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CHAPTER ONE 

INTRODUCTION 

1.1 INTRODUCTION 

The market of wireless communications is continuously experiencing rapid growth. Companies have 

already spent an enormous amount of money on third generation mobile licences. The leap of faith 

by such companies indicate a belief that there is considerable growth potential in the mobile commu­

nications sector. 

The proposed third generation systems must deliver high speed data and voice services, while re­

maining compatible with second generation systems. Furthermore, new techniques of modulation, 

coding, equalization, multipath combining, multiuser detection, antenna and spatial diversity, and 

other mobile radio techniques are required to broaden the variety of existing services. There were 

several proposals for the new third generation cellular standard, of which the Wide band Code Di­

vision Multiple Access (W-CDMA) systems were taken the most seriously. The reason for this, is 

that W-CDMA offers increased flexibility when compared with the Time Division Multiple Access 

(TDMA) schemes that are predominant in current second generation cellular systems. 

These recent developments in the cellular telecommunications market stimulated much research on 

how to increase system capacity in COMA systems. One way in which the system capacity can be 

increased within a CDMA system is by minimizing the interference caused by other users. This type 

of interference, called Multiple Access Interference (MAl), can be limited by utilizing different mul­

tiuser detection techniques. In addition, frequency selectivity in the channel introduces another type 

of interference called, Inter Symbol Interference (lSI). 

The field of MAl cancellation, which is collectively called multiuser Detection (MUD) [1], is rather 
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CHAPTER 1: Introduction 2 

broad. The optimum multiuser detector derived by Verdu [2] attains single-user performance when 

the following is known: 

1. The signature waveform of the desired user. 

2. The signature waveform of the interfering user. 

3. The timing of the desired user. 

4. The timing of each of the interfering users. 

5. The channel impulse responses of the desired user. 

6. The channel impulse responses of the interfering users. 

The optimum multiuser detector uses the maximum likelihood Viterbi Algorithm (VA) to do Maxi­

mum Likelihood Sequence Estimation (MLSE). There are distinct disadvantages when it comes to 

practical implementation of the optimum multiuser detector. Even for a small number of users, the 

computational complexity is enormous. A suboptimum approach is consequently needed. 

Among the several different MUD methods there exists a class of suboptimum multiuser detectors 

which have an adaptive equalizer type structure (either linear or non-linear). The equalizer type de­

tectors need to adapt to time varying radio channels, and use different criteria to do so. The most 

common of these are the decorrelating or zero forcing (ZF) and mean square error (MSE) criteria. 

The decorrelating or ZF criterion can be considered an asymptotic form of the MSE criterion. To 

initially adapt to the impulse response of the channel, training sequences are used. This means that 

only the desired user signature (1.), timing (3.) and impulse response (5.) in the above list needs to 

be known. When using training sequences, the channel impulse response can be estimated. Known 

training symbols are transmitted until accurate decisions can be made. After the training phase, the 

symbol decisions can be used to adjust the equalizer coefficients. 

In [3], Honig proposed the use of a blind algorithm, based on the Minimum Output Energy (MOE) 

criterion, which eliminated the need for training sequences. There also exists a variety of other blind 

adaptation algorithms which is readily used for channel equalization, of which the Constant Modulus 

Algorithm (CMA) is the most widely used blind algorithm [4]. This dissertation will investigate the 

application of the Constant Modulus (CM) criterion to implement a blind equalizer multiuser detec­

tor. In this way, effective MAl cancellation can be achieved without the use of training sequences. 

This method will be implementable in CDMA systems that use constant modulus complex spreading 

sequences. An example of such sequences are the root of unity (RU) filtered generalized chirp like 

(GCL) sequences. [5,6] Surprisingly, it has been shown that the constant modulus algorithm can also 
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CHAPTER I: Introduction 3 

he applied to non-constant envelope signals [41. Applying the CMA to COMA multiuser detection 

po"e ...... ome new problems. To keep the CMA detector from capturing one of the interfering signals, 

a linear constraint must be imposed on the CMA cost criterion. The modified constant modulus cri­

tenon is termed the linearly constrained constant modulus algorithm (LCCMA). 

In this dissertation the suitability of the LCCMA is investigated for the purpose of blind COMA 

multiuser detection. The shortcomings of the LCCMA are identified. and improvements will be 

proposed. 

1.1.1 GENERAL PROBLEM DEFINITION 

The problem addressed in this dissertation can be defined as the investigation of the constant modulus 

criterion within the framework of multiuser detection in a linear decision directed (DO) equalizer 

... tructure. to achieve effective MAl cancellation in the uplink (asynchronous) and downlink (synchro­

nous) of Direct Sequence (OS) COMA systems. 

Concerning system evaluation. the COMA multiuser system must be evaluated within semi-static and 

mobile channel conditions by means of computer simulation. This is to be done by means of Bit Error 

Rate mER) comparative testing as a function of bit energy to noise spectral density ratio Eb/.VO. In 

this way. the performance of the constant modulus technique can be compared with the matched filter 

detection bound (which will be explained later), as well as the multiuser channel single detection 

case. Furthermore. comparison with the standard Minimum Mean Square Error (MMSE) multiuser 

detection scheme will give a comparative measure of performance. 

In summarizing. the dissertation objectives are 

- The investigation of the constant modulus technique for effective MUD. 

- The comparative C++ software simulation of the applicable constant modulus techniques in a 

single path static and a multipath mobile channel. 

- Convergence performance by plotting signal to interference ratios versus time for different 

types of channels. 

- BER performance evaluation of chosen techniques compared with the single user and MMSE 

multiuser detection cases in theory and software simulation. 

- Investigation of other performance criteria such as asymptotic multiuser efficiency. signal to 

interference ratio, etc. 
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CHAPTER 1: Introduction 

1.2 AN OVERVIEW OF CODE DIVISION MULTIPLE ACCESS 

(CDMA) 

4 

There are three CDMA categories that can be distinguished. These are direct sequencing (DS), time 

hopping (TH) and frequency hopping (FH). The FH and TH categories are generalizations of the 

FDMA (Frequency Division Multiple Access) and TDMA techniques respectively, in which the assi­

gnment of frequency bands and time slots are changed according to certain hop patterns. We will be 

mainly concerned with the DS category, which is based on spread spectrum principles. 

The DS-CDMA system is a multiple access system in which many users are simultaneously multi­

plexed on the same frequency band by means of quasi-orthogonal codes. The data from each user is 

modulated by a technique called direct sequence spread spectrum (DSSS) modulation. In this method 

the modulated signal is generated by mixing a high frequency (chip rate) code sequence with the data 

at a much lower data rate. Some of the advantages of DS-CDMA, is the manner in which it can 

effectively reuse the available frequency resources and the efficient multiple access system capacity. 

Furthermore, the spread spectrum modulation scheme has an inherent immunity against mUlti-path 

mobile channels. This makes it ideal for cellular wireless mobile and semi-static channels. 

By a proper choice of spreading codes, the cross correlation between the different users in a CDMA 

system can be minimized, thus decreasing the interference between different users. The residual in­

terference can then be removed by means of multiple access interference cancellation techniques. 

The basic DS-CDMA principle is based on conditions such as an additive white Gaussian noise 

(AWGN) channel with perfect power control. Acceptable power control is difficult to achieve in a 

time variant mobile fading channel. Imperfect power control causes the situation where the signal 

of a strong mobile completely overpowers weaker mobile signals. This situation is called the near­

far effect, and is very detrimental to system capacity. It is thus important that multiuser detection 

techniques should be near-far resistant for mobile channels. 

1.3 THE CDMA DATA DETECTION HIERARCHY 

In order to form a proper heuristic view of all existing data detection principles, the references of Klein 

[1] along with Woodward and Vucetic [7] are of great value. The references [8] and [9] are successful 

in presenting a less detailed overall view of the CDMA multiuser detection problem. Because of the 

unified manner in which the set of multiuser detection algorithms are presented in [1], the hierarchical 

structure adopted in this reference will, with minor modifications, be presented in this section. Using 

this section, it is possible to see where the CM MUD method fits within the global CDMA data 
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CHAPTER 1: Introduction 5 

detection hierarchy. 

1.3.1 SINGLE USER DETECTION 

The traditional signal separation by means of matched filters (MFs) is termed single detection in [1]. 

We will use the term single user detection (SUD) as to avoid confusion with the term sequence de­

tection (SO). The SUD method assumes perfect power control of all users. The SUD method is 

suboptimal in that it treats all interference (both known and unknown) as noise. We know that this is 

not the case with COMA in a mobile channel, as both MAl and inter-symbol interference (lSI) are 

not noise like. MAl is caused by cross correlation terms between the different users' spreading codes, 

while lSI is caused by the interference of several unequally delayed incident waves due to scatterers 

surrounding the receiver. There is a strong connection between MAl and lSI, and is explained in the 

reference [2]. 

The SUD method is in a practical sense not near-far resistant, as it assumes perfect power control. As 

mentioned earlier, this is very difficult to achieve in a time variant mobile fading channel. 

1.3.2 MULTIUSER DETECTION 

The poor system capacity in traditional matched filter signal separation (SUD), is the result of cross­

correlation between user codes in synchronous systems, and the loss of orthogonality due to phase 

offsets in asynchronous systems. Recent advances in multiuser theory shows that the high MAl in­

herent in COMA systems is not necessarily a shortcoming of the COMA multiple access scheme. It 

is possible to use some or all of the code and channel information to cancel out MAL This method of 

detection, of which many variants have already been proposed, is collectively called multiuser detec­

tion (MUD). We can subdivide MUD into two categories which are called interference cancellation 

(IC) and joint detection (JD). The hierarchical structure for data detection principles in COMA is 

depicted in Figure 1.1. 

INTERFERENCE CANCELLATION (IC) 

The idea of IC is closely related to decision feedback (OF) and is 

• to detect part of the transmitted data symbols, 

• to reconstruct the contribution of these transmitted data to the compound received signal and 

• to subtract the contribution from the compound received signal. 

This means that there remains a component of MAl that is still treated as noise, thus making the joint 

detection principle suboptimum. There are currently two methods of interference cancellation. The 

methods of 
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CHAPTER I: Introduction 6 

• successive or seri al IC and 

• parallel IC 

can be distinguished. 

Successive IC sorts users from the strongest to the weakest signal and then detects the data symbol 

of the strongest user to cancel its influence. With the contribution of the strongest user cancelled out, 

the method then cancels the influence of the second strongest user. This is repeated until all of the 

users' influence is cancelled out. This method is ideally suited for the case of users with varying 

signal strengths [1 , 9], i.e. the near-far effect. It is related to the decision feedback algorithm and 

is non-linear. Standard Parallel IC on the other hand, detects the contributions of all the users' data 

simultaneously at the output of each single user detector. The influence of all of the users, except 

the user in question , is cancelled from the received signal. In general, the para ll el IC method has a 

higher potential of performance enhancement than successive IC, since the contri butions of all the 

users are cancelled, and not only those which have stronger signal power. The para lle l IC method can 

be repeatedly performed, leading to a multistage canceller defaul t. 

Data Detection lor COMA 

Single Use r Detec tion (SU D) 

Multi-use r Detec tion (M UD) 

Illlerrercncc Cancel.lation (IC) 
Suboptimum 

Joint Dcteet ion (J D) 

Successive 
(Multi-stage) 

Parallel 
(Single or Multi-stage) 

Optimlllll 
(ML Sequence Estimat ion) 

Subopt illlll l1l 
(Linear or Non-line;n., 

Figure 1.1: Data detection hierarchy structure for CDMA 
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CHAPTER 1: Introduction 7 

1.3.2.1 JOINT DETECTION (JD) 

The joint detection idea is based on the idea that the data symbols of all the users are detected jointly, 

using all the a priori knowledge about the MAl. We can divide joint detection into two groups. These 

are optimum and suboptimum detection. Both the optimum and suboptimum joint detection algo­

rithms have a greater potential to enhance system capacity than IC methods. 

1.3.2.1.1 Optimum Maximum Likelihood (ML) JD 

The optimum detector for the multiuser COMA system was first demonstrated by Verdu [2]. It was 

shown that the output of a bank of matched filters (MF), i.e. SUD, contains sufficient statistics to 

achieve optimum detection. This can be done by a Viterbi algorithm for maximum likelihood se­

quence estimation (MLSE). The practical application of this approach is limited by two main factors. 

The first is that the number of states required by the Viterbi algorithm is exponentially complex in the 

number of active users. For many users, the problem becomes intractable. Secondly, the MF filter 

bank is formulated in an A WGN channel. In a practical time varying mobile channel with lSI, the 

MF bank will have to be synthesized with knowledge of the activity, time and phase synchronization, 

spreading sequence, power, and channel conditions for each user. Much of this information is also 

required by the Viterbi algorithm. 

There are numerous simplified algorithms that can replace the Viterbi algorithm, as proposed in [10-

12] 

1.3.2.1.2 Suboptimum (Linear and Non-linear) JD 

This family of 10 can be classified as being adaptive linear (Decision Directed - OF) or non-linear 

(decision feedback - OF) [1,7,9]. The linear type 10 receivers perform a linear transformation on 

the output of the MF bank. The non-linear type receiver, has a forward filter operating directly on the 

received signal samples, and a backward (feedback) filter operating successively on a non-linear deci­

sion to cancel out interference. There are two minimization operations that can be implemented with 

both linear and non-linear 10 techniques. These are the decorrelating or Zero-Forcing (ZF) and Mini­

mum Mean Square Error(MMSE) methods. These combinations give us a group of four suboptimum 

10 receiver types which are near-far resistant. As mentioned earlier, the ZF and MMSE multiuser 

detectors have the disadvantage of needing to be trained either at the beginning of reception, or at re­

gular intervals between blocks of data. Honig [3] was the first person to suggest blind suboptimum 10. 

Blind Methods 
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CHAPTER 1: Introduction 8 

Li [13 J, gives a summary of recent work on blind MUD. Honig [3] first proposed blind MUD using 

the minimum output energy criterion. Recently, some other methods for joint MUD and blind equa­

lization were presented [13-23]. 

The first kind is subspace-based methods [14-16]. These methods usually require Singular Value 

Decomposition (SVD) or Eigenvalue Decomposition (EVD) of some data correlation matrix. These 

computations are complex and not very practical to implement. Another drawback of the subspace 

type methods, is that accurate rank determination is difficult in a noisy environment. 

The second kind of blind MUD methods is constrained optimization [3,17,18], which result in compu­

tationally efficient adaptive algorithms. The methods in [3] and [18], are based on the MOE criterion, 

where as the CMA MUD is based on the constant modulus criterion. The major drawback of the 

MOE methods, is that there exists a saturation effect in the steady state, which causes a significant 

performance gap between the blind MOE detector and the true MMSE detector [3, 16]. Furthermore, 

the performance of the MOE method critically depends on the nonzero magnitude of the selected tap 

of the channel response. Some improvements are proposed in [18] to find better constraints. Lee [13] 

mentions the possible use of the eM or Godard cost function as a constraint. A general equalization 

method for Multiple Input Multiple Output (MIMO) channels using the Godard or CM cost function 

is proposed in [19]. The CMA MUD methods in this dissertation will be based on the recent work 

done in [19-23]. 

The third kind of blind MUD detection methods is based on linear prediction methods [24], or linear 

prediction like methods [25]. The main idea of the linear prediction approach is to use the null 

subspace of the desired user's spreading code matrix to estimate the channel and then to estimate the 

detector. One possible drawback of the linear prediction method, is that the channel estimation may 

suffer from system noise and computation errors [13], which will deteriorate the symbol detection. 

In [26], it is shown that a direct blind equalizer can be obtained by using linear prediction to estimate 

the column vector subspace of the channel without estimating the channel itself. Instead of two stages 

of linear prediction in [26], only one stage is required for CDMA [13]. 

1.4 APPLYING THE CONSTANT MODULUS CRITERION TO 

MUD 

The most studied and implemented adaptation algorithm of the 1990s is the CMA [4]. The CMA is a 

special case of the Goddard algorithm [27,28]. The CMA seeks to minimize a cost defined by the CM 

criterion. This criterion penalizes deviations in the modulus (magnitude) of the equalized signal away 

from a fixed value. A major advantage of the CMA is that it is a blind algorithm, and does not need 
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CHAPTER 1; Introduction 9 

a known training sequence to be transmitted. It is obvious that the inclusion of such a training signal 

sacrifices valuable channel resources. The CMA is a stochastic gradient algorithm [27], which applies 

a memoryless non-linearity at the output of the linear FIR equalizer in order to generate the desired 

response with each iteration. The nature of the non-linearity in the CMA will be discussed later in 

the dissertation. The CM and MSE criteria have several similarities with regard to their cost surfaces. 

The cost surface is a multi-dimensional surface of the MSE or CM cost versus the equalizer coeffi­

cients. Under AWGN conditions, MSE and CM cost functions also have exactly the same minima [4]. 

The CMA was widely implemented in a Single Input Single Output (SISO) channel for adaptive 

equalization. The COMA channel is a MIMO channel, as several users share the same bandwidth. 

Tugnait [19] proposed the use of the Goddard cost function in a MIMO channel. In this way the CMA 

can be generalized to the MIMO case, and can specifically be applied to MUD in COMA systems. The 

use of a linear constraint, utilizing information about the desired user signature vector, can prevent the 

detector from locking on to interfering user signals. After this, several authors proposed the use, and 

evaluated the use of the linearly constrained constant modulus detector. These issues are discussed 

in detail in Chapter 5. A notable advantage of the linearly constrained constant modulus (LCCM) 

detector is the fact that it requires no more information than the SUD. It only requires knowledge 

of the timing and the signature waveform of the desired user. In this dissertation, variants of the 

LCCM detector i.e. the LCCM and the linearly constrained differential constant modulus (LCOCM) 

detectors will be thoroughly studied and evaluated. 

1.5 CONTRIBUTIONS OF THIS DISSERTATION 

This dissertation focuses on the application of the constant modulus algorithm to the multiuser de­

tection problem within the context of adaptive linear detector structures. Two different forms of the 

constant modulus multiuser detector are analyzed, evaluated and compared with each other and the 

MMSE detector. The main unique contributions of this dissertation can be itemized as follows: 

• Existing signal, channel and detector models are expanded to encompass the complex valued 

multipath OS-COMA channels. 

• For the first time, a global convexity condition is extensively derived for the LCCM detector 

cost function. 

• Simulation results for different channel types are generated and discussed. These channel types 

range from the additive white Gaussian noise (AWGN) channel to multipath fading channels. 

• The application of the variants of the LCCM detector to non-linear multipath fading channels 

are thoroughly investigated. The issues and limitations with respect to non-linear channels are 
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CHAPTER 1: Introduction 10 

discussed, analyzed and evaluated. 

The following research outputs were generated during the completion of this dissertation: 

1. Submission of a paper to IEEE Transactions on Communications, June 2002 [29]. 

2. International Conference presentation at IEEE Africon October 2002. George. South Africa 

[30]. 

3. Submission of an abstract for a paper in a special issue of the Transactions of the SAIEE. 

The following conclusions are presented as determined by analysis and simulation: 

• The blind adaptive LCCM detector suffers from ill-convergence under the condition that the 

desired user amplitude falls below a certain level. This is due to the LCCM cost function 

exhibiting undesired minima under this condition. 

• The blind adaptive LCDCM detector converges independent of desired user amplitude. The 

LCDCM cost function exhibits a global minimum in an AWGN channel. 

• Tap weight vector convergence of both LCCM and LCDCM detectors approach the mean tap 

weight vector of the MMSE detector in an A WGN channel. but nol in a mullipath fading chan­

nel. 

• Under normal operation. the MMSE detector can combine static multipaths, while the LCCM 

and LCDCM detectors attempt to cancel it out. 

• If inverse channel plus noise estimation can be used within the linear constraint, the LCCM 

and LCDCM detectors can effectively combine the multiple paths. providing that the multipath 

channel plus noise inverse can be accurately modelJed within the length of the detector. 

• BER and SIR simulation measurements show that the blind LCCM and LCDCM detectors 

exhibit similar performance to that of the non-blind MMSE detector in an AWGN channel. III 

convergence of the LCCM detector is demonstrated if the desired user amplitude falls below a 

certain level as calculated analytically. 

• BER simulation measurements show effective operation of the LCCM and LCDCM detectors 

in a minimum phase non jading mUltipath channel. 

• In a multipath fading channel, the resulting channel may at times be ill-behaved. This means 

that the inverse channel plus noise may not accurately modelled by a linear filter. Consequently, 

the linear MMSE, LCCM and LCDCM detectors are at times unable to equalize the channel, 

and the eye closes. 
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CHAPTER 1: Introduction 11 

1.6 OUTLINE OF DISSERTATION CHAPTERS 

This chapter gives a qualitative introduction to the COMA environment and a heuristic view of the 

multiuser detection problem. Application of the CMA to multiuser detection is briefly visited, and a 

general problem definition is stated. Chapter 2 introduces the reader to the COMA signal and channel 

models that will be extensively used within the dissertation. Chapter 3 makes the reader intuitively 

aware of the issues regarding the multiuser detection problem. Two user graphical examples are 

used to assist in this process. Several criteria are given whereby multiuser detectors may be evalua­

ted. Chapter 4 starts with a generalized discussion on all linear multiuser detection techniques. The 

MMSE detector model is presented in detail, supported by a rigorous theoretical performance eva­

luation. Chapter 5 treats the linearly constrained constant modulus detector and an improved variant, 

the linearly constrained differential constant modulus detector. The cost criteria of these detectors 

are analytically analyzed and scrutinized. The advantages and disadvantages of both detectors are 

discussed. In Chapter 6, simulation results are presented. These results, along with the theoretical 

results obtained in Chapters 4 and 5 are comparatively discussed. Conclusions are drawn. and areas 

for further possible study and investigation are also proposed. The dissertation outline is depicted in 

Figure 1.2. 

Center for Radio and Digital Communication (CROC) 
Department of Electrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER I: Introduction 

CHAPTER! 
Introduction and Dissertation 

Outline 

• 
CHAPTER 2 

CDMA Signal and 
Channel Model 

Linear Multiuser 
Detection 

CHAPTER 4 

I Optimum Linear Detector - f--. CHAPTER 6 
MMSE Detector Simulation 

CHAPTER 3 Results 
Matched Filter 

Detector 

I 
CHAPTER 5 

Blind Constant Modulus - f---. 
Detectors 

12 

CHAPTER 7 
Summary 

and 

----> Conclusions 

Figure 1.2: Graphical representation of the structure and outline of the dissertation. 
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CHAPTER TWO 

SYNCHRONOUS AND ASYNCHRONOUS CDMA 
MODELS 

This chapter contains the mathematical signal and channel models that are to be used to analyze 

multiuser detection methods. We will limit ourselves to the baseband case for simplicity. The ana­

lysis contained here is largely based on the approach followed by Verdu in [31] and Rappaport in [32]. 

2.1 THE CDMA SIGNAL MODEL 

Consider a CDMA channel that is shared by K simultaneous users. Each user is assigned a signature 

waveform. For user k, the waveform is denoted by 

N-l 

Sk (t) = L adn)p(t - nTc) , 0:; t:; T (2.1 ) 
n=O 

where {ak(n), 0 :::; n :::; N - I} is a pseudo-noise sequence, consisting of N chips that take the values 

{± I} and p( t) is a pulse of duration Tc' where Tc is a chip interval. Without loss of generality, we 

assume that all K signature waveforms have unit energy, i.e. 

(2.2) 

The cross correlations (or inner products) between pairs of signature waveforms play an important 

role in the metrics for the signal detector and on its performance. We define the cross correlations 

between two arbitrary signature waveforms for the synchronous case. 

Pkj = (Sk, Sj) = loT sdt)sj(t)dt 

Note that by the Cauchy-Schwartz inequality and (2.2) we have 

13 
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CHAPTER 2: Synchronous and Asynchronous CDMA Models 14 

(2.4) 

Let us also define the cross correlation matrix, 

R == {Pkj} (2.5) 

which has diagonal elements equal to one and is symmetric nonnegative definite. because for any 

K -vector c = (C1, ... , C K ) T we have 

K 2 

cTRc = L CkSk :2: O. (2.6) 
k=l 

Therefore the cross correlation matrix R is positive definite if and only if the signature waveforms 

{.'II, ... ,8 K } are linearly independent. 

Concerning the asynchronous case. Figure 2.1 shows a schematic representation of the cross correla­

tion between two synchronous users. 

• Sk • 
: P'k (T): . J . Pkj (1:) 

Sj S. 
J • • • 

~ r. >. 
:< T ): 

t = 0 

Figure 2.1: Schematic representation of the cross correlation between two synchronous users 

As can be seen in Figure 2.1, we must define two cross correlations between every pair of signature 

waveforms that depends on T, the offset between the two signatures. If k < j, we write the cross 

correlations as 

Pjk(T) = 11' Sk(t)Sj(t + T - T)dt 

where t E [0, Tj, and T denoted the signature waveform length in seconds. 
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CHAPTER 2: Synchronous and Asynchronous COMA Models 15 

2.2 DISCRETE-TIME SYNCHRONOUS MODELS 

Multiuser detectors commonly have a front end which has the task of obtaining a discrete time process 

from a received continuous waveform y( t). Generally, continuous to discrete conversion can be 

done by correlating y( t) with deterministic signals. In communication theory, there are two types 

of deterministic signals of interest. These are matched signature waveforms (matched filters) and 

orthonormal signals. 

The basic K -user COMA model, consisting of the sum of antipodally modulated synchronous signa­

ture waveforms embedded in AWGN is given by 

K 

y(t) = L AkbkSk(t) + an(t), t E [O,T] (2.9) 

k=1 

where Ak is the received signal amplitude of the kth user, bk E {± 1} is the bit transmitted by the 

kth user, Sk(t) is the deterministic signature waveform of user k, n(t) is the white Gaussian noise 

component with unit power spectral density, and a the noise variance. 

2.2.1 MATCHED FILTER OUTPUTS 

Using equations (2.3) and (2.9), we can express the matched filter output of the kth user as 

where 

Yk = Akbk + L Ajbjpjk + nk 
j:j.k 

nk = a loT n(t)sk(t)dt 

(2.10) 

(2.11 ) 

is a Gaussian random variable with zero mean and variance equal to 0-
2

, since by (2.2), Sk(t) has unit 

energy. We refer to nk as the noise component of user k. 

