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1.1. SUPPLY CHAIN CONCEPTS 

 

1.1.1. Production Eras and Challenges 

The challenges of production of goods and services after the Second World War have 

gone through three main chronological stages as outlined by Hopp and Wallace (2008). 

The first era focuses mainly on productivity, and this leads to the traditional focus on 

cost. Some visible developments in this era included fast paced development in scientific 

management, especially the reductionist techniques of work study, and more pervasive 

development and deployment of financial ratios for monitoring the health of firms. This 

was dated back to manufacturing itself, but received boost immediately after Second 

World War till the seventies. This trend was supported by the relatively sole strong 

position of the American economy at the time.  

 

The productivity era was succeeded by the era of quality movement, which was dated 

back to the seventies and eighties, although the pioneering work appears to have been 

done as far back as 1931 by Shewhart. Some of the important tools of this holistic 

management era included the Total Quality Management (TQM) and Just in Time (JIT). 

These were later revived again in the Six Sigma and Lean movement. This movement 

was bolstered by the advent of competing nations like Japan and Germany among 

others that have started emerging from the rubbles of the war and are entering the 

same market that has been hitherto dominated by America. 

 

The latest era appears to be that of integration, and this is assumed to have commenced 

in the nineties. This development was driven especially by the rapid development in the 

Information and Communication Technology (ICT) that makes the whole world to 

become more integrated than it has ever been. This globalisation trend has been further 

enhanced by the changing econo-political structure in most Asian, Latin American, 

Eastern Europe and African countries (from centrally planned to market driven 

philosophies), and the advancement of the World Wide Web that makes countries to 

locate their various offices where ever they feel is most appropriate for their businesses. 
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The Asian Tigers’ miracle at the Han River and the emergence of China as strong 

manufacturing centres, with the later entrance of the Indo-Brazil and South African 

centres has created massive international competition. 

 

With the possibility of savings by focusing only on the traditional methods of work 

reductionism thinning out, more focus shifts to the total manufacturing system (the 

network: from the supplier’s supplier to the customer’s customer), especially since most 

international legal, econo-political, fiscal and technical barriers are being constantly 

lowered. This era birthed the current production trend of Supply Chain Management 

(SCM). Some other related ideas in this era include Business Process Modelling (BPM) 

and Enterprise Resource Planning (ERP) amongst others. Supply Chain has been defined 

severally by a number of authors, but one definition that seems succinct but exhaustive 

in this thesis’ context is presented next. 

 

1.1.2. Supply Chain Definition and Concepts 

A supply chain has been defined as a goal oriented network of processes and stock 

points used to deliver goods and services to customers (Hopp, 2008). This definition 

highlights the key features of any supply chain to be: the goal, the network, the stock 

points, the process stations, the products (goods and/or services) and the customers. 

This definition actually summarises all that is done in a supply chain (especially from the 

market perspective). This is further explored. 

 

The basic goal of most organisations is profit. Two paths usually lead to increase in 

profit: cost reduction or growth in market size. But progress along one of these paths 

may actually degrade the other. So, organisations need to decide how much efforts are 

put into these two paths to realise the organisational goal of profit, both in the short 

and the long run. This makes the goal to be closely related to the strategy of the 

organisation, which is done at the highest planning level, and decides how much of what 

is traded off to achieve the other, and thereby , hopefully, placing the organisational 

plan on some sort of “efficient frontier”. 
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Customers are important in the chain because they are the market. The second path to 

profitability implies ensuring that they are satisfied and delighted. But only if their needs 

(i.e. demand and timing) are known well in advance would managing the whole chain 

become easy and all unnecessary costs could be easily eliminated (or reasonably 

reduced). But, unfortunately, these customers are not so predictable, and hence comes 

in variability into the system. This is the first level of variability in the supply chain; which 

is related to the management of the external influences on the chain. This comes in the 

form of uncertain external demands and lead times. 

 

Supply Chain Process Points, or the work stations, are the resources that actually get out 

goods and services ready for the customers one wishes to delight. These are the 

transformation centres that, in the word of Langley et al. (2009) add utilities of form to 

the input material by transforming its form (or may be servicing the customer). These 

process centres also contribute the second level of uncertainty, which in this case is 

internal to the system. This is in the form of uncertain process times of the process 

centres as products are transformed at these centres. This unavoidable variability in the 

system forces the strategic deployment of reserves in the supply chain. These reserves 

have been referred to by Webster (2008) as system slacks. These slacks are in the form 

of extra capacities or inventories. Therefore, the process points also serve as strategic 

capacity reserve points while stock points serve as strategic material reserve points. This 

leads to the discussion of stock points.  

 

Stock points are positions in the supply chain network where inventories of materials or 

goods are found.  These points exist due to two reasons: firstly, they may exist as a 

result of deliberate plan to keep some materials in some identified locations in the 

network, e.g. finished goods, some important raw materials, etc. The second reason is 

because some inventory build up in the system and are controlled by some natural laws 

like the Little’s law. These form part of the work-in-process inventory and cannot be 

controlled directly but by regulation of flow through the system. Flows are now 

discussed next. 
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Flows are the actual products (or even customers) that are processed at the processing 

centres. They are generated basically by actual orders or demand forecasts.  Above the 

decoupling point, they are driven by a push (production plan/forecast) while below the 

decoupling point, they are driven by a pull (customer orders). Another very close term is 

scheduling. Management of flows are very important in any supply chain that would be 

successful. Flows through the chain or the stations are usually stochastic, and this affects 

deployment and management of slacks of capacity and inventory. Decisions about full or 

under-utilisation of capacity affect the inventory cost and profitability of the system. 

Also, decisions about level of inventory necessary to support a given level of flow are 

crucial because this affects the level of customer service as well as operating cost of the 

whole network. These are all inter-related decisions that must be made in the 

production context. The decisions could sometimes be simplified (howbeit to some 

level) by choosing a suitable management philosophy (or a mix of such) to adopt. These 

philosophies are briefly discussed later. 

 

1.1.3. The Goal of a Supply chain 

One key issue about which most stakeholders in a supply chain have a common 

agreement is the provision of superior customer service. Doing this at a low cost is 

another important thing, and so, the interest in the landed cost of the product and not 

just the production cost. 

 

Making goods available to customers when needed (referred to as the utility of time) 

could be achieved through two main means: superior transport service or keeping stock 

near customers. Two focus areas concerned about this are transport management and 

inventory management. It is therefore not surprising that transport and inventory costs 

have been identified as the two major costs of any supply chain. (Langley et al., 2009).  
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1.1.4. Importance of Inventory 

Inventory occupies a strategic position in a production system. Apart from being a major 

means of fulfilling customer orders, it also has a major effect on the books of the 

company in that it affects both the balance sheet and income statement; hence its 

effective management is crucial. The main function, though, is like insurance in the 

production system, absorbing the variability shocks. Based on the function it performs, it 

has been classified as cycle stock, safety stock, contingency stock, process stock etc 

(Jacobs et al., 2009). It is generally true that the level of uncertainty of demand and lead 

time are the two main parameters that affect the modelling of its behaviour. 

 

1.1.5. Some Production Management Philosophies 

Production management philosophies are developed to guide management through 

effective decision making in the processes of production management that involves 

intricate and dependent trade-offs. The main difference between all these philosophies 

is the perception and treatment of slacks in the system. Both slacks cost the system, but 

one is usually more acceptable than the other depending on the philosophy. Three basic 

philosophies to be considered are Material Requirement Planning (MRP), Lean 

Manufacturing and the Theory of Constraints (TOC). 

 

Lean is very critical of inventory, and in ideal Lean environment, the batch size is equal 

to the actual demand. It works by pure pull and rather tolerates extra capacity than 

extra inventory. Inventory there is hardly zero, however, but the Kanban controls both 

the scheduling and the effective quantity of inventory in the system. The MRP accepts 

more slacks of inventory and tends to utilise capacity more than Lean. Inventory is also 

used to support capacity utilisation. Theory of constraint, however, is built entirely 

around flow. Inventory is placed in strategic locations to support the critical resources, 

while the capacity slacks in the non-critical resources are also used to support flow 

through the entire system; especially through the critical resources.  
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1.2. SUPPLY CHAIN SYSTEMS AND MODELLING 

 

Systems have many definitions depending both on the discipline and the issue of 

interest. In the current context, the system is basically some sort of processes of 

interest. Systems have some state variables of interest, in this case the level of inventory 

present in the system. Usually, these state variables can only be manipulated indirectly 

through the control of some other variables called the control variables. Systems have 

decision variables, in this case the order policy, order quantity, or the rate of flow 

through the system, all of which could be manipulated to affect the positions of the 

state variables, which in turn determine the overall system performance. These state 

variables together with the parameters, which in many cases are constants or variables 

with known patterns are what determine the values of the system performance 

indicators. Such indicators in this context include system cost, level of customer service, 

utilisation, etc. It is usually necessary to have models that represent these systems so 

that the behaviour of the systems could be understood through the behaviour of these 

models. 

 

The contextual and semantic definition of model is quite diverse, but a succinct 

definition for the current context is that a model is a representation of a system that 

allows for investigation of the properties of the system and in some cases prediction of 

the future outcomes. 

 

Models are important in systems analysis and engineering, and the complexity could be 

viewed along the two dimensional axes of time changes and level of certainty. This 

makes all systems to be reasonably captured in a four quadrant space of deterministic-

static, deterministic-dynamic, stochastic-static and stochastic-dynamic regions. This 

makes the system whose variables are in the deterministic-static quadrant the most 

tractable in respect of their mathematical computation, while the stochastic-dynamic 

models are the least tractable problems. The quadrant to which a problem falls also 

usually determines the type of models that would be most appropriate for it. Usually, 
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most typical supply chain models fall in the stochastic region and so may need some 

sophisticated level of mathematical manipulation. 

