fast performance and good price 
(Powell, 1985). 3D computer games such as Dungeon Master and notable classics such 
as Peter Molyneux’s Populous (also released on the PC and various other platforms) 
were created for it. The PC, although lagging behind at the beginning of the 1980s, 
slowly gained popularity due to its open architecture, dropping price, easy upgrading and 
usefulness as a business tool. The IBM PC compatible was at the forefront of the 
personal computer race at the start of the 1990s, and the release of Windows 3.0 in May 
1990 in particular led to the PC becoming the computing platform of choice to this very 
day. 
 

 
Figure 1.7 The Atari ST computer. 
 
The introduction of high quality soundcards, high resolution displays and peripherals 
such as the computer mouse and joystick significantly drove the adoption of computer 
gaming but it was not until 1992 that the real power of the PC as a gaming platform was 
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realised. The main game responsible for this was id Software’s shareware mega-hit 
Wolfenstein 3D. Wolfenstein 3D popularized the first-person shooter genre and the PC 
as a gaming platform by allowing the player to interact with a virtual environment from a 
first-person perspective. Wolfenstein 3D was of course not the first 3D computer game 
for the PC with id Software employing and refining the technology that would become 
Wolfenstein 3D in Hovertank 3D and Catacomb 3D during 1991. Other older PC games 
such as Elite also featured 3D environments but never achieved the level of technical 
complexity of Wolfenstein 3D nor its cultural and industry impact. Another breakthrough 
in the graphics of 3D games came with id Software’s release of Doom in 1993. Doom, a 
screenshot of which is shown in Figure 1.8, really revolutionised the gaming industry 
(GameSpy, 2001) with its fast paced network play and immersive graphics and 
companies like Microsoft started spending millions of dollars on research and 
development to migrate gaming from MS-DOS to their Windows platform (Craddock, 
2007). This research and development culminated in the DirectX Application 
Programming Interface (API). 
 

 
Figure 1.8 id Software’s Doom released in 1993. 
 
Following the release of Doom, Microsoft wanted to establish Windows 95 as the 
gaming platform of choice, as opposed to MS-DOS still being used by the majority of 
games throughout 1995 and 1996. During a Microsoft Halloween media event at the end 
of 1995, called Judgement Day, a 32-bit port of Doom was showcased featuring a video 
address by Bill Gates superimposed inside the game proclaiming Windows 95, using the 
DirectX API, as “thee game platform” (Microsoft, 1995). Initial DirectX versions were not 
unequivocally successful products but were nonetheless important as technological 
building blocks. Most of the issues associated with these initial DirectX releases were, 
however, resolved with the release of DirectX 5.0 in 1997 and the era of MS-DOS based 
games was officially over. There was also a number of developers using OpenGL due to 
it being a cross-platform graphics API unlike Microsoft’s Direct3D. OpenGL has since 
had a strong footing in the science and gaming’s first-person shooter genre, not only 
because of its cross-platform nature but also due to its minimalist design as opposed to 
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Direct3D’s perceived complexity. Direct3D’s (DirectX’s graphics library) inception and 
the standardisation of its competitor, OpenGL, together with the advent of mainstream 
3D accelerated graphics hardware revolutionised computer gaming and led to a new era 
of ever more realistic 3D graphics and constant improvements in graphics hardware. 
The first-person shooter is generally considered the primary benchmark for graphics 
complexity, realism and visual effects with Doom3 and the Quake, Unreal and Half-Life 
series often setting the standard for other titles. 

The progression of Direct3D and OpenGL is closely coupled with the development of 3D 
accelerated graphic cards. These libraries are defined as a series of specifications that 
are, in turn, implemented by graphic hardware vendors. Hardware support enables the 
rapid execution of graphics calls, functions, or effects – in the process freeing the CPU 
to do other calculations. The GPU (graphics processing unit), integrated into a video 
card, is a dedicated graphics rendering device and controls the rendering quality and 
drawing performance depending on the number of supported specifications. The first 
mainstream GPUs were released with the Atari ST, the Commodore Amiga and some 
home computers of the 1980s (Knight, 2003). These GPUs were nothing more than 
simple blitters responsible for moving bitmaps around in memory. In 1991 S3 Graphics 
launched the first mainstream 2-D accelerator for the PC and was soon followed by 2-D 
accelerators with added 3D features such as the ATI Rage and the S3 ViRGE (Bell, 
2003). These basic graphics accelerators soon evolved to include support for transform 
and lighting (translating three-dimensional objects and calculating the effects of lighting 
on objects) with the release of DirectX 5.0 and progressed to include programmable 
shaders in addition to numerous other advancements with later releases of DirectX and 
OpenGL. 
 
Computer gaming today is a multi-billion dollar industry with 2004’s U.S retail stales set 
at more $9.9 billion and topping $16.2 billion in 2010. This highly-profitable situation is 
playing itself out throughout the world. A report released by Niko Partners (a Shanghai-
based market researcher) predicted China's online game revenue to reach $5.8 billion 
for 2011 – an sector expected to grow by an annual rate of 33.5 percent. According to 
the ESA (Entertainment Software Association) more than 60% of Americans aged six 
and older (145 million people) play computer and video games with the average game 
player being 28 years old. With the demand for new titles a constant factor and the 
number of emerging developers always increasing, the market for games, constantly 
improving graphics appears to be set to increase for quite some time to come. For 
example, Grand Theft Auto IV broke sales records by selling about 3.6 million units on 
its first day of release (29 April 2008) and grossing more than $500 million in its first 
week. In less than a week, the game had sold over 10 million copies (Ortutay, 2008). 
 
This ever constant push for “immersive and more realistic” computer games has resulted 
in a significant number of innovations over the years – the early 90s seeing the use of 
spatial subdivision and multi-texturing techniques with games released in the mid-2000s 

 
 
 



 10

becoming known for their use of real-time shadows and advanced shader techniques. A 
good example of such a game is id Software’s Doom3 which specifically utilised stencil 
shadow volumes to add not only realism but also suspense and atmosphere (Carmack, 
2000). The problem with shadows, as with other special effects, is, simply put, 
performance. Doom3, released in 2003, required high-end hardware to run as intended; 
that said, the player had the option of deactivating performance compromising elements 
such as shadows, reflections and specularity. However, disabling these features 
resulted in a less than satisfactory gaming experience. Shadows and other special 
effects such as specular highlights and real-time reflections have become expected, and 
today’s mid-range hardware is more than adequate in handling each of these effects 
separately. However, the performance impact remains an issue when real-time 
rendering algorithms are coupled with AI sub-routines such as cognitive model based 
Non-Player Character (NPC) interaction, input control, shader effects such as reflective 
water, motion blur and specular bump mapping, 3D spatialisation and material based 
distortion for sound, realistic object interaction based on Newton's Laws, etc.  
 
Mobile devices such as the iPhone also represent a vast untapped market for game 
development and graphical applications. The iPhone, as a mass mobile platform, 
features powerful hardware, display and input technology – technology presenting the 
user with a realistic gaming experience. The iPhone and iPod Touch have the potential 
of not just cutting into the mobile gaming market, but to actually dethrone the Sony PSP 
and Nintendo DS. Following the iPhone SDK release, there has been an enormous 
interest in creating applications and especially games targeting this platform. This 
interest has resulted in more than 500 applications (with 241 in the game category) 
being available on launch date of Apple’s delivery platform, the AppStore. Games 
targeting this platform have an even harder time when it comes to performance 
balancing. For example, early iPhones featured a 620 MHz ARM 1176 CPU 
underclocked to 412 MHz with it’s Graphical Processing Unit (offering support for 
OpenGL ES) being a PowerVR MBX Lite 3D unit (Apple, 2008). Even though the 3D 
capabilities of these devices have been improved since 2008, running high-quality 
immersive games with PC-like special effects on the iPhone remains a problem and is a 
classic example of the need for performance balancing, especially when rendering 
shadows and other advanced special effects. 
 
General-purpose computing on graphics processing units is the parallel computing 
technique of using a Graphic Processor Unit (GPU), which typically handles computer 
graphics computations, in conjunction with a CPU to perform computations traditionally 
handled solely by the CPU. Using these specialised graphics processors as “mini CPUs” 
is the direct result of the programmable GPU evolving into a highly parallel, 
multithreaded, many-core processor with tremendous computational horsepower and 
very high memory bandwidth (NVIDIA, 2009). Modern-day programmable GPUs are 
thus especially well-suited to address problems that can be expressed as data-parallel 
computations with a high ratio of arithmetic operations to memory operations. Parallel 
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computing has also become commonplace with technologies like AMD’s HyperTransport 
enabling high-performance reconfigurable computing and general-purpose computing on 
graphics processing units (GPGPU) allowing for highly parallel, multithreaded, many-
core processing. 
 
Recent work into the utilisation of GPUs for General Parallel Computations (NVIDIA’s 
CUDA, for example) ranges from CPU-GPU communication management (Jablin et al, 
2011), multi-GPU and multi-CPU parallelisation for physics simulations (Hermann et al, 
2011), the development of physics engines featuring automatic CPU-GPU process 
distribution (Joselli et al, 2008), adaptive game loop architectures with CPU-GPU task 
distribution (Joselli et al, 2009), the modelling of GPU-CPU workloads for General 
Parallel Computations (Kerr et al, 2010), the acceleration of graphics applications 
through the implementation of GPU/CPU caches (Likun and Dingfang, 2008), NVIDIA 
GPU and ARM CPU integration (Moore, 2011), the parallel processing of matrix 
multiplication in CPU and GPU environments (Ohshima et al, 2006), the concept of 
scalable heterogeneous computing (Nickolls and Dally, 2010), the optimisation of data 
parallel execution on GPUs (Perumalla, 2008), CPU-GPU parallel optimisations for 
SIMD/SPMD computing (Qi Ren, 2011), a number of proposed GPU-CPU 
communication models (Shainer et al, 2011), the use of asynchronous stencil kernels for 
hybrid CPU/GPU systems (Venkatasubramanian and Vudac, 2009), the task scheduling 
of parallel processes in a collaborative CPU-GPU environment, the deployment of CPU 
and GPU-based genetic algorithms on heterogeneous devices (Wilson and Banzhaf, 
2009), a performance study on GPU/CPU resource interference (Yamagiwa and Wada, 
2009), the execution of database applications using GPGPU programming (Zidan et al, 
2011) to an architectural proposal for hybrid GPU/CPU middleware solutions (Zink, 
2008). 
 
Research into parallel or distributed rendering has also been conducted since the early 
1980s (Crockett, 1995) with Silicon Graphics Inc, for example, originally defining 
OpenGL as a client-server API (Fosner, 1996). What hasn’t picked up great momentum 
is the utilisation of the CPU in an attempt to free up GPU resources and, in turn, to 
accelerate graphics performance. Research has mostly been limited to GPU-exclusive 
parallel rendering environments such as render farms, graphic clusters and visual 
simulation applications where multiple display systems are interconnected and rendered 
to concurrently (Fangerau et al, 2010). The scene, subdivided into a sequence of 
frames, is thus distributed amongst these interconnected display systems, resulting in 
significantly faster rendering times (Allard and Raffin, 2005). In another example of multi-
GPU rendering, Isard et al (2002) proposes a system for the distributed rendering of soft 
shadows. 
 
Adapting this approach for real-time, interactive graphics as found in modern DirectX  
and OpenGL-based computer games to date entails distributing the rendering task 
across several interconnected GPUs (via a technology such as NVIDIA’s Scalable Link 
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Interface – a multi-GPU approach for linking two or more video cards together to 
produce a single output). However, this thesis proposes the unification of the parallel 
compute engine present in modern GPUs with that of multi-core CPUs to allow for the 
rendering of complex geometric environments without the overburdening of scarce 
computational resources. 
 
 
1.2 Problem Statement 
 
The fast evolving computer gaming industry is governed by a constant need for 
increased realism and total immersion (with the need for increased realism being 
addressed by a number of shader techniques such as reflections, refraction, specularity 
and shadows). This constant demand is typically met by more expensive/better 
hardware which, in turn, results in an even higher need for realism and performance. 
One possible consequence of advanced hardware such as NVIDIA’s GeForce 500 
Series is that the GPU is often fully utilised while the CPU, by comparison, sits relatively 
idle (especially the case with modern multi-core CPUs) – underutilisation of the GPU is 
a conjecture that drove the thesis. Part of the purpose of the study was precisely to test 
whether the CPU was sufficiently underutilised to allow for increased use; if so, then the 
CPU can be considered a less than fully utilised processing resource with the GPU 
being a relatively over-utilised one. Another consequence is the global use of 
unnecessarily sophisticated rendering algorithms providing a quality of detail that is 
inappropriate for a given context – for instance, highly accurate shadows for very distant 
objects (the system to be discussed in this thesis will, in contrast, render the shadows of 
near objects via stencil show volumes and distant objects via blop shadows). 
 
 
Purpose of the Study 
 
The primary purpose of this study is to examine the overall quality and performance 
impact resulting from the global use of unnecessarily sophisticated rendering algorithms 
and, secondarily, to gauge the extent of GPU over-utilisation and CPU under-utilisation. 
Then, based on these findings, the study examines whether improved rendering quality 
and performance can be achieved through appropriate algorithm selection both within a 
given scene and in successive scenes and, as a proof of concept approach, through 
load-balancing between the CPU and GPU.  
 
The overarching agenda is to explore a new paradigm for game development that will 
be less resource hungry but nevertheless not have a net-negative impact on rendering 
quality, thereby facilitating the development of games that fully utilise all processing 
power at hand. The hope is that the paradigm will be applicable both in the context of  
highly polished, GPU-hungry PC titles and in the context of mobile games, thus 
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forestalling a situation where, for example, an iPhone’s PowerVR SGX GPU is fully 
utilised while it’s 800 MHz ARM CPU sits relatively idle. 
 
 
Performing the Study 
 
The study is performed through the implementation of a wide and representative range 
of rendering and physics algorithms (organised into performance-impacting groups). A 
platform supporting the swapping out of rendering algorithms and physics calculations 
as well as the selective transfer of tasks between the CPU/GPU is built. This platform 
enables the detailed benchmarking of the various implemented algorithms which, in 
turn, allows for the definition of a fuzzy-logic based expert system and real-time 
rendering engine. Using this benchmarked performance data, the rendering engine and 
fuzzy-logic based selection engine analyse the 3D environment being rendered to 
determine the best solution to a given problem and, as proof of concept, to combine the 
parallel compute engine in modern GPUs with that of multi-core CPUs. This allows for 
the rendering of complex geometric environments through the real-time swapping of 
rendering algorithms and the rendering of reflections and physics computations through 
the effective distribution of processing tasks between the CPU and GPU. 
 
 
Scope 
 
This study is inspired by earlier work on shadow rendering – please see the MSc 
dissertation, An Empirically Derived System for High-Speed Shadow Rendering 
(Rautenbach, 2008). In that case, several shadow algorithms were benchmarked and 
analysed, specifically: the basic stencil shadow volume algorithm, the basic hardware 
shadow mapping algorithm, McCool’s shadow volume reconstruction using depth maps, 
Chan and Durand’s hybrid algorithm for the efficient rendering of hard-edged shadows, 
Thakur el al’s algorithm based on the elimination of various shadow volume testing 
phases and our own algorithm based on shadow volumes, spatial subdivision and 
instruction set utilisation. This critical analysis allowed us to assess the relationship 
between shadow rendering quality and performance. It also allowed for the isolation of 
key algorithmic weaknesses and possible bottleneck areas. Focusing on these 
bottleneck areas, several possibilities of improving the performance and quality of 
shadow rendering, both on a hardware and software level, were investigated. Primary 
performance benefits were seen through effective culling, clipping, the use of hardware 
extensions and by managing the polygonal complexity and silhouette detection of 
shadow casting meshes. Additional performance gains were achieved by combining the 
depth-fail stencil shadow volume algorithm with dynamic spatial subdivision. Using the 
performance data gathered during the analysis of various shadow rendering algorithms, 
the system was able to dynamically swap out shadow rendering algorithms based on 
environmental conditions. 
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Our dynamically scalable interactive rendering engine as presented in this thesis 
features not only dynamic shadow algorithm swapping but also the dynamic swapping 
and, in the case of environmental mapping, CPU/GPU allocation of shaders, local 
illumination configurations, a number of reflection and refraction implementations and 
approaches, physics calculations, particle effect calculations and numerous post-
processing effects. 
 
Implemented shader and related lighting effects include: simple light mapping, basic 
directional lighting, normal mapping, specular highlights, volumetric fog, a detailed 
lighting model, ambient occlusion, High Dynamic Range Lighting and parallax mapping. 
 
Local illumination approaches include the limiting of the number of light sources in an 
attempt to reduce GPU utilisation and the lifting of this limitation while occluding local 
light sources (a technique used to approximate the effect of environment lighting as an 
attempt to simulate the way light radiates in real life). This implementation was also 
extended with the inclusion of HDR lighting.  
 
Reflection and refraction implementations and approaches include: basic environmental 
mapping, CPU-based cube mapping, refractive environmental mapping and the 
extension of these reflection and refraction algorithms through the addition of the 
Fresnel effect and chromatic dispersion.  
 
Physics calculations include: acceleration, force, linear momentum, gravitational pull, 
projectile simulation through trajectory paths, friction and collision detection. A physics-
based particle generator is also included.  
 
Post-processing shader implementations and related lighting approaches include: 
displacement mapping, bloom effects, ambient occlusion, depth of field and halo 
effects. 
 
 
Implemented Algorithms 
 
The presented rendering engine utilises a number of base rendering algorithms 
commonly implemented in high-end rendering engines such as id Tech 5 (id Software, 
2011), Blizzard’s StarCraft II Engine (Blizzard, 2010) and Epic Games’ Unreal Engine 
Technology (Epic, 2012). These algorithms make up the core of all current generation 
3D games (such as id Software’s Rage) with future technologies such as id Tech 6 – an 
upcoming game engine under preliminary development by id Software – aiming for a 
mixed environment where ray tracing and classic raster graphics are to be merged. 
That said, as stated by id Software’s technical director, John Carmack, id Tech 6 will 
utilise hardware that "doesn't exist right now" (Carmack, 2011). The presented 
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rendering algorithms and approaches were thus selected as they are utilised, in various 
combinations, by a majority of high-end 3D titles. Examples include Rage (released 
2011), Grand Theft Auto IV (released 2008), Hitman: Absolution (to be released 2012), 
etc.) – either in their basic/core form or as a variation/extension of the original. The 
presented algorithms also cover the entire realm of interactive rendering as found in 
modern 3D games – shadow rendering, local illumination, reflection and refraction, 
physics calculations, particle effects and numerous post-processing special effects. 
 
The graphics academic research community is, of course, constantly researching new 
rendering algorithms, sometimes improving on efficiency, sometimes on realism, and 
sometimes on both. In principle, some of these algorithms might have been included in 
our experiments. However, since the aim of the presented rendering engine is to serve 
as a proof of concept, it was decided to limit the scope of the project to established core 
algorithms already in widespread use. In future experimentation, the implemented 
algorithms can easily be extended or replaced. More algorithms could, for example, be 
benchmarked and added to our selection engine’s knowledge base. The implemented 
rendering engine is also highly expandable and alternate rendering solutions, whether 
GPU or CPU based, can be implemented and loaded into the engine as additional 
dynamic link libraries. Alternate algorithmic performance improvements can also be 
pursued. 
 
Furthermore, the presented algorithms and rendering approaches utilise the power of 
current generation GPUs and graphics APIs to the fullest. For example, the bump 
mapping and displacement mapping approaches presented in this thesis leverage the 
hardware tessellation engine provided by Microsoft’s latest API, DirectX 11, as well as  
today’s high-end GPUs to generate more triangles from existing geometry. The result of 
this is extremely high-resolution displacement and bump maps that appear truly 3D. The 
downside to this advancement and realism is, unfortunately, a decrease in rendering 
performance. Since hardware resources are limited, these advancements are much 
better utilised when implemented for close-up, important objects with distant objects 
being tessellated to a lesser degree – one result of the presented selection engine. 
 
Another modern rendering technique implemented by the proposed system is ambient 
occlusion. This technique, as a way to enhance the ambient light term such that 
shadows and light emission from local features are included, was thoroughly 
investigated by Langer and Buelthoff (2000), but only recently, with the release of 
DirectX 10 and thanks to the efforts of Landis, McGaugh and Koch, who in 2010 
received the Scientific and Technical Academy Award for their work on ambient 
occlusion at Industrial Light & Magic, started to appear in real-time rendering 
applications. This technique, as a base approach, can be found in many newer games, 
with high-definition ambient occlusion (HDAO) and horizon-based ambient occlusion 
(HBAO) being implemented as variations. The presented study’s algorithms, as 
mentioned, were thus selected because they are being utilised throughout the industry 
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and because they are often extended and varied as required. These extensions, 
whether in respect of shadow rendering, ambient occlusion or transparent anti-aliasing, 
nevertheless remain variations on the original. Ambient occlusion as a post-processing 
special effect, for instance, first appeared with DirectX 9-generation games and has 
steadily increased with the release of DirectX 10 and now, DirectX 11. These effects are 
primarily used for added realism and image quality. 
 
Specifically, the algorithms implemented and benchmarked as part of this thesis (all, in 
various combinations and in some degree or another, utilised by modern 3D titles as 
either basic/core rendering algorithms and/or as post-processing special effects) include: 
 

Shadows Shader & Lighting 
Effects 

Reflection and 
Refraction 

Physics Post-processing 
shaders 

Stencil shadow 

volumes 

Simple light mapping Basic environmental 

mapping 

Newtonian 

physics 

Displacement 

mapping 

Hardware shadow 

mapping 

Basic directional 

lighting 

CPU-based cube 

mapping 

Physics-based 

particle effects 

Bloom effects 

McCool’s shadow 

volumes 

Normal mapping Refractive 

environmental mapping 

 Ambient occlusion 

Chan and Durand’s 

hybrid algorithm  

Specular highlights Fresnel effect & 

chromatic dispersion 

 Depth of field 

Thakur el al’s 

algorithm  

Volumetric fog   Halo effects 

Rautenbach et al’s 

spatial subdivision 

algorithm 

Ambient occlusion    

 High Dynamic Range 

Lighting 

   

 Parallax mapping    

Table 1.1 Primary algorithms/rendering approaches implemented and benchmarked. 
 
The algorithms listed in Table 1.1 were accordingly referenced (please see the 
bibliography, pg 179 – 199). For example, stencil shadow volumes, as an established 
core algorithm already in widespread use, was first proposed by Crow in 1977 with the 
first commercial application as a real-time shadowing technique being the release of id 
Software’s Doom 3 (2004/5). The development and evolution of this algorithm, through 
use of the stencil buffer, are thoroughly discussed and referenced throughout. 
Subsequent approaches, such as Thakur et al.’s shadow generation using a discretized 
shadow volume in angular coordinates (2003), Chan and Durand’s hybrid approach 
(2004) and Rautenbach et al.’s spatial subdivision approach (2008), as the most recent 
improvements on the original, were also discussed. As previously mentioned, since it 
was decided to limit the scope of the project to established core algorithms already in 
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widespread use, all the other algorithms were dealt with in a similar manner, with both 
historic and recent material being referenced – Table 1.2 gives a summary of this. 
 

Shadows Shaders, Lighting & 
Reflection/Refraction  

CPU/GPU, Hybrid 
Rendering, Tech 

Physics, AI 

 Akenine-Möller T. and 

Assarsson U. (2002) 

 Atherton P., Weiler K. 

and Greenberg D. (1978) 

 Bergeron, P. (1985) 

 Blinn J. (1988) 

 Bouknight W. and Kelly 

K. (1970) 

 Brabec S. and Seidel H. 

(2002) 

 Brotman L.S. and Badler 

N.I. (1984) 

 Carmack J. (2000) 

 Chan E. and Durand F. 

(2004) 

 Crow F. (1977) 

 Dimitrov R. (2007) 

 Drettakis G. and Fiume 

E. (1994) 

 Everitt C., Rege A. and 

Cebenoyan C. (2001) 

 Everitt C. and Kilgard M. 

(2002) 

 Fernando R., Fernandez 

S., Bala K. and 

Greenberg D. (2001) 

 Haines E. (2001) 

 Heidmann T. (1991) 
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and Seidel H. (2000) 

 Hourcade J.-C. and 

Nicolas A. (1985) 

 Isard M., Shand M., and 

Heirich A. (2002) 

 Kersten D., Mamassian 

P. and Knill D. (1994) 

 Kersten D., Mamassian 

P. and Knill D. (1997) 

 Alard J. and Raffin B. 

(2005) 

 Angel E. (2006) 

 AMD (2011) 

 Bier E. and Sloan K. 

(1986) 

 Blinn J. (1977) 

 Blinn J. and Newell M. 

(1976) 

 Bouknight W. and Kelly 

K. (1970) 

 Boulanger K., Pattanaik 

S. and Bouatouch K. 

(2006) 

 Cabral B., Max N. and 

Springmeyer R. (1987) 

 Cohen et al. (1998) 

 Crytek 2 (2011) 

 Drettakis G. and Fiume E. 

(1994) 

 Gray K. (2003) 

 Goral C, Torrance D., 

Greenberg D. and 

Battaile B. (1984) 

 Greene N. (1986) 

 Heckbert P. (1986) 

 Hearn D. and Baker M. 

