
CHAPTER FOUR 

LINEAR MULTIUSER DETECTORS 

The matched filter detector is a linear detector. We will now examine other linear detectors (i.e. detec­

tors that operate on the received samples by means of an arbitrary linear transformation M as shown 

in Figure 4.1). The class of linear multiuser detectors discussed in this chapter include the decorrela­

ting detector, the MMSE detector. and the generalized extension of the aforementioned detectors: the 

optimum linear multiuser detector. 

The blind detectors discussed in this dissertation all have mean weight vector solutions that converge 

to the MMSE solution. It is thus imperative to understand the operation of the MMSE detector. so we 

can make meaningful comparisons between the blind detectors and the MMSE detector. especially 

where multipath combining is concerned. In this chapter we will briefly visit the decorrelating detec­

tor. after which we will consider the optimum linear and MMSE detectors in more detail. 

The performance of the MMSE detector is evaluated by means of performance measures presented in 

Chapter 3. An extension of the MMSE detector model provided in [31] to the multipath case is also 

presented. This is done by partially utilizing the derivation in [47]. 

4.1 THE LINEAR DECORRELATING DETECTOR 

Before we discuss the optimum linear and MMSE detectors. let us briefly and qualitatively consider 

the operation of the linear decorrelating detector. The decorrelating detector is relevant to a certain 

extent. since the MMSE detector and decorreiating detector perform the same linear transformation 

when noise is absent from the channel [46], [31]. This means that both detectors exhibit the same 

asymptotic multiuser efficiency, and both are optimally near-far resistant. The CDMA decorrelating 

detector first proposed by Schneider [48] is equivalent to the zero-forcing equalizer, as it attempts to 
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Figure 4.1: Block diagram depicting the structure of the K user linear receiver performing a linear 

operation M on the sampled matched filter outputs. 

perform a linear inverse correlation matrix operation M = R-l on the received signal samples. In 

some cases, the correlation matrix may be singular, in which case a simple matrix inversion is not 

possible. A generalized inverse may then be used [46]. Analogous to zero-forcing equalization, noise 

enhancement may be a problem in the COMA decorrelating detector. After Schneider, there have 

been several efforts to realize the decorrelating detector adaptively [49] [50]. 

Having now briefly visited the decorrelating detector, let us consider a generalized extension of the 

decorrelating detector. 

4.2 THE OPTIMUM LINEAR DETECTOR 

Lupas and Verdu [46] extended the MMSE and decorrelating detectors to the optimum linear detector. 

The class of linear detectors performs a linear transformation on the received signal vector. The op­

timum linear detector is the detector which maximizes the asymptotic multiuser efficiency for every 

vector of received amplitudes. In general, it is possible to achieve a certain tradeoff of interference 

rejection and attenuation of the desired signal component in order to maximize the asymptotic mul­

tiuser efficiency within the constraint of linear multiuser detection. Employing the complex vector 

matrix model of (2.17), let us denote the kth user linear transformation by tk, with 
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CHAPTER 4: Linear Multiuser Detectors 

where y is the complex vector of normalized matched filter outputs. Then 

K 

ttl Y = L Ajbjttl rJ + tkl n, 
j=1 

where r) is the jth column of the normalized crosscorrelation matrix R. 

achieved by the transformation tk can be expressed as 

ptk = E Q J# 
[. (

Aktt!rk + L Ajbjtt!rj )] 

e ajttlRtk 
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(4.2) 

The probability of error 

(4.3) 

where the expectation is with respect to b), j i= k. The asymptotic multiuser efficiency of user k is 

given by the square of the smallest argument of the Q-function normalized by Ak/a2 , i.e. 

17k (tk) = HI [max {o, tt!rk - L AA
j 

Itt!rjl }]

2 

tk Rtk j# k 
(4.4) 

Due to the presence of the absolute value in (4.4), the maximization of the K-user asymptotic mul-

tiuser efficiency entails solving a nonlinear optimization problem that does not permit a closed form 

solution. Lupas and Verdu [46] presented an algorithm to implement the kth user maximal linear 

asymptotic multiuser efficiency detector. The authors also presented sufficient conditions for the best 

linear detector to achieve optimum kth user multiuser efficiency, as well as sufficient conditions for 

decorrelating detector to be the best kth user linear detector. The computational complexity of the 

kth user maximal linear asymptotic multiuser efficiency detector is prohibitive for a large number of 

users when using the algorithm mentioned above. 

Although it is not possible to find a closed form solution for the kth user asymptotic multiuser effi­

ciency in a K user channel, it is possible, however, to evaluate a closed form solution in the two user 

case. 

4.2.1 THE TWO USER OPTIMUM LINEAR DETECTOR 

We will now examine the optimization of (4.4) with respect to tt! by analyzing the two-user case. As 

in Chapter 3, we will restrict ourselves to the real domain, as it is instrumental in understanding and 

visualizing the two user linear case. Without loss of generality, if we let t 1 = [1 xJH, the asymptotic 

multiuser efficiency becomes 

T}l {td = [max {o, 17P -;l7lx ~pl }]2 
1 + 2px + x 

[max { 0, g (x, p, ~~) }] 2 (4.5) 

The value of x that maximizes g (x, p, *) is 
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Figure 4.2: Block diagram depicting the structure of the two user linear decorrelating, optimum and 

MMSE receivers in the real domain. 

x = {-17-sgn(P) if A2/Al < Ipi 
- P otherwise 

(4.6) 

When the relative energy of the interferer is strong enough, i.e. A2 ~ AI/pi, then the decorreJating 

detector maximizes asymptotic efficiency among all linear transformations. On the other hand, if 

A2 < Allpl, then the received signal is correlated with 

(4.7) 

or equivalently with 

(4.8) 

The optimum linear detector is a compromise solution between the decorrelating detector and the 

single user matched filter. As the relative power of the interferer decreases the optimum linear detector 

approaches the matched filter (Figure 4.2). 