If we express (2.10) in vector matrix notation, we obtain 

y = RAb+n (2.12) 

where R is the normalized cross correlation matrix, y = [YI,"" Y K V, b = [b l , ... , b K V and 

A = diag{ AI, ... , AK }T. The vector n is a zero mean Gaussian random vector with a covariance 

matrix equal to 

(2.13) 

It will later be shown that no information relevant to demodulation is lost by the bank of matched 

filters. This means that y(t) can be replaced with y without loss of optimality. 
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CHAPTER 2: Synchronous and Asynchronous COMA Models 16 

Ie )dt 
YI 

~ 

0 Sync 1 

!e )dt 
Y2 

~ 

yet) 0 
Sync 2 y 

s2 *(t) 

C71 Ie ) dt It----"s~ K 

h 
~ 

SK*(t) 

Figure 2.2: Block diagram illustration of the complex matched filter receiver 

The unnormalized cross correlation matrix whose (j, k) elements is given by (Ajs j , Aksk), is written 

as 

H=ARA (2.14) 

When the receiver front end consists of a bank of matched filters, we have seen that we can replace 

the model in (2.9) with the linear Gaussian vector matrix model in (2.12). The same model can be 

generalized to encompass complex numbers. The only difference is that the output of the matched 

filter is given by 

Yk = (y, sk) = loT y{t)s;.(t)dt (2.15) 

where * denotes the complex conjugate. This means that the cross correlation values are given by 

Pkj = loT sk(t)sj{t)dt 

yielding the same model as in (2.l2) encompassing complex values, 

y = RAb+n 
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where the correlation matrix R is in Hermitian form. A is a complex diagonal matrix and n is a com­

plex valued Gaussian vector with independent real and imaginary components and with a covariance 

matrix equal to 2a2R. 

In the complex valued asynchronous case, the cross correlation values are given by 

(2.18) 

and 

(2.19) 

2.2.2 WHITENED MATCHED FILTER MODEL 

Notice that the noise between users is correlated in the standard discrete time synchronous model. 

This causes difficulty in the evaluation of performance of the various multiuser detection techniques. 

We can correct this with the use of a whitening filter as described below. 

Proposition 2.1 (Cholesky Factorization) For every positive definite Hermitian matrix R, there exists 

a unique lower triangular matrix F (i.e. Fik = Ofor i < k) with positive diagonal elements such that 

where FH denotes the Hermitian (complex conjugate) transpose of F. 

For brevity we shall denote the inverse of a Hermitian transpose of a matrix by 

(2.20) 

If the matched filter outputs y are processed by the matrix F- H , called a whitening filter, we obtain 

the whitened matched filter model 

Y F-Hy 

F-HFHFAb + F- H n (2.21 ) 

FAb + Ii 

where ilk contains contributions for users 1 ... k, but not from users k + 1 ... K. The covariance 

matrix of fi. is 

2a2F-H RF- 1 

2a2F-HF HFF- 1 

= 2a2J 

(2.22) 

where J is the identity matrix. As the name suggests, the whitened matched filter causes the noise 

components to be independent as in (2.22). 
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2.2.3 ORTHONORMAL PROJECTIONS 

In the previous two models, the dimensionality of the vectors in (2.12) and (2.17) is equal to the 

number of users. In some situations (such as when the signature waveforms of some interferers are 

unknown) other models (with possibly different dimensionality) are useful. A receiver utilizing or­

thonormal projections is termed a correlation receiver (Figure 2.3). 

y(r) 

iF )dt 

r l 
~ 

0 

r, ~J.:( )dri 
/,/ -. 

1fIJ. *(1) 

~J.:( )dr 1-----7 

Sample: t = T 
IfIL *(t) 

I 
r 

/ 

Figure 2.3: Block diagram description of the orthonormal projection correlation receiver 

Let {'I/'1 .... , 1jJ L} be a set of L complex orthonormal signals defined on [0, TJ. The complex signature 

vector Sk of the kth user is the L dimensional representation of Sk on the basis {'¢l,' .. ,'¢L}. That is 

to say the lth component of the column vector Sk is 

Ski = loT Sk(t)'Ij;i (t)dt 

Furthermore, we define the lth component of the vector r as 

T 

Tl = 10 y(t)'¢i(t)dt 

The column vector can then be written as 
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K 

r E AkbkSk + am 
k=1 

= SAb+am 

19 

(2.25) 

where m is an L dimensional complex Gaussian vector with independent unit variance components. 

Now we introduce a L x K matrix of complex signature vectors 

(2.26) 

The bits of the different users are uncorrelated, resulting in a covariance matrix equal to 

K 

2a21 + 2 E Azsks: 
k=1 (2.27) 

2a21 + 2SA 2SH 

The finite dimensional model in (2.25) holds regardless of whether the L orthonormal signals { 'l/JI , ... , 'l/J /, } 
span the signature waveforms {81' ... ,8 K }. An example of a set of orthonormal signals that span the 

signature waveforms is a DS-CDMA system where L is equal to the number of chips per symbol and 

the orthonormal signals are the delayed chip waveforms 'l/Ji = p(t - (i - l)Tc). 

If the signature waveforms are spanned by {'l/Jl, ... , 'l/J L}, then the K x K cross correlation matrix 

simply becomes 

(2.28) 

Furthermore 

(2.29) 

and all the information contained in y is also contained in r, because the matched filter outputs can 

be expressed as a linear combination of the components of r, i.e. 

(2.30) 

2.3 DISCRETE-TIME ASYNCHRONOUS MODELS 

For a simplified notation, we shall label the users chronologically. We assume without loss of genera­

lity that Tl ::; T2 ::; ... ::; TK. If we generalize (2.9) to the complex asynchronous case, the complex 

asynchronous CDMA model becomes 
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CHAPTER 2: Synchronous and Asynchronous COMA Models 20 

K M 

y(t) = L L Akbk[iJs(t - iT - 7k) + an(t) (2.3\ ) 
k=1 i=1 

taking into account that the users send a complex bitstream bd-MJ, ... , bk[Oj, ... , bdM]. The 

length of the packets transmitted by each user is assumed to be equal to (2M + 1). 

In the context of this model, users initiate and terminate their transmissions within T time units from 

each other. This presupposes some form of block synchronism, if not symbol synchronism. This 

assumption allows us to focus on the offsets modulo T, and does not impact on the generality of 

the analysis, because of typically large values of M. Figure 2.4 shows the symbol epochs for three 

asynchronous users in a case where M = 1. 

-T T 2T 3T 

Figure 2.4: Schematic representation of the symbol epochs for three users if M = 1 

The synchronous channel corresponds to the special case of (2.31) where 71 = 72 = ... = 7K = O. 

2.3.1 INTERSYMBOL INTERFERENCE 

Consider the special case in which all the complex received amplitudes and all the complex signature 

waveforms are equal, i.e. Al = A2 = ... = AK and S1 = S2 = '" = SK, and in which the offsets 

satisfy 

(k - l)T 
7k = K 

The asynchronous model then becomes 
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y(t) 
K M ( (k _ l)T) 
~ i?;1 Abk[iJs t - iT - K + an(t) 

LAb[jJs (t-1J;) +cm(t} 
J 

(2.33) 

where we have denoted b[iK + k - 1] = bk[i]. The channel in (2.33) is, in fact, the single user 

white Gaussian channel with intersymbol interference. lSI is a phenomenon encountered in both 

synchronous and asynchronous CDMA systems. It may be due to a frequency selective (discrete 

multipath) channel or partial response signalling (to increase the signature time bandwidth product). 

We will discuss the frequency selective (or mUltipath) channel later in this chapter, as it is commonly 

encountered in the mobile channel. We will also derive the discrete multipath channel from the 

continuous time dispersion channel filter model. 

2.3.2 ASYNCHRONOUS VECTOR MATRIX MODEL 

When using (2.31) with (2.18) and (2.19), the matched filter outputs can be expressed as 

Yk[i] AkbdiJ 

+ L Ajbj[i + IJpkj + L Ajbj[iJpjk 
j<k j<k 

+ L Ajbj[iJpkj + L Ajbj[i - IJpjk 
j>k j>k 

+nk[iJ (2.34) 

where 

(2.35) 

The first line of equation (2.34) is the desired information. The second line is the interference due to 

earlier users and the third line represents the interference due to later users. We can write equation 

(2.34) in matrix form, 

y[iJ R H [IJAb[i + IJ + R[OJAb[iJ 

+R[IJAb[i - IJ + n[iJ 

where the zero mean Gaussian process n[i] has the autocorrelation matrix 
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2O'2RIf[ll 
l J 

2O'2R[O] 

2O'2Rrll 
" J 

o 

ifj = i + 1 

ifj = i 
ifj = i-I 

otherwise, 

and the complex valued matrices R[O] and R[l] are defined by 

and 

For example. in the three user case 

Rp,[lj = { 0 
Pk) 

ifj = k 

ifj < k 

ifj > k 

ifj ~ k 

ifj < k 

The vector matrix discrete time model in (2.36) can be represented in the z-transform domain 

S(z) = RH[l]z + R[O] + R[l]z-l. 

This means we can also represent (2.42) as the combined asynchronous correlation matrix 

R[O] RH[l] 0 0 

I R[l] R[OJ RH[l] 

Ra= 0 R[l] 0 

R[O] RIf[l] I 
0 0 R[1] R[O] 

22 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 

(2.42) 

(2.43) 

The z domain model is depicted in Figure 2.5, where fi[i] is independent Gaussian with covariance 

matrix 20'21. 
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b[i] A S(z) )---- y[i] 

Figure 2.5: Block diagram of the z domain vector matrix model of equations (2.36) and (2.42) 

Note that if the signature waveforms have a duration larger than T, then the model has to be generali­

zed to incorporate crosscorrelation matrices R[2], ... ,R[LJ, where L is the length of the intersymbol 

interference. The choice of the K x K matrices F[O] and F[l] in Figure 2.5 is governed by the 

following proposition: 

Proposition 2.2 (z Transfonn Model Cholesky Factorization) The complex valued matrix 8[z] in 

(2.42) can be expressed as 

8(z) = [F[O] + F[l]z]H [F[O] + F[l]z-l] (2.44) 

where F[O] is lower triangular and F[l] is upper triangular with zero diagonal such that 

(2.45) 

(2.46) 

det F[O] = exp (~ 10
1 

log (det 8 (ej27rf
)) df ) (2.47) 

Furthennore, if det 8(ej2W ) > o for all wE [-?f, ?f], then [F[O] + F[1]z- l t 1 is causal and stable. 

As with (2.2l), if the vector sequence of matched filter outputs is fed into the filter [F[O]+F[l]z-l tl, 

the output sequence is given by 

y[i] = F[O]Ab[i] + F[l]Ab[i - 1J + n[iJ (2.48) 

where as with (2.22), uri] is independent Gaussian with covariance matrix 2(721. 

As with the synchronous case, alternative finite dimensional models can be used with a set of ortho­

normal waveforms that span the signature space, i.e. all the signature waveforms and their delayed 
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versions. fn a direct sequence spread spectrum system, this can be accomplished by chip matched fil­

ters sampled at the chip rate times the number of users. Nevertheless, for approximately band-limited 

chip waveforms, it is sufficient to sample at the Nyquist rate. 

2.4 THE FADING MOBILE CHANNEL MODEL 

We \.\'ill now consider mobile channel models for the evaluation of multiuser detection methods and 

CD\1A transmission. Mobile channels are dominated by a phenomenon called fading. Fading is the 

variation in signal strength over a period of time. We will mostly concern ourselves with small scale 

fading. Small scale fading is rapid signal strength variation over time or distance. We will assume the 

large scale fading (due to shadowing) to be quasi-stationary, and thus less relevant to our comparative 

evaluation of multiuser detection schemes. 

There are two main types of small scale fading in a mobile channel. The first is fading due to muIti­

path, and the other is fading due to Doppler spread. Multipath delay causes time dispersion and 

frequency selective fading, while Doppler spread causes frequency dispersion and time selective fa­

ding. We can subdivide multi path fading into two more components. 

Flat Fading - In this case, the bandwidth of the signal is smaller than the bandwidth of the channel. 

This also means that the delay spread is smaller than the symbol period. The spectral charac­

teristics of the transmitted signal is preserved at the receiver, thus no inter symbol interference 

(lSI) is introduced. 

Frequency Selective Fading - Here, the bandwidth of the signal is greater than the bandwidth of the 

channel. Furthermore, the delay spread is greater than the symbol period. Frequency selective 

fading introduces time dispersion between the symbols, introducing lSI. 

Fading based on Doppler spread, can also be subdivided into two categories. These are fast fading 

and slow fading. 

Fast Fading - In this case, the channel has a large Doppler spread. Furthermore, the coherence time 

is smaller than the symbol period. Here, the channel variations occur faster that the baseband 

signal variations. 

Slow Fading - In contrast with fast fading, the channel has a small Doppler spread. This means 

that the coherence time is greater than the symbol period, and channel variations appear to be 

slower than baseband signal variations. 

Another mobile channel effect is Doppler shift due to the relative motion between transmitter and 

receiver. This is a carrier frequency and velocity dependent frequency offset on each of the multipath 

components. This effect is taken into account in Clarke's model, which we will discuss now. 
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2.4.1 RAYLEIGH FADING DUE TO DOPPLER SPREAD - CLARKE'S MODEL 

Clarke developed a model to deduce the statistical characteristics from the scattered electromagnetic 

fields of the received signal at the mobile receiver [33]. In this model, the envelope of the received E­

field Ez is the square root of the sum of two squared Gaussian random variables. By random variable 

transformation, we have that the received signal envelope of a certain propagation path has a Rayleigh 

distribution given by 

{ 

r2 exp (_;2), 0 ~ r ~ 00. 
fR{r) = 

0, r < O. 
(2.49) 

To evaluate the probability of error of a CDMA detector (or any other digital communication detector) 

in a Rayleigh fading channel, the signal-to-noise ratio, must be averaged over all possible fading 

signal amplitudes. That is to say 

Pe,R = 100 

Pe(r)p(r)d" (2.50) 

where Pe(r) is the Gaussian channel error probability for an arbitrary modulation at a specific value 

of signal-to-noise ratio /', and Pe,R is the error probability for the Rayleigh faded signal. 

2.4.2 MULTIPATH TIME DISPERSION MODEL 

The mobile channel can be modelled as a linear filter. This means that the small scale variations of 

the mobile radio channel can be characterized by the impulse response of the mobile channel. The 

impulse response model of the mobile channel is useful, since it may be used to predict and compare 

the performances of many mobile communication systems under many different conditions. 

To show that the mobile channel can be modelled as a linear filter with a time varying response, 

consider the case in Figure 2.6 where the time variation is only due to the motion of the mobile. We 

assume that receiver moves along the ground at some constant speed v. For a fixed position d, the 

channel between the receiver and the transmitter can be modelled as a linear time invariant system. 

v 

Figure 2.6: The mobile radio channel as a function of time and space. 
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Due to different multipath waves that differ from position to position, the impulse response of the 

linear time invariant system should be a function of the position of the receiver. Let the channel 

impulse response of user k be depicted by hk (d, t). The effect of time dispersion on the basic COMA 

model is that the signature waveform seen at the receiver is the complex convolution 

sk(d, t) = Sk(t) (is) hdd, t) = i: Sk(T)hk(d, t - T)dT. (2.51 ) 

For a causal system, hk (d, t) = 0 for t < O. This results in the following equation 

sk(d, t) = fat Sk(T)hk(d, t - T)dT. (2.52) 

If the receiver moves at a constant speed v, the position of the receiver can be expressed as 

d = vt. (2.53) 

Substituting (2.53) in equation (2.52), we obtain 

(2.54) 

We assume v to be constant with respect to symbol time T, that is s( vt, t) is only a function of t. 

Therefore, (2.53) can be written as 

s(vt, t) = fat Sk(T)hdvt, t - T)dT = Sk(t) (is) hk(vt, t) = Sk(t) (is) hk(d, t) (2.55) 

The kth user impulse response hk (t, T) completely characterizes the channel as a function of both 

t and T. The variable t represents the time variations due to motion, and T represents the channel 

multipath delay for a fixed value of t. The output of the "channel filter" for user k is given by 

(2.56) 

2.4.2.1 DISCRETE TIME CHANNEL IMPULSE RESPONSE 

We can divide the multipath delay axis T of every user's impulse response into discrete bins. These 

equal time delay segments are called excess delay bins. Each bin has a time delay width of Tp+1 - Tp, 

where TO is equal to the time instant of the first arriving signal and equal to Tk· The first bin from TO to 

T1 has a bin width of ~T, as with all the other bins. This means that TO = 0, T1 = ~T, and Tp = P~T, 

for p = 0 to P = P -1, where P represents the total number of equally spaced mUltipath components. 

The size of ~T determines the time delay resolution of the channel model. The useful frequency span 

of the model is shown to be 1/(2~T). This means that signals of maximum bandwidth 1/(26oT) can 

be evaluated using this model. We assume that the delay resolution is equal for all users. There are 

terms that apply to this model that have to be briefly discussed. The first is excess delay, being the 
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relative delay of the pth multipath component to the first an'iving component, and is denoted by Tp. 

The maximum excess delay is given by P6.T. 

The received signal consists of a series of attenuated, time delayed and phase shifted versions of the 

transmitted signals. The impulse response of user k can be expressed as 

P - l 

hdt, T) = L Ak,p(t, T) exp [j( 2rr fdk Tp + ¢k,p(t, T))] J( T - Tp) (2.57) 
p=O 

where Ak,p(t, T) and Tp are the real antplitudes at time t and excess delays , respectively, of the pth 

mu ltipath component of user k. The phase term (2rr fdk Tp + ¢k,p ( t , T)) represents the phase shift, due 

to a doppler shift fdk and other channel effects (such as Rayleigh fading), of the pth multipath com­

ponent at time t of user k. The phase term can be combined and represented by the term Ih ,p(t , T) . 

Figure 2.7 is a graphical representation of equation (2 .57) for a certain channel at different times t . 

Note that some of the excess delay bins (or multi path components) may have a zero amplitude. 

/, )L-----''-----L---'---'----'------'------.... T(/,) 

/, 
~----J'---.....L--.L...-----'---'----'------.... T(' ,) 

Figure 2.7: The time varying discrete time impulse response model for a specific multipath radio 

channel. 

If the channel impulse response is assumed to be time invariant, or is at least stationary in a wide 

sense, then the baseband channel impulse response can be simplified to 

P -l 

hk(t) = L Ak,pexp( - jlh,p)J (T - Tp). (2.58) 

p=O 

It is evident that the discrete time channel impulse response is the summation of a series of impulses, 

each with a different phase. Applying thi s to the COMA case we have the sum of the complex convo­

lutions of the different user signature waveforms with their respective frequency selective channels. 
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Since we are considering mUltiple delayed versions of the received signals. we will use an asynchro­

nous equation (2.31). Considering only the ith bit, 

K P-I 

Y (t) [i] = L L Ak,pbk[i]s (T - Tp) exp (-Jfh.p) + an(t). (2.59) 
k=lp=O 

where P is the number of equally spaced multipath components. 

2.4.2.2 THE CDMA UPLINK AND DOWNLINK CHANNELS 

The above model provides for the uplink situation, where the transmission from each mobile to a 

central base station has a different impulse response. The downlink situation (base station to mobile) 

in which the channel impulse response pertaining to all the users are equal, i.e., hI (t) = h2(t) = 
... = hK(t), leads to the simplification that the contribution of all users can be added. before passing 

through a single channel h(t). 

2.5 SUMMARY 

This chapter supplies the mathematical background to thoroughly analyze all the multiuser dete<.:­

tion schemes contained in this dissertation. The concept of multiuser interference in terms of cross­

correlation coefficients is presented here. Discrete synchronous and asynchronous baseband CDMA 

signal and channel models are introduced in vector matrix notation. The fading mobile channel is 

also presented in this chapter. The Rayleigh fading and multipath time dispersion models applied to 

CDMA channels are also introduced. 
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CHAPTER THREE 

THE MATCHED FILTER RECEIVER AND 
MULTIUSER DETECTION PERFORMANCE 
MEASURES 

This chapter contains the analysis of the single user matched filter. The single user matched filter is 

the simplest method to demodulate CDMA signals. Several criteria are given by which to measure 

the performance of multiuser detection schemes. The analysis contained here is largely based on the 

approach followed by Verdu in [31]. 

The analyses done in this chapter are done in the real domain. This is to facilitate a geometric 

understanding of the CDMA multiuser detection problem. In the following chapters, the complex 

valued CMDA model will be utili zed. 

3.1 OPTIMAL DECISION RULES AND SUFFICIENT STATISTIC 

3.1.1 DECISION RULES AND DECISION REGIONS 

To obtain a comprehensive understanding of CDMA detection , we will have to explore the subj ect of 

hypothesis testing [34]. A certain observed random quantity has a distribution known to belong to a 

finite set of distributions, each of which is associated with a possible outcome. By sampling and ob­

servi ng the random quantity, we must make a decision as to wh ich di stribution (or possible outcome) 

the sample belongs to. The set of possible outcomes or distributions is often referred to as hypotheses 

in statistical terms. The analysis of the observation or sample is mapped to a decision by means of a 

decision rule. Data demodulation is a hypothesis testing experiment in which the observed quanti ty 

is a noise corrupted version of the transmitted signal. There are as many decisions as different values 

for the transmitted data. For example, in the basic synchronous K user CDMA channel model (2.1 ), 

there are 2[( possible decisions, and the observed quantity is a waveform on the interval [0, T]. 
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To make a decision as to what data was transmitted, we need to partition the observation space into 

decision regions, each of which coITesponds to a possible transmitted data symbol or hypothesis. 

Knowledge concerning the distribution of the information source is called a-priori knowledge. Let 

us first assume an equiprobable information source at the transmitter. Assume that within the whole 

observation space m optimum or non-optimum decision regions Ri i = 1, ... ,m exist corres­

ponding to m hypotheses. Each hypothesis is distributed according to a probability density function 

of a random variable Z: 

Hm: Z ~ fZ lm 

When refelTing to optimum regions, the regions are so chosen that they minimize the error probability. 

We write the probability of error Pe for arbitrary decision regions, as 

1 m 

1- - LP[Z E it;ji] 
m i=l 

(3.1) 

where the last integral is over the whole observation space. Inequality (3.1) is a lower bound which 

corresponds to the optimum error probability. There may exist several optimum solutions for the 

choice of decision boundaries. This non-uniqueness of optimum decision regions arises because 

there may exist points in the observation space at which the maximum density is achieved by several 

densities simultaneously. If these elements are arbitrarily assigned to the maximizing hypotheses with 

the lowest index, we obtain the following optimal decision rule for equiprobable hypotheses. 

Proposition 3.1 (Optimal decision rule - Equiprobable hypotheses) Consider m equiprobahle hypo­

theses under which an observed random vector Z has the following probability density junctions I 

(3.2) 

H m : Z ~ fZ lm, 

then the following decision regions minimize the error probability 

i-l 

it; = {z: fZ li (Z) = . max fZlj(z)} - U R j , i = 1, ... , m. 
J=l, ... ,m j=l 

(3.3) 

lThe symbol'" denotes "is distributed according to" 
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For the case of non-equiprobable transmitted symbols or hypotheses, the a-priori probabilities are 

denoted as P [Hil. The a posteriori probabilities can be computed using Bayes' rule. Conditioned on a 

particular realization of z of the observation, the conditional (a-posteriori) probabilities for hypothesis 

Hi is given by 

P [Hilzl = m (3.4) 

L: !zl j(z) P [Hjl 
j = l 

In general, the minimum error probability decision rule is termed the Maximum a posteriori (MAP) 

rule, which selects the hypothesis with the highest P [Hilzl . In the case of unknown a-priori probabi-

lities or equiprobable hypotheses (as in (3.3)), the decisions are known as Maximum Likelihood (ML) 

decisions. 

Consider the case of a m-hypothesis testing problem where the observation is a Gaussian vector with 

dimension L , with independent components, and variance equal to u2 . The distributions under each of 

the hypotheses are distinguished by their means. For example, the mean of the j th vector component 

under hypothesis Hi is denoted by aij . The probability density function corresponding to Hi is given 

by 

!Zli(zJ, '" ,zr,) = ( )L2 L exp (-~ t (Zj - aij)2 ) , 
21f U 2u j=J 

(3.5) 

and the optimum decision regions for equiprobable hypotheses are 

L L i - I 

Ri = {(zJ,"" z£l : L (Zj - aij? = _min L (Zj - akj)2} - U R j , (3.6) 
k- l, ... ,m 

j=1. j=1 j=1 

which means that we select the hypothesis whose mean vector is closest to the observed vector in 

Euclidian distance. 

3.1.2 CONTINUOUS-TIME GAUSSIAN SIGNALS 

In many hypothesis testing problems, the observed quantity is not a vector as in equations (3 .5) and 

(3.6), but a real valued function over a finite time interval. This is the case with both the synchronous 

and asynchronous COMA receivers. Sometimes a structure can be placed at the receiver input so 

that the decisions are based on functions of the received waveforms (called observables or decision 

statistics) which can be either scalars or vectors. In the case of a real valued observed quantity, we 

invoke the following counterpart to proposition 3.1. 
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Proposition 3.2 (Optimal decision rule - Equiprobable hypotheses and real valued functions) Let 

xI, ... , Xm be finite energy deterministic functions defined on an interval R of the real line. Let net) 

be white Gaussian noise with unit power spectral density. Consider m equiprobable hypotheses. 

HI: yet) = XI(t) + an(t), t E R 

(3.7) 

Hm : yet) = xm(t) + an(t) , t E R, 

then the following decision regions minimize the error probability 

i-l 

IV, = {y = {yet), t E R} : f[Ylx i] = . max f[y IXj]} - U Rj, 
] = l, ... ,m . 

J = I 

(3 .8) 

where 

f[YIXi] = exp (- 2~2 L [yet) - Xi(t)Fdt) . (3.9) 

The function f[Ylxi] in (3.9) is termed the likelihood function, and corresponds to the unnormali zed 

conditional probability density function fZlj(z) in proposition 3.1. As with (3.6), minimizing [y(t)­

X:i(t)j2, maximizes (3.6), giving us the minimum distance decision region 

i - l 

R i = {y = {yet), t E R} : [yet) - Xi(t) ]2 = min [yet) - xdt)]2} - U R j 
k=l, ... ,m . 

