

Biochemical and immunochemical investigation of some South African strains of the human malaria parasite, *Plasmodium falciparum*

by

Anton Carel Stoltz

Submitted in partial fulfilment of the requirements for the degree of

Master of Science

in the Faculty of Science Department of Biochemistry University of Pretoria

February 1992

© University of Pretoria

ACNOWLEDGEMENTS

I acknowledge, with gratitude, the following persons:

Professors A.I. Louw and J.A. Verschoor for their academic input, support and guidance during my studies and assistance with the completion of the thesis.

Professor L. Visser for his unfailing support and encouragement.

Mrs. J. Freese and Dr. Schutte from NIDTE for sharing their knowledge of malaria cultures with us and teaching me the technique at their laboratories in Durban.

Professor Fripp and Drs. Hansford and Sieling for making the anti-malaria drug resistance survey possible by providing the necessary equipment and funds.

Professor Coetzee and his colleagues of the Electron Microscopy Unit, University of Pretoria for expert technical assistance and support.

Marietjie Meyer and all my friends and colleagues who supported me during difficult periods.

Last but not least, my parents for their moral support and encouragement.

TABLE OF CONTENTS

CHAPTER 1

GENERAL LITERATURE REVIEW

1.1	Diagnosis of malaria	1
1.2	Epidemiology	2
1.3	Life cycle of the malaria parasites	4
1.4	The different malaria species	6
1.5	Pathology of malaria	12
1.6	Drug resistance	15
1.7	Immunology of malaria	16
1.8	Metabolism of malaria	20
1.9	Continuous culture of P. falciparum.	22
1.10	Objectives	23
1.11	REFERENCES	25

CHAPTER 2

DRUG SUSCEPTIBILITY AND SHORT-TERM CULTURE OF Plasmodium falciparum.

2.1 INTRODUCTION	31
2.1.1 Antimalarial drug classification and mechanism of action	33
2.1.2 Cloroquine resistance	37
2.1.3 New drugs	38
2.1.4 Objectives	39
2.2 MATERIALS AND MEHTODS	39

2.2.1 Microtest	39	
2.2.2 Samples	39	
2.2.3 Blood smears	40	
2.2.4 Giemsa staining	40	
2.2.5 Dill Glazko's reagent	40	
2.2.6 Preparation of growth medium	41	
2.2.7 Performance of the microtest	41	
2.3 RESULTS	42	
2.4 DISCUSSION	45	
2.5 REFERENCES		
CHAPTER 3		
CONTINUOUS CULTURING AND BIOCHEMISTRY OF THE		

CONTINUOUS COEFCINING AND DICONEMICITY OF THE		
ERYTHROCYTIC STAGES OF Plasmodium falciparum		
3.1 INTRODUCTION		
3.1.1 Factors affecting the continuous cultivation of		
P. falciparum.	51	
3.1.2 Nutritional requirements of P. falciparum. during in		
vitro culturing	54	
3.1.3 Objectives	56	
3.2 MATERIALS AND METHODS	57	
3.2.1 Serum	57	
3.2.2 Erythrocytes	58	
3.2.3 Mediums	59	
3.2.4 Gassing of cultures	59	

3.2.5 Continuous cultivation of P. falciparum.	60
3.2.6 Gassing experiments	60
3.2.7 Cryopreservation of P. falciparum-infected blood or	
cultures	61
3.2.8 Thawing of cryopreserved infected erythrocytes	61
3.2.9 Medium supplements and parasite growth	62
3.2.10 Metabolite concentrations in P. falciparum-infected	
cultures	63
3.2.11 RESULTS	70
3.3.1 Time required to displace the air above thin-layered	
cultures with the special gas mixture	70
3.3.2 Effect of gassing method on parasite growth	71
3.3.3 Gas profile of medium under culture conditions	72
3.3.4 Parasite growth in mediums with different supplements	73
3.3.5 Metabolite concentrations in P. falciparum-infected	
cultures	75
3.4 DISCUSSION	86
3.5 REFERENCES	99