 

Most models presented in this work are Markovian, so, the problems require the 

instruments of probability theory, and in some instance matrix mathematics, or some 

level of differential calculus. 

 

Modelling is both an art and a science. It is an art because the dexterity often improves 

with usage. It is a science because most techniques have logical sequences and formal 

methods that are followed. A good modeller knows the level of complexity at which to 

pitch the modelling of a system. Sometimes, it suffices to use simple models and allow 

for the inclusion of the simplifying assumptions in the interpretation of the results. This 

saves a great deal of modelling and solution efforts while still effective at achieving the 

intention of the model. But in certain instances, there may be the need to develop some 

more complex models without which some important characteristics of the systems 

would be sacrificed. These facts have been well noted by Sterman (2000) and Zipkin 

(2000) and were taken note of in the development of models in this work. It, thus, 

became necessary to employ the probability tools while solving for the steady state 

probability distribution of the input parameters of the selected problems, and the use of 

simple differential calculus in determining the optimal flow parameters given that the 

system is operating at the steady state. 

 

Supply chain modelling has utilised many analytical tools for the management of stock 

level and flow of products in the entire chain or at a station in the chain. These 

techniques include classical optimisation tools, mathematical programming, simulation 

modelling and probability models. Cases where one or more input into the system 

(usually the demand or/and lead time) are stochastic have always called for the use of 

probability techniques, either as simulation models, or in the estimation of the 

equilibrium properties of the system.  
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1.3. LITERATURE REVIEW 

 

Various analytical tools have been used in the analysis of production systems to optimise 

the levels of stock (inventory) it holds. The type of tool depends on the assumptions 

made about the nature of product flow through the system. This ranges from the 

deterministic-static type to the dynamic-stochastic type discussed earlier. Such tools 

include classical optimisation tools, mathematical programming tools, probability 

models and simulation. Some popular works have been produced in each category. 

 

1.3.1. The Harris Model 

The use of deterministic optimisation techniques in the management of the appropriate 

stock levels to keep in a production environment is pervasive. The seminal model in this 

category is the Economic Order Quantity (EOQ) model, developed by Harris (1913) and 

popularised by Wilson (1934). This model is deterministic and static. It also has many 

other assumptions including zero (or deterministic) lead time, shortages and backlogging 

not allowed, unit purchase price independent of order quantity, infinite product life, 

instantaneous product availability (infinite capacity), perfect order quality, fixed set up 

cost, single item, and probably more. This model has been modified in diverse ways by 

relaxing one or more of its assumptions. And it is the relaxation of some such 

assumptions that made the use of classical optimisation techniques inadequate for 

analysis in certain instances. 

 

There have been some major groups of extensions to this classic work. The Dynamic 

Economic Lot (DEL) Model by Wagner and Whitten (1958, 2004) removes the static 

demand assumption, but still assumes the future demand pattern is known with 

certainty. The Silver-Meal heuristics is another seminal work in this direction. Another 

interesting extension is in that of single item assumption. The Joint Replenishment 

Problem (JRP) has been studied by many authors. Goyal and Soni (1969) and Goyal 

(1974) are notable. Other contributors include Van Eijs (1993), Viswanathan (2002), Fung 

and Ma (2001), Chan, Cheung and Langevin (2002) and Federgruen and Zheng (1992). 
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Multi-echelon inventory is another area that has generated much interest, starting from 

Clark and Scarf (1960). Others include Graves (1985), Erkip, et al (1990) Chen (2000), Rau 

et al (2003) and Viswanathan and Piplani (2001). 

 

1.3.2. Deteriorating inventory 

An area that has enjoyed an extensive research is the deteriorating inventory studies. 

Starting from the seminal work by Ghare and Shrader (1963) which is a deterministic 

demand model, much work has followed since. Nahmias (1982) made a detailed survey 

of the work done on deteriorating inventory up until that time. He summarised the 

contribution of the various authors reviewed and classified the work into five main areas 

based on:  

• Fixed life perishability,  

o deterministic demand and stochastic demand, single and multi 

products, exact and approximate solutions, single and multi echelon 

• Random lifetime models 

o Periodic review and exponential decay models 

• Queuing models with impatience 

• Applications. 

 

Raafat (1991) extended the survey to the contributions made after Nahmias. While most 

of the models reviewed by Nahmias are fixed lifetime models, Raafat extended the 

survey to cover a lot more random deterioration models. Raafat classified the literatures 

as single or multiple items, deterministic or probabilistic demand, static or varying 

demand, single or multiple period, purchase or production model, availability of quantity 

discount(s), allowance for shortages, constant or varying deterioration rate. 

 

Since the two compendia are quite detailed, effort would be concentrated on reviewing 

some of the more recent works done after Raafat. Goh et al (1993) presented a model in 

which inventory deteriorates in two stages. The arrival is a Poisson process with rate ' 

and the demand rates are () for stage 1 (fresh) product and (* for the product older 
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than stage 1 but not yet obsolete. Various system parameters were considered in this 

model. The model was modified in Yadavalli, et al. (2004) with the inclusion of lead time 

with arbitrary distribution and solved for the various system parameters. Vaughan 

(1994) presented a customer realised product expiration, in which he treated the 

expiration date of the product as a decision variable, and the product life time is treated 

as a random variable.  

 

Kalpakam and Sapna (1995) dealt with a base stock policy, where the lead time is 

stochastic and correlated with the possibility of lost demand. Products are taken out of 

the system due to failure or demand. The system parameters were determined. Hariga 

(1996) developed an EOQ model for deteriorating inventory with time varying demand 

and with shortages allowed and completely backlogged. The performance of the model 

with linear and exponential demand inputs was analysed. Yadavalli et al (2006) also 

presented a model for two component production-inventory assembly system in which 

products are assembled from two components. A component is produced with the lead 

time following an arbitrary distribution and the other component is purchased with an 

exponential lead time. System parameters were estimated. 

 

Chakrabathy et al (1998) presented a model in which the deterioration of inventory 

follows a three parameter Weibull distribution. The demand is assumed to be time 

varying and shortages are allowed in the system. Lee and Wu (2002) is a model with 

Weibull distribution deterioration and power demand with complete backlogging of 

shortages, and this model was extended by Dye (2004) to a general type time-

proportional backlogging rate model. The backlogging rate was defined as a function of 

the waiting time. Chiao et al (2008) presented a model with two storage facilities, partial 

backlogging and quantity discount. In this model, the excess product is kept in a rented 

warehouse due to capacity constraint in own warehouse.  

 

Cases of joint demand have also been investigated by Yadavalli et al. (2004) where there 

is capacity constraint on stored items and each has different reorder points, but the 

reorder for one item triggers reorder of all other items. In another paper, Yadavalli et al. 

(2006) considered a case where two products have individual Poisson demand, and the 
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demand for the first item also generates demand for one of the second. Systems 

parameters were evaluated. A case of substitutable products with joint demand and 

joint ordering policy was also considered in Yadavalli et al (2005b). A multi-item 

inventory with fuzzy deterministic demand has also been considered. (Yadavalli et al. 

2005a)  

 

Lee and Hsu (2009) is a model of a two-warehouse inventory management of a free 

form time dependent demand, where both the replenishment rate and planning horizon 

are finite. They used an approach which permits variation in production cycle time to 

determine the number of production cycles and time of replenishment during a finite 

planning horizon. Ferguson et al (2007) showed that EOQ model with nonlinear holding 

cost is an approximation of optimal order policy for perishable goods sold in small to 

medium size grocery stores where there are delivery surcharges due to infrequent 

ordering, and managers frequently utilize markdowns to stabilize demand as the 

product’s expiration date gets nearer. They showed how the holding cost curve 

parameters can be estimated via a regression approach from the product’s usual holding 

cost (storage plus capital costs), lifetime, and markdown policy. 

 

Ho et al (2007) considered the effects of deteriorating inventory on lot-sizing in material 

requirements planning systems. They used simulation studies to evaluate the 

performance of five existing heuristics using three factors: rate of inventory 

deterioration, percentage of periods with zero demand, and setup cost. Hwang and 

Hahn (2000) investigated an optimal procurement policy for items with an inventory 

level-dependent demand rate and fixed lifetime, being a case for a fish cake retailer. Lin 

and Gong (2006) considers the impact of random machine breakdowns on the classical 

Economic Production Quantity (EPQ) model for a product, manufactured in batches, and 

subject to exponential decay and under a no-resumption ($+) inventory control policy. 

The time-to-breakdown also follows an exponential distribution. 

 

Chung and Wee (2007) developed an integrated deteriorating inventory policy for a 

single-buyer, single-supplier model with multiple ,�� deliveries considering the 

transportation cost, inspection cost and the cost of less flexibility. Shah and Shukla 
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(2009a) presented an algorithm and models for a retailer's optimal procurement 

quantity and the number of transfers from the warehouse to the display area are 

determined when demand is decreasing due to recession and items in inventory are 

subject to deterioration at a constant rate. They also presented a deterministic 

inventory model in Shah and Shukla (2009b) where items are subject to constant 

deterioration and shortages are allowed. The unsatisfied demand is backlogged as a 

function of time. 

 

Baten and Kamil (2010) presented a continuous review model for the control of 

production-inventory system subject to generalised Pareto distributed deterioration. 