The maximum asymptotic multiuser efficiency for the two-user case is obtained by substituting (4.6) 

in (4.5). 

A2 A 
1 + ::it - 2Ipl~, if A2/Al < Ipi 

1 

1 - p2, otherwise 
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CHAPTER 4: Linear Multiuser Detectors 68 

When A2/ Al < Ipl, the near-far resistance of the optimum linear detector is equal to that of the op­

timum multiuser detector in the high SNR region [46], [31]. On the other hand, when AdAl 2 IpI, 
there is no point, as far as near-far resistance is concerned, in utilizing the values of the received 

energIes. 

Note that the optimal linear asymptotic multiuser efficiency detector is optimal only in the high SNR 

region. It suffers from similar shortcomings as the decorrelating detector with respect to noise en­

hancement. In a low SNR environment, the single-user matched filter outperforms the optimal linear 

asymptotic multiuser efficiency detector. It is evident that there is room for improvement, if the noise 

is taken into account, concerning the performance of the optimal linear asymptotic multiuser effi­

ciency detector. On the one hand, we have the matched filter detector that is optimized for white 

Gaussian noise. On the other hand, the decorrelating detector mitigates multiuser interference while 

disregarding the white Gaussian noise. The detector that utilizes information concerning both the 

SNR and MAl is the MMSE detector. 

4.3 THE LINEAR MMSE DETECTOR 

The adaptive MMSE detector [51], [52], [53] may solve many of the complexity and assumed know­

ledge problems associated with many of the other multiuser detector structures. As with matched 

filtering and de-correlation, the MMSE detection is a linear operation. This has the advantage that the 

received signal samples can be processed directly, thus simultaneously performing both the function 

of matched filtering and multiuser detection [7]. The MMSE detector turns the problem of multiuser 

detection into a problem of linear estimation. This is accomplished by minimizing a mean square 

error (MSE) cost criterion adaptively. The minimization can be done colIectively over alI users, or for 

each user individually. 

An important quality of the MMSE detector, is that in addition to multiuser interference cancella­

tion, it can also perform multipath (diversity) combining [54], [47], providing it has adequate filter 

span and that the channel inverse can be accurately modelIed by a finite linear filter. In addition, 

the MMSE detector is successful at simultaneously mitigating narrow band interference (NBI) and 

MAl [55], [56]. A drawback of the MMSE detector is that a training sequence is needed to initially 

determine the CDMA channel conditions. After initial training, the MMSE detector can switch to 

its own decisions from which the MSE can be determined. This is referred to as decision directed 

mode. The imposition of training sequences implies some system overhead in the form of preamble 

and midamble bit sequences. The only knowledge required by the receiver is the training sequence of 

the user of interest. This means that the MMSE detector can be seen as a single-user detector capable 

of multiuser interference cancellation [7]. 
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CHAPTER 4: Linear Multiuser Detectors 69 

4.3.1 THE MMSE OPTIMIZATION PROBLEM 

We start by quantitatively discussing the MMSE detector in terms of the MMSE optimization pro­

blem. ~ote that the same notation is used as in Chapters 2 and 3. The kth user MMSE detector 

chooses a complex waveform (or linear transformation) q of duration T that performs 

(4.10) 

and makes the decision 

bk = sgn((y,ck)) (4.11) 

The MMSE linear transformation maximizes the SIR at the output of the linear transformation, i.e. 

1 _ 1 E [( (Ak bk8 k, cZ:)) ((Akbk8 k. ck))*] 
U;!I1 E [(bk - (y. en) (bk - (y, cn r] - +~:;x E [( (y - Akbk8 k, cZ:)) ((y - Akbksk, cZ:) rl' 

( 4.12) 

In orthogonal representation, we can always express Ck as 

(4.13) 

where ck is spanned by the signature waveforms 81, ... ,8 K and ck is orthogonal to the signature 

waveforms. Them we have 

E[(bk - (y,ck)) (bk - (y,cZ:))*] = E[(bk - (y,ck*)) (bk - (y,cr))*] + (}21I ckll· (4.14) 

We wilI restrict ourselves to Ck spanned by the signature waveforms, i.e. a weighted combination of 

the matched filter outputs. 

To analyze the operation and performance of the MMSE detector, we will start by formulating the 

vector matrix model of the MMSE detector. 

4.3.2 THE MMSE DETECTOR VECTOR MATRIX MODEL 

Let us start with the complex vector matrix model defined in (2.17) 

y = RAb+n, (4.15) 

where R is the correlation matrix in Hermitian form, A is a complex diagonal matrix of the user am­

plitudes, and n is a complex valued Gaussian vector with independent real and imaginary components 
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CHAPTER 4: Linear Multiuser Detectors 70 

and with a covariance matrix equal to 2a:2R. The complex bit vector is denoted by b. The MMSE 

detector attempts to minimized the MSE or the difference between the actual transmitted bit vector b 

and a linear complex transformation M of the received signal vector y by adjusting the transformation 

M. The transformation M is a K x K matrix and a K user joint optimization problem. Equivalent to 

the joint optimization problem, we can also have K uncoupled optimization problems (one for each 

user). in which case the real error cost function of user k is given by the expected value of the squared 

error, I.e. 

