
Chapter 4

Geometric Features

4.1 Introduction

Features in a sample of subjects are frequently required. This could be for statistical

analysis or simply to classify and process a geometry. Although this project is aimed

at performing elastic surface registration to deform a generic shape into a target

geometry, a better result is expected if a more rigorous approach is implemented for

common feature registration. For that reason, the extraction of surface and feature

information on a computational domain is investigated in this chapter.

Focus is �rst given to the local structure tensor. This is mainly used in inhomo-

geneous mesh coarsening and smoothing. This is done to best preserve the features

in a given mesh during this operation. The detection of feature points and crest

lines on a surface mesh is then investigated from methods that employ di�eren-

tial geometry concepts. Thresholding is also discussed. This is done after feature

extraction to �lter out insigni�cant feature lines.

Likely feature surfaces can be extracted from the local structure tensor analysis.

If a local smooth surface approximation or discrete di�erential geometry operators

are applied to extract feature lines, focus could be given to only these areas. In doing

so far less false crest lines are already noticeable, reducing the need for additional

thresholding and also speeding up computation if the local structure tensor result

is already available.

After focusing on feature extraction in this chapter, later chapters will use the

extracted features to determine feature correspondence during registration. Feature

recognition could aid in matching selected features while disregarding others. Fea-
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4.2. LOCAL STRUCTURE TENSOR 45

tures that can't be matched due to possible topological1 inconsistencies could also

be automatically disregarded.

4.2 Local Structure Tensor

Given a tessellated surface mesh, the unit normal of each triangle can be obtained

with very little e�ort. The accepted standard dictates triangle connectivity de�ned

in an anti-clockwise manner for positive normal direction, often referred to as the

right hand rule. Keeping this standard in mind, a triangle's unit normal vector may

be calculated.

Two vectors are �rst obtained using the three vertices that make up the triangle.

Both vectors have their origin at one of the triangle vertices and are in the direction

of the other two respectively. The normalised result of the cross product between

these vectors is the triangle unit normal.

When aimed at recognising localised surface features, the change in surface

gradient in a speci�c area is inspected. Surface gradient information can be captured

by the local structure tensor [71]. In order to determine the local structure tensor

at a speci�c vertex p, given by

LST (p) =
∑

i∈N−neighbours
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, (4.1)

the normal of each ith neighbouring vertex,
(

nx ny nz

)

i also needs calculation.

This is done by de�ning the vertex unit normal vector as the weighted average of

the normals of all its incident triangles. The weight attributed to each triangle is

determined using the distance from the vertex to the triangle centroid and triangle

area. The unit normal of each triangle is multiplied with the area of the triangle and

divided by the distance to the triangle centroid. The result obtained after adding

all weighted triangle normals incident to the vertex is normalised to approximate

the vertex unit normal.

The local structure tensor is de�ned as the summation of the matrices corre-

sponding to the neighbours of a local vertex. This simple summation allows for

1Two structures are topologically similar if one can be completely morphed into the other and
one-to-one correspondence remains continuous.

 
 
 



 
 
 



 
 
 



4.2. LOCAL STRUCTURE TENSOR 48

Figures 4.1 and 4.2 show various thresholds of areas that could be considered

feature rich. These areas could be included into the classi�cation for spheres, sad-

dles, ridges and valleys. Vertices are displayed here where the eigenvalues satisfy

the conditions λ1 < 5× λ2 and λ1 < 100× λ2 respectively.

The third eigenvalue λ3 ≤ λ2 is only required to di�erentiate spheres and saddles

from ridges and valleys. Very few of the features in a human skull geometry can

be classi�ed as spherical or saddle points compared to the quantity of ridges and

valleys. The intended use of the local structure tensor is to simply classify areas

as feature rich or �at. Because of this, no distinction is made between spheres,

saddles, ridges and valleys in Figures 4.1 and 4.2.

All nodes satisfying the conditions λ1 > 2′000 × λ2 and λ1 > 20′000 × λ2 are

shown in Figures 4.3 and 4.4. Here, areas are highlighted to illustrate what could

be considered �at or featureless, showing the third case mentioned above for planes.

