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SUMMARY

OPTIMAL SIZING AND OPERATION OF PUMPING

SYSTEMS TO ACHIEVE ENERGY EFFICIENCY

AND LOAD SHIFTING

by

He Zhang

Promotor: Prof. J.F. Zhang

Co-promotor: Prof. X. Xia

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electrical)

Keywords: Pump, energy efficiency, load shifting, operational cost, POET, optimal

capacity selection, optimal control, MPC, variable speed drive, mixed integer PSO.

This dissertation presents a pumping system operation efficiency improvement solution

that includes optimal selection and control of the water pump. This solution is formu-

lated based on the performance, operation, equipment and technology (POET) frame-

work. The focus is on the minimization of the operational energy cost. This efficiency

improvement solution is divided into three stages in accordance with the operation cate-

gory of the POET framework. The first stage is to select the optimal pump capacity by

considering both energy efficiency and load shifting requirements. The second stage is

to develop a flexible pump controlling strategy that combines and balances the contribu-

tions from energy efficiency and load shifting. The last stage is to improve the robustness

of the control system using the closed-loop model predictive control approach.

An optimal pump capacity selection model is formulated. In this model, additional

capacity requirements for load shifting are considered along with the traditional energy
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efficiency requirements. By balancing the contributions from load shifting and energy

efficiency, the operational energy cost can be reduced by up to 37%.

An optimal pump control is formulated. The objective of this control model is to

balance the energy efficiency and load shifting contributions during the operation and

minimize the operational energy cost. This control model is tested under different

operational conditions and it is compared to other existing control strategies. The

simulation and comparison results show that the proposed control strategy achieves the

lowest operational energy cost in comparison to other strategies.

This optimal pump control model is further modified into the closed-loop model pre-

dictive control format to increase the robustness of the control system under operation

uncertainties.

A mixed integer particle swarm optimization algorithms is employed to solve the opti-

mization problems in this research.
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OPSOMMING

OPTIMALE ONTWERP, SELEKSIE EN BEHEER VAN

POMPSTELSELS MET DIE DOEL OM ENERGIE

DOELTREFFENDHEID EN LAS VERSKUIWING
OPTIMAAL TE BENUT

deur

He Zhang

Studieleier: Prof. J.F. Zhang

Mede-studieleier: Prof. X. Xia

Department: Elektriese, Elektroniese en Rekenaar Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektiese Ingenieurswese)

Sleutelwoorde: Pomp, energiedoeltreffendheid, lasverskuiwing, bedryfskoste, POET,

optimale kapasiteit, optimale beheer, MPC, Veranderlike spoed motor, gemengde heel-

getal PSO.

Hierdie verhandeling bied ’n verbeterde oplossing vir die operasionele doeltreffendheid

van pompstelsels wat die optimale keuse en beheer van die waterpomp insluit. Hierdie

oplossing is geformuleer op ’n raamwerk wat werkverrigting, bedryf, toerusting en teg-

nologie in ag neem. Die oplossing fokus op die vermindering van bedryfsenergie koste.

Hierdie oplossing is onderverdeel in drie fases soos bepaal deur die bedryfskategorie

gegrond op die bogenoemde raamwerk: Die eerste fase is die keuse van die optimale

pompkapasiteit deur beide energiedoeltreffendheid en lasverskuiwing in ag te neem. Die

tweede fase is om ’n buigbare pompbeheer strategie te ontwikkel wat ’n goeie balans

handhaaf tussen die onderskeie bydraes van energiedoeltreffendheid en lasverskuiwing.
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Die derde fase is om die stabiliteit van die beheerstelsel te verbeter deur gebruik te maak

van ’n geslote-lus beheermodel met voorspellende beheer (Predictive Control).

’n Model vir die keuse van optimale pompkapasiteit is geformuleer. In hierdie model

word vereistes vir addisionele pompkapasiteit vir lasverskuiwing sowel as vereistes in

terme tradisionele energiedoeltreffendheid in ag geneem. Deur die regte verhouding

tussen die onderskeie bydraes van energiedoeltreffendheid en lasverskuiwing te vind kan

’n besparing van tot 37% op die energiekoste verkry word.

Optimale pompbeheer is geformuleer. Die doel van die beheermodel is om die bydraes

van energiedoeltreffendheid en lasverskuiwing te balanseer en om die bedryfsenergie

koste te minimiseer. Hierdie beheermodel is getoets onder verskillende bedryfstoestande

en dit is vergelyk met ander bestaande beheerstrategiee. Die simulasie en vergelyking

van resultate toon dat die voorgestelde beheerstrategie die laagste bedryfsenergie koste

behaal in vergelyking met ander strategiee.

Hierdie optimale pomp beheermodel is verder aangepas in ’n geslote beheermodel met

voorspellende beheerformaat om die stabiliteit van die beheerstelsel te verbeter onder

onsekere bedryfstoestande.

’n Gemende heelgetal partikel swerm optimisasie (Mixed interger particle swarm opti-

mization) algoritme is gebruik om die optimiseringsprobleme op te los tydens hierdie

navorsingsoefening.
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LIST OF ABBREVIATIONS

DSM Demand side management

EE Energy efficiency

LM Load management

LS Load shifting

POET Performance, operation, equipment and technology

MPC Model predictive control

VSD Variable speed drive

PSO Particle swarm optimization

MD Maximum demand

TOU Time of use

NMD Notified maximum demand

R Rand, South African currency, one rand is equivalent to

about 0.143 US dollar.
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CHAPTER 1. INTRODUCTION

This dissertation defines a pumping system operational efficiency improvement scheme,

which covers the optimal design and optimal operational control. The focuses of the

optimal design and operational control are to combine and balance the contributions

of energy efficiency (EE) and load shifting (LS) in order to minimize the operational

energy cost.

1.1 OUTLINE OF THE DISSERTATION

This chapter introduces the background of the research problems and briefly describes

the research approach. Chapter 2 covers the literature survey, which includes a detailed

description of the research problems, the research approach and the contributions of

this research. Chapter 3 describes the formulation of a mixed integer particle swarm

optimization (PSO) algorithm, which is the platform of all the simulations. In Chapter

4, an optimal pump capacity selection algorithm is defined and tested. In Chapter 5, a

flexible optimal pump operation control strategy is defined and tested. In Chapter 6,

the optimal control strategy defined in Chapter 5 is modified into a closed-loop model

predictive control (MPC) format and evaluated. Chapter 6 includes the conclusion for

this research and recommendations for further research.

1.2 BACKGROUND

The demand for electricity is increasing throughout the world, which results in higher

energy cost and additional greenhouse gas emissions. This is of particular concern

in South Africa, where large-scale load shedding was recently required to reduce the

electricity demand [1], [2].

To assist to solve this problem, demand side management (DSM) initiatives are pursued.

DSM initiatives are less expensive, cleaner, faster and have lower risks than building new

power plants [3]. According to [4], DSM can be divided into two categories, EE and load
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Chapter 1 INTRODUCTION

management (LM). Some articles prefer to exclude EE from DSM and form a separate

EE category, such as [5]. Despite the different definitions of DSM, the definitions of EE

and LM are fairly consistent. EE aims to reduce the net amount of energy consumed,

whilst LM aims to reduce the load in the peak demand period. The most common form

of the LM method is load shifting (LS). For LS, the operations are shifted, as much as

possible, from periods of high energy demand to lower energy demand periods [4].

1.3 APPROACH

According to the operation category of the performance, operation, equipment and

technology framework [6] [7], operational efficiency can be sub-divided into physical,

time and human coordinations.

The research objective is to define a pump operational efficiency improvement scheme

based on the POET framework. The operational efficiency improvements for this re-

search are measured in monetary terms, hence the aim of this research is to minimize

the operation energy cost.

The first part of this research is to define an optimal pump capacity selection model.

The second part is to define a variable speed drive (VSD) based optimal pumping control

strategy. Both the optimal selection and control models are formulated based on the

principle of combining and balancing EE and LS saving contributions to achieve minimal

operational energy cost.

The third part focuses on increasing the system robustness against human and sys-

tem induced errors. The optimal pumping control strategy defined in the second part

is converted into a closed-loop optimal control model using the MPC approach. This

closed-loop optimal control model is tested through simulations to evaluate its robust-

ness and operational performance.

These models are tested under different operational conditions to evaluate their per-

formance and characteristics. The simulated results are compared with the existing

selection and operational strategies to illustrate whether the approach of combining EE

and LS is more beneficial.

The simulations require solving binary and continuous variables simultaneously, hence

a mixed integer PSO platform is developed to match the requirements of this research.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2. LITERATURE REVIEW

This chapter covers the literature survey. It includes a detailed description of the re-

search problems, the research approaches and the contributions of this research.

2.1 DEMAND SIDE MANAGEMENT

According to [8] South Africa is currently suffering from a severe electricity shortage

as a result of recent rapid economic growth. The local energy supplier, Eskom, does

not have sufficient power-generating facilities to keep up with this increasing demand.

Load shedding has been introduced to prevent a collapse of the national electricity

supply system. This severely affects the country’s economy and its inhabitants’ daily

life. Experts predict that the risk of load shedding will remain high until at least 2013,

unless Eskom takes immediate action to ameliorate the situation.

To correct the situation, Eskom has embarked on capital expansion and DSM pro-

grams [2]. The aim of the capital expansion program is to refurbish old mothballed

power stations and to build new peak and base load power stations. The aim of the DSM

program is to affect the timing or the amount of electricity used by customers [2] [9]. The

DSM program is very important, because DSM initiatives are less expensive, cleaner,

faster and have lower risks than building new power stations [3].

DSM was introduced during the 1970s energy crisis with the aim to influence cus-

tomer appliance selection and energy use patterns to achieve the desired impact or load

shape [11].

Over the years of development, DSM has gone through three stages of transformation,

namely the command and control without incentives stage, command and control with

incentives stage and the recent customer-driven and customer-finance stage [10].

The unit price of electricity has been increased tremendously in comparison to the 1970s,

along with the introduction of many additional charges such as time of use (TOU) and

maximum demand (MD). Many companies have started to realize that DSM not only

3

 
 
 



Chapter 2 LITERATURE REVIEW

helps to stabilize the electricity grid, but that it also makes very good financial sense.

About 20% of all industrial electricity is consumed worldwide by pumping systems

alone [8]. The dominant type of pump by far is the centrifugal pump, hence it is one of

the biggest energy consumers in modern industry. It is a common practice for companies,

even nations, to set a power consumption reduction target for their pumping systems.

For these reasons, the centrifugal pumping system is an ideal and meaningful subject

for DSM. In this research, the centrifugal pump is the only type of pump considered

and the word “pump” refers to the centrifugal pump.

2.2 ENERGY EFFICIENCY AND LOAD MANAGEMENT OF DSM

According to [4] DSM can be divided into two categories, EE and LM. Some articles

prefer to exclude EE from DSM and form a separate EE category such as [5]. Despite

the different definitions of DSM, the definitions of EE and LM are fairly consistent.

EE aims to reduce the net amount of energy consumed. EE improvement techniques can

be applied to a wide range of applications, for example, efficient lighting [12], variable

speed drives [13], solar water heating systems [14] and energy-efficient motors [15]. EE

helps to lower the electricity demand and also reduces greenhouse gas emissions.

For LM, unlike EE, the load is simply moved, but the net amount of consumed energy

is not changed. Various techniques are used for LS, for example direct load control [16],

real-time pricing [17] and TOU pricing [18]. This dissertation focuses on the TOU

pricing technique of LM. With this technique, the utilities do not actively manage the

load, but customers are encouraged to reschedule loads to reduce electricity costs. This

technique is referred to as LS.

2.3 TARIFF STRUCTURES

In addition to the traditional flat tariff structure where the electricity cost per kilo-

watt hour is fixed, TOU and MD tariffs are introduced to encourage user-side load

management.

The TOU charge is based on a higher kWh rate during high-demand periods, whilst MD

charges are based on fixed fees per maximum kVA or kW for a month [19]. MD is mea-

sured as the highest average demand in kVA or kW during any integrating period. The

integrating period is generally 30 minutes, and it coincides with the TOU periods [19].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 LITERATURE REVIEW

Table 2.1: Summary of the Tshwane 11kV TOU tariff tariff [19].

Period Cost

Off-peak (0:00 to 6:00 and 22:00 to 24:00)

High-demand (winter) 0.1187 R/kWh

Low-demand (summer) 0.1049 R/kWh

Standard (6:00 to 7:00 and 10:00 to 18:00)

High-demand (winter) 0.1411 R/kWh

Low-demand (summer) 0.1383 R/kWh

Peak (7:00 to 10:00 and 18:00 to 22:00)

High-demand (winter) 0.8205 R/kWh

Low-demand (summer) 0.2628 R/kWh

Maximum demand charge 66.50 R/kVA

The MD is different from the notified maximum demand (NMD) [19] [20]. The NMD is

the agreed limit on the monthly MD. In other words, a customer agrees that his MD will

not exceed his NMD. A customer that exceeds the NMD is typically charged a penalty

fee. This dissertation focuses on the MD only, because by optimizing the MD the NMD

is automatically adhered to.

In this dissertation, the 2008 Tshwane municipality’s 11kV TOU tariff [19] is used. The

detailed cost of the high and low-demand TOU and MD tariff are summarized in Table

2.1. The optimization models in this dissertation are all formulated and simulated based

on these tariffs.

2.4 PUMP-RELATED DEFINITIONS

The key terms used in this dissertation are defined in this section prior to the relative

chapters.

The term “pumping system” refers to the pumps and the environment in which the pump

operates. The term “system” by itself refers to the elements that have an influence on the

operation and performance of the pump. The system characteristics can be summarized

using a system curve.

The term “flow rate” is used to represent the actual output flow rate of the pump in

m3/hour. The flow rate of a pump can be adjusted using devices such as a valve or

VSD. The term “capacity” refers to the maximum pump operational output flow rate.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 LITERATURE REVIEW

Capacity is different from the manufacturer-specified maximum pump output flow rate,

since the performance of a pump varies significantly with different system characteristics.

The term “head” is used to measure pump-related pressure values in meters. The pump

head is the pressure of the water leaving the pump, and the system head is the pressure

required to achieve a specific flow rate in a given system.

2.5 POET FRAMEWORK

According to the study on the classification of energy efficiency, [6] summarizes differ-

ent energy efficiency components into four categories, namely performance, operation,

equipment and technology. Performance efficiency of an energy system is determined by

external but deterministic system indicators such as production, cost, energy sources, en-

vironmental impact, technical indicators and others. Operational efficiency is evaluated

by the proper physical, time and human coordination of different system components.

Equipment efficiency is a measurement of the energy output of isolated individual en-

ergy equipment with respect to the given technology design specifications. Technology

efficiency is decided by the efficiency of energy conversion, processing, transmission and

usage. Technology efficiency is often evaluated by feasibility, life-cycle cost and return

on investment [7]. The relations of the four POET efficiencies can be best illustrated in

Figure 2.1.

The pumping system efficiency improvement falls under the operation category. This

is shown by the encircled area in Figure 2.1. Operational efficiency is a system-wide

measure, which is evaluated by considering the proper coordination of different system

components. This coordination of system components consists of the physical, time and

human coordinations [7]. In a pumping system, physical coordination is the matching

and sizing of the physical system, time coordination is the timing and control of the

operation and human coordination is the human influences.

2.5.1 Physical coordination

The physical coordination is the matching of equipment to operational requirements.

The selection of appropriate equipment is a complex and important task. The degree of

equipment matching directly influences operational efficiency and cost. The optimal se-

lection of equipment is highly regarded in operational efficiency improvement. Examples

of optimal equipment selections are shown in [21], [22] and [23].

Article [22] illustrates that simulation with different operational conditions is one of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 LITERATURE REVIEW

Figure 2.1: Graphical illustration of the POET framework. Taken from [7], with per-
mission.

the best ways to assist decision-makers in the selection of the most economic mixture

of equipment. This hypothesis is consolidated with a case study on a dual-purpose

plant. Another important aspect of an optimal design pointed out in [22] is that despite

the efforts being put into effective planning and analysis of trends, statistics show that

deviations from projections are still frequent. Such deviations would normally invalidate

optimal selection of the major equipment, which relies largely on correct forecasting of

the requirements.

