
APPENDIX A 

SELECTED PROPERTIES OF THE Q-FUNCTION 

This appendix contains a number of propel1ies of the Q function that are used in the text of thi s 

dissertation. 

1. 

Q(x) = - e- t /2 dt. 100 1 2 

x 271' 
(A. I) 

2. 

Q(x) = P [X > x], (A.2) 

where X is a zero-mean, unit-variance Gaussian random variable. 

3. Q(x) is monotonically decreasing. 

4. 

+00, [0:]+ < /3 ; 

lim Q (~) = 
2, 0: < /3 = 0; 

1, 0: = /3 or max{ 0:, /3} < 0; 
HO Q ( ~) 

1/2, /3 < 0: = 0; 

(A.3) 

0, [/3]+ < 0:; 

where 

[z]+ = max{O,z}. (A.4) 

5. 

2 lim a 2 10gQ (E. ) = - ([X]+)2 
u-tO a 

(A.S) 

140 

 
 
 



APPENDIX A: Selected Properties of the Q-function 141 

6. If X is a zero-mean, unit variance, normal random variable, then 

E[Q(I-' + AX) ] = Q (k). 
I +).2 

(A.6) 

7. 

r>Ox exp(_x2 )Q(:::)dX= ~(I _ I ). 
J 0 2 (J 2 VI + (J2 

(A.7) 
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APPENDIXB 

SIMULATION OF MOBILE CHANNEL 

This appendix contains the mobile channel model used to obtain the simulation results. In the first 

section, the Doppler filter is described, and how it is used in a baseband Rayleigh fading simulator. 

In the second section, the Rayleigh fading simulator in the first section is used to implement several 

independent fading paths in a mobile fading simulator. 
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Figure B.2: Baseband complex Rayleigh fading coefficient simulator. 

B.1 DOPPLER SPREAD RAYLEIGH FADING 

To be able to simulate Clarke's model , we will have to analyze the spectrum of received electric field. 

This is derived in [32] and is shown to be 
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APPENDIX B: Simulation of Mobile Channel 143 

(B.l) 

with a vertical >./4 antenna (O(a) = 1.5), and a uniform distribution of incoming power over 0 to 

2,r. In this equation, 1m is maximum Doppler shift and Ie the carrier frequency. The baseband power 

spectral density is given by equation (B.2), 

(B.2) 

where K[· J is the complete elliptical integral of the first kind. When we wish to simulate the Rayleigh 

fading channel, we can do this by sending both the in-phase and quadrature baseband independent 

Gaussian noise samples through baseband filters with the transfer function given in equation (B.2). 

The resulting complex signal can then be utilized as a complex Rayleigh fading coefficient in a base­

band simulation environment. 

In this dissertation, a infinite impulse response (IIR) third order approximation of a 50Hz Doppler 

fi lter is used for simulation purposes. The power spectral density of this filter is shown in Figure B.3. 

B.2 FREQUENCY SELECTIVE MULTIPATH RAYLEIGH FADING 

In the mobile channel, the receiver antenna picks up the slim of independent Rayleigh (Doppler 

spread) faded multiple paths. In the previous section, the simulator that implements the fading coef­

ficients of each of these paths is given. Here we present the simulation model to implement multiple 

independent fading paths with different delays. This introduces the harsh frequency selectivity that is 

frequently encountered in mobile channel environments. The frequency selective (multipath) mobile 

channel model for simulation purposes is shown in Figure BA. This is basically a finite impulse res­

ponse (FIR) filter structure, where the tap weights are the path strengths corresponding to each of the 

time delay- or multipath components. Note that to get a line-of-sight component, an unfaded signal 

may be added. This will result in a Ricean faded signal. It is possible to vary the strength of the 

specular (line-of-sight) path by a constant weighting of this component. 
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3rd Order IlR Doppler Filter Power Spectral Density 
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Figure B.3: Frequency spectrum of 3rd order approximation of a Doppler filter with a Doppler fre­

quency of 50Hz. 
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Figure B.4: Model of a frequency selective (multi path) fading channel. 
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APPENDIX C 

DIFFERENTIATION WITH RESPECT TO A 
COMPLEX MATRIX 

An issue commonly encountered in the study of optimization theory, is that of differentiating a cost 

function with respect to a parameter vector or matrix. In the text, the normal gradient operator is used. 

The differentiation of a cost function with respect to a complex vector or matrix is more involved. This 

appendix will expand on the case of differentiation with respect to a complex vector in Appendix B 

of [57], to the case of differentiation with respect to a complex matrix. The relationship between the 

concepts of a gradient and a derivative for complex matrices is discussed here. 

C.I BASIC DEFINITIONS 

Consider a complex function f(M) that is dependent on a parameter matrix M. When the entries of 

M are complex valued, there are two different mathematical concepts that require individual attention: 

(1) the matrix nature of M, and (2) the fact that each entry of M is complex valued. 