They used the principle of control theory to determine what should be the optimal level 

of inventory in the system. Benhadid, et al (2008) also used control theory to show how 

to manage inventory in a production system with deteriorating items and dynamic costs. 

 

Inventory models with Markov Arrival Processes (���) and/or retrial queues have not 

been fully studied. The study of systems with ��� input systems have been focused 

mainly in telephone network systems. This has been highlighted in Gomez-Corral (2006) 

and Artalejo (1999). The only inventory related ��� input literatures documented is in 

Gomez-Corral (2006), and it was done by Krishnamoorthy et al. (2003, 2004) and even 

then, the inventory focus is also related to communication system as well. Some works 

have started being reported in this area. Yang and Templeton (1987) is another review. 

Lian, Liu and Zhao (2009) presented a continuous review model for a one item product 

where the demand has a distribution that is the Markov Arrival Process. The lifetime of 

the product is exponentially distributed with a constant failure rate λ. All arrival demand 

requests only one unit of item and all unmet demand is backordered.  

 

Manuel et al. (2007) developed a continuous review perishable (�, �) model where there 

is an ��� arrival and �# service time. There is also a negative flow of unsatisfied 

customer, following the +�� policy for removal of customers. System parameters were 

determined. Yadavalli et al (2006) have also presented a model of service facilities 

where customers do not receive services immediately but have to wait till some services 

are performed on these products being waited for before the product is brought into 
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stock. Two cases were considered: first where the product is brought in immediately 

after service; and the second case was where the product is brought in only at the next 

epoch. System parameters were determined. A model of perishable inventory in a 

random environment according to an alternating renewal process has also been studied 

in Yadavalli and Van Schoor (2004). The rate of perishing depends on the state of the 

system. Generally, it does not appear as if a lot has been done in deteriorating inventory 

systems with ��� arrival pattern and/or �# service pattern. 

 

1.4. STOCHASTIC PROCESSES 

 

Lindsey (2004) defined a stochastic process as some phenomenon that evolves over time 

(i.e. a process) and that involves a random component. It involves some response 

variable ./ that takes values varying randomly and in some way over time 0 =1 … 3 45 1 …. and/or space 6 = 1 … 6 45 1 …. The variable may also be a scalar or 

vector. The observation of a state (or a change of state) is called an event. Usually, the 

probabilities of possible events would be conditional on the state of the process. The 

main properties, among other things, distinguishing a stochastic process are: 

• The frequency or periodicity with which observations are made  

• The set of all its observable values (state space) 

• The sources and forms of randomness present, including the nature of the 

dependence among the values in a series of realisations 

• The number of copies of the process available (only one or several) 

 

1.4.1. Distribution and Transformation of the Random Variable 

A random variable can be defined as a real-valued function defined over a sample space. 

The distribution of a random variable is the sample space of all its possible outcomes 

and the probability of each one occurring. The distribution function of a random variable 

plays an important role in the determination of the various parameters of the system in 

which it occurs. 

 
 
 

 
 
 



15 

 

 

Solving the state equations of a variable, especially since it is usually a joint distribution, 

could be quite challenging. It usually necessitates the need to transform the variable 

from one form to another in which it could be handled in a more straight forward 

manner. Bocharov et al. (2004) has used the term characteristic transform to describe all 

the transformations that are used in such manner. This term, he stated, comprises of the 

characteristic function, Laplace-Steiltjes transform and the moment generating function, 

depending on which ever is best applied. 

 

1.4.2. Other Properties of the Stochastic Process 

Some other issues that would be worth mentioning, apart from the randomness of the 

variable(s) and its distribution, are state dependence, serial dependence, stationarity, 

equilibrium, ergodicity, and regeneration point. 

 

A stochastic process is said to be state dependent if the probability of being in a future 

state is dependent on the present state in which the state is found. This principle is 

exploited in Markov processes.  

 

A stochastic process is said to have serial dependence if some parameters of the system 

depend not directly on the previous state of the system, but somehow on the previous 

state and the prediction at that time. It is a useful mechanism in time series analysis. 

Such dependencies could be on the location parameter, as in most such models, or on 

the spread parameter as in heteroscedastic models. 

 

A stochastic process is said to be strictly stationary if sequences of consecutive 

responses of equal length in time have identical distributions. This means the values of 

the statistical parameters of the process are assumed constant with respect to time. 

 

A process is said to be in equilibrium if the flow of a parameter of interest (including 

probability) into and out of a space (or point) balances out. The process may not be in 
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equilibrium when it starts, but may enter a state of equilibrium over time, making it 

possible to observe its behaviour before entering equilibrium (i.e. while in transit – 

transient properties) and when it has entered equilibrium. In other words, if equilibrium 

has been reached, the probability that the process is in a given state, or the proportion 

of time spent in a given state, has converged to a constant that does not depend on the 

initial condition, and in essence the system become quite stationary. 

 

Ergodicity is a concept quite related to equilibrium. Ergodic theorems provide identities 

between probability averages, such as an expected value, and the long run averages 

over a single realisation of a process. Thus, if the equilibrium probability of being in a 

given state equals the proportion of a long time period spent in that state, it is called an 

ergodic property of the process. 

 

A regeneration point is a time instant at which the process returns to a specific state 

such that the future evolution of the process does not depend on how that state was 

reached. This means whenever a process arrives at the regeneration point, all of its 

previous history is forgotten. The renewal process, describing the time between 

recurrent events, is a well known case of such. 

 

1.4.3. Types of stochastic processes and methods of observation 

Basically, there are two main types of stochastic processes: survival processes and 

recurrent processes. The basic natures of each of these processes also affect the natures 

of its observations. 

 

Survival processes are those that involve entering into a final state at which the process 

could be assumed to have terminated. Such processes are very useful in reliability 

studies in which the process of interest may not have the opportunity to regenerate 

itself. This limits the type of methods available for its study. 
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Recurrent processes are characterised by the possibility of the occurrence of more than 

one event (usually taken as two states in regeneration processes) over the time of study. 

One state is assumed to dominate while the other occurs occasionally. The latter that 

sparsely occurs is treated as a point event, and by focusing on its process of occurrence, 

the process is referred to as a stochastic point process. In contrast to a survival process, 

the point process only signals a transitory stage such that the event does not really 

signal a change of state. A binary indicator can, therefore, be used to signify a 1 if the 

point process occurs and a 0 otherwise. The process can, thus, be called a binary point 

process. 

 

1.4.4. Method of Observation, Replications and Stopping Time 

Two approaches could be used to observe accurate information from a stochastic 

process.  

• One series for a long enough period (if it is reasonably stable) 

• Several short replications of the process (if they are reasonably similar) 

 

The nature of survival processes has confined their observation strictly to the second 

method since the process enters into an absorbing state. But for recurrent processes, 

one may use either of the two. Using the second method in a recurrent system raises 

the question of specifying an appropriate time origin. But in a stationary process, the 

principle of ergodicity makes it fairly simple to use the first method. The regeneration 

point process then acts as the appropriate time origin from which a datum could be 

taken for the initialisation of the observation process again. 

 

Cinlar (1975) has defined a stopping time as any random time, T, having the property 

that for every 6 ∈ 8 the occurrence or non-occurrence of an event 93 ≤ 6: can be 

determined by looking at the values of .; … . .<. 
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1.4.5. Observation of Variables of interest 

The variable of interest in a stochastic process could be one or more of the following: 

• The inter occurrence time i.e. the duration between the occurrence of two 

consecutive events of interest, e.g. the time between two consecutive 

regeneration points 

• The count of the number of occurrence of an event in a given interval e.g. the 

number of regenerations or renewals that have occurred between two periods of 

time 

• The cumulative number of events of interest that occurred till date 

The subject of renewal theory seeks to answer these questions. A summary of an 

overview of Renewal process, Markov theory and Queuing theory is included in Appendix 2. 

 

1.5. POPULAR MANAGEMENT PHILOSOPHIES 

 

Production managers have different perceptions about the importance and significance 

of the different system slacks. While some would not accept the presence of significant 

idle capacities, others are more critical of excess inventory. The decision about which 

one appears more critical is also dependent on the production philosophy. But the 

philosophies address not only issues of system slacks, but also issues of quality and job 

scheduling among others. This is because these are surrogate issues to the issues of 

slacks themselves. 

 

Inventory is present in these systems, both as a stock build up, consequent to the job 

scheduling and flow management techniques as well as a result of deliberate actions of 

building up strategic reserves as an insurance against demand and lead time 

uncertainties. While there could be many other ideologies considered as management 

philosophies, the discussion here is limited to Lean Manufacturing, material 

Requirement Planning (�+�) and the Theory of Constraints (���). Just an overview of 

these would be provided also. Volmann et al. (2005), Jacobs et al. (2009), Goldratt and 
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Cox (2004) and Jonsson and Mattsson (2009) are good further readings for the 

interested reader for further treatment of the philosophies. 

 

Lean manufacturing is a system that would prefer to pull entirely through the system. It 

apparently is more critical of excess inventory than spare capacity. In the ideal Lean 

environment, replacement of outputs or inputs should be lot for lot. This does not give 

consideration to issues of set up (both of purchase and production). To achieve this, 

effort goes into eliminating causes of bad quality as well as lead time variation in the 

system. Efforts are also put into managing demand so that the production rate is quite 

level. Kanban is used both to control the level of allowable inventory as well as 

scheduling tasks. Efforts for continuous reduction of set up times are also made 

consistently in Lean systems. 

 

The Material Requirement Planning (�+�), however, has a less critical view of 

inventory. Inventory is used to support utilisation of resources. Production is back-

scheduled. Extra inventory is allowable as safety stock along various points in the 

network, and capacity utilisation is usually higher than that obtained in Lean. 

