
CHAPTER FIVE 

BLIND MULTIUSER DETECTION USING THE 
CONSTANT MODULUS CRITERION 

In this chapter, the focus is narrowed to the field of blind linear multiuser detection employing two 

different modified versions of the constant modulus criterion. The first section is an introduction, 

presenting the (rather short) history of blind multiuser detection for the CDMA channel. In the se­

cond section, the linearly constrained constant modulus criterion is thoroughly analyzed along with 

the convexity of the cost function. For the first time, a global condition is presented with proof for the 

convexity of the cost function. The derivation of the linearly constrained constant modulus algorithm 

is also presented in this section. The third section contains the analysis of the linearly constrained 

differential constant modulus criterion as presented by [60]. The convexity of this cost function is 

analyzed, and is shown to be globally convex. The linearly constrained differential constant modu­

lus algorithm is also derived and presented in this section. In the final section of this chapter, the 

performance of the aforementioned criteria is discussed at the hand of the results obtained from this 

chapter. 

5.1 INTRODUCTION 

Blind multiuser detection was first conceptualized by Honig et. al. [3], and has been based on the 

principle of the linearly constrained minimum variance (LCMV), which was originally developed for 

adaptive array antennas [61J. In [3], Honig describes the blind LCMV detector in terms of a cano­

nical representation for the linear detector in the signal space. The principle of the LCMV detector 

is to minimize the receiver output variance, without cancelling the desired signal component. When 

a stochastic gradient algorithm is used, the solution of the mean weight vector is equivalent to that 

of the MMSE solution. The stochastic gradient algorithm in the case of the LCMV receiver is ter­

med the linearly constrained minimum variance algorithm (LCMVA). The LCMV detector has the 
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di .... aovantage that it may cancel out the desired signal component at the receiver output if there are 

inaccuracies in the desired signal signature vector. An accurate signature vector estimation is needed 

for the linear constraint. Another disadvantage of the LCMV detector, is that the weight vector ad­

justed by the LCMVA fluctuates around the optimum point [3], so that the BEP performance degrades. 

Another blind approach which is often used in multi path equalization is the constant modulus algo­

rithm IC~A) 162/. 163/. The CMA cannot be directly applied to the CDMA channel, as the weight 

vector might converge to one of the interfering user signature vectors rather than the desired user si­

gnature vector 164/. To overcome this problem, the linearly constrained CMA (LCCMA) was propo­

sed by Miguez and Castedo in [201. Corrections to the aforementioned paper was introduced in [21] 

and an incorrect closed form analysis of the LCCMA was done in [22], which was later corrected 

in [23J. The principle of the linearly constrained constant modulus (LCCM) detector is to minimize 

the deviation of the receiver output from a constant modulus without cancelling the desired signal 

component. This means that the desired signal component can be protected from being significantly 

cancelled even if there are inaccuracies in the estimate of the desired signal vector [20]. Moreover, 

when the receiver output approaches the target constant modulus, the variance of the weight vec­

tor as adjusted by the LCCMA can be expected to be relatively small. These qualities make the 

LCCMA superior to the LCMVA; however, it has been shown that the LCCMA cannot converge to 

the optimal point if the desired user amplitude is less than a critical value [60J. To overcome this 

problem. Miyajima /citeMiyajimaOO proposed the linearly constrained differential constant modulus 

(LCDCM) detector to negate the limitation on the desired user amplitude. The stochastic gradient al­

gorithm employing the LCDCM criterion, is subsequently called the linearly constrained differential 

CMA (LCDCMA). In this dissertation it will be shown that the LCDCM detector achieves compa­

rable performance to the LCCM detector, while there is no limitation on the desired user amplitude. 

Both the LCMVA and the LCCMA have the disadvantage that in a frequency selective channel, mul­

tiple propagation paths are suppressed rather than combined [47]. The author in [47] proposes a multi­

channel LCCMA (MLCCMA) to perform the task of joint blind multiuser detection and equalization 

or multipath diversity combination. In [60) it is implied that the multipath channel impulse res­

ponse can be estimated using a subspace method, and used as the linear constraint for the LCDCMA. 

However. this approach requires singular value decomposition (SVD) which makes this method com­

putationally expensive. 