(4.16) 

where mk is the kth column vector of M. In the K user joint optimization problem, the real error 

cost function J is given by 

(4.17) 

where e denotes the complex error vector. Alternatively, the real error cost function is given by the 

trace of the covariance matrix J of the error vector, i. e. 

J tr {J} 

tr {E [(b - My) (b - My)H]} 
= tr{E [ee H

]}. 

( 4.18) 

(4.19) 

(4.20) 

To find the complex matrix M that will minimize the cost function J, we will use the gradient method. 

This is done by partially differentiating the cost function J with respect to the complex elements of 

M, equating it to zero, and solving for M. The matrix M has complex elements, which can be written 

in the form 

mvw = Xvw + jyvw' (4.21) 

The definition for the element of the vth row and the UJth column of the complex gradient operator 

[57] matrix \7M is given by 

a 8 
\7mv", = -a- + j-a . (4.22) 

Xvw Yvw 

To solve the MSE cost function optimization problem, we will first apply the gradient operator to the 

real cost function J. The complex gradient matrix \7M(J) is thus given by 

[ 

8J . OJ 
8Xll + J c3Yll 

\7M (J) = : 
8J . 8J 

&XKl + J &YKI 

OJ . 8.1 1 BXIK + J 8YlK 

.-!l..L + J' -.2L 
8XKK 8YKK 
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where equation (4.23) represents a natural extension of the customary definition of a gradient for a 

function of real elements to the more general case of a function of complex elements. I 

By letting \7M(J) = 0 and solving for M, we will have found an expression for M where the error 

surface for each user in the K dimensional space has a minimum. To do this, let us first manipulate 
(4.14) 

J = tr{E[(b-My)(b-My)H]} 

tr{E [(b - My) (b H _ yHMH)]} 

tr {E [bbH - byHMH - MybH + MyyHMH]} 

tr {E [bbH] - E [byH] MH - ME [ybH] + ME [yyH] MH} , (4.24) 

where (4.24) follows from the fact that M is assumed to be constant. Assuming no correlation bet­

ween the data of different users or between the data and noise vectors, we have 

E [bbH] 21, (4.25) 

E [byH] = 2AR, (4.26) 

E [ybH] - 2RA, (4.27) 

E [yyH] = 2RA 2R + 2a2R. (4.28) 

Simplifying the cost function with the above results, we have 

J = tr{21-2ARMH -2MAR+2M(RA2R+a2R)MH} 

= tr{21-2ARMH -2MAR+2MRA2RMH + Ma2RMH}. 
(4.29) 

Let us now find the complex gradient matrix \7 M (J) of the cost function, 

\7M(J) 

= 2 8~' (tr {21} - tr {2ARMH} - tr {2MAR} + tr {2MRA 2RMH} + tr {2Ma2RMH}) 
(4.30) 

where (4.30) is evaluated in Appendix C. The result of the gradient of the cost function J from 

Appendix C is given by 

(4.31) 

INote that the cost function J is not analytic, when it is written in terms of complex filter taps. The definition of the 

derivative of the cost function J with respect to the complex transformation matrix M reqUires special attention. This issue 

is discussed in Appendix C where the relation between derivative and gradient with respect to a complex valued matrix is 

discussed. 
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CHAPTER 4: Linear Multiuser Detectors 72 

To obtain the minimum on the error surface, the slope or gradient must be set equal to zero, i.e 

V'M(J) = -4AR+ 4MRA2R + 4Ma2R = 0 

with M the optimum value for the linear transformation M. Solving for M we obtain 

The MMSE detector outputs the following decision for user k 

sgn (~k [(R + a2 A -2flYL) 
sgn ([(R+a2A-2)-ly]J. 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

Note that the dependence of the MMSE detector on received amplitudes is only through the signal­

to-noise ratios AVa2 due to the sgn function. Because of this, we can replace the optimum linear 

transformation in (4.34) with 

(4.36) 

In the formulation of the MMSE detector vector matrix model, we have assumed a great deal less 

than in the basic CDMA model. We did not assume that the background noise is Gaussian, nor that 

the bits are binary valued. The only assumptions we made were that the bits were uncorrelated from 

user to user, that the bit and noise vectors were uncorrelated, and that E[b~J = 1. 

4.3.3 THE TWO USER MMSE DETECTOR 

Once again restricting ourselves to the real domain, in the two user case we have from (4.36) 

(R+a'A-2r 1 
= [(1+ ~;) (1+ ~;) -pf [l:~ (4.37) 

from which the two user MMSE detector follows, as shown in Figure 4.2. 

4.3.4 THE LIMITING FORMS OF THE MMSE DETECTOR 

The MMSE detector is a compromise between the matched filter detector and the decorrelating de­

tector. To illustrate this, we shall investigate the linear transformation M* = (R + a 2 A -2)-1 in its 

limiting forms as a -+ ° and a -+ 00. On the one hand, if a -+ 0, then (R + a2 A -2)-1 -+ R- 1
, 

which means that the MMSE detector approaches the decorrelating detector. On the other hand, if 

a -+ 00, the matrix (R + a2 A -2)-1 becomes strongly diagonal, and the MMSE detector approaches 
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CHAPTER 4: Linear Multiuser Detectors 73 

the conventional matched filter detector. 

The above results reinforces the statement that the asymptotic multiuser efficiency and near-far re­

sistance of the MMSE detector is equal to that of the decorrelating detector. This is intuitive, as the 

asymptotic multiuser efficiency and near-far resistance performance measures are evaluated in the 

limit as a ~ O. 