 

Theory of Constraints (���) also has a critical view of inventory in a manner probably 

similar to the Lean technique. It also would, however, not only allow for spare capacities 

in the various locations in the production network, but believes they are good. These 

spare capacities are used to break the production batches of such systems further down 

to the end that the average work-in-process inventory is further minimised. Strategic 

reserves are allowed in certain parts of the network where they are used to support the 

most critical station.  

 

In a ��� environment, the critical station should be fully exploited, but only to the point 

where it does not also create an unnecessary inventory (finished good or work-in-

process). Productivity is different from activation of resources. Productivity is about 

actual sales and not hours worked. Throughput is only about products that the market is 

ready to absorb and convert to money, and not just finished product. Finished product 

not going for sale is just another “undesirable” inventory. Scheduling is about creating 
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an imaginary rope from the strategic buffer locations to the entry point to the flow line, 

and that suffices to control the flow through all processing stations in the entire line. 

 

An important issue is the treatment of the statistical variations in the processing time 

and the complex stochastic and dynamic nature of demand that are basically not directly 

implied in all these models. Determinism is somehow implied to a large extent in the 

deployment of all these processes. This is the cause of system nervousness in such 

processes and their treatment has not been fully studied by researchers.  

 

Of particular interest is the determination of the ideal buffer size to place ahead of the 

critical work station. This station could be a Bottleneck (=$) or a Capacity Constrained 

Resource (��+) depending on if it has demand for production that is more than its 

capacity or close to its capacity respectively. While ��� seeks to eliminate unnecessary 

inventory in the system, it deliberately keeps time buffers ahead of the critical station to 

eliminate unplanned resource idleness and at junctions where other lines meet the 

critical line to eliminate waiting for parts or components along the critical line. The 

determination of this buffer size and its relationship to the flow rate in a ��� 

environment is an issue that still needs investigation, especially in the light of possible 

variation in resource processing time. 

 

1.6. RESEARCH FOCUS AND CONTRIBUTION  

 

1.6.1. Area of Interest 

It has been stated that the aim of the supply chain management is a holistic approach 

for managing production throughout the entire production network, whereby some of 

its issues focus on the management of stations and some on the links. Issues of interest 

in station management relate to those of the traditional productivity and quality issues 

while issues of link management are those of logistics and information systems.  
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The focus of this work is on some of the station management principles. The main focus 

in stations is actually on the management of flows. Of particular interest is in the 

strategic management of inventories in the system as a result of the variability in the 

supply chain. Inventory has been mentioned earlier as strategic reserves of materials. 

They are said to occur both as deliberate strategic stocks and accumulation of flows in 

the production network.  

 

Queuing principles are the basic tools used throughout this work. In some instances, it 

was used to determine the steady state parameters of some selected systems of 

interest. In other instances, the steady state parameters of some queuing processes 

were used to derive the control parameters (optimal feed rate) of some specific queuing 

processes considering a particular Operations Management principle. 

 

1.6.2. Contributions to Knowledge  

The purpose of this research in station flows in a supply chain is two pronged: 

a) The first main contribution in this work is to the body of knowledge in the area of 

management of production system due to the nature of input system (i.e. 

pattern or arrival of demand from outside the production network). This involves 

the understanding of how the system behaves due to the nature of the demand 

and the characteristics of the processing centre. Zipkin (2000) has noted quite 

well that the only time in a supply chain when variability in input or processing 

time becomes important is during lead time, when there is a reasonable 

possibility of not meeting demand due to non availability of stock, and the 

attendant cost implication. So, the modelling interest is to understand the joint 

distribution of demand and lead time so that the steady state distribution of such 

system is determined, and from there, the system parameters can be calculated.  

 

This area is actually well researched, and there exists many probability models 

that have been developed as such. But the area is not yet full researched as there 

are still cases of some possible input types and demand characteristics not yet 
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solved (e.g. the various ��� and �# distribution considerations being done in 

this thesis). The theoretical probability distribution of some such Markov 

processes were developed in this regards in chapters 2 to 4. 

 

b) The second main contribution is in the area of management and accumulation of 

flows. The Theory of Constraints philosophy was particularly used as the 

reference philosophy. Contributions are made in the management of flow in a 

production environment that utilises this theory. This area appears to have an 

enormous potential for studies by applying the solutions of some of the steady 

state parameters of the various queuing processes already derived in regulating 

flows in such production environment. But the area does not appear well 

researched, and so, considered in this work.  

 

1.7. CHAPTER OVERVIEW 

 

The first chapter of this work contains the background to the study and a review of the 

relevant literature. The focus of the research is defined and the anticipated 

contributions to the field of learning were stated.  

 

In chapter two, a multi-server service facility of a perishable inventory system with 

negative customer is presented. The item demanded is presented to the customer only 

after some service has been performed on the item. The inventory is depleted at the 

service rate rather than the demand rate. The arrival of customers follows a Markov 

Arrival Process (���) and the service time has an exponential distribution. The ordering 

policy is (�, �), and the lead time has exponential distribution. A customer whose service 

could not be provided immediately moves into an orbit of infinite size, from where 

requests are sent back to the system at random intervals characterised by exponential 

distribution. In addition, a second flow of negative customers following an ��� 

removes one of the customers from the orbit. The joint probability of the number of 

busy servers, the inventory level and the number of customers in the orbit is obtained at 
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the steady state. Various stationary system performance measures were calculated, and 

the result illustrated numerically. 

 

Chapter three is a study of a continuous review retrial inventory system with a finite 

source of customers and identical multiple servers in parallel. The customers arrive 

according to a quasi-random distribution. The customers demand unit items which are 

then delivered after some service has been performed on the items. The re-ordering 

policy is (�, �), and its distribution is assumed to be exponential. A customer with 

unfulfilled order joins an orbit from which only customers selected based on certain 

rules can reapply for service. The joint probability distribution of the number of 

customers in the orbit and the steady state number of busy servers and inventory level 

are obtained. Measures of system performance were derived.  

 

Chapter four is a study of two-commodity perishable inventory with bulk demand for 

one commodity. It is a continuous review process in which three flows of customers 

could demand single item of the first, bulk item of the second or both single item of the 

first and bulk of the second. The arrival pattern is assumed to be ���. Order policy is to 

place order for both items when inventory levels are below the fixed levels for both 

commodities. The lead time is assumed to have a phase type distribution and the 

demands that occur during the stock out period are lost. The joint probability 

distribution for both commodities is determined and the various measures of system 

parameters and the total expected cost rate in the steady state are derived and 

numerical illustration was done. 

 

Chapter five studies the management of flow in a production environment managed 

through the Theory of Constraints approach. The system is a continuous or 

discontinuous flow process with a Poisson input flow and an exponential service time. 

The system is assumed to have only a Capacity Constrained Resource and no Bottle 

neck. The option of using a regulated input flow to dynamically control the buffer placed 

ahead of the critical resource to cover for variations in processing time was shown to 

provide better management approach than a case where a predetermined buffer size is 

placed ahead of the resource. This model was further modified to incorporate payment 
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of penalty charges for cases of lost throughput. A formula for determining the optimal 

flow rate to allow in the system to maximise the system profit was developed. The effect 

of shortages on the system parameters was illustrated graphically. 

 

Chapter six is basically the concluding overview, the contextualisation of some possible 

applications of the models developed in the thesis, and the identification of some 

suggested areas for further future research. 
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2. *
 

 

 

 

 

 

CHAPTER 2 

A MULTI-SERVER PERISHABLE INVENTORY 

SYSTEM WITH NEGATIVE CUSTOMER 

                                                           
*
 A modified version of this chapter has been submitted to Computers and Industrial Engineering 

Journal. The revision has been completed and re-submitted. 
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2.1. INTRODUCTION 

 

Stochastic inventory models in which the demanded item is not immediately delivered 

to the customer are being considered by many authors. As the item in the stock may 

require some time for installation or preparation etc, the time taken to deliver to the 

customers is positive and usually random. As this causes formation of queues, the 

inventory manager needs to consider the queue length as well as the waiting time apart 

from the mean inventory level, holding time, etc to evaluate the system performance 

and hence to implement various control policies. 

 

Berman et al (1993) considered an inventory management system at a service facility 

which uses one item of the inventory for each service provided. They assumed that both 

demand and service rates are deterministic and constant, and queues can form only 

during the stock outs. They determined optimal order quantity that minimises the total 

cost rate. Berman and Kim (1999) analysed a problem in a stochastic environment where 

customers arrive at a service facility according to a Poisson process. The service times 

are exponentially distributed with mean inter arrival time which is assumed to be larger 

than the mean service time. Each service requires one item from the inventory. Under 

both the discounted and average cost cases, the optimal policy of both finite and infinite 

time horizon problems is a threshold ordering policy.  

 

A logically related model was studied by He et al. (1998), who analysed a Markovian 

Inventory-Production system, in which the demands are processed by a single machine 

in a batch size of one. Berman and Sapna (2000) studied an inventory control problem at 

a service facility which requires one item of the inventory. They assumed Poisson 

arrivals, arbitrarily distributed service times and zero lead times. They analysed the 

system with a finite waiting room. Under a specified cost structure the optimal ordering 

quantity that minimises the long run expected cost per unit time has been derived. 