In this chapter we will thoroughly analyze the LCCM and LCDCM detectors. We will investigate the 

cost functions of each of the detectors and then derive the stochastic gradient algorithms associated 

with each cost function. 
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5.2 THE LINEARLY CONSTRAINED CONSTANT MODULUS 

CRITERION 

The linearly constrained constant modulus (LCCM) cost function is given by 

95 

(5.1) 

subject to the linear constraint v H 
81 = 1, where Yt is the transformed received signal and a is an 

arbitrary real scalar. Since, Yt = v H r, the LCCM cost can now be written as 

1 1 
J(v) = -E [vHrrHvvHrrHv] - aE [vHrrHv] + _a2 . 

vHSl=1 2 2 
(5.2) 

At this point we make a few assumptions concerning our model. First we assume a synchronous 

channel. Furthermore, we assume that the Gaussian noise component a ---+ 0, and that the signature 

waveforms are spanned by h'JI , ... , 'l/Jd. This leaves us with a K dimensional cost function J(v). 

In the noise free case, v H r = v H SAb. If we let 'Uk = Ak(VH 8k) and u = ['UI' 'U2, . .. ,'UKJ
T , then 

we can write the cost function J(v) as 

1 1 
J(u) = -E [uHbbHuuHbbHu] - aE [uHbbHu] + _a2 , 

ul=Al 2 2 
(5.3) 

where the linear constraint v H 8 1 = 1 implies that 'U 1 = AI. 

Since bk E {±1 ± j} and for different k, bk are independent random variables, we have the two 

expected value terms in (5.3) respectively equal tol 

K 

E [uHbbHuuHbbHu] = 8 (uHU)2 - 4 I: l'Ukl 4 (5.4) 

k=1 

and 

(5.5) 

Having removed the influence of the expected values on (5.3), we can now write this equation as 

If we write (5.6) in terms of 'Uk and 'Uk' we have 

IThe two expected value terms are evaluated in Appendix D 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

(5.6) 

University of Pretoria 

 
 
 



CHAPTER 5: Blind Multiuser Detection using the Constant Modulus Criterion 96 

J (u) = 4 (t UkUk) 2 - 2 t (UkUk)2 - 2a t ukUk + ~a2. 
ul=Al k=l k=l k=I 2 

(5.7) 

Expanding the terms in (5.7) we obtain 

5.2.1 THE CONVEXITY OF THE LCCM COST FUNCTION 

To investigate the convexity of the cost function J ( Uk), a property of a continuous convex function 

in [65] (Theorem 10.2) will be applied. This theorem states that if 

(5.9) 

for any points UI and U2, then the function J is convex. The function J is strictly convex if the above 

inequality is true as a strict inequality. 

Let the projection of u with Ul = 0 be denoted by ii. If we write (5.8) in terms of vector norms of ii, 

we have 

J(u) = 4 (ArAI + lliil12r -2 (AiAd
2 

- 211iill 4 - 2aAiA1 - 2a IIiil1 2 + la2. (5.10) 

Let us start with the RHS of the inequality in equation (5.9), 

J(ud 
2 

2 (Ai Al + IIiid2 r -(Ai AJ)2 - II iiI 114 - aAi Al - a II iiI 112 + ~a2 
2 (Ai Ad2 + 211iilll4 + 4A]" Al II iiI 112 - (Ai AI)2 - II iiI 114 - aA~ Al - a IIiiII12 + ~a2 

2 

(AiAJ) ((AiAd - a) +: + (4AiAl - a) IIiill12 + Iliidl4 
, ' --...-... 

'V' B 
A 

A + B II iiI 112 + II iiI 114 (5.l1) 

and equivalently 

J (U2) = A + B llii2112 + llii2114. 
2 

Thus we have the RHS of (5.9) equal to 
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J(uI)+J(uz) ( ) 2 = 2A + B Ilihllz + Iluzllz + II ull1 4 + /l uz//4. (S.13) 

The LHS of (S.9) is given by 

J (U) ; U') = 4 ( Ai A, + 110) : 0211 ')' - 2 (Ai A))' - 2
110) ;60211 ' - 2QAj A, 

2 lIuI + uzll 2 
1 z 

- a 4 + 2a 

= 4 (Ai AI)z + lIuI : uzl1
4 

+ 2Ai Al lIuI + uzll z - 2 (Ai AI)z 

IluI + uzll4 2 A*A lIuI + uzf 1 2 - a I I - a +-a 822 
z 

2 (AiAI) ((AiAd - a) +~ + (2AiAI - i) lIuI + uzll z 

/lUI + uzll4 
+ 8 

= 2 (AiAI) ((AiAd - a) + ~z + 4 (2Ai A I _ i) ("UI ; uzll) 2 

+2 ("UI;uz/l)4 (S.14) 