Let us start with the fact that the element of the of the lth row and the mth column of the matrix M is 

the sum of a real part and an imaginary part multiplied by j = R , i.e. 

m vw = Xvw + jyvw ' (C.l) 

The real and imaginary parts of equation (C. l) can alternatively be written in terms of the pair of 

complex conjugates m vw and m~w with 

Xvw = ~ (mvw + m~w) (C.2) 

and 

(C.3) 
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APPENDIX C : Differentiation with Respect to a Complex Matrix 147 

where (-)* denotes complex conjugation. It is evident that the real quantities Xvw and Yvw are func­

tions of both mvw and m~w . Only when we deal with an analytic function f , may we abandon the 

complex-conjugated term m~w by virtue of the Cauchy-Riemann equations. However. it is rare that 

one encounters analytic functions in physical sciences and engineering. 

When considering a derivative, a connection should be made with the concept of a differential. In 

particular, the chain rule of changes of variables must be satisfied . Considering these points, the 

mathematician Schwartz [70] defined certain complex derivatives in terms of real derivatives: 

and 

8~~w = H8~w + j 8~J 
The above derivatives satisfy the following basic requirements with respect to a differential: 

and 

omvw 
--= 1 
omvw 

omvw _ am~w _ 0 
am~w - omvw - . 

(C.4) 

(C.S) 

(C.6) 

(C.7) 

(An analytic function f satisfies *- = 0 everywhere.) Equations (C.4) and (C.S) are referred to as 

the derivative and the conjugate derivative respectively, both with respect to mvw . 

Let us extend this notion to the general case of the derivative with respect to a matrix with complex 

elements. Extension of the derivative with respect to a complex vector was done in [71] and was al so 

dealt with in Appendix B of [S7]. We can extend equations (C.4) and (C.S) to the derivati ve with 

respect to a K x K matrix: 

and 

8 
8M 

1 

2 

a . a a . a 
BXll - J DYll aX l 2 - J 8Y12 

a . a a . a 
BXZ1 - J 8Y21 8X22 - J BY22 
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--.!L + j--.!L 
8Xll GYll 

0+0 
8X12 J OY12 

o +' 0 
8X1K J BYlK 

8 1 _0_ + j--.!L o +' 0 
- 8X21 8Y21 GX22 J Byn 

8M* 2 

_o_+j_O_ o '0 
8XJ{1 aYKl GXJ{K + J BYKK 

Analogous to the scalar case, the above two derivatives obey the following relations: 

and 

8M = I 
8M 

8M 8M* 
8M* = 8M = 0 

where I and 0 are the K2 x K2 identity and null matrices respectively, 
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(C:9) 

(C:IO) 

(C:Il) 

For the purpose of differentiating with respect to complex matrices, equation (C.9) (the conjugate 

derivative) will be adopted as the derivative with respect to a complex valued matrix. 

C.2 THE GRADIENT MATRIX IN TERMS OF THE DERIVATIVE 

WITH RESPECT TO A MATRIX 

Consider a real cost function J(M) that defines the K x K dimension error performance surface in 

terms of the K x K matrix M. The complex gradient matrix was defined in Chapter 4 as 

[ 

O~~, + j O~~, ii~:K +. j O~:K ] 
\7M (J) =: ., 

oj + j oj oj + J' oj 
8XK l aYKl 8XKK 8YKK 

(C:12) 

where Xvw + jyvw is the element of the vth row and the wth column of the linear transformation M. 

The gradient matrix is nannal to the K x K dimensional error surface. If we relate (C.12) to (C .9), 

we find that the gradient is related to the conjugate derivative by 

(C:13) 

This means that the gradient is a scaled fOlm of the conjugate derivative of (C.9). 
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C.3 DIFFERENTIATING THE COMPONENTS OF THE MMSE 

COST FUNCTION 

With these preceding ideas in mind, let us attempt to differentiate the cost function in (4.29) to arrive 

at the result in (4.31). Let us start with the gradient of the cost fu nction: 

8 
4 8M' (tr {I} - tI' {ARMH} - t r {MAR} + tr {MRA2RMH} HI' {Mu2RMH }). 

(C.14) 

Since differentiation is a linear operation, we can differentiate the terms of the cost function indivi­

dually. It is trivial to see that the differentiation of the first term results in zero, i.e. 