4.3.5 THE ASYNCHRONOUS MMSE DETECTOR 

The linear time invariant transfer function of the asynchronous MMSE detector for a K user COMA 

channel is given by 

(4.38) 

This is verified in [31] parallel to the asynchronous decorrelating detector, and is the limiting form of 

the inverse of the equivalent correlation matrix that we would obtain for a finite frame length (refer to 

(2.40». The equivalent correlation matrix for a finite frame length is in the form 

R[O] +a2A-2 RH[l] 0 0 

R[l] R[O] +a2A-2 RH[l] 

Ra,~r~vlsE = 0 R[l] 0 

R[O] +a2A-2 RH[l] 

0 0 R[l] R[O] +a2A-2 

4.3.6 THE WIENER FILTER CHARACTERIZATION OF THE MMSE 

DETECTOR 

(4.39) 

For the Wiener filter characterization of the MMSE COMA detector we return to the synchronous 

case. To illustrate the operation of the Wiener filter, we will use the model of orthonormal projections 

as in (2.23). We will limit ourselves to the uncoupled optimization problem, where optimization is 

done with respect to a single user. Without loss of generality, we consider user 1 as the desired user. 

We will start by defining a vector p, which is the cross correlation vector between the vector r (2.25) 

and desired response bl: 

p = E[b~rl· (4.40) 

The optimal vector transformation v that minimizes the mean square error for user 1 
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(4.41) 

can be obtained by setting the gradient equal to the zero-vector, i.e. 

(4.42) 

where the gradient of a complex vector is again defined as in the vector case of (C.9). The first term 

p = E[hir) can be simplified to 

(4.43) 

from (2.25) and from the fact that the noise and data is uncorrelated and also from the fact that the 

data of different users is uncorrelated. The second term E[rrH
] was derived in (2.27) and is equal to 

K 

E[rrH] = 20-2 1 + 2 L A~sks~. (4.44) 

k=1 

Solving for v, we obtain the optimum solution for the linear vector transform 

v (E [rrH ]) -1 E [birJ (4.45) 

C- 1p (4.46) 

[ K r Al 0-21 + {; A%sksf! SI, (4.47) 

where C denotes the covariance matrix of the vector r divided by 2, and is given by 

K 

C = 0-21 + L A%Sksf! (4.48) 

k=1 

Equation (4.46) is an expression of the Wiener-Hop! equation [57J, [58J. It is beneficial to know 

the minimum mean-square error achievable with the detector depending on the channel noise. The 

MMSE is given by 
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Jrnin E [(b1 - yHr) (bi - rHy)] 

E [b1bi] - E [biyHr]- E [b1rHy] + E [yHrrHy] 

= 2 - { (E [rrH]) -1 E [birJ} H E [rrH] (E [rrH] r 1 E [b;'rJ 

2 - { (E [rrH]) -1 E [bi r]} H E [bi r] 

= 2 - E [bir]H (E [rrH]) -1 E [bir] 

= 2 - p H C-1p 

2 - 2Als[1 [~2I + t. Ais.s: rl 

SI 
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(4.49) 

(4.50) 

(4.51) 

(4.52) 

The expression in (4.51) corresponds to the expression of minimum mean-squared error of the stan­

dard Wiener filter as evaluated in (57]. 

4.4 THE MMSE DETECTOR LEAST MEAN SQUARE (LMS) 

ALGORITHM 

From equation (4.47) it can be seen that to determine the optimum solution, a matrix inversion needs 

to be performed. This is a computationally expensive operation, and other methods need to be consi­

dered to avoid this. In addition, mobile channels are time varying, and the detector needs to follow 

these variations. The LMS algorithm achieves the aforementioned by being simple to implement, 

being able to learn the channel impulse response adaptively, and being able to follow time channel 

variations. For correct operation of the LMS algorithm, high certainty data of the desired user must 

be available at the receiver. This seems like to much to ask, as the data is what we need to determine 

in the first place. However, this requirement can be fulfilled by sending a training sequence to insure 

initial convergence. After this, the demodulated bits have a high certainty, and can be used by the 

MMSE detector to follow variations in the channel. The latter mode is referred to as decision directed 

operation. In this way the MMSE detector can be adaptively implemented, but with the disadvantage 

of some overhead in the form of training sequences. 

The operation of the LMS algorithm can be seen as afeedback control system. It consists of two basic 

processes [57], i.e. 

• An adaptive process which involves the adaptation of the tap weights . 

• Afiltering process which involves the inner product of an input vector with the weight vector, 

as well as generating an estimation error which actuates the adaptive process. 
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The LMS algorithm is based on the method of steepest descent, which is one of the oldest methods 

of optimization. To find the minimum value of the mean squared error using the the steepest descent 

algorithm, we proceed as follows: 

1. We begin with an initial value v[OJ for the tap weight vector, which is an arbitrary value. 

2. Using the initial or present guess, we compute the gradient vector, the real and the imaginary 

parts which are defined as the derivative of the mean-squared error J[nJ, evaluated with respect 

to the real and imaginary parts of the tap weight vector v[nJ at time n (or the nth iteration). 

3. The next guess of the tap weight vector is computed by making a change in the initial or present 

guess in a direction opposite to that of the gradient vector. 

4. Go back to step 2 and repeat. 

If the cost function is convex, then the minimum will be found after several iterations of the above 

algorithm. The distance with which the next guess differs from the current guess is termed the step 

size. 