 

Sivakumar and Arivarignan (2006) considered an inventory system with service facility 

and negative customers. Schwarz et al (2006) have considered an inventory system with 
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Poisson demand, exponentially distributed service time and deterministic and 

randomised ordering policies. Manuel et al (2008) analysed an inventory system with 

service facility and finite waiting hall. They assumed the customers arrive according to a 

Markovian arrival process, the service times have phase-distribution, the lead time of 

the reorder and the life time of each item are exponential. When the waiting hall is full, 

an arriving customer joins the orbit of infinite size and after a random time, the 

customer tries his/her luck. Yadavalli et al (2008) considered an inventory system with 

service facility and infinite waiting hall. They assumed that demands occur according to a 

renewal process with instantaneous supply of reorders. 

 

In all the above models, the authors assume that the service facility had a single server. 

But in many real life situations, the service facility has more than one server, and this is 

incorporated in this paper by assuming multiple servers. It was also assumed that any 

arriving customers who find all the servers are busy or all the items are in service enters 

into an orbit of infinite size to try their luck again sometime later. 

 

Queues in which customers are allowed to conduct retrials have been widely used to 

model many problems in production/manufacturing engineering, communication 

engineering, etc. A complete description of situations where queues with retrial 

customers arise can be found in Falin and Templeton (1997). A classified biography is 

given in Artalejo (1999). For more details on multi-server retrial queues, see Anisimov 

and Artalejo (2001), Artalejo and Gomez-corral (2008), Artalejo et al (2001,2007), and 

Chakravarthy and Dudin (2002).  

 

The rest of the paper is organised as follows. The next section gives a description of the 

mathematical model and the notations used. The steady state analysis of the model is 

presented in section 3. In section 4, various system performance measures in the steady 

state were derived. In the final section, the total expected cost rate in the steady state 

was derived and the results are illustrated using numerical examples. 
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2.2. MODEL DESCRIPTION 

 

Consider the service facility which can stock a maximum of > units and ?(≥ 1) identical 

servers. The customers arrive according to a Markovian Arrival Process (���) with 

representation (@A, @)) where C’s are of order B)x B). The underlying Markov Chain D)(0) of the ��� has the generator @(= @A + @) ) and a stationary distribution vector E) of length B). The stationary arrival rate is given by ') = E)@)F, where F is a column 

vector of appropriate dimension containing all ones. For more details on ��� and their 

properties, the reader may refer to Neuts (1995). If a new customer finds that anyone of 

the servers is idle, he/she immediately accedes to the service. The customer who finds 

either that all servers are busy or there is no service item (excluding those in service) in 

stock enters into an orbit of infinite size. These orbiting customers send requests at 

random time points for possible selection of their demands. The interval time between 

two successive request-time points is assumed to have exponential distribution with 

parameter 	. It is assumed that the access from the retrial group to the service facility is 

governed by the constant retrial policy described in Falin and Templeton (1997); i.e. the 

probability of repeated attempt during the interval (0, 0 + ∆0), is given by that 	∆0 + 4(∆0) as ∆0 → 0. The service times have exponential distribution with rate ( 

both for primary customers and successful repeat customers. The items are perishable 

in nature and the life time of each item has a negative exponential distribution with 

parameter I(> 0). It is also assumed that the servicing item cannot perish. The 

operating policy is as follows: as soon as the inventory level drops to K(> ?), a 

replenishment order for L(= > − K > K) items is placed. The lead time is assumed to 

have exponential distribution with parameter N(> 0). 

 

In addition to the regular customers, a second flow of negative arrival following a ��� 

with representation (OA, O)) where O’s are of order B*xB* is also considered. The 

underlying Markov Chain D*(0) of the ��� has the generator O(= OA + O)) and a 

stationary distribution vector EP) of length B*. The stationary arrival rate is given by 'P) = EP)O)F. A negative customer has the effect of removing a customer from the 
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orbit. The removal policy adopted is +��, (removal of a customer from the end of the 

queue). 

 

Notations [R]T,U:  The element/sub matrix at (�, V)0ℎ position of A %:   Zero matrix Y<(B):  A column vector of dimension 6 with 1 in the B/Z position [:   An identity matrix [\:   An identity matrix of order ]. R ⊗ _:  Kronecker product of matrices R and _ R ⊕ _:  Kronecker sum of matrices R and _ a               = 90,1, … , :  

ℎ(.)            =  b1,   �c   . ≥ 0;0,   �c   . < 0;e  
f(T,U)               =  b1,       �c   � = V;0,   40ℎY5g�KY;e  f(T,U)           =  1 − f(T,U)  hT                =     91,2, … , �:  hTA               =     90,1, … , �:  

 

 

2.3. ANALYSIS 

 

Let j(0), k(0), l(0), D)(0) and D*(0), respectively, denote the number of customers in the 

orbit, the on-hand inventory level, the number of busy servers, the phase of the arrival 

of ordinary demand process and the phase of the arrival of the negative demand process 

at time 0. From the assumptions made on the input and output processes, it can be 

shown that the stochastic process 9j(0), k(0), l(0), D)(0), D*(0); 0 ≥ 0: is a Markov 

process with state space given by 

 h = 9(�, ], B, m), m*); � ∈ a, ] ∈ hnP)A , B ∈ h\A, m) ∈ hopA , m* ∈ hoqA :  

  ∪   9(�, ], B, m), m*); � ∈ a, ] ∈ hs\hnP), B ∈ hnA, m) ∈ hopA , m* ∈ hoqA :.  
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Define the following ordered sets: 

 < �, ], B, m) > = ((�, ], B, m), 1), (�, ], m), 2), … (�, ], m), B*)), 

      < �, ], B > = (< �, ], B, 1 >, < �, ], B, 2 >, … < �, ], B, B) >),  

           < �, ] > = b (< �, ], 0 >, < �, ], 1 >, … < �, ], ] >)   ] ∈ hnP)A ,(< �, ], 0 >, < �, ], 1 >, … < �, ], ? >)  ] ∈ hs\hn ,e  
               < � > = (< �, 0 >, < �, 1 >, … < �, > >).                                                              

 

Then the state space can be ordered as (< 0 >, < 1 >, … ). 
 

The infinitesimal generator, u, of this process can be written in block partitioned form 

where the rows and columns correspond to (< 0 >, < 1 >, … ). 
 u =  

v
wwx

_)   RA    0    0   0  …   R*   R)   RA   0   0  …   0     R*   R)   RA 0  …   .      .       .        .     .    …   .      .       .        .     .    …   y
zz{                                                                                    (2.1) 

 

where 

 RA = |�}~(�A, �), … , �nP), �n , �n , … �n) 

 �� = Y��)(E + 1)Y��)� (E + 1) ⊗ �@) ⊗ [oq�,   E ∈ hnA 

 R* = |�}~(�A, �), … , �nP), �n , �n , … �n) 

 �A = [o) ⊗ O)                                                                                                                     (2.2) 

 

For E ∈ hn 

 [��]\,� = � [o) ⊗ O),                 � = ],        ] ∈ hsA	[o) ⊗ [o*,     � = ] + 1,     ] ∈ h�P)A0,                                            40ℎY5g�KY e                                                       (2.3) 

 [R)]\,� =
���
���\ ,           � = ],          ] ∈ hsA8\,        � = ] − 1,       ] ∈ hs�\,      � = ] + L,       ] ∈ hnA�n ,    � = ] + L,    ] ∈ hs\hn0                            40ℎY5g�KY

e                                                                       (2.4) 

 �\ =  D\ ⊗ (N[o) ⊗ [o*),    ] ∈ hnA                                                                                    (2.5) 
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 D� = 01⋮�
    0 1 2 ⋯ �             � + 1 ⋯ ?                                      

�1 0 0 0 00 1 0 0 0⋮0 ⋮0 ⋮0 ⋮⋯ ⋮1               0 ⋯ 00 ⋯ 0⋮0 ⋮⋯ ⋮0� ,    � ∈ hnA                                             (2.6) 

 

  8) = �I[o) ⊗ [o*([o) ⊗ [o*�                                                                                                              (2.7) 

 

For E ∈ hn\h) 

[8�]\,� = �(E − ])I[o) ⊗ [o*,           � = ],        ] ∈ h�P)A]([o) ⊗ [o*,                     � = ] − 1,     ] ∈ h�%,                                                          40ℎY5g�KY e                                             (2.8) 

For E ∈ hs\hn 

 [8�]\,� = � (E − ])I[o) ⊗ [o*,           � = ],        ] ∈ hnA]([o) ⊗ [o*,                     � = ] − 1,     ] ∈ hn%,                                                          40ℎY5g�KY e                                           (2.9) 

 �A = @A ⊕ OA − N[o) ⊗ [o*                                                                                      (2.10) 

For E ∈ hnP), 

 [��]\,� =
���
�� @) ⊗ [o*,                                                                             � = ] + 1,      h�P)A@A ⊕ OA − (EI + N + 	)[o) ⊗ [o*,                             � = ],             ] = 0@A ⊕ OA − ((E − ])I+]( + N + 	)[o) ⊗ [o*,        � = ],       ] ∈ h�P)@A ⊕ OA − ((E − ])I+]( + N)[o) ⊗ [o*,                � = ],            ] = E%                                                                                                           40ℎY5g�KY

e   (2.11) 

For E ∈ h�\hnP), 

[��]\,� =
���
�� @) ⊗ [o*,                                                                             � = ] + 1,      hnP)A@A ⊕ OA − (EI + N + 	)[o) ⊗ [o*,                             � = ],             ] = 0@A ⊕ OA − ((E − ])I+]( + N + 	)[o) ⊗ [o*,        � = ],       ] ∈ hnP)@A ⊕ OA − ((E − ])I+]( + N)[o) ⊗ [o*,                � = ],            ] = ?%                                                                                                           40ℎY5g�KY

e    (2.12) 
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For E ∈ hs\h�, 

[��]\,� =
���
�� @) ⊗ [o*,                                                                       � = ] + 1,      hnP)A@A ⊕ OA − (EI + 	)[o) ⊗ [o*,                               � = ],             ] = 0@A ⊕ OA − ((E − ])I+]( + 	)[o) ⊗ [o*,          � = ],       ] ∈ hnP)@A ⊕ OA − ((E − ])I+]( + 	)[o) ⊗ [o*,         � = ],            ] = ?%                                                                                                   40ℎY5g�KY

e (2.13)