4.2.2 Spatial Search Speed-up

Because evaluating mesh connectivity is imperative when using N -ring neighbours,

it is often possible and bene�cial to rather use a user speci�ed amount of nearest

neighbouring points. For each mesh node, the spatial domain could simply be

evaluated with a nearest neighbour search algorithm for the speci�ed number of

closest neighbours. This eliminates the need for mesh connectivity information

beyond determining unit normal orientation, producing a signi�cant speed-up in

local structure calculation.

A drawback to this proposed method is that it is possible to pick up nodes

on opposing surfaces when only the spatial node distribution is evaluated. This

happens when di�erent surfaces or parts of a surface are close to one another,

preventing successful use of this procedure. The intricate details of a human brain

geometry with all it's folds for example could pose a problem in certain areas. This

could therefore result in describing areas as feature rich that are in actual fact

smooth but simply close to opposing surfaces. Depending on the intended use of

the local structure tensor analysis, it is up to the user's discretion to determine the

required accuracy.

In case these problems occur in the geometry, only the neighbouring unit normals

that correlate to a certain degree could be used in evaluating the local structure

tensor. Alternatively, the N -ring procedure should be employed when signi�cant
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(a) (b)

Figure 4.5: Points for λ1 < 50 × λ2 on a re�ned dolphin model using (a) 3-ring
neighbourhood (b) 15 nearest neighbours

di�erences between the local and nearest neighbour unit normals are a possibility.

In Figure 4.5, the points satisfying λ1 < 50×λ2 is shown on a dolphin geometry.

This condition combines the points that are closely related to spheres, saddles,

ridges and valleys. The local structure tensor procedure is �rst done using a 3-ring

neighbourhood and then a 15 nearest neighbour search using the k-d tree spatial

search algorithm. Signi�cant speed-up is obtained with very little di�erence in the

�nal reported areas of interest.

The obtained area of interest depends on the support used. If a 5-ring neigh-

bourhood is used, or 20 nearest neighbours for example, the reported area would be

larger while smaller support would result in picking up very localised feature areas.

4.3 Di�erential Geometry Surface Information

For a smooth oriented surface S, the maximal and minimal curvatures are such

that κmax ≥ κmin with corresponding principal directions ̟max and ̟min. The

curvature derivatives along these directions are then τ = ∂κ/∂̟, de�ned locally in

the neighbourhood of non-umbilical points [45].

Points on a surface where κmax = κmin are called umbilical points. Principal di-

rections are not de�ned at these points, making it impossible to determine curvature

derivatives. Closure of these points where either one of the curvature derivatives

vanishes are however required to form ridges and valleys.

Concave and convex crest lines on a smooth surface are dual with respect to

surface normal orientation. With a normal de�ned consistently, these lines could
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be extracted and classi�ed as ridges and valleys on the surface. Concave crest lines

are expected where points on the line satisfy the conditions: [45]

τmax = 0 ∂τmax/∂̟max < 0 κmax > |κmin| , (4.2)

while points on a convex crest line satisfy the following conditions:

τmin = 0 ∂τmin/∂̟min < 0 κmin < − |κmax| . (4.3)

4.3.1 Application to a Discretised Surface

Numerous techniques have been proposed to extract curvature information from a

discretised surface representation. Some techniques approximate an implicit smooth

surface either globally [21, 45] or locally [21, 37, 70]. Other techniques approximate

surface information through the application of discrete curvature operators [33, 40].

For the purpose of this report, focus is given to the application of an approximate

smooth local implicit surface.

Given a surface in the implicit form F (x) = 0, x =
(

x1 x2 x3

)

, the prin-

cipal curvatures and associated curvature directions can be obtained at a speci�c

point on the surface from an eigen-analysis on ∇n. The unit normal n at this point

on surface F is taken as ∇F/ |∇F| [21, 37, 40, 45, 70]. This means that the eigen-

values of matrix ∇2F/ |∇F| would be the principal curvatures while the associated

eigenvectors are the principal curvature directions.