As pointed out in [24] and [25], operational energy cost is by far the biggest contributor

to pump life cycle cost. It is shown in [25] that up to 90% of the pump life cycle

cost comes from energy consumption, and pump energy consumption can generally be

reduced up to 20% through proper pump selection. For a pump to operate efficiently

without wasting energy, its performance characteristics must be suitable for the intended

service.

Reference [26] points out that the correct selection of a pump is the first step in guaran-

teeing efficient and appropriate performance, as well as reliable operation. This article

summarizes a large volume of existing literature and derives steps to select the most

suitable pump. This article points out that currently, from both engineering and eco-

nomic standpoints, the efficiency of the pump-motor set is of the upmost importance;

the selection of the pump and motor should ensure high efficiency values, aiming for the

lowest possible energy consumption per volume of pumped fluid.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

 
 
 



Chapter 2 LITERATURE REVIEW

In [25], [26], [27] and [28], the fundamentals of EE based pump selections are illustrated.

Case studies of pump selection in industrial environments are illustrated in [31], [29]

and [30]. Many versions of software are also developed to assist the optimal selection of

pump capacities, as described in [32], [33] and [24]. In [34], [35] and [36], optimization

algorithms are developed to select the ideal pump or combination of pumps optimally.

Reference [27] demonstrates in detail the ways to select water pumps based on the pump

and system characteristics. The pumping efficiency varies for different operating points

of the pump. The pump operating point is determined by the pump characteristics

and system characteristics. The pump and system characteristics can be represented

by the pump characteristic and system curves. The operating point of a pump can

be determined by the intersection of the two curves [37]. In the case where the pump

and the system are perfectly matched, the operating point is at the point of maximum

efficiency.

In [34], an optimal pump selection algorithm is illustrated. The algorithm is based on

solving a non-linear programming problem. The algorithm optimally selects the pump

type, capacity, and number of units, which will achieve the minimum operating energy

consumption for a given water demand curve. The characteristics of a range of pumps

are approximated into quadratic equations and the optimization algorithm selects the

best combination of pumps that operate with the minimum energy consumption while

satisfying the operational requirements. This method is validated through a case study

on an inland intensive fish farm where high levels of energy consumption reduction is

achieved. The mathematical pump and system characteristics approximation method

used in this article simplifies the computation of the operating point, efficiency and input

power of a pumping system and enables them to be utilized in optimization algorithms.

Similar approximation methods are also used in [35]. However, in [35] an algorithm is

derived to compute the ideal pump characteristics based on the system characteristics,

which will result in minimal operational energy consumption.

2.5.2 Time coordination

The time coordination section of the operation category focuses on the optimal control

of the pump operation. In the early days of pump utilization, valves were used to control

the output rate of the pump. Valve control is still widely used today, because it has

the advantages of being cheap and simple to implement. However, pumps controlled by

valves have very poor EE [38]. Other common pump controls include: on/off control,

VSD control and optimal control.
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References [39] to [50] are EE oriented pump operation controls. The focus of these

articles is on ensuring that energy consumption is kept to a minimum during operation.

These include modifying impellers [39]; minimizing the power consumption for a given

demand by operating with the optimal combinations of different sized pumps, [40] to [43];

using VSD, [40] to [49]; and generating power by using a pump as a turbine during peak

hours [50].

In Reference [41] a pump scheduling problem based on a genetic algorithm is proposed.

The objective is to maximize the efficiency of pump operation and at the same time

balance the total water flow rate of the system. The efficiency of a pumping station

is defined in this article as the ratio between input power and the useful output power

of the pumping system. The useful output power is computed by multiplying the total

flow rate with the generated head. The input power is derived by using mathematically

approximated pump and system characteristics similar to [34] and [35]. The algorithm

maximizes efficiency by selecting, from a pool of pumps under control, the optimal

combination of pumps to be activated. This optimal combination of pumps will satisfy

the water demand with minimal energy consumption. Other water supply efficiency

improvement strategies, such as [40], [42] and [43], follow a similar approach where

different combinations of pumps are scheduled to minimal energy consumption. In

these articles, the efficiency and the input power of the fixed speed pumps are estimated

using the hydraulic equation, the pump characteristics or both.

In recent years, VSD has been used to replace valve control to improve the pump EE

with great success. As reference [44] points out, the installation of VSD represents

perhaps the most tangible measures to save electrical energy. The principle behind the

VSD energy savings is also shown in [44]. The power drawn by the pump is dependent on

the motor rotational speed and the input power increases at a cubic rate with respect to

the increase in the motor rotational speed. The motor rotational speed is proportional

to the output rate, hence a slight reduction in the output rate and the motor rotational

speed results in a significant input power reduction. Pumps are often oversized because

of the added safety margin. This causes additional unnecessary energy consumption.

As shown in [44], only with VSD can one escape the danger of over sizing. VSD reduces

the output rate by reducing the rotational speed of the motor, which lowers the power

consumption. In [45] and [46], VSDs are applied to different pump-related applications

and significant power consumption reductions are achieved. Other benefits of VSD are

illustrated in [44]; these include power factor correction and reduction in the start-up

current and dynamic stress of the pumps.

The method of computing the VSD energy savings is illustrated in [47]. In this article a

comprehensive step-by-step derivation of the pump energy consumption for different mo-

tor rotational speeds is illustrated along with the common errors that people make when
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carrying out such computations. The pump characteristics and system characteristics

are also approximated using quadratic equations. The effect of the motor speed changes

on the pump characteristics is mathematically described using affinity laws [48]. The

operating point for a given motor rotation speed is computed using the combination of

the affinity laws, pump performance and system characteristics. The actual input power

is computed based on the pump operating point. In comparison to other VSD saving

computation efforts, [47] is one of the most accurate and complete articles.

References [48] and [49] are examples of the use of optimal control in VSD operations.

In [48], an optimal control model is established with the aim of achieving the lowest

energy consumption for a cooling system pump operation in a high-speed wire factory.

The model computes an optimal VSD speed setting for each of the connected pumps.

The aims of this system are to balance the pressure of each pump and ensure that the

pumps are all operating at the highest possible efficiency while satisfying the water de-

mand. The pump characteristics and the affinity laws are utilized to derive the efficiency

and input power of the pumps at different operating points. In reference [49] a mathe-

matical model for the optimum parameters of centrifugal pumps is established, and the

minimum total electric power consumption of the fixed-speed pumps and variable speed

pumps is taken as the objective function. Reference [49] is similar to [48] in terms of

the objective and method of pump control. However, in [49], the pump consumption is

derived using the hydraulic equation whereas in [48] the pump input power is derived

based on the manufacturer-specified pump input power curve.

References [52] to [61] are pump LS problems. These articles cover most LS scenarios,

such as single pump operation [52] and [53]; multiple pumps operation, [54] and [55];

operating under TOU tariff and MD tariff, [56] and [57]; multi-objectives optimal pump

control, [58] to [60]; and actual case studies [61]. In all of the above cases an optimization

model is used to compute a set of operation schedules based on the physical constraints

and the different tariff structures; all the pumps are controlled with an on-off controller

and a reservoir is in place as a buffer to allow schedule changeability.

In [52], a simple and effective LS strategy is illustrated. In this article an ultrasonic

water level accurately detector allows the user to monitor and control of the reservoir

water level. A pumping system is used to maintain the water level in the reservoir

automatically at a preset level by pumping water into the reservoir. Prior to the high

electricity price periods, the reservoir is allowed to be filled to a higher level by increas-

ing the reservoir level setting. During high electricity cost periods, this reservoir level

setting is significantly lower to minimize the operation of the pumps and the electricity

cost. This article illustrates that the principle of the LS is the same regardless of the

complexity, and the principle is to shift the load as much as possible from the high

electricity price period to the lower ones.
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In [56] an open-loop optimal control model is developed and simulated for a hypothetical

water supply system. The main idea in [56] is to consider the future water demand in

the optimization of the MD charge. The daily water demand is modeled as a Markov

process, which is then used in a dynamic programming algorithm to determine daily

operation MD limits for a month. The daily MD limit is then used as a constraint in

the daily optimization schedule.

Reference [53] defines and evaluates an MPC strategy with binary integer programming

optimization for LS in a water pumping scheme. Both TOU and MD charges are con-

sidered in the control model. The control model yields a near optimal on/off switching

sequence, which reduces TOU and MD based electricity costs. This article improves

on [56] by implementing a closed-loop control, which improves the robustness of the

control model under operational uncertainties. In this article, the MD is reduced by

operating the pump at shorter time intervals. This is a unique approach; however the

pumps have to be switched on and off frequently, which increases wear and tear on the

pump and reduces the life span of the pump as well as increasing pump maintenance

cost.

Reference [59] solves multiple conflictive objectives in terms of Pareto optimality. Its

approach links a well-known multi-objective optimizer, SPEA2, with a hydraulic sim-

ulator, EPANET, in order to provide a Pareto set of explicit schedules. In this pump

scheduling problem, the operation of a number of pumps is scheduled over a period. The

main goal is to minimize the cost of supplying water. This cost consists of the TOU

energy consumption charge, MD charge and maintenance cost.

In [62], an hourly discretized optimization model for the determination of operational

planning in a pump-hydro system is presented. This pumping system is designed to

supply water, as well as to regularize the irrigation flows and produce electric energy. In

this system there are both pumping and hydropower generating stations. This system is

a reversible type of system, which, enables pumping in one station and power production

in a parallel station. The intention is to obtain the pump and turbine operation time for

each hour, so that maximum benefit from hydropower production and minimum costs

from the pumping station energy consumption are attained. The principle is to pump

as much water as possible to a high level storage tank during off-peak hours, and during

peak-hours, the pump operation is minimized and the stored water is used to supply

the needs and generate electricity by running the water through a turbine. This article

presents a pump optimal operation strategy that has elements of both EE and LS.

Reference [61] is a measurement and verification study on a completed pumping LS

project in South Africa. In this study, it is shown that this LS project manages to shift

15.1 MW of energy demand out of the peak periods. It is also shown that the EE of the
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operation is improved by approximately 3%. This EE improvement was unintentional

and was achieved by chance.

In [63], an optimal switching control and a VSD based optimal control are proposed

to improve the EE of a belt conveyor system at the operational level, where TOU

tariff, ramp rate of belt speed and other system constraints are considered. An energy

calculation model of the belt conveyors is proposed. Based on this energy model, a

VSD based optimal control model is formulated. In this control model LS and EE are

performed simultaneously. LS improves the operational energy cost by coordinating

the VSD operation rate with respect to the TOU tariff. The improvement of EE is

achieved through coordinating the belt speeds and feed rates and consequently the

energy consumption is reduced. This article demonstrates the flexibility and financial

benefits of a VSD based conveyer belt control strategy through a case study on a coal

conveyer system.

2.6 RATIONALE FOR THIS STUDY

The POET framework is a generalized classification of the EE components, and it is

designed to be applied to practical DSM problems. However it has only been proposed

recently, and there are little practical validation and few applicability studies on this

framework.

The existing studies on pumping system operation cost optimization are predominantly

isolated either in the field of optimal design or optimal operation. There is little evidence

of a pumping system operation cost reduction scheme that encompasses both optimal

selection and operational control.

The references mentioned in Section 2.5.1 focus only on EE improvement. If EE is the

only factor considered during the selection of the pumps, the selected pumping capacity

tends to be minimal, since additional capacity will cause energy wastage. In cases where

a sufficiently sized reservoir is available as a buffer, the designer will typically select the

pump capacity in accordance with the average water demand. However, in a case where

the facility is charged under a TOU tariff, it is ideal to implement LS to reduce the

energy cost. In order to do so, additional pumping capacity is required to shift the load

out of the peak hours and still satisfy the water demand.

As pointed out in [22], an issue associated with optimal design is the rigidness of the

design. When the operational parameters change, such as a tariff and demand change,

the chance is that the current optimal design will lose its optimality. Designers often

have to compensate for the risks of parameter variation by designing for the worst
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case scenario, which will significantly reduce operational efficiency. Ideally, a flexible

pump control mechanism can be used to compensate for the rigidness of the optimal

design. This flexible controller should be able to adapt to any changes occurring in

the operational parameters to ensure that the operation is adjusted to be once again

optimal in terms of operational efficiency.

Section 2.5.2 addresses some of the articles on the existing method of pump operation

control. From the collected articles, the DSM related pump operation control improve-

ment can be seen to be divided into two separate approaches, namely the EE and LS

improvements. The only studies found to implement both EE and LS in one pumping

project are [62] and [61]. However, [62] is not a true EE improvement since the overall

efficiency is boosted by using the pump as a turbine to generate electricity when it is

profitable to do so. Reference [61] was initially an LS project but after implementation

it was found that the overall efficiency was improved by chance.

Reference [63] successfully implemented both EE and LS in a single belt conveyor system

utilizing VSD. This article has demonstrated that it is possible and at the same time very

profitable to combine EE and LS. In addition, it has also demonstrated the flexibility

of the VSD based controller, which is ideal for compensation of the design rigidness

mentioned earlier. Since both belt conveyor and pump are motor-driven devices with

similar properties, VSD should also be used to formulate an EE and LS combined pump

control for a pumping system.

Most of the optimal control strategy studies, such as [36], [41] and [42], are in the

form of open-loop control. Open-loop control is sufficient for simulation purposes but

it is difficult to implement it in real life owing to simplification errors and operational

uncertainties. Without feedback from the actual operation the controller is isolated from

the plant and is unable to correct any unforeseen changes and errors in the system.

An MPC approach is implemented in [53] and [63]. These articles demonstrate the

ability of the MPC strategy to increase the robustness of the control system under

uncertainties. The biggest advantage of the MPC is its ability to predict future output

values based on current and past measurements, and make appropriate changes to the

control variables to achieve the desired target [64]. This characteristic enables the MPC

to correct any form of system errors.

The proposed strategy resembles [53] and [63] in the fact that the control model and

the operational information are all based on estimations, and there is a high level of

operational uncertainty. Therefore it is necessary to implement a closed-loop control

strategy.
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2.7 APPROACH OF THIS STUDY

2.7.1 Hypothesis

The first hypothesis is that a complete pump efficiency improvement scheme can be

developed following the operational section of the POET framework.

The second hypothesis is that EE and LS can be combined and balanced in the selection

and operational control of water pumps, such that the operational cost can be minimized.

2.7.2 Realization stages

This dissertation focuses on the equipment-related physical and time coordinations of

the operation category. Human coordination is not covered in this dissertation. Never-

theless, human coordination is still a vital part of overall system operation, since humans

are involved in every stage of the operation. Proper human coordination is essential for

a pump system to operate at its optimal efficiency.

The main content of this dissertation is divided in accordance with physical and time

coordinations categories. Because of the complexity of the time coordination stage, it is

further divided into two stages. Hence the formulation of the pumping system operation

efficiency improvement strategy consists of three stages.

The first stage is to develop an optimal pump capacity selection model. This model se-

lects the optimal pump capacities for a pumping system with the objective of minimizing

the operational energy cost by balancing the EE and LS contributions.

The second stage is the formulation and testing of a flexible open-loop pump control

strategy that minimizes the operational energy cost by maximizing the net savings from

EE and LS contributions using a VSD based controller. This proposed pump control

strategy, with its flexibility, should be able to adapt to any known system changes and

adjust itself to ensure the operational cost minimum.

The third stage is the formulation and testing of a closed-loop MPC strategy, based on

the open-loop control strategy from the previous stage. This closed-loop MPC strategy

should be able to improve the system’s robustness and automatically compensate for

any unknown system variations.
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2.7.3 Pump power consumption prediction functions

In order to minimize the pump operation energy consumption, the pump operation

power consumption under different scenarios must be accurately predicted. Hence rela-

tionships between the optimization variables and the pump power consumption need to

be formulated.