(2004) 

 Kalogirou, H. (2006) 

 Landis, McGaugh and 

Koch (2010) 

 Langer, Bülthoff (2000) 

 Levoy M. and Hanrahan 

P. (1996) 

 Microsoft (2006 – 2011) 

 Mikkelsen M. (2008) 

 Nguyen H. (2007) 

 NVIDIA (2009-2011) 

 August D., Huang 

J., Jablin T., Kim H., 

Mason T., Prabhu 

P., Raman A. and  

Zhang Y (2011) 

 Epic Games (2012) 

 Harbour J.S. (2004) 

 Hermann E., Raffin 

B., Faure F., Gautier 

T., Allard J. (2011) 

 Fangerau J., 

Krömker S. (2010) 

 Fernando R. (2004) 

 Future Chips (2011) 

 Huang J., Raman 

A., Zhang Y., Jablin 

T., Hung T., and 

August D. (2010) 

 Id Software. (2011) 

 Intel. (2011) 

 Jablin T., Prabhu P., 

Jablin J., Johnson 

N., Beard S., August 

D. (2011) 

 Jablin T., Jablin J., 

Prabhu P., Liu F, 

and August D. 

(2012) 

 Joselli M., Zamith 

M., Clua E., 

Montenegro A., 

Leal-Toledo R., 

Conci A., Pagliosa 

P., Valente L., Feijó 

B. (2009) 

 Moore S. (2011) 

 Nickolls J.. Kirk D. 

(2009) 

 Belleman R., 

Bedorf J., Zwart 

S. (2008) 

 Choppin B. 

(2004) 

 Crossno P. and 

Angel E. (1997) 

 Flynt J. and 

Salem O. 

(2004) 

 Funge J. (1999) 

 Giarratano J., 

Riley G. (2005) 

 Hahn J. (1988) 

 Halliday D., 

Resnick R. and 

Walker J. 

(2007) 

 Hecker C. 

(2000) 

 Hermann E., 

Raffin B., Faure 

F., Gautier T., 

Allard J. (2011) 

 Hubbard P. 

(1996) 

 Ignizio J. (1991) 

 Joselli M., Clua 

E., Montenegro 

A., Conci A., 

Pagliosa P. 

(2008) 

 Lay D. (2005) 

 Mamdani E. H., 

Assilian S. 

(1975) 

 Moore M. and 

Wilhelms J. 
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 Kilgard M. J. (1999) 

 Kirsch F. and Doellner J. 

(2003) 

 Kolic I., Mihajlovic Z., 

Budin L. (2004) 

 Lauritzen A. (2006) 

 Lokovic T. and Veach E. 

(2000) 

 McCool M. D. (2000) 

 Nishita T. and Nakamae 

E. (1985) 

 Rautenbach, P. (2008) 

 Rautenbach P., Pieterse 

V., Kourie D., (2008) 

 Reeves W., Salesin D. 

and Cook R. (1987) 

 Segal M., Korobkin C., 

van Widenfelt R., Foran 

J. and Haeberli P. (1992) 

 Thakur K., Cheng F. and 

Miura K.T. (2003) 

 Williams L. (1978) 

 Woo A., Poulin P. and 

Fournier A. (1990) 

 Peercy M., Airey J. and 

Cabral B. (1997) 

 Pharr M., Fernando R. 

(2005) 

 Phong B. (1975) 

 Piegl L. (1993) 

 Policarpo F., Oliveira M. 

(2006) 

 Fernando R. (2004) 

 Segal M., Korobkin C., 

van Widenfelt R., Foran 

J. and Haeberli P. (1992) 

 Sillion F.,Puech C. (1989) 

 Torrance K. and Sparrow 

E. (1967) 

 Wagner F., Schmuki R., 

Wagner T. and 

Wolstenholme P. (2006) 

 Warren J. and Schaefer 

S. (2004) 

 Warn D. (1983) 

 Wenzel C. (2006) 

 Wloka M. (2002) 

 Yamagiwa S., Wada K. 

(2009) 

 Nguyen H. (2007) 

 NVIDIA (2009-2011) 

 Ohshima S., Kise 

K., Katagiri T., Yuba 

T. (2006) 

 Pajot A., Barthe L., 

Paulin M. and Poulin 

P. (2011) 

 Pharr M. and 

Fernando R. (2005) 

 Rabin S. (ed.) 

(2005) 

 Qi Ren, D. (2011) 

 Shainer G., Lui P., 

Liu T. (2011) 

 Venkatasubramania

n S., Vudac R. 

(2009) 

 Wilson G., Banzhaf 

W. (2009) 

 Yamagiwa S., Wada 

K. (2009) 

 Zidan M., Bonny T., 

Salama K. (2011) 

 Zink B. (2008) 

(1988) 

 Nickolls J., 

Dally W. (2010) 

 Nilsson J. 

(1986) 

 Reeves W. 

(1983) 

 Reeves W. and 

Blau R. (1985) 

 Reynolds C. 

(1987) 

 Salton G. 

(1987) 

 Watt A. and 

Watt M. (1992) 

 Witkin A. and 

Heckbert P. 

(1994) 

Table 1.2 References of relevant algorithms and approaches in widespread use and 
utilised by the proof of concept rendering engine. 
 
 
The Selection Engine and CPU-GPU Process Allocation 
 
The presented study analyses a large number of rendering algorithms and approaches 
with the aim of highlighting the need for a system to primarily control the real-time 
selection and, as a secondary aim, CPU/GPU-process allocation of rendering 
algorithms and special effects groupings based on environmental conditions. We 
present such a solution through the critical analysis of numerous real-time rendering 
algorithms and the construction of an empirically derived system for high-speed 
rendering. This critical analysis allows us to assess the relationship between rendering 
quality and performance. 
 
Using the gathered performance data, we are able to define a fuzzy logic-based 
selection engine to control the real-time allocation and selection of rendering algorithms 
based on environmental conditions. This system ensures the following: nearby effects 
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are always of high-quality (where computational resources are available), distant effects 
are, under certain conditions, rendered at a lower quality and the frames per second 
rendering performance is always maximised. 
 
The CPU-GPU process allocation sub-system is used to control performance and quality 
and serves chiefly as proof of concept. It is only used for CPU-based cube mapping (the 
real-time allocation of the presented cube mapping approach), PhysX-based physics 
calculations and the execution of the presented particle system (illustrating that the CPU 
can, in practice and under significant load, be used to free up valuable GPU resources). 
It is also shown that the selection engine can be extended to facilitate CPU-GPU 
process allocation. This approach is similar to the work done by Pajot et al (2011) in 
which bi-directional path-tracing was divided into a number of parallel processes 
executed on both the CPU and GPU. Their approach resulted in a performance gain of 
more than ten times that of other bidirectional path-tracing implementations. Larger 
scale research in the field of hybrid rendering is also being done by Intel (2011) who is 
currently developing a hybrid rendering and visualisation system to combine the 
strengths of different rendering algorithms, hardware models and display technologies 
while avoiding their weaknesses. Similarly, Bernhardt et al (2011) presents a system for 
real-time terrain modelling via CPU-GPU coupled computation – a system efficient and 
fast enough to display terrain morphing in real time. In contrast to the forgoing research 
that distributes the algorithmic logic over the respective processors (i.e. over the CPU 
and GPU), our utilisation of the CPU is as an alternative computational resource to the 
GPU when the latter is under high load. 
 
Hence, since an all encompassing production system would have required the 
implementation of both a CPU and GPU-version of the majority of presented algorithms 
and/or rendering approaches, it was decided to limit the presented GPU-CPU process 
allocation approach to cube mapping and physics processing. An alternative approach 
initially investigated was the implementation of a generic CPU-based rendering library. 
However, given the sheer amount of work involved in addition to the development of a 
fully-functional, DirectX 10-based rendering engine, it was decided that CPU vs. GPU-
cube mapping and CPU-based physics processing would serve as evidence of such as 
system’s inherent benefits both in the realm of high-quality rendering and general 
computations. As an aside, with reflections it was found that, when the GPU is fully 
utilised and when additional computational resources are required, and if the CPU is not 
fully utilised and can be utilised to lighten the GPU load, then performance gains are 
achieved by switching to CPU-based cube mapping. Physics processing showed similar 
results. 
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Broad Findings 
 
The presented study provides prima facie evidence that the process of dynamically 
cycling through the most appropriate algorithms based on ever-changing environmental 
conditions (along with the unification of the CPU and GPU, as secondary objective) 
allows for maximised rendering quality and frame-rate performance and shows that it is 
possible to render high-quality visual effects without overburdening scarce 
computational resources.  
 
Immersive rendering approaches used in conjunction with AI subsystems, game 
networking and logic, physics processing and other post-processing special effects are 
extremely processor intensive and can often only be implemented on high-end 
hardware. Only by cycling algorithms and distributing computations based on 
environmental conditions can high-quality real-time special effects find application in 
non-traditional gaming devices such as tablet PCs and smart phones. Also, as 
mentioned, using this system ensures that performance vs. rendering quality is always 
optimised, not only for the game as a whole but also for the current scene being 
rendered. Some scenes might, for example, require more computational power than 
others, resulting in noticeable slowdowns under the conventional processing paradigm, 
but slowdowns not experienced in the proposed new paradigm, thanks to the presented 
system’s dynamic cycling of rendering algorithms and its unification of the CPU and 
GPU for cube mapping and physics processing. 
 
 
1.3  Dissertation Structure 
 
To explain the work that has been done to investigate the feasibility of the new gaming 
paradigm that has been proposed, this thesis has been partitioned into 2 parts.  
 
The first part consists of the first two chapters in which introductory background 
information to the study is given, as well as an overview of the software framework 
system that was put in place to carry out the study. The second part shows how 
empirical investigations provided information that was subsequently used to drive a real-
time rendering engine, built in terms of the new games processing paradigm. 
  
Thus, in Part I, this current chapter presented an historical account of the general 
research domain, research problem and overall dissertation structure.  
 
Also in Part I, Chapter 2 presents the general design and implementation of a generic 
game engine (the core of our dynamically scalable interactive rendering 
engine/benchmarking environment). This base implementation is subsequently extended  
into an all-encompassing solution for the rendering of computationally intensive 3D 
environments through the addition of several rendering algorithms and techniques, 
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specifically: shaders, local illumination, reflection and refraction, HDR lighting, shadows, 
physics, particles and post-processing special effects (Chapter 3).  
 
The second part of the thesis consist of three chapters, with the first of these, Chapter 4, 
presenting the critical analysis and detailed benchmarking of the previously discussed 
rendering techniques. The knowledge base of our selection engine draws heavily on 
these experimental results. Each of the presented rendering techniques are categorised 
based on the level-of-detail/rendering quality and the associated computational impact. 
 
Following this, Chapter 5 discusses the previously mentioned selection engine in much 
more detail. It also presents the critical analysis of our empirically derived system. This 
analysis highlights not only the performance benefits inherent to the utilisation of this 
system, but also the practicality of such an implementation. 
 
The final chapter features an overall summary of our work. It closes by discussing 
possible future work based on the presented research. 
 
This discussion will thus analyse a vast number of rendering algorithms and 
approaches with the aim of highlighting the need for a system to control the real-time 
selection and CPU/GPU-process allocation (as proof of concept) of rendering 
algorithms and special effects groupings based on environmental conditions. We 
present such a solution through the critical analysis of numerous real-time rendering 
algorithms and the construction of an empirically derived system for high-speed 
rendering. This critical analysis allows us to assess the relationship between rendering 
quality and performance. 
 
Using the gathered performance data, we are able to define a fuzzy logic-based 
selection engine to control the real-time selection (and to a limited degree, the 
allocation) of rendering algorithms based on environmental conditions. This system 
ensures the following: nearby effects are always of high-quality (where computational 
resources are available), distant effects are, under certain conditions, rendered at a 
lower quality and the frames per second rendering performance is always maximised.  
 
An abstract model illustrating the generality of the proposed system is given in Figure 
1.9. This figure shows the fuzzy logic-based selection engine, the Direct3D-based 
rendering engine and the rendering algorithms selectable based on environmental 
conditions. The selection engine (Chapter 5) shown here controls, as mentioned, the 
selection and allocation of algorithms by correlating the properties of the scene being 
rendered with obtained algorithmic performance data. The core implementation of the 
rendering engine (Chapters 2 and 3) subsequently serves as a scalable interactive 
testing environment and is an adequate platform for the purposes of this thesis, in which 
the objective is to experiment with the impact of various algorithms when rendering 
computationally intensive 3D environments – specifically, as shown in Figure 1.9, the 
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“rendering module” deals with the actual Direct3D API calls and scene geometry with the 
“level initialisation module” being tasked with the loading of octree-based “maps” or 
“scenes”. The “physics module”, in turn, controls basic world dynamics, i.e. whether the 
“player” can walk through walls or not, whether a specific medium is solid (such as a 
floor) or liquid (such as water) and how the “player”, controlled via the “input module”, 
interacts with these materials. 
 

 
Figure 1.9 An abstract model illustrating the generality of the proposed system. 
 
 
Please note that unless otherwise stated, that all screenshots and/or illustrative images 
have been rendered using our dynamically scalable interactive rendering engine. The 
accompanying CD contains implementation source code and several videos (including a 
high-definition video showcasing the rendering engine). 
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Chapter 2 
 
 

Creating an Interactive 3D Environment 
 
 
 

Chapter 2 starts by outlining the general design of a generic game engine (with 
the aim of providing background information on 3D engine design). Focus then 
shifts to the implementation of a basic DirectX 10 3D interactive environment 
featuring mesh-loading, texture mapping, movable light sources, a GUI and 
stencil shadow volumes (as this study is conducted through the implementation 
of such a system). 
 
 
Outline: 
 
 Game engine architecture 
 Game initialisation and shutdown 
 The game loop 
 Creating a basic interactive DirectX 10 3D environment  
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2.1 Game Engine Architecture 
 
A game engine is the central unit of any computer game and it can be described as a 
collection of technologies such as a sound engine, AI subsystem, physics engine, 
networking subsystem, 3D renderer, input control system, etc. The number of 
subsystems provided is highly dependant on the developer’s requirements and the 
implementation platform of choice. 
 
Game engines, built upon various APIs such as DirectX and OpenGL, are normally 
designed with software componentry in mind. This allows for decomposition of the 
engine, resulting in numerous functional units. By designing component-based engines, 
we are able to replace provided technologies with other third-party or in-house 
developed units as needed. For example, a game engine’s renderer, physics engine or 
sound system can easily be replaced by an improved or alternate version in a plug-and-
play fashion. 
 
The term “game engine” has existed for some time now, but only became truly common 
in the mid-1990s when developers started licensing the core code of other games for 
their own titles. This reuse led to the development of high-end commercial game 
engines and middleware providing game developers with a number of game creation 
tools and technical components – i.e. accelerating the game development process. The 
following list gives some idea of what might be supported by a commercially targeted 
game engine: 

 
1. 3D Engine 

- Direct3D 10 renderer for Microsoft Windows based systems 
- OpenGL renderer for MacOS X, Linux, Unix, etc 
- High Level Shading Language (HLSL) and C for Graphics (Cg) 

shader support 
- Normal mapping 
- Environmental mapping 
- Displacement mapping 
- High Dynamic Range lighting 
- Depth-of-field 
- Motion blur 
- Bloom and sobel effects (for older hardware support) 
- Rome algorithmic based Level Of Detail automatic adaptation system 
- Dynamic lighting and shadowing 
- Soft shadows 
- Specular reflections with specular bump maps 
- Reflective water (with refraction) 
- Highly efficient occlusion culling 
- Dynamically deformable and destroyable geometry 
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- Cg rendered moving grass, trees, fur, hair, etc 
- Advanced Particle System: model and sprite based (snow, smoke, 

sparks, rain, ice storms, fire storms, volumetric clouds, weather 
system, etc) 

- Non-Player Character (NPC) Material Interaction System (vehicle 
sliding on ice, etc) 

2. Artificial Intelligence (AI) Subsystem 
- Cognitive model based NPC AI (no way-point system) 
- Intelligent non-combat and combat NPC interaction 
- Conversation system 
- NPCs make decision to fight, dodge, flee, hide, burrow, etc based on 

player resistance 
- NPCs fall back to regroup if resistance is overwhelming 

3. Sound Engine 
- Stereo, 5.1 surround sound, quadraphonic sound, 3D spatialisation 
- Ogg (the open audio container format) and adaptive differential pulse-

code modulation (ADPCM) decompression 
- Real-time audio file stitching (Ogg and Wave) 
- Distant variant distortion 
- Material based distortion (e.g. under water distortion of helicopter 

hovering overhead) 
- Environmental DSP (Digital Signal Processing) 

4. Physics Engine 
- Realistic object interaction based on Newton's Laws 
- Particle system inherits from Physics Engine 
- NPCs interact with objects realistically 
- All objects react based on force exerted and environmental resistance 

5. Networking System 
- Up to 64-player LAN and 32-player internet support 
- High-latency, high-packet loss optimisations 
- Predictive collision detection performance enhancement 

6. Development 
- In-game level and terrain editor 
- Exporters (meshes, brushes, etc) 
- C++ written code compiled to modular design 
- Event debugger and monitoring tools built into engine 
- Shader editor 

 
Creating a game engine supporting all the above listed elements takes a lot of time, 
money, skilled developers and support infrastructure. However, most of the listed 
features can be added to an engine in a pluggable fashion. Hence, designing and 
implementing a basic first-person shooter game engine can be done by one 
programmer, time being the only limit in regard to the number of supported features. It is 
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thus of critical importance to have a well-defined architecture, without which the source 
code of an engine would not be extendible, maintainable or easily understandable. 
 
The source code of a game can be divided into two units, namely, the game-engine 
code and the game-specific code. The game-specific code deals exclusively with in-
game play elements, for instance, the behaviour of non-player characters, mission-
based events and logic, the main menu, etc. Game-specific code is not intended for 
future re-use and thus excluded from the game engine code. Game-engine code forms 
the core of the entire game implementation with the game-specific code being executed 
on top of it. The game engine is separate from the game being developed in the sense 
that it provides all the technological components without any hard coded information 
about the actual gameplay. Game-specific and engine-specific code are commonly 
compiled to dynamic-link libraries for easy distribution, modification and updating.  
 
Game-engine code and game-specific code can be designed and integrated using one 
of the following architectures: ad-hoc, modular or the directed acyclic graph architecture 
(DAG).  
 
Ad-hoc architecture describes a code base developed without any specific direction or 
logical organisation (Eberly, 2001). For example, a developer simply adds features to a 
game engine on an “as-needed” basis. This form of code organisation leads to very tight 
coupling (a high level of dependency) between the game-specific and game-engine 
code – something that is acceptable in small game projects such as mobile and casual 
games.  
 
Modular architecture organises the code base into modules or libraries with a module 
consisting of numerous functions available for use by other modules or libraries (Flynt 
and Salem, 2004). Using this design, we are able to add and change modules as 
needed. Middleware such as a third-party physics engine can also easily be integrated 
into a modular designed code base. Modular organisation results in moderate coupling 
between the various code components. However, one must take care to limit inter-
module communication to avoid a situation where every module is communicating with 
every other module – leading to a tighter level of coupling. Figure 2.1 illustrates the 
modular organisation of a code base. 
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Figure 2.1 A modular architecture. 
 
A directed acyclic graph architecture is a modular architecture where the inter-module 
dependencies are strictly regulated. A direct acyclic graph is a directed graph without 
any directed cycles. What this means is that for every node in the graph, there should 
not be any circular dependencies. For example, if the input module depicted in Figure 
2.1 depends on the game state module, then the game state module cannot depend on 
any of the other modules that depend on the input module. The directed acyclic graph 
architecture is thus used to create a hierarchical design where some modules are 
classified on a higher level that others. This hierarchical structure, shown in Figure 2.2, 
ensures relative loose coupling. 
 

 
Figure 2.2 A directed acyclic graph architecture. 
 
Other architectures also exist, each providing a different level of coupling and inter-
module communication with the choice in architecture varying from application to 
application. 
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Once we have chosen the preferred overall architecture, we have to summarise all 
possible states our game will go through from initialisation to shutdown. Possible states 
(with associated events) are listed here: 
 

1. Initialisation. 
2. Enter the main game loop: 

a. Additional initialisation and memory allocation. 
b. Load introductory video. 
c. Initialise and display in-game menu: 

i. Event monitoring. 
ii. Process user input. 

d. Start game. 
e. In-game loop: 

i. Input monitoring. 
ii. Execution of AI 
iii. Execution of physics routines. 
iv. Sound and music output. 
v. Execution of game logic. 
vi. Rendering of the scene based on the input from the user and 

other subsystems. 
vii. Display synchronisation. 
viii. Update game state. 

f. Exit the game and return to the in-game menu. 
3. Shutdown of the game if the user wishes to terminate the program. 

 
These states will now be investigated in more detail. As mentioned, this section deals 
with the general design and implementation of a generic game engine which serves as 
the core of the proposed dynamically scalable interactive rendering engine. The next 
section will show how the engine allows for basic input control in the form of user-
movable light sources, first-person camera and mesh. Its rendering capabilities come 
from the algorithms presented in Section 2.3. This extended rendering engine features 
dynamic algorithm swapping of shadow rendering algorithms, shaders, local illumination 
configurations, a number of reflection and refraction implementations and approaches, 
physics algorithms, a particle effect system and numerous post-processing effects. The 
CPU-GPU process allocation sub-system, as previously mentioned, is used to control 
performance and quality and serves chiefly as proof of concept. It is only used for CPU-
based cube mapping (the real-time allocation of the presented cube mapping approach), 
PhysX-based physics calculations and the execution of the presented particle system 
(illustrating that the CPU can, in practice and under significant load, be used to free up 
valuable GPU resources). 
 
All these implemented algorithms are presented and discussed at a source code level – 
a means of presentation starting below. 
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Please note, the question of how much information about the engine’s implementation to 
convey in this text presented something of a dilemma. On the one hand, presenting the 
complete code would lead to a volume of detail would be unnecessarily overwhelming. 
On the other hand, it was felt that simple English narrative would not convey sufficient 
information about the actual depth and scope of implementation detail. For this reason, 
in the coming sections, the general control algorithmic structure of the implementation is 
explained at the source code level. It is at the reader’s discretion to decide how much of 
the code detail to examine while reading the explanatory accompanying narrative. 
 
 
2.2 Initialisation and Shutdown 
 
The first step invoked whenever a game is executed, is initialisation. This step deals with 
resource and device acquisition, memory allocation, initialisation of the game’s GUI, 
loading of art assets such as an intro video from file, etc. The first initialisation phase is 
commonly referred to as the front-end initialisation step to distinguish it from the level 
and actual game play initialisation phases. Front-end initialisation occurs prior to the 
game loop and is required for setting up the environment by assigning resources and 
loading game data and assets: 
 
void FrontEndInit() 

{ 

 AcquireResources(); 

 AllocMem(); 

 LoadAssets(); 

 InitGUI(); 

 LoadPlayerPreferences(); 

} 

 
All devices and resources are released and final program cleanup is done during the exit 
state. The exit state has to release all resources and devices acquired, memory 
allocated and data loaded in the reverse order of the initial front-end acquisition: 
 
void Cleanup() 

{ 

 SavePlayerPreferences(); 

 ShutdownGUI(); 

 ShutdownAssetAccess(); 

 FreeMem(); 

 ReleaseResources(); 

} 
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It is essential to recognise the importance of error handling in the above listed 
initialisation and shutdown functions, especially due to the loading of files or acquisition 
of resources that might not exist or that might be locked by another program.  
 
 
2.3  The Game Loop 
 
The game loop allows uninterrupted execution of the game. It enables us to execute a 
series of tasks such as input monitoring, execution of artificial intelligence and physics 
routines, sound and music processing, execution of game logic, display synchronisation 
and so forth for every frame rendered. All these tasks are processed on a per-frame 
basis, thus resulting in a living world where everything happens in a seemingly 
concurrent manner, especially so where the computer game runs at 40 frames per 
second or more. A game running at 60 frames per second will result in the tasks for one 
frame being executed in less than 16.7 milliseconds. We will now look at the core tasks 
performed by a game loop. 
 
The first task performed by any modern day game loop is timing. Timing allows a game 
to execute at a speed independent of the frame rate or processor’s clock speed. 
Computer games developed during the 1970s and 1980s executed the maximum 
number of tasks possible for each frame cycle. This caused considerable variation in 
game speed whenever the user’s hardware changed, for instance, a game running well 
on an Intel 80286 would be impossible to play on an Intel 80486 due to the 486’s overall 
faster execution speed. 
 
Each frame update reflects changes made since the previous frame and the 
computations performed during the game loop will be used to update all the necessary 
game entities accordingly. The game clock operates by using the time elapsed since the 
last completely executed game loop as the time measure for the current frame 
calculation. Timing also updates the game clock to match the actual hardware clock. 
 
Most games released today make use of variable frame timing. What this means is that 
even though the game’s frame rate may vary depending on scene complexity, the user’s 
hardware capabilities, etc, these frame-rate changes do not affect other timing-based 
calculations (the game’s “internal clock”). Thus, a game might operate at 60 frames per 
second (16.6 ms for a complete frame calculation) where the number of polygons, light 
sources and in-game entities are kept to a minimum. This frame rate could, on the other 
hand, drop to 20 frames per second (50 ms computation time) when rendering more 
computationally intensive scenes. The variable frame timing approach works extremely 
well for games targeting different platforms and hardware configurations. This is due to 
computations using the actual time duration of each frame as opposed to the actual 
frame rate. 
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Another key element of any game is the processing of player input. The main goal here 
is to minimise the amount of time taken to process an input event from the moment of 
occurrence up to the instant where the game can react to it – the smaller this reaction 
time, the more responsive the input and the greater the lever of immersion. We can 
minimise this time by processing input at the beginning of the game loop. Networking 
can also be considered a form of input due to messages being received for processing. 
 