The curvature derivative or extremality coe�cient for a given principal curvature

and associated curvature direction is given by [70]

τ =
∂κ

∂̟
=

Fijk̟i̟j̟k + 3κFij̟inj

|∇F|
. (4.4)

In this equation, summation over repeated indices are implied with Fij and Fijk

indicating the second and third partial derivatives of F (x). Choosing a local co-

ordinate frame u × v = w in such a way that the origin is situated on the surface

and w = n, the surface approximation could be given in the form of a bi-variate

polynomial

p(u, v) =
1

2

(

b0u
2 + 2b1uv + b2v

2
)

+
1

6

(

c0u
3 + 3c1u

2v + 3c2uv
2 + c3v

3
)

+ ... (4.5)
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angles with that of the center node are selected and kept in the N − neighbours set

[70]. Alternatively, S. Kim and C. Kim [37] suggest �tting a weighted least squares

approximation with a Gaussian weighting function that lends higher support to

point within in the 1-ring neighbourhood of pj .

The following general procedure is followed to approximate a bi-variate polyno-

mial surface for curvature, curvature derivatives and principal curvature direction

estimation [37, 70]:

� The vertex unit normal nj for each point pj in the mesh is determined as the

weighted average of the neighbouring face normals. The weighting is done in

the same way explained under the local structure tensor section, using triangle

areas and the distance from the point to the incident triangle centroids.

� A local reference plane H = {pj| 〈n,pj〉 = 0,pj ∈ R
3} is determined through

the point pj with the same unit normal n = nj. In Figure 4.6 (a) this is

illustrated should point q be moved to be exactly point pj.

� The orthogonal projections {xi}i∈N−neighbours and {fi}i∈N−neighbours perpendic-

ular distance of the neighbouring points onto and from the reference plane are

determined.

� A local orthonormal coordinate system is set up with origin at pj. Using

the plane normal direction as w, the local reference coordinate directions

are determined. The rotation required from global direction z to w is �rst

determined and then applied to the global coordinate system. This is done

in such a way that the local coordinate system is consistently de�ned for all

points on the mesh.

� Orthogonal projections of the N -ring neighbours, xi can then be rewritten in

terms of its components in the two directions u and v in the plane.

� A local smooth surface approximation is �nally made as a third degree poly-

nomial p (xi) that minimises the least squares error

∑

i∈N−neighbours

(p(xi)− fi)
2 . (4.7)

An example of an estimated MLS surface constructed by �tting a polynomial

through neighbouring points in a least squares manner is visible in Figure 4.6 (b).
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The same speed up can be obtained as in subsection 4.2.2 by applying a spa-

tial nearest neighbour search algorithm. Without the need to evaluate mesh con-

nectivity, a simple search for N nearest neighbours is applied. Again only those

neighbours with su�cient similarity between unit normals are used in �tting the

local least squares approximation. This step is already a requirement in doing the

enhanced least squares �t.

Estimating curvatures and their derivatives

After �tting a local bi-variate third degree polynomial approximated surface z =

p (xi), the principal curvatures, curvature derivatives and principal curvature direc-

tions in the local coordinate frame can be obtained. This is done by applying the

principles of di�erential geometry to the resulting implicit surface.

The principal curvatures and associated curvature directions can be obtained

from an eigen-analysis on ∇n at point pi of a surface in the form of Equation (4.5).

Noting that in this particular case point pi is at the local origin, the solution to the

eigenvalue problem
[

b0 b1

b1 b2

][

̟1

̟2

]

= κ

[

̟1

̟2

]

, (4.8)

produces the principal curvatures κmax and κmin with associated principal curvature

directions ̟max and ̟min in the local coordinate frame. The curvature derivatives

can then be calculated from Equation (4.6) as [70]

τ =

[

̟2

1

̟2

2

]T [

c0 c1

c2 c3

][

̟1

̟2

]

. (4.9)

Converting the principal curvature directions into the global coordinate frame is

also done. This is required to help determine the presence of ridge and valley nodes

as well as to connect these nodes into lines.

The principal curvatures determined at each point may be used to classify areas

and points on the geometry. The MLS procedure is performed on the skull geometry

used to generate Figures 4.1 through 4.4. Curvature information is extracted and

used to display areas on the geometry that are concave and convex. Figure 4.7

represents the concave areas and Figure 4.8 the convex areas of the skull geometry.

Figures 4.9 through 4.11 illustrate ridge and valley areas on the skull geometry.