Two types of pump power consumption functions are needed for this research. The first

type is a relationship between the pump capacity and the pump power consumption.

This relationship is referred to as the capacity-power function. The capacity-power

function is used in the optimal pump capacity selection model, and it estimates the

pump power consumption for different choices of pump capacity. The second type is

a relationship between the pump flow rate and the pump power consumption. This

relationship is referred to as the flow-power function. The flow-power function is used

in the optimal control strategy, and it computes the pump power consumptions for

different flow rate settings of a VSD controlled pump.

As pointed out in [65], such input power prediction functions used for optimization

should not be too complex, like the one in [66], otherwise the optimization algorithms

might become unsolvable.

References [34] and [35] illustrate that the pump characteristics and system characteris-

tics can be accurately estimated by quadratic equations. It is possible to transform the

existing graphical information into mathematical equations, which is essential for the

derivation of the capacity-power and flow-power functions.

Pump power consumption prediction functions for fixed speed pumps are used in [40]

to [43]. Since the operating points of these pumps are fixed, these functions are derived

from the hydraulic equation. This type of fixed speed pump input power function can

be used to formulate the capacity-power function.

More complex pump input power prediction function formulations involving VSD con-

trols are attempted in [48], [49], [65] and [67]. References [48] and [49] do not consider the

system characteristic curve but rather use affinity laws to predict the operating points

for different speeds. The affinity laws are only applicable to free running pumps, which

are not connected to any system and are not constrained from the system losses such

as the friction of the pipes [47]. When a pump is installed into a system, the changes

in the operating point associated with changes in motor rotational speed follows the

non-linear system curve, not affinity laws. Hence, the accuracy of [48] and [49] are poor.

Reference [67] assumes a linear system loss curve which deviates significantly from real

life. Reference [65] formulates a flow-power function by measuring the changes in power
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with respect to change in rotational speed.

A more simple and accurate method of computing the power consumption of a VSD

controlled pump for different flow rates is illustrated in [47]. The pump power consump-

tion is computed analytically based on the design parameters and VSD settings. This

method is used as the foundation to formulate the flow-power function.

2.7.4 VSD implementation complication

There is a complication in using VSD for LS in pump optimal control. A centrifugal

pump can only operate above a given minimum motor rotation speed, otherwise the

water will just swirl within the tubes and nothing will be pumped out [37]. Unlike in

the case of a conveyor belt [63], the speed of the VSD can be adjusted from 0 to maximum

without any problem. Operating a pump below its minimum motor rotation speed will

not only waste energy, but also cause the pump to overheat. The VSD therefore only

has a small range of speed adjustment, typically between 25% and 50% of the maximum

motor rotation speed. This limited range of adjustment significantly restricts the level

of LS and the associated savings for VSD controlled pumps.

To solve this problem, the controller must switch off the pump completely when the

operation is below the minimum motor rotation speed. Hence an on/off controller is

used together with the VSD controller. Normally the on/off controller is on and the

VSD is responsible for all the flow rate adjustments. When the ideal motor operating

speed is below the minimum speed, the on/off controller will take over, switch the pump

off and achieve the necessary LS.

2.7.5 Particle swarm optimization

Continuous and binary variables have to be solved simultaneously in optimal control

models in this research, hence mixed integer programming is required. The standard

optimization tools, such as those found in MATLAB, are not suitable for such operations.

Other forms of optimization algorithms have to be used.

Particle swarm optimization (PSO) is a population based search algorithm based on the

simulation of the social behavior of birds within a flock. In PSO, individuals, referred

to as particles, are “flown” through hyper-dimension search space in the process of

searching for the optimal solution. Changes to the position of the particle within the

search space are based on the social-psychological tendency of individuals to emulate the

success of other individuals. The changes to a particle within the swarm are therefore
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influenced by the experience or knowledge of its neighbors [68].

PSO is a simple-to-implement algorithm that is effective in optimizing a wide range of

objective functions. Conceptually, it seems to lie somewhere between genetic algorithms

and evolutionary programming. It is highly dependent on stochastic processes, like

evolutionary programming. The adjustment toward best solution of the population by

the particle swarm optimizer is conceptually similar to the crossover operation used by

genetic algorithms. It uses the concept of fitness, as do all evolutionary computation

paradigms [68].

Unique to the concept of particle swarm optimization is flying potential solutions through

hyperspace, accelerating toward “better” solutions. Other evolutionary computation

schemes operate directly on potential solutions, which are represented as locations in

hyperspace. Much of the success of particle swarms seems to lie in the agents’ ten-

dency to hurtle past their target [68]. The stochastic factors allow thorough search of

spaces between regions that have been found to be relatively good, and the momentum

effect caused by modifying the extant velocities rather than replacing them results in

overshooting, or exploration of unknown regions of the problem domain.

PSO has been widely used to solve industrial optimization problems, such as in [53], [69]

and [70]. Reference [53] is a pumping schedule optimization problem. In this article,

PSO is compared with genetic algorithm. It is found that the PSO algorithm excels by

its flexibility and adaptability in accommodating either discrete or continuous types of

optimization variables. Its simplicity allows for straightforward implementation, with

relatively high execution speeds compared to other evolutionary algorithms, alongside

a high convergence rate towards acceptable solutions [53].

Despite the advantages of the PSO algorithm, it was originally designed to solve contin-

uous variable problems. Modifications to the standard algorithm are necessary in order

to solve mixed integer optimization problems.

Many researchers have managed to derive novel methods to solve discrete variables using

PSO. References [71], [72] and [73] are binary PSO strategies. Since binary optimization

is a specialized form of integer optimization, integer PSO approach references are also

applicable to this research. References [74], [75] and [76] are integer PSO strategies.

Among these articles, only [76] describes a constrained problem formulation. The op-

timization models of this research are all constrained ones, hence [76] is used as the

binary PSO formulation foundation in this research. The algorithm proposed in [76]

is analyzed and tested to determine whether it is suitable for the application of this

research. If the test does not yield the promised results, a binary PSO suitable for this

research will be developed.
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2.8 RESEARCH PROCESS AND MODELING

The research comprises the following sequential activities:

1. The existing mixed integer PSO algorithms are evaluated. Since PSO was orig-

inally designed for continuous variable optimization and its continuous variable

optimization performance has been approved in many articles, the focus of the

evaluation is on binary variable optimization.

2. The evaluation results are not satisfactory, and hence a binary PSO optimization

algorithm is developed for the purpose of this research. Tests are performed to

ensure that the developed algorithm is indeed more suitable than the existing ones.

3. An optimal pump capacity selection model is defined. The objective of this opti-

mization model is to select the optimal pump capacities such that the operational

energy cost is minimized with respect to the tariff structure, demand and system

constraints. The pump capacities and the optimal operation LS schedule are op-

timized simultaneously to ensure the maximization of the combined EE and LS

savings.

4. Simulations on the optimal pump capacity selection model are conducted under

different tariff structures and system limitations. The results are evaluated.

5. Through the simulations, the rigidness of the optimal design becomes apparent.

This leads to the development of a flexible pump operation control strategy, the

VSD on/off controller.

6. The open-loop optimal control model for the VSD on/off controller is defined.

The objective of the model is to compute a set of VSD flow rate settings and a

corresponding set of on/off schedules, which ensures that the pump satisfies its

operational requirement with minimal energy cost.

7. The methods of formulating a pump flow-power function that predicts the required

input power for a different flow rate or motor rotation speed of a pump are derived.

Two derivation approaches are illustrated, namely the measurement approach and

the theoretical approach.

8. Tests are conducted to evaluate the performance of the VSD on/off controller.

Simulations are conducted based on a case study under different tariff structures.

The tariff structures considered are flat tariff, MD tariff, high-demand TOU tariff,

low-demand TOU tariff, high-demand TOU with MD tariff, and low-demand TOU

with MD tariff.
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9. Four of the most common pump control strategies are simulated under the same

case study with different tariff structures. The four pump controls are valve con-

trol, level based on/off control, VSD control and optimal on/off control. The

simulated operational energy costs of each of the four controls under different

tariff structures are compared with the corresponding VSD on/off energy costs.

10. The open-loop VSD on/off optimal control model is converted into a closed-loop

optimal control model using the MPC approach.

11. The closed-loop MPC optimal control model is simulated based on the case study

parameters for a control duration of one week. The results are compared and

evaluated against the open-loop results.

12. Further simulation is conducted to test the robustness of the closed-loop MPC

approach. An error is introduced into the system and the process of error detection

and correction is documented and appraised. The open-loop control model is also

simulated under the same operational conditions with the same error. The open-

loop results are compared with the MPC results.

2.9 MULTI-LEVEL PUMPING SYSTEM

In this research, the optimal pump selection and control models are formulated for

multi-level pumping system. An example of a multi-level pumping system is shown in

Figure 2.2. The classification of the different levels is based on the pump arrangement.

At each level there is one cluster of pumps. This cluster of pump can consists of one or

more interconnected pumps that shares the same input and output pipes. However, it

is possible to have multiple reservoirs at each level.

2.10 HOW THIS APPROACH ADDRESSES CURRENT DEFICIENCIES

The selected approach addresses the deficiencies described in Section 2.6 as follows:

1. This research uses the POET framework to define a pumping system efficiency

improvement strategy.

2. An optimal pumping capacity selection model is formulated based on not only EE

criteria, but also LS requirements.

3. EE and LS improvements are combined in a pump operational energy cost mini-

mization optimal control model.
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Figure 2.2: Example of a multi-level pumping system, Figure modified based on [61].
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4. In this research, methods of pump input power prediction function derivations

are formulated. The derived input power prediction functions provide a reason-

ably accurate estimation of the actual input power and can easily be used in an

optimization algorithm.

5. This research further consolidates the importance of the closed-loop approach in

real-life optimal control scenarios.

6. A binary variable PSO algorithm is developed to suit the needs of the optimization

requirements of this research.

2.11 CHALLENGES AND LIMITATIONS OF THE SELECTED APPROACH

The challenges and limitations of this approach are:

1. The maintenance cost of the pump operation is not considered in this research.

2. The pump input power prediction functions are derived from estimation and are

simplified, hence their accuracy is not 100%.

3. The current pump input power prediction functions apply to only a fresh water

pumping system. Modifications are needed for other pumping applications, such

as oil pumping and slurry pumping systems.

4. The effects of pump aging are not included in the pump input power prediction

functions.

5. The formulations of the optimization models and the binary PSO algorithm are

challenging.

2.12 CONTRIBUTIONS OF THIS STUDY

The contributions of this study can be summarized as follows:

1. This research affirms the practical applicability of the POET framework [6] by de-

veloping a water pumping efficiency improvement strategy based on the operation

category of the POET framework.

2. This research illustrates that it is insufficient to maximize only the EE in the

selection of pumps during the design stage, such as in [21] to [35]. It also illustrates
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that when a facility is charged under TOU tariffs it is more profitable to also

take optimal LS requirements into account, and the operational energy cost is

significantly reduced when selecting the pumps considering both EE and LS.

3. This research illustrates that EE and LS can also be combined into an optimal

control strategy for the pump operation, similar to [63].

4. This combination of EE and LS is proven, through simulations and comparison

with other leading pump control strategies, to be flexible and effectively reduce

the operational energy cost under all operational scenarios considered.

5. Static input power and flow rate models for fixed and variable speed pumps are for-

mulated, based on [40] to [43] and [47], and then implemented in the optimization

algorithms.

6. This research validates the convergence of the electricity cost savings of the closed-

loop MPC approach to the open-loop controller [53].

7. This research validates the robustness of the MPC approach [53].

8. In this research a binary variable PSO algorithm is developed based on continuous

PSO [68]. This algorithm can be used alongside the continuous variable PSO

algorithms to solve mixed integer optimization problems. The developed mixed

integer PSO algorithm is proven to be more effective and efficient to solve the

optimization problems in this research than the existing approach shown in [76].
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CHAPTER 3. MIXED INTEGER PARTICLE SWARM

OPTIMIZATION

A mixed integer PSO algorithm is the platform on which all the optimization problems

in this research are solved, hence it is described prior to actual formulation of the

optimization models.

This chapter is divided into five sections, namely

• The introduction of the fundamentals of the PSO algorithm

• The test of integer PSO approach described in [76]

• The formulation of the binary voting approach

• The justification of the voting approach

• The description of the mixed integer PSO algorithm.

3.1 FUNDAMENTALS OF PSO

The PSO algorithm is based on the analogy of movement and optimization of flocks of

bird or schools of fish. The PSO algorithm searches for the global maximum or minimum

of a cost function by simulating movement and interaction of particles in a swarm. The

position of a particle corresponds to the possible solution of the optimization problem.

Each particle represents a complete solution set. Each dimension of a particle represents

the solution of one variable in the solution set.

In every iteration a new set of particle position is computed for each particle, using the

following equation,

Pa,b(k + 1) = Pa,b(k) + Va,b(k + 1), (3.1)
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where

Pa,b(k) The value of the b-th dimension of the a-th particle at the k-th

iteration.

Va,b(k) The velocity of the b-th dimension of the a-th particle at the k-th

iteration, which is given by (3.2).

Va,b(k+1) = we · Va,b(k) +C1 ·R · (pbesta,b −Pa,b(k)) +C2 ·R · (gbestb −Pa,b(k)), (3.2)

where

we The inertia coefficient.

C1, C2 These are the social rate coefficients, which control the pull to the

global best position.

R This is a function that generates uniformly distributed random

numbers in the interval from 0.0 to 1.0.

pbesti,j This is the current best solution for the a-th particle.

gbestj This is the current global best solution.

Hence, the particle position for the (k + 1)-th iteration can be written as

Pa,b(k+1) = Pa,b(k)+we·Va,b(k)+C1·R·(pbesta,b−Pa,b(k))+C2·R·(gbestb−Pa,b(k)). (3.3)

The particle positions and velocities are initially randomly assigned. The processes of

computing the fitness of the particles and derivation of the new particle positions are

repeated until the stop criteria are met.

3.2 MIXED INTEGER PSO INVESTIGATION

From Chapter 2, Section 2.7.5, the mixed integer PSO algorithm described in [76] ap-

pears to meet the optimization requirements of this research. This algorithm will be

referred to as the “mixed integer PSO” from this point onwards.
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The mixed integer PSO solves the continuous and integer variable simultaneously. All

of the variables are initially solved as continuous ones. The mixed integer PSO uses an

additional penalty function to penalize the variables which are supposed to be integer

but are not. This additional penalty function forces the selected variables to move

toward their nearest integer value. The degree of penalization is based on the amount of

deviation of the variable from its nearest integer value. This additional penalty function

is modified for binary variable applications and is shown in (3.4).

For the rest of this section, binary variables will be the only type of variable involved.

ϕ(Pa) =

Bbi∑
b=1

1

2
{sin[2π(Pa,b − 0.25)] + 1}, (3.4)

where

ϕ(Pa) The value of the integer penalty function for a-th particle.

Bbi The total number of binary dimensions in the a-th particle.

The fitness of a particle is computed by the augmented objective function shown in

(3.5).

F (Pa) = f(Pa) + yϕ(Pa) + rc

Ncon∑
n=1

Cn(Pa), (3.5)

where

F (Pa) The fitness value of the a-th particle.

f(Pa) The objective function value of the a-th particle.

n The constraint indicator.

Ncon The total number of constraints.

Cn The n-th constraint equation or value.

rc The weight of the constraints.

y The penalty parameter, which is determined by (3.6)

y(k + 1) =

{
y(k)e[1+ϕ(gbest(k))] , if Ec > ε,

y(1) , if Ec ≤ ε,
(3.6)
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where

gbest(k) The particle with the best fitness value in the k-th iteration.

Ec The convergence indicator, which is computed by (3.7).

ε The convergence criteria, which should be a small positive number.

y(1) The initial penalty parameter, which is computed by (3.8).

Ec =
|F (gbest(k))− f(gbest(k))|

|F (gbest(k))|
. (3.7)

y(1) = 1 + min{ϕ(Pa) : a = 1, 2, ..., AT}, (3.8)

where

min A function that finds the minimum value term in an array.