Other tasks performed during the game loop include the execution of AI code so that 
NPCs can decide where to go next or what action to take, object updates, the execution 
of game code and scripts, the execution of physics code to ensure correct inter-object 
and object-entity interaction, updating the camera according to player input, animating 
objects and updating particle effects, etc. Collision detection (determining whether two 
entities have collided) and response (processing the collision and updating the health 
and position, for example, of related entities) is also a critical part of the game loop. 
Once all these tasks have successfully been executed, we can render the frame to the 
screen. A typical game loop looks something like this: 
 
while(!ExitGame()) 

{ 

 UpdateTiming(); 

 InputHandling(); 

 UpdateNetworking(); 

 ExecuteScripts(); 

 UpdateAI(); 

 UpdatePhysics(); 

 UpdateSound(); 

 UpdateEntities(); 

 UpdateCamera(); 

 CollisionDetection(); 

 CollisionResponse(); 

 RenderFrame(); 

 UpdateGameState(); 

} 

 
We can often improve performance by decoupling the game loop’s rendering step from 
all the other update tasks. This will result in the rendering phase updating at a much 
higher rate than the other steps, however, all this will accomplish is several duplicate 
frames for each slower update. This situation is avoided by interpolating all the spatial 
values based on their previous coordinates and velocities, a process resulting in a 
higher frame rate. The following code sample illustrates the possible structure of a 
decoupled game loop: 
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while(!ExitGame()) 

{ 

 UpdateTiming(); 

 InputHandling(); 

  

 if(UpdateWorld()) 

 { 

  UpdateNetworking(); 

  ExecuteScripts(); 

  UpdateAI(); 

  UpdatePhysics(); 

  UpdateSound(); 

  UpdateEntities(); 

  UpdateCamera(); 

  CollisionDetection(); 

  CollisionResponse(); 

 } 

  

 InterpolateObjectStates(); 

 RenderFrame(); 

 UpdateGameState(); 

} 

 
There are also numerous other miscellaneous tasks that can be performed during the 
game loop. Of course tasks such as network processing are not needed for single player 
game modes and should be removed from the game loop to improve performance. The 
easiest way of doing this is to add a check at the start of the function. For example, the 
UpdateNetworking function could have a simple if statement returning ‘0’ when 
network play is not enabled. 
 
We will now look at our basic DirectX 10 3D interactive environment’s implementation 
(the core of our dynamically scalable interactive rendering engine as presented in 
Chapter 3). This basic implementation features mesh-loading, texture mapping, movable 
light sources, a GUI (one button for switching to full-screen mode) and stencil shadow 
volumes. The environment allows for full control of the camera – hence, the ability to 
move around freely. The core sections of the program are discussed here with the 
source code available on the accompanying CD.  
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2.4  Creating a Basic Interactive DirectX 10 3D Environment 
 

 
 
The core implementation of the rendering engine created for this study (an example 
scene is shown in Figure 2.3) allows for basic input control in the form of user-movable 
light sources (the number only capped by hardware limitations), a six-directional 
moveable first-person camera and a movable mesh. It simply loads two meshes – one 
for the scene (the room) and one for the movable object (the drone). These meshes are 
provided as part of the DirectX software development kit and used here for the sake of 
convenience. 
 

 
Figure 2.3 Our Direct3D 10 interactive environment. 

Please note: the drone was 
originally released as part of XNA in 
the .x file format and converted to 
the .sdkmesh format via the 
MeshConvert utility located in the 
DX10 SDK’s “…\Utilities\Bin\x86” 
directory.
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Our implementation starts with the declaration of a structure to hold the coordinates and 
colour of a light source: 
 
struct LightingProperties 

{ 

    D3DXVECTOR3 Position; //a three-component vector – x, y, z 

    D3DXVECTOR4 Colour; //a four-component vector – 3 colour values & alpha 

 

    LightingProperties() {} 

     

 LightingProperties(D3DXVECTOR3 Position_, D3DXVECTOR4 Colour_) 

    { 

        Position = Position_; 

        Colour = Colour_; 

    } 

}; 

 
Next a structure is used to setup the spatial position and colour of a light source: 
 
LightingProperties g_SetupLights = LightingProperties(D3DXVECTOR3(-4.0f, 1.0f, -4.0f),  
  D3DXVECTOR4(10.0f, 10.0f, 10.0f, 1.0f )); 

 
It is also necessary to declare a structure to store the position, colour and world 
transformation matrix of a light source. This structure will be used to setup and translate 
a light source in 3D space using the previously declared g_SetupLights data: 
 
struct LightData 

{ 

    D3DXVECTOR3 m_LightPosition; 
    D3DXVECTOR4 m_LightColour; 
    D3DXMATRIX m_WorldTransformationMatrix; 
}; 

 
This structure is used for the declaration of a LightData object that will store the data 
of each light source: 
 
LightData g_LightObjectData; 
 
The next step is to declare a number of global variables, starting with the main camera 
control variables (using the DXUTcamera helper class types – a class within Microsoft’s 
DXUT Framework, discussed in Appendix F, provided to simplify the management of 
view and projection transformations): 
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//first-person perspective model view camera 

CFirstPersonCamera g_FPSModelViewCamera; 
 

//camera for controlling the 3D mesh movement 

CModelViewerCamera g_MeshControlCamera; 
 

//camera for controlling light movement 

CModelViewerCamera g_LightControlCamera; 
 
Two matrices are also declared, the first to scale the object mesh (drone) and the 
second for scaling and translating the map mesh (room): 
 
D3DXMATRIX g_MeshScalingMatrix; 
D3DXMATRIX g_BackgroundWorldMeshMatrix; 

 
Next a D3DXVECTOR4 that will be used to set the scene’s ambient lighting colour is 
declared: 
 
D3DXVECTOR4 AmbientLighting(0.1f, 0.1f, 0.1f, 1.0f); 

 
Input control is linked to three mouse buttons with the left mouse button controlling 
rotation of the viewer’s camera, the middle mouse button controlling rotation of the light 
source and the right mouse button controlling the drone’s rotation: 
 
//true when the left mouse button is pressed 

bool g_bLeftMBPressed = false; 
 

//true when the right mouse button is pressed 

bool g_bRightMBPressed = false; 
 

//true when the middle mouse button is pressed 

bool g_bMiddleMBPressed = false; 
 
As our engine is DirectX based, a number of Direct3D 10 resources need to be declared 
(mesh objects, interfaces for managing vertex buffer and input layout objects, projection 
and view matrices, etc): 
 
/* a mesh object used to read the background .sdkmesh files  

 into memory */ 

CDXUTSDKMesh g_GameLevelMesh10;  
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/* a mesh object used to read the movable .sdkmesh file into  

 memory */ 

CDXUTSDKMesh g_MeshObject;  
 

//interface for implementing a rendering effect 

ID3D10Effect* g_pID3D10Effect = NULL;  
 

//interface managing a vertex buffer resource 

ID3D10Buffer* g_pID3D10VertexBuffer = NULL;  
 

//interface for a vertex input layout object 

ID3D10InputLayout* g_pID3D10VertexLayout = NULL;  
 

/* ID3D10EffectTechnique interfaces */ 

ID3D10EffectTechnique* g_pID3D10EffectRenderTextured = NULL; 
ID3D10EffectTechnique* g_pID3D10EffectRenderLit = NULL; 
ID3D10EffectTechnique* g_pID3D10EffectRenderAmbient = NULL; 
ID3D10EffectTechnique* g_pID3D10EffectRenderShadow = NULL; 
 

/* ID3D10EffectMatrixVariable interfaces for reading shader variables as matrix types*/ 

ID3D10EffectMatrixVariable* g_pd3d10ProjMatrixVar = NULL; //projection matrix 
ID3D10EffectMatrixVariable* g_pd3d10ViewMatrixVar = NULL; //view matrix 
ID3D10EffectMatrixVariable* g_pd3d10WorldMatrixVar = NULL; //world matrix 
 

/* ID3D10EffectShaderResourceVariable interface for accessing  

 shader-resource variables */ 

ID3D10EffectShaderResourceVariable* g_pd3d10DiffuseTexture = NULL; 
 

/* ID3D10EffectVectorVariable interfaces for accessing shader  

 variables as vector types */ 

ID3D10EffectVectorVariable* g_pd3d10LightPositionVectorVar = NULL; 
ID3D10EffectVectorVariable* g_pd3d10LightColourVectorVar = NULL; 
ID3D10EffectVectorVariable* g_pd3d10AmbientLightingVectorVar = NULL; 
ID3D10EffectVectorVariable* g_pd3d10ShadowColourVectorVar =  NULL; 
 

/* ID3D10EffectScalarVariable interfaces for accessing scalar  

 shader-resource variables */ 

ID3D10EffectScalarVariable* g_pd3d10ExtrudeShadowAmountScalarVar = NULL; 
ID3D10EffectScalarVariable* g_pd3d10ExtrudeShadowBiasScalarVar = NULL; 
 
With all these global variables set, the application’s entry point, wWinMain, can now be 
defined. This function initialises the message processing loop elements and the idle time 
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required for the rendering of our scene. In the wWinMain function given below, several 
calls are made to various callback functions. These callback functions will be described 
later: 
 
int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPWSTR lpCmdLine,  

 int nCmdShow) 

{ 

     /* set DXUT callbacks */ 

     //////////////////////// 

 

  /* set a callback function to change the device settings  

 prior to device creation */ 

 DXUTSetCallbackDeviceChanging(SetD3D10DeviceSettings); 

 

 //set the main message callback function 

 DXUTSetCallbackMsgProc(MsgProc); 

 

 //set the mouse event callback function 

 DXUTSetCallbackMouse(MouseEventProcessing); 

 

 //set the frame update callback function 

 DXUTSetCallbackFrameMove(HandleSceneFrameUpdates); 

 

 /* set the callback creating the Direct3D 10 resources not  

  dependent on the back buffer */ 

 DXUTSetCallbackD3D10DeviceCreated(OnD3D10CreateDevice); 

 

 /* set the callback creating the Direct3D 10 resources  

 dependent on the back buffer */ 

 DXUTSetCallbackD3D10SwapChainResized(OnD3D10SwapChainResized); 

     

 /* set the callback function releasing resources created  

  by the OnD3D10ResizedSwapChain function */ 

 DXUTSetCallbackD3D10SwapChainReleasing(ReleaseSwapChain); 

 

 /* set the callback function releasing resources created  

 by the OnD3D10CreateDevice function */ 

     DXUTSetCallbackD3D10DeviceDestroyed(OnD3D10DestroyDevice); 

     

 /* set the callback function rendering the scene on a per-frame basis */ 

 DXUTSetCallbackD3D10FrameRender(RenderFrame); 

 

 Initialise(); //initialise the application 
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 /* initialise DXUT: parses for command line arguments,  

 shows a message box on errors */ 

 DXUTInit(true, true, NULL); 

 

 /* properties of the mouse cursor in full-screen mode (show  

 it & prevent it from exiting the screen boundaries) */ 

 DXUTSetCursorSettings(true, true); 

 

 //create an application window with the specified caption 

 DXUTCreateWindow(L"An Interactive Environment"); 

     

 /* create a Direct3D 10 device with an initial width and height */ 

 DXUTCreateDevice(true, 1024, 768); 

     

 //enter the main DXUT execution loop 

 DXUTMainLoop(); 

 

 return DXUTGetExitCode(); 

} 

 
The DXUTSetCallbackDeviceChanging DXUT function sets a callback function 
responsible for changing the device settings prior to device creation. The 
SetD3D10DeviceSettings callback function is passed as parameter and used for this 
purpose (specifying how to create the D3D10 device): 
 
bool CALLBACK SetD3D10DeviceSettings(DXUTDeviceSettings* pDeviceSettings,  

 void* pUserContext) 

{ 

 /* the DXGI_FORMAT_D24_UNORM_S8_UINT format supports stencilling */ 
     pDeviceSettings->d3d10.AutoDepthStencilFormat = DXGI_FORMAT_D24_UNORM_S8_UINT; 
 

     return true; 

} 

 
 
The next callback function, MsgProc (passed as parameter to the 
DXUTSetCallbackMsgProc DXUT initialisation function) handles all application 
messages. This callback function is called whenever an event occurs and it is declared 
as follows: 
 
LRESULT CALLBACK MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam,  

 bool* pbNoFurtherProcessing, void* pUserContext) 
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{ 

 /* first let the dialogues handle all generated messages before passing on the  

 remaining messages – see full program source code for details */ 

 

 /* all remaining messages (user input) should be passed to the camera */ 

     g_FPSModelViewCamera.HandleMessages(hWnd, uMsg, wParam, lParam); 
     g_MeshControlCamera.HandleMessages(hWnd, uMsg, wParam, lParam); 
     g_LightControlCamera.HandleMessages(hWnd, uMsg, wParam, lParam); 
 

     return 0; 

} 

 
The mouse event callback function, MouseEventProcessing, processing all mouse 
input, is subsequently set in the wWinMain function via the DXUTSetCallbackMouse 
DXUT function: 
 
void CALLBACK MouseEventProcessing(bool bLeftButtonDown,  

 bool bRightButtonDown,  

 bool bMiddleButtonDown,  

 bool bSideButton1Down,  

 bool bSideButton2Down,  

 int nMouseWheelDelta,  

 int xPos, int yPos,  

 void* pUserContext) 

{ 

 /* flags indicating the mouse buttons pressed */ 

 bool bOldLeftButtonDown = g_bLeftMBPressed; 
 bool bOldRightButtonDown = g_bRightMBPressed; 
 bool bOldMiddleButtonDown = g_bMiddleMBPressed; 
     

 g_bLeftMBPressed = bLeftButtonDown; //is the left mouse button down? 
 g_bMiddleMBPressed = bMiddleButtonDown; //is the middle mouse button down? 
 g_bRightMBPressed = bRightButtonDown; //is the right mouse button down? 
 

 //move the mesh if the right mouse button is down 

     if(bOldRightButtonDown && !g_bRightMBPressed) 
     { 

         g_MeshControlCamera.SetEnablePositionMovement(false); 
     } 

     else  

 if(!bOldRightButtonDown && g_bRightMBPressed) 
 { 

 g_MeshControlCamera.SetEnablePositionMovement(true); 
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 g_FPSModelViewCamera.SetEnablePositionMovement(false); 
 } 

 

 //rotate the player camera if the left mouse button is down 

     if(bOldLeftButtonDown && !g_bLeftMBPressed) 
        g_FPSModelViewCamera.SetEnablePositionMovement(false); 
     else  

 if(!bOldLeftButtonDown && g_bLeftMBPressed) 
 g_FPSModelViewCamera.SetEnablePositionMovement(true); 
 

 //move the light source if the middle mouse button is down  

     if(bOldMiddleButtonDown && !g_bMiddleMBPressed) 
     { 

        g_LightControlCamera.SetEnablePositionMovement(false); 
     }  

     else  

 if(!bOldMiddleButtonDown && g_bMiddleMBPressed) 
 { 

 g_LightControlCamera.SetEnablePositionMovement(true); 
 g_FPSModelViewCamera.SetEnablePositionMovement(false); 
 } 

 

 /* move the player camera if none of the mouse buttons are held down */ 

     if(!g_bRightMBPressed && !g_bMiddleMBPressed && !g_bLeftMBPressed) 
        g_FPSModelViewCamera.SetEnablePositionMovement(true); 
} 
 
The frame update callback function, HandleSceneFrameUpdates, processing each 
scene update, is set by the DXUTSetCallbackFrameMove DXUT function and defined 
as follows: 
 
void CALLBACK HandleSceneFrameUpdates(double time, float timePassed, void* context) 

{ 

 /* update the view matrix based on user input and elapsed time */ 

     g_FPSModelViewCamera.FrameMove(timePassed); 
     g_MeshControlCamera.FrameMove(timePassed); 
     g_LightControlCamera.FrameMove(timePassed); 
} 

 
The callback function creating the Direct3D 10 resources not dependent on the back 
buffer, OnD3D10CreateDevice, is set via the 
DXUTSetCallbackD3D10DeviceCreated DXUT function and defined as follows: 
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HRESULT CALLBACK OnD3D10CreateDevice(ID3D10Device* pd3dDevice,  

 const DXGI_SURFACE_DESC *pBackBufferSurfaceDesc,  
 void* pUserContext) 

{    

 //the effect file 

 WCHAR effectName[MAX_PATH]; 
 

 //read and compile the effect 

 DXUTFindDXSDKMediaFileCch(effectName, MAX_PATH, L"MainFX10.fx"); 

 

 //create an effect from the file 

 D3DX10CreateEffectFromFile(effectName, NULL, NULL,"fx_4_0",  
  D3D10_SHADER_ENABLE_STRICTNESS,  
  0, pd3dDevice, NULL, NULL,  

  &g_pID3D10Effect, NULL, NULL); 
 

 /* get the technique handles by name from the MainFX10.fx file */ 

    g_pID3D10EffectRenderTextured = g_pID3D10Effect-> 
  GetTechniqueByName("RenderTextured"); 

    g_pID3D10EffectRenderLit = g_pID3D10Effect->  
 GetTechniqueByName("RenderLitEnvironment"); 

    g_pID3D10EffectRenderAmbient = g_pID3D10Effect-> 
 GetTechniqueByName("RenderWithAmbientLighting"); 

    g_pID3D10EffectRenderShadow = g_pID3D10Effect-> 
 GetTechniqueByName("RenderSceneWithShadow"); 

     

    /* create the input-assembler stage's single element description */ 

    const D3D10_INPUT_ELEMENT_DESC vertex_input_layout[] = 
    { 

        {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT,0,0,D3D10_INPUT_PER_VERTEX_DATA,0}, 
        {"TEXTURE",0,DXGI_FORMAT_R32G32_FLOAT,0,24,D3D10_INPUT_PER_VERTEX_DATA,0}, 
        {"NORMAL",0,DXGI_FORMAT_R32G32B32_FLOAT,0,12,D3D10_INPUT_PER_VERTEX_DATA,0}, 
    }; 

 

 //structure to describe each effect pass 

 D3D10_PASS_DESC EffectPassDescription; 
     

 //get the effect pass to render the scene lit 

 g_pID3D10EffectRenderLit->GetPassByIndex(0) 
  ->GetDesc(&EffectPassDescription); 

     

 //create an input-layout object 

 pd3dDevice->CreateInputLayout(vertex_input_layout, 3,  
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  EffectPassDescription.pIAInputSignature,  

 EffectPassDescription.IAInputSignatureSize,  

 &g_pID3D10VertexLayout); 
 

 /* load the mesh representing the environment/game map as  

 well as the character mesh */ 

    g_GameLevelMesh10.Create(pd3dDevice, L"\\blackholeroom.sdkmesh", false, true); 
    g_MeshObject.Create(pd3dDevice, L"\\EvilDrone.sdkmesh", false, true); 
 

 //get the effect variables by name (from MainFX10.fx) 

     g_pd3d10ProjMatrixVar = g_pID3D10Effect-> 
 GetVariableByName("ProjectionMatrix")->AsMatrix(); 

 g_pd3d10ViewMatrixVar = g_pID3D10Effect-> 
 GetVariableByName("ViewMatrix")->AsMatrix(); 

 g_pd3d10WorldMatrixVar = g_pID3D10Effect-> 
 GetVariableByName("WorldMatrix")->AsMatrix(); 

 g_pd3d10DiffuseTexture = g_pID3D10Effect-> 
 GetVariableByName("DiffuseTexture")->AsShaderResource(); 

 g_pd3d10LightPositionVectorVar = g_pID3D10Effect-> 
 GetVariableByName("LightPosition")->AsVector(); 

 g_pd3d10LightColourVectorVar = g_pID3D10Effect-> 
 GetVariableByName("LightColour")->AsVector(); 

 g_pd3d10AmbientLightingVectorVar = g_pID3D10Effect-> 
 GetVariableByName("AmbientLighting")->AsVector(); 

 g_pd3d10ShadowColourVectorVar = g_pID3D10Effect-> 
 GetVariableByName("ShadowColour")->AsVector(); 

 g_pd3d10ExtrudeShadowAmountScalarVar  = g_pID3D10Effect-> 
 GetVariableByName("ShadowExtrusionAmount")->AsScalar(); 

 g_pd3d10ExtrudeShadowBiasScalarVar = g_pID3D10Effect-> 
 GetVariableByName("ShadowExtrusionBias")->AsScalar(); 

 

 /* set the camera at the centre of projection (eye) pointed  

 towards the “at” location */ 

 D3DXVECTOR3 eye(0.0f, 3.0f, -8.0f); 

 D3DXVECTOR3 at(0.0f, 3.1f, 0.0f); 

 g_FPSModelViewCamera.SetViewParams(&eye, &at); 
 g_LightControlCamera.SetViewParams(&eye, &at); 
 g_MeshControlCamera.SetViewParams(&eye, &at); 
 

     return S_OK; 
} 
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The callback function creating the Direct3D 10 resources dependent on the back buffer, 
OnD3D10SwapChainResized, is set using the 
DXUTSetCallbackD3D10SwapChainResized DXUT function. This function, called for 
each swap chain resize is given here (the swap chain, as discussed in Appendix F, is 
used to display the contents of either the front or back buffer): 
 
HRESULT CALLBACK OnD3D10SwapChainResized(ID3D10Device* pd3dDevice,  

 IDXGISwapChain *pSwapChain,  

 DXGI_SURFACE_DESC* pBackBufferSurfaceDesc,  
 void* pUserContext) 

{ 

 //calculate aspect ratio 

 float WidthHeightRatio = pBackBufferSurfaceDesc-> 

  Width/(FLOAT)pBackBufferSurfaceDesc->Height; 

  

 /* called the moment the Direct3D 10 swap chain is about to  

 be resized or created */ 

     g_DXUTDialogResourceManager.OnD3D10ResizedSwapChain( 
 pd3dDevice, pBackBufferSurfaceDesc); 

 

 //set the camera's projection parameters 

 g_FPSModelViewCamera.SetProjParams(D3DX_PI/4, WidthHeightRatio, 0.1f, 500.0f); 
     g_MeshControlCamera.SetWindow(pBackBufferSurfaceDesc 
 ->Width, pBackBufferSurfaceDesc->Height); 

     g_LightControlCamera.SetWindow(pBackBufferSurfaceDesc 
 ->Width, pBackBufferSurfaceDesc->Height); 

 

    return S_OK; 
} 
 
The resources created in these OnD3D10ResizedSwapChain and 
OnD3D10CreateDevice functions are subsequently released by the 
ReleaseSwapChain and OnD3D10DestroyDevice callback functions (set in 
wWinMain using the DXUTSetCallbackD3D10SwapChainReleasing and 
DXUTSetCallbackD3D10DeviceDestroyed DXUT functions, respectively). See the 
full source code available on the included CD for the related definitions.  
 