Let us now examine the elements of stochastic gradient descent optimization. Suppose we wish to 

find the multi-dimensional parameter (J* that minimizes the function 

'lJ(0) = E [g (X, 0)]. (4.53) 

For a step size J.l, a convex function 'lJ and a initial condition 00 , it would be possible to converge to 

the global minimum via steepest descent 

(4.54) 

If the step size is arbitrarily small, then eventually OJ will be close enough to 0* for all practical 

purposes. To speed up convergence, the step size can initially be large and progressively decreased 

as the algorithm converges. Other than the fact that 'lJ is convex we did not invoked any structure 

in (4.53). In order to calculate the expected value, we need to know the distribution of X. This 

is not so in all cases in practice. Instead. let us assume that the algorithm is allowed to observed an 

independent sequence {Xl, X 2, ... } where each of the random variables in the sequence has the same 

distribution as X. With this information we can estimate the distribution of X and also calculate an 

approximation to V'lJ. This requires too much effort and a simpler approach would be to replace the 

expected value of the gradient by the immediate (noisy) gradient, i.e. 

'lJ(0) = E [g (X, 0)]. 
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This can be justified by the fact that although the immediate negative gradient does not necessarily 

point in the direction of steepest descent, the average negative gradient of a few iterations does. Ac­

cording to the law of large numbers, if the step size is infinitesimally small, the trajectory of the 

algorithm will very closely track the path of steepest descent. This algorithm is known as the stochas­

tic gradient descent algorithm. In the case where the cost function is a quadratic error cost function, 

the stochastic gradient algorithm is known as the LMS algorithm. It is important to know that the 

stochastic gradient algorithm can also be used when the sequence of realizations of X is dependent, 

subject to the fact that the sequence is also ergodic (the time average of the immediate gradients 

converges to its expected value). 

Applying the stochastic gradient algorithm to the MMSE case (LMS), the linear MMSE detector for 

user one correlates the received waveform with the signal Cl that minimizes 

(4.56) 

How does this fit into the stochastic approximation framework that we have derived above? The 

function g(X, Cl) is our mean square error cost, i.e. 

(4.57) 

where X represents the received waveform y and the bit b1 . It is easily verified that (4.57) is strictly 

convex in Cl. We first will consider the synchronous case, after which we will briefly address the 

asynchronous case. The independent identically distributed observations used in the stochastic gra­

dient algorithm are Xj = (b l U], y[j]) , where y[j] is the received signal modulated by the jth bit of 

all the synchronous users. To specify the gradient algorithm of (4.54), all we need to do is evaluate 

the gradient of (bl - (y, cn)2 with respect to Cl, which is equal to 

2 ((y,ci) -bdy· (4.58) 

We thus conclude that, in practice, the update algorithm is simply 

cdj] = crlj - 1] - "" ((y[j], ci [j - 1]) - brlj]) y[j]. (4.59) 

Since in practice we are working with a finite dimensional vector implementation of the adaptive law, 

a few things need to be pointed out. If the signature waveforms are known, then the dimensionality 

of the adaptive vector need not be larger than K. We know that the MMSE receiver does not need to 

know the transmitted signature vectors. Fortunately, by using a finite dimensional basis known to span 

all received signature waveforms (such as chip-matched filters), there will be sufficient dimensionality 

to implement our linear adaptive LMS algorithm. It is furthermore sufficient to sample at the Nyquist 
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rate for approximately band limited chip waveforms in both the synchronous and asynchronous cases. 

Our LMS adaptation algorithm in finite vector form is then given by 

vdn] = vdn - 1] - IL (vH[n - l]r[n]- bdn]) r[nJ. (4.60) 

Global convergence of the LMS algorithm is shown in [31], subject to a sufficient decrease in step 

size as the algorithm progresses. The maximum step size to ensure convergence at any moment is 

given by 

2 
ILmax = 2 \ ' 

a + "'max 
(4.61) 

where Amax is the maximum eigenvalue of 'Lf::::l AkskSf!. To retain acceptable performance in the 

asynchronous case, we need to lengthen the observation window that spans more than one bit period. 

This implies that the inner product in the penalty function (4.56) is taken over the whole truncated 

window. This does not affect the convexity of the cost function, allowing the detector to converge to 

the MMSE solution. 

It is expected that the detector will converge to the MMSE solution if the interference is constant. 

When these parameters are slowly time varying, it is still possible for an adaptive detector to follow 

these variations. In the case of a new user suddenly being powered on, the decisions might be unre­

liable in decision directed mode, and the desired user might not converge. In this case, the desired 

user will then request for the training sequence to be retransmitted. This implies more overhead, 

and is undesirable. It is for this reason that blind multiuser detectors (such as the constant modulus 

detector) warrant some investigating. Instead of using data (or decision directed) to adapt, the blind 

detectors utilize the cyclostationarity in the signature waveforms to minimize some given criterion. 

4.5 PERFORMANCE OF THE MMSE DETECTOR 

In this section we will consider the performance of the MMSE detector, using some of the measures 

in Chapter 3 to evaluate the detector. 