AT The total number of particles.

In the end the best result obtained can be rounded off to obtain a true binary solution.

Theoretically this method should be able to compute the result accurately and efficiently.

However, actual simulations show that the mixed integer PSO is not as effective as

hoped for. It was found that the mixed integer PSO is very difficult to implement and

the solution obtained is very often the local extreme and not the desired global extreme.

The reasons for such poor performance are

• additional local extrema introduced by the additional penalty function; and

• uncertainty in the choice of ε value.

3.2.1 Additional local extrema

The values of a simple one variable objective function is plotted against the correspond-

ing variable values in Figure 3.1. It can be seen that this objective function has one

local minimum and one global minimum. The particles in the PSO algorithm will search

along this curve for the global extrema and in this case should be able to find the global

extreme with ease.
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Figure 3.1: A simple one-dimensioned objective function variable relationship.

Figure 3.2: An example of an augmented objective function variable relationship.

Sometime particles might land in a local minimum; unless other particles find a better

solution, this will be the final, but non-optimal solution.

As the objective function grows more complicated, more local extrema extrema are

introduced. For example, in (3.5), the penalty function and constraints might transform

a simple objective function curve in Figure 3.1 into something like Figure 3.2.

As the number of variables increases, so do the dimensions of the objective function

curve. This will further increase the number of local extrema, but there is always just

one global maximum and minimum. To improve the performance and accuracy of the

PSO algorithm, the number of local extrema should be as low as possible.
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In (3.5), the additional integer penalty yϕ(Pa) consists of two parts, y and ϕ(Pa) which

are described in (3.6) and (3.4) respectively. Both y and ϕ(Pa) are functions of the

variables, and they introduce additional local extrema into the objective function and

complicate the search for the global extreme. The additional local extrema introduced

by the integer penalty function could be one of the reasons for the poor performance of

the mixed integer PSO.

3.2.2 ε value

The purpose of penalty parameter y in (3.5) is to add cumulative penalties such that

the variables can converge to the integer values more rapidly. The penalty parameter y

is computed by (3.6). The choice of the ε value is the crucial factor; however, no proper

guidance is provided on the choice of the ε value.

It was found, through repeated simulations, that in the majority of the cases where

the ε value is small, typically smaller than 0.1, y(k) derived from (3.6) tends to grow

continuously at a very rapid rate without any limitations, causing (3.5) to malfunction

and no optimal solution can be found. In most cases of large ε valued, ε is always greater

than EC and y(k) is always equal to y(0) and the rate of convergence is very slow.

3.3 VOTING BINARY PSO APPROACH

From the above studies, the integer penalty function yϕ(Pa,b) seems to be the cause

of the poor performances. By improving or eliminating this function completely, the

performance of the algorithm should be improved. This is the motivation for the devel-

opment of a novel binary PSO strategy, the voting approach.

The greatest advantage of the proposed voting approach is that the variables stay in

binary format throughout the optimization procedures, hence eliminating the need for

the integer penalty functions such as yϕ(Pa,b). The voting binary PSO approach is simple

to implement and understand, yet effective in solving constrained binary optimization

problems.

The voting approach is formulated based on the principles of the continuous PSO vari-

able computation shown in (3.3). From Figure 3.3 it can be seen that the new particle

position of a continuous variable is determined by four components. They are the cur-

rent and previous position of the particle, the particle’s best fitness position and the

global best fitness position. The new position or state of binary particles must also be

decided by these components. These four components will be referred to as the decision
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Figure 3.3: The four components that determine the future position of the particle.

components for the rest of the chapter.

In the case of only binary operations, these decision components will all be in binary

format. Each of the four decision components can be imagined as members of the

parliament and the future particle state is a legislation in which these members must

decide by vote. The 1 or 0 of the binary value which each decision component takes on

can be interpreted as an agree or disagree decision. Each of the decision components

will “vote” according to its own state. The votes for the state of Pa,b(k + 1) can be

computed by summing the state of these four decision components as shown below,

votea,b(k + 1) = Pa,b(k) + Pa,b(k − 1) + pbesta,b(k) + gbestb(k), (3.9)

where

votea,b(k + 1) The votes count to determine the state of the b-th dimension of the

a-th particle for the (k + 1)-th iteration.

Pa,b(k) The state of the b-th dimension of the a-th particle for the k-th

iteration.

Pa,b(k − 1) The state of the b-th dimension of the a-th particle for the (k−1)-th

iteration.

pbesta,b(k) The state of the b-th dimension of the best fitness solution achieved

by the a-th particle up until the k-th iteration.

gbestb(k) The state of the b-th dimension of the best fitness solution achieved

by any particle up until the k-th iteration.

If this outcome is greater than the expected value of votea,b(k + 1), which is 2, the

particle state, Pa,b(k+1), for the next iteration will be 1, otherwise it will be 0. This is

illustrated by (3.10).
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Pa,b(k + 1) =

{
1, if votea,b(k + 1) > Eexp(vote),

0, if votea,b(k + 1) < Eexp(vote).
(3.10)

where

Eexp(vote) The expected value of vote.

There is another important component in PSO, namely the randomness or craziness. It

helps to protect the algorithm from being trapped in a local extreme.

Randomness is introduced into the continuous variable PSO by multiplying random

numbers to the pbest and gbest values. This will not work for the proposed binary PSO,

since pbest and gbest components are binary, which means there is a 50% chance that

they are 0, and multiplication with a random number will have no effect.

The randomness will be added instead through a uniformly distributed random variable

Rv with a range of ±r. (3.9) now becomes

votea,b(k + 1) = Pa,b(k) + Pa,b(k − 1) + pbesta,b(k) + gbetsb(k) +Rv. (3.11)

If the four components can be considered as members of the parliament, then the random

variable Rv can be seen as the president. It has the power to overthrow the voting result

completely. It does so based on the value it takes on.

The degree of randomness described in this binary algorithm is referred to as the chance

of an upset. An upset is when the outcome is a 0 when all four decision components

voted for 1, or the outcome is a 1 when all four decision components voted for 0. The

value of Rv must be smaller than −2 when all components vote for 1 and greater than

2 when they all vote for 0 to achieve an upset.

The chance of an upset can be accurately controlled by proper selection of the range r

of Rv. Since Rv is a uniformed distributed variable, the required range can be computed

using (3.12).

r =
E(vote)

1− 0.02 · x
, (3.12)

where
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x The desired chance of an upset in percent.

The advantage of this configuration is that the degree of randomness can be controlled

precisely. The addition of Rv also eliminates the chance of a tie in the voting.

3.4 ALGORITHM JUSTIFICATION

To evaluate the performance of the proposed voting approach, it is tested against the

mixed integer PSO algorithm and the binary optimization tool “bintprog” of MATLAB

under scenarios similar to the case study used in this research.

The bintprog function is a reliable optimization tool that has been used effectively to

solve many binary optimization problems such as in [53]. Because of its known reliability,

its solution will be assumed to be the true optimal solution, and it is used as the reference

to evaluate the accuracy of the results of the mixed integer PSO and voting approach.

The three algorithms are simulated to solve a pump operation optimal on/off scheduling

problem. The optimization problem is described at the beginning of Chapter 5, Section

5.3. The formulation of the objective function and constraints are the same as the one

described in Chapter 5, Section 5.4.4.

The simulations are conducted for three different control horizon durations, which are 12,

24 and 48 hours. The control horizon duration corresponds to a number of dimensions

in a particle, hence the greater the control horizon duration, the greater the number of

variables to be solved simultaneously.

Each of the algorithms is simulated repeatedly for 5 to 10 times for each scenario,

depending on the duration of the simulations, and the averaged algorithm performance

data are summarized in Table 3.1. Each of three methods is evaluated based on three

criteria, namely iteration, time and deviation. Iteration is the number of iterations

needed to solve the optimization problem for the mixed integer PSO and the voting

approach. The number of iterations is chosen based on a balance between the solution

accuracy and time consumption. Time is the amount of time required to complete the

number of iterations, or in the bintprog case to derive the solution. Deviation is the

percentage of the optimal solution of the variables deviating from the optimal solution

of the bintprog method.

From Table 3.1, it can be seen that the voting approach outperforms the mixed integer

PSO in the case study environment. The voting approach is able to find the optimal
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Table 3.1: PSO strategy comparison results.

Control
horizon

Criteria Mixed
integer

Vote Bintprog

12 Iteration 10000 100 -

Time (sec) 51.23 0.4663 0.03375

% deviation (%) 20 0 -

24 Iteration 200000 1000 -

Time (sec) 148.1 5.8945 1.974

% deviation (%) 42 0 -

48 Iteration 1000000 20000 -

Time (sec) 1352 230.0 3521

% deviation (%) 58 0 -

solution faster and with more accuracy than the mixed integer approach. Hence it is

justifiable to use the voting approach in this research.

3.5 MIXED INTEGER PSO ALGORITHM FORMULATION

The following is a description of the mixed integer PSO algorithm formulation used to

solve the minimization problems in the later chapters.

Step 0:

Initialization. The continuous dimensions of a particle are initialized with a random

value within a set of upper and lower limits according to (3.13). The binary dimensions

are initialized according to (3.14).

Pa,b = Lp +R(Up − Lp), for a = 1, ..., AT , and b = 1, ..., Bc, (3.13)

where

Lp and Up The lower and upper limit of the continuous variable.

Bc The total number of continuous variable dimensions in the particles.
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Pa,b =

{
1 if R > 0.5,

0 if R ≤ 0.5,
for a = 1, ..., AT , and b = Bc + 1, ..., BT . (3.14)

where

BT The total number of dimensions in the particles, which is equal to

the sum of the number of binary and continuous dimensions.

Particle velocity Va,b for the continuous dimensions are initialized in accordance with (3.13)

with a range of between Lv and Uv. The previous state of the binary dimensions,

Pa,b(−1), also has to be initialized with a random binary value and they are initialized

in accordance with (3.14).

Variables pbesta and gbest are initialized with a large value.

Step 1:

Determine whether the stop criteria have been met. If so, go to Step 6, else go to Step

2.

Step 2:

Compute fitness, Fa, of each particle. Fa is the sum of two components, namely the

objective function fitness, fa, and the constraint fitness, ca.

The objective function fitness, fa, can be calculated by substituting the a-th particle

into the objective function.

The constraint fitness ca is calculated based on the degree of constraints violation. The

constraint fitness is computed by (3.15).

ca =
Ncon∑
n=1

BT∑
b=1

(X + Y Ec,a,b), (3.15)

where
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X and Y They are both constants.

Ec,a,b The amount of violation of the c-th constraint caused

by the particular dimensions.

Step 3:

Determine pbesta and gbest. The aim is to find the particle that results in the minimum

fitness value.

The fitness of each particle, Fa, is compared to the best fitness value of that particle,

pbesta. If Fa is smaller than pbesta, pbesta will be replaced by Fa and the pbestpa, which

stores the particle position of pbesta, is replaced by Pa.

The fitness of each particle, Fa, is compared to the global best value gbest. If Fa

is smaller than gbest, gbest will be replaced by Fa and the gbestp, which stores the

particle position of gbest, is replaced by Pa.

Step 4:

Determine the new particle position for the next iteration. The continuous and binary

dimensions of a particle are treated separately. For the continuous dimensions, the

particle position for the next iteration is computed according to (3.3). For the binary

dimensions, the (3.9) and (3.10) are used.

Step 5:

Increment the iteration number by 1 and go back to Step 1.

Step 6:

Output gbest as the lowest calculated operating cost and gbestp as the optimal control

strategy.
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CHAPTER 4. PHYSICAL COORDINATION

An important part of the operation category focuses on the matching of equipment.

In this chapter, an optimal pump capacity selection model is defined and tested. This

optimization algorithm computes the optimal pumping capacities at different levels of

a multi-level pumping system, based on the optimal operation strategy under different

tariff structures, water demands and reservoir sizes.

The optimal pump capacity selection in this chapter focuses only on the fixed speed

pumps, since ideally, an optimally selected pump should not require additional invest-

ments on flow rate adjustment devices such as valves and VSDs.

This chapter is divided into three sections, namely

• The formulation of the optimal pump capacity selection model

• The simulation test results

• The optimal design limitations.

4.1 OPTIMIZATION ALGORITHM

The aim of the optimal pump capacity selection algorithm is to select the optimal

capacity of the pump, which will yield a minimum operation energy cost. The greater

the pump capacity, the more operations can be shifted out of the peak period, and

hence the greater the energy cost savings. However, greater capacity results in poor EE

and higher energy consumption. The optimal pump capacity selection model selects the

optimal pump capacity by considering the effects of the capacity of both EE and LS.

The objective function of the optimal pump capacity selection model is given below,

min
ur,i,qr

Rc∑
r=1

Ic∑
i=1

cifr(qr)ur,iZ +MmdCmd, (4.1)
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where

r The level indicator and r=1,...,Rc.

Rc The total number of levels.

Ic The the number of control intervals in which all of the operation

parameters can be assumed to be repeating.

Z The number of repeating cycles of duration Ic within the control

horizon and the product of Ic and Z represents the total number of

control intervals in the control horizon.

i The i-th discrete control interval and i=1,...,Ic.

ur,i The on/off status of the pump at the r-th level and i-th control

interval.

qr The capacity of the pump at the r-th level in m3/hour.

fr(qr) The capacity-power function that finds the pump input power cor-

responding to the pump capacity.

ci The TOU energy cost for the i-th control interval.

Cmd The MD charge factor in R/kW.

Mmd The function that finds the MD.

The optimal value of ur,i and qr need to be solved by the optimization algorithm over

the control horizon. Note that qr is the total capacity at the r-th level and it is up to

the designer to decide whether this capacity will be achieved using a single pump or a

combination of pumps.

This optimization model is formulated based on the tariff described in [19]. The MD

charge described in [19] is a monthly charge based on the recorded MD for that month.

Hence the duration of the control horizon, which is represented by the product of Ic and

Z should be equivalent in time to one month. For example, in a month of 30 days in

which operation is assumed to repeat every 24 hours, the choice of Ic and Z will be 24

and 30 respectively.

The MD is measured as the highest averaged demand in kVA during any complete half

hour integrating period. The average power over a half hour interval (T , T+0.5) can be

computed as,

2

∫ T+0.5

T

w(t)dt, (4.2)

where
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Figure 4.1: Graphical illustration of the MD property.

t The time indicator.

w(t) The instantaneous power consumption in kW as a function of t.

T The starting point of a half-hour period.

It is assumed that the operation of the pump and therefore the pump power consump-

tion, w(t), will be taken as a constant unit within a control interval. Therefore, by

choosing a control interval duration that is greater than or equal to half an hour, the

half-hour MD period will fall completely within the control interval with the highest

power consumption. The MD value will be approximately proportional to the power

consumption of the control interval with the highest power consumption. This property

is illustrated graphically in Figure 4.1.

In Figure 4.1, 5 hours of w(t) is represented by the blue line and it varies on an hourly

basis. The red colored block represents the control interval with the highest power

consumption. The half-hour MD period is represented by the area encircled by the dash

line.

Therefore, in conditions of control interval duration greater than or equal to the MD

integrating period and where w(t) remains constant within a control interval

MD = max{w(t)}, (4.3)

where
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max A function that finds the maximum value within an array of data.

The duration of the control interval is chosen to be one hour throughout this dissertation.

Other reasons for this choice are that the TOU tariff varies on an hourly basis and a

longer duration reduces the wear and tear from regular operational adjustments.

Based on (4.3), the MD value, Mmd, in (4.1) can be computed as:

Mmd = max{
Rc∑
r=1

fr(pr)ur,i : i = 1, ..., Ic}, (4.4)

As shown in the literature review, the input power of a fixed speed pump can be com-

puted using the hydraulic equation shown below,

p =
9.81hq

3.6η
, (4.5)

where:

p The input power to the pump in kW.

q The capacity of the pumps.

h The pressure head generated by the pump in m.