We set the callback function rendering the scene on a per-frame basis by means of the 
DXUTSetCallbackD3D10FrameRender DXUT initialisation function. This callback, 
RenderFrame, renders the complete frame (all the meshes, shadows, lights, etc). The 
RenderFrame function is given here: 
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void CALLBACK RenderFrame(ID3D10Device* pd3dDevice, double fTime, float fElapsedTime,  

 void* pUserContext) 

{ 

 //set the clear colour to black 

 float RenderTargetClearColour[4] = {0.0, 0.0, 0.0, 0.0}; 

     

 //clear the render target 

 ID3D10RenderTargetView* pRenderTargetView = DXUTGetD3D10RenderTargetView(); 

 pd3dDevice->ClearRenderTargetView(pRenderTargetView, RenderTargetClearColour); 

     

 //clear the stencil buffer 

 ID3D10DepthStencilView* pDepthStencilView = DXUTGetD3D10DepthStencilView(); 

     pd3dDevice->ClearDepthStencilView(pDepthStencilView, D3D10_CLEAR_DEPTH, 1.0f, 0); 
 

 //bind the input-layout object to the input-assembler stage 

 pd3dDevice->IASetInputLayout(g_pID3D10VertexLayout); 

 

 //draw the scene with ambient lighting 

 g_pd3d10AmbientLightingVectorVar->SetFloatVector((float*)&AmbientLighting); 
 RenderScene(pd3dDevice, g_pID3D10EffectRenderAmbient, false); 
     

 /* set the amount and bias to extrude the shadow volume from the silhouette edge*/ 

 g_pd3d10ExtrudeShadowAmountScalarVar->SetFloat(120.0f - 0.1f); 
 g_pd3d10ExtrudeShadowBiasScalarVar->SetFloat(0.1f); 
 

 /* setup the light */ 

 D3DXVECTOR4 LightVector(g_LightObjectData.m_LightPosition.x, 
  g_LightObjectData.m_LightPosition.y,  
  g_LightObjectData.m_LightPosition.z,  
  1.0f); 

     

 D3DXVec4Transform(&LightVector, &LightVector,  

  g_LightControlCamera.GetWorldMatrix()); 
     g_pd3d10LightPositionVectorVar->SetFloatVector((float*)&LightVector); 
 g_pd3d10LightColourVectorVar->SetFloatVector(  
  ((float*)g_LightObjectData.m_LightColour); 
 

 /*for the light source, render the resulting shadow*/ 

 ///////////////////////////////////////////////////// 

     

 //clear the stencil buffer 

 pd3dDevice->ClearDepthStencilView(pDepthStencilView, D3D10_CLEAR_STENCIL, 1.0, 0); 
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 //prepare to render the shadow volume 

 ID3D10EffectTechnique* pEffectTechnique = g_pID3D10EffectRenderShadow; 
      

 //render the actual shadow 

 RenderScene(pd3dDevice, pEffectTechnique, true); 

     

 //render the scene with normal lighting 

     RenderScene(pd3dDevice, g_pID3D10EffectRenderLit, false); 

 

 /* code to render the GUI – the “Full-Screen Mode” button  

 – see full program source code for details */ 

 

     DXUT_EndPerfEvent(); 
} 
 
The RenderFrame function calls the RenderScene function when drawing the scene 
with ambient lighting (without shadows), when rendering the drone’s shadow and when 
rendering the final lit and shadowed scene. The RenderScene function renders the 
map/level mesh, the drone character and the shadow. It is also responsible for 
calculating the view matrices: 
 
void RenderScene(ID3D10Device* pd3dDevice, ID3D10EffectTechnique* pEffectTechnique,  

 bool renderShadowVol) 

{ 

 //setup the view matrices 

 D3DXMATRIX ProjectionMatrix; 

 D3DXMATRIX ViewMatrix; 

 D3DXMATRIX ViewProjectionMatrix; 

 D3DXMATRIX WorldMatrix; 

 D3DXMATRIX WorldViewProjectionMatrix; 

  

 //calculate the projection matrix 

 ProjectionMatrix = *g_FPSModelViewCamera.GetProjMatrix(); 

 //calculate the view matrix 

 ViewMatrix = *g_FPSModelViewCamera.GetViewMatrix(); 

  

 //calculate and set the view project matrix 

 ViewProjectionMatrix = ViewMatrix * ProjectionMatrix; 

 g_pd3d10ViewMatrixVar->SetMatrix((float*)&ViewProjectionMatrix); 
 

 /* render the mesh representing the map/level */ 

 if(!renderShadowVol) 
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 { 

 //calculate and set the world view projection matrix 

 WorldViewProjectionMatrix = g_BackgroundWorldMeshMatrix *  
  ViewMatrix *  

  ProjectionMatrix; 

g_pd3d10ProjMatrixVar->SetMatrix((float*)&WorldViewProjectionMatrix); 
 g_pd3d10WorldMatrixVar->SetMatrix((float*)&g_BackgroundWorldMeshMatrix); 
         

 //render the map mesh 

 g_GameLevelMesh10.Render(pd3dDevice, pEffectTechnique, g_pd3d10DiffuseTexture); 
    } 

 

     /* render the mesh representing the object/character */ 

 /////////////////////////////////////////////////////// 

     

 //calculate the world matrix 

 WorldMatrix = g_MeshScalingMatrix * g_MeshControlCamera.GetWorldMatrix(); 
 //calculate the world view projection matrix 

 WorldViewProjectionMatrix = WorldMatrix * ViewMatrix * ProjectionMatrix; 

 //set the world and world view project matrices 

 g_pd3d10ProjMatrixVar->SetMatrix((float*)&WorldViewProjectionMatrix); 
 g_pd3d10WorldMatrixVar->SetMatrix((float*)&WorldMatrix); 
  

 //render the character mesh and the shadow 

 if(renderShadowVol) 

       g_MeshObject.RenderAdjacent(pd3dDevice,pEffectTechnique,g_pd3d10DiffuseTexture); 
 else 

       g_MeshObject.Render(pd3dDevice, pEffectTechnique, g_pd3d10DiffuseTexture); 
} 
 
All that remains now is to initialise the application. This is done in wWinMain via a call to 
our own Initialise function: 
 
void Initialise() 

{ 

 

/* init the application HUD (the “Full-Screen Mode” button) - see full program 

source code for details */ 

 

 //init the light 

 g_LightObjectData.m_LightPosition = g_SetupLights.Position; 
 g_LightObjectData.m_LightColour = g_SetupLights.Colour; 
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  //initialise the cameras 

  g_FPSModelViewCamera.SetRotateButtons(true, false, false); 
  g_MeshControlCamera.SetButtonMasks(MOUSE_RIGHT_BUTTON,0,0); 
  g_LightControlCamera.SetButtonMasks(MOUSE_MIDDLE_BUTTON,0,0); 
    /* scale and translate the environment's map mesh */ 

    //////////////////////////////////////////////////// 

  

    //the translation matrix 

    D3DXMATRIX mapTranslationMatrix; 

 

    //create the translation matrix 

    D3DXMatrixTranslation(&g_BackgroundWorldMeshMatrix,0.0f,1.0f, 0.0f); 
    D3DXMatrixTranslation(&mapTranslationMatrix, 1.0f, 1.0f, 0.0f); 

 

    //create an identity matrix 

    D3DXMatrixIdentity(&g_MeshScalingMatrix); 
} 
 
The presented game engine’s main application code has now been discussed. The next 
chapter focuses on this engine’s extension through the addition of several subsystems, 
specifically: HLSL shaders, local illumination, reflection and refraction, HDR lighting, 
additional shadow rendering algorithms, physics simulation, particle effects and post-
processing special effects. 
 
 
2.5  Summary 
 
The chapter started by looking at game engine architecture in general, highlighting the 
importance of software componentry, and the difference between game-engine code 
and game-specific code. Following this it focussed on a number of game engine 
architectures, specifically ad-hoc, modular and the directed acyclic graphs architecture 
(DAG). 
 
Next it considered the first step invoked whenever a game is executed, namely 
initialisation. Initialisation was described as the stage responsible for resource and 
device acquisition, memory allocation, setup of the game’s GUI, loading of art assets, 
etc. Following front-end initialisation, it discussed the exit state and the game loop for 
the uninterrupted execution of a game. 
 
Building on this, the chapter dealt with the implementation of a basic DirectX 10 3D 
interactive environment featuring mesh-loading, texture mapping, movable light sources, 
a GUI and stencil shadow volumes; the core platform upon which more advance engine 
features are to be layered (presented in Chapter 3). 
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Chapter 3 
 
 

Extending the Basic Interactive 3D 
Environment 
 
 
 

Chapter 3 builds on Chapter 2’s basic DirectX 10 3D interactive environment 
featuring mesh-loading, texture mapping, movable light sources, a GUI and 
stencil shadow volumes. The presented 3D environment is then extended 
through the addition of several subsystems, specifically: HLSL shaders, local 
illumination, reflection and refraction, HDR lighting, additional shadow rendering 
algorithms, physics simulation, particle effects and post-processing special 
effects. Part II of this thesis categorises each of these subsystems based on the 
level-of-detail/rendering quality and the associated computational impact. 
 
 
Outline: 
 
 Extending the presented interactive DirectX 10 3D environment 
 Shaders 
 Local Illumination 
 Reflection and Refraction 
 High Dynamic Range Lighting 
 Shadows 
 Physics 
 Particle Effects 
 Post-Processing 
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3.1  Extending the Basic Interactive DirectX 10 3D Environment  
 
The modular rendering engine developed for this study and serving as a scalable 
interactive testing environment is an adequate platform for the purposes of this thesis, in 
which the objective is to experiment with the impact of various algorithms when 
rendering computationally intensive 3D environments solution for the rendering of 
computationally intensive 3D environments. As a standalone game engine, it is 
amenable to being used as a game engine for first- and third-person shooter games, role 
playing games and 3D immersive environments. The engine makes extensive use of 
DirectX 10.0 and Shader Model 4.0 (a proprietary shading language developed for use 
with the Direct3D API) for effects such as HDR and dynamic ambient lighting, volumetric 
clouds, motion blur, soft shadows, specular reflections, reflective and refractive water, 
motion blur, etc. The engine also features support for high polygon models, realistic 
physics and particle effects. Figure 3.1 shows the further extended interactive 
environment/rendering engine. 
 

 
Figure 3.1 Various screenshots of the extended interactive testing environment. 
 
The testing environment’s technology stack utilises SIMD and multi-core processor 
technologies, as well as HLSL Shader Model 4.0 and the latest DirectX GPU features. 
The quality of rendering elements is dynamically scalable based on GPU (and to a 
limited degree, CPU) usage and under/over-utilisation. For example, shader quality 
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relies on the GPU, ranging from low (simplified shaders, light maps and directional 
lights), medium (simplified HDR, normal maps and specular highlights), high (soft 
shadows, detail lights, ambient occlusion and soft particles) to very high (true HDR, 
translucent shadows, parallax mapping and volumetric materials). The quality of particle 
effects, in turn, relies on the CPU and can range from low with a 75% reduction in quality 
to very high with no reduction in quality. 
 
The purpose of the testing environment is to serve as a proof of concept platform to test 
the feasibility of two different but related performance enhancing strategies. The first 
may be termed quality scaling, by which is meant controlling the quality of a rendered 
scene by selecting algorithms that provide an appropriate level of realism for the given 
context. The second performance enhancing strategy is the provision of a mechanism 
that will seamlessly and in real-time ensure quality scaling by dynamically activating the 
appropriate set of rendering algorithms as a scene changes. Using this data gathered 
during the performance vs. quality analysis of this platform, we are able to control the 
real-time selection of rendering algorithms based on environmental conditions. This 
system ensures the following: the quality of the scene being rendered is always 
maximised with the GPU and CPU unified as single rendering unit for the maximised 
processing of reflections, particle effects and physics simulations. 
 
The sections below detail the presented interactive testing environment’s core rendering 
and/or computational elements – shadows, shaders, local illumination, reflection and 
refraction, physics, particle effects and post-processing (including implementation 
details). However, Appendix A can be consulted should background information be 
needed on the concept of programmable pipelines (and the graphics pipeline 
architecture, in general) as well as on how these processing pipelines allow for the direct 
manipulation of the movement, composition, form and appearance of objects – aspects 
integral to any modern 3D rendering engine design and implementation. Appendix A 
topics include: 
 

 Vertex Processing 
 Clipping and Culling 
 Rasterization and Fragment Processing 
 Programmable Pipelines 

• The Direct3D 10 Processing Pipeline 
 The Input-Assembler Stage 
 The Geometry-Shader Stage 
 The Vertex-Shader Stage 
 Stream Output Stage 
 The Pixel-Shader Stage 
 The Output-Merger Stage 
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Microsoft’s High Level Shader Language is also dealt with throughout many of the 
interactive testing environment implementations that follow, such as those dealing with 
HDR lighting, stencil shadow volumes, bump mapping, cube mapping and motion blur 
(illustrating geometric shaders), adding specular highlights to objects, etc. Appendix B 
presents shaders (an integral part of our engine’s ability to render hyper-realistic 3D 
environments and briefly touched on in Section 3.2) in detail – specific topics dealt with 
include: 
 

 Shaders 
 The Hardware Graphics Pipeline 
 The Programmable Graphics Pipeline Revisited 
 The High Level Shader Language (HLSL) 

• The HLSL Compiler 
• Initialising the High Level Shader Language 
• Creating HLSL Shaders 
• Common HLSL Data Types 
• Utilising a Created HLSL Effect 

 
As previously mentioned, the presented dynamically scalable interactive rendering 
engine (serving as proof-of-concept and benchmarking system) features a number of 
advanced rendering components, specifically: shaders, lighting, reflection and refraction, 
shadows, physics, particles and post-processing effects. Each of these can, in turn, be 
categorised based on the level-of-detail/rendering quality and the associated 
computational impact (discussed in Part II of this thesis). The implementation details of 
these rendering features used to extend the basic interactive environment presented in 
Section 2.4 are now discussed.  
 
Please note that all rendering techniques are implemented in C++ using Direct3D 10.0 
and Microsoft’s High Level Shading Language 4.0. Subsequent sections illuminate 
selected portions of the code with the aim of providing the reader with a feel for the kind 
of coding needed and to illustrate the implementation details of these algorithms more 
clearly. 
 
 
3.2 Shaders  
 
A shader is a grouping of instructions processed by the graphics accelerator to perform 
some form of special effect or rendering. Appendix A presents the concept of 
programmable pipelines (in particular focusing on the Direct3D 10 and OpenGL 
processing pipelines). An application program allowing direct interaction with these 
programming pipelines is called a shader. Shader programs, written in a shading 
language such as NVIDIA’s Cg or Microsoft’s High Level Shader Language, control the 
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movement, composition, form and appearance of objects through direct manipulation of 
the graphics processing unit’s programmable pipelines (Fernando and Kilgard, 2003).  
 
The instructions listed in a shader program are executed at a specific point in the 
rendering pipeline – thus leading to user-defined manipulation of vertex or pixel data, for 
example. More specifically, three types of shader programs can be written, namely, 
vertex shaders, pixel shaders and geometry shaders.  
 
Vertex shaders, operating on vertex data, are executed as part of the graphics pipeline’s 
geometric stage and are used to alter the geometric parameters (shape) of an object. A 
vertex shader program is fundamental for certain special effects such as grass blowing 
in the wind where the real time manipulation, transformation and displacement of per-
vertex material attributes are necessary. The vertices produced by this shader are 
forwarded as input to a geometry shader. 
 
Geometry shaders are executed just prior to the rasterizer and stream output pipeline 
stages. These shaders group numerous vertices into a geometric object that can be 
modified by a pixel shader program. Geometry shaders are extremely important in the 
detection of silhouetted-edges and shadow volume extrusion. These shaders, 
performing per-primitive (low-level geometric objects such as points, lines, etc.) 
computations, are also vital in the generation of new primitives. The primitives generated 
by the geometry shader stage are rasterized into fragments during the pipeline’s 
rasterizer stage. These fragments are then sent to the pixel shader as input. 
 
Pixel shaders, also known as fragment shaders and performing per-pixel processing, 
operate on the discrete pixels of a primitive, applying some effect to a primitive (such as 
bump mapping, shadowing, fog, etc) during the pixel shader stage. Per-pixel lighting and 
shadowing has greatly contributed to the realism of modern computer games. Examples 
of effects made possible through this form of per-pixel processing include texture 
blending, environmental mapping, normal mapping, real-time shadows (stencil shadow 
volumes) and reflections. 
 
These three types of shaders are unified by the Direc3D 10 architecture – known as 
Shader Model 4.0. Unified shaders provide the application programmer with a uniform 
instruction set that is independent of whether a pixel, geometry or vertex shader is being 
implemented. This unified architecture is made possible through Windows Vista’s and 
Windows 7’s Windows Display Driver Model and the coupled DirectX 10 API. Previous 
architectures required different instruction sets for both pixel and vertex shaders due to 
specific hardware architectural requirements. By unifying the independent shader 
instruction sets, GPU programming has become much more flexible. This unified model 
also allows workload sharing amongst the various pipeline processors. For example, 
when the GPU is mainly performing basic geometry rendering with little or no per-pixel 
processing being done, then the pixel shader can be assigned vertex processing. The 
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first GPU offering support for this unified shader model was NVIDIA’s GeForce 8 series 
– specifically the GeForce 8800 GTX and GTS.  
 
The term used to describe this unified shader architecture, Shader Model 4.0, 
encapsulates the features offered by the specific shader version in question. For 
example, Shader Model 3.0 (as supported by Direct3D 9.0c) limits the number of 
executing instructions to 65536 while Direct3D 10’s Shader Model 4.0 allows for an 
unlimited number of executing instructions. Shader Model 2.0 (the original Direct3D 9.0 
shader specification) limits the number of executing instructions to 32 texture instructions 
and 64 arithmetic instructions. The version number of instructions is specified in terms of 
the shader’s version number (ps_mainVersion_subVersion for pixel shaders and 
vs_mainVersion_subVersion for vertex shaders). For example, a vertex shader 
based on Shader Model 3.0 (DirectX 9.0c) will be declared as vs_3_0, a DirectX 9.0b 
Shader Model 2.0 pixel shader as ps_2_b, and a Shader Model 4.0 pixel shader 
declared as ps_4_0. NVIDIA’s GeForce FX series of GPUs provide an optimised model 
for Shader Model 2.0 and we can thus define a vertex shader based on this model as 
vs_2_a.  
 
Advanced shader technology, as further detailed in Appendix B, is core to the creation of 
realistic 3D environments, as the case with the presented dynamically scalable 
rendering engine. Shader technology is used for everything from controlling the 
geometric level-of-detail on model and world-elements to the anti-aliasing of alpha-
tested primitives and the use of distance-coded alpha masking for infinite resolution 
texture masking when dealing with alpha-tested primitives and resolution-independent 
user interface elements. In the rest of this chapter, the deployment of shader technology 
for various rendering effects is shown in detail. The presentation is as follows: 
 

 Local Illumination (Section 3.3) 
 Reflection and Refraction (Section 3.4) 
 High Dynamic Range Lighting (Section 3.5) 
 Shadows (Section 3.6) 
 Particle Effects (Section 3.7) 
 Post-Processing (Section 3.8) 
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3.3 Local Illumination 
 

 
 
The presented interactive testing environment, in its most basic form, allows for the use 
of local illumination which, unlike global illumination, only considers the interaction 
between a light source and object. For example, when lighting a series of cubes, each 
cube is lit independently from the others. Thus, even though one cube might be blocking 
light from another, the effect of this is never considered by the local illumination model 
(shadowing is thus only added at a later stage). This model is shown in Figure 3.2. 
 

 
Figure 3.2 The local illumination model. 
 
Global illumination, on the other hand, accounts for this “blocked-out light” via the 
implementation of a ray tracing algorithm, for example (Rubin and Whitted, 1980). Ray 
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tracing follows the light (via vectors) from the source to object surfaces, rendering 
objects and effects based on the subsequent object-light interaction (Arvo and Kirk, 
1987). Global illumination is not supported in the rendering engine that has been 
implemented, as it falls outside the scope of interactive graphics, rather belonging to the 
field of photo realistic rendering (Arvo, 1991). Its overall effect can, however, be 
simulated through the use of a number of shadowing and reflection algorithms as 
discussed in subsequent sections. Figure 3.3 shows global illumination where one object 
blocks light from reaching other objects. 
 

 
Figure 3.3 The global illumination model. 
 
We implement local illumination using the diffuse reflection model, resulting in a 
uniformly lit scene. The amount of reflection is calculated using Lambert’s law – hence 
by considering the cosine of the angle between the vector directed at the light source 
and the surface normal (Figure 3.4). The angle, θ, can be determined by calculating the 
dot product of these two vectors (Cook and Torrance, 1982). 
 

 
Figure 3.4 The projected light calculated by considering the cosine of the angle 
between the vector directed at the light source and the surface normal. 
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The rendered scene, comprised of several cubes, two parallel light sources and using 
Lambertian light, will thus have a consistent lighting intensity regardless of the distance 
between the reflecting surface and light source (as shown in Figure 3.5). 
 

 
Figure 3.5 The rendered scene; comprised of three cubes, two parallel light sources and 
using Lambertian light. 
 
The presented rendering engine implements an HLSL pixel shader to calculate the 
lighting effect on each pixel in the rendered scene. The shader’s effect file starts with a 
declaration of the projection, world and view matrices followed by a floating point array 
storing the incoming light vector of each light source and another floating point array 
holding the colour of each light:  
 
matrix ProjectionMatrix; 

 

matrix WorldMatrix; 

matrix ViewMatrix; 

 

float4 LightDirection[2]; 

float4 LightColour[2]; 

 
These variables, declared using the HLSL data types, are set by the Direct3D 
application. We must thus declare variables in our application that will be used to update 
the shader variables: 
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D3DXMATRIX g_ProjectionMatrix; 

D3DXMATRIX g_WorldMatrix; 
D3DXMATRIX g_ViewMatrix; 
 

D3DXVECTOR4 IncomingLightVector[2]; 

D3DXVECTOR4 IncomingLightColour[2]; 

 
The Direct3D application initialises these variables, subsequently binding then within the 
technique. The lighting position and colour arrays are set in the following manner: 
 
/* initialise the direction of each parallel light source */ 

D3DXVECTOR4 IncomingLightVector[2] =  

{  

 //the spatial position of the first light source 

 D3DXVECTOR4(1.0f, 0.5f, 0.5f, 1.0f), 

 //the spatial position of the second light source  

 D3DXVECTOR4(0.0f, 0.0f, 1.0f, 1.0f) 

}; 

 

/* specify the colour of each parallel light source */ 

D3DXVECTOR4 IncomingLightColour[2] =  

{ 

 //bright red 

 D3DXVECTOR4(1.0f, 0.0f, 0.0f, 1.0f), 

 //deep orange 

 D3DXVECTOR4(1.0f, 0.5f, 0.0f, 1.0f) 

}; 

 
The g_WorldMatrix variable is initialised to an identity matrix using the 
D3DXMatrixIdentity D3DX math function. The g_ViewMatrix variable is initialised 
via the D3DXMatrixLookAtLH D3DX function. The g_ProjectionMatrix variable is 
initialised using the D3DXMatrixPerspectiveFovLH D3DX function: 
 
/* initialise the world matrix */ 

D3DXMatrixIdentity(&g_WorldMatrix); 
 

/* initialise the view matrix */ 

D3DXVECTOR3 EyeCoord( 0.0f, 1.0f, -10.0f); 

D3DXVECTOR3 LookAt(0.0f, 1.0f, 0.0f); 

D3DXVECTOR3 UpDir(0.0f, 1.0f, 0.0f); 

D3DXMatrixLookAtLH(&g_ViewMatrix, &EyeCoord, &LookAt, &UpDir); 
 

/* set the left-handed perspective projection */ 
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D3DXMatrixPerspectiveFovLH(&g_ProjectionMatrix, (float)D3DX_PI*0.25f,  
   rectangle_width/rectangle_height, 0.1f, 100.0f); 
 
Before the ID3D10EffectVariable update methods can be used to set the HLSL 
variable values, we first have to obtain the effect variables via ID3D10Effect retrieval 
functions for each of the above defined shader variables: 
 
/* obtain the ProjectionMatrix shader variable */ 

ID3D10EffectMatrixVariable* g_pd3d10ProjMatrixVar = NULL; 
g_pd3d10ProjMatrixVar = g_pd3d10Effect  
 ->GetVariableByName("ProjectionMatrix")->AsMatrix(); 

 

/* obtain the WorldMatrix shader variable */ 

ID3D10EffectMatrixVariable* g_pd3d10WorldMatrixVar = NULL; 
g_pd3d10WorldMatrixVar = g_pd3d10Effect 
 ->GetVariableByName("WorldMatrix")->AsMatrix(); 

 

/* obtain the ViewMatrix shader variable */ 

ID3D10EffectMatrixVariable* g_pd3d10ViewMatrixVar = NULL; 
g_pd3d10ViewMatrixVar = g_pd3d10Effect  
 ->GetVariableByName("ViewMatrix")->AsMatrix(); 

 

/* obtain the LightDirection shader variable */ 

ID3D10EffectVectorVariable* g_pd3d10LightDirectionVectorVar = NULL; 
g_pd3d10LightDirectionVectorVar = g_pd3d10Effect  
 ->GetVariableByName("LightDirection")->AsVector(); 

 

/* obtain the LightColour shader variable */ 

ID3D10EffectVectorVariable* g_pd3d10LightColourVectorVar = NULL; 
g_pd3d10LightColourVectorVar = g_pd3d10Effect  
 ->GetVariableByName("LightColour")->AsVector(); 

 
In summary, the GetVariableByName ID3D10Effect interface function takes a 
string value containing the name of the variable declared in the shader/effect program as 
parameter, returning a pointer to the ID3D10EffectVariable interface. The 
AsVector ID3D10EffectVariable interface function casts this returned 
ID3D10EffectVariable interface to an ID3D10EffectVectorVariable interface 
so that we can access the vector type. The AsMatrix function casts the returned 
ID3D10EffectVariable interface to an ID3D10EffectMatrixVariable interface 
used for reading the shader variable as a matrix type. 
 
Next our renderer sets the values of the shader/effect variables using the SetMatrix 
ID3D10EffectMatrixVariable interface for all floating-point matrices and the 
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SetFloatVectorArray ID3D10EffectVectorVariable interface for our four-
component floating point vector arrays: 
 
g_pd3d10ProjMatrixVar->SetMatrix((float*)&g_ProjectionMatrix); 
g_pd3d10WorldMatrixVar->SetMatrix((float*)&g_WorldMatrix); 
g_pd3d10ViewMatrixVar->SetMatrix((float*)&g_ViewMatrix ); 
 

g_pd3d10LightDirectionVectorVar->SetFloatVectorArray((float*)IncomingLightVector,0, 2); 
g_pd3d10LightColourVectorVar->SetFloatVectorArray((float*)IncomingLightColour, 0, 2); 
 
The variables declared in the shader program are now set and can be changed during 
each rendering pass. 
 
Returning to the presented shader program, we declare two structures for the storage of 
received vertex data and returned pixel data, respectively: 
 
struct VERTEXSHADER_INPUT 
{ 

    float4 Loc : POSITION; 

    float3 Norm : NORMAL; 

}; 

 

struct PIXELSHADER_INPUT 
{ 

    float4 Loc : SV_POSITION; 
    float3 Norm : TEXCOORD0; 

}; 

 
The first structure, VERTEXSHADER_INPUT, holds texture vertex information as received 
from the Direct3D application. It is used to pass input data to a vertex shader that 
transforms the input vertex position, defined in object space, to projection space. This is 
done by multiplying the input vertex position, IN.Loc, by a world matrix, thus 
transforming it from object space to world space. The next transformation multiplies this 
transformed vertex position, output.Loc, with a view matrix, resulting in a world space 
to view space transformation. The final transformation takes this view space vertex 
position and multiplies it with a projection matrix to transform the vertex from view space 
to projection space. The vertex shader also transforms the input vertex normal to world 
space, finally returning the transformed vertex data via the PIXELSHADER_INPUT 
structure: 
 
PIXELSHADER_INPUT LightingVertexShader(VERTEXSHADER_INPUT IN) 
{ 

    PIXELSHADER_INPUT output = (PIXELSHADER_INPUT)0; 
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    output.Loc = mul(IN.Loc, WorldMatrix); 

    output.Loc = mul(output.Loc, ViewMatrix); 

    output.Loc = mul(output.Loc, ProjectionMatrix); 

     

    output.Norm = mul(IN.Norm, WorldMatrix); 

     

    return output; 

} 

 
The diffuse lighting on each pixel is determined via a pixel shader. In short, the dot 
product of the incoming light vector and the surface normal is calculated, with the overall 
lighting effect determined by multiplying the dot product result by the colour of each light 
source. All these calculated values are then summed to determine the overall pixel 
colour. 
 