J= 1 

(3.10) 

This means that the decision regions that minimize the error probability are minimum distance re­

gions. The waveform Xi(t) that is closest to yet) in mean-square distance is inferred. 

3.1.3 SUFFICIENT STATISTIC 

A function of an observable random variable Y = g(y), which does not depend on any unknown 

parameters, is called a statistic. A sufficient statistic can formally and generally be defined as fol­

lows [35]. In a statistical inference problem where a parameter e is to be inferred2 on the basis of 

observations y, we say that a function of the observation Y = g(y) is a sufficient statistic for e if the 

conditional distribution of y given g(y), denoted as fy lY' does not depend on e. This means that if Y 

is observed, then additional information cannot be obtained from y if the conditional distribution of y 

given Y is free of e. We will later see that in the case of a single user receiver, the decision statistic 

Y is given by 

Y = (y, Xi) = L y(t)xi(t) dt; i = 1, ... , m. (3.11) 

2In hypothesis testing e takes a finite or countably infinite number of values, whereas in estimation problems, it takes 

an uncountable number of values 
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To prove that (3.1 1) is a sufficient statistic for e = {HI, ... , Hm} == {Xl, ... , Xm}, we will need 

another definition of sufficient statistic termed theJactorization criterion [35]. If y has a probability 

density function fly; Xi], then Y is a sufficient statistic for e if and only if 

fly; Xi] = g(Y; xi)h(y), (3. 12) 

where g(Y; Xi) does not depend on y, except through Y, and h(y) does not involve Xi . The proof that 

Y as defined in (3. 11) is a sufficient statistic for e, is given by 

fly; Xi] = f[ylx i] exp (;:,.~ in [y( t) - Xi(t)]2 dt ) 

= exp (;:,.~ [in y(t)2dt - 2 in y(t)xi(t)dt + in X; (t)2dt] ) 

exp (;:,.~ [in yWdt - 2Y + in Xi(t)2dt] ) 

exp ( ;:,.~ [2Y + in XiWdt]) exp (;:,.~ j~ yWdt) 

= g(Y; xi)h(y), (3.13) 

where we have split the function ![y; Xi] into the factors g(Y; xi)h(y). This satisfies the factorization 

criterion, and proves that (3 .11 ) contains all the information in the original observations to make an 

optimal decision. 

3.2 THE OPTIMAL RECEIVER - SINGLE USER 

In this section we will study the optimal receiver for the si ngle user COMA channel. For a single 

user, the channel simplifi es to 

y(t) = Abs(t) + (m(t), t E [0, T] (3.14) 

where s(t) is deterministic and has unit energy, the noi se term n(t) is white and Gaussian and bit 

b E {±1}. The amplitude of the single user is denoted by A. 

3.2.1 LINEAR DETECTORS 

Before deriving the optimum demodulator for the single user channel, it is insightful to consider the 

class of detectors termed linear deleclOrs. A detector that outputs the sign of the correlat ion of the 

received signal with a deterministic signal <p(t) of duration T is given by 

b = sgn (( y, <p)) = sgn (t' y(t)<P(t)dt ) 
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The detector extracts the information contained in the observed waveform y (t) by means of the scalar 

decision statistic (y, 'P) . The decision statistic is given by 

Y = (y, 'P) = Ab (s, 'P) + (7 (n, 'P) (3.16) 

The linearity of the decision statistic makes it easy to discern the respective contributions of signal 

and noise, whereby the choice of'P can be optimized. Having the signal and noise terms separated, 

we will attempt to determine an optimum value for 'P . A sensible way to do thi s, is to maximize the 

signal-to-noise ratio (SNR) I of the decision statistic Y. The signal variance is simply A2( (s, 'P))2 

A property of white Gaussian noise is that E[ (n, 'P)2] = 11'P112 The noise variance is thus equal to 

(7211'PW . The SNR of the deci sion stati stic Y maximized with respect to 'P is given by 

A2 ((s,'P))2 
'Y - max 
,max - <p (7211'P112 

(3.17) 

Equation (3 .17) can readily be solved by means of the Cauchy-Schwarz inequality ((s, 'P))2 :'= 

II'PWllsI12, where the equality is only satisfied if and only if 'P is a nonzero multiple cr of s . Thus we 

have the maximi zed SNR given by 

(3. 18) 

We conclude that any nonzero multiple cr of the signal s will maximize the SNR of the decision 

statistic Y. This excludes the negative multiples of s, as they will yield erroneous decisions in the 

absence of noise. The value of the constant will have no effect on the max imum SNR, as well as the 

decisions 

b = sgn ((y, crs)) = sgn (foT y(t)S(t)dt ). (3. 19) 

The detector in (3.19) is known as the matched filter or conventional detector. We have seen that the 

matched filter detector is optimal, in that it maximizes the SNR of the decision statistic Y. A linear 

filter with an impulse response 3(T - t) sampled at multiples of time T is equivalent to the decision 

statistic (y, 'P) in (3.16). 

3.2.2 ERROR PROBABILITY - OPTIMAL SINGLE USER LINEAR DETECTOR 

Let us investigate the conditional distributions of the decision statistic Y for a OS-COMA system 

with binary antipodal modulation. We assume that the noise term n(t) is a Gaussian process . A 

property of a Gaussian process n(t), is that the inner product (n, 'P) is a Gaussian random va­

riable. Therefore from (3.1 6), the decision statistic conditioned on {- I , + 1} is Gaussian with mean 

{-A(y,'P) , +A(y,'P)} respectively. The variance for both distributions is equal to (72 11 'P112 . The 

Gaussian conditional distributions ofY is abbreviated by N( - A (y, 'P), (721 1'P112) for a minus one and 
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N( +A(y, 'P), u 211'P112) for a one sent, respectively. Figure 3.1 shows the conditional distributions of 

Y conditioned on the transmission of b = -1 and b = 1. 

-A< s,!p> A< s, !p> 

Figure 3.1: Conditional distributions of Y given b = -1 and b = + 1 

In the single user binary antipodal case, we have the hypothesis testing problem: 

fY I-1 = N(-A (s,'P),u211'P1 12) 

fY I+l = N (+A (s,'P) ,u211'P1 12) 
which is a special case of the vector Gaussian problem in (3.6) with L 

corresponding decision regions are 

1 and m 

{y E (-00,00): fY I-I (Y) > fY I+l(Y)} = (-00,0) 

{y E (- 00,00) : fY I+l(Y) > fY I- I(Y)} = [0 ,00), 

(3.20) 

2. The 

(3.21) 

(3.22) 

which means that the boundary or threshold between the two regions is at x = O. Using the decision 

regions in (3.21) and (3.22) the probability of error is given by 

~ ('''' fY I_I (V)dv + ~ JO fYI+l(v)dv 
2 Jo 2 -00 

~ ( 00 1 2 exp ( v
2 2) dv 

2 J A(s,<p) ..j2i[u II'P II 2u211'P 11 
1 J - A(S'<P) 1 (v2) +- 2 exp 2 dv 
2 - 00 ..j2i[u II'PII 2u2 11'P11 

100 1 " 
--e- ,dv 

A(, .,) ..j2i[ 
~ 

Q (A (s, 'P)) 
u II'PII ' 
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where (3.23) follows by symmetry and a change of integration variable, and (3.24) follows from the 

notation of the complementary cumulative distribution function of the unit normal random variable 

or Q function. Assuming a matched filter receiver, the error probability simplifies to 

(3.25) 

where --y denotes the SNR. 

In much of the literature on digital corrununication systems, bit error probability (BEP) is given in 

terms of bit energy Eb and No where No is related to noise variance by (J2 = No/2. The bit energy 

Eb is si mply equal to A2 , since the signature waveform is assumed to have unit energy. Thus the 

matched fi lter probability of error can also be written as 

which is equal to the BEP of a BPSK system [27]. 

3.2.3 ERROR PROBABILITY - OPTIMAL SINGLE USER NON-LINEAR 

DETECTOR 

(3.26) 

Let us now search for the detector that achieves the minimum error probability among all detectors, by 

dropping the linearity constraint as imposed in (3.16). This means that we can no longer assume that 

the observable is (s, 'P) and we have to work with the received process {y(t), t E [0, T]} itself. This 

is a special case of the problem solved in Proposition 3.2 with m = 2, R = [0, T] and xdt) = As(t), 

.T2(t) = - As(t). Because the energies of Xl and X2 are identical. the minimum error probability 

detector decides b = 1 if 

(3.27) 

and 

t y(t)xI(t)dt = - t y(t)x2(t)dt = A t
T 

y(t)s(t)dt, 
.In .In .10 

(3.28) 

which means the matched filter output statistic (s, 'P) is a sufficient statistic, and the detector in (3.19) 

is optimal among all detectors. The shape of the transmitted signal does nol affect the minimum bit­

error-rate, because of the inherent symmetry of white Gaussian noise, i.e., its projections along every 

direction has the same distribution. 
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Matched Filter 
User 1 

Sync =F 
A 

y/i) hP) 

Matched Filter 
User 2 

Sync =f 
A 

y,(i) h,(i) 

2 

yet) 

Matched Filter 
User 3 

Sync =F 
A 

y,(i) hP) 

3 

Matched Filter 
User K 

Sync 

Figure 3.2: Block diagram depicting the bank of matched filters for multiple CDMA users 

3.3 MATCHED FILTER ERROR PROBABILITY -

SYNCHRONOUS USERS 

In this section we will analyze the pelformance of the single user matched filter in a multiuser CDMA 

environment. In the multiuser case, demodulation is achieved by a bank of matched filters (Figure 

3.2), each matched to a specific user's signature waveform. In the synchronous case we need only to 

concern ourselves with the timing of a single synchronizer to sample the matched filter outputs of all 

the users. The output of the kth matched filter in a K user channel is given by 

T 

Yk = r y(t)sdt)dt = Akbk + L Ajbj pjk + nk 
io J;tk 

(3.29) 

as in equation (2.10), with 

nk = (f 1T n(t)sk(t)dt (3.30) 

a Gaussian random variable with zero mean and variance equal to (]"2 Consider the case of orthogonal 

signature waveforms, then Pjk = 0 for j # k, and the problem reduces to the single user case with 

Yk = Akbk + nk· The error probability with orthogonal signature waveforms also reduces to the 

single user case with 

Center for Radio and Digital Communication (CRDC) 
Department of E lectrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER 3: The Matched Filter Receiver and Multiuser Detection Performance Measures 38 

Pe('" k) = Q ( ~k ) , (3 .31) 

which leads us to the conclusion that the matched filter is optimal in a K user COMA channel with 

orthogonal signature waveforms. We return to the non-orthogonal COMA channel. 

3.3.1 THE TWO USER CASE 

s/l) 

A 

;:T YI =f bl 

y(t) 

A 

X ;:T Y, =F b, 

S2(t) 

Figure 3.3: Block diagram depicting the special case of the two user COMA matched filter receiver 

structure 

The two user COMA channel (Figure 3.3) is instrumental to developing a thorough intuitive and visual 

understanding of the multiuser interference problem. We start by determining the elTor probability of 

lI ser 1 as given by 

P [bl # bl ] 

P[b l = +1]P[YI < albl = +1] 

+P [bl = - 1] P [Yl ~ albl = - 1], 

but Yl conditioned on bl is not Gaussian, so we wi ll have to condition on b2 as well, with 

P [Yl ~ albl = -1,b2 = +1] P [b2 = +1] 

+P[Yl ~ albl = - 1, b2 = - 1]P[b2 = - 1]. 

Substitute (3.29) into (3.33) for {bl = -1,b2 = +1} and {bl = -1,b2 = -I}, to obtain 

(3.32) 

(3.33) 
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P [nl ?: Al - A2P J P [b2 = + lJ 

+P[nl?: Al + A2pJP [b2 = -lJ 

~Q ( Al ~ A2P) + ~Q ( Al : A2P) (3.34) 

where in the two user case, P12 = p. Due to the fact that we assumed equiprobable bitstreams b1 and 

b2, and due to symmetry, we get exactly the same expression for P [Yl < 0lb1 = +lJ. The bit error 

probability BEP of the conventional receiver with one interfering user is given by 

~Q ( Al ~ A2P) + ~Q ( Al : A2P) 

~Q ( Al - rJA2 IPI) + ~Q ( Al + rJA2 lpl ) (3.35) 

due to the fact that user 1 is arbitrary. Since the Q function is monotonically decreasing, we readily 

obtain the upper bound 

Pe(rJ, l ) :s; Q ( Al - :2Ipl) . (3.36) 

This bound is smaller than 1/2, provided that the interferer is not dominant, i.e. 

A2 1 
-<­
Al Ipl' 

(3.37) 

In this case, because of the asymptotic behavior (rJ --+ 0) of the Q function , equation (3.35) is 

dominated by the term with the smallest argument. Thus, the upper bound (3.36) is an excellent 

approximation (modulo a factor two) to Pe(rJ, 1) for all but low SNRs. This implies that the BEP of 

the conventional receiver behaves like the BEP of a single user system with a reduced SNR, i.e . 

. _ (AI - A2 1PI)2 
reqUlY - rJ 

(3.38) 

On the other hand, if the relative amplitude of the interferer is such that 

A2 1 

Al > lPT ' (3.39) 

then the conventional receiver exhibits a highly anomalous behavior called the near-far problem. For 

example, the error probability is not monotonic with rJ. When we consider the limit rJ --+ 00, we 

obtain the error probability from (3.35) as 

. 1 
hm Pe(rJ, 1) = -2 ' 
~-+oo 
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which is what we would expect from any detector. At the other extreme for a --+ 0, we get 

lim Pe(a, 1) =~, 
0"---+0 2 

(3 .41 ) 

because due to (3.39), as a --+ 0, the polarity of the output of the matched filter for user 1 tends to 

be governed by the bitstream of user 2, rather than that of user 1. In this case, a little Gauss ian noise 

is better than no noi se. With zero noise, it can be seen that the interference shifts the matched fi Iter 

output to the wrong side of the threshold, as in Figure 3.4. The addition of noise can have one of three 

effects on the decision, 

1. no effect, 

2. to prevent an en'or and 

3. to induce an error. 

The noi se sample amplitude needed for 3. is at least IpI A2 + AI, whereas the noise excursion for 2. 

is only IpIA2 - AI · 

1 1 
-IPlA,-A I A, 

+ 
User 1 transmitted a I 

User 1 transmi ned a -1 

Figure 3.4: Output of the matched filter with one interfering user and A2 /Al > l/ ipi 

The noise level that minimizes the BEP under (3.39) is (from [3 1]): 

a2 = __ A.....:..I A-T2P_, 

arctan h (..6..L) A,p 

Finally we consider the case of equality wi th 

A2 1 

Al P 
Then the error probability of the single user matched filter reduces to 

1 1 (2AI) 
Pe(a , l ) = 4: +"2 Q --;-

(3 .42) 

(3.43) 

(3 .44) 
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which means that the signal of user 2 exactly cancels the signal of user 1 with a probability of ~ at 

the matched filter output. It becomes a zero mean Gaussian random variable; with probability ~, the 

signal of user 2 doubles the contribution of the desired signal to the matched filter output. With respect 

to the two user case, we will now consider methods of using the BEP as a performance measure. This 

will give us insight and intuition when considering the K user scenario. 

3.3.1.1 BEP AS PERFORMANCE MEASURE - THE TWO USER CASE 

When evaluating the performance of digital communication systems, the BEP with respect to the 

SNR, or alternatively Eb/No, is commonly used in the literature. Figure 3.5 shows the BEP for the 

two user matched filter detector with p = 0.2 and different relative amplitude values for Al and A2 . 

It can be seen that the BEP degrades rapidly as the relative amplitude of the interferer increases. The 

top curve is an example of the near-far problem under the condition (3.39). 

BEP for Matched Filter Detector - 2 Users, p = 0.2 
10° ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

10-
6 

•••.• . •••• .• ••• ••. 

-+- A =0 
2 

--A- A2=Al 
-t- A =2A 

2 I 
--jE- A2=6A[ 

:: : : : ::: : ::. 

10-9L-~~~~L-~~~~L-~~~~~~~~~~~~~~~~~---
o 2 4 6 8 10 12 

Eb IN 0 = A~I2()'2 

Figure 3.5: BEP of the matched filter detector for different relative amplitudes and p = 0.2 
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It is often the case that a digital communication system needs to be designed with a maximum to­

lerable BEP in mind. The necessary bit energies then need to be found to satisfy that BEP. Figure 

3.6 represents the power-tradeoff regions so that both users have a BEP of 1 x 10- 5 , with the cross­

correlation between the two users characterized on the z-axis. In the case of orthogonal users, the 

objective will be reached for both users if their SNRs are greater than Q-l (3 x 10-5 ) = 12dB. From 

Figure 3.6 it can be seen that as the cross correlation increases: 

• even at equal amplitudes the necessary signal energy increases rapidly; 

• the sensitivity to imbalances in the received signal grows, making power control necessary. 

Q. 

0.8 

0.6 

0.4 

0.2 

o 
25 

20 

15 

10 

5 

o 

SNR necessary to Achieve a BEP < 3xlO- 5 

.. .. . " . 

20 
15 

10 
5 

o 

Figure 3.6: Regions of signal-to-noise ratios to attain a BEP of 3 x 10- 5 for both users 
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3.3.1.2 THE TWO USER SIGNAL SPACE REPRESENTATION 

Verdu [31] mentions another useful visualization of CDMA detector operation that involves decision 

regions on a signal space diagram. The signal space representation of detector operation was concei­

ved by Shannon [36] and popularized in the textbook of Wozencraft and Jacobs [37]. 

For a K user synchronous channel. there are 2[( hypotheses within the observation space on [0, TJ. 

Thi s space has infinite dimensions, but the conventional K user demodulator has decision vector 

space of K dimensions 

(YI, ... ,y[() = (loT y(t )SI (t)dt , . .. , loT y(t)S[«(t)dt) . (3.45) 

To represent the deci sion regions on a signal space diagram, we wi ll need K dimensions or axes. It 

is obvious that the two user (two dimensional) case will yield a practical visualization of the signal 

space. In this case, (YI , Y2) conditioned on (bl , b2 ) is a Gaussian vector (3.29) , (3.30) with mean 

(3.46) 

and covariance matrix 

COV(YI,Y2) = a
2 
[: ~] (3.47) 

In the (YI , m) signal space (Figure 3.7), we can depict each of the mean vectors for each of the four 

hypotheses where Al = A2 = 1 and p = 0.2. 

The received vector can be viewed as the sum of the transmitted vector (3 .46) and a zero mean 

Gaussian vector (nl ' n2). The two user received joint Gaussian vector density functions for all four 

hypotheses is depicted in Figure 3.8 with p = 0.2 and a = l. 
In the absence of noise, as depicted in Figure 3.7, the detector will make correct decisions, since 

the signal points lie in the correct regions. The probability of error found in (3 .34) is the average 

of the probabilities that the received vector satisfies YI < 0 given that (+, +) and (+ , -) has been 

transmitted. There is a shortcoming in the (YI, Y2) signal space diagram in Figure 3.7 in that the noise 

components (nIl n2) are correlated, i.e. 

(3.48) 

This has the consequence that the noise vector is not symmetric, nor does the norm of the noi se vector 

determine the likelihood of that reali zation. This can be seen in Figure 3.9 in the 'overhead' view of 

Figure 3.8. 
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Non-Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5 

* ++ 
r-

-+ S2 

* 

0.5 

S l 

o 

-0.5 

* +-
-1 

--
* 

- l.5 
, 

-1.5 -I -0.5 0.5 

Figure 3.7: Signal space diagram in the (Y1, Y2 ) space for equal amplitudes and p = 0.2 

A more suitable diagram than the (YI , Y2) signal space diagram is the (YI, Y2 ) signal space diagram 

whose axes are equal to the correlations of the received waveform with an arbitrary orthonormal basis 

(1h , 1/!2) that spans the linear space generated by the signals (Sl, 82). For example, a choice for that 

orthonormal basis by means of the Gram-Schmidt procedure is 

1/!1 = 81 

I P 
1/!2 = ~82 - ~81 . 

V I - p2 VI - p2 

Conditioned on (b l , 1>, ), (Yl, Y2) is Gaussian with mean 

(Alb, (S I,1/!l ) + A21>, (82,1/!1) , A1bl (St,1/!2) + A2b2 (S2,1/!2) ) 

= (A I bl + A2b2P, A2b2~) 

(3.49) 

(3 .50) 

(3 .5 I) 
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The Two User Gaussian Received Vector PDFs (p=0.2,0=1) 

0.2 

0.15 

0.1 

0.05 

o 
4 

.. " ... 

. " . . . 

-4 

Figure 3.8: Joint probability density function in the (Y1, m) space for equal amplitudes, p = 0.2 and 

a =l 

and covariance matrix equal to 

(3.52) 

The whitened counterpart to Figure 3.7 in alternative orthogonal representation (ih, ih) is shown in 

Figure 3.10. Here, the decision regions are defined by the lines (or hyperplanes in K dimensional 

space) orthogonal to 8 1 and 82 respectively. With the alternative representation, the inner product 

between the vectors representing the signature waveforms 8 1 and 82 in Figure 3.10 are, in contrast 

with Figure 3.7, indeed equal to their cross-correlation. 

Even though (iiI, i12) are not computed by the detector, it is useful to visualize the received vector 

as belonging to the alternative orthogonal two dimensional space. Indeed, the dimensions of the 

detector in Figure 3.10 are transparent to all the infinite components in y(t) orthogonal to ,pl and ,p2. 
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The Two User Gaussian Received Vector PDFs (p=0.2, 0-=1) 
4 

3 

2 

~ 0 

-I 

-2 

-3 

-4 
- 4 -3 -2 -I o 1 2 3 4 

Figure 3.9: Overhead view of the joint probability density function in the (Yl, Y2) space for equal 

amplitudes, p = 0.2 and (J = 1 

The anomalous behavior of the conventional matched filter detector in the near-far situation in (3.39) 

is illustrated in Figure 3.11 with A2 = 6A 1 . The decision regions stay exactly the same as in Figure 

3.10. The transmitted vectors corresponding to (+, -) and (-, +) have now migrated outside the 

correct decision regions. This means that given (+, -) or (-, +) was transmitted, an error will occur 

unless the noise reali zation moves the vector back into the correct decision region. In a noiseless 

environment, the decisions of both users is equal to the data transmitted by user 1. 

3.3.2 THE K-USER CASE 

In the generalization of the BEP to the K user case, we will follow a similar approach a in the two 

user case. Following the same reasoning as before, the kth user BEP is given by 
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Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5 ,--------,-------,--------,--------,--------,--------, 

0.5 

-+ 

* 
++ 

* 

I >,N 0 - - - - - - - - - - - - - - - -.-=-=---t..."",~-----~- - - - - -

-0.5 

-I * * +-

-1.5 L-______ --'---______ ---'--______ -'-________ L-______ --'---______ ---" 

-1.5 -1 -0.5 o 0.5 I 1.5 

Figure 3.10: Signal space diagram in the alternative orthogonal (fh, ih) space for equal amplitudes 

A l = A2 and P = 0.2 

P[bk = I ]P [Yk < Olbk = 1] 

+P [bk = -1]P[Yk > Olbk = - 1] 

~P [nk < -Ak - L Aj bjPjk ] 
j# 

+~P [nk > Ak - LAj bjpjk ]. 
j# 

(3.53) 

Because of the symmetry of the two terms in (3.53), they are equal, and the BEP of the kth user 

becomes 
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Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5,--------,-------,--------,--------,--------,--------, 

I 

0.5 

- + * * ++ 
SI ________ _______ _ :::-0,-_--1'-=-____ ......:... .... _ - - - - -

* * +-

-0.5 

-I 

_1.5 ---------L--------~------~~-------L--------~------~ 

-1.5 - I - 0.5 o 0.5 1 

Figure 3.11: Signal space diagram in the alternative orthogonal (Yl, i12) space for A2 

P= 0.2 

P [nk > Ak - L AjbjPjk] 
j# 

1 (Ak Aj) 
2I<-1 L Q -- + Lbj-Pjk 

(h, ... ,bK l=({ - l,I}, ... ,{ - I,I}) (J j# (J 

1.5 

6A l and 

(3.54) 

(3.55) 

where (3 .55) is conditioned on all the interfering bits. We see from equation (3.55) that the kth 

user error probability depends only on the shape of the signature waveforms through their cross­

correlations over the interval [0, T], as determined by the receiver. This is also due to the fact that the 

noise is white and Gaussian. The error probability, as in all digitally modulated systems, depend on 

the SNR 4: and in the CDMA case on the relative amplitudes of the interfering users. As in (3.36), 
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error probability or average of the Q functions in (3 .55) is upper bounded by 

Pe(u,k) S; Q ( ~k - L; IPjkl) . 
j# 

(3.56) 

When we look at the anomalous behavior of the condition (3.39) in the K user case, we note that 

(3.55) goes to zero as u --7 0 if and only if the argument of each of the Q functions therein is positive, 

that is if 

Ak> L Aj IPjkl 
Jik 

(3.57) 

The condition in (3 .57) is commonl y referred to as the open eye condition. Under this condition , the 

bound (3.56) becomes tight (modulo a factor independent of u) as u --7 O. 

3.3.3 THE GAUSSIAN APPROXIMATION FOR BEP 

Equation (3.55) is cumbersome in the sense that the number of operations required increases exponen­

tially with the number of users. It is for this reason that a number of authors, including the classical 

papers of Pursley [38] and Yao [39], have approximated (3 .55) by replacing the binomial random 

variable 

LAjbj IPjkl 
Ji k 

(3.58) 

with a Gaussian random variable with identical variance. The Gaussian approximated BEP becomes 

Pe(u, k) = Q 
u2 + I: A21p2kl 

Ji k J J 

(3.59) 

The approximation in (3.59) is fairly accurate at low SNRs, but for high SNRs it may become more 

unreliable. A comparison of the exact BEP versus the Gaussian approximation is shown in Figure 

3.12 and Figure 3.13 for 10 and 14 equal energy users, respectively. The cross correlation p is set 

at 0.08. Figure 3.12 is representative of the open eye situation and Figure 3.13 of the closed eye 

situation. In the latter case we notice that the behavior of the BEP of the single user matched filter 

detector is non-monotonic. This was al so observed in the two user case as the "anomalous" near far 

situation. In the limit as u --7 0, equations (3.55) and (3.59) behave differently. Equation (3.59) 

has a nonzero limit, even if the open eye condition is satisfi ed. The reason for this is that when we 

approximate the binomial random variable with a Gaussian random variable, the error is greatest in 

the tails, which determine the BEP for high SNRs. When the performance is averaged with respect 
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to random carrier phases, the multiuser interference is no longer binomially distributed, but remains 

amplitude limited. This is in contrast to a Gaussian random variable with the same variance. 