 [_)]\,� =
���
����\,           � = ],          ] ∈ hsA8\,        � = ] − 1,       ] ∈ hs�\ ,      � = ] + L,       ] ∈ hnA�n ,    � = ] + L,    ] ∈ h�\hn0                            40ℎY5g�KY

e 
 ��A = @A ⊕ O − N[o) ⊗ [o*  

For E ∈ hnP), 

 [���]\,� = � @) ⊗ [o*,                                                                � = ] + 1,      h�P)A@A ⊕ O − (EI + N)[o) ⊗ [o*,                          � = ],             ] = 0@A ⊕ O − ((E − ])I+]( + N)[o) ⊗ [o*,      � = ],           ] ∈ h�%                                                                                           40ℎY5g�KY
e    (2.14) 

 For E ∈ h�\hnP) 

 [���]\,� = � @) ⊗ [o*,                                                                 � = ] + 1,      hnP)A@A ⊕ O − (EI + N)[o) ⊗ [o*,                            � = ],             ] = 0@A ⊕ O − ((E − ])I+]( + N)[o) ⊗ [o*,        � = ],           ] ∈ hn%                                                                                             40ℎY5g�KY
e   (2.15) 

  

For E ∈ hs\h� 

 [���]\,� = � @) ⊗ [o*,                                                                  � = ] + 1,      hnP)A@A ⊕ O − EI[o) ⊗ [o*,                                        � = ],             ] = 0@A ⊕ O − ((E − ])I+]( + N)[o) ⊗ [o*,       � = ],           ] ∈ hn%                                                                                               40ℎY5g�KY
e   (2.16) 

 

It may be noted that RA, R), R*, _) are square matrices of order �?, n�)* � B)B* +(> − ?)(? + 1)B)B*,    �T, �T, � ∈ hnA are square matrices of order (� + 1)B)B*,��T , �T , � ∈ hnP)A  are square matrices of order (� + 1)B)B*, ��T , �T, � ∈ hs\hnP) are 

square matrices of order (? + 1)B)B*,   8T, � ∈ hnA are of order (� + 1)B)B* x �B)B*,    8T, � ∈ hs\hn are square matrices of order (? + 1)B)B*,   �T, � ∈ hnP)A  are of order (� + 1)B)B* x (? + 1)B)B*, and �n is a 

square matrix of order (? + 1)B)B*. 
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2.3.1. Stability Analysis 

To discuss the stability condition of the process, consider R = RA + R) + R* which is 

given by 

 [R]\,� =
���
����\,           � = ],          ] ∈ hsA8\,        � = ] − 1,       ] ∈ hs�\,      � = ] + L,       ] ∈ hnA�n ,    � = ] + L,    ] ∈ hs\hn%                            40ℎY5g�KY

e                                                                       (2.17) 

where 

 ��\ = b�\ + �\ + �\,          ] ∈ hnP)A�\ + �n + �n ,    ] ∈ hs\hnP) e                                                                           (2.18) 

 

Let Π denote the steady state probability vector of A, which satisfies 

 ΠR = %, ΠF = 1   

 

The vector Π can be represented by  

 Π = (�(A), �()), ⋯ , �(s))           

where  

 �(T) = �(�(T,A), �(T,)), … , �(T,T)),          � ∈ hnP)A(�(T,A), �(T,)), … , �(T,n)),   � ∈ hs\hnP) e                                                             (2.19) 

with  

 �(T,\) = (�(T,\,)), �(T,\,*), … , �(T,\,o))),   � ∈ hsA, ] ∈ hnA  

and 

 �(T,\,�) = (�(T,\,�,)), �(T,\,�,*), … , �(T,\,�,o*)),   � ∈ hsA, ] ∈ hnA, � ∈ ho) 

 

It can be easily shown that 

 �(T) = �(�)�T , � ∈ hsA                                                            (2.20)  
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where 

�T =
���
�
���

(−1)�PT8����P)P) 8�P) … 8T�)��TP)                                                          � = 0,1,2, … , L − 1[,                                                                                                           � = L(−1)sPT�)�s�∑ ¡(K, V)�n¢(> − V, �) + ∑ ¡(K, V)�n¢(L + V, �)nP)U£TP��PnU£A ¤,� = L + 1, L + 2, … , L + ? − 1(−1)sPT�)�s ∑ ¡(K, V)�n¢(> − V, �)sPTU£A                                                        � = L + ?, L + ? + 1, … , >
e        (2.21) 

with 

 ¡(�, V) = �8T��TP)P) 8TP) … ��TPUP) ,     V ≥ 1[                                         V = 0e 
 ¢(�, V) = ��T8T��TP)P) … ��UP).                                                                                            (2.22) 

and �(�) can be obtained by solving 

 �(�)����)8��) + ��� + �A�A� =  %. 

and 

  �(�) ¥[ + ∑ �\s\£A\¦� § F = 1                                                                                (2.23) 

 

Now the following result obtains on the stability condition. 

 

Lemma 1 The stability condition of the system under the study is given by 

 

 ∑ �(T,T)(@) ⊗ [o*)F + ∑ �(T,n)(@) ⊗ [o*)FsT£nnP)T£A  

 < ¨∑ �(T,T)([o) ⊗ O))F +  ∑ �(T,n)([o) ⊗ O))FsT£nnP)T£A+ ∑ ∑ �(T,U)TP)U£AnP)T£) ([o) ⊗ O) + 	[o) ⊗ [o*)F+ ∑ ∑ �(T,U)nP)U£AsT£n ([o) ⊗ O) + 	[o) ⊗ [o*)F ©                                         (2.24) 

 

Proof: From the well known result of Neuts (1994) on the positive recurrence of P, there 

exists 

 ΠRAF < ΠR*F  
and by exploiting the structure of the matrices RA and R* and Π, the stated result 

follows. 
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2.3.2. Steady State Analysis 

It can be seen from the structure of the rate matrix u and from the Lemma 1 that the 

Markov process ª�j(0), k(0), l(0), D)(0), D*(0)�  0 ≥ 0« on h is regular. Hence, the 

limiting distribution is defined by 

 

 ∅(T,\,o,­p,­q) = lim/→∞ u5[j(0) = �, k(0) = ], l(0) = B, D)(0) = m), D*(0) =m*⎸j(0), k(0), l(0), D)(0), D*(0)],                                                                                       (2.25) 

 

where ∅(T,\,o,­p,­q) is the steady-state probability for the state (�, ], B, m), m*), exists and 

is independent of the initial state. 

 

The probabilities ∅(T,\,o,­p,­q) can be grouped as follows: 

 ∅(T,\,�,­p) = (∅(T,\,�,­p,)), ∅(T,\,�,­p,*), … , ∅(T,\,�,­p,oq)),  � ∈ a, ] ∈ hAs, � ∈ hnA, m) ∈ ho) 

     ∅(T,\,�) = �∅(T,\,�,)), ∅(T,\,�,*), … , ∅(T,\,�,op)�,   � ∈ a, ] ∈ hAs, � ∈ hAn 

       ∅(T,\) = �∅(T,\,A), ∅(T,\,)), … , ∅(T,\,\),          ] ∈ hnP)A∅(T,\,A), ∅(T,\,)), … , ∅(T,\,n),    ] ∈ hs\hnP) e 
 

 and finally, write 

 ²(T) = �∅(T,A), ∅(T,)), … , ∅(T,s)�,   � = 0,1,2, …                                                           (2.26) 

 

The limiting probability distribution ² = (²()), ²(*), … ) satisfies 

 ²u = 0, ²F = 1.                                                                                                        (2.27) 

 

Theorem 1 : When the stability condition (2.24) holds good, the steady state probability 

vector, ², is given by 

 ²(U) = ²(A)³(U),   V = 0,1, …                                                                                   (2.28) 

where the matrix R satisfies the quadratic equation 

 ³*R* + ³R) + RA = %                                                                                              (2.29) 

and the vector ²(A) is obtained by solving  

 ²(A)(_) + ³R*) = %.                                                                                                (2.30) 
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subject to the normalising condition 

 ²(A)(1 − ³)P)F = 1.                                                                                                 (2.31) 

 

Proof: The theorem follows from the well known result of the matrix-geometric 

methods (Neuts, 1994). 

 

2.3.2.1. Computation of the R matrix 

In this subsection, an algorithmic procedure for computing the ³ matrix is presented, 

which is the main ingredient for discussing the qualitative behaviour of the system under 

study. 