4.5.1 SIGNAL-TO-INTERFERENCE RATIO OF THE MMSE DETECTOR 

To derive the SIR of the MMSE detector, we start by defining the covariance matrix of the interference 

as 
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Note that user 1 is excluded from the sum. We can now write the optimum MMSE transformation of 

(4.47) and the MMSE of (4.52) as 

(4.63) 

and 

2 
Jmin = ---;:;-~--

1 + Ats{lO-lsl 
(4.64) 

These two results follow from the fact that 

(4.65) 

which can be proven using the matrix inversion lemma [57] or also known as Woodbury's identity [7J.2 

Using the above results, and remembering that v achieves the maximum output signal to interference 

ratio of all linear detectors, the SIR of user 1 can be written as 

= 

E [(vH (r - A1b1sd) (vH (r - A 1b)sd)H] 

E [(AlblVHsl) (Aibis{lv)] 

(4.66) 

(4.67) 

(4.68) 

From (4.66), it can be seen that the SIR is the expectation of the squared linear transformation of 

the desired user contribution divided by the expectation of the squared linear transformation of the 

interferers' contribution. 

4.5.2 ASYMPTOTIC MULTIUSER EFFICIENCY AND NEAR-FAR RESISTANCE 

OF THE MMSE DETECTOR 

Since the operation of the decorrelating detector and that of the MMSE detector are identical in a 

noiseless environment, they have the same asymptotic multiuser efficiency and near-far resistance. 

The asymptotic multiuser efficiency of the MMSE (or decorrelating) detector is given in [46] by 

2The matrix inversion lemma states that for positive definite square matrices A. Band D related by A = B- 1 + 
CD-1C H • the inverse of A is given by A-I = B - BC(D + C H BC)-ICH B. 
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(4.69) 

(4.70) 

where R+ is the Moore-Penrose generalized inverse and denotes the inverse of a singular (or non­

singular) square matrix R.3 The subscript k of Rk denotes the removal of the kth row and the kth 

column from the matrix R. The vector ak is the kth column of R with the kth entry removed and 

contains the correlations between the kth user and all other users. The value Rtk is the element of the 

kth row and kth column of the generalized inverse of R. 

From Figure (4.3), it is evident that the asymptotic multiuser efficiency defined in (4.70) does not 

depend on the amplitude of the interfering user. This implies that the MMSE detector's asymptotic 

multiuser efficiency and near-far resistance are all exactly equal. 

In the asynchronous case, Verdu [31] shows the near-far resistance to be 

( 
1 !7l' )-1 

fik = 27r -7l' [R H [l]dW + R[O] + R[l]e - jW];k dw (4.71) 

Lupas and Verdu showed in [46] that the near-far resistance of the MMSE, optimum linear and de­

correlating detector is equal to that of the optimum (non-linear) multiuser detector if the desired user 

is linearly independent from the other users. 

4.5.3 BEP OF THE MMSE DETECTOR 

The decorrelating detector is only an optimization with respect to interference, whereas the MMSE 

detector is an optimization with respect to the combined contribution of noise and interference. This 

effectively means that the MMSE transformation will inevitably allow some residual multiuser inter­

ference to remain. The consequence of this is that the derivation of the MMSE detector BEP is similar 

to that of the single user matched filter. As in the case of the single user matched filter, the decision 

statistic depends on the sum of a Gaussian random variable (due to AWGN) and a binomial random 

variable (due to residual multiple access interference). In the synchronous case, the first user MMSE 

decision statistic can be written as 

(MY) 1 = ( (R + a 2 A -2) -1 Y) (4.72) 

B, (bl + t,flkbk) +an), (4.73) 

JA generalized inverse C ofa matrix B is any matrix that satisfies: CBC = C and BCB = B. The Moore-Penrose 

generalized inverse is the unique inverse for which BC and CB are symmetric. It follows that if B is a square non-singular 

matrix, then its Moore-Penrose generalized inverse is B- 1
• 
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Two User Asymptotic Multiuser Efficiencies, p=0.2 
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Figure 4.3: Asymptotic Multiuser Efficiencies of the Matched Filter, Decorrelating and MMSE De­

tectors. 

where 

Bk Ak (:tVIRt , (4.74) 

(3k 
B k 

(4.75) 
B J ' 

il l ~ N (0 , ()\;IRM) J . (4.76) 

The symbol (3k denotes a measure of the residual interference of the kth interferer, and is termed the 

leakage coefficient. The Gaussian noise random variable is denoted by ill and the binomial random 

variable is denoted by the sum in (4.73). The probability of error is given by 
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Pe(a, 1) = 2I-K L Q (AI CMR)lI ( t )) 
bl, ... ,bKE{-l,l}K-l a V(MRM)u 1 + k=2 (3k

b
k . 

(4.77) 

We face a similar problem as in the case of exact computation of the single user BEP, in that the 

number of computations grow exponentially with the number of active users. This is further compli­

cated by the computation of the leakage coefficients. We will now apply the Gaussian approximation 

method to the MMSE case. 

4.5.3.1 GAUSSIAN APPROXIMATION OF THE MMSE DETECTOR BEP 

The Gaussian approximation method is surprisingly accurate when applied to the BEP of the MMSE 

detector. This is done by replacing the multiple access interference by a Gaussian random variable 

with identical variance, i.e. Q(SIR1). We can use (4.68) together with (A.6) in Appendix A: 

E[Q(~+-\X)J =Q (~), (4.78) 

where X is unit normal, 

(4.79) 

and 

K 

-\2 =~2L(3k' (4.80) 
k=2 

Let us verify the accuracy of the approximation on an intuitive basis. We will qualitatively evaluate 

the deviation from Gaussianity of the decision statistic for the two limiting cases of a -+ 0 and 

a -+ 00. As a -+ 0, the leakage coefficients disappear, removing the contribution of the binomial 

random variable. On the other hand, as (J -+ 00, the Gaussian noise contribution at the output of the 

transformation dominates the multiple access interference. In both cases, the decision statistic appears 

asymptotically Gaussian. The accuracy of the MMSE Gaussian approximation method is verified by 

several analytical results in [59]. Figure 4.4 depicts the accuracy of the Gaussian approximation BEP 

for the MMSE detector when compared with the exact calculated BEP. In [59] it also showed that the 

MMSE BEP is upper bounded by the decorrelating detector BEP. 