BEP for Matched Filter Detector - K Users, p = 0.08 

10-2~~~~~~~~~~~~~~~~~~~~~~~==C====J 
~ Exact 
4- Gaussian 

10-6 L-__ ~L-__ ~ ____ ~ ____ -i ____ -L ____ ~ ____ -L ____ -L ____ -L ____ ~ 

10 11 12 13 14 15 16 17 18 19 

SNR = ~/0 (dB) 

Figure 3.12: BEP as a function of SNR with K = 10 equal energy users and p = 0.08 (eye open) 

Proposition 3.3 Suppose that the random direct sequence model is used and BEP is averaged with 

respect to the choice of binary sequences with spreading gain N. If K -+ 00 and N -+ 00, but their 

ratio is kept constant 

then the averaged BEP converges to 
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BEP for Matched Fi lter Detector - K Users, p = 0.08 

-+- Exact 
---+- Gaussian 

12 14 16 18 20 22 24 26 28 30 
SNR = A/0 (dB) 

Figure 3.13: BEP as a function of SNR with K = 14 equal energy users and p = 0.08 (eye closed) 

where 

K 

A-2~f I' 1 LA2 - 1m - . 
K---too K J 

j=2 

(3.62) 

A sufficient condition for the validity of(3.62) is that the amplitudes A j be bounded. 

Let us justify (3.62) under the condition that all energies are equal for all users, i.e. Ak A. 

According to (3.54) we need to compute the limit of 
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P [n1 + A t bjP1j > A] 
) = 2 

= P [n!+ A j~2 bj (*' n~1 djn) > A] (3.63) 

= P [n!+ A,t;./ ~ t f djn > A] (k 1)1\ j=2 n=1 

where the random variables djn in (3.63) are independent and equally likely to be {~l, +l}. The 

De Moivre-Laplace Central Limit Theorem dictates convergence in distribution as K --) 00 of the 

random variable 

1 

J(k ~ l )N j;~djn 
K N 

(3.64) 

to a zero mean, unit variance Gaussian random variable. The right side of (3.63) converges to 

(3.65) 

which is what we wanted to verify. 

The limiting result in (3.61) can be strengthened to show that even if the BEP is not averaged with 

respect to random sequences, it converges as K = (3N --) 00 to the right side of (3.61) with probabi­

lity one for any signal to noise ratio [40]. It must be said however, that convergence is very slow with 

K for high SNRs. An easily computable upper bound to Pe(CT, k) can be found by partitioning the set 

of users into 

{I, ... ,K} = {k} UGUG (3.66) 

where G is a subset of interferers that satisfies the partial eye open condition, i. e. 

Ak > L Aj [Pjk [. (3.67) 
JEG 

Then the error probability of the single user matched filter is bounded by 

Pe(CT, k) :s; exp (3.68) 

of which the justification is given in [31 ]. This bound is known as the Chernoff bound [41]. The 

freedom to choose G subject to (3.67) can be exploited to minimize the upper bound in (3.68). The 

conditions of G = 0 and G = 0 deserve special attention. 
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First, if the fully open eye condition in (3.57) is satisfied and (; = 0, then 

Pe(a, k) :S exp (3 .69) 

Second, we can set G = 0, then (3.68) becomes (cf. (3.59» 

2 (a2 + L A2p\) 
j'l'k J J 

Pe(a, k ) :S exp 
A~ 

(3.70) 

Equations (3.69) and (3.70) are the two extreme conditions for the upper bound of the single-user 

matched filter BEP. 

There have been several other attempts to find better approx imations for COMA BEP bounds for 

random signature sequences . Some of these are presented in [42], [43] and [44]. 

3.4 MATCHED FILTER ERROR PROBABILITY -

ASYNCHRONOUS USERS 

In an asynchronous COMA system where all users use the same basic chip wavefOlm , the continuous­

time to discrete-ti me conversion can be carried out by a single chip matched filter sampled at K times 

the chip rate, with the sampling instants determined by the synchronizers. 

The analysis of the asynchronous case is identical, except for the fact that each bit is affected by 

2K - 2 interfering bits. This doubles the number of terms in (3.55) 

The condition in (3.57) can be extended to the asynchronous case, 

Ak > L Aj(lPjkl + IPkjl) 
j'l'k 

(3.72) 

The asynchronous cross correlations in (3.7 1) depend on the relative timing offset between users. 

These parameters are time varying random variables. Given a set of signature waveforms, it is pos­

sible to compute the distribution (or simply expectation) of (3.7 1). This however is computationally 
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intensive. 

The infinite user limit as K -+ CXl can be extended to the asynchronous case by incorporating two 

fictitious interferers per actual interferer. Averaging over the received uniformly distributed delays 

and considering that the autocorrelation for rectangular chip waveforms is 

Rp(T) = 1 - E, 0:; T :; Tc (3.73) 

we can obtain the second moment of the asynchronous cross correlations Pjk and Pkj [31] 

(3.74) 

The second moment of Pkj is equal to that of Pj k due to symmetry and a uniformly distributed de­

lay. This implies that the BEP is equivalent to that of a synchronous system with (2/ 3) x (K - 1) 

interferers. 

3.5 ASYMPTOTIC MULTIUSER EFFICIENCY AND RELATED 

MEASURES 

We already considered BEP as a performance measure for the multiuser COMA environment. There 

are several other performance measures that can be derived from BEP that will be of value in the 

comprehension of COMA detector operation. One such performance measure mentioned earlier, is 

the power tradeoff region of SNRs that results in a given guaranteed BEP level. 

When we consider a slowly time varying channel with respect to delays, phases, and most impor­

tantly, SNRs, averaging BEPs may be misleading. This is due to the fact that the channel may be 

dominated by particularly unfavorable, but rare channel conditions. It is common practice to design a 

digital communication system with outage as design parameter. Outage is defined as the percentage 

of time that the system performs below a certain level. When designing according to outage as design 

parameter, the cumulative distribution function of the BEP is more informative than its average. 

In this section we will consider signal to interference ratio, multiuser efficiency, asymptotic multiuser 

efficiency and near-far resistance as COMA multiuser detector performance measures. 
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interference caused by other users after detection. We can achieve this by letting a --) 0 in (3 .81). 

The asymptotic multiuser efficiency of user k is defined in [2] and [45] as 

1
. eda) 

'lk = lmo - A2 (3.82) 
<7-+ k 

and is the log BEP of the kth user going to zero with the same slope as that of a single user with 

energy 'lkA~. That is, 

'lk = sup {o <:: r <:: 1 : ~$o Pe(a, k)/Q ( ~Ak ) = 0 } (3 .83) 

where "sup" denotes the supremum of the argument and is formally defined as the smallest upper 

bound with respect to r for which the condition to the right of the semicolon is true. Let us prove the 

relation between (3.82) and (3.83). We start with the condition 

lim Pe(a, k )/Q -- = 0 (
JTAk) 

a -tO (J 

where Pe(a, k) is given by (3.76). From (A.4) in appendix A, we can determine the following 

[JTAk]+ < vek(a) 

JTAk < veda) 

r < 

(3.84) 

(3.85) 

where the operation [.J+ chooses either zero or the argument, depending on which is the larger of the 

two. From (3.78), and since ek and A~ can only be positive, r can take a value between zero and one. 

We can now make the right side of the inequality (3.85) a minimum upper bound of r' by taking the 

limit a --) 0: 

1
. eda) 

r < 1m --2-' 
<7-+0 A k 

Since the right side of the inequality (3.86) is the minimum upper bound of T, 

{ (
JTAk)}. ck(a) sup 0 <:: r <:: 1 : lim Pe(a, k)/Q -- = 0 = 'lk = hm - A 2 . 

0"-t0 (J a -tO k 

An equivalent expression for'lk in [31] is 

'lk = -;. lim a 2 log 1/ Pe(a, k). 
Ak <7-+o 

(3.86) 

(3.87) 

(3.88) 

From (3.88) it can be concluded that in the situations where the BEP does not approach zero as a --) 0, 

such as the single user closed eye situation, the multiuser efficiency is O. On the other hand, if the 
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multiuser effi ciency is a positive value, the bit error rate approaches zero exponentially as a --+ O. 

The multiuser efficiency is very close to the asymptotic multiuser efficiency, unless the SNR is very 

low. 

Verdu [31] defines the worst asymptotic effective energy was the minimum effective energy among 

all users as a --+ O. That is 

def 
w(A1 , ... , AI() min lim eda) 

k=l , ... ,K cr-). O 

min lim A~7)k 
k=l, .. . ,I< 0"--+0 

2 lim a 2 log 1/ P [U {bk # bd ] 
a-> O 

k=l 

(3.89) 

(3.90) 

(3 .91) 

provided that w(A t , . .. , AI() > O. Equation (3.90) fo llows from (3.82), and (3.91) follows from 

taking the lima->o a 2 10g(.) of both sides of 

k;r{~~1( Pe(a, k) :s; P [kQl {bk # bd] :s; 'f;/e(a, k ) (3 .92) 

The near1ar resistance [46] is a figure of merit which defines the detector in terms of the near-far 

capture immunity and is defi ned as the minimum asymptotic efficiency over the received energies of 

all the other users, i.e. 

(3.93) 

where "inf" denotes the infimum, and is defined as the maximum lower bound of the argument. In 

the case where we have received energies which vary with time (such a the mobile channel), we have 

a more restrictive definition 

inf '7k . 
A j [il>o 

(i,j) -,i (O ,k ) 

3.5.1 ASYMPTOTIC MULTIUSER EFFICIENCY OF THE TWO USER 

MATCHED FILTER 

(3.94) 

Let us consider asymptotic multiuser efficiency in terms of the two user matched filter case. For the 

matched filter recei ver we have the case of the closed eye under the condition 
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where we have from equation (3.88) that if the BEP does not approach zero as a --+ ° the asymptotic 

multiuser efficiency is 

(3 .96) 

Conversely, in the open eye condition if 

(3.97) 

we have from (A.3) and (3.35) 

lim P,(a,J) 
t7-rO Q (v:,Al ) (3.98) 

from which we get 

(3.99) 

Taking sup{r}, we get 

'71 = (1 _ ~: ipi) 2 (3.100) 

Combining the asymptotic multiuser efficiency for both regions of (3.95) and (3.97), we get 

~l = [max { 0, 1 - ~~ ipi} ]2 , (3.101) 

which is the asymptotic efficiency for the two user matched filter receiver. A linear plot of the asymp­

totic multiuser efficiency for the two user matched filter detector is given in Figure 3.14. 

3.5.2 ASYMPTOTIC MULTIUSER EFFICIENCY OF THE K USER MATCHED 

FILTER 

It is trivial to expand the expression for matched filter asymptotic multiuser efficiency to the K user 

case. Using the same reasoning as before, we can combine (A.3) and (3.55) to obtain 

for the synchronous case, and combine (A.3) and (3 .71) to obtain 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

(3.102) 

(3.103) 

University of Pretoria 

 
 
 



CHAPTER 3: The Matched Filter Receiver and Multiuser Detection Performance Measures 59 

Two User Matched Filter Asymptotic Multiuser Efficiency , p=0.2 
1 

0.9 

0.8 

0.7 

0.6 

>=" 0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 1 2 3 4 5 

A/AI 

Figure 3.14: Asymptotic multiuser efficiency for a matched filter detector with two equal energy 

users and P = 0.2 

for the asynchronous case. The asymptotic multiuser efficiency can be viewed as a normalized mea­

Slife of the openness of the eye (refer to equations (3.57) and (3.72)). 

Form (3.102) and (3.103) we can see that minimizing the asymptotic multiuser efficiency over all 

users, the near-far resistance of user k is equal to zero unless Pj k = Pkj = 0 V j of k for all over­

lapping user bits for both the synchronous and asynchronous cases. This means that the single-user 

matched filter detector is not near-far resistant, since it is impossible that the orthogonality constraint 

can be maintained over all offsets in the asynchronous channel. 
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3.6 PERFORMANCE OF THE COHERENT SINGLE USER 

MATCHED FILTER DETECTOR IN FREQUENCY FLAT 

FADING 

Let us now evaluate the single user matched filter where the received signals are subject to frequency 

flat Rayleigh fading. We assume coherent detection, i.e. that the fading amplitude and phase of 

the user of interest is perfectly known at the receiver. Let us adopt the synchronous version of the 

complex valued model in (2.3 1): 

K M 

yet) = L L Akbdi]sk(t - iT) + an(t), (3. 104) 
k=l i=l 

where Ak is the complex valued amplitude of user k due to a phase Ih. The real and imaginary part 

of Ak are independent and Gaussian with zero mean and standard deviation equal to A k . First, let us 

examine the single user case. 

3.6.1 THE SINGLE USER CASE IN THE PRESENCE OF FADING 

Here we consider the one-shot model without loss of optimality, since we consider the fading coeffi­

cients to be perfectly known. In the single-user case we have 

yet) = Abs(t) + an(t) , t E [0, T ]. (3.105) 

The optimum decision rule selects the value of b =E {±1} that minimizes the mean-square distance 

faT Iy(t) - Abs(t) 12 dt = faT ly(t) 12 dt + faT IAbs(t) 1- 2!R {faT y*(t)AbS(t)dt } , (3.106) 

that is, where the optimum decision rule is given by 

b = sgn (!R {A f y*(t)S(t)dt }) . (3 .107) 

The inner product 

y = (y*, s) = faT y*(t)s(t)dt (3 .108) 

is a suffi cient statistic. The decision rule in (3.107) is equal to b only if the angle between the complex 

values A and y is acute. That is to say that their absolute phase difference is less than 7r / 2. Let us 

find the error probability of the decision rule by conditioning on the transmitted bits and the received 

fading coefficients: 
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P[b = lib = - l ,A] P [-IAI2 + aR { A faT n*(t)S(t)dt} > ° IA 1 

P [-IAI2 + aR {A} N!)l + a'S {A} Ncs > ° IA 1 

Q ( I ~ I) , (3.109) 

where 

(3.110) 

(3.111) 

The symbols (3.110) and (3. 111 ) denote Gaussian random variables with zero mean and unit variance. 

As in previous cases, the probability of error if a one is sent is identical. We assume that the received 

complex amplitude A has a independent Rayleigh distributed real and imaginary parts. From (2.49) 

we have 

fR(r) = { rexp (_r;) , O:S l' :Soo, 

0, r < 0, 
(3.112) 

where R is the Rayleigh distributed random variable. We may write the received amplitude as the 

product of the Rayleigh distributed random variable and a deterministic part where A = AR. To 

find the BEP of the single user, we have to average over all values of the Rayleigh faded received 

amplitude. Subsequently, the BEP is given by 

E[Q(I~I)] 
faoo r exp ( - 1'2

2

) Q ( ~ ) d1' 

~ (1 -}l /a2/A2), (3.113) 

where (3. 11 3) follows from (A.?). The BEP exhibits an interesting property when compared to the 

case of a deterministic amplitude. In the deterministic case, the decay in BEP is exponential. In 

the Rayleigh faded case, however, the BEP has a much slower hyperbolic decay. This highlights the 

detrimental effect a Rayleigh fading channel has on a digital communication system, and in our case, 
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a single user COMA system. 

The exact BEP of user k in the case of Rayleigh fading is given in [31] as 

P{(u,k) 
2Ll (bl'h)=({~l},.' { -l 'l} ) E [Q ( I~kl + ~ bj 

R ~ 1~:lk } PJk) ] 

E [Q ( I~kl + ~ R{:j} pjk)] (3.1 14) 

+ ( c' j:~ AJPi' ) j (3 .11 5) 

{ -r+A~AJ".) (3. 116) 

where the phase term Ak / IAk l and the binary coefficients bk have been dropped in (3 .114) since they 

do not affect the distribution of the random variable inside the Q-function. Similar to the single user 

case, (3. 115) follows from (A.7) because R{Aj} are independent Gaussian random variables . We 

can obtain (3 .116) by solving the averaging integral that led to the single user result. The asymptotic 

multiuser efficiency in the case of Rayleigh fading is given by [31], 

2 
F I' U 

17k = 1m 2 F . 
a-+O 4Ak Pe (u, k) 

(3.117) 

3.7 SUMMARY 

The chapter begins by declaring the multiuser detection problem as a hypothesis testing problem. 

The concept of sufficient statistic is visited, and it is shown that the single user matched filter receiver 

contains sufficient statistic to make an optimal decision. The optimal (matched filter) single user re­

ceiver is analyzed and discussed. The COMA matched filter detector for multiple users is presented, 

and is analyzed for the two user case. Performance measures such as BEP and power tradeoff regions 

are introduced, with the two user channel in mind. The phenomenon of the near-far effect is discus­

sed as a basic limitation of the matched filter COMA receiver. A useful visualization of the two user 

matched filter detector is presented in terms of a signal space representation. 

The K user matched filter detection case is also analyzed in this chapter. The exact and Gaussian 

approximated BEP equations are derived and presented as a performance measure for the K user 
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case. The infinite user limit for BEP in a CDMA channel is also visited. Asymptotic multiuser 

efficiency and related measures such as near-far resistance and signal to interference ratios are also 

presented and discussed. The chapter is concluded with analysis of the matched filter detector in 

single and multiuser channels with frequency fl at fading. 
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CHAPTER FOUR 

LINEAR MULTIUSER DETECTORS 

The matched filter detector is a linear detector. We will now examine other linear detectors (i.e. detec­

tors that operate on the received samples by means of an arbitrary linear transformation M as shown 

in Figure 4.1). The class of linear multiuser detectors discussed in this chapter include the decorrela­

ting detector, the MMSE detector. and the generalized extension of the aforementioned detectors: the 

optimum linear multiuser detector. 

The blind detectors discussed in this dissertation all have mean weight vector solutions that converge 

to the MMSE solution. It is thus imperative to understand the operation of the MMSE detector. so we 

can make meaningful comparisons between the blind detectors and the MMSE detector. especially 

where multipath combining is concerned. In this chapter we will briefly visit the decorrelating detec­

tor. after which we will consider the optimum linear and MMSE detectors in more detail. 

The performance of the MMSE detector is evaluated by means of performance measures presented in 

Chapter 3. An extension of the MMSE detector model provided in [31] to the multipath case is also 

presented. This is done by partially utilizing the derivation in [47]. 

4.1 THE LINEAR DECORRELATING DETECTOR 

Before we discuss the optimum linear and MMSE detectors. let us briefly and qualitatively consider 

the operation of the linear decorrelating detector. The decorrelating detector is relevant to a certain 

extent. since the MMSE detector and decorreiating detector perform the same linear transformation 

when noise is absent from the channel [46], [31]. This means that both detectors exhibit the same 

asymptotic multiuser efficiency, and both are optimally near-far resistant. The CDMA decorrelating 

detector first proposed by Schneider [48] is equivalent to the zero-forcing equalizer, as it attempts to 
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Figure 4.1: Block diagram depicting the structure of the K user linear receiver performing a linear 

operation M on the sampled matched filter outputs. 

perform a linear inverse correlation matrix operation M = R-l on the received signal samples. In 

some cases, the correlation matrix may be singular, in which case a simple matrix inversion is not 

possible. A generalized inverse may then be used [46]. Analogous to zero-forcing equalization, noise 

enhancement may be a problem in the COMA decorrelating detector. After Schneider, there have 

been several efforts to realize the decorrelating detector adaptively [49] [50]. 

Having now briefly visited the decorrelating detector, let us consider a generalized extension of the 

decorrelating detector. 

4.2 THE OPTIMUM LINEAR DETECTOR 

Lupas and Verdu [46] extended the MMSE and decorrelating detectors to the optimum linear detector. 

The class of linear detectors performs a linear transformation on the received signal vector. The op­

timum linear detector is the detector which maximizes the asymptotic multiuser efficiency for every 

vector of received amplitudes. In general, it is possible to achieve a certain tradeoff of interference 

rejection and attenuation of the desired signal component in order to maximize the asymptotic mul­

tiuser efficiency within the constraint of linear multiuser detection. Employing the complex vector 

matrix model of (2.17), let us denote the kth user linear transformation by tk, with 
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CHAPTER 4: Linear Multiuser Detectors 

where y is the complex vector of normalized matched filter outputs. Then 

K 

ttl Y = L Ajbjttl rJ + tkl n, 
j=1 

where r) is the jth column of the normalized crosscorrelation matrix R. 

achieved by the transformation tk can be expressed as 

ptk = E Q J# 
[. (

Aktt!rk + L Ajbjtt!rj )] 

e ajttlRtk 
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(4.2) 

The probability of error 

(4.3) 

where the expectation is with respect to b), j i= k. The asymptotic multiuser efficiency of user k is 

given by the square of the smallest argument of the Q-function normalized by Ak/a2 , i.e. 

17k (tk) = HI [max {o, tt!rk - L AA
j 

Itt!rjl }]

2 

tk Rtk j# k 
(4.4) 

Due to the presence of the absolute value in (4.4), the maximization of the K-user asymptotic mul-

tiuser efficiency entails solving a nonlinear optimization problem that does not permit a closed form 

solution. Lupas and Verdu [46] presented an algorithm to implement the kth user maximal linear 

asymptotic multiuser efficiency detector. The authors also presented sufficient conditions for the best 

linear detector to achieve optimum kth user multiuser efficiency, as well as sufficient conditions for 

decorrelating detector to be the best kth user linear detector. The computational complexity of the 

kth user maximal linear asymptotic multiuser efficiency detector is prohibitive for a large number of 

users when using the algorithm mentioned above. 

Although it is not possible to find a closed form solution for the kth user asymptotic multiuser effi­

ciency in a K user channel, it is possible, however, to evaluate a closed form solution in the two user 

case. 

4.2.1 THE TWO USER OPTIMUM LINEAR DETECTOR 

We will now examine the optimization of (4.4) with respect to tt! by analyzing the two-user case. As 

in Chapter 3, we will restrict ourselves to the real domain, as it is instrumental in understanding and 

visualizing the two user linear case. Without loss of generality, if we let t 1 = [1 xJH, the asymptotic 

multiuser efficiency becomes 

T}l {td = [max {o, 17P -;l7lx ~pl }]2 
1 + 2px + x 

[max { 0, g (x, p, ~~) }] 2 (4.5) 

The value of x that maximizes g (x, p, *) is 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER 4: Linear Multiuser Detectors 

iT 
0 

s/t) 

yet) iT 
0 

sit) 

iT 
0 

Y, 

p 

Y2 

Decorrelating detector: 
G)=G2=1 

Optimum linear detector: 
G)=max{ 1,IPlA/A2 } 

G2=max( 1,IPlA/A)} 
MMSE Detector: 

G)=1+a 2/A/ 
G2=I+a 2IA? 

67 

Figure 4.2: Block diagram depicting the structure of the two user linear decorrelating, optimum and 

MMSE receivers in the real domain. 

x = {-17-sgn(P) if A2/Al < Ipi 
- P otherwise 

(4.6) 

When the relative energy of the interferer is strong enough, i.e. A2 ~ AI/pi, then the decorreJating 

detector maximizes asymptotic efficiency among all linear transformations. On the other hand, if 

A2 < Allpl, then the received signal is correlated with 

(4.7) 

or equivalently with 

(4.8) 

The optimum linear detector is a compromise solution between the decorrelating detector and the 

single user matched filter. As the relative power of the interferer decreases the optimum linear detector 

approaches the matched filter (Figure 4.2). 

The maximum asymptotic multiuser efficiency for the two-user case is obtained by substituting (4.6) 

in (4.5). 

A2 A 
1 + ::it - 2Ipl~, if A2/Al < Ipi 

1 

1 - p2, otherwise 
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CHAPTER 4: Linear Multiuser Detectors 68 

When A2/ Al < Ipl, the near-far resistance of the optimum linear detector is equal to that of the op­

timum multiuser detector in the high SNR region [46], [31]. On the other hand, when AdAl 2 IpI, 
there is no point, as far as near-far resistance is concerned, in utilizing the values of the received 

energIes. 

Note that the optimal linear asymptotic multiuser efficiency detector is optimal only in the high SNR 

region. It suffers from similar shortcomings as the decorrelating detector with respect to noise en­

hancement. In a low SNR environment, the single-user matched filter outperforms the optimal linear 

asymptotic multiuser efficiency detector. It is evident that there is room for improvement, if the noise 

is taken into account, concerning the performance of the optimal linear asymptotic multiuser effi­

ciency detector. On the one hand, we have the matched filter detector that is optimized for white 

Gaussian noise. On the other hand, the decorrelating detector mitigates multiuser interference while 

disregarding the white Gaussian noise. The detector that utilizes information concerning both the 

SNR and MAl is the MMSE detector. 

4.3 THE LINEAR MMSE DETECTOR 

The adaptive MMSE detector [51], [52], [53] may solve many of the complexity and assumed know­

ledge problems associated with many of the other multiuser detector structures. As with matched 

filtering and de-correlation, the MMSE detection is a linear operation. This has the advantage that the 

received signal samples can be processed directly, thus simultaneously performing both the function 

of matched filtering and multiuser detection [7]. The MMSE detector turns the problem of multiuser 

detection into a problem of linear estimation. This is accomplished by minimizing a mean square 

error (MSE) cost criterion adaptively. The minimization can be done colIectively over alI users, or for 

each user individually. 

An important quality of the MMSE detector, is that in addition to multiuser interference cancella­

tion, it can also perform multipath (diversity) combining [54], [47], providing it has adequate filter 

span and that the channel inverse can be accurately modelIed by a finite linear filter. In addition, 

the MMSE detector is successful at simultaneously mitigating narrow band interference (NBI) and 

MAl [55], [56]. A drawback of the MMSE detector is that a training sequence is needed to initially 

determine the CDMA channel conditions. After initial training, the MMSE detector can switch to 

its own decisions from which the MSE can be determined. This is referred to as decision directed 

mode. The imposition of training sequences implies some system overhead in the form of preamble 

and midamble bit sequences. The only knowledge required by the receiver is the training sequence of 

the user of interest. This means that the MMSE detector can be seen as a single-user detector capable 

of multiuser interference cancellation [7]. 
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CHAPTER 4: Linear Multiuser Detectors 69 

4.3.1 THE MMSE OPTIMIZATION PROBLEM 

We start by quantitatively discussing the MMSE detector in terms of the MMSE optimization pro­

blem. ~ote that the same notation is used as in Chapters 2 and 3. The kth user MMSE detector 

chooses a complex waveform (or linear transformation) q of duration T that performs 

(4.10) 

and makes the decision 

bk = sgn((y,ck)) (4.11) 

The MMSE linear transformation maximizes the SIR at the output of the linear transformation, i.e. 