/* pixel shader */ 

float4 LightingPixelShader(PIXELSHADER_INPUT IN) : SV_Target 
{ 

    float4 finalPixelColour = 0; 

    float4 dotPixelColour = 0; 

     

    /* calculate the overall lighting by multiplying the dot product result of the  

 incoming light vector and the surface normal with the colour of each light  

 source */ 

    for(int i = 0; i < 2; i++) 

    { 

  dotPixelColour = dot((float3)LightDirection[i], IN.Norm); 

        finalPixelColour += saturate(dotPixelColour * LightColour[i]); 

    }    

    

    /* return the overall pixel colour */ 

    return finalPixelColour; 

} 

 
The final step is to create the effect technique definition. This effect technique has one 
rendering pass, P0, specifying the shader states used to perform the lighting operation. 
It is defined as follows: 
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technique10 LightScene 

{ 

 pass P0 

 { 

 SetGeometryShader(NULL); 

 SetVertexShader(CompileShader(ps_4_0, LightingVertexShader())); 
   SetPixelShader(CompileShader(ps_4_0, LightingPixelShader())); 
 } 

} 

 
Returning to the rendering engine’s lighting component, all that remains is to create the 
effect object and technique object that will be used to perform the lighting operation. We 
can create the effect using this D3DX10CreateEffectFromFile function in the 
following manner: 
 
ID3D10Device* g_pd3d10Device = NULL; 
ID3D10Effect* g_pd3d10Effect = NULL; 
 

D3DX10CreateEffectFromFile(L"file_name.fx", NULL, NULL,  
 D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY,  
 0, g_pd3d10Device, NULL, NULL,  
 &g_pd3d10Effect, NULL, NULL); 

 
Following the effect creation we must obtain the effect technique using the 
GetTechniqueByName ID3D10Effect interface function. This function takes a string 
value containing the name of the technique as parameter, returning a pointer to the 
ID3D10EffectTechnique interface: 
 
ID3D10EffectTechnique* g_id3dTechnique = NULL; 
g_id3dTechnique = g_id3dEffect->GetTechniqueByName("LightScene"); 

 
 
3.4 Reflection and Refraction  
 
The presented rendering engine extends the basic local illumination lighting model 
through the addition of reflection and refraction effects to result in more realistic and life-
like images. When computation processing power is not available, our engine will utilise 
basic reflective environmental mapping which allows us to simulate complex reflections 
by mapping real-time computed texture images to the surface of an object (Greene, 
1986). Each texture image used for environmental mapping stores a “snapshot” image 
of the environment surrounding the mapped object. These snapshot images are then 
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mapped to a geometric object to simulate the object reflecting its surrounding 
environment (with the cube-map being either calculated on the CPU or GPU, depending 
on the one most idle). An environment map can be considered an omnidirectional 
image. Figure 3.6 shows an environmentally mapped object placed within a scene that 
also makes use of standard environmental mapping to reflect objects in the scene from 
its “mirror like walls”. 

 
Figure 3.6  An environmentally mapped model and scene. (The most basic form of 
environmental mapping results in a chrome-like appearance.) 
 
Cube mapping is a type of texturing where six environmental maps are arranged as if 
they were faces of a cube (Figure 3.7). Images are combined in this manner so that an 
environment can be reflected in an omnidirectional fashion. 
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Figure 3.7  A cube map consisting of six texture images. 
Cube maps are accessed using a three-dimensional texture coordinate set, specifically a 
3D directional vector. We create cube maps by placing a camera at the object’s centre 
and taking 90 degree field-of-view “snapshots” of the environment in each direction of 
the cube (i.e. along the axes of the Cartesian coordinate system), thus along each of the 
following: the positive x-axis, the negative x-axis, the positive y-axis, the negative y-axis, 
the positive z-axis and the negative z-axis. 
 
 
3.4.1 Implementing Cube Mapping 
 

 
 
Cube mapping was, before the advent of shaders, typically implemented in a manual 
fashion. The conventional process is to acquire snapshots of the environment in each 
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direction of the cube and subsequently set each of these snapshots as the render target 
(thus rendering the scene for each side surface of the cube) – the render target view is, 
in our case, the surface being rendered to with the viewport a window located inside a 
viewing volume (a semi-infinite, truncated pyramid defined by an image plane window 
and a near- and far clipping plane). This approach is rather tedious and implementing 
cube mapping via a vertex and/or pixel shader program greatly improves performance 
by decreasing the number of rendering passes. One pass is required for each face of 
the cube when implementing the technique manually. Using Cg, for example (as 
opposed to our HLSL geometry shader implementation), allows for a vertex/pixel shader 
approach that can be used with OpenGL programs (or even Direct3D programs not 
making use of the High Level Shader Language). Direct3D 10 combines an HLSL 
geometry shader with render target arrays to improve the performance of cube mapping. 
 
Geometry shaders are executed just prior to the rasterizer and stream output pipeline 
stages. As previously mentioned, these shaders (executing for each primitive) group 
numerous vertices into a geometric object – thus generating new primitives that can be 
modified by a pixel shader program. The primitives generated by the geometry shader 
stage are rasterized into fragments during the pipeline’s rasterizer stage. 
 
Our engine (when performing cube mapping on the GPU) uses a geometry shader 
coupled with a render target array consisting of six elements (each element representing 
a cube face) to render onto several render targets at the same time. The geometry 
shader outputs primitives, assigning each output primitive to one of the elements in the 
render target array. 
 
The D3D10_RENDER_TARGET_VIEW_DESC structure is used to describe the render 
target view (specifically the manner in which a render target resource is interpreted by 
the pipeline). This structure is defined as follows in the d3d10.h header file: 
 
typedef struct D3D10_RENDER_TARGET_VIEW_DESC { 
    DXGI_FORMAT Format; 
    D3D10_RTV_DIMENSION ViewDimension; 
    union { 

        D3D10_BUFFER_RTV Buffer; 
        D3D10_TEX1D_RTV Texture1D; 
        D3D10_TEX1D_ARRAY_RTV Texture1DArray; 
        D3D10_TEX2D_RTV Texture2D; 
        D3D10_TEX2D_ARRAY_RTV Texture2DArray; 
        D3D10_TEX2DMS_RTV Texture2DMS; 
        D3D10_TEX2DMS_ARRAY_RTV Texture2DMSArray; 
        D3D10_TEX3D_RTV Texture3D; 
    }; 

} D3D10_RENDER_TARGET_VIEW_DESC; 
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Its first member, Format, describes the resource data format. (It can be set to a 
constant such as DXGI_FORMAT_R11G11B10_FLOAT, representing a 32-bit, three-
component floating-point format.) The next member, ViewDimension, specifies the 
manner in which a resource (used in the render-target view) is to be accessed. This 
member must be set to the same type as that of the defined resource 
(D3D10_RTV_DIMENSION_TEXTURE2D for a 2-D texture, 
D3D10_RTV_DIMENSION_TEXTURE2DARRAY for a 2-D texture array, 
D3D10_RTV_DIMENSION_TEXTURE3D for a 3D texture, etc). The Buffer member 
describes the elements in a buffer resource that will be utilised in a render target view 
via the specification of two D3D10_BUFFER_RTV members, namely, ElementOffset 
(the offset, in byte, from the start of the buffer to the element that will be accessed) and 
ElementWidth (the size, in bytes, of each element stored in the buffer). The next 
member, Texture1D, describes the render target resource as a 1-D texture with 
Texture1DArray specifying the resource as a 1-D texture array. The next two 
members, Texture2D and Texture2DArray, specify a 2-D and 2-D array texture, 
respectively, to use as a render target. Please note, Texture2DMS does not specify 
anything (as multi-sampled 3D textures contain a single sub-resource) while 
Texture2DMSArray specifies the render target resources as a multi-sampled 2-D 
texture array. The final member, Texture3D, specifies the render target as a 3D texture 
resource. 
 
The Texture1D member is declared as a D3D10_TEX1D_RTV structure and has one 
member, namely, MipSlice. It specifies the mipmap level to use in a render target 
view. (A mipmap is a series of pre-filtered texture images of varying resolution levels; ‘0’ 
indicates the first level. When using mipmaps, Direct3D automatically maps a suitable 
texture, based on size in pixels, to the object being mapped.) The Texture1DArray 
member of type D3D10_TEX1D_ARRAY_RTV shares its first member, MipSlice with 
the D3D10_TEX1D_RTV structure. It has two additional members, namely 
FirstArraySlice (specifying the texture array’s first texture that will be used in the 
render target view) and ArraySize (specifying the number of textures that can be used 
in the render target view). The D3D10_TEX2D_RTV Texture2D member has one 
member, MipSlice, specifying the mipmap level to use in a render target view. The 
Texture2DArray D3D10_TEX2D_ARRAY_RTV member has three members to specify 
the mipmap levels and textures to use in a render target view, namely, MipSlice, 
FirstArraySlice and ArraySize. Of the remaining three members, Texture2DMS 
does not have any members to specify since multi-sampled two-dimensional textures 
contain only one sub-resource. The Texture2DMSArray member of type 
D3D10_TEX2D_ARRAY_RTV has two members, FirstArraySlice and ArraySize – 
both with the same function as their previously discussed counterparts. The final 
member, Texture3D, of type D3D10_TEX3D_RTV has the following members: 
MipSlice, FirstWSlice (defining the first depth level that will be used by the render 
target view) and WSize (specifying the number of depth levels).  
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We can now define a six-faced render target view using this 
D3D10_RENDER_TARGET_VIEW_DESC structure as follows: 
 
/* define the render target view description structure */ 

D3D10_RENDER_TARGET_VIEW_DESC renderTargetViewDescription; 
 

/* set renderTargetViewDescription’s Format member */ 

renderTargetViewDescription.Format = textureDescription.Format; 

 

/* set renderTargetViewDescription’s ViewDimension member */ 

renderTargetViewDescription.ViewDimension = D3D10_RTV_DIMENSION_TEXTURE2DARRAY; 
 

/* set the resource type as a 2-D texture array (Texture2DArray), subsequently setting  

 its members to represent an array of 6 render targets (one for each face of the  

 cube) */ 

renderTargetViewDescription.Texture2DArray.MipSlice = 0; 

renderTargetViewDescription.Texture2DArray.FirstArraySlice = 0; 

renderTargetViewDescription.Texture2DArray.ArraySize = 6; 

 
Next the CreateRenderTargetView ID3D10Device interface function is called to 
create a render target view that will be used to access data in the defined resource. This 
function is declared as follows in the d3d10.h header file: 
 
HRESULT CreateRenderTargetView( 

  ID3D10Resource *pResource, 

  const D3D10_RENDER_TARGET_VIEW_DESC *pDesc, 
  ID3D10RenderTargetView **ppRTView 

); 

 
Its first parameter, pResource, is a pointer to either a buffer resource such as a vertex 
buffer, index buffer or a shader constant buffer or alternatively a texture resource (as in 
our case). The second parameter, pDesc, takes a pointer to the render target view 
description structure, D3D10_RENDER_TARGET_VIEW_DESC. Its last parameter, 
ppSRView, takes the address of a pointer to the render target view interface, 
ID3D10RenderTargetView, dealing with how the pipeline outputs data during the 
rendering process. The following code sample creates a render target view so that the 
cube texture can be rendered: 
 
/* declare a 2-D texture interface to manage texel data */ 

ID3D10Texture2D* g_pEnvironmentalMap; 
 

/* declare a ID3D10RenderTargetView interface */ 
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ID3D10RenderTargetView* g_pEnvironmentalMapRenderTargetView; 
 

/* create the render target resource view */ 

hresult_ = g_id3dDevice-> CreateRenderTargetView (g_pEnvironmentalMap, 
    &renderTargetViewDescription,  

 &g_pEnvironmentalMapRenderTargetView); 

 
The six faces of the cube are rendered at the same time by setting the render target 
view as active when rendering onto the cube map. This is done by calling the 
OMSetRenderTargets ID3D10Device interface function. This function binds the 
render target view to the pipeline so that the pipeline’s output can be written onto the 
back buffer. The OMSetRenderTargets interface method takes three parameters, 
namely, the number of render targets to bind to the pipeline, a pointer to the 
ID3D10RenderTargetView interface and a pointer to the depth-stencil view: 
 
/* define an array of render target views */ 

ID3D10RenderTargetView* arrayRenderTargetViews[1] =  

 {g_pEnvironmentalMapRenderTargetView}; 
 

/* define a depth-stencil view for controlling the texture resource utilised during  

 the depth-stencil test – specifically the Depth stencil view of the environment map  

 for all six faces */ 

ID3D10DepthStencilView* pDepthStencilView; 

 

g_id3dDevice->OMSetRenderTargets( sizeof(arrayRenderTargetViews)/ 
 sizeof(arrayRenderTargetViews[0]), 

 arrayRenderTargetViews,  

 pDepthStencilView); 
 
We render the scene onto the current render target (the surface being rendered to) by 
first clearing the render target, then clearing the depth stencil buffer, followed by the 
setup of the appropriate matrices and drawing of the actual object (for example, a 3D 
mesh) that is to be cube mapped. The scene is then rendered onto the cube texture (by 
first saving the old viewport and then specifying the new viewport for rendering to the 
cube map and computing the view matrices used for this rendering – the eye 
coordinates are set at the centre of the cube mapped object after we have combined the 
six different view directions to obtain the final view matrix). Following this, we render one 
cube face at a time, restoring the saved viewport and rendering the final reflective 
scene. 
 
The actual cube mapping is done via a geometry shader. This geometry shader is used 
to output each primitive (points, lines, polygons) to every render target – six surfaces in 
total. The cube mapping effect also uses a vertex shader to transform vertex coordinates 
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from object space (the initial position and orientation of objects before any 
transformation is applied) to world space – coordinate space where we have a reference 
to the viewer’s position (as required for the geometry shader to function). We will now 
look at this vertex shader used for propagating texture coordinates from the application 
program to the geometric shader. 
 
The first step is to declare a vertex shader storage structure to store the world position, 
normals for each cube surface and texture coordinates: 
 
struct VERTEXSHADER_CUBEMAP 
{ 

    float4 Loc : POSITION; 

    float2 Tex : TEXCOORD0; 

    float3 Normals[6] : SIXNORMS; 

}; 

 
Next the vertex shader is defined to transform vertex coordinates from object space to 
world space. This shader returns these translated coordinates and forwards the texture 
coordinates: 
 
VS_OUTPUT_CUBEMAP CubemapVertexShader(float4 Loc: POSITION, float3 Normal : NORMAL,  
 float2 Tex : TEXCOORD) 

{ 

    /* declare a VERTEXSHADER_CUBEMAP structure */  
    VERTEXSHADER_CUBEMAP output; 
 

    /* transform vertex positions from object space to world space */ 

    output.Loc = mul(Loc, worldProjection); 

 

    /* pass the texture coordinates to the geometric shader */ 

    output.Tex = Tex; 

 

    return output; 

} 
 
The implemented geometric shader processes each primitive produced by the above 
defined vertex shader. It does this by looping through all the cube faces/cube maps and 
for each face, looping an additional three times to create the vertices making up a 
triangle. The geometric shader calculates the position of the output vertices used by the 
rasterizer to rasterize the triangle – i.e. assigning a primitive to each distinct render 
target in the render target array. The geometric shader also transforms the world space 
vertices using view transformations for every render target view per iteration. 
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Specifying the geometric shader, we start by creating a structure to store the projection 
coordinates, texture coordinates and render target array index used for controlling the 
render target to which a primitive is written (using the SV_RenderTargetArrayIndex 
HLSL semantic): 
 
struct GEOMETRYSHADER_CUBEMAP 
{ 

 /* projection coordinates */ 

 float4 Loc : SV_POSITION; 
 

 /* texture coordinates */ 

 float2 Tex : TEXCOORD0; 

 

 /* the index specifying the render target to which the primitive is written */ 

 int RenderTargetArrayIndex : SV_RenderTargetArrayIndex; 
}; 
 
Following this structure we create the actual geometry shader: 
 
/* declare a view matrix for the cube map */ 

matrix g_mCubemapViewMatrix[6]; 
 

/* declare a projection matrix for the cube map */ 

matrix projectionMatrix : PROJECTION; 

 

/*the geometry shader */ 

[maxvertexcount(24)] 

CubemapGeometryShader(triangle VERTEXSHADER_CUBEMAP Input[3], 
 inout TriangleStream<GEOMETRYSHADER_CUBEMAP> GS_Output) 
{ 

  for(int i = 1; i <= 6; i++) 

  { 

 /* declare a GEOMETRYSHADER_CUBEMAP structure */ 
 GEOMETRYSHADER_CUBEMAP output; 
  

 /* set the render target array’s index */ 

 output.RenderTargetArrayIndex = i; 

  

 /* compute the screen vertex & texture coordinates */  

 for(int j = 1; j <= 3; i++) 

 { 

 output.Loc = mul(Input[j].Loc,g_mCubemapViewMatrix[i]); 

 output.Loc = mul(output.Loc, projectionMatrix); 
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 output.Tex = Input[j].Tex; 

 GS_Output.Append(output); 
 } 

 GS_Output.RestartStrip(); 
 } 

} 

 
The first parameter, maxvertexcount, is set to 24 – hence limiting the maximum 
number of vertices that the shader can output at a time to this value. Two interesting 
HLSL stream object functions are used, namely Append and RestartStrip. Append 
adds geometry shader data to an output stream by appending it to the data already in 
the output stream. RestartStrip terminates the current primitive strip, in this case a 
triangle strip, signalling the start of a new strip. This geometry shader writes one triangle 
to each render target texture (the six faces of the cube) in one rendering pass.  
 
Following this geometry shader definition we create a pixel shader to retrieve and apply 
the environmentally mapped texture to the 3D model. 
 
The first step is to define the sampling method which will control the texture lookup 
method:  
 
SamplerState samplingMethod 

{ 

    Filter = MIN_MAG_MIP_LINEAR; 
    AddressU = Wrap; 

    AddressV = Wrap; 

}; 

 
We define the pixel shader, retrieving and applying the environmental texture to the 
object, as follows: 
 
/* declared 2-D texture variable */ 

Texture2D g_texture; 
 

float4 CubemapPixelShader(GEOMETRYSHADER_CUBEMAP inputcoords):SV_Target 
{ 

/* samples a texture using the specified texture lookup method and a floating- 

 point value, inputcoords.Tex, specifying the sampling coordinates */ 

    return g_texture.Sample(samplingMethod, inputcoords.Tex); 
} 

 
We can now specify the effect technique that will set the previously defined vertex, pixel 
and geometry shaders. This effect technique has one rendering pass, namely P0: 
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technique10 RenderCubemap 

{ 

    pass p0 

    { 

        SetVertexShader(CompileShader(vs_4_0, CubemapVertexShader())); 
        SetGeometryShader(CompileShader(gs_4_0, CubemapGeometryShader())); 
        SetPixelShader(CompileShader(ps_4_0, CubemapPixelShader())); 
    } 

}; 

The final step is to render the reflecting mesh. 
 
The presented rendering engine, as outlined in the next two sections, further supports 
refractive environmental mapping, the Fresnel effect and chromatic dispersion resulting 
in an object’s colour being blended with reflections from its cube map. Thus, when the 
processing power is available, basic cube-mapped reflections, as just discussed, can be 
extended to appear more lifelike. To accomplish this, we basically have to write shaders 
to approximate the Fresnel reflection function and chromatic dispersion so that the 
object colour is blended with reflections from the cube map. The Fresnel effect combines 
reflection and refraction, i.e. allowing us to simulate the accurate reflection off and 
refraction through a surface using a number of Fresnel equations. Chromatic dispersion 
extends the basic refraction model to consider the wavelength of the incoming light, that 
is, to recognise that certain light colours are refracted more than others. Specifically, the 
higher the wavelength of the colour, the more is it refracted. For example, green has a 
wavelength ranging from 495 to 570 nm with orange ranging from 590 to 630 nm. The 
colour orange will thus refract more than green due to its higher wavelength. Sections 
3.4.2 and 3.4.3 deal with these advanced techniques as utilised by our rendering engine.  
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3.4.2 Implementing Basic Refraction 
 

 
 
With the cube mapping technique discussed in section 3.4.1, we are able to simulate 
basic environmental reflections. Environmental mapping, as presented, results in the 
chrome-like appearance of objects (see Figure 3.6). The main reason for this chrome-
like appearance is our technique’s failure, as an approximation, to blend an object’s 
colour with the reflections from the cube map – in short, a failure to consider the effect of 
refraction. Our previous model will now be extended to incorporate refraction. 
 
Refraction is the change in direction of a light ray due to a variance in material density 
(for example, a light wave travelling from air into water). This directional change is the 
result of a light ray’s speed. For example, light travels faster in air than in water – hence, 
light travels more slowly in denser materials causing a change in direction where the 
light enters this material. Figure 3.8 shows the refraction of light rays in water. 
 

 
Figure 3.8 Refraction due to light passing from a lower- to a higher density material. 
 

 
 
 



 74

Snell’s Law, also known as Descartes' law, is used to calculate the degree of refraction 
at the boundary of a lower- and higher density material. This law describes the 
correlation between the incoming light direction and the amount of refraction based on 
the index of refraction for each material. The index of refraction is simply a measure 
based on the manner in which the material affects the speed of light – the higher the 
index of refraction, the slower the speed of light. Common indices of refraction are 1.0 
for a vacuum, 1.0003 for air, 1.333 for water and 1.5 for glass. Snell’s Law (illustrated in 
Figure 3.9) can be mathematically expressed as follows: 
 

, with n1 the refraction index of the lower density material, n2 the 
refraction index of the higher density material, θ1 the incident angle and θ2 the angle of 
refraction. 
 

 
Figure 3.9 Snell’s Law 
 
Adding refraction to an environmental map involves tracing each incident ray from the 
point of view to the surface of the object. In the case of reflection, this ray bounces off 
the surface of the object. In the case of refraction, this ray changes direction inside the 
object. The shader implementation for refraction is thus very similar to the environmental 
mapping implementation of section 3.1.3.1. 
 
When implementing refraction, we only consider one refraction ray per incoming ray of 
light as opposed to multiple refractions (as the case with real-life where refraction also 
occurs at the exit boundary of the object). Refraction is thus only simulated to a certain 
degree. However, refraction is so complex that the human eye will experience significant 
difficulty in identifying such minor faults with the resulting rendering. 
 
We now present our shader implementation for refraction. This sample utilises the 
refract intrinsic function to calculate the refraction vector. It takes an incident vector – 
a light ray as first parameter, and a surface normal as second parameter. Its third 
parameter is the index of refraction – the ratio of indices of refraction of the two 
materials. It returns the refraction vector. The refracted vector has the same magnitude 
as the incident ray. 
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A vertex shader program is used to perform the per-vertex refraction calculations.  
 
The first step is to specify the name of the vertex program’s entry function, 
main_vertex in our example: 
 
void main_vertex(float4 objectspaceVertexPosition : POSITION, 
  float3 objectspaceVertexNormal : NORMAL, 

  float2 inputTextureCoordinates : TEXCOORD0, 

 

  out float4 outputVertexPosition : POSITION, 

  out float2 outputTextureCoordinates : TEXCOORD0, 

  out float3 refractionVector : TEXCOORD1, 

 

  /* parameters supplied by the application program */ 

  uniform float3 pointOfView, 

  uniform float3 refractionRatio 

  uniform float4x4 modelToWorldTransformation, 

  uniform float4x4 modelviewProjection) 

{ 

 
The first step is to calculate the clip-space position (as mandatory for all vertex 
programs): 
 
 /* transform the vertex position into homogeneous clip-space coordinates */ 

 outputVertexPosition = mul(modelviewProjection, objectspaceVertexPosition); 

 
Next the input texture coordinates are assigned to the output texture coordinates: 
 
 /* assign the input texture coordinates to the output texture coordinates */ 

   outputTextureCoordinates = inputTextureCoordinates; 

 
As with reflection and environmental maps, refraction is defined in terms of world space 
coordinates. We must thus transform the normal and vertex position from object space 
to world space by multiplying both of them by the modelToWorldTransformation 
matrix. This transformation is required since we wish to calculate the refraction vector in 
terms of world space coordinates. This transformation is done as follows: 
 
  /* transform the vertex position and normal to world space coordinates */ 

 float3 worldspaceVertexPosition = mul(modelToWorldTransformation,  

   objectspaceVertexPosition); 

 float3 worldspaceVertexNormal = mul(modelToWorldTransformation, 

  objectspaceVertexNormal); 
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 /* normalise the vertex normal */ 

 worldspaceVertexNormal = normalize(worldspaceVertexNormal); 

 
The final operation is to calculate both the incident and refraction vectors. The incident 
vector is the vector traced from the point-of-view to the vertex. The incident vector is 
calculated using simple subtraction: 
 
 /* calculate the incident light vector */ 

 float3 incidentVector = worldspaceVertexPosition – pointOfView; 

 
Using the ratio of refraction and the incident and vertex normal, we can calculate the 
refracted world-space vector: 
 
 /* calculate the refraction vector */ 

 float3 refractionVector = refract(incidentVector, worldspaceVertexNormal, 

  refractionRatio); 

} 

 
We now define a pixel shader program that uses this refraction vector to retrieve a cube 
map texture – the environmental map. This time we extend our previous pixel shader to 
mix the environment map lookup result with the object’s texture colour. This is done by 
performing a texture lookup of the object’s current colour, blending the sampled texture 
colour with the refraction colour – thus resulting in a much more realistic looking object 
(due to no material being a perfect refractor). Our original environmental mapping 
shader is extended in a similar fashion, in its case blending the sampled texture colour 
with the reflection colour instead of the refraction colour. 
 