CHAPTER 4

A MICRO-ENZYME-IMMUNOASSAY FOR THE DETERMINATION OF THROMBOCYTE-ASSOCIATED IMMUNOGLOBULINS IN MALARIA PATIENTS 4.1 INTRODUCTION 104

4.2 MATERIALS AND METHODS	107
4.2.1 Preparation of partially purified immunoglobulin	107

4.2.2	Comparison between coating buffers and pin coating	
	samples	108
4.2.3	Thrombocyte preparation	108
4.2.4	Immunoglomulin coated TSP	108
4.2.5	Determination of thrombocyte-associated IgG and IgM	109
4.3 RE	ESULTS	109
4.3.1	Preparation of partially purified immunoglobulin	109
4.3.2	Coating buffers and immunoglobulin source for coating	
)	pins	111
4.3.3	Optimization of the coupling of immunoglobulins onto	
8	TSP-pins	112
4.3.4	Standard curves	113
4.3.5	Measurement of thrombocyte-associated IgG and IgM	115
4.4 DI	SCUSSION	116
4.5 RE	4.5 REFERENCES 119	

CHAPTER 5

ULTRASTRUCTURAL STUDIES OF ERYTHROCYTES INFECTED WITH	
P. falciparum.	
5.1 INTRODUCTION	121
5.1.1 Parasite-induced changes to the erythrocyte membrane	122
5.1.2 Intraerythrocytic cytoplasmic organelles	122
5.1.3 Fixation of tissues for electron microscopy	124
5.1.4 Ultrastructural features of erythrocyte stage parasites	125
5.1.5 Objectives	127

5.2 MATERIALS AND METHODS	128
5.2.1 Parasite collection and in vitro culturing	128
5.2.2 Preparation of blood smears for light microscopy	128
5.2.3 Slow fixation of infected erythrocytes	128
5.2.4 Fast fixation of infected erythrocytes	129
5.2.5 Processing of glutaraldehyde-fixed, infected tissues for	
scanning electron microscopy	129
5.2.6 Processing of glutaraldehyde-fixed, infected tissues for	
transmission electron microscopy	129
5.3 RESULTS	131
5.3.1 Light microscopy of P. falciparum-infected erythrocytes	131
5.3.2 Scanning electron microscopy of P. falciparum-infected	
erythrocytes	132
5.3.3 Transmission electron microschopy of P. falciparum-	
infected erythrocytes	136
5.4 DISCUSSION	137
5.5 REFERENCES	141
CHAPTER 6	
6.1 CONCLUDING DISCUSSION	144
6.2 REFERENCES	
SUMMARY	
OPSOMMING	

.

LIST OF fIGURES

Figure 1.1	Malaria areas in Southern Africa	3
Figure 1.2	Malaria notifications in South Africa from 1957 to	
	1989	4
Figure 1.3	Life cycle of Plasmodium species	6
Figure 1.4	Comparison between the bloodstages of human	
	malaria strains after Giemsa staining	11
Figure 1.5	Purine salvage pathway in the erythrocyte and	
	Plasmodium	22
Figure 2.1	Structure of antimalarial compounds	37
Figure 2.2	Growth inhibition from 18 patients tested for	
	chloroquine and mefloquine resistance in North-	
	Eastern Transvaal during 1988	43
Figure 2.3	a) Population pie chart of chloroquine resistance	
	in the North-Eastern Transvaal during 1988	
	b) Population pie chart of mefloquine resistance in	
	the North-Eastern Transvaal during 1988	44
Figure 3.1	Diagrammatic representation of experimants to	
	determine metabolite concentrations in	
	Plasmodium falciparum cultures	63
Figure 3.2	Extraction of purine nucleotides from	
	erythrocytes	66
Figure 3.3	Time required to displace air in 250ml growth	