1 _ 1 E [( (Ak bk8 k, cZ:)) ((Akbk8 k. ck))*] 
U;!I1 E [(bk - (y. en) (bk - (y, cn r] - +~:;x E [( (y - Akbk8 k, cZ:)) ((y - Akbksk, cZ:) rl' 

( 4.12) 

In orthogonal representation, we can always express Ck as 

(4.13) 

where ck is spanned by the signature waveforms 81, ... ,8 K and ck is orthogonal to the signature 

waveforms. Them we have 

E[(bk - (y,ck)) (bk - (y,cZ:))*] = E[(bk - (y,ck*)) (bk - (y,cr))*] + (}21I ckll· (4.14) 

We wilI restrict ourselves to Ck spanned by the signature waveforms, i.e. a weighted combination of 

the matched filter outputs. 

To analyze the operation and performance of the MMSE detector, we will start by formulating the 

vector matrix model of the MMSE detector. 

4.3.2 THE MMSE DETECTOR VECTOR MATRIX MODEL 

Let us start with the complex vector matrix model defined in (2.17) 

y = RAb+n, (4.15) 

where R is the correlation matrix in Hermitian form, A is a complex diagonal matrix of the user am­

plitudes, and n is a complex valued Gaussian vector with independent real and imaginary components 
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CHAPTER 4: Linear Multiuser Detectors 70 

and with a covariance matrix equal to 2a:2R. The complex bit vector is denoted by b. The MMSE 

detector attempts to minimized the MSE or the difference between the actual transmitted bit vector b 

and a linear complex transformation M of the received signal vector y by adjusting the transformation 

M. The transformation M is a K x K matrix and a K user joint optimization problem. Equivalent to 

the joint optimization problem, we can also have K uncoupled optimization problems (one for each 

user). in which case the real error cost function of user k is given by the expected value of the squared 

error, I.e. 

(4.16) 

where mk is the kth column vector of M. In the K user joint optimization problem, the real error 

cost function J is given by 

(4.17) 

where e denotes the complex error vector. Alternatively, the real error cost function is given by the 

trace of the covariance matrix J of the error vector, i. e. 

J tr {J} 

tr {E [(b - My) (b - My)H]} 
= tr{E [ee H

]}. 

( 4.18) 

(4.19) 

(4.20) 

To find the complex matrix M that will minimize the cost function J, we will use the gradient method. 

This is done by partially differentiating the cost function J with respect to the complex elements of 

M, equating it to zero, and solving for M. The matrix M has complex elements, which can be written 

in the form 

mvw = Xvw + jyvw' (4.21) 

The definition for the element of the vth row and the UJth column of the complex gradient operator 

[57] matrix \7M is given by 

a 8 
\7mv", = -a- + j-a . (4.22) 

Xvw Yvw 

To solve the MSE cost function optimization problem, we will first apply the gradient operator to the 

real cost function J. The complex gradient matrix \7M(J) is thus given by 

[ 

8J . OJ 
8Xll + J c3Yll 

\7M (J) = : 
8J . 8J 

&XKl + J &YKI 

OJ . 8.1 1 BXIK + J 8YlK 

.-!l..L + J' -.2L 
8XKK 8YKK 
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where equation (4.23) represents a natural extension of the customary definition of a gradient for a 

function of real elements to the more general case of a function of complex elements. I 

By letting \7M(J) = 0 and solving for M, we will have found an expression for M where the error 

surface for each user in the K dimensional space has a minimum. To do this, let us first manipulate 
(4.14) 

J = tr{E[(b-My)(b-My)H]} 

tr{E [(b - My) (b H _ yHMH)]} 

tr {E [bbH - byHMH - MybH + MyyHMH]} 

tr {E [bbH] - E [byH] MH - ME [ybH] + ME [yyH] MH} , (4.24) 

where (4.24) follows from the fact that M is assumed to be constant. Assuming no correlation bet­

ween the data of different users or between the data and noise vectors, we have 

E [bbH] 21, (4.25) 

E [byH] = 2AR, (4.26) 

E [ybH] - 2RA, (4.27) 

E [yyH] = 2RA 2R + 2a2R. (4.28) 

Simplifying the cost function with the above results, we have 

J = tr{21-2ARMH -2MAR+2M(RA2R+a2R)MH} 

= tr{21-2ARMH -2MAR+2MRA2RMH + Ma2RMH}. 
(4.29) 

Let us now find the complex gradient matrix \7 M (J) of the cost function, 

\7M(J) 

= 2 8~' (tr {21} - tr {2ARMH} - tr {2MAR} + tr {2MRA 2RMH} + tr {2Ma2RMH}) 
(4.30) 

where (4.30) is evaluated in Appendix C. The result of the gradient of the cost function J from 

Appendix C is given by 

(4.31) 

INote that the cost function J is not analytic, when it is written in terms of complex filter taps. The definition of the 

derivative of the cost function J with respect to the complex transformation matrix M reqUires special attention. This issue 

is discussed in Appendix C where the relation between derivative and gradient with respect to a complex valued matrix is 

discussed. 
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CHAPTER 4: Linear Multiuser Detectors 72 

To obtain the minimum on the error surface, the slope or gradient must be set equal to zero, i.e 

V'M(J) = -4AR+ 4MRA2R + 4Ma2R = 0 

with M the optimum value for the linear transformation M. Solving for M we obtain 

The MMSE detector outputs the following decision for user k 

sgn (~k [(R + a2 A -2flYL) 
sgn ([(R+a2A-2)-ly]J. 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

Note that the dependence of the MMSE detector on received amplitudes is only through the signal­

to-noise ratios AVa2 due to the sgn function. Because of this, we can replace the optimum linear 

transformation in (4.34) with 

(4.36) 

In the formulation of the MMSE detector vector matrix model, we have assumed a great deal less 

than in the basic CDMA model. We did not assume that the background noise is Gaussian, nor that 

the bits are binary valued. The only assumptions we made were that the bits were uncorrelated from 

user to user, that the bit and noise vectors were uncorrelated, and that E[b~J = 1. 

4.3.3 THE TWO USER MMSE DETECTOR 

Once again restricting ourselves to the real domain, in the two user case we have from (4.36) 

(R+a'A-2r 1 
= [(1+ ~;) (1+ ~;) -pf [l:~ (4.37) 

from which the two user MMSE detector follows, as shown in Figure 4.2. 

4.3.4 THE LIMITING FORMS OF THE MMSE DETECTOR 

The MMSE detector is a compromise between the matched filter detector and the decorrelating de­

tector. To illustrate this, we shall investigate the linear transformation M* = (R + a 2 A -2)-1 in its 

limiting forms as a -+ ° and a -+ 00. On the one hand, if a -+ 0, then (R + a2 A -2)-1 -+ R- 1
, 

which means that the MMSE detector approaches the decorrelating detector. On the other hand, if 

a -+ 00, the matrix (R + a2 A -2)-1 becomes strongly diagonal, and the MMSE detector approaches 
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CHAPTER 4: Linear Multiuser Detectors 73 

the conventional matched filter detector. 

The above results reinforces the statement that the asymptotic multiuser efficiency and near-far re­

sistance of the MMSE detector is equal to that of the decorrelating detector. This is intuitive, as the 

asymptotic multiuser efficiency and near-far resistance performance measures are evaluated in the 

limit as a ~ O. 

4.3.5 THE ASYNCHRONOUS MMSE DETECTOR 

The linear time invariant transfer function of the asynchronous MMSE detector for a K user COMA 

channel is given by 

(4.38) 

This is verified in [31] parallel to the asynchronous decorrelating detector, and is the limiting form of 

the inverse of the equivalent correlation matrix that we would obtain for a finite frame length (refer to 

(2.40». The equivalent correlation matrix for a finite frame length is in the form 

R[O] +a2A-2 RH[l] 0 0 

R[l] R[O] +a2A-2 RH[l] 

Ra,~r~vlsE = 0 R[l] 0 

R[O] +a2A-2 RH[l] 

0 0 R[l] R[O] +a2A-2 

4.3.6 THE WIENER FILTER CHARACTERIZATION OF THE MMSE 

DETECTOR 

(4.39) 

For the Wiener filter characterization of the MMSE COMA detector we return to the synchronous 

case. To illustrate the operation of the Wiener filter, we will use the model of orthonormal projections 

as in (2.23). We will limit ourselves to the uncoupled optimization problem, where optimization is 

done with respect to a single user. Without loss of generality, we consider user 1 as the desired user. 

We will start by defining a vector p, which is the cross correlation vector between the vector r (2.25) 

and desired response bl: 

p = E[b~rl· (4.40) 

The optimal vector transformation v that minimizes the mean square error for user 1 
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(4.41) 

can be obtained by setting the gradient equal to the zero-vector, i.e. 

(4.42) 

where the gradient of a complex vector is again defined as in the vector case of (C.9). The first term 

p = E[hir) can be simplified to 

(4.43) 

from (2.25) and from the fact that the noise and data is uncorrelated and also from the fact that the 

data of different users is uncorrelated. The second term E[rrH
] was derived in (2.27) and is equal to 

K 

E[rrH] = 20-2 1 + 2 L A~sks~. (4.44) 

k=1 

Solving for v, we obtain the optimum solution for the linear vector transform 

v (E [rrH ]) -1 E [birJ (4.45) 

C- 1p (4.46) 

[ K r Al 0-21 + {; A%sksf! SI, (4.47) 

where C denotes the covariance matrix of the vector r divided by 2, and is given by 

K 

C = 0-21 + L A%Sksf! (4.48) 

k=1 

Equation (4.46) is an expression of the Wiener-Hop! equation [57J, [58J. It is beneficial to know 

the minimum mean-square error achievable with the detector depending on the channel noise. The 

MMSE is given by 
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Jrnin E [(b1 - yHr) (bi - rHy)] 

E [b1bi] - E [biyHr]- E [b1rHy] + E [yHrrHy] 

= 2 - { (E [rrH]) -1 E [birJ} H E [rrH] (E [rrH] r 1 E [b;'rJ 

2 - { (E [rrH]) -1 E [bi r]} H E [bi r] 

= 2 - E [bir]H (E [rrH]) -1 E [bir] 

= 2 - p H C-1p 

2 - 2Als[1 [~2I + t. Ais.s: rl 

SI 
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(4.49) 

(4.50) 

(4.51) 

(4.52) 

The expression in (4.51) corresponds to the expression of minimum mean-squared error of the stan­

dard Wiener filter as evaluated in (57]. 

4.4 THE MMSE DETECTOR LEAST MEAN SQUARE (LMS) 

ALGORITHM 

From equation (4.47) it can be seen that to determine the optimum solution, a matrix inversion needs 

to be performed. This is a computationally expensive operation, and other methods need to be consi­

dered to avoid this. In addition, mobile channels are time varying, and the detector needs to follow 

these variations. The LMS algorithm achieves the aforementioned by being simple to implement, 

being able to learn the channel impulse response adaptively, and being able to follow time channel 

variations. For correct operation of the LMS algorithm, high certainty data of the desired user must 

be available at the receiver. This seems like to much to ask, as the data is what we need to determine 

in the first place. However, this requirement can be fulfilled by sending a training sequence to insure 

initial convergence. After this, the demodulated bits have a high certainty, and can be used by the 

MMSE detector to follow variations in the channel. The latter mode is referred to as decision directed 

operation. In this way the MMSE detector can be adaptively implemented, but with the disadvantage 

of some overhead in the form of training sequences. 

The operation of the LMS algorithm can be seen as afeedback control system. It consists of two basic 

processes [57], i.e. 

• An adaptive process which involves the adaptation of the tap weights . 

• Afiltering process which involves the inner product of an input vector with the weight vector, 

as well as generating an estimation error which actuates the adaptive process. 
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The LMS algorithm is based on the method of steepest descent, which is one of the oldest methods 

of optimization. To find the minimum value of the mean squared error using the the steepest descent 

algorithm, we proceed as follows: 

1. We begin with an initial value v[OJ for the tap weight vector, which is an arbitrary value. 

2. Using the initial or present guess, we compute the gradient vector, the real and the imaginary 

parts which are defined as the derivative of the mean-squared error J[nJ, evaluated with respect 

to the real and imaginary parts of the tap weight vector v[nJ at time n (or the nth iteration). 

3. The next guess of the tap weight vector is computed by making a change in the initial or present 

guess in a direction opposite to that of the gradient vector. 

4. Go back to step 2 and repeat. 

If the cost function is convex, then the minimum will be found after several iterations of the above 

algorithm. The distance with which the next guess differs from the current guess is termed the step 

size. 

Let us now examine the elements of stochastic gradient descent optimization. Suppose we wish to 

find the multi-dimensional parameter (J* that minimizes the function 

'lJ(0) = E [g (X, 0)]. (4.53) 

For a step size J.l, a convex function 'lJ and a initial condition 00 , it would be possible to converge to 

the global minimum via steepest descent 

(4.54) 

If the step size is arbitrarily small, then eventually OJ will be close enough to 0* for all practical 

purposes. To speed up convergence, the step size can initially be large and progressively decreased 

as the algorithm converges. Other than the fact that 'lJ is convex we did not invoked any structure 

in (4.53). In order to calculate the expected value, we need to know the distribution of X. This 

is not so in all cases in practice. Instead. let us assume that the algorithm is allowed to observed an 

independent sequence {Xl, X 2, ... } where each of the random variables in the sequence has the same 

distribution as X. With this information we can estimate the distribution of X and also calculate an 

approximation to V'lJ. This requires too much effort and a simpler approach would be to replace the 

expected value of the gradient by the immediate (noisy) gradient, i.e. 

'lJ(0) = E [g (X, 0)]. 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

(4.55) 

University of Pretoria 

 
 
 



CHAPTER 4: Linear Multiuser Detectors 77 

This can be justified by the fact that although the immediate negative gradient does not necessarily 

point in the direction of steepest descent, the average negative gradient of a few iterations does. Ac­

cording to the law of large numbers, if the step size is infinitesimally small, the trajectory of the 

algorithm will very closely track the path of steepest descent. This algorithm is known as the stochas­

tic gradient descent algorithm. In the case where the cost function is a quadratic error cost function, 

the stochastic gradient algorithm is known as the LMS algorithm. It is important to know that the 

stochastic gradient algorithm can also be used when the sequence of realizations of X is dependent, 

subject to the fact that the sequence is also ergodic (the time average of the immediate gradients 

converges to its expected value). 

Applying the stochastic gradient algorithm to the MMSE case (LMS), the linear MMSE detector for 

user one correlates the received waveform with the signal Cl that minimizes 

(4.56) 

How does this fit into the stochastic approximation framework that we have derived above? The 

function g(X, Cl) is our mean square error cost, i.e. 

(4.57) 

where X represents the received waveform y and the bit b1 . It is easily verified that (4.57) is strictly 

convex in Cl. We first will consider the synchronous case, after which we will briefly address the 

asynchronous case. The independent identically distributed observations used in the stochastic gra­

dient algorithm are Xj = (b l U], y[j]) , where y[j] is the received signal modulated by the jth bit of 

all the synchronous users. To specify the gradient algorithm of (4.54), all we need to do is evaluate 

the gradient of (bl - (y, cn)2 with respect to Cl, which is equal to 

2 ((y,ci) -bdy· (4.58) 

We thus conclude that, in practice, the update algorithm is simply 

cdj] = crlj - 1] - "" ((y[j], ci [j - 1]) - brlj]) y[j]. (4.59) 

Since in practice we are working with a finite dimensional vector implementation of the adaptive law, 

a few things need to be pointed out. If the signature waveforms are known, then the dimensionality 

of the adaptive vector need not be larger than K. We know that the MMSE receiver does not need to 

know the transmitted signature vectors. Fortunately, by using a finite dimensional basis known to span 

all received signature waveforms (such as chip-matched filters), there will be sufficient dimensionality 

to implement our linear adaptive LMS algorithm. It is furthermore sufficient to sample at the Nyquist 
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rate for approximately band limited chip waveforms in both the synchronous and asynchronous cases. 

Our LMS adaptation algorithm in finite vector form is then given by 

vdn] = vdn - 1] - IL (vH[n - l]r[n]- bdn]) r[nJ. (4.60) 

Global convergence of the LMS algorithm is shown in [31], subject to a sufficient decrease in step 

size as the algorithm progresses. The maximum step size to ensure convergence at any moment is 

given by 

2 
ILmax = 2 \ ' 

a + "'max 
(4.61) 

where Amax is the maximum eigenvalue of 'Lf::::l AkskSf!. To retain acceptable performance in the 

asynchronous case, we need to lengthen the observation window that spans more than one bit period. 

This implies that the inner product in the penalty function (4.56) is taken over the whole truncated 

window. This does not affect the convexity of the cost function, allowing the detector to converge to 

the MMSE solution. 

It is expected that the detector will converge to the MMSE solution if the interference is constant. 

When these parameters are slowly time varying, it is still possible for an adaptive detector to follow 

these variations. In the case of a new user suddenly being powered on, the decisions might be unre­

liable in decision directed mode, and the desired user might not converge. In this case, the desired 

user will then request for the training sequence to be retransmitted. This implies more overhead, 

and is undesirable. It is for this reason that blind multiuser detectors (such as the constant modulus 

detector) warrant some investigating. Instead of using data (or decision directed) to adapt, the blind 

detectors utilize the cyclostationarity in the signature waveforms to minimize some given criterion. 

4.5 PERFORMANCE OF THE MMSE DETECTOR 

In this section we will consider the performance of the MMSE detector, using some of the measures 

in Chapter 3 to evaluate the detector. 

4.5.1 SIGNAL-TO-INTERFERENCE RATIO OF THE MMSE DETECTOR 

To derive the SIR of the MMSE detector, we start by defining the covariance matrix of the interference 

as 
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Note that user 1 is excluded from the sum. We can now write the optimum MMSE transformation of 

(4.47) and the MMSE of (4.52) as 

(4.63) 

and 

2 
Jmin = ---;:;-~--

1 + Ats{lO-lsl 
(4.64) 

These two results follow from the fact that 

(4.65) 

which can be proven using the matrix inversion lemma [57] or also known as Woodbury's identity [7J.2 

Using the above results, and remembering that v achieves the maximum output signal to interference 

ratio of all linear detectors, the SIR of user 1 can be written as 

= 

E [(vH (r - A1b1sd) (vH (r - A 1b)sd)H] 

E [(AlblVHsl) (Aibis{lv)] 

(4.66) 

(4.67) 

(4.68) 

From (4.66), it can be seen that the SIR is the expectation of the squared linear transformation of 

the desired user contribution divided by the expectation of the squared linear transformation of the 

interferers' contribution. 

4.5.2 ASYMPTOTIC MULTIUSER EFFICIENCY AND NEAR-FAR RESISTANCE 

OF THE MMSE DETECTOR 

Since the operation of the decorrelating detector and that of the MMSE detector are identical in a 

noiseless environment, they have the same asymptotic multiuser efficiency and near-far resistance. 

The asymptotic multiuser efficiency of the MMSE (or decorrelating) detector is given in [46] by 

2The matrix inversion lemma states that for positive definite square matrices A. Band D related by A = B- 1 + 
CD-1C H • the inverse of A is given by A-I = B - BC(D + C H BC)-ICH B. 
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(4.69) 

(4.70) 

where R+ is the Moore-Penrose generalized inverse and denotes the inverse of a singular (or non­

singular) square matrix R.3 The subscript k of Rk denotes the removal of the kth row and the kth 

column from the matrix R. The vector ak is the kth column of R with the kth entry removed and 

contains the correlations between the kth user and all other users. The value Rtk is the element of the 

kth row and kth column of the generalized inverse of R. 

From Figure (4.3), it is evident that the asymptotic multiuser efficiency defined in (4.70) does not 

depend on the amplitude of the interfering user. This implies that the MMSE detector's asymptotic 

multiuser efficiency and near-far resistance are all exactly equal. 

In the asynchronous case, Verdu [31] shows the near-far resistance to be 

( 
1 !7l' )-1 

fik = 27r -7l' [R H [l]dW + R[O] + R[l]e - jW];k dw (4.71) 

Lupas and Verdu showed in [46] that the near-far resistance of the MMSE, optimum linear and de­

correlating detector is equal to that of the optimum (non-linear) multiuser detector if the desired user 

is linearly independent from the other users. 

4.5.3 BEP OF THE MMSE DETECTOR 

The decorrelating detector is only an optimization with respect to interference, whereas the MMSE 

detector is an optimization with respect to the combined contribution of noise and interference. This 

effectively means that the MMSE transformation will inevitably allow some residual multiuser inter­

ference to remain. The consequence of this is that the derivation of the MMSE detector BEP is similar 

to that of the single user matched filter. As in the case of the single user matched filter, the decision 

statistic depends on the sum of a Gaussian random variable (due to AWGN) and a binomial random 

variable (due to residual multiple access interference). In the synchronous case, the first user MMSE 

decision statistic can be written as 

(MY) 1 = ( (R + a 2 A -2) -1 Y) (4.72) 

B, (bl + t,flkbk) +an), (4.73) 

JA generalized inverse C ofa matrix B is any matrix that satisfies: CBC = C and BCB = B. The Moore-Penrose 

generalized inverse is the unique inverse for which BC and CB are symmetric. It follows that if B is a square non-singular 

matrix, then its Moore-Penrose generalized inverse is B- 1
• 
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Two User Asymptotic Multiuser Efficiencies, p=0.2 
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Figure 4.3: Asymptotic Multiuser Efficiencies of the Matched Filter, Decorrelating and MMSE De­

tectors. 

where 

Bk Ak (:tVIRt , (4.74) 

(3k 
B k 

(4.75) 
B J ' 

il l ~ N (0 , ()\;IRM) J . (4.76) 

The symbol (3k denotes a measure of the residual interference of the kth interferer, and is termed the 

leakage coefficient. The Gaussian noise random variable is denoted by ill and the binomial random 

variable is denoted by the sum in (4.73). The probability of error is given by 
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Pe(a, 1) = 2I-K L Q (AI CMR)lI ( t )) 
bl, ... ,bKE{-l,l}K-l a V(MRM)u 1 + k=2 (3k

b
k . 

(4.77) 

We face a similar problem as in the case of exact computation of the single user BEP, in that the 

number of computations grow exponentially with the number of active users. This is further compli­

cated by the computation of the leakage coefficients. We will now apply the Gaussian approximation 

method to the MMSE case. 

4.5.3.1 GAUSSIAN APPROXIMATION OF THE MMSE DETECTOR BEP 

The Gaussian approximation method is surprisingly accurate when applied to the BEP of the MMSE 

detector. This is done by replacing the multiple access interference by a Gaussian random variable 

with identical variance, i.e. Q(SIR1). We can use (4.68) together with (A.6) in Appendix A: 

E[Q(~+-\X)J =Q (~), (4.78) 

where X is unit normal, 

(4.79) 

and 

K 

-\2 =~2L(3k' (4.80) 
k=2 

Let us verify the accuracy of the approximation on an intuitive basis. We will qualitatively evaluate 

the deviation from Gaussianity of the decision statistic for the two limiting cases of a -+ 0 and 

a -+ 00. As a -+ 0, the leakage coefficients disappear, removing the contribution of the binomial 

random variable. On the other hand, as (J -+ 00, the Gaussian noise contribution at the output of the 

transformation dominates the multiple access interference. In both cases, the decision statistic appears 

asymptotically Gaussian. The accuracy of the MMSE Gaussian approximation method is verified by 

several analytical results in [59]. Figure 4.4 depicts the accuracy of the Gaussian approximation BEP 

for the MMSE detector when compared with the exact calculated BEP. In [59] it also showed that the 

MMSE BEP is upper bounded by the decorrelating detector BEP. 

Another expression of the Gaussian approximated BEP in terms of Jmin is given in [7] as 

( ~) Pe(a, 1) ~ Q V ---:y;;:;- . 

A further approximation of (4.81) is given by 
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BEP for MMSE and Matched Filter Detectors - K=8 Users, p = 0.1 

. ............. ; .. 

~ Exact 
--+- Gaussian 
--A- MMSE Exact 

. --B- MMSE Gaussian approx. 

10-35L_ ________ ~ ________ ~ ________ _L ________ ~ __________ L_ ______ ~ 
10 12 14 16 18 20 22 

SNR = \cIa (dB) 

Figure 4.4: BEP graph comparing the exact and Gaussian approximated curves of the MF and MMSE 

detectors. 

Pe(a, 1) "" Q (/ . ). Jmm 
(4.82) 

4.5.3.2 INFINITE USER LIMIT OF THE MMSE DETECTOR BEP 

The infinite user limit BEP is of interest when we consider averaging over random binary sequences. 

The derivation is rather involved, and we will supply only the result as stated in [31]. It is assumed 

that all the users have equal power. If the ratio of the number of users to the spreading gain is, or 

converges to, a constant 

. K 
(3= hm N' (3E(O, +oo), 

K-,>oo 
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then the BEP of the MMSE detector in the infinite user limit (K -+ 00) is given by 

where 

F (x, z) ~ ( V x (1 + JZ)2 + 1 - V x (1 _ JZ)2 + 1) 2 

4.5.4 POWER TRADEOFF REGIONS OF THE MMSE DETECTOR 

84 

(4.84) 

(4.85) 

Using the results in the previous sections, we can now determine the power tradeoff regions of the 

MMSE (and related blind) detectors in the real two user scenario. In Figure 4.5 it can be seen that 

for all but very high cross correlation values p, the SNR needed to attain a BEP of less than 3 x 10-5 

for both users is slightly above 12dB for a two user system. If we compare this to the matched filter 

case in Figure 3.6, we find that the SNR needed does not increase along with the interfering user's 

amplitude. This means that the MMSE detector is effective in mitigating the near far problem, and 

the interferer's power has no effect on the desired user's bit rate. 