8 
8M' tr {I} = O. (C.1S) 

To find the derivative of the second term of (C. 14), we will exploit the definition of the trace of a 

matrix. We start with the ijth element of the product ARMH. We have 

(ARMH) ij = 'L ail(RM)lj = 'L 'L ailrlkmjk' (C. 16) 
I I k 

where ail, rlk and mjk are the complex elements of the matrices A, Rand MI1 respectively. The 

diagonal elements of the product ARM 11 are 

(ARMH)ii = 'L 'L ailrlkmik' (C. 17) 

I k 

Since the trace of a matrix (or product of matrices) is the sum of the di agonal elements, we have 

tr {ARMH } = 'L'L'Lailrlkmik ' (C.IS) 
I k 

To apply a~' to the trace of ARM H, we turn our attention to the derivative with respect to the 

individual elements a 8 .. Applying this to (C.1S), we obtain m i k 

8!' ('L 'L 'L ailrlkmik ) 
tk ilk 

'Laurlk 
I 

(AR)ik' 

and consequently 
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To determine the complex derivative of the third term, o~' (tl' {MAR}), we follow similar reaso­

ning. In this case we have 

tr{MAR} = LLLmilalkrki' 
I k 

Again, applying the derivative with respect to the individual elements " 0, we get umik 

0° , (tr{MAR}) 
mil 

0, 

since iJomi' = 0 from (C. 7). Thus we have 
mil 

8 
8M' (tr{MAR}) = 0, 

where 0 is the null matrix. 

(C .22) 

(C.23) 

(C.24) 

The derivatives of quadratic terms in (C.14) can be evaluated by means of the product rule and follo­

wing the same reasoning as with the previous two terms. Let us first evaluate 

~tr {MRA2RMH}. 
8M' 

To simplify matters, we let B = RA 2R. This means that 

tr {MBMII} = L L L mi/blkmik' 
k 

Differentiating (C.26) by means of the product rule, we obtain 

(C.25) 

(C.26) 

/ ' (L L L mablkmki) 
mzl ilk 

0 + Lmablk 
I 

(MB)ik 

where (C.27) follows from (C.6) and (C.7). Thus we have 

8~' (tr {MBMH}) = MB. 

If we apply this result to the two quadratic terms, we obtain 
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and 

Using all of the above results, the gradient of the cost func tion J is given by 

Thus verifying eq. (4.3 1). 
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APPENDIXD 

EVALUATING THE EXPECTED VALUE IN THE 
LCCM AND LCDCM COST FUNCTIONS 

D.I EXPECTED VALUE IN THE LCCM COST FUNCTION 

From the first term in equation (5.3) we have 

E [t t ~ t, U;bibjUjUkbkbIUl ] 

E [t t ~ t, U;UjUkUIMjbkbl] 

J( J( J( J( 

L L L L (U;UjUkUI E [bib;bkbiJ) (0.1) 
i=l j=l k= l l=l 

Consider equation (0.1). Since the different users ' bits are independent, a zero result will be produced 

if i "" j "" k "" l. If i = k and 1 = j, and bk E {± 1 ± j} the argument of the expected val ue produces 

a result of either 4 or -4, each with a probability of P(4) = P( -4) = 0.5. It is easy to see that the 

expected value in this case will also be zero. There are three cases in which the expected value will 

produce a nonzero result. These are: 

l. i = j = k = I; 

2. i = j and k = I, but i = j "" k = I; 

3. j = k and i = I, but j = k "" i = l. 
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Taking all of the above into account, we can write (D. 1) as 

4 (~ UkUkUkUk + #; ~ UiUiUkuk + t ~ UiUiUkUk ) 
i"ok #1 

4 (#; ~ UiUiU'kUk + t #; UiUiU'kUk) 
#1 

4 (#; ~ UiUiUkUk + t #; uiuiu'kuk - ~ U'kUkU'kUk ) 

K 

8(uH u) 2_4 L lukI4 (D.2) 
k=l 

In the same way we can write the expectation from the second term in equation (S.3) as 

E [#;tuibib;Uj] 

J{ J{ 

L L uiujE [bib;] . (D.3) 
i= l j=1 

The expected value will produce a nonzero result only if i = j . In this case we have 

J{ J{ 

2LL Uiuj 
i = l j=l 

2uH u. (DA) 

D.2 EXPECTED VALUE IN THE LCDCM COST FUNCTION 

Exactly in the same way as we have derived (D.2), we can show that the first and last terms of equation 

(S.26) are 

K 

E [uHb[iJ bH [iJuuHb[iJ bH [iJu] = 8 (uHu) 2 - 4 L IUkI4, (D.S) 
k= l 

and 

J{ 

E [uHb [i - D JbH [i - DJuuHb[i - D JbH [i - D Ju] = 8 (uHu)2 - 4 L IUk .( (D.6) 
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Since D is large enough for bits separated by D seconds from the same user to be independent, we 

have from (5.26) the middle term as 

K K f( K 

E [uHb[i]bH[i]uuHb[i - D]bH [i - D]u] = L L L L (UiUjUkUtE [bi [i] bj [i] bk [i - D]bi[i - D] ] ). 
i=l j=l k=l l=l 

(0.7) 

In this case only two possibilities will produce a nonzero expected value result. These are: 

1. i=j=k=l; 

2. i = j and k = I, but i = j of k = I. 

Using this, we have equation (0.7) equal to 
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