The first step is to specify the name of the fragment program’s entry function, 
main_fragment in our sample. It has the following signature: 
 
void main_fragment(float3 refractionVector : TEXCOORD0, 
  float2 inputTextureCoordinates : TEXCOORD1, 

 

  out float4 outputColour : COLOR, 

 

  /* parameter supplied by the application program */ 

 

  uniform samplerCUBE environmentMap, 

  uniform sampler2D lookupTextureColour) 

 

 
Within the body of main_fragment, the interpolated refraction vector is used to determine 
the environment map’s refracted colour. We use the texCUBE texture lookup function to 
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do this. This function takes two parameters; a cube map and a three component texture 
coordinate set – the refraction vector: 
 
 /* obtain the refracted colour */ 

 float4 refractionColour = texCUBE(environmentMap, refractionVector); 

 
Next we perform a texture colour lookup using the tex2D function – this function 
performs a 2D texture lookup determining the fragment’s colour (the ‘2D’ suffix indicating 
the sampling of 2D sampler objects). It takes two parameters, the first being a sampler 
object and the second a texture coordinate set specifying the location to sample the 
object at. This function produces sampled data as output which is returned by the 
fragment program through the colour variable): 
 
 float4 textureColour = tex2D(lookupTextureColour, inputTextureCoordinates); 

 
Following this, the sampled texture colour is blended with the refraction colour using the 
lerp function. This function performs a linear interpolation, computing the average of 
two colour samples. Its first two parameters are the colour vectors to average, with its 
third parameter controlling the amount of averaging, for example, a weight of ‘0.5’ 
resulting in uniform averaging. Setting this weight to ‘0’ results in no reflection or 
refraction. Conversely, setting the weight to ‘1’ will lead to the program not considering 
the texture colour, thus producing a completely reflective or refractive object: 
 
 float4 blendedColour = lerp(textureColour, refractionColour, 0.5); 

Finally, this linearly interpolated blended colour is assigned to the output colour: 
 
 /* set the refracted colour */ 

 colour = blendedColour; 
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3.4.3 Reflection and Refraction Extended 
 

 
 
We will now further extend our previous implementation using a number of 
advancements to improve the overall reflection effect, thus resulting in even more 
realistic and lifelike images. 
 
Reflection, as mentioned, is the change in direction of a light ray where the light ray is 
reflected back into the originating material upon contact with the surface of another 
material. Perfect reflection is characterised by the angle of incidence, θ1, being equal to 
the angle of reflection, θ2. Figure 3.10 shows the perfect reflection of light. 
 

 
Figure 3.10 Perfect reflection (θ1 = θ2). 
We can subsequently compute the reflection vector, R, by taking the incident vector, I, 
and subtracting two times the surface normal, N, multiplied by the dot product between 
the surface normal and the incident light: 
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Our shader programs, as mentioned, utilise the refract Standard Library Function to 
calculate the refraction vector. This function takes an incident vector – a light ray as first 
parameter, and a surface normal as second parameter, subsequently returning the 
reflection vector of the incident ray. (The incident light wave is partially refracted and 
partially reflected.) 
 
The Fresnel effect was previously defined as a series of equations combining reflection 
and refraction to accurately simulate the reflection off and refraction through a surface. 
These equations are used to determine the amount of light reflected and refracted. 
However, using these equations directly is a bit excessive and we rather approximate 
the Fresnel equations into the equation fresnel bias + fresnel scale * pow(1 + 

dot(incident ray, surface normal), fresnel power) that can easily be incorporated into 
the previously presented reflection shader programs: 
 
FresnelReflectionCoefficient = 0.183673 + 0.816327 *  pow(1.0 - dot(incidentVector,  

 worldspaceVertexNormal), 5.0); 

 
This equation is based on the principle of Fresnel reflection; namely, that when the 
incident vector is parallel to the surface normal, then the majority of light is refracted with 
the reflection coefficient approaching ‘0’ (Fernando and Kilgard, 2003). As the angle 
between the incident vector and surface normal increases, so does the amount of light 
reflected. This Fresnel reflection coefficient is used in the calculation of the final colour 
contribution resulting from both reflection and refraction. The Fresnel reflection 
coefficient is simply used as the lerp function’s weight. 
 
Chromatic dispersion can be defined as an extension to the basic lighting model that 
deals with the fact that certain light colours are refracted more than others. Chromatic 
dispersion models the refraction of red, green and blue light. We can thus extend the 
single refracted ray lookup (as done previously) by using these refracted light rays for 
our environmental map lookup. Adding chromatic dispersion to our current reflection and 
refraction models result in the rainbow-like refraction of light – as the case with the 
dispersion of a light beam in a prism (Figure 3.11). 
 

 
Figure 3.11 Chromatic dispersion of light. 
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Our basic shader calculates the refracted world-space vector using the ratio of refraction 
and the incident and vertex normal: 
 
 /* calculate the refraction vector */ 

 float3 refractionVector = refract(incidentVector, worldspaceVertexNormal, 

  refractionRatio); 

 
Incorporating chromatic dispersion into our program requires three refraction vectors, 
one for each of the primary colours: 
 
 float3 refractionVectorRed = refract(incidentVector,  worldspaceVertexNormal, 

  refractionRatioRed); 

 

 float3 refractionVectorBlue = refract(incidentVector, worldspaceVertexNormal, 

  refractionRatioBlue); 

 

 float3 refractionVectorGreen = refract(incidentVector, worldspaceVertexNormal, 

  refractionRatioGreen); 

 
When the computational processing power is available, we extend our previous 
reflection implementation (using reflect, the library function) to incorporate a texture 
lookup of the object’s current colour, blending the sampled texture colour with the 
reflection colour – thus resulting in a much more realistic looking object. The previous 
shader is further extended to incorporate chromatic dispersion and the Fresnel effect. 
This program utilises the reflect and refract library functions to calculate the 
reflection vector and refraction vectors, respectively. 
 
A vertex shader program is used to calculate the reflection vector together with the 
chromatic dispersion vectors and the Fresnel reflection coefficient which will be sent to a 
fragment shader.  
 
The first step is to specify the name of the vertex program’s entry function, 
main_vertex that has the following signature: 
 
void main_vertex(float4 objectspaceVertexPosition : POSITION, 

  float3 objectspaceVertexNormal : NORMAL, 

  float2 inputTextureCoordinates : TEXCOORD0, 

 

  out float fresnelReflectionCoefficient: COLOR, 

  out float4 outputVertexPosition : POSITION, 

  out float3 reflectionVector : TEXCOORD0, 

  out float3 refractionVectorRed : TEXCOORD1, 

  out float3 refractionVectorBlue : TEXCOORD2, 
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  out float3 refractionVectorGreen : TEXCOORD3, 

 

  /* parameters supplied by the application program */ 

  uniform float3 pointOfView, 

  uniform float4x4 modelToWorldTransformation, 

  uniform float4x4 modelviewProjection, 

  uniform float3 refractionRatioRed, 

  uniform float3 refractionRatioBlue, 

  uniform float3 refractionRatioGreen) 

 
In the body of this function, we start by calculating the clip-space position: 
 
 /* transform the vertex position into homogeneous clip-space coordinates */ 

 outputVertexPosition = mul(modelviewProjection, objectspaceVertexPosition); 

 
Next the input texture coordinates are assigned to the output texture coordinates: 
 
 /* assign the input texture coordinates to the output texture coordinates */ 

 outputTextureCoordinates = inputTextureCoordinates; 

 
Reflection and environmental maps are defined in terms of world space coordinates. We 
must thus, as discussed previously, transform the normal and vertex position from object 
space to world space by multiplying both of them by the 
modelToWorldTransformation matrix. This transformation is required since we wish 
to calculate the reflection vector in terms of world space coordinates. This transformation 
is done as follows: 
 
 /* transform the vertex position and normal to world space coordinates */ 

 float3 worldspaceVertexPosition = mul(modelToWorldTransformation,  

   objectspaceVertexPosition); 

 float3 worldspaceVertexNormal = mul(modelToWorldTransformation, 

  objectspaceVertexNormal); 

 

 /* normalise the vertex normal */ 

 worldspaceVertexNormal = normalize(worldspaceVertexNormal); 

 
The final operation is to calculate both the incident and reflection vectors. The incident 
vector is the vector traced from the point-of-view to the vertex. The incident vector is 
calculated using simple subtraction: 
 
 /* calculate the incident light vector */ 

 float3 incidentVector = worldspaceVertexPosition – pointOfView; 
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Using the incident and vertex normal, we can calculate the reflected world-space vector: 
 
 /* calculate the reflection vector */ 

 float3 reflectionVector = reflect(incidentVector, worldspaceVertexNormal); 

 

 /* normalise the incident Vector */ 

 incidentVector = normalize(incidentVector); 

 
The next step is to calculate the Fresnel reflection coefficient via our previously listed 
approximation: 
 
 fresnelReflectionCoefficient = 0.183673 + 0.816327 *  

  pow(1.0 - dot(incidentVector,  

  worldspaceVertexNormal), 5.0); 

 
We lastly calculate the chromatic dispersion refraction vectors (one for each of the 
primary colours): 
 
 float3 refractionVectorRed = refract(incidentVector,  worldspaceVertexNormal, 

  refractionRatioRed); 

 

 float3 refractionVectorBlue = refract(incidentVector, worldspaceVertexNormal, 

  refractionRatioBlue); 

 

 float3 refractionVectorGreen = refract(incidentVector,worldspaceVertexNormal, 

  refractionRatioGreen); 

 
We now define a fragment shader program that uses the calculated Fresnel reflection 
coefficient, reflection vector and refraction vectors to retrieve a cube map texture – the 
environmental map. Our shader also mixes the environment map lookup result with the 
object’s texture colour. This is done via a texture lookup of the object’s current colour 
and the blending of this sampled texture colour with the reflection and refraction colours 
– thus resulting in a highly accurate lighting model. 
 
The first step is to specify the name of the fragment program’s entry function, 
main_fragment in our sample: 
 
void main_fragment(float3 reflectionVector : TEXCOORD0, 
  out float3 refractionVectorRed : TEXCOORD1, 

  out float3 refractionVectorBlue : TEXCOORD2, 

  out float3 refractionVectorGreen : TEXCOORD3, 

  float fresnelReflectionCoefficient: COLOR, 
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  out float4 outputColour : COLOR, 

 

  /* parameter supplied by the application program */ 

  uniform samplerCUBE environmentMap) 

{ 

 
The fragment program uses the interpolated reflection and refraction vectors to 
determine the environment map’s reflected colour. We use the texCUBE texture lookup 
function to do this. This function takes two parameters; a cube map and a three 
component texture coordinate set – the reflection vector: 
 
 /* obtain the reflection colour */ 

 float4 reflectionColour = texCUBE(environmentMap, reflectionVector); 

 

 /* obtain the refraction colour */ 

 float4 refractionColour.r = texCUBE(environmentMap, refractionVectorRed).r; 

 float4 refractionColour.b = texCUBE(environmentMap, refractionVectorBlue).b; 

 float4 refractionColour.g = texCUBE(environmentMap, refractionVectorGreen).g; 

 
Following this, we blend the sampled refraction texture colour with the reflection colour 
using the lerp function. The refraction colour’s weight, given as the function’s third 
parameter, is set to the calculated Fresnel reflection coefficient: 
 
 float4 blendedColour = lerp(textureColour,  

  reflectionColour,  

  fresnelReflectionCoefficient); 

 
We finally assign this linearly interpolated blended colour to the output colour: 
 
 /* set the blended colour */ 

 colour = blendedColour; 
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3.5 Adding High Dynamic Range (HDR) Lighting 
 

 
 
High dynamic range lighting, also known as high dynamic range rendering (HDRR), is 
the rendering of lighting using more than 256 colour shades for each of the primary 
colours, namely, the red, green and blue components. Thus, we can, thanks to this 
technique, use 16 to 32-bit colours per RGB channel as opposed to the normal 8 – 
eliminating luminance and pixel intensity being clamped to a [0, 1] range. This allows our 
engine the display of light sources over 100 000 times brighter than normally possible.  
 
HDR’s wide colour range leads to the effect of bright lights appearing very bright, with 
dark areas looking even darker at the same time. HDR lighting results in the full visibility 
of both very dark and fully lit areas; unlike normal lighting, or low dynamic range lighting, 
where details are hidden in dark scenes when contrasted by a fully lit area. Using this 
form of lighting generally leads to a more vibrant looking scene. Figure 3.12 shows an 
example of HDR from Valve Software’s Half-Life 2: Lost Coast technology showcase.  
 

 
Figure 3.12 High dynamic range lighting. 
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HDR lighting generally makes use of two techniques, namely, tone mapping and the 
bloom effect. Tone mapping is used to approximate real-world luminance, which has an 
extremely high dynamic range, to a computer monitor which has a limited range of 
luminance values. The bloom effect basically blends light sources beyond their natural 
edges – causing the edges of a bright light source to overlap nearby geometry, thus 
creating the illusion of an even brighter light. 
 
Floating-point textures are normally used for the storage of HDR lighting colour 
information. This colour data can also be encoded using integer textures as discussed 
by the DirectX 10 SDK’s “HDRFormats10” sample. The main reason for using floating-
point textures is due to the pixel shader clamping integer textures to the range [0, 1]. 
Floating-point textures are not clamped at all and can thus contain a wide range of 
values. 
 
The following steps outline the process of rendering a scene using HDR lighting: 
 

1) Load the HDR floating-point values into a buffer (a floating-point render 
target). 

2) Apply the Bloom effect. 
a. Down-sample the buffer to 1/4th its original size. This is required so 

that the bloom effect is only ranged from edge pixels to neighbouring 
ones. 

b. Blur the image both vertically and horizontally (thus averaging the 
pixels and consequently creating the bloom effect by bleeding colour 
from edge- to neighbouring pixels). 

3) Combine the blurred and original texture. 
4) Tone map the composed texture. 

 
We start by reading the red, green and blue components of our HDR floating-point 
texture – such as images stored in the radiance HDR (“.hdr” or “.pic”) file format. This 
image will be used to texture a simple quadrilateral. This quadrilateral will in turn be 
illuminated using high dynamic range lighting. The RGB components of our HDR 
floating-point texture are stored as an array of floating-point values. These RGB floating-
point values are in turn set to a floating-point render target. 
 
Our first HLSL shader is used to down-sample the floating-point render target to 1/4th its 
original size. We start by declaring the pixel offset as used in our vertex shader, also 
declaring a structure for the storage of vertex data: 
 
/* pixel offset = 1 / 1280 and 1 / 1024 */ 

float2 GlobalPixelOffset = float2(0.00078125, 0.000976562); 

 

struct PIXELSHADER_INPUT 
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{ 

  float4 Loc:  POSITION; 

  float2 Texture:  TEXCOORD0; 

}; 

 
The associated vertex shader starts by transforming the input vertex position, defined in 
object space, to projection space. This is done by multiplying the input vertex position, 
IN.Loc by a world matrix. The next transformation multiplies this transformed vertex 
position, output.Loc by a view matrix, resulting in a world space to view space 
transformation. The final transformation takes this view space vertex position and 
multiplies it by a projection matrix to transform the vertex from view space to projection 
space. The shader’s final routine outputs the texture coordinates: 
 
/* vertex shader */ 

PIXELSHADER_INPUT DownSamplerVertexShader(float3 IN: POSITION,  
  float2 IN_TEXTURE: TEXCOORD0) 
{ 

  PIXELSHADER_INPUT output; 
 

 /* transforms the input vertex position */ 

 output.Loc = mul(IN.Loc, WorldMatrix); 

 output.Loc = mul(output.Loc, ViewMatrix); 

 output.Loc = mul(output.Loc, ProjectionMatrix); 

 

   output.Texture = IN_TEXTURE + (GlobalPixelOffset/2); 
 

   return output; 

} 

 
In the case of our pixel shader we define a sampler (an external object that can be 
sampled, such as a texture) specifying the manner in which the texture will be sampled. 
We simply assign the original render target texture (stored in the buffer where the video 
card draws pixels for a scene that is being rendered) to a new one: 
 
texture sampledTexture; 

 

SamplerState samplingMethod 

{ 

    Texture = sampledTexture; 

}; 
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The RGB components of the HDR values are only returned if they are in fact HDR 
values, thus ignoring all low dynamic range lighting values – the function OnlyHDR, used 
by the pixel shader, is declared as follows: 
 
float4 OnlyHDR(float4 colour) 

{ 

   if(colour.r > 1.0f && colour.g > 1.0f && colour.b > 1.0f) 

   { 

    return colour; 

   } 

   else 

  float4 new_colour = {0.0f, 0.0f, 0.0f, 0.0f}; 
    return new_colour; 
} 

 
The pixel shader performs a texture colour lookup using the tex2D function, 
subsequently rendering this texture onto the resized render target, finally outputting the 
RGB components of the HDR values only if they are in fact HDR values: 
 
float4 DownSamplerPixelShader(float2 IN_TEXTURE: TEXCOORD0) : COLOR0 
{ 

 float4 colour = tex2D(samplingMethod, IN_TEXTURE); 

  float4 sampledColour = OnlyHDR(colour); 

 return sampledColour; 

} 

 
Following this we need to blur the image both vertically and horizontally (thus averaging 
the pixels and consequently creating the bloom effect by bleeding colour from edge- to 
neighbouring pixels). This is done using a simple Gaussian effect, the result of which is 
shown in Figure 3.13. 
 

 
Figure 3.13 (b) Gaussian blur of (a), a simple image. 
 
We start by declaring a sampler assigning the original render target texture to a new 
one: 
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texture blurredTexture; 

 

SamplerState blurredSampler 

{ 

    Texture = blurredTexture; 

}; 

 
A texture sampler for the original non-blurred texture, originalTexture, is also declared: 
 
Texture2D originalTexture; 

 

SamplerState originalSampler 

{ 

    Texture = originalTexture; 

}; 

 
Next a pixel shader to do the actual Gaussian blur is defined. The XOffset variable is 
the texel width and the YOffset variable the texel height. For example, an image of 256 
by 512 pixels will have a XOffset of 1/256 = 0.00390625 and a YOffset of 1/512 =  
0.001953195: 
 
float4 GaussianBlurPixelShader(float2 IN_TEXTURE: IN_TEXTURE) : COLOR0 
{ 

 float4 colour = tex2D(blurredSampler, IN_TEXTURE); 
 

 /* sample eight pixels at each side */ 

  for(int pixel_number = 1; pixel_number <= 8; pixel_number++) 
  { 

 /* blur in the x-axis direction */ 

     colour += tex2D(blurredSampler, IN_TEXTURE + (XOffset* pixel_number)) *  
  GaussianWeights[pixel_number]; 
    

 colour += tex2D(blurredSampler, IN_TEXTURE – (XOffset * pixel_number)) *  
  GaussianWeights[pixel_number]; 
 

 /* blur in the y-axis direction */ 

     colour += tex2D(blurredSampler, IN_TEXTURE + (YOffset * pixel_number)) *  
  GaussianWeights[pixel_number]; 
    

 colour += tex2D(blurredSampler, IN_TEXTURE – (YOffset * pixel_number)) *  
  GaussianWeights[pixel_number]; 
  } 

  return colour; } 
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The final pixel shader combines the blurred and original textures, applying a tone 
mapping operation to the result. It starts by performing two texture colour lookups using 
declared samplers for both, one for the original, originalSampler, and another for 
the blurred image, blurredSampler. It then performs a linear interpolation, computing 
the average of the two colour samples. Following this, we calculate the distance of the 
current pixel to the centre of the screen. As discovered through experimentation (by 
tweaking the values until “it looked right”), this value to the power of 3.8 is then multiplied 
by the linearly interpolated colour and an exposure value, the subsequent result to the 
power of 0.5 being our final HDR pixel colour: 
 
float4 ToneMappingPixelShader(float2 IN_TEXTURE: TEXCOORD0) : COLOR0 
{ 

  float4 nonBlurredTexture = tex2D(originalSampler, IN_TEXTURE); 
  float4 gaussianTexture = tex2D(blurredSampler, IN_TEXTURE); 
  float4 colour = lerp(nonBlurredTexture, gaussianTexture, 0.5f); 

  float pixelDistance  = 1 - dot(IN_TEXTURE – 0.5f,  IN_TEXTURE – 0.5f); 
 colour = pow(colour * pow(pixelDistance, 3.8) * exposure, 0.5); 

  return colour; 

} 

 
Using an exposure ranging from “0.0” to “1.5” will generally result in an under exposed 
image while an exposure of “2.0” to “4.0” will result in a properly exposed image. 
Increasing the exposure even more will lead to an overexposed image. 
 
 
3.6 Shadows 
 
Real-time shadow generation contributes heavily towards the realism and ambience of 
any scene being rendered. Research dealing with the calculation of shadows has been 
conducted since the late 1960s and has picked up great momentum with the evolution of 
high-end dedicated graphics hardware. Shadows are produced by opaque or semi-
opaque objects obstructing light from reaching other objects or surfaces. A shadow is a 
two-dimensional projection of at least one object onto another object or surface. The 
size of a shadow is dependent on the angle between the light vector and light-blocking 
object. The intensity of a shadow is in turn influenced by the opacity of the light-blocking 
object. An opaque object is completely impenetrable to light and will thus cast a darker 
shadow than a semi-opaque object. The number of light sources will also affect the 
number of shadows in a scene; with the darkness of a shadow intensifying where 
multiple shadows overlap. Figure 3.14 illustrates shadow generation, specifically the 
implementation of stencil shadow volumes – a popular shadow rendering technique.  
 
Please note, the MSc dissertation, An Empirically Derived System for High-Speed 
Shadow Rendering (Rautenbach, 2008), offers a detailed look at shadow rendering and 
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that much of the information in this section has been sourced from it. Also, Appendix D 
presents the theory behind numerous real-time shadow rendering algorithms and 
techniques with the particular focus being on the rendering of shadows by means of 
stencil shadow volumes and depth stencil testing. The sections below present the 
implementation details of various shadow rendering algorithms (as used in the 
presented rendering engine), specifically the stencil shadow volume algorithm, the 
shadow mapping algorithm and a number of hybrid approaches such as McCool’s 
shadow volume reconstruction using depth maps, Chan and Durand’s hybrid algorithm 
for the efficient rendering of hard-edged shadows, Thakur et al’s elimination of various 
shadow volume testing phases and Rautenbach et al’s shadow volumes, hardware 
extensions and spatial subdivision approach as well as other documented 
enhancements. It specifically focuses on implementation details such as shadow volume 
and shadow map construction, the counting of front- and back-facing surfaces and the 
creation of silhouette and cap triangles, etc.  
 

 
Fig 3.14 Example of stencil shadowing – note the overlapping shadows in the first 
image. 
 
 
3.6.1 Stencil Shadow Volumes 
 
Before looking at the stencil shadow volume implementation, it is necessary to discuss 
the stencil buffer and the depth-stencil testing process; two concepts crucial for the 
implementation of stencil shadow volumes. Figure 3.15 shows a shadow rendered by 
means of stencil shadow volumes. 
 

 

Figure 3.15 Rendering a shadow by 
means of stencil shadow volumes (using 
one light source and three-dimensional 
mesh) – accurately cropped and skewed 
to fit the surrounding area. 
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The Stencil Buffer 
 
The stencil buffer is a buffer located on the 3D accelerator/video card that controls the 
rendering of selected pixels. Stencilling is the associated per-pixel test controlling the 
stencil value of each pixel via the addition of several bit-planes (one byte per pixel). 
These bit-planes, in association with depth-planes and colour-planes, allow for the 
storage of extra data – specifically the pixel’s stencil value in the case of the stencil 
buffer. Stencilling is thus the process of selecting certain pixels during one rendering 
pass and subsequently manipulating them during another. 
 
Stencilling can thus be described as the processes of defining a mask via the stencil 
buffer to indicate shadowed and lit pixel areas. With this information we apply the stencil 
buffer mask to update all the lit pixels, thus rendering shadows in the process. The 
stencil buffer allows for the manipulation of individual pixels, a property commonly used 
to create extremely accurate shadows. Use of the stencil buffer is, however, not limited 
to only the generation of shadows; it is also extensively used for reflections and has 
been widely supported since NVIDIA’s RIVA TNT and the ATI RAGE 128 (circa 1998) 
(Bell, 2003).  
 
It is important to note the close relation between the stencil buffer and depth buffer. 
These two buffers are firstly located in physical proximity to each other (both commonly 
share the same physical area in the graphics hardware’s memory). Secondly, the depth 
buffer is required to control whether a certain pixel’s stencil value is increased or 
decreased based on the result of a depth test (pass/fail). The stencil buffer stores a 
stencil value for each pixel, similarly to the depth buffer storing the depth value of every 
pixel – both the stencil buffer and depth buffer values are required for rejecting or 
accepting rasterized fragments (Rossignac and Requicha, 1986). 
 
 
Enabling Depth-Stencil Testing  
 
Before initialising the stencil buffer it is important to set the depth stencil format to 
DXGI_FORMAT_D24_UNORM_S8_UINT (previously D3DFMT_S8D24 in DirectX 9). This 
DirectX Graphics Infrastructure (DXGI) component is responsible for defining the 
memory layout of each pixel making up an image. 
DXGI_FORMAT_D24_UNORM_S8_UINT is simply a DXGI enumeration type required by 
the DXUTDeviceSettings DXUT (Direct3D Utility Framework) structure. DXUT is a 
high-level framework built on top of Direct3D and it provides a series of functions, 
callbacks, structures, constants and enumerations that simplifies the creation of a 
Direct3D device, the specification of windows and the handling of Windows messages.  
 