4.5.5 MMSE DETECTOR PERFORMANCE IN MULTIPATH CHANNELS 

Having looked at the performance of the MMSE detector in synchronous (non-multipath) channels, 

we will now consider how the detector operates in multipath channels. An extensive evaluation of the 

performance of the MMSE detector in a mUltipath environment was done in [47]. We will follow a 

similar approach using an asynchronous version of our orthonormal projection model in (2.25). We 

are interested in the performance of the MMSE detector both in terms of minimum mean-square error 

and BEP. Concerning our derivation, the following important assumptions are made: 

1. The received signal window length is equal to one symbol period; 

2. No multi path component is later than one symbol period; 

3. The receiver is synchronized to the first multipath component; 

With this in mind, we can visualize the multi paths of user k as depicted in Figure 4.6. 

Within the received signal window, any two mUltipath components have a correlated part due to the 

present bit, and an uncorrelated part due to the preceding bit of the later path. The correlated part can 

be seen as part of the desired signal and a useful diversity component. The uncorrelated part belongs 

to the preceding bit, which can be viewed as interference. Using our existing model, we will now 

derive the MMSE in the case of multipath. 
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SNR necessary to Achieve a BEP < 3x 10-5 (MMSE Detector) 
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Figure 4.5: Regions of signal-to-noise ratios to attain a BEP of 3 x 10-5 for both users using a MMSE 

detector. 

Remember from (2.59) that when the received signal window is one symbol long, we have 

J( P-l 

Y (t) [i] = L L Ak ,pbk [i ]s (T - Tp) exp (-j1h,p) + ,m(t) . (4.86) 

k=lp=O 

Formulating an asynchronous version of equation (2.25), we have 

J( P -l 

r = L L (Ak,pbk[i ] S~p + Ak,pbdi - l]Sk,p) + O'm, (4.87) 
k=l p=O 

where the term Ak,p refers to the complex amplitude due to the phase term ek,p in (4.86), P is the 

number of resolvable multi paths, and 
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Main Path 
User I 

Multipath 1 
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Signal of Multi path I, User 1 
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86 

Figure 4.6: Depiction of the equivalent synchronous multi path model of a CDMA channel. 

L _ 
Sk,p -

R _ 
sk ,p ~ 

Sk(L - Dp+l) 

Sk (L - Dp+2) 

o 

0 

0 

0 

Skl 

Sk2 

Sk (L- Dp) 

(4.88) 

(4.89) 

The symbol Ski defined in (2.23) denotes the the projection of the lth orthonormal signal on the 

signature waveform of user k. The symbol Dp denotes the delay of the pth multi path. We can let 
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then 

bk[i - l ]Sk(L-Dp+l) 

bk[i - 1]Sk(L-Dp +2) 

bk [i - l ]SkL 

bdi]Sk l 

bdi]Sk2 

J( P- l 

r = L L Ak,pSk,p + O'm. 
k= l p=O 

Analogous to (2.27) we have the covariance matrix 
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P-l P-l 

~ + 21A1'112 slsf + 2 2: IA1,p12 S~pS~p H + 2 2: IA1,p12 Sf,pSf,p H 

A ' .. ' p=l p=l 
B " ..... ,f ''-__ _.'"..__---''' 

C D 

K P-l K P-l 

+22:2: IAk ,p12 sr,psr,p H + 2 L L IAk ,p12 sf,psf,pH. 
k=2 p=O k=2 p=O 

'~--------~v~--------~' '~------~v~---------' 
E F 

Note that we retain the expected value in (4.92), since the dependence on the current and previous bit 

is contained in Sk,p' When we expand (4.92), the tenns (4.93), (4.94), (4.95) and (4.96) become zero, 

as consecutive bits are uncorrelated. The tenns in (4.97) require some further explanation. The tenn A 

denotes the sum of the AWGN due to all the multipaths. The terms Band C denote the contributions 

of the synchronous first multi path and the correlated parts of the other paths respectively of user 1. 
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These are the signals of interest. Tenn D denotes the uncorrelated parts of the other multi paths of 

user 1. The tenn E denotes the correlated parts of the multipaths of the remaining users, while term 

F denotes the uncorrelated parts of the multi paths of the remaining users. The terms E and F can 

both be seen as the contribution of multiple access interference. 

The cross correlation vector p, following the same reasoning as in (4.43), is given by the correlation 

between the vector r and desired response b1, i.e 

p E [bai]rJ 

E [bi1iJ (~~ (A"pb'liJs~p + A',pb,li - IJsf.,) hm ) ] 

E [~~ A"pb'liJbiliJs~p] + E [~~ A"pb.!i -IJbili]st",j + E[bjli]am: 

P-1 

2A1,1 S1 + 2 L A1,ps fp, (4.98) 
p=1 

where (4.98) follows from the fact that the ith bit of user 1 is uncorrelated with the bits of the other 

users, the previous bits of user 1 and the other users, and the AWGN. If we let 

(4.99) 

then 

(4.100) 

Calculating the optimum solution for the vector transform v for the MMSE multipath case, similar to 

(2.45), we have 

v = (E [rrH] r 1 
E [brrJ 

2A1,1 [2a2
1 + 2/A1,1/' slsll + 2 ~ /A1,p/' s~psf/ + 2 ~ /A"p/' sfpst.p H 

K P-l 2 K P-1 2 H]-l 

+2 {;;; IAk,pl sf,psf,p H + 2 {; ~ /Ak,P/ sf,psf,p g] (4.101) 

Similar to the non-multipath case, we express the minimum mean-square error as 
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4.5.5.1 SIGNAL-TO-INTERFERENCE RATIO OF THE MMSE DETECTOR IN A 

MULTIPATH CHANNEL 

We define the interference covariance matrix in the multipath case as 

90 

(4.102) 

P-l K P-l K P-l 

o ~f a2
I + L !A.l,pI2 sf,psf,p H + L L IAk,p12 sf:,ps~,p H + L L IAk,p12 sf,psf,p H, (4.103) 

p= 1 k=2 p=O k=2 p=o 

and the covariance matrix of the desired component as 

(4.104) 

where 

SI = [SI Sf,1 Sf,P-l ] (4.105) 

is a L x P matrix. Since the product 818fT is not a scalar, we cannot use the same simplification 

as (4.63) and (4.64) by using (4.65). We can simply write the optimum MMSE transformation in a 

multi path channel as 

v = 2A1,1 [0 + IAI'112 SISf]-1 gI, (4.106) 

and the minimum mean-square error as 

Jmin = 2 - 2IAl,l/2 gf [n + /Al,l12 SISf] -1 gl. (4.107) 

The SIR of user 1 in the multipath case is given by 

(4.108) 

where gf gl is the gain due mUltipath. The loss due to the uncorrelated part of the multipaths of user 

1, as well as the multiple access interference is contained in n. 
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4.5.5.2 BEP OF THE MMSE DETECTOR IN A MULTIPATH CHANNEL 

Evaluating the exact BEP of the MMSE detector in a multi path environment is even more computa­

tionally expensive than in the non-multipath case. To evaluate the BEP of the MMSE detector in a 

mu)tipath environment we wi)) simply use the approximation in (4.81) and (4.82), i.e. 

(4.109) 

and 

P('(a, 1) ::::: Q (J 1 . ). 
Jmm 

(4.110) 

4.6 SUMMARY 

In this chapter a rigorous analysis of the MMSE detector, within the context of linear detectors, is 

undertaken. The blind detectors explored in this dissertation have the same vector weight solutions 

as the MMSE detector. This necessitates a thorough understanding of the operation and performance 

of the MMSE detector. 

The linear decorrelating detector is introduced in the first section of this chapter. The linear decor­

relating detector bears a close resemblance to the MMSE detector, as it performs the same operation 

as the MMSE detector in the noise free case. The linear multiuser detection optimization problem is 

then generalized to the finding of the best linear detector. The K user case does not permit a closed 

form solution to this optimization problem. The two user case is subsequently examined, which does 

permit a closed form solution. 

Following this general view of linear multiuser detectors, focus is then shifted to the operation of the 

joint linear MMSE detector. The MMSE optimization problem is presented, and is solved through 

use of the complex valued MMSE detector vector matrix model. The two user MMSE detector is 

briefly considered. The noise limiting forms of the MMSE detector is then discussed, with focus on 

the relation between the linear decorrelating detector and the linear MMSE detector. The asynchro­

nous linear MMSE detector model is briefly presented. The Wiener characterization of the linear 

MMSE detector is subsequently considered, where optimization is reduced from joint optimization, 

to optimization with respect to only one of the users. In the ensuing section the LMS algorithm for 

the linear MMSE detector is derived. 

The rest of the chapter focuses on the performance of the linear MMSE detector based on the cri­

teria stated in Chapter 3. The performance criteria considered include SIRs, asymptotic multiuser 
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efficiency, BEP and power tradeoff regions. In the case of BEP, the Gaussian approximation method 

and the infinite user limit for the MMSE detector is also considered. The following section contains 

the extension of the model in Verdu [31] to the complex valued multipath case. Certain assumptions 

are made, and the expressions for SIR and BEP are derived for the multipath channel. 
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CHAPTER FIVE 

BLIND MULTIUSER DETECTION USING THE 
CONSTANT MODULUS CRITERION 

In this chapter, the focus is narrowed to the field of blind linear multiuser detection employing two 

different modified versions of the constant modulus criterion. The first section is an introduction, 

presenting the (rather short) history of blind multiuser detection for the CDMA channel. In the se­

cond section, the linearly constrained constant modulus criterion is thoroughly analyzed along with 

the convexity of the cost function. For the first time, a global condition is presented with proof for the 

convexity of the cost function. The derivation of the linearly constrained constant modulus algorithm 

is also presented in this section. The third section contains the analysis of the linearly constrained 

differential constant modulus criterion as presented by [60]. The convexity of this cost function is 

analyzed, and is shown to be globally convex. The linearly constrained differential constant modu­

lus algorithm is also derived and presented in this section. In the final section of this chapter, the 

performance of the aforementioned criteria is discussed at the hand of the results obtained from this 

chapter. 

5.1 INTRODUCTION 

Blind multiuser detection was first conceptualized by Honig et. al. [3], and has been based on the 

principle of the linearly constrained minimum variance (LCMV), which was originally developed for 

adaptive array antennas [61J. In [3], Honig describes the blind LCMV detector in terms of a cano­

nical representation for the linear detector in the signal space. The principle of the LCMV detector 

is to minimize the receiver output variance, without cancelling the desired signal component. When 

a stochastic gradient algorithm is used, the solution of the mean weight vector is equivalent to that 

of the MMSE solution. The stochastic gradient algorithm in the case of the LCMV receiver is ter­

med the linearly constrained minimum variance algorithm (LCMVA). The LCMV detector has the 
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di .... aovantage that it may cancel out the desired signal component at the receiver output if there are 

inaccuracies in the desired signal signature vector. An accurate signature vector estimation is needed 

for the linear constraint. Another disadvantage of the LCMV detector, is that the weight vector ad­

justed by the LCMVA fluctuates around the optimum point [3], so that the BEP performance degrades. 

Another blind approach which is often used in multi path equalization is the constant modulus algo­

rithm IC~A) 162/. 163/. The CMA cannot be directly applied to the CDMA channel, as the weight 

vector might converge to one of the interfering user signature vectors rather than the desired user si­

gnature vector 164/. To overcome this problem, the linearly constrained CMA (LCCMA) was propo­

sed by Miguez and Castedo in [201. Corrections to the aforementioned paper was introduced in [21] 

and an incorrect closed form analysis of the LCCMA was done in [22], which was later corrected 

in [23J. The principle of the linearly constrained constant modulus (LCCM) detector is to minimize 

the deviation of the receiver output from a constant modulus without cancelling the desired signal 

component. This means that the desired signal component can be protected from being significantly 

cancelled even if there are inaccuracies in the estimate of the desired signal vector [20]. Moreover, 

when the receiver output approaches the target constant modulus, the variance of the weight vec­

tor as adjusted by the LCCMA can be expected to be relatively small. These qualities make the 

LCCMA superior to the LCMVA; however, it has been shown that the LCCMA cannot converge to 

the optimal point if the desired user amplitude is less than a critical value [60J. To overcome this 

problem. Miyajima /citeMiyajimaOO proposed the linearly constrained differential constant modulus 

(LCDCM) detector to negate the limitation on the desired user amplitude. The stochastic gradient al­

gorithm employing the LCDCM criterion, is subsequently called the linearly constrained differential 

CMA (LCDCMA). In this dissertation it will be shown that the LCDCM detector achieves compa­

rable performance to the LCCM detector, while there is no limitation on the desired user amplitude. 

Both the LCMVA and the LCCMA have the disadvantage that in a frequency selective channel, mul­

tiple propagation paths are suppressed rather than combined [47]. The author in [47] proposes a multi­

channel LCCMA (MLCCMA) to perform the task of joint blind multiuser detection and equalization 

or multipath diversity combination. In [60) it is implied that the multipath channel impulse res­

ponse can be estimated using a subspace method, and used as the linear constraint for the LCDCMA. 

However. this approach requires singular value decomposition (SVD) which makes this method com­

putationally expensive. 

In this chapter we will thoroughly analyze the LCCM and LCDCM detectors. We will investigate the 

cost functions of each of the detectors and then derive the stochastic gradient algorithms associated 

with each cost function. 
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5.2 THE LINEARLY CONSTRAINED CONSTANT MODULUS 

CRITERION 

The linearly constrained constant modulus (LCCM) cost function is given by 

95 

(5.1) 

subject to the linear constraint v H 
81 = 1, where Yt is the transformed received signal and a is an 

arbitrary real scalar. Since, Yt = v H r, the LCCM cost can now be written as 

1 1 
J(v) = -E [vHrrHvvHrrHv] - aE [vHrrHv] + _a2 . 

vHSl=1 2 2 
(5.2) 

At this point we make a few assumptions concerning our model. First we assume a synchronous 

channel. Furthermore, we assume that the Gaussian noise component a ---+ 0, and that the signature 

waveforms are spanned by h'JI , ... , 'l/Jd. This leaves us with a K dimensional cost function J(v). 

In the noise free case, v H r = v H SAb. If we let 'Uk = Ak(VH 8k) and u = ['UI' 'U2, . .. ,'UKJ
T , then 

we can write the cost function J(v) as 

1 1 
J(u) = -E [uHbbHuuHbbHu] - aE [uHbbHu] + _a2 , 

ul=Al 2 2 
(5.3) 

where the linear constraint v H 8 1 = 1 implies that 'U 1 = AI. 

Since bk E {±1 ± j} and for different k, bk are independent random variables, we have the two 

expected value terms in (5.3) respectively equal tol 

K 

E [uHbbHuuHbbHu] = 8 (uHU)2 - 4 I: l'Ukl 4 (5.4) 

k=1 

and 

(5.5) 

Having removed the influence of the expected values on (5.3), we can now write this equation as 

If we write (5.6) in terms of 'Uk and 'Uk' we have 

IThe two expected value terms are evaluated in Appendix D 
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J (u) = 4 (t UkUk) 2 - 2 t (UkUk)2 - 2a t ukUk + ~a2. 
ul=Al k=l k=l k=I 2 

(5.7) 

Expanding the terms in (5.7) we obtain 

5.2.1 THE CONVEXITY OF THE LCCM COST FUNCTION 

To investigate the convexity of the cost function J ( Uk), a property of a continuous convex function 

in [65] (Theorem 10.2) will be applied. This theorem states that if 

(5.9) 

for any points UI and U2, then the function J is convex. The function J is strictly convex if the above 

inequality is true as a strict inequality. 

Let the projection of u with Ul = 0 be denoted by ii. If we write (5.8) in terms of vector norms of ii, 

we have 

J(u) = 4 (ArAI + lliil12r -2 (AiAd
2 

- 211iill 4 - 2aAiA1 - 2a IIiil1 2 + la2. (5.10) 

Let us start with the RHS of the inequality in equation (5.9), 

J(ud 
2 

2 (Ai Al + IIiid2 r -(Ai AJ)2 - II iiI 114 - aAi Al - a II iiI 112 + ~a2 
2 (Ai Ad2 + 211iilll4 + 4A]" Al II iiI 112 - (Ai AI)2 - II iiI 114 - aA~ Al - a IIiiII12 + ~a2 

2 

(AiAJ) ((AiAd - a) +: + (4AiAl - a) IIiill12 + Iliidl4 
, ' --...-... 

'V' B 
A 

A + B II iiI 112 + II iiI 114 (5.l1) 

and equivalently 

J (U2) = A + B llii2112 + llii2114. 
2 

Thus we have the RHS of (5.9) equal to 
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J(uI)+J(uz) ( ) 2 = 2A + B Ilihllz + Iluzllz + II ull1 4 + /l uz//4. (S.13) 

The LHS of (S.9) is given by 

J (U) ; U') = 4 ( Ai A, + 110) : 0211 ')' - 2 (Ai A))' - 2
110) ;60211 ' - 2QAj A, 

2 lIuI + uzll 2 
1 z 

- a 4 + 2a 

= 4 (Ai AI)z + lIuI : uzl1
4 

+ 2Ai Al lIuI + uzll z - 2 (Ai AI)z 

IluI + uzll4 2 A*A lIuI + uzf 1 2 - a I I - a +-a 822 
z 

2 (AiAI) ((AiAd - a) +~ + (2AiAI - i) lIuI + uzll z 

/lUI + uzll4 
+ 8 

= 2 (AiAI) ((AiAd - a) + ~z + 4 (2Ai A I _ i) ("UI ; uzll) 2 

+2 ("UI;uz/l)4 (S.14) 

If we use the triangle inequality /lUI + uzll ~ /lui/i + lIuz/i we have 

z 
2 (AiAI) ((AiAd - a) + ~ 

2 

+4 (2Ai AI _ i) ("UIII ; lIuzll) z 

+2 ("uII; lIuzll) 4 

Also using the fact that the functions (-)z and (.)4 are strictly convex, we have by (S.9) 

J (
UI +2 uz) < a

Z 

2(AiAd ((AiAd - a) +"2 

+2 (2AiAI - i) (/lU1/IZ + lIuzllZ) 

+ lIuI/l4 + lIuzll4 

If we write (S.16) in terms of A and B, we have 

(S.lS) 

(S.16) 

J (uI ; uz) < 2A + B (lIuIIiZ + lIuzllZ) + IIUl1l4 + lI uzll4 
(S.17) 

J(ud+J(uz) 
= 2 
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Because of the above inequality, and by (5.9), we have proved the strict convexity of the LCCM cost 

function subject to 

(5.18) 

and 

B"2 O. (5.19) 

Since (5.19) is a stricter condition than (5.18), we can discard (5.18). We have thus that the LCCM 

cost function is convex, subject only to 

B "20 or equivalently Ai Al "2 ~. (5.20) 

Note that the inequality B > 0 is a global condition on Al and a, insuring convexity of the LCCM 

cost function. 

5.2.2 THE STATIONARY POINTS OF THE LCCM COST FUNCTION 

Considering equation (5.8) again, if we let Uk == Xk + jYk for 2 ::; k ::; K, then the cost function 

J (u) becomes 

J(u) ~ 4 (AiA! + t,(x~+yl)r -2(AiAd2_2t,(X~+y~)2 
K 

-2aAiA1 - 2a L (x~ + yD + ~a2 
k=2 

(5.21 ) 

To solve for the stationary points, we find the gradient (directional derivative) of J (Xk, Yk), and 

equate it to zero. In this way we can attempt to solve for the points at which the cost function is a 

minimum. In this case it is more informative to differentiate with respect to the real and imaginary 

parts of J (Xk' Yk), rather than differentiate with respect to a complex vector: 

16 (AiA! + t, (xZ + yl)) x, -8 (xl + yi) x, - 4<>x, 

4x, (4AiA! +4 t, (xZ + yl)- 2 (xl + yi) - (Y) 

4Xl (4Ai A! + 4 t, (x~ + yl) + 2xl + 2YT - ,,) (5.22) 

k#l 
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and equivalently 

a./(u) (K ) 
"VlJJ = aYI = 4Yl 4A~ Aj + 4 {; (xk + Yk) + 2xf + 2yl- ex (5.23) 

k#l 

with symmetry evident between (5.20) and (5.21). Letting 

(5.24) 

and 

(5.25) 

we have 

Xl (2xl + X) = ° (5.26) 

and 

Yl (2yf + Y) = 0. (5.27) 

At this stage two cases can be identified: 

I. 4Aj AJ - ex ~ 0; 

In the case of 4At AJ - a 2:: 0, it is evident that a unique solution exists at Xl = ° and Yl = 0, 

since all the other terms in (5.24) and (5.25) can only be greater than or equal to zero. In the case of 

4Ar A] - n < 0, solutions may exist at Xl = ° or Xl = ±ff and Yl = ° or Yl = ±fl. 

We have already ascertained that the LCCM cost function is strictly convex for certain values of a 

and A I. Let us consider the trivial solution of Xl = 0, Yl = 0. This implies that Uk = 0 + jO with 

2 :::; k :::; K or ii = 0, where ii = [0 112 113 .•. UKV· Coincidentally, this is also the solution that 

cancels out all multiuser interference. To prove that the point ii = 0 is a global minimum of the cost 

function .J conditioned on Al and a, we will have to look at the Hessian matrix H(J) of the cost 

function .J at the point ii = O. 
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To ~\aluate the nature of the stationary point il = 0 of the LCCM f . . 
cost unctIOn, we use the HeSSIan 

matrix a\ detlned below 

(5.28) 

with 

(5.29) 

(5.30) 

(5.31) 

and 

(5.32) 

The entries of the Hessian matrix are 

_ { 16AjAI + 24xl + 8y? + 16 k~2 (xf + yZ) - a 
(Ha)ml - kefl 

32xm X l 

if 1= m 
(5.33) 

if I" m 

(5.34) 

(5.35) 

and 

If 

(H")",, = { 
16Aj Al + 24yl + 8xf + 16 L (xf + yf) - a if 1= m 

k=2 
kefl 

if l" m 

(5.36) 

Normally. for the Hessian matrix to be positive definite (i.e., the cost function convex with a global 

minimum), the determinants of all the principle submatrices of the Hessian matrix must be zero. This 

is to say that: 
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dpt((Ha)!!) = (Ha)l! ~ 0, 

(Ha)JI (Ha )22 - (Ha)12 (Ha)21 ~ 0, 

detHa ~ O. 

dptH(J)~O. 

(5.37) 

Since we have already proved that the LCCM cost function is strictly convex subject to (5.20), we can 

now ~how that the point u = 0 is a unique global minimum subject to the same conditions. Since it is 

possible that a strictly convex function may have only one minimum, we can prove the point u = 0 a 

global minimum, by proving it a local minimum [66]. 

Let us now prove that a local minimum exists only at the point ii = 0 for certain values of Al and a. 

Implementing this. we have the diagonal Hessian 

{ 
16Ai Al - 4a if i = j 

(H(JO})i) = 0 if i i j (5.38) 

For each of the diagonal elements to be ~ 0, and the matrix positive semi-definite, the following must 

be true: 

(5.39) 

We have thus proved the local minimum of J at u = 0 subject to the condition (5.39). Note that the 

condition in (5.39) is a local condition on Al and a, and insures only a local minimum. Coinciden­

tally, this condition corresponds to the condition on global convexity in (5.20). 

In the preceding text we have proved the global convexity of the LCCM cost function subject to (5.20) 

by using a definition of a continuous convex function in (5.9). We have also seen that the single 

stationary point (also subject to (5.20)), is a global minimum due to the convexity of the LCCM 

cost function. The conditions of AjAJ > a/4, AjAI = a/4 and AiAI < a/4 are depicted in 

Figures 5. I. 5.2 and 5.3 respectively. This clearly supports the notion we have developed regarding 

the convexity of the LCCM cost function. For the case of Ai Al ~ a/4. the cost function is strictly 

convex. If AjAl < et/4. convexity cannot be guaranteed anymore, as can be seen in Figure 5.3. 

From this figure it is also evident that the point x = 0, y = 0 is also not the only stationary point. 

This corresponds to the solutions of equations (5.26) and (5.27). 
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Figure 5.1: Complex LCCM cost function surface with Ai Al > a/4. 

5.2.3 LINEARLY CONSTRAINED CONSTANT MODULUS ALGORITHM 

102 

I 

The linearly constrained constant modulus algorithm was originally inspired by its application to the 

field of adaptive arrays [61 ,67]. It is based on the generalized sidelobe canceller, which incorporates 

a priori information about the signal. The linear constraint is implemented to capture the user of 

interest instead of any of the interference signals. 

Recall that the LCCM cost function is given by 

Let us first consider the unconstrained cost function 
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Figure 5.2: Complex LCCM cost function surface with Ai A[ = a / 4. 

which, if we consider it in terms of inner products, becomes 

103 

(5.41) 

(5.42) 

where c[ is (as in the case of the LMS algorithm) the multidimensional parameter which operates on 

y in the form of a linear transfOim. 

We may consider a canonical representation of the linear transform Cj in terms of the signature 

waveform of user I, viz. Sf, and a component orthogonal to Sf, denoted by X I : 
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Figure 5.3: Complex LCCM cost function surface with AiAJ < a/4. 

where X l is such that 

104 

(5.44) 

This representation is canonical in that every linear multiuser detector of user 1 can be expressed in 

that form. The set of signals C1 that can be written as (5.43) and (5.44) are those that satisfy 

(5.45) 

and the decision of hI = sgn( (y, ei)) is invariant to positi ve scaling. This means that the only linear 

transfOlmations that are ruled out by (5.45), are the set of signals C1 orthogonal to 81 . These signals 

may be omitted, since they result in an error probability of 1/ 2. 
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y[i] J 
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5, 

1 x,[i-I] 
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> L. ) 
'-.:. / 

1-

105 

> 

Figure 5.4: Generalized Sidelobe Canceller with x[i] governed by (5.53) in the case of the LCCM 

algorithm and (5.79) in the case of the LCDCM algorithm. Tn the case of the LCDCM algorithm, the 

previous values ZD[i], ZMFo [i ] and rD [i] need to be remembered to compute x[i]. 