Another expression of the Gaussian approximated BEP in terms of Jmin is given in [7] as 

( ~) Pe(a, 1) ~ Q V ---:y;;:;- . 

A further approximation of (4.81) is given by 
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BEP for MMSE and Matched Filter Detectors - K=8 Users, p = 0.1 

. ............. ; .. 

~ Exact 
--+- Gaussian 
--A- MMSE Exact 

. --B- MMSE Gaussian approx. 
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SNR = \cIa (dB) 

Figure 4.4: BEP graph comparing the exact and Gaussian approximated curves of the MF and MMSE 

detectors. 

Pe(a, 1) "" Q (/ . ). Jmm 
(4.82) 

4.5.3.2 INFINITE USER LIMIT OF THE MMSE DETECTOR BEP 

The infinite user limit BEP is of interest when we consider averaging over random binary sequences. 

The derivation is rather involved, and we will supply only the result as stated in [31]. It is assumed 

that all the users have equal power. If the ratio of the number of users to the spreading gain is, or 

converges to, a constant 

. K 
(3= hm N' (3E(O, +oo), 

K-,>oo 
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then the BEP of the MMSE detector in the infinite user limit (K -+ 00) is given by 

where 

F (x, z) ~ ( V x (1 + JZ)2 + 1 - V x (1 _ JZ)2 + 1) 2 

4.5.4 POWER TRADEOFF REGIONS OF THE MMSE DETECTOR 

84 

(4.84) 

(4.85) 

Using the results in the previous sections, we can now determine the power tradeoff regions of the 

MMSE (and related blind) detectors in the real two user scenario. In Figure 4.5 it can be seen that 

for all but very high cross correlation values p, the SNR needed to attain a BEP of less than 3 x 10-5 

for both users is slightly above 12dB for a two user system. If we compare this to the matched filter 

case in Figure 3.6, we find that the SNR needed does not increase along with the interfering user's 

amplitude. This means that the MMSE detector is effective in mitigating the near far problem, and 

the interferer's power has no effect on the desired user's bit rate. 

4.5.5 MMSE DETECTOR PERFORMANCE IN MULTIPATH CHANNELS 

Having looked at the performance of the MMSE detector in synchronous (non-multipath) channels, 

we will now consider how the detector operates in multipath channels. An extensive evaluation of the 

performance of the MMSE detector in a mUltipath environment was done in [47]. We will follow a 

similar approach using an asynchronous version of our orthonormal projection model in (2.25). We 

are interested in the performance of the MMSE detector both in terms of minimum mean-square error 

and BEP. Concerning our derivation, the following important assumptions are made: 

1. The received signal window length is equal to one symbol period; 

2. No multi path component is later than one symbol period; 

3. The receiver is synchronized to the first multipath component; 

With this in mind, we can visualize the multi paths of user k as depicted in Figure 4.6. 

Within the received signal window, any two mUltipath components have a correlated part due to the 

present bit, and an uncorrelated part due to the preceding bit of the later path. The correlated part can 

be seen as part of the desired signal and a useful diversity component. The uncorrelated part belongs 

to the preceding bit, which can be viewed as interference. Using our existing model, we will now 

derive the MMSE in the case of multipath. 
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SNR necessary to Achieve a BEP < 3x 10-5 (MMSE Detector) 
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Figure 4.5: Regions of signal-to-noise ratios to attain a BEP of 3 x 10-5 for both users using a MMSE 

detector. 

Remember from (2.59) that when the received signal window is one symbol long, we have 

J( P-l 

Y (t) [i] = L L Ak ,pbk [i ]s (T - Tp) exp (-j1h,p) + ,m(t) . (4.86) 

k=lp=O 

Formulating an asynchronous version of equation (2.25), we have 

J( P -l 

r = L L (Ak,pbk[i ] S~p + Ak,pbdi - l]Sk,p) + O'm, (4.87) 
k=l p=O 

where the term Ak,p refers to the complex amplitude due to the phase term ek,p in (4.86), P is the 

number of resolvable multi paths, and 
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Main Path 
User I 

Multipath 1 
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86 

Figure 4.6: Depiction of the equivalent synchronous multi path model of a CDMA channel. 

L _ 
Sk,p -

R _ 
sk ,p ~ 

Sk(L - Dp+l) 

Sk (L - Dp+2) 

o 

0 

0 

0 

Skl 

Sk2 

Sk (L- Dp) 

(4.88) 

(4.89) 

The symbol Ski defined in (2.23) denotes the the projection of the lth orthonormal signal on the 

signature waveform of user k. The symbol Dp denotes the delay of the pth multi path. We can let 
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then 

bk[i - l ]Sk(L-Dp+l) 

bk[i - 1]Sk(L-Dp +2) 

bk [i - l ]SkL 

bdi]Sk l 

bdi]Sk2 

J( P- l 

r = L L Ak,pSk,p + O'm. 
k= l p=O 

Analogous to (2.27) we have the covariance matrix 
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P-l P-l 