If we use the triangle inequality /lUI + uzll ~ /lui/i + lIuz/i we have 

z 
2 (AiAI) ((AiAd - a) + ~ 

2 

+4 (2Ai AI _ i) ("UIII ; lIuzll) z 

+2 ("uII; lIuzll) 4 

Also using the fact that the functions (-)z and (.)4 are strictly convex, we have by (S.9) 

J (
UI +2 uz) < a

Z 

2(AiAd ((AiAd - a) +"2 

+2 (2AiAI - i) (/lU1/IZ + lIuzllZ) 

+ lIuI/l4 + lIuzll4 

If we write (S.16) in terms of A and B, we have 

(S.lS) 

(S.16) 

J (uI ; uz) < 2A + B (lIuIIiZ + lIuzllZ) + IIUl1l4 + lI uzll4 
(S.17) 

J(ud+J(uz) 
= 2 
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Because of the above inequality, and by (5.9), we have proved the strict convexity of the LCCM cost 

function subject to 

(5.18) 

and 

B"2 O. (5.19) 

Since (5.19) is a stricter condition than (5.18), we can discard (5.18). We have thus that the LCCM 

cost function is convex, subject only to 

B "20 or equivalently Ai Al "2 ~. (5.20) 

Note that the inequality B > 0 is a global condition on Al and a, insuring convexity of the LCCM 

cost function. 

5.2.2 THE STATIONARY POINTS OF THE LCCM COST FUNCTION 

Considering equation (5.8) again, if we let Uk == Xk + jYk for 2 ::; k ::; K, then the cost function 

J (u) becomes 

J(u) ~ 4 (AiA! + t,(x~+yl)r -2(AiAd2_2t,(X~+y~)2 
K 

-2aAiA1 - 2a L (x~ + yD + ~a2 
k=2 

(5.21 ) 

To solve for the stationary points, we find the gradient (directional derivative) of J (Xk, Yk), and 

equate it to zero. In this way we can attempt to solve for the points at which the cost function is a 

minimum. In this case it is more informative to differentiate with respect to the real and imaginary 

parts of J (Xk' Yk), rather than differentiate with respect to a complex vector: 

16 (AiA! + t, (xZ + yl)) x, -8 (xl + yi) x, - 4<>x, 

4x, (4AiA! +4 t, (xZ + yl)- 2 (xl + yi) - (Y) 

4Xl (4Ai A! + 4 t, (x~ + yl) + 2xl + 2YT - ,,) (5.22) 

k#l 
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and equivalently 

a./(u) (K ) 
"VlJJ = aYI = 4Yl 4A~ Aj + 4 {; (xk + Yk) + 2xf + 2yl- ex (5.23) 

k#l 

with symmetry evident between (5.20) and (5.21). Letting 

(5.24) 

and 

(5.25) 

we have 

Xl (2xl + X) = ° (5.26) 

and 

Yl (2yf + Y) = 0. (5.27) 

At this stage two cases can be identified: 

I. 4Aj AJ - ex ~ 0; 

In the case of 4At AJ - a 2:: 0, it is evident that a unique solution exists at Xl = ° and Yl = 0, 

since all the other terms in (5.24) and (5.25) can only be greater than or equal to zero. In the case of 

4Ar A] - n < 0, solutions may exist at Xl = ° or Xl = ±ff and Yl = ° or Yl = ±fl. 

We have already ascertained that the LCCM cost function is strictly convex for certain values of a 

and A I. Let us consider the trivial solution of Xl = 0, Yl = 0. This implies that Uk = 0 + jO with 

2 :::; k :::; K or ii = 0, where ii = [0 112 113 .•. UKV· Coincidentally, this is also the solution that 

cancels out all multiuser interference. To prove that the point ii = 0 is a global minimum of the cost 

function .J conditioned on Al and a, we will have to look at the Hessian matrix H(J) of the cost 

function .J at the point ii = O. 
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To ~\aluate the nature of the stationary point il = 0 of the LCCM f . . 
cost unctIOn, we use the HeSSIan 

matrix a\ detlned below 

(5.28) 

with 

(5.29) 

(5.30) 

(5.31) 

and 

(5.32) 