We set the AutoDepthStencilFormat member of the DXUTDeviceSettings 
structure as follows: 
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DXUTDeviceSettings* pDXUTDeviceSettings; 

 

pDXUTDeviceSettings->d3d10.AutoDepthStencilFormat = DXGI_FORMAT_D24_UNORM_S8_UINT; 
 
It is customary to clear the depth-stencil buffer at the start of the rendering process (to 
erase previous changes). This is accomplished via the ClearDepthStencilView 
ID3D10Device (pID3D10Device) interface. ClearDepthStencilView clears the 
depth stencil using four parameters. Its first parameter is a pointer to the depth stencil 
we wish to clear, the second is a clear flag indicating the parts of the buffer to clear 
(D3D10_CLEAR_STENCIL for the stencil buffer and D3D10_CLEAR_DEPTH for the depth 
buffer), the third is the value we are clearing the depth buffer with (any value between ‘0’ 
and ‘1’) with the fourth parameter the value to clear the stencil buffer with. To initialise 
the first parameter (the depth stencil to be cleared), we simply call the 
DXUTGetD3D10DepthStencilView interface, resulting in a pointer to the 
ID3D10DepthStencilView interface for the current Direct3D 10 device: 
 
ID3D10DepthStencilView* pDepthStencilView = DXUTGetD3D10DepthStencilView(); 

 

pID3D10Device->ClearDepthStencilView(pDepthStencilView, D3D10_CLEAR_STENCIL, 1.0, 0); 
 
In addition to clearing the stencil buffer, we also have to clear the depth buffer. The 
exact same process is used with ClearDepthStencilView’s second parameter being 
set to D3D10_CLEAR_DEPTH: 
 

pID3D10Device->ClearDepthStencilView(pDepthStencilView, D3D10_CLEAR_DEPTH, 1.0, 0); 
 
The depth test’s result is also needed in addition to that of the stencil test. As previously 
mentioned, the depth test result is required for controlling whether a certain pixel’s 
stencil value is increased or decreased. If the depth test passes then the tested pixel’s 
depth value is overwritten by that of the incoming fragment. Both the depth test and 
stencil test results are combined for certain effects. The stencil test can simply fail, 
requiring no additional information, however, when the stencil test passes then the depth 
test can either fail or pass. 
 
We can enable or disable both depth testing and stencil testing via the first 
(DepthEnable) and fourth (StencilEnable) parameters of Direct3D 10’s 
D3D10_DEPTH_STENCIL_DESC structure. Furthermore, this structure allows us to 
specify the depth write mask (which controls the area of the depth-stencil buffer) that 
can be modified by depth data (DepthWriteMask), the depth function for comparing 
depth data against current depth data (DepthFunc), the stencil read mask specifying 
the area of the depth-stencil buffer for the reading of stencil data (StencilReadMask), 
the stencil write mask identifying the writeable depth-stencil buffer area 
(StencilWriteMask) and the stencil operations for both front-facing (FrontFace) and 
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back-facing pixels (BackFace). These stencil testing operations (defined using the 
D3D10_DEPTH_STENCILOP_DESC structure) include the state when stencil testing fails, 
stencil testing passes and depth testing fails or when both stencil testing and depth 
testing passes.  
 
The D3D10_DEPTH_STENCIL_DESC and D3D10_DEPTH_STENCILOP_DESC structures 
are defined as follows in the d3d10.h header file: 
 
typedef struct D3D10_DEPTH_STENCIL_DESC { 
    BOOL DepthEnable; 

    D3D10_DEPTH_WRITE_MASK DepthWriteMask; 
    D3D10_COMPARISON_FUNC DepthFunc; 
    BOOL StencilEnable; 

    UINT8 StencilReadMask; 

    UINT8 StencilWriteMask; 

    D3D10_DEPTH_STENCILOP_DESC FrontFace; 
    D3D10_DEPTH_STENCILOP_DESC BackFace; 
} D3D10_DEPTH_STENCIL_DESC; 
 

typedef struct D3D10_DEPTH_STENCILOP_DESC { 
    D3D10_STENCIL_OP StencilFailOp; 
    D3D10_STENCIL_OP StencilDepthFailOp; 
    D3D10_STENCIL_OP StencilPassOp; 
    D3D10_COMPARISON_FUNC StencilFunc; 
} D3D10_DEPTH_STENCILOP_DESC; 
 
The default values, including the alternatives, for the members of the 
D3D10_DEPTH_STENCIL_DESC structure are given in the table below (Microsoft, 
2011): 
 
Depth-stencil state 

TRUE (default) DepthEnable 

FALSE (alternative) 

D3D10_DEPTH_WRITE_MASK_ALL (default) 

(enables writing to the depth-stencil buffer) 

DepthWriteMask 

D3D10_DEPTH_WRITE_MASK_ZERO (alternative) 

(disables writing to the depth-stencil buffer) 

D3D10_COMPARISON_LESS (default) 

(the test passes if the new data < existing data) 

D3D10_COMPARISON_NEVER (alternative) 

(no depth test is performed) 

DepthFunc 

D3D10_COMPARISON_EQUAL (alternative) 

 
 
 



 94

(the depth test passes if the new data == existing data) 

D3D10_COMPARISON_LESS_EQUAL (alternative) 

(the depth test passes if new data <= existing data) 

D3D10_COMPARISON_GREATER (alternative) 

(the depth test passes if new data > existing data) 

D3D10_COMPARISON_NOT_EQUAL (alternative) 

(the depth test passes if new data != existing data) 

D3D10_COMPARISON_GREATER_EQUAL (alternative) 

(the depth test passes if new data >= existing data) 

D3D10_COMPARISON_ALWAYS (alternative) 

(the depth test is always performed and always passes) 

FALSE (default) StencilEnable 

TRUE (alternative) 

StencilReadMask D3D10_DEFAULT_STENCIL_READ_MASK (default) 

StencilWriteMask D3D10_DEFAULT_STENCIL_WRITE_MASK 

Table 3.1 Default and alternative depth-stencil states. 
 
Table 3.2 lists the D3D10_DEPTH_STENCILOP_DESC structure’s possible stencil 
operations. These operations can be specified depending on the outcome of the stencil 
test. The D3D10_DEPTH_STENCILOP_DESC structure is a member of depth-stencil 
description which is specified using the D3D10_DEPTH_STENCIL_DESC structure. 
 

Stencil Operation Description 

D3D10_STENCIL_OP_KEEP Do not modify the existing stencil buffer data. 

D3D10_STENCIL_OP_ZERO Reset the stencil buffer data to zero. 

D3D10_STENCIL_OP_REPLACE Set the stencil buffer data to a reference value. 

D3D10_STENCIL_OP_INCR_SAT Increment the stored stencil buffer value by 1 (won’t exceed the 

maximum clamped value). 

D3D10_STENCIL_OP_DECR_SAT Decrement the stored stencil buffer value by 1 (won’t decrease below 0). 

D3D10_STENCIL_OP_INVERT Do a bitwise invert of the sorted stencil buffer data. 

D3D10_STENCIL_OP_INCR Increment the stored stencil buffer value by 1 

(wrapping the result if required) 

D3D10_STENCIL_OP_DECR Decrement the stored stencil buffer value by 1 

(wrapping the result if required) 

Table 3.2 Possible stencil operations. 
 
A depth-stencil state (depthstencilDesc), specifying the details of the depth and 
stencil testing operations, is defined by first initialising the depth testing members, 
namely, DepthEnable, DepthWriteMask and DepthFunc: 
 
D3D10_DEPTH_STENCIL_DESC depthstencilDesc; 
 

 
 
 



 95

depthstencilDesc.DepthEnable = true; 

depthstencilDesc.DepthWriteMask = D3D10_DEPTH_WRITE_MASK_ALL; 
depthstencilDesc.DepthFunc = D3D10_COMPARISON_LESS; 
 
Following the above initialisation, the members required by the stencil test 
(StencilEnable, StencilReadMask and StencilWriteMask) must be initialised: 
 
depthstencilDesc.StencilEnable = true; 

depthstencilDesc.StencilReadMask = 0xFFFFFFFF; 

depthstencilDesc.StencilWriteMask = 0xFFFFFFFF; 

 
Next we have to setup the stencil operations for both back-facing and front-facing pixels 
via the D3D10_DEPTH_STENCILOP_DESC structure’s members. For example, if 
StencilFailOp is set to D3D10_STENCIL_OP_KEEP and the stencil test fails then the 
current stencil buffer value is saved. Similarly, if StencilDepthFailOp is set to 
D3D10_STENCIL_OP_DECR with a failing stencil test, then the stencil buffer value is 
decremented by 1. Alternatively, the passing functions such as StencilPassOp only 
perform a stencil buffer operation on a passing stencil test and can have a different 
result depending on whether a pixel is back-facing or front-facing: 
 
depthstencilDesc.BackFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; 
depthstencilDesc.BackFace.StencilDepthFailOp = D3D10_STENCIL_OP_DECR; 
depthstencilDesc.BackFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; 
depthstencilDesc.BackFace.StencilFunc = D3D10_COMPARISON_ALWAYS; 
depthstencilDesc.FrontFace.StencilFailOp = D3D10_STENCIL_OP_KEEP; 
depthstencilDesc.FrontFace.StencilDepthFailOp = D3D10_STENCIL_OP_INCR; 
depthstencilDesc.FrontFace.StencilPassOp = D3D10_STENCIL_OP_KEEP; 
depthstencilDesc.FrontFace.StencilFunc = D3D10_COMPARISON_ALWAYS; 

 
Next the depth stencil state (encapsulating all the above defined information for the 
pipeline stage determining the visible pixels) is set. This is done via the 
CreateDepthStencilState ID3D10Device interface. This interface takes two 
parameters, the first a pointer to the depth-stencil state description 
(D3D10_DEPTH_STENCIL_DESC) structure and the second, the address of the depth-
stencil state object (ID3D10DepthStencilState): 
 
ID3D10Device * pID3D10Device; 

ID3D10DepthStencilState * pDepthStencilState; 

 

pID3D10Device->CreateDepthStencilState (depthstencilDesc, &pDepthStencilState); 

 
With the depth stencil state set, we still have to create a Direct3D depth-stencil buffer 
resource. This can be accomplished using a texture resource. Texture resources can be 
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described as structured collections of data – specifically texture data. These structured 
data collections, as opposed to buffers, allow for the filtering of textures via texture 
samplers; with the exact filtering method determined by the texture resource type. 
Specifically, to create a depth-stencil buffer we require a texture resource (defined using 
the ID3D10Texture2D interface) consisting of a two-dimensional grid of texture 
elements (specified via the D3D10_TEXTURE2D_DESC structure describing a two-
dimensional texture resource): 
 
ID3D10Texture2D* pDepthStencilBuffer = NULL; 

D3D10_TEXTURE2D_DESC depthResource; 
 
The members of the texture resource (D3D10_TEXTURE2D_DESC) are initialised as 
follows, with the BindFlags member set to the D3D10_BIND_DEPTH_STENCIL 
enumeration to identify the texture resource as a depth-stencil resource. Refer to the 
DirectX SDK documentation (Microsoft, 2011) for a description of the 
D3D10_TEXTURE2D_DESC structure and each of its members:  
 
depthResource.Width = backBufferSurfaceDescription.Width; 

depthResource.Height = backBufferSurfaceDescription.Height; 

depthResource.MipLevels = 1; 

depthResource.ArraySize = 1; 

depthResource.Format = pDeviceSettings -> d3d10.AutoDepthStencilFormat; 

depthResource.SampleDesc.Count = 1; 

depthResource.SampleDesc.Quality = 0; 

depthResource.Usage = D3D10_USAGE_DEFAULT; 
depthResource.BindFlags = D3D10_BIND_DEPTH_STENCIL; 
depthResource.CPUAccessFlags = 0; 

depthResource.MiscFlags = 0; 

 
The ID3D10Device method, CreateTexture2D, is used to create a two-dimensional 
array – the depth-stencil buffer. This method takes three parameters where the first 
parameter is a pointer to the above defined two-dimensional texture resource structure 
(D3D10_TEXTURE2D_DESC), the second is a pointer to a texture subresource (‘NULL’ in 
this case) and the third is the address of a pointer to the specified texture 
(pDepthStencilBuffer): 
 
pID3D10Device->CreateTexture2D(&depthResource, NULL, &pDepthStencilBuffer); 

 
The final step in configuring depth and stencil functionality is to bind the previously 
defined depth and stencil data to the output-merger stage. The output-merger stage is 
the final pipeline step dealing with pixel visibility. This step controls pixel visibility by 
incorporating pixel shader data with depth and stencil testing results. We start by binding 
the depth stencil state, pDepthStencilState, to the output-merger stage using the 
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OMSetDepthStencilState method. This method takes two parameters with the first 
being a pointer to the depth-stencil state interface (pDepthStencilState). This depth-
stencil state interface was previously created using the CreateDepthStencilState 
ID3D10Device interface. The second parameter, an unsigned integer, is the reference 
value against which the depth-stencil test is to be done: 
 
pID3D10Device->OMSetDepthStencilState(pDepthStencilBuffer, 1); 

 
Next the view mechanism is used to describe how the Direct3D depth-stencil resource 
will be handled (viewed) by the pipeline. In this case we Direct3D’s “depth stencil view”, 
thus defining the resource as a depth stencil. The 
D3D10_DEPTH_STENCIL_VIEW_DESC structure, given here, is used for this purpose 
and is contained within the DirectX 10 d3d10.h header file: 
 
typedef struct D3D10_DEPTH_STENCIL_VIEW_DESC { 
    DXGI_FORMAT Format; 
    D3D10_DSV_DIMENSION ViewDimension; 
    union  

 { 

        D3D10_TEX1D_DSV Texture1D; 
        D3D10_TEX1D_ARRAY_DSV Texture1DArray; 
        D3D10_TEX2D_DSV Texture2D; 
        D3D10_TEX2D_ARRAY_DSV Texture2DArray; 
        D3D10_TEX2DMS_DSV Texture2DMS; 
        D3D10_TEX2DMS_ARRAY_DSV Texture2DMSArray; 
    }; 

} D3D10_DEPTH_STENCIL_VIEW_DESC; 
 
The first member, Format, controls the data resource interpretation and it can range 
from a typeless, unsigned-interger or signed-interger to floating-point format. The given 
source code implementation uses the DXGI_FORMAT_D32_FLOAT format (a 32-bit 
floating-point format). The second member, ViewDimension, is used to determine the 
depth-stencil resource access method. This member is set to the 
D3D10_DSV_DIMENSION_TEXTURE2D constant, indicating the depth-stencil resources 
access type as a two-dimensional texture (due to the depth-stencil resource being 
defined as a two-dimensional texture resource). 
 
Only one member contained within the union are to be initialised. Texture1D is 
initialised by setting the D3D10_TEX1D_DSV structure’s MipSlice member to an 
integer value when a one-dimensional texture is required as a depth-stencil view (‘0’ 
indicates the first mipmap level in the depth-stencil view). Texture1DArray specifies 
the texture and related mipmap level when a one-dimensional texture array is required 
as a depth-stencil view. This member is of the type D3D10_TEX1D_ARRAY_DSV and 
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requires the initialisation of three members, namely, MipSlice (the depth-stencil view’s 
mipmap level, with ‘0’ indicating the first mipmap level in the depth-stencil view), 
FirstArraySlice (the texture, stored in the array, to use in the depth-stencil view) 
and ArraySize (the number of textures, stored in the array, to use in the depth-stencil 
view). Similarly, Texture2D is initialised by setting the D3D10_TEX2D_DSV structure’s 
MipSlice member to an integer value when a two-dimensional texture is required as a 
depth-stencil view (‘0’ indicates the first mipmap level in the depth-stencil view). 
Texture2DArray specifies the texture and related mipmap level when a two-
dimensional texture array is required as a depth-stencil view. This member is of the type 
D3D10_TEX2D_ARRAY_DSV, and just as with Texture1DArray requires the 
initialisation of three members, namely, MipSlice (the depth-stencil view’s mipmap 
level, with ‘0’ indicating the first mipmap level in the depth-stencil view), 
FirstArraySlice (the texture, stored in the array, to use in the depth-stencil view) 
and ArraySize (the number of textures, stored in the array, to use in the depth-stencil 
view). The final two members, Texture2DMS and Texture2DMSArray, are initialised 
when using a multisampled two-dimensional texture and a multisampled two-
dimensional texture array as a depth-stencil respectively. The D3D10_TEX2DMS_DSV 
structure’s UnusedField_Nothing ToDefine member can be initialised to any 
integer value with the D3D10_TEX2DMS_ARRAY_DSV structure having two members, 
namely, FirstArraySlice (the texture, stored in the array, to use in the depth-stencil 
view) and ArraySize (the number of textures, stored in the array, to use in the depth-
stencil view). The following code sample defines the depth stencil resource as a view: 
 
D3D10_DEPTH_STENCIL_VIEW_DESC depthstencilviewDescription; 
 

depthstencilviewDescription.Format = DXGI_FORMAT_D32_FLOAT; 
depthstencilviewDescription.ResourceType = D3D10_RESOURCE_TEXTURE2D; 
 

depthstencilviewDescription.Texture2D.FirstArraySlice = 0; 

depthstencilviewDescription.Texture2D.ArraySize = 1; 

depthstencilviewDescription.Texture2D.MipSlice = 0; 

 
Following this, we simply have to create and bind the depth stencil view to the output-
merger stage using the CreateDepthStencilView and OMSetRenderTargets 
ID3D10Device interfaces. The CreateDepthStencilView method, creating the 
depth-stencil view, takes three parameters, namely a pointer to an ID3D10Texture2D 
object (pDepthStencilBuffer) used for storing the resource data, a pointer to the 
D3D10_DEPTH_STENCIL_VIEW_DESC structure and the address of a pointer to an 
ID3D10DepthStencilView interface (pDepthStencilView) used for controlling the 
texture resource utilised during the depth-stencil test: 
 
ID3D10DepthStencilView* pDepthStencilView; 
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pID3D10Device->CreateDepthStencilView(pDepthStencilBuffer &depthstencilviewDescription,  

  &pDepthStencilView); 

 
The OMSetRenderTargets method binds this depth stencil view to the output-merger 
stage. It takes three parameters, with the first identifying the number of render targets, 
the second a pointer to a render target view array, and the third a pointer to the to the 
ID3D10DepthStencilView interface. A render target is written to by the output-
merger stage, containing the pixel colour information:  
 
ID3D10RenderTargetView* pRenderTargetView; 

 

pID3D10Device->OMSetRenderTargets(1, &pRenderTargetView, pDepthStencilView); 

 
The OMSetDepthStencilState ID3D10Device interface is used to update the 
depth stencil state. This update is performed by setting the output-merger stage’s depth-
stencil state. The OMSetDepthStencilState method takes two parameters with the 
first parameter a pointer to an ID3D10DepthStencilState interface 
(pDepthStencilState) and the second the reference value we are doing the depth-
stencil test against: 
 
pID3D10Device->OMSetDepthStencilState(pDepthStencilState, 0); 

 
The complete depth testing process (used to determine the pixels positioned closest to 
the camera) and stencil testing process (controlling, via a mask, which pixels to update) 
are outlined in Figure 3.16 and Figure 3.17, respectively.  
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Figure 3.16 The stencil testing process, 
 

Figure 3.17 The depth testing process. 
 

 
Implementing Stencil Shadow Volumes 
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The first step of a shadow volume implementation is to construct the shadow volume 
itself. This process starts with the calculation of silhouette edges followed by the 
generation of the shadow volume geometry. A shader is used to calculate the silhouette 
edges of an object with respect to a light source. The given geometry shader calculates 
the silhouette edges by determining the normal of each triangle face followed by the 
normals of the adjacent triangles. Thus, if the current triangle normal is facing the light 
source, with the adjacent triangle normal facing away, then we can flag their shared 
edge as a silhouette. 
 
The stencil shadow volume shader program starts with the declaration of three 
structures for the storage of vertex and normal coordinate parameters.  
 
struct VERTEXSHADER_INPUT 
{ 

    float4 Loc : POSITION; 

    float3 Norm : NORMAL; 

}; 

 

struct PIXELSHADER_OUTPUT 
{ 

    float4 Loc : SV_POSITION; 
}; 

 

struct GEOMETRYSHADER_INPUT 

{ 

 float4 Loc: POSITION; 

 float3 Norm : NORMAL; 

}; 

 
The first structure, VERTEXSHADER_INPUT, holds our vertex information as received 
from the Direct3D application and is used to pass input data to a vertex shader that 
transforms the input vertex position to clip space. It also transforms the input vertex 
normal to world space, finally returning the transformed vertex data via the 
GEOMETRYSHADER_INPUT structure:  
 
/* vertex shader for sending the vertex data to the shadow volume geometry shader */ 

GEOMETRYSHADER_INPUT ShadowVertexShader(VERTEXSHADER_INPUT IN) 
{ 

    GEOMETRYSHADER_INPUT output = (GEOMETRYSHADER_INPUT)0; 
 

    /* transforms the input vertex position to world space */ 

    output.Loc = mul(float4(IN.Loc,1), WorldMatrix); 
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    /* transforms the input vertex normal to world space */ 

    output.Norm = mul(IN.Norm, (float3x3)WorldMatrix); 

     

    return output; 

} 

 
Next a geometry shader is written to determine an object’s silhouette edges using 
groups of vertices, each group consisting of two shared vertices and one neighbouring 
or adjacent vertex. This shader function also receives an un-normalised triangle normal 
(normal) as input. It returns a TriangleStream containing the extruded shadow 
volume as a series of triangles. The shader starts by calculating the light vector pointing 
from the triangle towards the light source. This is followed by the calculation of the dot 
product between the triangle normal and the light vector. This dot product value is 
greater than ‘0’ for triangles facing towards the light source. Following the initialisation of 
the shadow volume extrusion amount, shadowExtrusionAmount, and bias, 
shadowExtrusionBias (for extending the shadow volume silhouette edges) we iterate 
through the adjacent triangles, calculating the silhouette edges and extruding the 
volumes out of the determined silhouettes. The geometry shader’s final operation is to 
create the front- and back-cap of the newly defined shadow volume. Before listing this 
shader, just a note on the triangleadj input primitive type. This newly supported 
(DirectX 10 and later) geometry shader type flags every other vertex as an adjacent 
vertex (a triangleadj primitive is defined by six vertices, with the adjacent vertices 
being indexed as 1, 3, 5, for example), in other words simplifying the work required to 
find the silhouette edges: 
 
[maxvertexcount(18)]  

void SilhouetteEdgeAndVolumeGS(triangleadj GEOMETRYSHADER_INPUT vertex[6], 
float3 normal, 

inout TriangleStream<PIXELSHADER_INPUT> ExtrudedVolume) 
{ 

 /* determine the light vector from the triangle to light source */ 

 float lightVector = LightPosition – In[0].Loc; 

 

 /* calculate the triangle normal */ 

 float triangleNormal = cross(In[2].Loc - In[0].Loc, In[4].Loc - In[0].Loc); 

 

 /* calculate the dot product between the triangle normal and the light vector – if  

 this value (the length of triangleNormal projected onto the lightVector) is  

 greater than ‘0’ then the triangle is facing the light */ 

 float3 projectionLength = dot(triangleNormal, lightVector); 

 

PIXELSHADER_OUTPUT Output; 
 

 
 
 



 103

/*set the amount and bias to extrude the shadow  volume from silhouette edge */ 

float shadowExtrusionAmount = 119.9f; 

float shadowExtrusionBias = 0.1f 

 

 /* iterate through the adjacent triangles – where: 

- vertex[0], vertex[1] and vertex[6] are adjacent 

- vertex[2], vertex[3] and vertex[4] are adjacent 

- vertex[4], vertex[5] and vertex[0] are adjacent */ 

 

 for(int i = 0; i < 6; i += 2) 

 { 

  /* calculate the adjacency triangle normal */ 

  float triangleNormal = cross(vertex[i].Loc – vertex[i+1].Loc,vertex[i+2].Loc –  

 vertex[i+1].Loc); 

  

 /* calculate the silhouette edges and extrude for triangles facing the light  

  source */ 

 if(projectionLength > 0.0f) 

 { 

  float3 silhouette[4]; 

       

  /* extrude the silhouette edges */ 

  ////////////////////////////////// 

  silhouette[0]= vertex[i].Loc + shadowExtrusionBias *  

 normalize(vertex[i].Loc – LightPosition); 

   

 silhouette[1]= vertex[i].Loc + shadowExtrusionAmount* 

  normalize(vertex[i].Loc – LightPosition); 

   

  silhouette[2]= vertex[i+2].Loc + shadowExtrusionBias* 

 normalize(vertex[i+2].pos – LightPosition); 

   

  silhouette[3] = vertex[i+2].Loc + shadowExtrusionAmount * 

 normalize(vertex[i+2].Loc – LightPosition); 

         

  /* create two new triangles for the extruded silhouette */ 

    Output.Loc=mul(float4(silhouette[i],1),ViewMatrix); 

   

   //append shader-output data to an existing stream 

   TriangleStream.Append(Output); 

 } 
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    //end the current-primitive strip and start a new one 

 TriangleStream.RestartStrip(); 

 } 

     

 

 /* create the front- and back-cap for the newly created triangles */ 

 

 //start with the nearest cap 

 for(int k = 0; k < 6; k += 2) 

    { 

 float3 nearCapPosition = vertex[k].Loc + shadowExtrusionBias *  

 normalize(vertex[k].Loc - LightPosition); 

  

 Output.Loc = mul(float4(nearCapPosition,1), ViewMatrix); 

 TriangleStream.Append(Output); 

 } 

 TriangleStream.RestartStrip(); 

 

 //now calculate the furthest cap 

 for(int k = 4; k >= 0; k -= 2) 

    { 

 float3 farCapPosition =  vertex[k].Loc + shadowExtrusionAmount *  

 normalize(vertex[k].Loc - LightPosition); 

  

 Output.Loc = mul(float4(farCapPosition,1), ViewMatrix); 

 TriangleStream.Append(Output); 

 } 

 TriangleStream.RestartStrip(); 

} 

 
The previously discussed depth-fail or depth-pass technique can now be used to test 
whether a fragment is in shadow or not. The chosen depth-stencil test can be 
implemented using native Direct3D 10 structures and functions as listed in the previous 
section. The final step is to render the scene, resulting in the update of the pixels located 
inside the shadow volume and thus leading to the generation of shadowed regions. 
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3.6.2 Implementing Shadow Mapping 
 

 
 
This section considers the presented engine’s shadow mapping algorithm. Figure 3.18 
shows a high-resolution shadow map. 
 

 
 
Shadow mapping, unlike shadow volumes, does not require any geometry-processing or 
mesh generation. We can thus, when using shadow maps, maintain a high level of 
performance regardless of the scene’s geometric complexity. 
 