Returning to the cost function in (5.43), writing it in terms of the decomposition of c] in (5.44) and 

ignoring the expected value2 , we have 

Jh) = 2 ((y, si + xi )2 - a r 
If we then find the multidimensional gradient of (5.46), we have 

(5.46) 

(5.47) 

Note that we are still working with the gradient of the unconstrained cost function . The linear 

constraint allows the detector to tune out the interference orthogonal to the signature waveform, i.e. 

restricting the detector from tuning out the desired component. In terms of the gradient, we are loo­

king for the projection or subspace for which the gradient stays orthogonal to s]. Since the inner 

product in (5.47) is a complex scaling factor, and y' is the only multidimensional parameter in the 

equation, we can restrict y' (and thus the gradient) to be orthogonal to s] by replacing y' with 

y - (y , s; ) s]. (5.48) 

Therefore the projection of the gradient in the direction orthogonal to Sl is 

'VJ = 2((y,si + x;)) ((Y,Si +x;)2 -0:) [y - (y,si)s]]. (5.49) 

Let us denote the matched filter responses for s ] and S I + x ] [i - 1] respectively by 

2 As in the case of the LMS algorithm, we may do thi s. The reason for thi s is that in the execution of several iterations , 

the trajectory will be, on average, in the direction of the steepest descent. 
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(y[i], sr) , 

(y[i], si + xi[i - 1]) . 

The stochastic adaptation rule of (5.49) is given by 

xdi] = xdi - 1]- JkZ[i] (Z2[i]- a) (y[i]- ZMF[i]sd, 

106 

(5.50) 

(5.51) 

(5.52) 

which corresponds to the block diagram of the generalized sidelobe canceller in Figure 5.4. As in the 

case of the LMS algorithm, we may do the following modifications to our system: 

• Implementation with finite dimensional vectors rather than continuous time signals. 

• Improved convergence speed with more complex recursive algorithms, such as recursive least 

squares (RLS). 

• Implementation in asynchronous channels. 

The finite dimensional vector implementation of our LCCM algorithm is given by 

xdi] = xdi - 1]- JkZ[i] (Z2[i] - a) (r[i] - ZMF[i]st) , 

with 

sf r[i], 

= (Sl + xdi - I])H r[i]. 

5.3 THE LINEARLY CONSTRAINED DIFFERENTIAL 

CONSTANT MODULUS CRITERION 

The linearly constrained differential constant modulus (LCDCM) cost function is given by 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

subject to the linear constraint v H 
81 = I, where Yt is the transformed received signal and YtD is 

a delayed version of the transformed received signal. The LCDCM criterion attempts to keep the 

modulus of the received signal constant from time t to time t + D. Following the same reasoning 

as in the case of the LCCM detector, we will show that the LCDCM cost function has a global 
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minimum. Since, Yt = v H r and assuming a quasi stationary CDMA channel, the LCDCM cost can 

now be written as 

J(v) 
yHS1=1 (5.57) 

+~E [vHrDri5vvHrDri5v] , 

where r D is the delayed received vector. Again, we assume that the Gaussian noise component 

a -+ 0, and that the signature waveforms are spanned by {'I/;l, ... , 'I/; L}. This leaves us with a K 

dimensional cost function J(v). In the noise free case, vHr = vHSAb. If we let Uk = Ak(vHsk) 

and u = [Ul, U2, .. " UK]H, then we can write the cost function J(v) as 

~E [uHb[i]bH[i]uuHb[i]bH[i]u] - E [uHb[i]bH[i]uuHb[i - D]bH[i - D]u] 

+~E [uHb[i - D]bH[i - D]uuHb[i - DJbH[i - DJu] . 
(5.58) 

Let us again assume that the bits of different users are independent and that b[iJ, b[i - D] E {±1 ± j}. 

Furthermore, assuming that the delay D is greater than any partial response signalling inherent in the 

system, we have that bits separated by D seconds are independent, and hence the expectation value 

terms of (5.58) can be written as 

K 

E [uHb[i]bH[i]uuHb[i]bH[i]u] = 8 (uHU)2 - 4 L IUkI 4
, (5.59) 

k=l 

K 

E [uHb[i - D]bH[i - D]uuHb[i - D]bH[i - D]u] = 8 (uHu)2 - 4 L IUkl4 (5.60) 
k=l 

and 

(5.61) 

This greatly simplifies the LCDCM cost function to 

K 

J(u) =4(uH u)2_4LlukI4. (5.62) 
ul=Al k=l 

Writing (5.62) in terms of a summation of Uk and exercising the linear constraint Ul = AI, we have 

J(u) = 4 ( AiAJ + t, UkUk) 2 - 4 t, (UkUk)' - 4 (AiA,)2 

Letting Uk = Xk + jYk for 2::; k::; K, the cost function J (u) becomes 

(5.63) 
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J(u) d ( AiAJ + ~ (xi + yl))' -4 ~ (xi + yl)' -4 (AiAJ)'. (5.64) 

Once again, the gradient of the cost function V' J with respect to the lth real and imaginary elements 

of u is found, and equated it to zero, yields: 

'V x,J 16xI ( Ai AI + ~ (xi + yl)) - 16xI (xl + yn 

16xl (AiAI + xi + yl + ~ (xi + yn -xi - YI) 
k#-l 

= 16xl (AiAl + ~ (xi + Yll) = 0 (5.65) 

k#-l 

and equivalently 

V'yJ = 16Yl (AiAl + ~ (xi + yl)) = O. 

k#-l 

(5.66) 

This is highly encouraging, since there exists a unique trivial solution of Xl = 0 and Yt = 0 for the gra­

dient equations (5.65) and (5.66). This corresponds to 11 = 0, once again with 11 = [U2 U3 ... UK], 

which is also the solution of the MMSE detector with no multi path or code mismatch. 

We will now examine if 11 = 0 is a global minimum. As will be seen in the following section, we need 

not even consider the convexity of the function J (11) to determine if 11 = 0 is a global minimum. 

5.3.1 GLOBAL MINIMUM OF THE LCDCM COST FUNCTION 

In the case of the linearly constrained differential CMA, it is simple to show that the cost function 

has a global minimum, without even having to consider the convexity of the LCDCM cost function. 

Since the gradient functions (5.65) and (5.66) only has a trivial solution at ii = 0, we need only to 

examine the nature of the stationary point ii = O. Again we use the Hessian as defined in (5.28). The 

entries of the Hessian are given by 
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and 

(Hd)ml = /16 ( AlA, + :~f (xl + yl)) 
32xm X l 

The Hessian at the point Xl = Yt = 0 is given by 

H(Jo) = 

o 

o 
16AiAl 0 

o 

if l = m 

if l =1= m 

o 

o 
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(5.68) 

(5.69) 

(5.70) 

(5.71) 

which is positive definite. This means that the point Xl = Yl = 0 or ii = 0 is a unique global 

minimum. 

We have seen in this section that the LCDCM cost criterion exhibits a global minimum. Unlike the 

LCeM criterion, this point remains a minimum irrespective of desired user amplitude. Figure 5.5 

shows the one dimensional complex surface of the LCDCMA cost function for any value of AI. It is 

clearly convex with a global minimum. 

5.3.2 LINEARLY CONSTRAINED DIFFERENTIAL CONSTANT MODULUS 

ALGORITHM 

The LCDCMA can be derived by also using the stochastic gradient approach as in the case of the 

LMS and LCCM algorithms. Again, recall the LCDCM cost function: 

V~~~21 = ~E [ (IYtI
2 

-IYtD 12f] . (5.72) 

Let us first consider the unconstrained cost (as with the LCCMA), which is given by 

(5.73) 

The cost function in terms of inner products representing the transformed received and delayed trans­

formed received signals is given by 
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Figure 5.5: One Dimensional Complex LCDCM cost function surface. 

J = ~E [ ((y, ci)2 - (YD, ct)2f] , (5.74) 

where C1 is the multidimensional parameter which operates on Y in the form of a linear transform. 

We may now write the cost function in terms of the canonical representation of (5.43) and (5.44), 

ignoring the expected value3 : 

J 1(( * *)2 ( * *)2)2 = 2" y,81 + Xl - YD,81 + Xl . (5.75) 

Finding the multidimensional gradient of (5.75) we get 

3 As in the case of the LMS algorithm, we may do this. The reason for this is that in the execution of several iterations, 

the trajectory will be, on average, in the direction of the steepest descent. 
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(5.76) 

Let us follow a similar approach whereby (5.49) is established. If we implement the linear constraint. 

the projection of the gradient in the direction orthogonal to :-; I is 

\1J 

(5.77) 

where the terms [y - (y, si) S1] and [YD - (YD, si) sJ] are the projections or subspaces of y and ]If) 

respectively for which the gradient stays orthogonal to 81. 

Denoting the matched filter responses for s] and 81 + xdi - 1] as in (5.50) and (5.51), and the 

responses of the delayed signals with the subscript letter D, the adaptation rule of (5.77) is given by 

xdi] = xJ[i - 1] -/1 ([y[i] - ZAldiJ"'1] Z[iJ - [YD[i]- Z.;\fFn[i].'Id Z[i]n) (Z[if - Z[iJi)) . 

/5.7X) 

The finite dimensional vector implementation of the LCDCM algorithm is given by 

xt[iJ = xI(i - 1J -/1 ((r(iJ - ZMF(iJsIJ Z[iJ - [rJ)[i]- ZMFn[iJsd Z[i)[») (Z[1f - Z(ilJ)). 

(5.79) 

where the matched filter responses for SI and s] + XI [i - 1] are given by (5.54) and (5.55) and the 

responses of the delayed signals are again denoted by the subscript letter [). 

5.4 PERFORMANCE OF THE LCCM AND LCDCM 

ALGORITHMS IN MULTIPATH FADING CHANNELS 

The MMSE detector optimally combines multiple propagation paths, making it a very suitable recei­

ver structure, given sufficient filter length to span all correlated paths. As we have seen. in single 

path environment. the LCCM and LCDCM detectors have the same vector weight solutions as the 

MMSE detector (assuming a > 1/4 in the case of the LCCM detector). The single path vector 

weight solution of the MMSE. LCCM and LCDCM detector is given by (4.47) and 1471 as 

- C- 1 
V = Sl 

The question now arises: How will the blind LCCM and LCDCM detectors fare in a multi path envi­

ronment? Unfortunately. all multiple paths (except one) are suppressed a'i interference. The reason 
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for this is that in a multipath environment, pin (4.46) is no longer equal to S1. The vector P will now 

contain the contributions from the correlated parts of the delayed multi path components. Regardless 

of the multipath value of p, the blind LCCM and LCDCM detectors will continue to extract only one 

path which correlates with Sl. 

Two ways have been proposed to allow the blind LCCM and LCDCM detectors to effectively combine 

the multiple paths: 

I. The mUltipath channel can be estimated and used as the linear constraint for either the LCCM 

and LCDCM algorithms [60]. In this way all paths can be effectively combined. 

2. A multi-channel LCCM (or LCDCM) algorithm as proposed by Mangalvedhe [47] can be used. 

The former method is complex in that is requires singular value decomposition to estimate the multi­

path channel. The latter method uses several full detectors (channels) to extract each of the multiple 

paths. Adaptive weights are then used to optimally combine the outputs of the detectors. The fact that 

one needs a full detector to extract a single path also makes the multi-channel LCCM (or LCDCM) 

computationally expensive for a large number of paths. Although not discussed in this dissertation, it 

would be informative to compare the above mentioned two methods for multipath combination, both 

in terms of complexity, computational cost and performance. 

Areas of possible further study could either be a search for a suitable cost function that will optimally 

combine multiple paths, or other methods to modify the LCCM or LCDCM algorithms which require 

less complexity than the above mentioned methods. 

5.5 SUMMARY 

This chapter contains much of the novel theoretical work attempted in this dissertation. The problem 

of blind multiuser detection utilizing the constant modulus algorithm is explored. An introductory 

section familiarizes the reader with the relatively recent history associated with blind multiuser de­

tection, as well as all the research that has been attempted in this field. 

The second section concerns itself with the thorough analysis of the LCCM cost function. For the 

first time, through rigorous analysis, a global condition for the convexity of LCCM cost function is 

derived. The nature of the stationary points are also examined. Subsequently, the LCCM algorithm is 

derived and presented. 
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The following section shows that the LCDCM criterion is the solution to non-convergence problems 

that, under certain circumstances, may plague the LCCMA. This is done by proving that a global 

minimum exist on the LCDCM cost function. Following the analysis of the LCDCM criterion, the 

LCDCM algorithm is derived. 

In the final section, a qualitative analysis of the LCCM and LCDCM detector performance in a fading 

multipath channel is conducted. Methods to remedy shortcomings of these detectors in a multipath 

environment, are proposed. 
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CHAPTER SIX 

SIMULATION RESULTS OF THE eM DETECTOR 

In this chapter, implementation of a simulation platform and the results generated by thi s platform 

are discussed. In general, four linear detectors are compared, which include the single user matched 

filter detector, the MMSE detector, the LCCM detector and the LCDCM detector. The chapter is 

structured in the following way. The first section discusses the simulation platform setup for three 

different transmission channels which include the AWGN channel, the static multipath channel and 

the single- and multipath fading channels. Assumptions for each of these channels are also stipu lated 

in this first section. In the following three sections, the simulation results for the three different types 

transmission channels are presented and discussed. Conclusions are summarized in the next chapter, 

along with proposals for further study in the relevant blind multiuser detection fields. 

6.1 SIMULATION SETUP 

The simulation platform was implemented in an object oriented C++ environment. The top level 

block diagram of the simulation setup is depicted in Figure 6.1. The transmitter was simulated by 

spreading random data using a seven length Gold sequence. Up to six users were simulated in this 

way. The channel that was simulated was either an AWGN channel, a static multipath channel, or 

a Rayleigh fading single- or multipath channel. Full details on the simulation of the mobile fading 

channel is given in Appendix B. The receiver was made to simulate either the matched filter, MMSE, 

LCCM and LCDCM detectors for comparative evaluation. The adaptive receivers all employed the 

steepest gradient descent algorithm on each of their respective cost functions. 

Some general simulation assumptions need mentioning: 

• A synchronous channel is assumed, i.e. all users are perfectly lined up. 
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• A baseband model is implemented in the simulation and perfect symbol (and chip) synchroni­

zation is assumed at the receiver. 

• The system is sampled at one sample per chip. The signature waveform thus has a constant 

modulus taken sample by sample. The chip waveform is thus not jiltered. The effect of inter­

polation and constant modulus filtering (such as root of unity (RU) filtering) is trivial , as the 

sequence can be seen as a "longer" constant modulus signature waveform. The processing gain 

introduced by this apparent increase in sequence length is negated by the correlation introduced 

between consecutive chips. 

• Unless otherwise stated, all users have equal energy, i.e. AI> A2 , . .. , AK = 1.0. 

• Differential encoding is employed to negate the effect of phase ambiguity created by the blind 

detectors. 

• The step size of each of the stochastic gradient algorithms is chosen such that all the adaptive 

detectors converge at approximately the same rate. As a result, i"MMSE = 0.001 , i"WCM A = 

0.00003 and i" LCDCMA = 0.00003. 

Baseband 
MF, MMSE, 

Baseband 
Multipath AWGN 

LCCM, 
CDMA -- Fading -----+ Channel f-------> LCDCM 

Transmitter Linear 
Channel 

Detector 

NRZ 
Data 

Differential Generation , 

Encoder Error Count 
and BER 

Computation 

Figure 6.1: System block diagram of the simulation setup. 

As we have seen in Chapter 3, the asynchronous case with K users is equivalent to the synchronous 

case with 2K - 2 users. The first assumption is thus justified. To minimize simulation complexity 

and time duration, perfect carrier and clock synchronization is assumed. 
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A description of the channel types and assumptions associated with each type of channel are given in 

the following subsections. 

6.1.1 SINGLE PATH AWGN CHANNEL 

The AWGN channel was simulated by using the Marsaglia-Bray method to generate uniformly distri­

buted samples, and subsequently using the Wichmann-Hill transformation to map the unifOlm distri­

bution into a Gaussian distribution. These noise samples were then weighted with the noise standard 

deviation and added to the transmitted signal. 

Assumptions - Single Path AWGN Channel 

• The desired user sequence is assumed to be known at the receiver. 

• The channel is assumed to have no channel distortion. (i.e. to be frequency flat) 

6.1.2 STATIC MULTIPATH CHANNEL 

The static multipath channel was simulated by a linear filter with a sampled impulse response equal 

to 0.86 at zero delay, 0.43 at one chip delay, and 0.26 at two chips delay. This channel is frequency 

selective with minimum phase. This means that the channel inverse can easily be approximated by a 

linear filter with finite length. 

Assumptions - Static Multipath Channel 

• The optimum linear inverse channel estimation in a mean square error sense is known at the 

receiver. This inverse channel estimation is used as a linear constraint in the case of the LCCM 

and LCDCM detectors. 

• The channel is assumed to have minimum phase channel distortion. (i.e. to be frequency 

selective) 

6.1.3 SINGLE- AND MULTIPATH FADING CHANNELS 

The single- and multipath fading channels were simulated using Clarke's model as explained in Ap­

pendix B. The following assumptions were made regarding the simulation of the single- and multi path 

fading channels. 

Assumptions - Single- and Multipath Fading Channel 
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• A three ray fading channel is assumed with a sampled multi path profile of 0.86 at zero delay, 

0.43 at one chip delay, and 0.26 at two chips delay. 

• All users experience the same fading channel, thereby simulating the CDMA downlink channel. 

• A doppler frequency of 50Hz is assumed at a sampling frequency of 4M samples per second. 

• The optimum linear instantaneous inverse channel estimation in the mean square error sense is 

known at the receiver. This inverse channel estimation is used as a linear constraint in the case 

of the LCCM and LCDCM detectors. 

• The fading channel phase and amplitude is assumed to be known at the receiver. 

Since the channel may have multiple paths that fade independentl y, the channel may readily assume 

a non-minimum phase form. In this case, the channel inverse may not be accurately approximated by 

a finite linear filter. This means that even after linear equalization at the receiver, much residual lSI 

may remain, thereby degrading the recei ver performance. To approximate the channel inverse more 

accurately, a (non-linear) deci sion feedback structure will have to be considered. 

6.2 PERFORMANCE IN AN AWGN CHANNEL 

This section discusses the performance of the matched fi Iter, MMSE, LCCM and LCDCM detectors 

in an AWGN channel. Even though such a channel is rarely encountered in a mobile environment, 

much insight may be gained on the operation of these detectors. As we have seen in the previous 

chapter, the optimum tap weight vector of the MMSE, LDCCM and LCDCM detectors assume the 

same values in the AWGN case. This notion is strongly enforced by the simulation results. The only 

information that is needed by the LCCM and LCDCM detectors, is the signature waveform of the 

desired user. In the case of the MMSE detector, a training sequence is needed. 

The performance will largely be eval uated using two different, though related criteria. The first is 

signal to noi se and interference ratio (SIR), and is the measure of how well the detector is able to 

cancel out interfering users. The second is bit error rate (BER), which evaluates the detector in term s 

of the number of bit errors made after reception. This is the most important performance measure, as 

it is the reliability of the transmission which most concerns digital communication engineers. 

Figure 6.2 shows the signal to noise interference ratios of the LMS, LCCMA and LCDCMA versus 

time in an AWGN channel with a bit energy to noise spectral density ratio of Eb/No = 10 dB . There 

are 6 simultaneous equal energy users, each employing a Gold sequence with a spreading factor of 

7. From thi s figure it can be seen that the different adaptive linear mu ltiuser detection techniques 

Center for Radio and Digital Connmunication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER 6: Simulation Results of the CM Detector 118 
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Figure 6.2: Signal to noise and interference ratios versus time of a CDMA system with 6 users and 

a spreading factor of 7 in an AWGN channel using the MMSE, LCCMA and LCDCMA detection 

techniques. 

approach similar performance with similar speed of convergence. This intuitively satisfies the fact 

that the MMSE, LCCM and LCDMA have the same tap vector weight solutions. Note that in this 

case Ai A J 2: a / 4, which insures convergence of the LCCMA. 

In Figure 6.3 , we have that Ai A l < a /4, which means that the LCCMA will not converge to the 

desired minimum. This is evident in the figure, in that the SIR in the case of the LCCMA decreases 

as time passes. Note that this condition may readily be encountered in a automatic gain controlled 

(AGC) uplink channel where all the users fade independently. If the fading on the desired user is 

severe, while it is not on the other users, the desired user power level may be below the threshold 

a / 4. In the downlink channel on the other hand, all users have the same amplitude, and the AGC will 

keep all the amplitudes above the threshold. From Figure 6.3, we can see that the LCDCM algorithm 
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Signal to Noise and Interference Ratio 
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Figure 6.3: Signal to noise and interference ratios versus time of a CDMA system with 6 users and 

a spreading factor of 7 in an AWGN channel using the MMSE, LCCMA and LCDCMA detection 

techniques. In this case Ai Al < a/4. 

is resistant to this condition. This observation reinforces the fact as derived in Chapter 5, that the 

LCDMA has a global minimum regardless of the value of the desired user amplitude. 

Figure 6.4 shows the response of the relevant detectors to a strong user (34dB) powering on in the 

channel. Note that the MMSE detector is more severely affected by this event than the LCCM and 

LCDCM detectors. This is easily explained by the fact the the matched filter component of the 

LCCM and LCDCM detectors is not affected by the channel disruption. Only the adaptive part of 

these detectors are affected. Consequently, since the MMSE detector is purely adaptive, it is more 

sensitive to changes in the channel. It must be mentioned that in the multipath case where the channel 

is adaptively estimated and employed in the linear constraint, for the same reason as the MMSE 
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Figure 6.4: Signal to noise and interference ratios versus time of a COMA system with 3 users, and 

a 34dB strong fourth user powering on at time t = 4000 symbols. 

detector, the LCCM and LCDCM detectors' performance will also deteriorate if a strong user powers 

on. 

Another important consideration, is how these multiuser detection techniques perform as the number 

of users increase. Figure 6.5 shows the SIR versus the number of interfering users. Here the matched 

filter, LMS algorithm, LCCMA and LCDCMA are compared in a AWGN environment with a bit 

energy to noise spectral density ratio of Eb/ No = 10 dB. It is evident that the matched fi lter ignores 

the contribution of the interferers, and fares rather poorly as the number of users increase. All the 

adaptive detector are able to cancel out the interference, only at a slight penalty in SIR as the number 

of users increase. Also here, the MMSE, LCCM, and LCDCM criteria exhibit comparable perfor­

mance due to the fact that they have the same tap weight vector solutions. 
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Signal to Noise and Interference Ratio with No. of Users 
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Figure 6.5: Signal to noise and interference ratios versus no. of users of a COMA system with a 

spreading factor of 7 and Eb/ No = 10 dB in an AWGN channel. 

Figure 6.6 shows that due to the increased number of uncancelled interferers, the matched filter de­

tector exhibits a significant increase in BER as the number of users increase. Concerning the adaptive 

detectors, due to only a sli ght drop in SIR as the number of interferers grow in Figure 6.5 , we can 

expect a slight increase in BER in Figure 6.6. This is readily verified by comparing the two figures. 

This once again supports the notion that there exists a strong relation between SIR and BER. 

Since we are using the desired user's signature waveform as the linear constraint for the LCCM and 

LCDCM detectors, it might be informative to see how inaccuracies in the constraint affect the perfor­

mance of these detectors. This will be of interest in multipath channels, as inaccuracies in channel 

estimation adversely affects the operation of the LCCM and LCDCM detector. Note that it is well 

documented [20] [60], that the LCCM detector is much more robust to these inaccuracies that the 
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BER versus No. of Users 
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Figure 6.6: Bit error rate versus no. of users of a CDMA system with a spreading factor of 7 and 

Eb/NO = 10 dB in an AWGN channel. 

LCMV detector of Honig [3]. In Figure 6.7 it can be seen that the LCCM and the LCDCM detectors 

appear to achieve the same robustness to signature waveform mismatch with a variance of 0.1, though 

some loss in SIR is inevitable. This may be due to two factors: the fact that the receiver is not a per­

fect matched filter with respect to the transmitter and that the desired component is not sufficiently 

protected from being cancelled out due to an imperfect constraint. 

The final figure in this section (Figure 6.8) depicts the simulation BER of an AWGN channel with 

6 users and Gold sequences of length 7. The high channel load clearly renders the matched filter 

ineffective. The MMSE, LCCM and LCDCM detectors are effective at mitigating the multiuser inter­

ference problem to a large extent, but still does not approach the single user bound. The only detector 

that is able to approach the single user bound is the ML sequence detector, but is disqualified due to 
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Figure 6.7: Signal to noise and interference ratios versus time of a CDMA system with K = 6 users 

and a SF = 7 in an AWGN channel. The plot shows the performance for a code mismatch with 

mi smatch variance of 0.1. 

its complexity, which exponentially increases with the number of users. 

6.3 PERFORMANCE IN A STATIC MULTIPATH CHANNEL 

We will now consider the performance of the matched filter, MMSE, LCCM and LCDCM detector 

in a static multipath channel. Here we choose a minimum phase channel , of which the inverse can be 

accurately approximated by a finite length linear filter. This means that the inverse channel impulse 

response rapidly decays to zero within the length of the receiver filter. The channel is chosen such 

that the linear receiver wi ll be able to adaptively combine the multiple paths of the frequency selective 

channel. Channels with this type of impulse response are known as channels with mild intersymbol 
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Figure 6.8: BER of a CDMA system with 6 users and a spreading factor of 7 in an AWGN channel 

using the matched fi lter, MMSE, LCCMA and LCDCMA detection techniques. 

interference. We have seen in Chapter 5 that the LCCM and LCDCM detectors will attempt to sup­

press the multiple paths, instead of combining them. For these detectors to be able to combine the 

paths, accurate channel estimation is needed to find the optimum channel plus noise inverse, and use 

it (convolved with the desired signal waveform) as the linear adaptation constraint. In this way the 

effect of the multipath channel is negated, and the multiple paths are optimall y combined. The mul­

tiuser interference is then cancelled out on the subspace orthogonal to this modified constraint. Once 

again it must be stated that it is only possible if the channel (plus noise) inverse can be accurately 

approximated by a finite linear filter. The MMSE detector on the other hand, will automatically find 

the best linear inverse channel plus noise in the mean square error sense that is also able to cancel out 

the multiuser interference. 
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Z-plane Plot of Minimum Phase Static Multipath Channel 
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Figure 6.9: Z-plane plot of a minimum phase static 3-ray multipath channel. The multi path profile 

consists of 0.86 at zero delay, 0.43 at 1 chip delay and 0.26 at 2 chips delay. 

In the simulation , perfect channel knowledge is assumed. Many authors propose methods to achieve 

accurate channel estimation ( [60] , [IS] , [68]), but it is beyond the scope of this dissertation. 