η The efficiency of the pump.

The pump pressure head and the capacity can be related to each other using the system

curve shown in Figure 4.2.

A system curve represents the required pressure from the pump to achieve a particular

flow rate. This pressure is required to lift the water to the destination and overcome the

friction of the pipes between the pump and its destination. This relationship is fixed

regardless of the choice of pump.

In a multi-level pumping system, the piping arrangement at each level is different.

Hence for every level of pumps, there is a unique system curve. A system curve can be

estimated by the second order quadratic equation shown below,

h = Aq2 +Bq + C, (4.6)
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Figure 4.2: An example of a system curve.

where

A,B,C They are constants and are unique for a given system curve.

The operational efficiency η is assumed to be a constant. The power factor is assumed

to be one. Substituting (4.6) into (4.5) yields the required capacity-power function.

It is important to note that this capacity-power function is a third order polynomial

equation, hence the pump power consumption relates to the pump capacity cubically.

This means that a small increase in capacity will be amplified into a much greater power

consumption increase.

The water levels of the reservoirs must not exceed their upper and lower limits at any

time during the operation. Hence the optimization algorithm is bounded by the following

constraint,

LLj ≤ lj,i ≤ ULj, (4.7)

where

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

 
 
 



Chapter 4 PHYSICAL COORDINATION

j The reservoir indicator and j=1,...,Jc, where Jc is the total number

of reservoir.

lj,i The level of the j-th reservoir at the i-th control interval.

LLj and ULj The lower and upper level limits of the j-th reservoir.

The water level in the reservoir at the beginning of the (i + 1)-th operational interval

can be defined as:

lj,i+1 = lj,i +
Rc∑
r

ar,iur,i − dj,i, (4.8)

where

ar,i The flow rate of the r-th pump at the j-th reservoir at the i-th

control interval.

dj,i The net amount of water inflow or outflow of the j-th reservoir from

sources other than the pumps in m3/hour.

4.2 SIMULATION RESULTS

A case study of one pump and one reservoir is considered such that the capacity selection

ability of the algorithm can be focused on. Three simulations are performed under

different scenarios, namely

• Design under high demand TOU tariff with sufficient reservoir storage volume

• Design under low demand TOU tariff with sufficient reservoir storage volume

• Design under high demand TOU tariff with insufficient reservoir storage volume.

The MD charge is ignored for the purpose of a more clear demonstration of a balanced

EE and LS pump capacity selection.
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Figure 4.3: The optimal schedule of the pump.

Figure 4.4: Change in reservoir level.

4.2.1 High demand TOU

An optimal design simulation is conducted under the high demand season TOU tariff.

The lower limit on the reservoir is set to be 500 m3, the upper limit of the reservoir is

set at 1000 m3. Ic is 24 hours. The demand is set to be constant at 70 m3/hour such

that,

di = 70, ∀i. (4.9)

The optimal pump capacity is computed as 103.023 m3/hour, and the corresponding

optimal operation schedule and the change in reservoir volume are shown in Figures 4.3

and 4.4 respectively.
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Figure 4.5: Relationship of operational energy cost and pump capacity.

Figure 4.3 demonstrates that the pump has enough capacity to shift the entire load out

of the peak period. In Figure 4.4 it can be seen that during the 23-rd hour, which is the

end of the peak period, the reservoir volume is at the minimum level. These two figures

demonstrate that the pump capacity is just enough to shift the load completely out of

the peak period.

Because the peak energy price is about six times more expensive than the off-peak

one, the LS component is expected to be the dominating saving contributor, and the

algorithm to maximize the level of LS. The EE component only prevents the pump

capacity from being greater than what is required from LS.

To prove that this solution is optimal, a series of simulations are conducted to investigate

the changes in the energy cost associated with pump capacity selection. These simula-

tions compute the operational energy costs for different pump capacities ranging from

70 m3/hour to 140 m3/hour. The operational parameters are the same as the previous

optimal selection simulation. The simulated energy costs of the optimal operations of

the different pump capacities are plotted in Figure 4.5.

The typical pump capacity choice of an EE only optimal design algorithm is most

likely to be just above 70 m3/hour, and as seen from Fig. 4.5 the corresponding energy

cost is very high. As pump capacity increases, more loads can be shifted out of the

peak hours and the energy cost is reduced. The optimal pump capacity is shown to

be 103 m3/hour. At this point the pump manages to shift all of the loads out of the

peak period. Additional increase in pump capacity offers no additional LS savings. As

mentioned earlier, the flow rate input power relation is a cubic one, and a small increase

in the capacity results in a much greater input power and energy consumption increase.
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Figure 4.6: The relationship of operation energy cost and pump capacity.

Therefore, beyond the optimal point further capacity increase only results in an increase

in the energy cost.

It can be seen that LS and EE are two contradictory terms; the improvement of the one

is at the cost of sacrificing the other. The optimal capacity selection model maximizes

the combined saving contributions from LS and EE and minimize the operational energy

cost.

4.2.2 Low demand TOU

Another simulation is conducted under the low demand TOU tariff. The rest of the

simulation parameters are the same as the previous high demand TOU simulation.

The optimal pump capacity is computed as 70.0132 m3/hour. This is the same as the

demand, which means that no LS is permitted despite the higher peak hour electricity

price. This appears to be unreasonable, but the following investigation shows that the

simulation result is correct.

A series of simulations are conducted to investigate the changes in the energy cost

associated with pump capacity change. The procedures are the same as the previous

high demand TOU tariff case, except that the tariff is changed to low demand TOU.

The results of the simulations are plotted in Figure 4.6. It can be seen that the pump

capacity with minimum operational energy cost is 70 m3/hour.
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Figure 4.7: The optimal on/off schedule of the pump.

This result shows that increasing the capacity of the pump to allow LS is not always the

solution of choice in the case of water pump operation when TOU tariff is involved. The

additional capacity needed to shift the load out of the peak hours can cause a significant

increase in the input power of the pump, which might be greater than the savings from

LS.

4.2.3 Reservoir limitation

Additional simulation is conducted under the high demand TOU tariff with a reservoir

size that is insufficient to support a high level of LS.

The upper limit of the reservoir is set to be 700 m3, while the lower limit remains the

same. The computed optimal pump capacity is 90.588 m3/hour. This is significantly

lower than that of the computed capacity in Section 4.2.1. Since the level of LS is

restricted by the reservoir size, there is no need for such a high capacity pump. Hence

the algorithm chooses the smallest pump capacity that is capable of achieving the limited

level of LS.

The optimal operation and the reservoir level changes are plotted in Figures 4.7 and 4.8.

It can be seen that the level of LS is significantly restricted by the reservoir size, and the

pump capacity is sufficient to allow the full utilization of the available reservoir storage

capacity.
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Figure 4.8: The reservoir level variation.

4.2.4 Purchase cost of the pump

The purchasing cost differences associated with different pump capacities is small in

comparison to the pump life cycle energy cost, hence the purchase price of a pump is

not included in the algorithm.

4.3 DESIGN ALGORITHM LIMITATIONS AND SOLUTION

Rigidness is an issue of optimal design. The optimal design tends to lose its optimality

when the operational parameters change, for example change in tariff and demand.

Designers often have to compensate for the risks of parameter variation by designing for

the worst case scenario, which will significantly reduce operational efficiency.

Ideally, a flexible pump control mechanism can be used to compensate for this design

rigidness. This flexible controller should be easily adjusted to adapt to the system

changes without additional hardware modifications, ensuring that the operational energy

cost remains minimal.
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CHAPTER 5. TIME COORDINATION PART I:

OPEN-LOOP CONTROL

The second part of the operation category focuses on the optimal operation of the

equipment. This chapter proposes and analyzes an open-loop optimal pump control

strategy with the objective of minimizing the operational energy cost. This optimal

control system is flexible enough to adapt to different operational parameter variations

and hence compensates for the inflexibility of the design model.

The proposed control system is called a VSD on/off controller. As the name implies,

this system consists of both a VSD and an on/off controller. The VSD controller allows

the pump to operate at the lowest flow rate possible to maximize the EE. The on/off

controller allows LS to take place. Hence this system employs a combination of both

EE and LS techniques to minimize the operational energy cost.

The VSD on/off control is best suited to single pump operations, in other words, one

pump at each level. The purpose of the VSD is to allow flow rate adjustments. For

multiple interconnected pumps at the same level, the adjustment in the net flow rate

can be achieved by switching on a different number of pumps. This type of multi-pump

control is an effective energy cost reduction strategy, as shown in [54]. Using VSD on/off

control in multiple interconnected pumps operational control will offer more precise

control and further improved EE; however, these improvements might not be significant

enough to justify the initial cost, since VSD on/off control requires a VSD for each

pump. Therefore, for multiple interconnected pumps’ operation, the method illustrated

in [54] is recommended. For the rest of the text, it is assumed that there is only one

pump at each level of the multi-level pumping system.

This chapter is divided into four sections, namely

• The formulation of the open-loop optimal control objective function

• The formulation of the operational flow-power model

• The simulation results
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• The energy costs comparison.

5.1 OBJECTIVE FUNCTION

The objective is to minimize the operational energy cost of a multi-level pumping system

over a control horizon. The energy cost consists of both TOU and/or MD charges. The

objective function is defined as,

min
qr,i,ur,i

Rc∑
r=1

Ic∑
i=1

vr(qr,i)ur,iciZ + CmdMmd, (5.1)

where:

qr,i The flow rate setting of the pump at the r-th level at i-th control

interval.

vr(qr,i) A function that finds the pump input power corresponding to a flow

rate setting based on the flow-power function defined in Section 5.2.

Mmd = max{
Rc∑
r=1

vr(pr,i)ur,i : i = 1, ..., Ic}, (5.2)

The optimal values of qr,i and ur,i need to be solved by the optimization algorithm over

the control horizon.

The water level constraints shown in (4.7) and the reservoir level equation in (4.8) also

apply to the open-loop optimal control model.

5.2 FLOW-POWER RELATION FORMULATION

This section illustrates the formulation of the flow-power function.

Two approaches are described in this section, namely

• The analytical approach

• The measurement approach.

The analytical approach is to formulate the flow-power function using the manufac-
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Figure 5.1: Example of a pump characteristic curve [77].

turer’s pump data booklet and other available system information without any physical

measurements. The measurement approach is to conduct measurements physically and

formulate the flow-power function by interpolating the collected data.

5.2.1 Analytical approach

The analytical approach derives an approximation of the pump system flow-power re-

lationship from available pump characteristic information, the system information and

the affinity laws.

The information regarding the hydraulic performance and power consumption of a pump

is locked within the pump characteristic curves, which include the pump performance

curves shown in Figure 5.1 and the pump power curves shown in Figure 5.2.

Each of the parallel curves in Figure 5.1 represents the relationship between the flow rate,

q, and the pump generated head, h, for a particular motor rotation speed, n. Each of
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Figure 5.2: Example of a pump power curve [77].

the curves can be mathematically estimated by a second order quadratic equation. The

top curve of amongst the many parallel performance curves represents the relationship

at the full motor rotation speed, nfull, between the flow rate, qfull, and the generated

head, hfull. The corresponding mathematical estimation of this full rotation speed

performance curve is shown in (5.3),

hfull = Dq2full + Eqfull + F, (5.3)

where

D,E, F They are constants and they are derived from the full motor rota-

tional speed performance curve.

The power curves in Figure 5.2 illustrate the pump power consumption, p, for dif-

ferent flow rates at different speeds. From the capacity-power function of Chapter 4,

Section 4.1, it can be seen that the relationship between the flow rate and the power

consumption is a third order relationship. In addition, most of the power curves, such

as the one in Figure 5.2, have shown the third order quadratic equation characteristic

“s”-shape. Therefore a third order quadratic equation is used to approximate the power

curves. The quadratic equation for the full motor rotation speed power curve is shown

in (5.4),

pfull = Gq3full +Hq2full + Iqfull + J, (5.4)
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where

pfull The power consumption of the pump at full motor rotation speed.

G,H, I, J They are constants and are derived from the full motor rotation

speed power curve.

Note that the pump performance curves represent the possible operating points of the

pump. Pumps with rotation speed adjustment devices, such as VSDs, can operate at

any point in the area between the top and bottom curves. The exact point of operation

is determined by the influence of system characteristics and the motor rotation speed.

The characteristics of the system in which the pump operates is represented by the

system curve. The system curve is described in detail in Chapter 4, Section 4.1 and is

shown in Figure 4.2.

The affinity laws [48] provide a generalized method to predict the changes in the pump

flow rate, generated head and power consumption with respect to the change in the

motor rotation speed of a free-running pump, in other words, a pump without influence

from the system. The affinity laws can be rewritten in the following formats,

qfull =
nfull

n
q, (5.5)

hfull = (
nfullh

n
)2h, (5.6)

pfull = (
nfull

n
)3p. (5.7)

Let s = n
nfull

and substitute (5.5) (5.6), and (5.7) into (5.3) and (5.4), yield,

h = Aq2 +Bsq + Cs2, (5.8)

p = Gq3 +Hq2s+ Iqs2 + Js3. (5.9)

The performance and power consumption function of (5.3) and (5.4) are transformed

into functions of both motor rotational ratio and flow rate demonstrated in (5.8) and

(5.9).

A speed-flow relationship is a function that defines the relationship between the motor

rotational speed and the flow rate of a pump system. The speed-flow relationship can

be formulated by equating the h of (4.6) and (5.8). This rotational speed flow rate
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Figure 5.3: The pump power curve redrawn from the interpolated equation.

relationship can be estimated using (5.10),

s = Kq + L (5.10)

where K,L are constants.

The speed-flow relationship described in (5.10) can be illustrated graphically in Figure

5.3. The operating flow rate of a pump is determined by the intersection of the system

curve and the pump characteristic curves, which is indicated by the curve marked by

“+” in Figure 5.3. The pump system can operate at any point on the curve marked

by “+” with different motor rotational speed settings, and the relationship between

the motor rotational speed and the operating point, or the flow rate, is represented by

(5.10).

Equation (5.10) can be used to compute the VSD speed control settings based on the

required flow rates.

The flow-power function can be derived from (5.10) and (5.9). The result function can

be estimated using the third order polynomial equation shown in (5.11),

p = Mq3 +Nq2 +Oq +Q, (5.11)
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where

M,N,O,Q They are constants.

The analytical approach can be summarized into the steps shown below, and the MAT-

LAB codes that are used to derive the flow-power function are shown in Appendix B.

1. Interpolate the full motor rotational speed pump performance curve into (5.3) and

obtain the values of constants D,E and F .

2. Interpolate the full motor rotational speed pump power curve into (5.4) and obtain

the values of constants G,H, I and J .

3. Interpolate the system curve into (4.6) and obtain the values of constants A,B

and C.

4. Derive (5.10) based on (4.6) and (5.8).

5. Derive (5.11) based on (5.10) and (5.9).

For the pumps at each level, a separate flow-power relation must be derived. The flow-

power relations are not interchangeable between two pumps unless both the pumps and

systems are the same.

5.2.2 The measurement approach

The measurement approach is the preferred approach, since the derived flow-power

function is a more accurate and up-to-date representation of the pumping system than

the analytical approach. Also, by conducting physical measurements in operational

conditions, the system characteristics are automatically included.

To derive the flow-power function, a set of different pump flow rates and power con-

sumption values are recorded and interpolated into the flow-power function shown in

(5.11). There are four constants in (5.11), therefore at least four measurements are

required. Because of the poor accuracy of the flow rate measuring devices, this number

should be at least doubled to eight. These data should cover the entire flow rate range

of the pump.

The following steps describe a suggested measuring procedure,
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1. Make sure that the pump is in its normal operating conditions, such as being

properly installed and pumping the correct fluids.

2. Set the motor to operate at its maximum rotation speed.

3. Record the motor rotation speed, the flow rate and the power consumption.

4. Reduce the motor rotation speed and repeat the measurements.

5. Repeat step 4 until the manufacturer-specified minimum rotation speed is reached.

The collected flow rate and power consumption data are used to formulate the operation

flow-power function utilizing interpolation tools. The recorded motor rotation speed and

the corresponding flow rates are used to formulate the speed-flow relationship.