The entries of the Hessian matrix are 

_ { 16AjAI + 24xl + 8y? + 16 k~2 (xf + yZ) - a 
(Ha)ml - kefl 

32xm X l 

if 1= m 
(5.33) 

if I" m 

(5.34) 

(5.35) 

and 

If 

(H")",, = { 
16Aj Al + 24yl + 8xf + 16 L (xf + yf) - a if 1= m 

k=2 
kefl 

if l" m 

(5.36) 

Normally. for the Hessian matrix to be positive definite (i.e., the cost function convex with a global 

minimum), the determinants of all the principle submatrices of the Hessian matrix must be zero. This 

is to say that: 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical, Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER 5: Blind Multiuser Detection using the Constant Modulus Criterion 101 

dpt((Ha)!!) = (Ha)l! ~ 0, 

(Ha)JI (Ha )22 - (Ha)12 (Ha)21 ~ 0, 

detHa ~ O. 

dptH(J)~O. 

(5.37) 

Since we have already proved that the LCCM cost function is strictly convex subject to (5.20), we can 

now ~how that the point u = 0 is a unique global minimum subject to the same conditions. Since it is 

possible that a strictly convex function may have only one minimum, we can prove the point u = 0 a 

global minimum, by proving it a local minimum [66]. 

Let us now prove that a local minimum exists only at the point ii = 0 for certain values of Al and a. 

Implementing this. we have the diagonal Hessian 

{ 
16Ai Al - 4a if i = j 

(H(JO})i) = 0 if i i j (5.38) 

For each of the diagonal elements to be ~ 0, and the matrix positive semi-definite, the following must 

be true: 

(5.39) 

We have thus proved the local minimum of J at u = 0 subject to the condition (5.39). Note that the 

condition in (5.39) is a local condition on Al and a, and insures only a local minimum. Coinciden­

tally, this condition corresponds to the condition on global convexity in (5.20). 

In the preceding text we have proved the global convexity of the LCCM cost function subject to (5.20) 

by using a definition of a continuous convex function in (5.9). We have also seen that the single 

stationary point (also subject to (5.20)), is a global minimum due to the convexity of the LCCM 

cost function. The conditions of AjAJ > a/4, AjAI = a/4 and AiAI < a/4 are depicted in 

Figures 5. I. 5.2 and 5.3 respectively. This clearly supports the notion we have developed regarding 

the convexity of the LCCM cost function. For the case of Ai Al ~ a/4. the cost function is strictly 

convex. If AjAl < et/4. convexity cannot be guaranteed anymore, as can be seen in Figure 5.3. 

From this figure it is also evident that the point x = 0, y = 0 is also not the only stationary point. 

This corresponds to the solutions of equations (5.26) and (5.27). 
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Figure 5.1: Complex LCCM cost function surface with Ai Al > a/4. 

5.2.3 LINEARLY CONSTRAINED CONSTANT MODULUS ALGORITHM 

102 

I 

The linearly constrained constant modulus algorithm was originally inspired by its application to the 

field of adaptive arrays [61 ,67]. It is based on the generalized sidelobe canceller, which incorporates 

a priori information about the signal. The linear constraint is implemented to capture the user of 

interest instead of any of the interference signals. 

Recall that the LCCM cost function is given by 

Let us first consider the unconstrained cost function 
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Figure 5.2: Complex LCCM cost function surface with Ai A[ = a / 4. 

which, if we consider it in terms of inner products, becomes 
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(5.41) 

(5.42) 

where c[ is (as in the case of the LMS algorithm) the multidimensional parameter which operates on 

y in the form of a linear transfOim. 

We may consider a canonical representation of the linear transform Cj in terms of the signature 

waveform of user I, viz. Sf, and a component orthogonal to Sf, denoted by X I : 
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Figure 5.3: Complex LCCM cost function surface with AiAJ < a/4. 

where X l is such that 
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(5.44) 

This representation is canonical in that every linear multiuser detector of user 1 can be expressed in 

that form. The set of signals C1 that can be written as (5.43) and (5.44) are those that satisfy 

(5.45) 

and the decision of hI = sgn( (y, ei)) is invariant to positi ve scaling. This means that the only linear 

transfOlmations that are ruled out by (5.45), are the set of signals C1 orthogonal to 81 . These signals 

may be omitted, since they result in an error probability of 1/ 2. 
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> 

Figure 5.4: Generalized Sidelobe Canceller with x[i] governed by (5.53) in the case of the LCCM 

algorithm and (5.79) in the case of the LCDCM algorithm. Tn the case of the LCDCM algorithm, the 

previous values ZD[i], ZMFo [i ] and rD [i] need to be remembered to compute x[i]. 