Only points within some degree of the average curvature evaluated is displayed.
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determined by [22]

Si (pi) =
1

2
−

1

π
tan−1

(

κmax (pi) + κmin (pi)

κmax (pi)− κmin (pi)

)

. (4.10)

All shapes are mapped into the interval [0, 1] with this de�nition. Larger shape

index values represent convex surfaces while smaller values represent concave sur-

faces. These shape index values capture the characteristics of shape objects and can

be used for feature point extraction. Following the work done by Chen et al. [22],

a window is drawn on the surface around a candidate feature point pi by including

points in a sphere of radius ri. This point is then marked as a feature point if the

shape index Si (pi) satis�es:

� Si (pi) =max of shape indexes and Si (pi) ≥ (1 + α)× µ or

� Si (pi) =min of shape indexes and Si (pi) ≤ (1− β)× µ

where µ = 1

Nr

∑Nr

j=1
Si (pj) and 0 ≤ α, β ≤ 1. The parameters α and β control the

selection of feature points and Nr is the number of points in the local window.

The shape index of a dolphin geometry is given in Figure 4.12. The shape

index of the skull geometry is then given in Figure 4.13 with the corresponding

feature points automatically extracted for a radius ri = 10, α = 0.1 and β = 0.1 in

Figure 4.14.

4.3.4 Ridges and Valleys

The ridge and valley nodes are found after obtaining curvature information at each

mesh vertex. The mesh vertices that approximate ridge and valley nodes can be

found by either �nding the zero crossing of extremality coe�cients or using only

principal curvatures and directions. The nodes are then connected into lines follow-

ing the directions of principal curvature.

An outline of how to obtain and di�erentiate between crest nodes is derived from

the requirements on concave and convex crest lines presented in Equations (4.2) and

(4.3).

Determining ridge nodes:

� For each node pj satisfying κmax > |κmin| the immediate neighbours are in-

spected.

 
 
 



 
 
 



 
 
 



4.3. DIFFERENTIAL GEOMETRY SURFACE INFORMATION 59

� If only principal curvatures and directions are used:

� pj is considered a possible valley node if for all i ∈ I : κj
min < κi

min is

satis�ed.

� If the zero crossing of extremality coe�cients is required:

� ∀i ∈ I : If ̟j
max •̟

i
max < 0, the sign of the relevant extremality coe�-

cient is reversed so τ imin = −τ imin.

� pj is considered a possible valley node if for any i ∈ I : τ jmin × τ imin < 0

and κj
min < κi

min is satis�ed.

The procedure of �nding the zero crossing of curvature derivatives is more math-

ematically sound when determining crest nodes. This being the case, it would be

the preferred method in determining whether a mesh node is likely to be part of a

feature line. As in the smooth surface case, the sign of principal curvature directions

are not uniquely de�ned. This is because curvature lines follow line �elds and not

vector �elds [33].

From Equations (4.2) and (4.3) the zero crossing of extremality coe�cients are

required. These zero crossings of τ depend on a consistent choice for the sign of the

principal directions between neighbours. Should the orientation of a neighbouring

principal direction be reversed, the sign of the corresponding τ as determined from

Equation (4.9) also needs changing.

Due to higher order terms present in the polynomial surface approximation,

the resulting curvature derivatives are very sensitive to surface discretisation. The

di�erent approaches possible to extract curvature lines by either principal curvatures

or the zero crossing of extremality coe�cients is visible in the results of Figures 4.15

through 4.18. Although using principal curvatures seem to detect less false crest

lines, it is still somewhat prone to report these. Both methods however recover the

main lines of interest in a similar fashion and after appropriate thresholding should

result in approximately the same reported features .

As the detection of crest lines is sensitive to surface discretisation, subdivided

faces without su�cient smoothing could for example recover the original mesh edges

as features. This can be seen in the seemingly repeated lines or parts thereof on

the re�ned dolphin geometry of Figure 4.18 and false crest nodes on the re�ned

trim-star geometry of Figure 4.19 (a). As with other spurious or false lines, most
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(a) (b) (c)

Figure 4.15: Crest nodes and lines on a hand geometry. (a) Possible ridge (blue)
and valley (red) points obtained by using only principal curvatures and derivatives
along with (b) the lines after connecting points in the relevant principal direction.
(c) The equivalent ridge and valley lines obtained by using curvature derivative
zero crossing procedure. For visual clarity only lines with more than 8 segments are
displayed.