5.3 SIMULATION RESULTS

In this section, a series of simulations are performed to evaluate the VSD on/off control

system.

The VSD on/off optimal control model is simulated based on a one pump one reservoir

case study in order to focus on the saving ability of the VSD on/off controller. In

this case study the pump is pumping fresh water into a reservoir, while the demand is

draining water from the reservoir. The water demand is summarized in (5.12).

di =


55, i ∈ [0, 8]

90, i ∈ [8, 16]

75, i ∈ [16, 24].

 (5.12)

The speed-flow rate function for this case study is computed to be

s = 0.0071q + 0.2791. (5.13)

The maximum and minimum motor rotation speeds are 1450 and 960 rpm. The corre-

sponding maximum and minimum flow rates are 102 m3/hour and 54 m3/hour respec-

tively. The upper and lower limits of the reservoir are 1000 m3 and 500 m3 .

The flow-power function for the pump is formulated as,
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p = (3.8969e− 6)q3 + (2.1851e− 5)q2 + 0.01117q + 0.13102. (5.14)

The simulations are conducted under different tariff structures to illustrate the adaptiv-

ity of the proposed system; these tariff structures include:

• High demand TOU

• High demand TOU with MD tariff

• Low demand TOU

• Low demand TOU with MD tariff

• MD charge and flat tariff.

The simulation results are summarized in the flowing sub-sections.

5.3.1 High demand TOU

Figure 5.4 illustrates the 24-hour variation in the TOU tariff, computed pump flow rate

and reservoir level variations. Since the electricity price during peak hours is significantly

higher, the algorithm shifts the loads as much as possible to the off-peak and standard

periods. This is clearly illustrated during the morning peak hours (8:00 to 11:00) where

the on/off controller switches off the pump completely. During the evening peak hours

(19:00-23:00) the pump has to be switched on twice to prevent the reservoir level drop-

ping below the lower limit. When the pump is switched on during the peak hours, it is

operating at the minimum operational flow rate to keep the cost down.

It can be observed from the reservoir level sub-plot that the reservoir level constraint is

satisfied. It can also be observed that water is being accumulated in the reservoir prior

to the peak period when the electricity cost and the water demand are low.

5.3.2 High demand TOU with MD

Figure 5.5 shows the variation in the pump flow rates under high demand TOU with

MD charge. The result appears to be similar to Figure 5.4. However, in Figure 5.5

the output flow rates of the pump are more even and leveled in the periods other than

the peak hours. This is due to the effect of the additional MD charges. As mentioned
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Figure 5.4: Illustration of the 24-hour changes to the tariff, flow rate and reservoir level
under high demand TOU tariff.
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Figure 5.5: Illustration of the 24-hour changes to the tariff, flow rate and reservoir level
under high demand TOU tariff and MD charge.

earlier, the MD charge is a charge based on the maximum power demanding period. In

order to minimize this cost, the algorithm spreads the loads out as evenly as possible

and therefore limits the pump to operate at a slightly lower and constant rate.

Figure 5.6 illustrates the differences in the power consumption of the pump flow rate

settings presented in Figures 5.4 and 5.5. Since the flow-power function is cubic, this

maximum flow rate reduction of 2.8% in 5.5 is amplified to a 6.62% reduction in the

maximum demand.

5.3.3 Low demand TOU

Figure 5.7 shows the pump flow rates under low demand TOU tariff. The flow rate

sub-plot differs significantly from the one in Figure 5.4. The most significant difference

is that the pump is no longer switched off during peak hours but rather operating at a

lower rate. Since the peak-hour electricity price of the low demand TOU tariff is much

lower than the high demand one, it becomes more profitable to sacrifice some of the LS
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Figure 5.6: The demand reduction when charged with additional MD tariff.

for EE. As mentioned earlier, a slight reduction in the flow rate results in a significant

reduction in power consumption. Therefore, by operating the pump during peak hours,

the overall pump flow rate in other periods can be reduced. The overall EE is improved

and energy consumption cost is reduced.

5.3.4 Low demand TOU with MD

The pump flow rates under summer TOU and MD tariff are shown in Figure 5.8. As

expected, the flow rates are leveled at a very constant rate. The peak-hour operation is

further increased to allow a further reduction in the maximum flow rate and MD cost.

Figure 5.9 illustrates the differences in power consumption of the flow rate settings

presented in Figure 5.7 and 5.8. The MD is reduced by 34.12% in this case. The reason

for such a high level of reduction in MD in comparison with the high demand TOU

case is that the average energy cost of the low demand TOU tariff is much lower than

the average energy of the high demand TOU tariff and the additional MD charge has a

much greater weight in the total operational cost in the low demand case. Hence greater

effort is spent to reduce the MD cost.
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Figure 5.7: Illustration of the 24-hour changes to the tariff, flow rate and reservoir level
under low demand TOU tariff.
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Figure 5.8: Illustration of the 24-hour changes to the tariff, flow rate and reservoir level
under low demand TOU tariff and MD charge.
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Figure 5.9: The demand reduction when charged with additional MD tariff.

5.3.5 MD charge and flat tariff

Figure 5.10 illustrates the computed optimal strategy under a flat tariff without MD

charges for a 24-hour period. Since there is no TOU tariff, EE is the only cost reduction

contributor. The control model reduces the flow rates to a minimum level to maximize

the EE improvements. The simulation result under a flat tariff with MD charge is the

same as in Figure 5.10. Since the flow rates in Figure 5.10 are all at a constant level,

the maximum flow rate and the MD are all at their minimum levels.

5.3.6 Section conclusion

Subsection 5.3.1 demonstrates the LS capability of the VSD on/off control; subsec-

tion 5.3.5 illustrates the EE capability; subsection 5.3.3 illustrates the ability of the

VSD on/off control to adjust the the contributions from EE and LS freely to minimize

the energy cost; subsections 5.3.2 and 5.3.4 demonstrate that the VSD on/off control is

also capable of minimizing the MD and the associated charges.
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Figure 5.10: Illustration of the 24-hours change to the tariff, flow rate and reservoir level
under flat tariff with/without MD charge.
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5.4 ENERGY COST COMPARISON

In order to evaluate the financial benefit of the VSD on/off control system, a host of

other existing control methods are simulated under the same operating conditions as

the VSD on/off control system, and their operational energy costs are compared with

the VSD on/off control. Six tariff structures are considered, namely high demand TOU

without/with MD charge, low demand tariff without/with MD charge, and flat tariff

without/with MD charge.

Four of the most common pump control methods are selected, and they are, valve

control, VSD control, level based on/off control, and optimal on/off LS control.

5.4.1 Valve control

With valve control, the pump is operating constantly at full power (pfull), regardless

of the output flow rate requirements. The energy consumption can easily be simulated

by multiplying the full power of the pump with the duration of the operation. The

operational energy cost under valve control, Yvalve, can be computed by the following

equation,

Yvalve =
I∑

i=1

pfullciZ + Cmdpfull. (5.15)

5.4.2 VSD control

VSD control is an EE-only initiative, which matches the pump flow rate with the water

demand requirements and reduces unnecessary power wastage. This means that qi=di.

Therefore the power consumption at control interval i can be computed, using the flow-

power model, as vr(di). The operation energy cost under VSD control, YV SD, can be

computed as

YV SD =
Ic∑
i=1

vr(di)ciZ + CmdVmd. (5.16)

where VMD The function that find the maximum power consumption within

the control horizon and is given by (5.17).
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VMD = max{vr(di) : i = 1, ..., Ic}. (5.17)

5.4.3 Level based on/off control

The level based on/off control controls the water level in the reservoir by sampling the

reservoir volume at the beginning of each control interval, and if the water level drops

below the critical level, the pump is switched on for the entire control interval, otherwise

the pump is off. Once the pump is on, it operates at its full flow rate and power. The

critical level is chosen to be 800 m3. The water level and the on/off schedule of the

pump, ui, are computed by (5.18) and (5.19) respectively.

li+1 = li + uiqfull − di, (5.18)

ui =

{
1 if li ≤ 500,

0 if li > 500.
(5.19)

The operational energy cost of the level based on/off control, Yon/off , can be computed

as

Yon/off =
Ic∑
i=1

uiciZ + Cmdpfull. (5.20)

5.4.4 Optimal on/off control

The optimal on/off control strategy is simulated using a binary optimal control model.

The objective is to minimize the electricity cost. The objective function is shown in

(5.21).

min
ui

Ic∑
i=1

utpfullctZ, (5.21)

The objective function is subject to the following water level constraint,
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LL ≤ li ≤ UL (5.22)

The reservoir level, li, is computed by (5.18).

The MD charge is excluded from the objective function, since the only way for on/off

based pump control to reduce MD is to operate the pump in a control interval shorter

than the half hour MD integrating period [53]. The control interval for this research

is fixed at one hour, hence the MD cost cannot be altered by the control model. The

operational energy cost of the optimal on/off control can be computed with (5.20).

5.4.5 Comparison results

The operation energy cost of different pump control strategies under different tariff

structures are summarized in Figure 5.11. The blue columns represent the monthly

energy costs, the red columns represent the MD cost and the green columns represent

the savings in comparison to the valve control.

As shown in Fig. 5.11, the valve control has the highest energy cost and level based on/off

control has the second highest. The energy cost of the VSD control and optimal LS

control varies significantly with different tariff structures. These two controls alternate

the third and fourth highest energy cost positions for different tariff structures. The

VSD on/off control achieves the lowest energy cost under all scenarios considered. These

results illustrate that the VSD on/off control is capable of adapting to different tariffs

and effectively reducing the operational energy cost.

The percentages of energy savings of different control strategies in comparison to valve

control are summarized in Table 5.1.
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Figure 5.11: The operational energy costs comparison of different control strategies
under different tariff structures.
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Table 5.1: The summary of the percentage savings

High demand TOU High demand TOU with
MD

Control strategy Savings Control strategy Savings

On/off 18.6% On/off 14.5%

VSD 50.3% VSD 44.1%

LS 61.8% LS 48.4%

Proposed 70.5% Proposed 55.9%

Low demand TOU Low demand TOU with
MD

Control strategy Savings Control strategy Savings

On/off 22.6% On/off 14.5%

VSD 50.1% VSD 40.8%

LS 40.2% LS 25.7%

Proposed 55.3% Proposed 62.2%

Flat tariff Flat tariff with MD

Control strategy Savings Control strategy Savings

On/off 25.0% On/off 22.5%

VSD 50.7% VSD 39.8%

LS 25.0% LS 22.5%

Proposed 54.8% Proposed 54.3%
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CHAPTER 6. TIME COORDINATION PART II:

CLOSED-LOOP CONTROL

This chapter documents the formulation and simulations of the closed-loop MPC model.

It is divided into two parts, namely

• The formulation of the closed-loop MPC model

• Simulation test results.

6.1 MPC MODEL FORMULATION

The open-loop objective function, (5.1), is modified into the closed-loop objective func-

tion and is defined as below:

min
qr,i,ur,i

Rc∑
r=1

Ic+m∑
i=1+m

vr(qr,i)ur,iciZ + CmdMmd, (6.1)

where m = 1,...,Mmpc, and Mmpc represents the last switching interval. Mmpc can be

considered as infinite if the controller is running none-stop. The control horizon of (6.1)

is over (m,m+ Ic).

In (6.1) the open-loop optimal control problem is solved repeatedly over a finite control

horizon at each control interval i, and only the first control step is implemented after

each iteration. At the next control interval (i + 1) the reservoir level is sampled again

and the process of optimization is repeated over the new control horizon [m, I +m].

The reservoir level constraint of the open-loop model also applies to the closed-loop

model. The only difference is that this constraint needs to be updated after each control

interval is implemented.

The MPC control strategy can be explained further using Figure 6.1, which is simulated

based on the case study parameters with one pump and one reservoir. The prediction
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Figure 6.1: Graphical illustration of the MPC operation.

horizon is chosen to be 10 hours. The computed optimal flow rate settings, qiui, and

reservoir level, li, are plotted in the corresponding plots in Figure 6.1.

Figure 6.1 shows that the current time is 10:00, which means that the inputs and

outputs prior to 10:00 are historical and the inputs and outputs after 10:00 are the

future predicted values.

The process of the MPC controller in Figure 6.1 can be described as follows: at the

current time (10:00) the controller, using the measured current reservoir level, applies

all the constraints, predicts the future pump flow rates and optimizes the energy cost

over the next ten hours. The calculated pump flow rates are referred to as the predicted

inputs. Figure 6.1 shows that the pump should operate at a flow rate of 54 m3/hour

for the next hour (10:00 to 11:00) along with the operational settings for the other nine

hours. The predicted reservoir levels are plotted in the reservoir subplot.

Once the predicted inputs have been calculated, only the input for the first hour is

implemented and the rest of the inputs are discarded. After the first predicted input

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

 
 
 



Chapter 6 TIME COORDINATION PART II: CLOSED-LOOP CONTROL

Figure 6.2: Changes in daily energy cost with respect to the length of the control horizon.

has been implemented, the entire optimization process is repeated.

6.1.1 Prediction horizon

The control horizon is a trade-off between computational time and quality of the control

strategy. In this research, the quality of the control strategy is the level of energy

cost savings. The effects of different control horizon durations are investigated with

simulations based on the case study. The result is shown in Figure 6.2.

Owing to the randomness and the limited number of iterations of the PSO algorithm,

the curve of Figure 6.2 is not very straight, but a clear relationship can be observed. It

can be seen that if the operational energy cost is minimized the duration of the control

horizon should be at least 12 hours. However, because of the randomness of the PSO

algorithm and for the purpose of accurate system testing, a 24-hour control horizon is

used for the closed-loop simulations.

This result is important, because it allows the selection of shorter control horizons, which

will reduce the computation time per iteration without affecting the level of savings.

The optimality of the optimal MD level is independent on the length of the control
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Figure 6.3: Computed flow rate for one week.

horizon. With sufficient a number of iterations, the algorithm will always be able to

find an optimal MD level in which the total energy cost (MD and TOU) is minimized.

6.2 SIMULATION RESULTS

The MPC control model described in (6.1) is simulated with the same operational pa-

rameters and constraints as in the open-loop case, which is described in Chapter 5,

Section 5.3. The high demand TOU tariff is used in combination with the MD charges.

Different tests are performed to evaluate the operational performance and robustness of

the MPC control model, and the results are summarized in the following sections.

6.2.1 MPC simulation over seven days

Figure 6.3 shows seven days’ worth of hourly pump flow rate. It can be seen that the

outputs are fairly consistent. The level of LS is comparable with that of the open-loop

case and the maximum flow rate, hence the MD is kept at a fairly constant level.

The level of fluctuation of the flow rate in Figure 6.3 is much higher than the open-

loop case in Figure 5.4. This is because in the open-loop case all of the flow rates are

computed in one single calculation with the same optimal MD and maximum flow rate

limitations. Hence the flow rates are uniformly limited at a particular level. In the case

of closed-loop MPC, each individual flow rate is computed by a separate calculation.

Each of the calculations has a different starting reservoir level and different net required

water volume to be pumped. These translate to different MD limitations and hence flow

rate fluctuations.

Figure 6.4 shows the seven days’ worth of predicted reservoir level changes. It can be
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Figure 6.4: Volume changes in the reservoir for one week.

Figure 6.5: Daily energy cost.

seen that at no time is the reservoir level exceeded beyond the allowed range of between

1000 m3 and 500 m3. The shapes of the curves are also very consistent with the rise

and fall of the water levels corresponding to the daily accumulation and LS processes.