Returning to the cost function in (5.43), writing it in terms of the decomposition of c] in (5.44) and 

ignoring the expected value2 , we have 

Jh) = 2 ((y, si + xi )2 - a r 
If we then find the multidimensional gradient of (5.46), we have 

(5.46) 

(5.47) 

Note that we are still working with the gradient of the unconstrained cost function . The linear 

constraint allows the detector to tune out the interference orthogonal to the signature waveform, i.e. 

restricting the detector from tuning out the desired component. In terms of the gradient, we are loo­

king for the projection or subspace for which the gradient stays orthogonal to s]. Since the inner 

product in (5.47) is a complex scaling factor, and y' is the only multidimensional parameter in the 

equation, we can restrict y' (and thus the gradient) to be orthogonal to s] by replacing y' with 

y - (y , s; ) s]. (5.48) 

Therefore the projection of the gradient in the direction orthogonal to Sl is 

'VJ = 2((y,si + x;)) ((Y,Si +x;)2 -0:) [y - (y,si)s]]. (5.49) 

Let us denote the matched filter responses for s ] and S I + x ] [i - 1] respectively by 

2 As in the case of the LMS algorithm, we may do thi s. The reason for thi s is that in the execution of several iterations , 

the trajectory will be, on average, in the direction of the steepest descent. 
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(y[i], sr) , 

(y[i], si + xi[i - 1]) . 

The stochastic adaptation rule of (5.49) is given by 

xdi] = xdi - 1]- JkZ[i] (Z2[i]- a) (y[i]- ZMF[i]sd, 
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(5.50) 

(5.51) 

(5.52) 

which corresponds to the block diagram of the generalized sidelobe canceller in Figure 5.4. As in the 

case of the LMS algorithm, we may do the following modifications to our system: 

• Implementation with finite dimensional vectors rather than continuous time signals. 

• Improved convergence speed with more complex recursive algorithms, such as recursive least 

squares (RLS). 

• Implementation in asynchronous channels. 

The finite dimensional vector implementation of our LCCM algorithm is given by 

xdi] = xdi - 1]- JkZ[i] (Z2[i] - a) (r[i] - ZMF[i]st) , 

with 

sf r[i], 

= (Sl + xdi - I])H r[i]. 

5.3 THE LINEARLY CONSTRAINED DIFFERENTIAL 

CONSTANT MODULUS CRITERION 

The linearly constrained differential constant modulus (LCDCM) cost function is given by 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

subject to the linear constraint v H 
81 = I, where Yt is the transformed received signal and YtD is 

a delayed version of the transformed received signal. The LCDCM criterion attempts to keep the 

modulus of the received signal constant from time t to time t + D. Following the same reasoning 

as in the case of the LCCM detector, we will show that the LCDCM cost function has a global 
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minimum. Since, Yt = v H r and assuming a quasi stationary CDMA channel, the LCDCM cost can 

now be written as 

J(v) 
yHS1=1 (5.57) 

+~E [vHrDri5vvHrDri5v] , 

where r D is the delayed received vector. Again, we assume that the Gaussian noise component 

a -+ 0, and that the signature waveforms are spanned by {'I/;l, ... , 'I/; L}. This leaves us with a K 

dimensional cost function J(v). In the noise free case, vHr = vHSAb. If we let Uk = Ak(vHsk) 

and u = [Ul, U2, .. " UK]H, then we can write the cost function J(v) as 

~E [uHb[i]bH[i]uuHb[i]bH[i]u] - E [uHb[i]bH[i]uuHb[i - D]bH[i - D]u] 

+~E [uHb[i - D]bH[i - D]uuHb[i - DJbH[i - DJu] . 
(5.58) 

Let us again assume that the bits of different users are independent and that b[iJ, b[i - D] E {±1 ± j}. 