 

Due to the special structure of the coefficient matrices appearing in (2.29), the square 

matrix ³ of dimension �n(n�))* � B)B* + (> − ?)B)B* can be computed as follows: Note 

that RAF is of the form 

  RAF =  
01⋮? − 1?? + 1⋮> v

www
wx

�AF�)F⋮�nP)F�nF�nF⋮�nF y
zzz
z{

,  �TF = 01⋮� ¨ 00⋮(@) ⊗ [o*)F© , � = 0,1,2, … , ?                  (2.32) 

 

Due to the special structure of RA matrix, the matrix ³ has only(> + 1)B)B* rows of 

nonzero entries as shown below 

 ³ =
vw
x³(A,A) ³(A,)) ⋯ ³(A,s)³(),A) ³(),)) ⋯ ³(),A)⋮³(s,A) ⋮³(s,)) ⋱ ⋮⋯ ³(s,s)yz

{
                                                                              (2.33) 

 

where  

 ³(A,T) = 0     0     1       ⋯    �                                           �³(A,T)(A) ³(A,T)()) ⋯ ³(A,T)(T) � ,    � = 0,1, … , ? − 1  
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  ³(A,T) = 0     0     1       ⋯    ?                                           �³(A,T)(A) ³(A,T)()) ⋯ ³(A,T)(T) � ,    � = ?, ? + 1, … , >  

   ³(T,T) = 01⋮�  
       0      1      ⋯  �                                           
vx

%%
³(T,T)(A)

%%
³(T,T)())

⋯ %⋯ %
⋯ ³(T,T)(T) y{ ,    � = 1,2, … , ? − 1  

   ³(T,T) = 01⋮? 
       0      1      ⋯  ?                                           
vx

%%
³(T,T)(A)

%%
³(T,T)())

⋯ %⋯ %
⋯ ³(T,T)(n) y{ ,    � = ?, ? + 1, … , >   

   ³(T,U) = 01⋮�  
       0      1      ⋯  V                                                   
vx

%%
³(T,U)(A)

%%
³(T,U)())

⋯ %⋯ %
⋯ ³(T,U)(U) y{,    � = 1,2, … , ? − 1V = � + 1, � + 2, … , ?   

   ³(T,U) = 01⋮�  
       0      1      ⋯  ?                                                     
vx

%%
³(T,U)(A)

%%
³(T,U)())

⋯ %⋯ %
⋯ ³(T,U)(n) y{,    � = 1,2, … , ? − 1V = ? + 1, ? + 2, … , >   

   ³(T,U) = 01⋮�  
       0      1      ⋯  V                                            
vx

%%
³(T,U)(A)

%%
³(T,U)())

⋯ %⋯ %
⋯ ³(T,U)(U) y{,    � = 1,2, … , ? − 1V = 0,1, … , � − 1   

   ³(T,U) = 01⋮? 
       0      1      ⋯  V                                            
vx

%%
³(T,U)(A)

%%
³(T,U)())

⋯ %⋯ %
⋯ ³(T,U)(U) y{,    � = ?, ? + 1, … , >V = 0,1, … , ? − 1  

   ³(T,U) = 01⋮? 
       0      1      ⋯  V                                              
¨ %%

³(T,U)A
%%

³(T,U))
⋯ %⋯ %

⋯ ³(T,U)n ©,    � = ?, ? + 1, , … , >V = ?, ? + 1, , … , >� ≠ V                                  (2.34) 

 

The matrix ³* is also of the form ³ with only (> + 1)B)B* nonzero rows. This form is 

exploited in the computation of R using (2.29). The relevant equations are given in the 

appendix. 
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2.4. SYSTEM PERFORMANCE MEASURES 

 

In this section, some stationary performance measures of the system are derived. Using 

these measures, the total expected cost per unit time can be constructed. 

 

2.4.1. Mean Inventory Level 

Let ·̧  denote the mean inventory level in the steady state. Since ∅(T,\) denotes the 

steady state probability vector for ]0ℎ inventory level with each component specifying a 

particular combination of the number of customers in the orbit, the number of busy 

servers, the phase of the ordinary arrival process and the phase of the negative arrival 

process, the quantity ∅(T,\)F gives the probability that the inventory level is ] in the 

steady state. Hence, the mean inventory level is given by  

 

 ·̧ = ∑ ∑ ]∅(T,\)F�\£)∞T£A                                                                                                    (2.35) 

 

2.4.2. Expected Reorder Rate 

Let ·¹ denote the expected reorder rate in the steady state. Note that a reorder is 

triggered when the inventory level drops from K + 1 to K. The steady state probability 

vector ∅(T,��),�) gives the rate at which K + 1 is visited. After the system reaches the 

inventory level K + 1, either a service completion of any of the � servers if � > 0 or a 

failure of anyone of K + 1 − � items trigger the reorder event. This leads to 

 

 ·¹ = ∑ ∑ �(∅(T,��),�)Fn�£)∞T£A + ∑ ∑ (K + 1 − �)I∅(T,��),�)Fn�£)∞T£A                             (2.36) 
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2.4.3. Mean Perishable Rate 

Since ∅(T,\,�) is a vector of probabilities with � customers in the orbit, the inventory level 

is ] and � busy servers, the mean perishable rate, ·º in the steady state is given by  

 ·º = ∑ ∑ ∑ (] − �)I∅(T,\,�)F\P)�£An\£)∞T£A + ∑ ∑ ∑ (] − �)I∅(T,\,�)Fn�£As\£n�)∞T£A        (2.37) 

 

2.4.4. Mean number of customers in the Orbit 

Let ·» denote the expected number of customers in the orbit. Since ²(T) is the steady 

state probability vector for � customers in the orbit with each component specifying a 

particular combination of the inventory level, number of busy servers, the phase of the 

ordinary customers arrival process and the phase of the negative customers arrival 

process, the quantity ²(T) gives the probability that the number of customers in the 

orbit is � in the steady state. Hence, the expected number of customers in the orbit is 

given by 

 

 ·» = ∑ �∞T£) ²(T)F. 

       = ²(A)³([ − ³)P*F.                                                                                                   (2.38) 

 

2.4.5. Mean Rate of Arrival of Negative Customers 

Let ·¼ denote the mean arrival rate of negative demand in the steady state. This is given 

by  

 ·¼ =)
λ½p ∑ �∅(T,A,A)([o) ⊗ O))F + ∑ ∑ ∅(T,\,�)([o) ⊗ O))F\�£AnP)\£) + ∑ ∑ ∅(T,\,�)([o) ⊗n�£As\£n∞T£)O))F]                                                                                                                                          (2.39) 
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2.4.6. The overall Rate of Retrials 

If ·»¹ is the overall rate of retrials in the steady state, then overall rate of trials at which 

the orbiting customers request service is given by 

 

 ·»¹ = 	 ∑ ²(T)F∞T£)  

  = 	²(A)³(1 − ³)P)F                                                                                          (2.40) 

 

2.4.7. The Successful Rate of Retrials 

Let ·s¹ denote the successful rate of retrials in the steady state. Note that the orbiting 

customer can enter the service if there is at least one free server and there is at least 

one item which is not in service. Hence, the successful rate of retrial, ·s¹, is given by 

 ·s¹ = 	�∑ ∑ ∑ ∅(T,\,�)\P)�£A F +nP)\£) ∑ ∑ ∑ ∅(T,\,�)nP)�£A Fs\£n∞T£)∞T£) ¤                                (2.41) 

 

2.4.8. The Fraction of Successful Rate of Retrial 

The fraction of successful rate of retrial is given by 

 ·¾s¹ = ¿ÀÁ¿ÂÁ                                                                                                                         (2.42) 

 

2.4.9. The Expected Number of Busy Servers 

If ·Ãs denotes the mean number of busy servers in the steady state, it is given by 

 

 ·Ãs = ∑ ∑ ∑ �∅(T,\,�)\�£A F +nP)\£) ∑ ∑ ∑ �∅(T,\,�)n�£) Fs\£n∞T£)∞T£)                                    (2.43) 
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2.4.10. The Expected Number of Idle Servers 

If ·̧s denotes the expected number of idle servers in the steady state, then ·̧s is given 

by 

 ·̧s = c − ·Ãs                                                                                                                   (2.44) 

 

2.4.11. The Blocking Probability 

Let ·Ã denote the blocking probability in the steady state. This is given by 

 

 ·Ã = ∑ ∑ ∅(T,\,\)F +ÅP)Æ£A∞Ç£A ∑ ∑ ∅(T,\,n)FÈÆ£Å∞Ç£A                                                             (2.45) 

 

 

2.5. COST ANALYSIS 

 

The total expected cost per unit time (expected cost rate) in the steady state for this 

model is defined to be 

 

 3@(>, K, ?) = ?Z·̧ + ?º·º + ?s·¹ + ?É·» + ?<Ê·¼                                                   (2.46) 

where ?�: Setup cost per order ?Z: Inventory carrying cost per unit item per unit time ?Ë: Perishable cost per unit item per unit time ?É: Backlogging cost per unit time ?<Ê: Loss per unit time due to arrival of a negative customer 

 

Substituting ·s the cost rate becomes 
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3@(>, K, ?) = ?Zª∑ ∑ ]∅(T,\)F�\£)∞T£A « + ?Ëª∑ ∑ ∑ (] − �)I∅(T,\,�)F\P)�£An\£)∞T£A +�=0∞]=?+1>�=0?]−�I∅�,],�FFFF+?K�=0∞�=1?�(∅(�,K+1,�)FFFF+�=0∞�=0?(K+1−�)I∅(�,K+1,�)FFFF+?g�=1∞�²(�)FFFF+?6Y1λ−1�=1∞∅�,0,0[B1⊗O1FFFF+]=1?−1�=0]−1∅�,],�[B1⊗O1FFFF+]=?>�=0?∅�,],�[B1⊗O1FFFF                                                                                            

(2.47) 

 

Since the computation of the ∅’s involve recursive equations, it is difficult to study the 

qualitative behaviour of the total expected cost rate analytically. However, the following 

numerical examples are presented to demonstrate the computability of the results 

derived in this work. 