Figure 6.5 shows the energy cost for each of the seven days. The energy cost of the first

day is noticeably higher than that of the other six days. This is because the reservoir

level at the start of the optimization is at the minimum value of 500 m3 and in the

first day a greater volume of water is pumped to push the water level to a higher level

to ease the operation on the following days. It can be observed in Figure 6.4 that the

water levels of the first 24 hours are lower in comparison to the other six days, hence

the energy cost is slightly higher. After the first day the control system is stabilized,

and the reservoir level flow rate and energy cost are confined within a small range of

deviations.
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The monthly energy cost, which is computed by multiplying the average of the daily

cost by 30, is R 404.65. The maximum demand cost is R330.41. The total energy cost

is R735.06 which is comparable with the open-loop monthly cost of R 740.23.

6.2.2 Control system robustness

The greatest motivation for the implementation of the closed-loop MPC approach is

the improvement it brings about in the system’s robustness. The following simulation

illustrates how the MPC control model detects and compensates for the errors in the

system.

The control model is simulated for 48 hours. The operational parameters are the same

as in Chapter 5, Section 5.3 for the first 24 hours. At the beginning of the 25-th hour

an additional constant 20 m3/hour water demand is introduced such that,

di+24 = di + 20, : i=1,2,...,24. (6.2)

This increase in demand could be due to a leakage or additional demand of water.

The 48-hour water demand profile, flow rates and the reservoir levels are plotted in the

demand, flow rate and reservoir level sub-plots of Figure 6.6.

Note that the only communication between the MPC control model and the actual plant

is through the reservoir level feedback. The MPC model is unaware of the water demand

increase and continues to use the normal or forecast water demand to compute the flow

rate.

The process of detecting and correcting the error can be divided into two stages, which

are indicated by the different color shades in Figure 6.6.

The first stage, indicated by the yellow-shaded area, is when the error is not significant

enough to be noticed by the control model, and there is no significant difference in the

flow rates compared to the corresponding time slot of the previous 24 hours.

The reason for this is that most of the control intervals in the first stage occur during the

off-peak hours, which means the pump is operating at a very high flow rate. Although

the reservoir level is lower than what it should have been because of the accumulation

of the additional water demand, it is still significantly above the lower limit and does

not cause much of a problem to the control model. It can be seen that the reservoir

level is still sufficient to allow LS to take place in the 32-th hour.
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Figure 6.6: Illustration of the MPC control model error correction.
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Since the control horizon is 24 hours, the flow rate for a control interval is derived by

computing a whole 24 hours’ worth of flow rates and only the first one is used. The total

24 hours’ forecast water demand is much lower than the 24 hours’ full pumping capacity.

The control model is unaware of the extra water demand and “assumes” it can easily

recover the amount of water level deficit through the 24-hour operation. The control

model tends to spread this minor water level adjustments evenly across the 24-hour

operation to minimize the MD, and therefore little change in the flow rate is observed

at this stage.

By the 34-th hour, the pump has to be switched on to keep the water level above the

limit. It means that the errors in the system have accumulated to such an extent that

drastic measures have to be taken. This marks the start of the second stage, the active

correction stage indicated by the blue shaded area.

Since the peak time electricity price is very high under high demand TOU, it is manda-

tory to operate the pump at the minimum flow rate. The flow rates during the peak

hours should only be sufficient to keep the water level just above the limit. Unfortu-

nately this minimal flow rate is computed by the control model based on the forecast

demand of water, and in this case the forecast demand is much lower than the actual

one. This results in a much lower flow rate than what is actually required, which leads

to the reservoir level dropping below the allowed limit during the 35-th hour.

At the beginning of the 36-th hour, a violation of the water level constraint is detected,

and the highest priority of the control model is to increase the water level to above the

minimum level as soon as possible. However, the water demand, from the 33-rd to the

41-st hour, are higher than the full capacity of the pump. Despite the efforts of the

pump operating at full power and sacrificing the MD savings, the water level continues

to drop until the high water demand period ends.

Hours 42 to 46 are evening peak hours. It can be seen that very little LS took place,

and savings from LS are further sacrificed in an attempt by the control model to correct

the water level. Very limited LS occurred only during the 45-th and 46-th hour.

Because of the efforts of the MPC control model, the water level is stabilized and is

almost at the acceptable level by the end of the 48-th hour. Figure 6.7 shows the same

simulation but with the open-loop control model.

In the case of the open-loop control model, there is no feedback; the model is isolated

from the actual plant and unaware of any changes in the system. The error will continue

to accumulate without any correction and eventually lead to a possible system failure.

This is illustrated in Figure 6.7, where the reservoir level has dropped to almost 0.
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Figure 6.7: Illustration of the open-loop control model operation with demand variation.
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The 24-hour water demand from the 25-th to 48-th hour is increased to 2200 m3 from

the 1720 m3 level of the previous 24 hours. The MPC control model pumped a total of

2151.73 m3 of water from the 25-th to the 48-th hour while the open-loop model only

pumped 1723.13 m3. The volume of water pumped in the MPC case is very close to the

actual demand, and significantly higher than that in the open-loop case. This further

illustrates the benefit of the robustness of the MPC control model.

MPCs are also suitable for automatically resolving a host of other system errors, such

as design mistakes and poor modeling accuracy. The mechanisms of error correction are

the same as in the above simulation.
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CHAPTER 7. CONCLUSION

This dissertation defined a pump operation EE improvement strategy based on the

physical and time coordinations of the operation category of the POET framework.

For the physical coordination section, an optimal pump capacity selection model is

proposed and verified. In this model, additional capacity requirements for sufficient LS

are also considered along with the traditional EE requirements. It has been shown that

if a facility is charged under a TOU tariff, it is financially more beneficial to include LS

in the selection of the optimal pumping capacity.

It is also shown that by increasing the capacity of the pump, more load can be shifted

out of the high electricity price periods and the cost of electricity is reduced. However,

by increasing the capacity of the pump, the pump efficiency deteriorates significantly

and as a result the energy consumption is increased. The aim of the optimal capacity

selection model is to find a balance between these two opposing factors and minimize

the operational energy cost. The simulations under the South African high demand

TOU tariff illustrated that the operational energy cost for the pump capacity selected

by the proposed model is 37% less than the traditional EE based capacity choice. The

flexibility of this optimal capacity selection model is shown through a simulation where

the reservoir size is limited to a low value.

The time coordination is divided into two parts. The first part is the formulation of

an open-loop pump optimal operation control strategy, the VSD on/off control. The

objective of this control strategy is to balance the EE and LS contributions during the

operation and minimize the operational electricity cost. In addition, this control model

is very flexible and can be adjusted to adapt to different operational conditions. This

flexibility compensates for the rigidness of the system design.

A flow rate input power relationship is formulated such that the power consumption for

variable speed pump operation can be accurately predicted. Two methods of formulation

are described; one is through measurements and the other is using theoretical analysis.

This flow-power function is simplified into a third order quadratic equation. This enables

it to merge into the optimal control model with relative ease.
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The optimal control model is simulated in a case study under a variety of electricity

tariffs, which include flat tariff, high demand TOU with/without MD charge and low

demand TOU with/without MD charge. The flexibility of the proposed control model

is demonstrated through these simulations. The origin of this flexibility is the balancing

of the EE and LS contributions. For example, when the peak electricity of the TOU

tariff is very high, LS dominates and the focus is on shifting the loads out of the peak

periods; and when the peak price is low with MD charge, more savings are allocated to

EE.

Four existing pump control strategies are also simulated under the same operating condi-

tions to evaluate the effectiveness of the proposed optimal control strategy. The existing

control strategies considered are valve control, level based on/off control, VSD control

and optimal LS control. The proposed control strategy achieved the lowest operational

energy cost in all of the simulations in comparison to the four existing control strategies.

The control system’s robustness under system and operational uncertainties is improved

using the MPC approach. The open-loop optimal control model is converted into a

closed-loop MPC approach.

Simulating the MPC model is very time consuming and hence the optimal number of

iterations and duration of the control horizon are investigated such that the computation

time can be minimized without effecting the quality of the result.

The closed-loop control strategy is simulated for a seven-day period. The result shows

that the performance of the closed-loop control model is comparable with the open-loop

one in terms of operational energy cost reduction.

The effect of disturbances and an inaccurate system model are simulated for the open-

and closed-loop control models. The results show that an open-loop control model does

not compensate for the disturbances or an inaccurate system model, while the closed-

loop control model does.

A binary PSO algorithm, the voting approach, is formulated. This algorithm is designed

to run together with the continuous variable PSO algorithm. The voting approach is

tested and shows excellent performance over other similar algorithms in the case study.

The contributions of this research in the context of the existing works were also dis-

cussed. In summary, the contributions are: affirms the practical applicability of the

POET framework; demonstrates the financial benefits to include LS considerations in

the optimal selection of pump capacity; derives a combined EE and LS optimal pump

operation control strategy, and illustrates its financial benefits in comparison to existing

strategies; demonstrates the robustness of the MPC controller; and lastly formulates a
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binary PSO algorithm.

The practicality of the proposed strategy is described below. The results from the

capacity selection model can serve as recommendations for the designer; however, the

designer must still apply safety margins and analyze the available pumps before the final

decision is made. The optimal control strategy is not recommended to be implemented

without any form of feedback, since the control model is formulated based on significant

amounts of assumptions and simplifications, such that a feedback mechanism is essential.

It is recommended that further research be conducted to improve the capacity selec-

tion and optimal control models by considering additional costs, such as the cost of

maintenance. It is also recommended that further research be carried out to apply this

pump efficiency improvement strategy to a case study with much greater complexity.

Lastly, further research on pump efficiency improvements can be attempted to follow

other categories of the POET framework.
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APPENDIX A. MATLAB Programs (Binary voting strategy)

%Binary PSO to find the optimal on/off schedule of pump operation using

% the voting approach

iteration=1000; particles = 50; dimension = 24; c1 = 2; c2 = 2;

g_best=10000; best_val=10000;

tariff=[0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;0.1411;0.8205;

0.8205;0.8205;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;

0.1411;0.8205;0.8205;0.8205;0.8205;0.1187;0.1187];

%demand (m^3)/hour

D=[60;60;60;60;60;60;60;60;100;100;100;100;100;100;100;100;75

;75;75;75;75;75;75;75];

P=[3.8969e-6; 2.1851e-5; 0.01117; 0.13102]; power= P(1)*(101)^3 +

P(2)*(101)^2 + P(3)*(101)+P(4);

%reservor data

UL=1000; LL=500; LVo=800;

for i=1:particles

for j = 1:dimension

if rand>=0.5

particle_position(i,j) = 1;

else

particle_position(i,j) = 0;

end

if rand>=0.5

prev_position(i,j) = 1;

else

prev_position(i,j) = 0;

end

pbest(i,j) = particle_position(i,j);

cost(i,j)=0;

end

end
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Appendix A MATLAB Programs (Binary voting strategy)

for i=1:particles

p_best_fitness(i)=100000;

end

for k=1:iteration

for i=1:particles

fitness(i)=0;

end

%compute solution and fitness with constraints

for i = 1:particles

% flag indicating violation of volume constraint

vol_flag=0;

j=1;

%vol is the volume of the reservoir starting value is the initial

%volume

vol=LVo;

while (vol_flag~=1)&&(j<=dimension)

%compute the cost of one set of 24 hour flow manangement or one

%particle

cost(i,j)=power*tariff(j)*particle_position(i,j);

fitness(i)=fitness(i)+cost(i,j);

%compute the reservoir volume and determing whether constaint

%is violated or not

vol=vol+101*particle_position(i,j)-D(j);

if (vol<LL)||(vol>UL)

vol_flag=1;

fitness(i)=10000;

end

j=j+1;

end

end

%p best

for i = 1:particles

if fitness (i) <= p_best_fitness(i)

p_best_fitness(i) = fitness(i);

for j = 1:dimension

p_best(i,j)= particle_position(i,j);

end

end

end
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Appendix A MATLAB Programs (Binary voting strategy)

%gbest

[g_best_val,g_best_index] = min(fitness);

for j = 1:dimension

g_best(j) = particle_position(g_best_index,j);

end

if g_best_val<best_val

best_val = g_best_val;

for j = 1:dimension

best_position (j) = particle_position(g_best_index,j);

end

end

% Determine the new paritcle position and velocity

for i = 1:particles

for j = 1:dimension

current_position(j) = particle_position(i,j);

storage_position(j) = particle_position(i,j);

position_indication = current_position(j)+prev_position(i,j)

+g_best(j)+p_best(i,j)-2.3+rand*(2*2.3);

if position_indication>=2

particle_position (i,j)=1;

else

particle_position (i,j)=0;

end

end

for j = 1:dimension

prev_position(i,j) = storage_position(j);

end

end

end
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APPENDIX B. MATLAB Programs (Flow-power function
formulation)

% This is the MATLAB code for the derivation of the pump flow rate and input

% power static model

% The values read off from the pump characteristic and power curves

Q=[20

60

100

140

180

220

260

];

H=[32.1

30.5

28.2

26.2

23.8

20.8

17.5

];

P=[44.5

45.3

47

49

51.5

54

55

];

%system curve, this is estimated value, normally it should be

% solved just like the HQ and PQ curve

s= [0.0004 0 6];

% estimate pump curve using quadratic equation
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h = polyfit(Q,H,2);

% estimate the power curve using quadratic equation

p = polyfit(Q,P,3);

%First step is to combine pump characteristic quadratic equation with the

%system quadratic equation, this cancels out H. Solve for N result in a

%function of N in term of Q.

E = solve(’a*Q^2 + b*N*Q+c*N^2 = g*Q^2+k’,’N’);

% Substitute the function of N in term of Q into the power quadratic

% equation and derive the function of P in terms of Q.

E2 = subs(’l*Q^3+d*N*Q^2+e*N^2*Q+f*N^3’, ’N’, E(1));

%Replace the constants a to h with actual values

P1=subs(E2, ’a’, h(1)); P2=subs(P1, ’b’, h(2)); P3=subs(P2, ’c’,

h(3)); P4=subs(P3, ’d’, p(2)); P5=subs(P4, ’e’, p(3)); P6=subs(P5,

’f’, p(4)); P7=subs(P6, ’g’, s(1)); P8=subs(P7, ’k’, s(3));

P9=subs(P8, ’l’, p(1));

%simplify the equation

P10=simplify(P9);

%Declare a function to substituting values in place of Q

Pt=@(Q) subs(P10, ’Q’, Q);

%Compute t number of values using the above function

t=0:5:250; PW2=Pt(t);

%Estimate the third order quadratic equation.