Furthermore, assuming that the delay D is greater than any partial response signalling inherent in the 

system, we have that bits separated by D seconds are independent, and hence the expectation value 

terms of (5.58) can be written as 

K 

E [uHb[i]bH[i]uuHb[i]bH[i]u] = 8 (uHU)2 - 4 L IUkI 4
, (5.59) 

k=l 

K 

E [uHb[i - D]bH[i - D]uuHb[i - D]bH[i - D]u] = 8 (uHu)2 - 4 L IUkl4 (5.60) 
k=l 

and 

(5.61) 

This greatly simplifies the LCDCM cost function to 

K 

J(u) =4(uH u)2_4LlukI4. (5.62) 
ul=Al k=l 

Writing (5.62) in terms of a summation of Uk and exercising the linear constraint Ul = AI, we have 

J(u) = 4 ( AiAJ + t, UkUk) 2 - 4 t, (UkUk)' - 4 (AiA,)2 

Letting Uk = Xk + jYk for 2::; k::; K, the cost function J (u) becomes 

(5.63) 
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J(u) d ( AiAJ + ~ (xi + yl))' -4 ~ (xi + yl)' -4 (AiAJ)'. (5.64) 

Once again, the gradient of the cost function V' J with respect to the lth real and imaginary elements 

of u is found, and equated it to zero, yields: 

'V x,J 16xI ( Ai AI + ~ (xi + yl)) - 16xI (xl + yn 

16xl (AiAI + xi + yl + ~ (xi + yn -xi - YI) 
k#-l 

= 16xl (AiAl + ~ (xi + Yll) = 0 (5.65) 

k#-l 

and equivalently 

V'yJ = 16Yl (AiAl + ~ (xi + yl)) = O. 

k#-l 

(5.66) 

This is highly encouraging, since there exists a unique trivial solution of Xl = 0 and Yt = 0 for the gra­

dient equations (5.65) and (5.66). This corresponds to 11 = 0, once again with 11 = [U2 U3 ... UK], 

which is also the solution of the MMSE detector with no multi path or code mismatch. 

We will now examine if 11 = 0 is a global minimum. As will be seen in the following section, we need 

not even consider the convexity of the function J (11) to determine if 11 = 0 is a global minimum. 

5.3.1 GLOBAL MINIMUM OF THE LCDCM COST FUNCTION 

In the case of the linearly constrained differential CMA, it is simple to show that the cost function 

has a global minimum, without even having to consider the convexity of the LCDCM cost function. 

Since the gradient functions (5.65) and (5.66) only has a trivial solution at ii = 0, we need only to 

examine the nature of the stationary point ii = O. Again we use the Hessian as defined in (5.28). The 

entries of the Hessian are given by 
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and 

(Hd)ml = /16 ( AlA, + :~f (xl + yl)) 
32xm X l 

The Hessian at the point Xl = Yt = 0 is given by 

H(Jo) = 

o 

o 
16AiAl 0 

o 

if l = m 

if l =1= m 

o 

o 
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(5.68) 

(5.69) 

(5.70) 

(5.71) 

which is positive definite. This means that the point Xl = Yl = 0 or ii = 0 is a unique global 

minimum. 

We have seen in this section that the LCDCM cost criterion exhibits a global minimum. Unlike the 

LCeM criterion, this point remains a minimum irrespective of desired user amplitude. Figure 5.5 

shows the one dimensional complex surface of the LCDCMA cost function for any value of AI. It is 

clearly convex with a global minimum. 

5.3.2 LINEARLY CONSTRAINED DIFFERENTIAL CONSTANT MODULUS 

ALGORITHM 

The LCDCMA can be derived by also using the stochastic gradient approach as in the case of the 

LMS and LCCM algorithms. Again, recall the LCDCM cost function: 

V~~~21 = ~E [ (IYtI
2 

-IYtD 12f] . (5.72) 

Let us first consider the unconstrained cost (as with the LCCMA), which is given by 

(5.73) 

The cost function in terms of inner products representing the transformed received and delayed trans­

formed received signals is given by 
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Figure 5.5: One Dimensional Complex LCDCM cost function surface. 

J = ~E [ ((y, ci)2 - (YD, ct)2f] , (5.74) 

where C1 is the multidimensional parameter which operates on Y in the form of a linear transform. 

We may now write the cost function in terms of the canonical representation of (5.43) and (5.44), 

ignoring the expected value3 : 

J 1(( * *)2 ( * *)2)2 = 2" y,81 + Xl - YD,81 + Xl . (5.75) 

Finding the multidimensional gradient of (5.75) we get 

3 As in the case of the LMS algorithm, we may do this. The reason for this is that in the execution of several iterations, 

the trajectory will be, on average, in the direction of the steepest descent. 
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(5.76) 

Let us follow a similar approach whereby (5.49) is established. If we implement the linear constraint. 

the projection of the gradient in the direction orthogonal to :-; I is 

\1J 

(5.77) 

where the terms [y - (y, si) S1] and [YD - (YD, si) sJ] are the projections or subspaces of y and ]If) 

respectively for which the gradient stays orthogonal to 81. 