vii

	flasks	70
Figure 3.4	Parasite growth in air- and gas-equilibrated culture	
	mediums	71
Figure 3.5	HPLC elution pattern of erythrocyte-PCA extracts	
	from infected and non-infected cultures from	
	experiment A.	75
Figure 3.6	Comparison of various parameters during in vitro	
	culture of P. falciparum-infected and non-infected	
	erythrocytes under different conditions	76
Figure 3.7	HPLC elution pattern of erythrocyte-PCA extracts	
	from infected and non-infected cultures from	
	experiment B	80
Figure 3.8	Comparison of various parameters during in vitro	
	culture of P. falciparum infected and non-infected	
	erythrocytes	81
Figure 4.1	Diagrammatic presentation of the protocol for	
	thrombocyte-associated immunoglobulin	
	determination	106
Figure 4.2	Elution pattern of the immunoglobulin fraction	
	isolated from human serum on a 40x1.5cm	
	Sephacryl S-300 column	110
Figure 4.3	Comparison between coupling methods for	
	IgG	111
Figure 4.4	Comparison between coupling methods for	
	IgM	112

viii

Figure 4.5	Optimization of the coupling of partially purified	
	immunoglobulin onto the TSP-pins	113
Figure 4.6	Optimization of the dilution of anti-IgG and -IgM-	
	peroxidase	114
Figure 4.7	Stanoard curve for the quantification of	
	TAlgG	114
Figure 4.8	Standard curve for the quantification of	
	TAlgM	115
Figure 5.1	Transmission electron micrographs of organelles	
	seen in the cytoplasm of infected	
	erythrocytes	124
Figure 5.2	Light microscope photograph of the blood stages	
	of isolate PfUP1	131
Figure 5.3	Scanning electron micrograph of non-infected	
	erythrocytes after four days in continuous	
	culture	132
Figure 5.4	Scanning electron micrograph of PfUP1-infected	
	erythrocytes fixed with the slow gluteraldehyde	
	method	133
Figure 5.5	Scanning electron micrograph of PfUP1-infected	
	erythrocytes fixed by the fast method	134
Figure 5.6	Scanning electron microscope photographs of	
	PfUP1-infected erythrocytes with knobs	135
Figure 5.7	Transmission electron micrographs of PfUP1-	
	infected erythrocytes	136

LIST OF TABLES

. .

Table 3.1		Supplements added to freshly prepared medium.	62
Table 3.2	-	Gas analysis of culture mediums after 1 and 24	
		hours of incubation at 37°C	72
Table 3.3		Growth comparison between PfUP1-infected erythrocytes	
		in medium supplemented with human serum	74
Table 3.4	-	Precursor-product relationship and metabolic status	85
Table 3.5	-	Parasite stages in relation to parasitemia	86
Table 4.1	-	ELISA determination of thrombocyte-associated IgM	
		(TAIgM) and IgG (TAIgG) in human blood.	116
Table 5.1	-8	Quetol embedding resin.	130

LIST OF ABBREVIATIONS

ADP		Adenosine diphosphate
AMP	-	Adenosine monophosphate
ATP	-	Adenosine triphosphate
CS	-	Circum-sporozoite
CSP	-	Circum-sporozoite protein
DIC	2	Disseminated intravascular coagulation
DNA	-	Deoxyribonucleic acid
DDT	-	Chlorophenothane
FPIX	-	Ferriprotoporphyrin IX
IMP	-	Inosine monophosphate
MDR	-	Multi-drug resistance
MSA	÷.	Merozoite surface antigen
NIDTE	-	National Institute for Diseases in a Tropical Environment
PABA	-	Para-aminobenzoic acid
PBS	H	Phosphate buffered saline
PEG	8.	Polyethylene glycol
PfHRP1	-	Plasmodium falciparum histidine rich protein
PfUP1	- <u>-</u>	P. falciparum University of Pretoria isolate number one
PPM	-	Parasitophorous plasma membrane
PVM		Parasitophorous vacuolar membrane
RER	3	Rough endoplasmic reticulum
RNA	-	Ribonucleic acid
ТЕМ	-	Transmission electron microscope

- TSP Transfer solid phase
- WHO World Health Organisation