(a) (b)

Figure 4.16: Crest lines on a re�ned and smoothed bishop geometry. (a) Ridge
(blue) and valley (red) lines obtained by using only principal curvatures and di-
rections. (b) The equivalent ridge and valley lines obtained by using curvature
derivative zero crossing procedure.
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(a) (b) (c) (d)

Figure 4.19: Extracted ridge (blue) and valley (red) lines on the re�ned trim-star
geometry. (a) Extracted crest nodes with presence of false edges already evident
on the smoother areas of the geometry. (b) Allowable crest nodes after �ltering
out those that don't satisfy the local structure tensor condition λ1 < 10 × λ2. (c)
The extracted crest nodes that satisfy the local structure tensor �ltering condition
in (b). (d) The ridge and valley lines constructed using only the �ltered crest
nodes. In this �gure some spurious or false lines are still present indicating that
thresholding might still be required. These false lines are likely picked up due to
the local discretisation.

of these lines on the dolphin geometry could be pruned. Unfortunately those with

su�cient curvature or those that form part of a line with su�cient threshold are

still reported when using the implemented method.

Figures 4.19 and 4.20 illustrate the use of the local structure tensor information

to �lter ridge and valley nodes.

Connecting nodes into lines

To obtain ridge and valley lines the extracted crest nodes are connected in the

direction of principal curvature. Ridges follow the direction of minimum curvature

while valleys follow the maximum curvature directions. When connecting the ridge

and valley lines, it is again important to note that the orientation of the principal

direction is irrelevant. Starting at nodes with maximum curvature:

� For each extracted crest node, a search is performed in both positive and

negative orientation of the principal curvature direction.

� Neighbouring crest nodes found in these directions are then considered possi-

ble line segment partners.

� A connection is made to these neighbouring nodes.
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(a) (b) (c)

Figure 4.21: Frontal view of the skull geometry with extracted ridge nodes in blue
and valley nodes in red. (a) and (b) show all of the crest nodes on the geometry and
(c) contains only nodes that satisfy the local structure tensor condition λ1 < 50×λ2.

method to avoid unnecessary computation. If the results of a local structure ten-

sor analysis is available or easily determined, the areas containing possible feature

curves could �rst be extracted. Fitting a local smooth surface approximation and

determining curvatures, curvature directions and derivatives can then be done on

only the �ltered areas. Alternatively it could be applied to only preserve crest nodes

within a user speci�ed feature rich area.

In Figure 4.19 the e�ect of local structure tensor �ltering is visible. Here the

entire method of approximating a local smooth surface and extracting feature lines

was �rst applied. It was then �ltered to only keep nodes where λ1 < 10 × λ2.

The resulting feature lines require less e�ort to determine an appropriate threshold

value.

The possibility of using the local structure tensor result as a pre-curvature esti-

mation step is also considered. Figures 4.21 through 4.23 show crest nodes extracted

from a skull geometry. The �rst case was run on the entire skull model, �nding

10'977 ridge and 8'170 valley nodes. A local structure tensor �lter was then applied

to �nd nodes where λ1 < 50 × λ2. This is implemented using a nearest neighbour

search for 30 of the closest nodes. The MLS approximated implicit surface and crest

node extraction procedure was then done on only the 36'617 nodes satisfying the

local structure �lter instead of the 191'957 nodes of the original model geometry.

The resulting 2'936 ridge and 1'708 valley nodes are connected into lines without

the need for much additional thresholding. The �nal thresholded lines with more

than 4 line segments are displayed in Figures 4.24 and 4.25.
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registered geometries in the sample.

To overcome this problem, a registration routine is required where only selected

features are matched. The extraction of feature lines makes it possible to better

quantify and describe features within a given geometry. These lines could be used

to determine similarities between objects.

If a line or line segment has no equivalent in another geometry of interest, it

could be discarded after registration. In this way only matched features would be

used in eventually determining the deformation required to morph one geometry

into another.
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