Denoting the matched filter responses for s] and 81 + xdi - 1] as in (5.50) and (5.51), and the 

responses of the delayed signals with the subscript letter D, the adaptation rule of (5.77) is given by 

xdi] = xJ[i - 1] -/1 ([y[i] - ZAldiJ"'1] Z[iJ - [YD[i]- Z.;\fFn[i].'Id Z[i]n) (Z[if - Z[iJi)) . 

/5.7X) 

The finite dimensional vector implementation of the LCDCM algorithm is given by 

xt[iJ = xI(i - 1J -/1 ((r(iJ - ZMF(iJsIJ Z[iJ - [rJ)[i]- ZMFn[iJsd Z[i)[») (Z[1f - Z(ilJ)). 

(5.79) 

where the matched filter responses for SI and s] + XI [i - 1] are given by (5.54) and (5.55) and the 

responses of the delayed signals are again denoted by the subscript letter [). 

5.4 PERFORMANCE OF THE LCCM AND LCDCM 

ALGORITHMS IN MULTIPATH FADING CHANNELS 

The MMSE detector optimally combines multiple propagation paths, making it a very suitable recei­

ver structure, given sufficient filter length to span all correlated paths. As we have seen. in single 

path environment. the LCCM and LCDCM detectors have the same vector weight solutions as the 

MMSE detector (assuming a > 1/4 in the case of the LCCM detector). The single path vector 

weight solution of the MMSE. LCCM and LCDCM detector is given by (4.47) and 1471 as 

- C- 1 
V = Sl 

The question now arises: How will the blind LCCM and LCDCM detectors fare in a multi path envi­

ronment? Unfortunately. all multiple paths (except one) are suppressed a'i interference. The reason 
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for this is that in a multipath environment, pin (4.46) is no longer equal to S1. The vector P will now 

contain the contributions from the correlated parts of the delayed multi path components. Regardless 

of the multipath value of p, the blind LCCM and LCDCM detectors will continue to extract only one 

path which correlates with Sl. 

Two ways have been proposed to allow the blind LCCM and LCDCM detectors to effectively combine 

the multiple paths: 

I. The mUltipath channel can be estimated and used as the linear constraint for either the LCCM 

and LCDCM algorithms [60]. In this way all paths can be effectively combined. 

2. A multi-channel LCCM (or LCDCM) algorithm as proposed by Mangalvedhe [47] can be used. 

The former method is complex in that is requires singular value decomposition to estimate the multi­

path channel. The latter method uses several full detectors (channels) to extract each of the multiple 

paths. Adaptive weights are then used to optimally combine the outputs of the detectors. The fact that 

one needs a full detector to extract a single path also makes the multi-channel LCCM (or LCDCM) 

computationally expensive for a large number of paths. Although not discussed in this dissertation, it 

would be informative to compare the above mentioned two methods for multipath combination, both 

in terms of complexity, computational cost and performance. 

Areas of possible further study could either be a search for a suitable cost function that will optimally 

combine multiple paths, or other methods to modify the LCCM or LCDCM algorithms which require 

less complexity than the above mentioned methods. 

5.5 SUMMARY 

This chapter contains much of the novel theoretical work attempted in this dissertation. The problem 

of blind multiuser detection utilizing the constant modulus algorithm is explored. An introductory 

section familiarizes the reader with the relatively recent history associated with blind multiuser de­

tection, as well as all the research that has been attempted in this field. 

The second section concerns itself with the thorough analysis of the LCCM cost function. For the 

first time, through rigorous analysis, a global condition for the convexity of LCCM cost function is 

derived. The nature of the stationary points are also examined. Subsequently, the LCCM algorithm is 

derived and presented. 
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The following section shows that the LCDCM criterion is the solution to non-convergence problems 

that, under certain circumstances, may plague the LCCMA. This is done by proving that a global 

minimum exist on the LCDCM cost function. Following the analysis of the LCDCM criterion, the 

LCDCM algorithm is derived. 

In the final section, a qualitative analysis of the LCCM and LCDCM detector performance in a fading 

multipath channel is conducted. Methods to remedy shortcomings of these detectors in a multipath 

environment, are proposed. 
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