The first step of a shadow mapping implementation is to render the scene from the light 
source’s point of view. This is a trivial operation since the scene is already rendered to 
begin with – we simply have to reposition our camera. Following this, we can create the 
shadow map using the following call (Direct3D 8 or better): 
 
pD3DDevice->CreateTexture(textureWidth, textureHeight, 1, D3DUSAGE_DEPTHSTENCIL,  

 D3DFMT_D24S8, D3DPOOL_DEFAULT, &pTexture); 
 
Basic shadow mapping in Direct3D is dependent on modification of the existing texture 
format – so we will, in essence, be making use of Direct3D’s render-to-texture 
capabilities. These render-to-texture capabilities allow us to render directly to the 
shadow map texture [Everitt et al, 2001]. 
 
With the shadow map created, we simply have to texture it onto the scene. This 
operation requires a projection transformation followed by the alignment of shadowed 

Figure 3.18 Rendering a shadow by means of a shadow 
map (via one light source and three-dimensional mesh) – 
accurately cropped and skewed to fit the surrounding area. 
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and screen pixels. This alignment often causes changes in a pixel’s screen size (which 
is responsible for aliasing errors).  
 
Also, Direct3D’s SetRenderTarget operation requires the creation of a colour surface 
as it combines the depth surface with the colour surface. Everitt et al (2001) explains the 
actual rendering process well: “you render from the point of view of the light to the 
shadow map you created, then set the shadow map texture in a texture stage and set 
the texture coordinates in that stage to index into the shadow map at (s/q, t/q) and use 
the depth value (r/q) for the comparison.” (s/q, t/q) is the fragment’s location within the 
depth texture with (r/q) the window-space depth of the fragment in relation to the light 
source’s frustum. The following texture matrix can be used post-projection to setup our 
texture coordinates [Everitt et al, 2001]: 
 
float fOffsetX = 0.5f + (0.5f / fTexWidth); 

float fOffsetY = 0.5f + (0.5f / fTexHeight); 

 

D3DXMATRIX texScaleBiasMat(0.5f, 0.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.0f, 0.0f, 

 0.0f, 0.0f, fZScale, 0.0f, fOffsetX, fOffsetY, fBias, 1.0f); 

 
fZScale is set to (2bit-planes – 1) with fBias set to any small arbitrary value. 
 
All that remains now is to do the actual shadow test. We basically compare the depth of 
the window-space fragment against the depth texture fragment location. The result of 
this test can be either one (indicating a lit pixel) or zero to indicate a shadowed one. The 
easiest way to implement the shadow mapping process is via basic HLSL pixel and 
vertex shaders: 
 
/* vertex shader for shadow mapping vertex processing */ 

void VertexShadow(float3 Normal : NORMAL, float4 Pos : POSITION, 

 out float2 depth : TEXCOORD0, out float4 outputPos : POSITION) 

{ 

/* calculate the projected coordinates */ 

     outputPos = mul(Pos, viewMatrix); 

     outputPos = mul(outputPos, projMatrix); 

 

/* store the z- and w-coordinates using the available coordinates*/ 

     depth.xy = outputPos.zw; 

} 

 

/* shadow map pixel shader – processes shadow map pixels */ 

void PixelShadow(out float4 colour : COLOR, float2 depth : TEXCOORD0) 

{ 

 colour = Depth.x / Depth.y; // the depth is actually x/y} 
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3.6.3 Hybrid and Derived Approaches 
 
We now present a high-level overview of a number of hybrid stencil shadow 
volume/shadow mapping approaches (no code walkthroughs are given as these 
algorithms are basic combinations of the previously discussed stencil shadow volume 
and shadow mapping techniques). Please see the accompanying CD for source code 
implementations. 
 
 
Shadow Volume Reconstruction from Depth Maps 
 
The first approach that should be mentioned is McCool’s (2000) shadow volume 
reconstruction through the use of depth maps. McCool describes this approach as 
follows: “Current graphics hardware can be used to generate shadows using either the 
shadow volume or shadow map techniques. However, the shadow volume technique 
requires access to a representation of the scene as a polygonal model, and handling the 
near plane clip correctly and efficiently is difficult; conversely, accurate shadow maps 
require high-precision texture map data representations, but these are not widely 
supported. The algorithm is a hybrid of the shadow map and shadow volume 
approaches which does not have these difficulties and leverages high-performance 
polygon rendering. The scene is rendered from the point of view of the light source and 
a sampled depth map is recovered. Edge detection and a template-based reconstruction 
technique are used to generate a global shadow volume boundary surface, after which 
the pixels in shadow can be marked using only a one-bit stencil buffer and a single-pass 
rendering of the shadow volume boundary polygons. The simple form of our template-
based reconstruction scheme simplifies capping the shadow volume after the near plane 
clip.”  
 
McCool’s hybrid algorithm is implemented as follows (McCool, 2000): 
 

1) Render the shadow map by drawing the scene from the light source’s point 
of view. 

2) Draw the scene from the viewer’s point of view. 
3) Reconfigure the frame buffer by clearing the stencil buffer and disabling 

writing to the colour and depth buffers.  
4) Enable depth testing. 
5) Set the stencil buffer to toggle when a shadow polygon fragment passes the 

depth test. 
6) Render the shadow volume. 

a. The shadow volume is constructed from the shadow map’s depth 
coordinates (z[x, y]) – these coordinates are translated to world space 
and projected through the same viewing transformation as the rest of 
the scene.  
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b. The shadow volume’s front- and back faces are rendered 
simultaneously as it is unnecessary to distinguish between them. 

7) Generate shadow volume cap polygons (to ensure proper enclosure of the 
shadow volume). 

8) Render the darkened pixels (where the stencil bit is set to 1) 
9) Render the shadow using one of the following modes: 

a. Ambient mode – the stencil buffer is not used and the scene is re-
rendered using ambient illumination (masked to modify all pixels in 
shadow). 

b. Black mode – a single black polygon is drawn over the entire scene and 
all pixels in shadow are blackened. 

c. Composite mode – a semi-transparent black polygon is drawn over the 
entire scene and all pixels in shadow are darkened. 

 
The most interesting part of McCool’s algorithm is perhaps its use of multiple shadow 
maps. This is due to single shadow maps being limited to a field of view. Multiple 
shadow maps can be used to cast shadows omnidirectionally. McCool’s approach 
assigns each spatial area a specific shadow map (the viewing frustum is adjusted to 
render extra depth samples around the edges when rendering the shadow maps).  
 
 
Hybrid Algorithm for the Efficient Rendering of Hard-edged Shadows 
 
Another interesting hybrid approach is the one developed by Chan and Durand (2004). 
Their approach, as previously mentioned, combines the strengths of shadow maps and 
shadow volumes to produce a hybrid algorithm for the efficient rendering of pixel-
accurate hard-edged shadows. Their method uses a shadow map to identify pixels 
located near shadow discontinuities, using the stencil shadow volume algorithm only at 
these pixels. This approach ensures accurate shadow edges while actively avoiding the 
edge aliasing artefacts associated with standard shadow mapping as well as the high 
fillrate consumption of standard shadow volumes. The algorithm, in their own words 
“relies on a hardware mechanism for rapidly rejecting non-silhouette pixels during 
rasterization. Since current graphics hardware does not directly provide this mechanism, 
we simulate it using available features related to occlusion culling and show that 
dedicated hardware support requires minimal changes to existing technology”. 
 
The hybrid algorithm of Chan and Durand (2004) is implemented as follows: 
 

1) Create the shadow map by placing the camera at the light source and 
rendering the nearest depth values to a buffer. 

2) Find all the shadow silhouette pixels by rendering the scene from the 
viewer’s point of view. 
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a. Transform each test sample to light space and compare its depth 
against the four nearest depth samples from the shadow map. 
i. If the comparison results disagree, then we classify the sample as a 

silhouette pixel else we classify it as a non-silhouette pixel (which is 
in turn shaded according to the depth comparison test). 

b. Perform z-buffering to prepare the depth buffer for the shadow volume 
drawing in step 3. 

3) Render the shadow volumes using the depth-fail stencil shadow volume 
algorithm. 

4) Render and shade all the pixels with stencil values equal to zero. 
 
The following pixel shader, as given by Chan and Durand (2004), illustrates the 
silhouette detection process: 
 
void main (out half4 color : COLOR, half diffuse : COL0, float4 uvProj : TEXCOORD0, 

 uniform sampler2D shadowMap) 

{ 

// Use hardware’s 2x2 filter: 0 <= v <= 1. 

fixed v = tex2Dproj(shadowMap, uvProj).x; 

 

// Requirements for silhouette pixel: front-facing and 

// depth comparison results disagree. 

color = (v > 0 && v < 1 && diffuse > 0) ? 1 : 0; 

} 

 
The exact silhouette detection process is based on the depth comparison between 
image samples and the four nearest depth samples as found in the shadow map. If this 
comparison returns a “0” or “1”, then we can say that the depth comparison results 
agree (the pixel is thus not a silhouette pixel). A disagreeing result indicates a silhouette 
pixel.  
 
 
Elimination of various Shadow Volume Testing Phases 
 
Thakur et al (2003), as previously mentioned, developed a discrete algorithm for 
improving the Heidmann original. Their algorithm was primarily based on the elimination 
of various testing phases which resulted in an overall performance gain when compared 
to the original. Thakur et al (2003) formally describe this technique as follows: “[it] does 
not require (1) extensive edge/edge intersection tests and intersection angle 
computation in shadow polygon construction, or (2) any ray/shadow-polygon intersection 
tests during scan-conversion. The first task is achieved by constructing ridge edge (RE) 
loops, an inexact form of silhouette, instead of the silhouette. The RE loops give us the 
shadow volume without any expensive computation. The second task is achieved by 
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discretizing the shadow volume into angular spans. The angular spans, which 
correspond to scan lines, are stored in a lookup table. This lookup table enables us to 
mark the pixels that are in shadow directly, without the need of performing any 
ray/shadow-polygon intersection tests. In addition, the shadow on an object is 
determined on a line-by-line basis instead of a pixel-by-pixel basis. The new technique is 
efficient enough to achieve real time performance, without any special hardware, while 
being scalable with scene size”. 
 
The hybrid algorithm of Thakur et al (2003) is implemented as follows: 
 

1) Construct a Lookup Table by performing the following steps: 
a. Find the ridge edges. 
b. Connect the ridge edges to form loops. 
c. Determine the angular coordinates ),,( φθr  of all vertices positioned on 

ridge edge loops. 
d. Identify the vertices with local peaks in θ . Ridge edge loops are sliced 

along θ  with local peaks being specific points in the loop. 
e. Append all the points of edges to the lookup table until a minimum in θ  

is reached (by starting from the identified peaks). 
f. Insert the hidden edges in the lookup table. 
g. Perform a pair-wise sorting of all entries in the lookup table (in terms 

ofφ ). 
2) Perform scan conversion and generate a query at each point (x, y, z) to 

determine whether the point is in shadow or not. This is done for each scan 
line – see Figure 3.19. 

3) Calculate the Maximum Run Length (the distance on a scan line for which θ  
stays the same). 

4) Depending on the return value of step 2’s function, create or don’t create a 
shadow up to nextX or x+MRL (which ever comes first). 

5) Perform the subsequent shadow query. 
 
It’s interesting to note the contrast between Thakur et al’s algorithm as compared to 
traditional stencil shadow volume methods, that is; shadow determination stops when 
the first instance of a shadow is found (the actual shadow is a logical OR of all cast 
shadows). It is thus unnecessary to traverse the entire list, an insight that results in an 
overall performance increase. Shadow volumes conversely require the interception and 
counting of each and every shadow polygon. 
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Figure 3.19 The query function as given by Thakur et al (2003). 
 
 
Shadow Volumes and Spatial Subdivision 
 
Another noteworthy solution, as presented in Rautenbach et al (2008), combines the 
depth-fail stencil shadow volume algorithm with spatial subdivision – an approach 
researched and developed as part of the author’s postgraduate studies. This approach, 
as a unification that results in real-time frame rates for rather complex scenes, deals with 
statically lit environments and is an apt shadowing model and improvement over the 
traditional Heidmann (1991) algorithm. 
 
This algorithm enhances the current depth-fail and depth-pass stencil shadow volume 
algorithms by enabling more efficient silhouette detection, thus reducing the number of 
unnecessary surplus shadow polygons. It also includes a technique for the efficient 
capping of polygons, thus effectively handling situations where shadow volumes are 
being clipped by the point-of-view near clipping plane.  
 
Crucial to this implementation is the Octree data structure (Fuchs et al, 1980). Relying 
on this data structure, an Octree algorithm sorts the collections of polygons that make up 
the shadow volumes into a specific visibility order. This order is pre-determined by the 
viewpoint. Our approach uses the Octree to calculate the shadow volume unification by 
traversing the tree in a front-to-back order, thus in effect subdividing the surface 
(endpoint) polygons for each element/object. 
 
 
3.7 Physics 
 
Video games originally featured a very small amount of physics simulation. A game such 
as Breakout (released by Atari in 1976 and shown in Figure 3.20) illustrates the point. It 
incorporated a limited degree of collision detection and response to simulate the 

Convert input x, y, z to r, theta and phi
If table entry at theta exists 
 nextX = END 
 For all pairs (phi_i, phi_j) of table entry 
  If (phi_i <= phi <= phi_j AND r_i <= r) 
   nextX = xEquivalentOf(phi_j) 
   return TRUE 
  Else if(phi < phi_i) 
   tempX = xEquivalentOf(phi_i) 
   If (tempX < nextX) 
    nextX = tempX 
 return FALSE 
Else 
 nextX = END 
 return FALSE 
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destruction of bricks upon collision with a ball, as well as the bouncing of this ball upon 
impact with the movable paddle.  
 

 
Figure 3.20 A Breakout clone (source code available on the accompanying CD). 
 
During the 1990s, concepts such as gravity and other fundamental laws of physics 
started steadily finding their way into games (Hecker, 2000). It was not, however, until 
the release of games like Valve Software’s Half Life 2 that true physics simulation 
significantly contributed to the overall game play experience. Half Life 2 included 
numerous physics-based puzzles where the player, for example, had to use gravity by 
removing bricks from one end of a pulley system to lower the other end, etc. Physics has 
thus found its way into games for the realistic simulation of object-player interaction as 
well as for the animation of objects based on exerted forces and environmental 
resistance. 
 
One interesting development in the world of physics has been the emergence of 
dedicated Physics Processing Units or PPUs. These dedicated physics microcontrollers 
act in much the same way as GPUs, in this case relieving the CPU of all physics and 
math calculations. AGEIA (acquired by NVIDIA) did a lot of work on Physics Processing 
Units and invented the PhysX (shown in Figure 3.21) – a PPU that accelerates physics 
calculations by offloading them from the CPU to PPU. This PPU is limited to acceleration 
of AGEIA’s own physics engine – the PhysX SDK (a real-time physics engine 
middleware SDK now known as Nvidia Physix and available on CUDA-enabled GeForce 
GPUs). 
 

 
Figure 3.21 Asus-based AGEIA’s PhysX PPU card. 
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Prior to aquiring AGEIA, NVIDIA competed against the PhysX PPU by accelerating the 
Havok FX SDK (a specialised version of the Havok physics engine used in Half Life 2) to 
utilise the GPUs in ATI and NVIDIA video cards for physics simulations.  
 
 
3.7.1 The Role of Newton’s Laws 
 
Most physics simulations are based on Newton’s laws of motion – three laws describing 
the relationship between the forces influencing a rigid body and the resulting motion of 
this body. The performance of a physics simulation is heavily dependant on the number 
of bodies being simulated since the exact modelling of these laws requires so much 
processing power that even the most powerful computers can eventually grind to a halt 
as the number of bodies increase. Newton’s laws of motion can be summarised as 
follows: 
 

1. The first law: law of inertia 
- A body will remain in its state of rest or uniform motion in a straight 

line, unless an external force causes a change to that state. 
2. The second law: law of acceleration 

- The net force of a particle is the rate of change of its linear 
momentum. 

- Momentum is the mass of the body multiplied by its velocity. 
- The force on a body is thus its mass multiplied by its 

acceleration (F=m.a). 
3. The third law: law of reciprocal actions 

- To every action there is an equal and opposite reaction. 
 
Computer games will rarely implement physics or Newton’s laws of motion down to the 
letter. Doing so will leave little if any processing power for the game’s AI, networking, 
game loop, etc. as slowdowns often occur when these laws are applied to a large 
number of objects in a scene. We will thus rather outline the physics needed and 
simulate the required effects as close to real life as possible, hence creating an 
extremely close approximation but using a lot of optimisations and assumptions to 
simplify the original laws of motion. The presented rendering environment features 
realistic object interaction based on Newton's Laws (all objects react based on forces 
exerted and environmental resistance) as well as a particle system inheriting from the 
physics system. 
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3.7.2 Particle Effects 
 
The presented rendering engine’s particle system is a graphics subsystem used to 
simulate certain natural phenomena such as fire, smoke, sparks, explosions, dust, trail 
effects (Figure 3.22), etc. 
 

 
Figure 3.22 Rendering trails with a particle system. 
 
The particle system is implemented using three stages, namely, the setup stage, the 
simulation stage and the rendering stage (Crossno and Angel, 1997). The setup stage 
involves specification of the particle system’s spatial position and area of constraint – 
parameters controlled by the emitter. The emitter also controls the particle creation rate, 
that is, the rate at which new particles are injected into the system. Each particle has a 
specific time to live, after which it is destroyed. The simulation stage takes care of 
particle rendering rates, particle spawning position (mostly randomised between some 
minimum and maximum coordinate range), particle properties (such as particle colour, 
velocity, etc) and positioning of the emitter. This stage also keeps track of each particle 
to check whether a specific particle has exceeded its lifetime. Each particle has an initial 
velocity and is translated based on some sort of physics model or simply by adding 
velocity to its current spatial position. Collision detection, in general, is also possible at 
this stage but rarely implemented (Hubbard, 1996). Following the simulation state, each 
particle is rendered as either a coloured point, polygon or as a mesh. Figure 3.23 shows 
the generation of particles over time. 
 

 
Figure 3.23 Particles being generated over time. 
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The presented particle system, based on the rules of physics, uses the following 
standard equations to calculate each particle’s velocity and position: 
 

tgVV oldnew ×+=  

),
2
1()( 2tatvPosPos oldoldnew ××+×+=  

 
The above given equations factor in the initial motion of the particle and its trajectory and 
the overall effect of gravity where Posnew is the particle’s final position, Posold its initial 
position, Vnew its final velocity, Vold its initial velocity, a the particle’s acceleration and t 
the change in time. Using these equations we start by initialising each particle’s initial 
position and velocity. These values will be assigned to a particle when it is generated by 
the emitter. 
 
Implementing a particle system in C++ is quite a tedious task due to the necessitated 
creation of a data structure for the storage of particle data (particle state, spawning 
coordinates and velocity, current velocity and position, rendering colour, etc). We also 
need member functions for the setup, initialisation, generation, rendering as well as the 
cleanup of particles the moment their time to live expires (Gallagar, 1995). Using 
shaders on the other hand allow us to easily create a particle system – as illustrated by 
the vertex and fragment shader-based particle system code given in the following 
section. 
 
 
3.7.3 Particle System Implementation 
 

 
 
We now present the shader implementation of the proposed engine’s particle system. 
 
The first step is to specify the name of the vertex program’s entry function, particle 
_vertex. It has the following signature (where PSIZ is just a binding semantic for point 
size): 
 
void particle_vertex(float4 initialParticleVelocity : TEXCOORD0, 
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   float4 particleAcceleration : TEXCOORD1, 

  float4 initialParticlePosition : POSITION, 

  float particleCreationTime : TEXCOORD2, 

 

   out float outputParticleSize : PSIZ, 

   out float4 outputParticleColour : COLOR, 

   out float4 outputParticlePosition : POSITION, 

 

   /* parameters supplied by the application program */ 

   uniform float4x4 totalRunningTime, 

   uniform float4x4 modelToWorldTransformation, 

   uniform float4x4 modelviewProjection) 
 
We start by calculating the particle’s age. (The particle’s time of creation is subtracted 
from the total time the simulation has been running – as sent from the application to the 
shader): 
 
 /* calculate the amount of time the particle has been active */ 

 float particleTime = totalRunningTime – particleCreationTime; 

 
The particle’s spatial position is calculated using the standard physics equation given 
above: 
 
 float4 finalParticlePosition = initialParticlePosition + 

 initialParticleVelocity*particleTime + 

  (0.5f)*particleAcceleration* pow(particleTime, 2); 

 
Next the clip-space position is calculated: 
 
 /* transform the vertex position into homogeneous clip- space coordinates */ 

 outputParticlePosition = mul(modelviewProjection, finalParticlePosition); 

 
All that remains now, before the particle’s width and height are set, is to initialise its 
colour: 
 
  /* set the particle colour to green */ 

  outputParticleColour = (0, 0.5, 0, 1); 

 
The final operation is to set the particle’s width and height: 
 
 /* set the particle’s size */ 

 float3 outputParticleSize = 0.5; 
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A fragment shader function, particle_fragment, that simply returns a texture 
coordinate set as a colour, is now defined: 
 
void particle_fragment(float4 inputParticleColour : TEXCOORD0,out float4 colour: COLOR) 

{ 

 /* set the colour */ 

 return colour; 

} 

 
The above implementation can be used as the core of a particle generator (to generate 
particles as shown in Figure 3.23). Regarding the particle system’s C++ implementation, 
we have to initialise the number of particles, create a list of particle start times, spawn 
particles in a semi-random fashion (within the area of a spawning point) and destroy 
particles whenever their time limit is exceeded: 
 
/* start by limiting the number of particles at any given time to 600 */ 

#define TOTAL_NUMBER_PARTICLES 600 
 

#define TTL 30; /* set the maximum time to live */ 

 

/* create a structure to store the particle states */ 

typedef struct Particle  

{ 

  float initialParticlePosition_[3]; 
  float initialParticleVelocity_[3]; 
  float particleAcceleration_; 
  float particleTime_; 
  bool isAlive; 

} Particle; 

 

/* store the particle data in a struct-array */ 

Particle particleStartData[TOTAL_NUMBER_PARTICLES]; 
 

/* return a random double within the passed range */ 

double GetRandomDouble(double low, double high) 

{ 

 return ((double)rand()/(RAND_MAX+1.0))*(high - low) + low; 
} 

 

/* function to initialise and reset the particles */ 

void InitParticleSystem() 

{ 

 /* initialise each particle */ 
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 for(int i = 0; i < TOTAL_NUMBER_PARTICLES; i++) 
 { 

 /* set the initial starting position (x, y, z) */ 

 particleStartData[i].initialParticlePosition_[0] = 0.0; 
 particleStartData[i].initialParticlePosition_[1] = 0.0; 
 particleStartData[i].initialParticlePosition_[2] = 0.0; 
 

 /* set the initial velocity (x, y, z) */ 

 particleStartData[i].initialParticleVelocity_[0] = 0.0; 
 particleStartData[i].initialParticleVelocity_[1] = 0.0 
 particleStartData[i].initialParticleVelocity_[2] = 0.0; 
 

 /* set the gravity acceleration */ 

 particleStartData[i].particleAcceleration_ = -9.8; 
 

 /* start the particles at a random time */ 

 particleStartData[i].particleTime_ = GetRandomDouble(0, 5); 
 

 /* activate particles */ 

 particleStartData[i].isAlive = false; 

 } 

} 

 

/* function to spawn particles */ 

void spawnParticles() 

{ 

 /* spawn particles */ 

 for(int j = 0; j < TOTAL_NUMBER_PARTICLES; j++) 
 { 

 if((particleStartData[j].isAlive == false) && 

 (particleStartData[j].particleTime_ < TTL)) 
 { 

 /* change the particle velocity (x, y, z) */ 

 particleStartData[j].initialParticleVelocity_[0] = GetRandomDouble(-1,1); 
 

 particleStartData[j].initialParticleVelocity_[1] = GetRandomDouble(-0.5,  
 0.5); 

 

 particleStartData[j].initialParticleVelocity_[2] = GetRandomDouble(0,  
 2.5); 

 particleStartData[j].isAlive = true; // flag the particle as active 

 } 

 } 
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} 

 

/* function to decrease a particle’s time to live */ 

void decreaseParticleTTL() 

{ 

 /* destroy particles */ 

 for(int k = 0; k < TOTAL_NUMBER_PARTICLES; k++)  

     { 

 if((particleStartData[k].isAlive == true) && 

 (particleStartData[k].particleTime_ < TTL)) 
 { 

 particleStartData[k].isAlive = false; // flag the particle as inactive 

 particleStartData[k].particleTime_ += 0.01; //increase the particle’s ttl 
 } 

 } 

} 

 
The above given functions can now be combined with the featured vertex and fragment 
shader to render live particles as shown in Figure 3.23.  
 
 
3.8 Post-Processing 
 
The presented rendering engine uses post-processing or quality-improvement image 
processing (through the use of pixel shaders) to add additional effects such as bloom 
lighting, motion blur, ambient occlusion, depth of field and halo effects. Post-processing 
quality scaling is discussed in Part II of this thesis. 
 
 
3.9 Summary  
 
The chapter presented our modular rendering engine as a scalable interactive testing 
environment and solution for the rendering of computationally intensive 3D 
environments. It extended chapter 2’s basic DirectX 10 3D interactive environment 
through the addition of several subsystems, specifically: HLSL shaders, local 
illumination, reflection and refraction, HDR lighting, additional shadow rendering 
algorithms, physics simulation, particle effects and post-processing special effects.  
 
Part II of the thesis categorises these presented approaches and rendering groupings 
based on the level-of-detail/rendering quality and the associated computational impact. It 
also focuses on the critical analysis and detailed benchmarking of the presented 
rendering and simulation techniques – the data to be used by our fuzzy-based selection 
and allocation system. 
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