%The output pw is the desired model.

pw=polyfit(t, PW2,3)
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APPENDIX C. MATLAB Programs (Optimal capacity
selection)

%This is the MATLAB code for the optimal pump capacity selection model

%Algorithm initialization parameters

iteration=30000; particles = 50; dimension = 24; c1 = 2; c2 = 2;

g_best=10000000; best_val=10000000;

%tariff=[0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;0.1411;0.8205;

0.8205;0.8205;0.1411;0.1411];

%High demand TOU tariff

tariff=[0.118700000000000;0.118700000000000;0.118700000000000;

0.118700000000000;0.118700000000000;0.118700000000000;0.141100000000000;

0.820500000000000;0.820500000000000;0.820500000000000;0.141100000000000;

0.141100000000000;0.141100000000000;0.141100000000000;0.141100000000000;

0.141100000000000;0.141100000000000;0.141100000000000;0.820500000000000;

0.820500000000000;0.820500000000000;0.820500000000000;0.118700000000000;

0.118700000000000;];

%Low demand TOU tariff

%tariff=[0.104900000000000,0.104900000000000,0.104900000000000,

0.104900000000000,0.104900000000000,0.104900000000000,0.138300000000000,

0.262800000000000,0.262800000000000,0.262800000000000,0.138300000000000,

0.138300000000000,0.138300000000000,0.138300000000000,0.138300000000000,

0.138300000000000,0.138300000000000,0.138300000000000,0.262800000000000,

0.262800000000000,0.262800000000000,0.262800000000000,0.104900000000000,

0.104900000000000;];

%minmum and maximum pump selection range

AVD=70; MAXD=120;

%Minimum and maximum reservoir level

AVR=500; MAXR=1000; LL=500; UL=1000;

%Initial reservoir volume

LVo=500;

%demand (m^3)/hour

%D=[60;60;60;60;100;100;100;100;60;60;60;60];

D=[70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;70;
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70;70;70;];

%maximum demand cost

dc=0;

%system equation used to compute the input power of the pump

system=[0.00112946428571429,0.00228214285714281,3.99785714285715];

%efficiency

eff=0.8;

g_best=10000000; best_val=10000000;

% Inialization of the variables and velocity

for i=1:particles

for j = 1:dimension

%initialization of the binary variables the on/off schedule

if rand>=0.5

particle_position(i,j) = 1;

else

particle_position(i,j) = 0;

end

if rand>=0.5

prev_position(i,j) = 1;

else

prev_position(i,j) = 0;

end

p_best(i,j) = particle_position(i,j);

cost(i,j)=0;

pbest(i,(j)) = particle_position(i,(j));

exceed(i,j)=0;

end

%initialization of the continous variables the pump capacity

particle_position(i,dimension+1) = AVD+rand*(MAXD-AVD);

particle_velocity(i,dimension+1) = AVD-rand*(2*AVD);

prev_position(i,dimension+1) = AVD+rand*(MAXD-AVD)/1.5;

end

for i=1:particles

p_best_fitness(i)=10000000;

fitness(i)=0;

end

for k=1:iteration

for i=1:particles
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Appendix C MATLAB Programs (Optimal capacity selection)

fitness(i)=0;

end

%compute solution and fitness with constraints

for i = 1:particles

vol(i,1)=LVo;

for j=1:dimension

exceed(i,j)=0;

end

%Compute the power consumptio for a particular pump capacity

%using the hydraulic equation

head(i)=system(1)*(particle_position(i,(dimension+1)))^2

+ system(2)*(particle_position(i,(dimension+1)))+system(3);

power(i)=head(i)*(particle_position(i,(dimension+1)))/3600*9.81/eff;

for j = 1:dimension

%compute the cost of one set of 24 hour flow manangement

%for one particle

cost(i,j)=power(i)*tariff(j)*particle_position(i,j);

fitness(i)=fitness(i)+cost(i,j);

%compute the reservoir volume and determing whether constaint

%is violated or not

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

vol(i,(j+1))=vol(i,j)+particle_position(i,(dimension+1))*

particle_position(i,(j))-D(j);

if vol(i,(j+1))<LL

exceed(i,j)=0;

exceed(i,j)=LL-vol(i,(j+1));

fitness(i)=fitness(i)+1+0.05*exceed(i,j);

end

if vol(i,(j+1))>UL

exceed(i,j)=0;

exceed(i,j)=vol(i,(j+1))-UL;

fitness(i)=fitness(i)+0.8+0.05*exceed(i,j);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

MD=power(i)*dc;

fitness(i)=fitness(i)*30+MD;

fitness(i)=fitness(i)/30*365*15;

end

%determine p best
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Appendix C MATLAB Programs (Optimal capacity selection)

for i = 1:particles

if fitness (i) <= p_best_fitness(i)

p_best_fitness(i) = fitness(i);

for j = 1:(dimension+1)

p_best(i,j)= particle_position(i,j);

end

end

end

%determine gbest

[g_best_val,g_best_index] = min(fitness);

for j = 1:(dimension+1)

g_best(j) = particle_position(g_best_index,j);

end

if g_best_val<best_val

best_val = g_best_val;

for j = 1:(dimension+1)

best_position (j) = particle_position(g_best_index,j);

end

for j = 1:(dimension)

best_exceed(j) = exceed(g_best_index,j);

end

end

% Determine the new paritcle position and velocity

for i = 1:particles

for j = 1:dimension

current_position(j) = particle_position(i,j);

storage_position(j) = particle_position(i,j);

position_indication = current_position(j)+prev_position(i,j)

+g_best(j)+p_best(i,j)-2.444+rand*(2*2.444);

if position_indication>=2

particle_position (i,j)=1;

else

particle_position (i,j)=0;

end

end

for j = 1:dimension

prev_position(i,j) = storage_position(j);

end

current_position((dimension+1)) =

particle_position(i,(dimension+1));
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particle_velocity(i,(dimension+1)) =

((particle_velocity(i,(dimension+1))*(1-k/iteration)) +

c1*rand*(p_best(i,(dimension+1))-

current_position((dimension+1))) +

c2*rand*(g_best((dimension+1))-

current_position((dimension+1))))/1.8;

%particle_velocity(i,(dimension+1)) =

((particle_velocity(i,(dimension+1)))

+ c1*rand*(p_best(i,(dimension+1))-

current_position((dimension+1)))

+ c2*rand*(g_best((dimension+1))-

current_position((dimension+1))))/1.1;

if particle_velocity(i,(dimension+1))>(AVD/5)

particle_velocity(i,(dimension+1))=(AVD/5);

end

if particle_velocity(i,(dimension+1))<-(AVD/5)

particle_velocity(i,(dimension+1))=-(AVD/5);

end

particle_position (i,(dimension+1)) =

current_position((dimension+1))

+ particle_velocity(i,(dimension+1));

end

end
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%The code for optimal operation control under high demand TOU and MD tariff

%structure.

%Initial parameters

iteration=20000; particles = 50; dimension = 24; c1 = 2; c2 = 2;

%dc=demand_charge(l);

dc=60.5;

best_val=10000;

tariff=[0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;0.1411;0.8205

;0.8205;0.8205;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;

0.1411;0.8205;0.8205;0.8205;0.8205;0.1187;0.1187;0.1187;0.1187;

0.1187;0.1187;0.1187;0.1187;0.1411;0.8205;0.8205;0.8205;0.1411;

0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.8205;0.8205;

0.8205;0.8205;0.1187;0.1187];

g_best=10000;

%demand (m^3)/hour

D=[60;60;60;60;60;60;60;60;100;100;100;100;100;100;100;100;

75;75;75;75;75;75;75;75];

%model of the pump power vs flow relation.

P=[3.8969e-6; 2.1851e-5; 0.01117; 0.13102];

%reservor data

UL=1000;

LL=500;

LVo=800;

for i=1:particles

for j = 1:dimension

%random continuous position of a particle’s dimension 1-24

particle_position(i,j) = 54+rand*(101-54);

particle_velocity(i,j) = (-25)+rand*50;

prev_position(i,j) = 54+rand*(101-54);

%random binary position of a particle’s dimension 25-48

if rand>=0.5
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particle_position(i,(j+dimension)) = 1;

else

particle_position(i,(j+dimension)) = 0;

end

if rand>=0.5

prev_position(i,(j+dimension)) = 1;

else

prev_position(i,(j+dimension)) = 0;

end

pbest(i,j) = particle_position(i,j);

cost(i,j)=0;

pbest(i,(j+dimension)) = particle_position(i,(j+dimension));

exceed(i,j)=0;

end

end

for i=1:particles

p_best_fitness(i)=10000;

fitness(i)=0;

end

for k=1:iteration

for i=1:particles

fitness(i)=0;

end

%compute solution and fitness with constraints

for i = 1:particles

vol(i,1)=LVo;

for j=1:dimension

exceed(i,j)=0;

end

for j = 1:dimension

%Comupte the power for given flow rate

power(j)=(P(1)*(particle_position(i,j))^3 + P(2)*

(particle_position(i,j))^2 + P(3)*(particle_position(i,j))

+P(4))*particle_position(i,(j+dimension));

%compute the cost of one set of 12 hour flow manangement or one

%particle

cost(i,j)=power(j)*tariff(j)*30;

fitness(i)=fitness(i)+cost(i,j);

%compute the reservoir volume and determing whether constaint

%is violated or not

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

 
 
 



Appendix D MATLAB Programs (Optimal control model)

vol(i,(j+1))=vol(i,j)+particle_position(i,j)*

particle_position(i,(j+dimension))-D(j);

if vol(i,(j+1))<LL

exceed(i,j)=0;

exceed(i,j)=LL-vol(i,(j+1));

fitness(i)=fitness(i)+10+1*exceed(i,j);

end

if vol(i,(j+1))>UL

exceed(i,j)=0;

exceed(i,j)=vol(i,(j+1))-UL;

fitness(i)=fitness(i)+10+1*exceed(i,j);

end

end

MD=(max(power))*dc;

fitness(i)=fitness(i)+MD;

end

%p best

for i = 1:particles

if fitness (i) <= p_best_fitness(i)

p_best_fitness(i) = fitness(i);

for j = 1:(dimension*2)

p_best(i,j)= particle_position(i,j);

end

end

end

%gbest

[g_best_val,g_best_index] = min(fitness);

for j = 1:(dimension*2)

g_best(j) = particle_position(g_best_index,j);

end

if g_best_val<best_val

best_val = g_best_val;

for j = 1:(dimension*2)

best_position (j) = particle_position(g_best_index,j);

end

for j = 1:(dimension)

best_exceed(j) = exceed(g_best_index,j);

end

end

% Determine the new paritcle position and velocity

for i = 1:particles

for j = 1:dimension

current_position(j) = particle_position(i,j);

particle_velocity(i,j) = ((particle_velocity(i,j)*
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(1-k/iteration)) + c1*rand*(p_best(i,j)-current_position(j))

+ c2*rand*(g_best(j)-current_position(j)))/1.5;

if particle_velocity(i,j)>25

particle_velocity(i,j)=25;

end

if particle_velocity(i,j)<-25

particle_velocity(i,j)=-25;

end

particle_position (i,j) = current_position(j) +

particle_velocity(i,j);

if particle_position(i,j)>101

particle_position (i,j)=101;

end

if particle_position (i,j)<54

particle_position (i,j)=54;

end

end

for j = (dimension+1):dimension*2

current_position(j) = particle_position(i,j);

storage_position(j) = particle_position(i,j);

position_indication = current_position(j)+prev_position(i,j)

+g_best(j)+p_best(i,j)-2.444+rand*(2*2.444);

if position_indication>=2

particle_position (i,j)=1;

else

particle_position (i,j)=0;

end

end

for j = (dimension+1):dimension*2

prev_position(i,j) = storage_position(j);

end

end

end
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%The algorithm for the MPC simulation. The control horizon is 24 hours.

%control horizon

Horizon = 24;

TOU=[0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;0.1411;0.8205;0.8205;

0.8205;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.1411;0.8205;

0.8205;0.8205;0.8205;0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;0.1187;

0.1187;0.1411;0.8205;0.8205;0.8205;0.1411;0.1411;0.1411;0.1411;0.1411;

0.1411;0.1411;0.1411;0.8205;0.8205;0.8205;0.8205;0.1187;0.1187];

%demand (m^3)/hour

Demand=[55;55;55;55;55;55;55;55;90;90;90;90;90;90;90;90;70;70;70;

70;70;70;70;70;55;55;55;55;55;55;55;55;90;90;90;90;90;90;90;90;70;

70;70;70;70;70;70;70];

%reservoir parameters

UL=900; LL=500; LVo=500; iteration=50000; particles = 50;

%maximum demand cost

dc=100; tic

%update the current reservoir volume

for day=1:7

dddd=day

if day==1

reservoir(day,1)=LVo;

else

reservoir(day,1)=reservoir((day-1),25);

end

for period=1:24

pppp=period

% sample the current reservoir volume

for i = 1:particles

vol(i,1)=reservoir(day,period);

end
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%for k=1:24

%best_val(k)=10000;

%end

dimension = Horizon;

c1 = 2.2;

c2 = 2.2;

% adjust the order of the tariff and demand in accordance to the

% control horizon

tariff=TOU(period:(period+Horizon));

D=Demand(period:(period+Horizon));

best_val=10000;

g_best=10000;

%model of the pump power vs flow relation.

P=[3.8969e-6; 2.1851e-5; 0.01117; 0.13102];

%model initialization

for i=1:particles

for j = 1:dimension

particle_position(i,j) = 54+rand*(101-54);

particle_velocity(i,j) = (-25)+rand*50;

prev_position(i,j) = 54+rand*(101-54);

%random binary position of a particle’s dimension 13-24

if rand>=0.5

particle_position(i,(j+dimension)) = 1;

else

particle_position(i,(j+dimension)) = 0;

end

if rand>=0.5

prev_position(i,(j+dimension)) = 1;

else

prev_position(i,(j+dimension)) = 0;

end

pbest(i,j) = particle_position(i,j);

cost(i,j)=0;

pbest(i,(j+dimension)) = particle_position(i,(j+dimension));

exceed(i,j)=0;

end

end

for i=1:particles

p_best_fitness(i)=10000;

fitness(i)=0;
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end

for k=1:iteration

for i=1:particles

fitness(i)=0;

end

%compute fitness and constraints satisfaction

for i = 1:particles

for j=1:dimension

exceed(i,j)=0;

end

for j = 1:dimension

%Comupte the power for given flow rate

power(j)=(P(1)*(particle_position(i,j))^3 + P(2)*

(particle_position(i,j))^2 + P(3)*(particle_position(i,j))

+P(4))*particle_position(i,(j+dimension));

%compute the cost of one set of 12 hour flow manangement or one

%particle

cost(i,j)=power(j)*tariff(j)*30;

fitness(i)=fitness(i)+cost(i,j);

%compute the reservoir volume and determing whether constaint

%is violated or not

vol(i,(j+1))=vol(i,j)+particle_position(i,j)*

particle_position(i,(j+dimension))-D(j);

if vol(i,(j+1))<LL

exceed(i,j)=0;

exceed(i,j)=LL-vol(i,(j+1));

fitness(i)=fitness(i)+10+1*exceed(i,j);

end

if vol(i,(j+1))>UL

exceed(i,j)=0;

exceed(i,j)=vol(i,(j+1))-UL;

fitness(i)=fitness(i)+10+1*exceed(i,j);

end

end

%add maximum demand cost

MD=(max(power))*dc;

fitness(i)=fitness(i)+MD;

end

%calculate the p best

for i = 1:particles

if fitness (i) <= p_best_fitness(i)

p_best_fitness(i) = fitness(i);

for j = 1:(dimension*2)
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p_best(i,j)= particle_position(i,j);

end

end

end

%calculate gbest

[g_best_val,g_best_index] = min(fitness);

for j = 1:(dimension*2)

g_best(j) = particle_position(g_best_index,j);

end

if g_best_val<best_val

best_val = g_best_val;

for j = 1:(dimension*2)

best_position (j) = particle_position(g_best_index,j);

end

for j = 1:(dimension)

best_exceed(j) = exceed(g_best_index,j);

end

end

% Determine the new paritcle position and velocity

for i = 1:particles

for j = 1:dimension

current_position(j) = particle_position(i,j);

particle_velocity(i,j) = ((particle_velocity(i,j)*

(1-k/iteration)) + c1*rand*(p_best(i,j)-current_position(j))

+ c2*rand*(g_best(j)-current_position(j)))/1.5;

if particle_velocity(i,j)>25

particle_velocity(i,j)=25;

end

if particle_velocity(i,j)<-25

particle_velocity(i,j)=-25;

end

particle_position (i,j) = current_position(j) +

particle_velocity(i,j);

if particle_position(i,j)>101

particle_position (i,j)=101;

end

if particle_position (i,j)<54

particle_position (i,j)=54;

end

end

for j = (dimension+1):dimension*2

current_position(j) = particle_position(i,j);
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storage_position(j) = particle_position(i,j);

position_indication = current_position(j)+

prev_position(i,j)+g_best(j)+p_best(i,j)-2.444+rand*(2*2.444);

if position_indication>=2

particle_position (i,j)=1;

else

particle_position (i,j)=0;

end

end

for j = (dimension+1):dimension*2

prev_position(i,j) = storage_position(j);

end

end

end

toc

t=toc

% output the first control sequence of the 24 hour strategy as the

% actual MPC strategy.

MPC_ouput(day, period)= best_position (1);

MPC_ouput(day, period+24)=best_position(dimension+1);

% update the reservoir volume

reservoir(day, period+1)=reservoir(day, period)-Demand(period)+

(MPC_ouput(day, period)*MPC_ouput(day, period+24));

end

%output=rot90(MPC_ouput,3);

end
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