The z-plane plot of the simulated channel with impulse response {0.86, 0.43, 0.26} is given in Figure 

6.9. The channel only has two singularities (zeros) within the unit circle, clearly indicating that it is 

minimum phase. The frequency response of the multipath channel is depicted in Figure 6.10, Irom 

which it can be readily seen that there exists no zero in the spectrum. The inverse of the channel 

can thus easily be obtained without needing a pole with infinite gain. Once again this supports the 

fact that a linear (feed forward) filter is sufficient to negate the effect of the channel, by forming the 

inverse frequency response of the channel. 

The simulated BER is depicted in Figure 6.11. From this figure it can be seen that the LCCM and 
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Frequency Response of the Minimum Phase Channel 
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Figure 6.10: Frequency response of the static three-ray multipath channel of which the z-plane repre­

sentation is shown in Figure 6.9. 

LCDCM detectors with optimum linear channel estimation are just as effective as the MMSE detector 

in simultaneously combating multi path and multiuser interference. As can be expected, the matched 

filter has no chance in effectively demodulating a signal that has multipath in addition to being satu­

rated with users. 

6.4 PERFORMANCE IN RAYLEIGH FADING SINGLE- AND 

MULTIPATH CHANNELS 

Before we consider the multipath fading case, we will first consider the single path fading channel. 

In this case, the fading is frequency flat, i.e. no channel distortion is introduced. As explained in 
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BER - CDMA System with K=6 users and SF=7 in a Static Multipath Environment 
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Figure 6.11: BER of a CDMA system with 6 users and a spreading factor of 7 in a static 3-ray 

multipath channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques . 

The multi path profile consists of 0.86 at zero delay, 0.43 at 1 chip delay and 0.26 at 2 chips delay. 

Appendix B, the amplitude envelope of the fading channel assumes a Rayleigh distribution. The dop­

pler frequency of the fading channel is chosen to be 50Hz in a system sampled at 4M samples per 

second. At this sampling rate, the fading is rather slow, and can easily be followed by an adaptive 

receiver employing a stochastic gradient descent algorithm. We assume that all users experience the 

same amount of fading, thereby simulating the CDMA downlink channel. The deep fades introdu­

ced by such a channel introduces a large burst of errors, severely degrading the effective SNR and 

consequently the average BER.1t is for this reason that Figure 6.12 shows a modest improvement in 

BER compared to the matched filter receiver. The periods of deep fades tend to make the AWGN 

dominant over the multiuser interference, thereby reducing the margin of performance increase that 

can be achieved by cancelling out the multiuser interference. 
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BER - Single Path Rayleigh Fading Channel, K=6, SF=7 
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Figure 6.12: BER of a CDMA system with 6 users and a spreading factor of 7 in a Rayleigh fading 

single-path channel using the matched filter, MMSE, LCCMA and LCDCMA detection techniques. 

As mentioned in the previous section, it is possible to effectively combine multiple paths of channels 

with mild lSI by using a linear filter. In a mobile multipath fading channel, the amount of lSI may 

vary between mild and severe. In the case of severe lSI (a non minimum phase channel), no finite 

length linear fi lter is able to effectively combine the multiple paths and negate the effect of lSI. In 

this case we will need to employ a non-linear or decision feedback structure to estimate the channel 

inverse (zero forcing criterion) or to estimate the channel plus noise inverse (MMSE criterion). This 

implementation, however, is beyond the scope of this di ssertation, but wan'ants some further investi­

gation. 

The effect of a multipath fading channel on the relevant linear multiuser structures with linear channel 
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BER - CDMA System with K=6, SF=7 and 3 Ray Fading Multipath 
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Figure 6.13: BER of a CDMA system with 6 users and a spreading factor of 7 in a 3-ray Rayleigh 

fading multi path channel using the matched filter, MMSE, LCCMA and LCDCMA detection tech-

mques. 

estimation is depicted in Figure 6.13. Due to the fact that a fin ite linear fi lter is unable to accurately 

model the mobile channel inverse, some residual lSI remains uncancelled. Looking at the BER curve 

beyond 25dB, the BER seems to increase. This strongly resembles the closed eye condition as depic­

ted in Figure 3.13. The lSI causes the signal to move to the wrong side of the decision boundary. In 

this case, the addition of noise benefits the BER, as it may move the signal back to the correct side of 

the decision threshold. 
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CHAPTER SEVEN 

FINAL SUMMARY AND CONCLUSIONS 

Chapter seven concludes this dissertation, and contains the summaries and conclusions derived from 

all the previous chapters . The novel work attempted in this dissertation is clarified and its significance 

is discussed here. The first section describes significant discoveries and concepts with respect to the 

theoretical part of this dissertation. The second section summarizes practical simulation results and 

evaluations, and discusses the implications of these results. The final section proposes topics which 

may be considered for future work and research. 

7.1 THEORETICAL SUMMARY AND CONCLUSIONS 

In this dissertation the constant modulus type (LCCM and LCDCM) detectors are analyzed within the 

context of linear detectors. Linear detectors perform a linear vector operation on the received signal 

vector. The adaptive linear detector solves many of the complexity and assumed knowledge (Figure 

7.1) issues associated with many of the other multiuser detector structures. Chapter four starts by 

characterizing the optimum linear multiuser detector in terms of multiuser efficiency. The optimum 

linear multiuser detector suffers from the same penalty as the decorrelating (or zero forcing) detec­

tor in the low SNR region, as it ignores the contribution of the noise. The MMSE and related blind 

(LCMV, LCCM, LCDCM) detectors allows some residual multiuser interference to remain in order 

to attain optimal performance with respect to AWGN and multiuser interference. In this dissertation, 

the real valued model in Verdu [31] is extended to encompass complex values. Differentiation with 

respect to a complex vector [57] is extended to differentiation with respect to a complex matrix in 

Appendix C. The complex gradient of the MMSE detector is consequently derived, and the MMSE 

detector is analyzed in the complex domain. Uniquely, in this dissertation , the model in [31] is also 

extended to model a multipath channel in a similar manner as in [47]. 

130 

 
 
 



CHAPTER 7: Final Summary and Conclusions 13 1 

Single- user Decorrelator MMSE Adaptive Blind MMSE Decisio n 
Matched MMSE (LCCJ.lA.. l CDCMA) Driven 
Fil ter (S I C,PI C,etc) 

Code of 
desired user • • • • • 

Timing of • • • • • • desired user 

Received 
amplitudes • • 
Noise level • 
Code of 
interfering • • • 
users 

Timing of • • • interfe ring 
users 

Tra ining seq. • of desired 
user's data 

Figure 7.1: Knowledge needed for the di fferent types of multiuser detection schemes. 

Much novel mathematical analysis of the LCCM and LCDCM detectors is achieved in Chapter fi ve. 

For the first time, a global condition is derived for the convexity of LCCM cost function. Some 

previous authors evaluated the LCCM cost function at the desired stati onary point or vector solution, 

without considering any other possible solutions. This is an error, as any of the other stationary 

points may or may not be an undesired global minimum. On the other hand, the LCDCM cost 

function is shown to have a single stationary poi nt, which is also a minimum. The convexity of the 

LCDCM cost function needs not even be considered, since the onl y stationary point is the global 

minimum. Using the same process as in Verdu [3 1], the stochastic gradient algorithms for the LCCM 

and LCDCM criteria are also derived. At the end of Chapter fi ve, the effect of multi path on the LCCM 

and LCDCM detectors is qualitatively discussed. Under normal operation, the MMSE detector can 

combine multi paths, while the LCCM and LCDCM detectors merely attempt to cancel it out. If 

inverse channel plus noise estimation can be used within the linear constraint, the LCCM and LCDCM 

detectors can effectively combine the multiple paths, providing that the multi path channel plus noise 

inverse can be accurately modelled within the length of the detector. The multi path combination 

is achieved by convolving the estimated channel inverse plus noise with the desired user signature 

waveform. This is then used as the modifi ed linear constrai nt in the LCCM and LCDCM detectors. 
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7.2 SIMULATION SUMMARY AND CONCLUSIONS 

One can conclude from the simulation results that the basic LCCM and LCDCM detectors are effec­

tive in mitigating multiuser interference in AWGN and frequency flat fading channels. In all the simu­

lation results, it is apparent that the performance of the LCCM i and LCDCM detectors approximate 

that of the MMSE detector. Even as the number of users increase, the LCCM and LCDCM detectors' 

pelfonnance match that of the MMSE detector. The SIR measurements in the case of A i A l < 0: / 4 

shows that while the LCCM detector fails, the LCDCM detector performs on par with the MMSE 

detector. This is consistent with the theoretical derivations done in Chapter five, where it is shown 

that the LCCM Hessian matrix becomes negative definite at the desired stationary point, indicating 

a local maximum. On the other hand, the LCDCM cost function has a global minimum, irrespective 

of desired user amplitude. Concerning BER perfonnance, the LCCM, LCDCM and MMSE detectors 

show a massive improvement over the matched filter in the AWGN channel. There is still some small 

improvement to be gained when compared with the single user bound. This, however, is only about 

IdB at an Eb/No of IOdB. We can thus conclude that for the complexity of the adaptive MMSE type 

linear detector, the perfonnance that is gained when compared with the optimum (non-linear) detector 

is excellent. The optimum non-linear detector for the same 6 user channel will require a trellis of 64 

states, which is a complex detector for only 6 users. In a CDMA channel with 20 users the number 

of trellis states for the optimum detector will increase to over a million states, which is simply im­

possible to implement. If a linear detector were to be employed for the same channel, the complexity 

will only triple compared to the six user linear detector case. 

In non fading frequency selective channels that are well behaved (mild lSI and minimum phase) , the 

linear structure of the LCCM and LCDCM detectors exploits the multiple paths effectively, even if 

an accurate linear channel plus noise estimate is employed in the linear constraint. In this case, the 

performance of the LCCM and LCDCM detector approaches that of the best linear detector, viz. the 

MMSE detector. In multipath fading channels, all the linear detectors2 are effective at cancelling out 

multiuser interference, but are insufficient at optimally combining the multiple paths. This is because 

the multipath mobile fading channel plus noise may assume a fonn that cannot be accurately inversed 

by using a finite linear structure. In this case, the use of a non-linear decision feedback structure may 

warrant further investigation. 

I Here it is assumed that A;A1 2: 0./4. 

2In thi s case the LCCM and LCDCM detectors are assumed to have for linear constraints. the best linear inverse channel 

plus noise estimation in a mean square error sense. 
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7.3 PROPOSALS FOR FURTHER RESEARCH 

From the multi path fading channel results obtained from this dissertation, the question that is raised 

is if it's possible to do joint blind multiuser detection and fading multipath equalization in a single 

receiver structure, Previous authors [15,60, 68] proposed the use of channel estimation in order to 

obtain the multipath linear constraint , These methods are cumbersome, and it means that two adaptive 

structures are needed for jo int multiuser detection and multipath combination. Furthermore the chan­

nel s have to be well behaved (minimum phase) for the inverse to be approximated by a finite linear 

fi lter. A second method for joint multiuser detection and multipath combination is the multichannel 

detector proposed by Mangalvedhe [47]. Thi s structure has high complexity, especially where many 

multipaths are concerned. In obtaining a single simpler joint fading multipath combiner and multiu­

ser detector, it is obvious that some sort of non-linear decision feedback detector should be employed 

to be able to equalize non-minimum phase channels. It would be informative and advantageous to 

pursue such an avenue in future research. In this context, fast adaptation algorithms and fractionally 

spaced structures can also be examined to be able to cope with fast fading multi path channels [57]. 

Implementation concerns in DSP or FPGA, are of paramount importance when considering multiuser 

detectors. It should be informative to evaluate the behavior of fixed point implementations of blind 

adaptive multiuser detector structures, as well as any limitations revealed in this regard. 

Application of the blind constant modulus algorithms to specific existing DS-CDMA systems em­

ploying constant envelope complex spreading sequences, warrants further investigation [5 ,69]. These 

systems offer good fading channel performance along with excellent non-linear amplification perfor­

mance figures. 
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APPENDIX A 

SELECTED PROPERTIES OF THE Q-FUNCTION 

This appendix contains a number of propel1ies of the Q function that are used in the text of thi s 

dissertation. 

1. 

Q(x) = - e- t /2 dt. 100 1 2 

x 271' 
(A. I) 

2. 

Q(x) = P [X > x], (A.2) 

where X is a zero-mean, unit-variance Gaussian random variable. 

3. Q(x) is monotonically decreasing. 

4. 

+00, [0:]+ < /3 ; 

lim Q (~) = 
2, 0: < /3 = 0; 

1, 0: = /3 or max{ 0:, /3} < 0; 
HO Q ( ~) 

1/2, /3 < 0: = 0; 

(A.3) 

0, [/3]+ < 0:; 

where 

[z]+ = max{O,z}. (A.4) 

5. 

2 lim a 2 10gQ (E. ) = - ([X]+)2 
u-tO a 

(A.S) 
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6. If X is a zero-mean, unit variance, normal random variable, then 

E[Q(I-' + AX) ] = Q (k). 
I +).2 

(A.6) 

7. 

r>Ox exp(_x2 )Q(:::)dX= ~(I _ I ). 
J 0 2 (J 2 VI + (J2 

(A.7) 
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APPENDIXB 

SIMULATION OF MOBILE CHANNEL 

This appendix contains the mobile channel model used to obtain the simulation results. In the first 

section, the Doppler filter is described, and how it is used in a baseband Rayleigh fading simulator. 

In the second section, the Rayleigh fading simulator in the first section is used to implement several 

independent fading paths in a mobile fading simulator. 

lJA WON 
Source 

Baseband Doppler 
Filter 

T 
~ 

WON 1Ll Xj 
Source 

Baseband Doppler 
Fi lter 

Figure B.2: Baseband complex Rayleigh fading coefficient simulator. 

B.1 DOPPLER SPREAD RAYLEIGH FADING 

To be able to simulate Clarke's model , we will have to analyze the spectrum of received electric field. 

This is derived in [32] and is shown to be 
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(B.l) 

with a vertical >./4 antenna (O(a) = 1.5), and a uniform distribution of incoming power over 0 to 

2,r. In this equation, 1m is maximum Doppler shift and Ie the carrier frequency. The baseband power 

spectral density is given by equation (B.2), 

(B.2) 

where K[· J is the complete elliptical integral of the first kind. When we wish to simulate the Rayleigh 

fading channel, we can do this by sending both the in-phase and quadrature baseband independent 

Gaussian noise samples through baseband filters with the transfer function given in equation (B.2). 

The resulting complex signal can then be utilized as a complex Rayleigh fading coefficient in a base­

band simulation environment. 

In this dissertation, a infinite impulse response (IIR) third order approximation of a 50Hz Doppler 

fi lter is used for simulation purposes. The power spectral density of this filter is shown in Figure B.3. 

B.2 FREQUENCY SELECTIVE MULTIPATH RAYLEIGH FADING 

In the mobile channel, the receiver antenna picks up the slim of independent Rayleigh (Doppler 

spread) faded multiple paths. In the previous section, the simulator that implements the fading coef­

ficients of each of these paths is given. Here we present the simulation model to implement multiple 

independent fading paths with different delays. This introduces the harsh frequency selectivity that is 

frequently encountered in mobile channel environments. The frequency selective (multipath) mobile 

channel model for simulation purposes is shown in Figure BA. This is basically a finite impulse res­

ponse (FIR) filter structure, where the tap weights are the path strengths corresponding to each of the 

time delay- or multipath components. Note that to get a line-of-sight component, an unfaded signal 

may be added. This will result in a Ricean faded signal. It is possible to vary the strength of the 

specular (line-of-sight) path by a constant weighting of this component. 
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3rd Order IlR Doppler Filter Power Spectral Density 
3,----,--~r----,----,_--_.----,_--~----,_--~,_--~ 

2.5 

2 

0.5 

0.5 I 1.5 2 2.5 
flfd 
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Figure B.3: Frequency spectrum of 3rd order approximation of a Doppler filter with a Doppler fre­

quency of 50Hz. 
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Figure B.4: Model of a frequency selective (multi path) fading channel. 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Compute!" Engineering 

University of Pretoria 

 
 
 



APPENDIX C 

DIFFERENTIATION WITH RESPECT TO A 
COMPLEX MATRIX 

An issue commonly encountered in the study of optimization theory, is that of differentiating a cost 

function with respect to a parameter vector or matrix. In the text, the normal gradient operator is used. 

The differentiation of a cost function with respect to a complex vector or matrix is more involved. This 

appendix will expand on the case of differentiation with respect to a complex vector in Appendix B 

of [57], to the case of differentiation with respect to a complex matrix. The relationship between the 

concepts of a gradient and a derivative for complex matrices is discussed here. 

C.I BASIC DEFINITIONS 

Consider a complex function f(M) that is dependent on a parameter matrix M. When the entries of 

M are complex valued, there are two different mathematical concepts that require individual attention: 

(1) the matrix nature of M, and (2) the fact that each entry of M is complex valued. 

Let us start with the fact that the element of the of the lth row and the mth column of the matrix M is 

the sum of a real part and an imaginary part multiplied by j = R , i.e. 

m vw = Xvw + jyvw ' (C.l) 

The real and imaginary parts of equation (C. l) can alternatively be written in terms of the pair of 

complex conjugates m vw and m~w with 

Xvw = ~ (mvw + m~w) (C.2) 

and 

(C.3) 
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where (-)* denotes complex conjugation. It is evident that the real quantities Xvw and Yvw are func­

tions of both mvw and m~w . Only when we deal with an analytic function f , may we abandon the 

complex-conjugated term m~w by virtue of the Cauchy-Riemann equations. However. it is rare that 

one encounters analytic functions in physical sciences and engineering. 

When considering a derivative, a connection should be made with the concept of a differential. In 

particular, the chain rule of changes of variables must be satisfied . Considering these points, the 

mathematician Schwartz [70] defined certain complex derivatives in terms of real derivatives: 

and 

8~~w = H8~w + j 8~J 
The above derivatives satisfy the following basic requirements with respect to a differential: 

and 

omvw 
--= 1 
omvw 

omvw _ am~w _ 0 
am~w - omvw - . 

(C.4) 

(C.S) 

(C.6) 

(C.7) 

(An analytic function f satisfies *- = 0 everywhere.) Equations (C.4) and (C.S) are referred to as 

the derivative and the conjugate derivative respectively, both with respect to mvw . 

Let us extend this notion to the general case of the derivative with respect to a matrix with complex 

elements. Extension of the derivative with respect to a complex vector was done in [71] and was al so 

dealt with in Appendix B of [S7]. We can extend equations (C.4) and (C.S) to the derivati ve with 

respect to a K x K matrix: 

and 

8 
8M 

1 

2 

a . a a . a 
BXll - J DYll aX l 2 - J 8Y12 

a . a a . a 
BXZ1 - J 8Y21 8X22 - J BY22 
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--.!L + j--.!L 
8Xll GYll 

0+0 
8X12 J OY12 

o +' 0 
8X1K J BYlK 

8 1 _0_ + j--.!L o +' 0 
- 8X21 8Y21 GX22 J Byn 

8M* 2 

_o_+j_O_ o '0 
8XJ{1 aYKl GXJ{K + J BYKK 

Analogous to the scalar case, the above two derivatives obey the following relations: 

and 

8M = I 
8M 

8M 8M* 
8M* = 8M = 0 

where I and 0 are the K2 x K2 identity and null matrices respectively, 
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(C:9) 

(C:IO) 

(C:Il) 

For the purpose of differentiating with respect to complex matrices, equation (C.9) (the conjugate 

derivative) will be adopted as the derivative with respect to a complex valued matrix. 

C.2 THE GRADIENT MATRIX IN TERMS OF THE DERIVATIVE 

WITH RESPECT TO A MATRIX 

Consider a real cost function J(M) that defines the K x K dimension error performance surface in 

terms of the K x K matrix M. The complex gradient matrix was defined in Chapter 4 as 

[ 

O~~, + j O~~, ii~:K +. j O~:K ] 
\7M (J) =: ., 

oj + j oj oj + J' oj 
8XK l aYKl 8XKK 8YKK 

(C:12) 

where Xvw + jyvw is the element of the vth row and the wth column of the linear transformation M. 

The gradient matrix is nannal to the K x K dimensional error surface. If we relate (C.12) to (C .9), 

we find that the gradient is related to the conjugate derivative by 

(C:13) 

This means that the gradient is a scaled fOlm of the conjugate derivative of (C.9). 
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C.3 DIFFERENTIATING THE COMPONENTS OF THE MMSE 

COST FUNCTION 

With these preceding ideas in mind, let us attempt to differentiate the cost function in (4.29) to arrive 

at the result in (4.31). Let us start with the gradient of the cost fu nction: 

8 
4 8M' (tr {I} - tI' {ARMH} - t r {MAR} + tr {MRA2RMH} HI' {Mu2RMH }). 

(C.14) 

Since differentiation is a linear operation, we can differentiate the terms of the cost function indivi­

dually. It is trivial to see that the differentiation of the first term results in zero, i.e. 

8 
8M' tr {I} = O. (C.1S) 

To find the derivative of the second term of (C. 14), we will exploit the definition of the trace of a 

matrix. We start with the ijth element of the product ARMH. We have 

(ARMH) ij = 'L ail(RM)lj = 'L 'L ailrlkmjk' (C. 16) 
I I k 

where ail, rlk and mjk are the complex elements of the matrices A, Rand MI1 respectively. The 

diagonal elements of the product ARM 11 are 

(ARMH)ii = 'L 'L ailrlkmik' (C. 17) 

I k 

Since the trace of a matrix (or product of matrices) is the sum of the di agonal elements, we have 

tr {ARMH } = 'L'L'Lailrlkmik ' (C.IS) 
I k 

To apply a~' to the trace of ARM H, we turn our attention to the derivative with respect to the 

individual elements a 8 .. Applying this to (C.1S), we obtain m i k 

8!' ('L 'L 'L ailrlkmik ) 
tk ilk 

'Laurlk 
I 

(AR)ik' 

and consequently 
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To determine the complex derivative of the third term, o~' (tl' {MAR}), we follow similar reaso­

ning. In this case we have 

tr{MAR} = LLLmilalkrki' 
I k 

Again, applying the derivative with respect to the individual elements " 0, we get umik 

0° , (tr{MAR}) 
mil 

0, 

since iJomi' = 0 from (C. 7). Thus we have 
mil 

8 
8M' (tr{MAR}) = 0, 

where 0 is the null matrix. 

(C .22) 

(C.23) 

(C.24) 

The derivatives of quadratic terms in (C.14) can be evaluated by means of the product rule and follo­

wing the same reasoning as with the previous two terms. Let us first evaluate 

~tr {MRA2RMH}. 
8M' 

To simplify matters, we let B = RA 2R. This means that 

tr {MBMII} = L L L mi/blkmik' 
k 

Differentiating (C.26) by means of the product rule, we obtain 

(C.25) 

(C.26) 

/ ' (L L L mablkmki) 
mzl ilk 

0 + Lmablk 
I 

(MB)ik 

where (C.27) follows from (C.6) and (C.7). Thus we have 

8~' (tr {MBMH}) = MB. 

If we apply this result to the two quadratic terms, we obtain 
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and 

Using all of the above results, the gradient of the cost func tion J is given by 

Thus verifying eq. (4.3 1). 
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APPENDIXD 

EVALUATING THE EXPECTED VALUE IN THE 
LCCM AND LCDCM COST FUNCTIONS 

D.I EXPECTED VALUE IN THE LCCM COST FUNCTION 

From the first term in equation (5.3) we have 

E [t t ~ t, U;bibjUjUkbkbIUl ] 

E [t t ~ t, U;UjUkUIMjbkbl] 

J( J( J( J( 

L L L L (U;UjUkUI E [bib;bkbiJ) (0.1) 
i=l j=l k= l l=l 

Consider equation (0.1). Since the different users ' bits are independent, a zero result will be produced 

if i "" j "" k "" l. If i = k and 1 = j, and bk E {± 1 ± j} the argument of the expected val ue produces 

a result of either 4 or -4, each with a probability of P(4) = P( -4) = 0.5. It is easy to see that the 

expected value in this case will also be zero. There are three cases in which the expected value will 

produce a nonzero result. These are: 

l. i = j = k = I; 

2. i = j and k = I, but i = j "" k = I; 

3. j = k and i = I, but j = k "" i = l. 

152 

 
 
 



APPENDIX D: Evaluating the Expected Value in the LCCM and LCDCM Cost Functions IS3 

Taking all of the above into account, we can write (D. 1) as 

4 (~ UkUkUkUk + #; ~ UiUiUkuk + t ~ UiUiUkUk ) 
i"ok #1 

4 (#; ~ UiUiU'kUk + t #; UiUiU'kUk) 
#1 

4 (#; ~ UiUiUkUk + t #; uiuiu'kuk - ~ U'kUkU'kUk ) 

K 

8(uH u) 2_4 L lukI4 (D.2) 
k=l 

In the same way we can write the expectation from the second term in equation (S.3) as 

E [#;tuibib;Uj] 

J{ J{ 

L L uiujE [bib;] . (D.3) 
i= l j=1 

The expected value will produce a nonzero result only if i = j . In this case we have 

J{ J{ 

2LL Uiuj 
i = l j=l 

2uH u. (DA) 

D.2 EXPECTED VALUE IN THE LCDCM COST FUNCTION 

Exactly in the same way as we have derived (D.2), we can show that the first and last terms of equation 

(S.26) are 

K 

E [uHb[iJ bH [iJuuHb[iJ bH [iJu] = 8 (uHu) 2 - 4 L IUkI4, (D.S) 
k= l 

and 

J{ 

E [uHb [i - D JbH [i - DJuuHb[i - D JbH [i - D Ju] = 8 (uHu)2 - 4 L IUk .( (D.6) 
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Since D is large enough for bits separated by D seconds from the same user to be independent, we 

have from (5.26) the middle term as 

K K f( K 

E [uHb[i]bH[i]uuHb[i - D]bH [i - D]u] = L L L L (UiUjUkUtE [bi [i] bj [i] bk [i - D]bi[i - D] ] ). 
i=l j=l k=l l=l 

(0.7) 

In this case only two possibilities will produce a nonzero expected value result. These are: 

1. i=j=k=l; 

2. i = j and k = I, but i = j of k = I. 

Using this, we have equation (0.7) equal to 

Center for Radio and Digital Communication (CROC) 
Department of Electrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 