 

2.6. NUMERICAL ILLUSTRATIONS
†
 

 

As the total expected cost rate is obtained in a complex form, one cannot study the 

qualitative behaviour of the total expected cost rate by the analytical methods. Hence, 

some ‘simple’ numerical search procedures have been used to find the “local” optimal 

values by considering a small set of integer values for the decision variables. With a large 

number of numerical examples, it was found out that the total cost rate per unit time in the 

long run is either a convex function or an increasing function of any one variable. 

 

Consider the following ���’s for arrivals of regular demands as well as of negative 

demands. These processes can be normalised so as to have specific demand rate ') (or 'P)) 

when considered for arrivals of regular (negative) demands. Each of the ��� will be 

represented by (ÌA, Ì)), where ÌT’s will represent @’s for regular (positive) demands and O’s for negative demands. 

 

                                                           
†
 Tables (2.2 to 2.19) referenced but not included in the body of this chapter could be found in Appendix 3 
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1 �� ÍÎFÎÏÐÑ" (�� ) 

 ÌA = (−1)   Ì) = (1)  

2 �!"ÑÎÒ (�!") 

 ÌA = Ó−1 0 00 −1 00 0 −1Ô      Ì) = Ó0 0 00 0 01 0 0Ô 

3 #Õ F! − F� ÍÎFÎÏÐÑ" (#�� ) 

 ÌA = �−10 00 −1�      Ì) = � 9 10.9 0.1� 

4 ��� with negative correlation (�$�) 

 ÌA = Ó−2 2 00 −81 00 0 −81Ô      Ì) = Ó 0 0 025.25 0 55.7555.75 0 25.25Ô 

5 ��� with positive correlation (���) 

 ÌA = Ó−2 2 00 −81 00 0 −81Ô      Ì) = Ó 0 0 055.25 0 25.7525.75 0 55.25Ô 

 

All the above ���s are qualitatively different in that they have different variance and 

correlation structures. The first three processes are special cases of renewal processes and 

the correlation between the arrival times is 0. The demand process labelled �$� has 

correlated arrivals with correlation coefficient −0.1254 and the demands corresponding to 

the process ��� has positive correlation coefficient of 0.1213. Since �!" has the least 

variance among the five arrival processes considered here, the ratios of the variances of the 

other four processes labelled �� , #�� , �$� and ��� above, with respect to the �!" 

process are 3.0, 15.1163, 8.1795, 8.1795 respectively. The ratios are given rather than the 

actual values since the variance depends on the arrival rate which is varied in the discussion. 

The parameters and values have been chosen in such a way that the system is stable. 
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In the following discussions, the notations ���+, �� +, �!" +, ... were used when the ���K, �Ü�, �!", . .. were consider respectively for positive demands. When the process for 

negative demand were considered, the + were replaced by −. For example, when a case 

with #��   were considered for positive demands and ��� for negative demands, this will 

be denoted by (#�Ü�+, ���−). 
 

Example 2.1: In the first example, the optimum values, >∗ and K∗ that minimise the 

expected total cost rate were given for each of the five ���s for arrivals of regular 

demands considered against each of the five ���s for negative demands (see table 2.1). 

The associated expected total cost values are also given. The lower entry in each cell gives 

the optimal expected cost rate and the upper entries give the corresponding >∗ and K∗. 

Fixing ') = 10, 'P) = 4, ? = 3, N = 3, ( = 5, I = 0.6, 	 = 5, ?Z = 0.1, ?� = 10, ?Ë = 1, ?É =9, ?<Ê = 10, the following were observed: 

1. For the case (�!"+, �!"−), the optimal total cost rate and the optimal inventory 

level are smaller 

2. For the case (���+, #F� −), the optimal cost rate is large 

3. For the case (#�� +, #�� −), the optimal inventory level is large 

4. For the case (�!"+, �!"−), the optimal inventory level is smaller 

 

Example 2.2: The effect of correlation among positive demands and the correlation among 

negative demands on the total expected cost rate is studied in this example. Fixing > = 25, K = 6, ') = 6, 'P) = 4, N = 3, ( = 5, I = 0.6, 	 = 5, ?Z = 0.1, ?� = 10, ?Ë = 1,?É = 9, ?<Ê = 10,  the following were observed: 

1. When the correlation coefficient of demands of the ��� + increases, the total 

expected cost rate increases. The same result is observed for ��� −. 

2. If the correlation among the positive demands increases, the total expected cost 

rates when computed for each of the ���s of negative demands increase. This 
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trend is observed for ? = 1,2,3 and 4. But all the curves become almost equal when ? = 4. 

3. When the correlation among the negative demands increases, the total expected 

cost rate corresponding to #�� + approaches that of �$� +. When the number 

of servers and the correlation in the ��� + increases, the difference between the 

total expected cost rate corresponding to ��� + and ��� − increases. 

4. The total expected cost rates for (���+, �!"−) for all ��� +, have smaller value. 

The same is observed for (�!"+, ���−). 

5. The total expected cost rates for (���+, #�� −) and for (���+, ���−)  have 

high values. 

Table 2.1: MAP of arrivals 

 
 
 
 
 
 
 

MAP of 

positive 

arrivals 

 MAP  of negative  arrivals 

Exp- Erl- HExp- MNC- MPC- 

Exp+ 32.6872 31.1528 39.3456 35.5992 37.5572 

34 8 33 7 37 10 35 9 36 9 

Erl+ 25.9807 24.9220 30.2158 28.0187 29.0862 

32 6 31 6 35 9 34 8 34 8 

HExp+ 63.6298 60.7149 77.5237 69.0841 74.1758 

41 12 40 12 43 13 42 13 42 13 

MNC+ 52.2187 49.5678 65.0810 57.1639 61.5312 

37 10 36 10 41 12 38 11 39 11 

MPC+ 82.0489 78.8221 98.6941 88.0139 94.0573 

41 12 40 12 42 13 41 13 42 13 

 

Example 2.3: In this example, the effect of each of the following were illustrated: the 

positive demand rate '), the negative demand rate 'P), the lead time N, the service rate (, 

the retrial rate 	, the perishable rate I, the number of servers, (���+, #�� −), on the 

fraction of the successful rate of retrial, ·¾s¹. From tables 2.2-2.7, the following were 

observed: 

1. As ') increases, ·¾s¹ increases, except for the (���+, �!"−). 

2. Except ? = 1, the values of ·¾s¹ decreases as 'P) increases for the model (+�+, +�−), where +� represents the renewal processes, �� , �!" and #�� . (In 

each of these cases, there is no correlation among the arrivals of demands). 
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3. In the case of correlated demand processes, i.e. those cases of ($+�+, $+�−), 

where $+� = �$� Í! ��� , ·¾s¹ decreases with Nand increases with 	, when ? ≠ 4. 

4. But ·¾s¹ increases with I for all ? values. 

5. It was noted that for all values of ?, ·¾s¹ assumes low value when the input nature is  (�!"+, �!"−). It was also noted that this value approaches zero as ? increases. 

 

 

Figure 2.1: The effect of positive demand correlation on TC 
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Figure 2.2: The influence of negative  demand  correlation  on T C 

 

 

Example 2.4: The influences of '), 'P), N, (, 	, I, ? and (���+, ���−) on the blocking 

probability ·Ã is presented in this example. From tables 2.8 – 2.13, the following were 

observed: 

1. Except for ? = 1, as ')increases, ·Ã increases for each of the (���+, ���−) 

process. For the single server case, as ') increases, ·Ã decreases. The same 

behaviour is observed when 	 increases. 

2. Except for ? = 1, ·Ã decreases when 'P) increases. 

3. ·Ã increases when the lead time rate N increases for each of the (���+, ���−) 

process. 

4. Whenever the number of servers is more than one, ·Ã increases with (. 

5. ·Ã increases with N for each of the (���+, ���−) process. 
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Example 5: In this example, the effect of '), 'P), N, (, 	, I, ?, ��� + and ��� −on the 

expected number of idle servers, ·̧s were studied. From tables 2.14 - 2.19, the following 

were noted: 

1. As is to be expected, as ') increases, ·̧s decreases except for single server case. This 

can be explained intuitively as follows. When the rate of positive customers increase, 

more number of servers would be engaged. This leads to decrease in the number of 

idle servers. For ? = 1, ·̧s increases with '). This pattern is also observed for (, 	. 

2. Except for the single server case, ·̧s increases as '* increases. This is because as the 

negative customers frequently enter the orbit, they remove more customers from 

the orbit. Therefore, the number of retrying customers in the orbit decreases. Note 

that the servers will be occupied by both the positive demand and retrial customers. 

If the retrial customers’ level decreases, then naturally, the customers from the orbit 

will also decrease. This forces the expected number of idle servers to increase. 

3. As is to be expected, ·̧s increases as N increases for each of the (���+, ���−) 

process. 

4. Except for ? = 4, ·̧s decreases as ( increases. 

5. When I increases, ·̧s decreases for each of the (���+, ���−) process. 

 

CONCLUSION 

 

A continuous review perishable inventory system in a service facility with multi servers is 

studied in this work. The customers who could not get their demands attended to due to 

non-availability of items in stock or all the servers are busy join an orbit of infinite size. 

These customers attempt for service at random times. The customers are removed one 

by one by negative customers who could be touts of competing organisations. The novel 

attempt made in this work is to assume independent Markovian Arrival Processes (���) for the positive demands and negative demands. By assuming (���), one can 

also consider non renewal processes with correlated arrivals. Though, algorithmic 

solution is provided for this model, extended numerical examples were provided to 

 
 
 

 
 
 



49 

 

discuss the behaviour of the expected total cost rate and the system performance 

measures due to changes or variations in the parameters. 
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