~ + 21A1'112 slsf + 2 2: IA1,p12 S~pS~p H + 2 2: IA1,p12 Sf,pSf,p H 

A ' .. ' p=l p=l 
B " ..... ,f ''-__ _.'"..__---''' 

C D 

K P-l K P-l 

+22:2: IAk ,p12 sr,psr,p H + 2 L L IAk ,p12 sf,psf,pH. 
k=2 p=O k=2 p=O 

'~--------~v~--------~' '~------~v~---------' 
E F 

Note that we retain the expected value in (4.92), since the dependence on the current and previous bit 

is contained in Sk,p' When we expand (4.92), the tenns (4.93), (4.94), (4.95) and (4.96) become zero, 

as consecutive bits are uncorrelated. The tenns in (4.97) require some further explanation. The tenn A 

denotes the sum of the AWGN due to all the multipaths. The terms Band C denote the contributions 

of the synchronous first multi path and the correlated parts of the other paths respectively of user 1. 
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These are the signals of interest. Tenn D denotes the uncorrelated parts of the other multi paths of 

user 1. The tenn E denotes the correlated parts of the multipaths of the remaining users, while term 

F denotes the uncorrelated parts of the multi paths of the remaining users. The terms E and F can 

both be seen as the contribution of multiple access interference. 

The cross correlation vector p, following the same reasoning as in (4.43), is given by the correlation 

between the vector r and desired response b1, i.e 

p E [bai]rJ 

E [bi1iJ (~~ (A"pb'liJs~p + A',pb,li - IJsf.,) hm ) ] 

E [~~ A"pb'liJbiliJs~p] + E [~~ A"pb.!i -IJbili]st",j + E[bjli]am: 

P-1 

2A1,1 S1 + 2 L A1,ps fp, (4.98) 
p=1 

where (4.98) follows from the fact that the ith bit of user 1 is uncorrelated with the bits of the other 

users, the previous bits of user 1 and the other users, and the AWGN. If we let 

(4.99) 

then 

(4.100) 

Calculating the optimum solution for the vector transform v for the MMSE multipath case, similar to 

(2.45), we have 

v = (E [rrH] r 1 
E [brrJ 

2A1,1 [2a2
1 + 2/A1,1/' slsll + 2 ~ /A1,p/' s~psf/ + 2 ~ /A"p/' sfpst.p H 

K P-l 2 K P-1 2 H]-l 

+2 {;;; IAk,pl sf,psf,p H + 2 {; ~ /Ak,P/ sf,psf,p g] (4.101) 

Similar to the non-multipath case, we express the minimum mean-square error as 
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4.5.5.1 SIGNAL-TO-INTERFERENCE RATIO OF THE MMSE DETECTOR IN A 

MULTIPATH CHANNEL 

We define the interference covariance matrix in the multipath case as 

90 

(4.102) 

P-l K P-l K P-l 

o ~f a2
I + L !A.l,pI2 sf,psf,p H + L L IAk,p12 sf:,ps~,p H + L L IAk,p12 sf,psf,p H, (4.103) 

p= 1 k=2 p=O k=2 p=o 

and the covariance matrix of the desired component as 

(4.104) 

where 

SI = [SI Sf,1 Sf,P-l ] (4.105) 

is a L x P matrix. Since the product 818fT is not a scalar, we cannot use the same simplification 

as (4.63) and (4.64) by using (4.65). We can simply write the optimum MMSE transformation in a 

multi path channel as 

v = 2A1,1 [0 + IAI'112 SISf]-1 gI, (4.106) 

and the minimum mean-square error as 

Jmin = 2 - 2IAl,l/2 gf [n + /Al,l12 SISf] -1 gl. (4.107) 

The SIR of user 1 in the multipath case is given by 

(4.108) 

where gf gl is the gain due mUltipath. The loss due to the uncorrelated part of the multipaths of user 

1, as well as the multiple access interference is contained in n. 
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4.5.5.2 BEP OF THE MMSE DETECTOR IN A MULTIPATH CHANNEL 

Evaluating the exact BEP of the MMSE detector in a multi path environment is even more computa­

tionally expensive than in the non-multipath case. To evaluate the BEP of the MMSE detector in a 

mu)tipath environment we wi)) simply use the approximation in (4.81) and (4.82), i.e. 

(4.109) 

and 

P('(a, 1) ::::: Q (J 1 . ). 
Jmm 

(4.110) 

4.6 SUMMARY 

In this chapter a rigorous analysis of the MMSE detector, within the context of linear detectors, is 

undertaken. The blind detectors explored in this dissertation have the same vector weight solutions 

as the MMSE detector. This necessitates a thorough understanding of the operation and performance 

of the MMSE detector. 

The linear decorrelating detector is introduced in the first section of this chapter. The linear decor­

relating detector bears a close resemblance to the MMSE detector, as it performs the same operation 

as the MMSE detector in the noise free case. The linear multiuser detection optimization problem is 

then generalized to the finding of the best linear detector. The K user case does not permit a closed 

form solution to this optimization problem. The two user case is subsequently examined, which does 

permit a closed form solution. 

Following this general view of linear multiuser detectors, focus is then shifted to the operation of the 

joint linear MMSE detector. The MMSE optimization problem is presented, and is solved through 

use of the complex valued MMSE detector vector matrix model. The two user MMSE detector is 

briefly considered. The noise limiting forms of the MMSE detector is then discussed, with focus on 

the relation between the linear decorrelating detector and the linear MMSE detector. The asynchro­

nous linear MMSE detector model is briefly presented. The Wiener characterization of the linear 

MMSE detector is subsequently considered, where optimization is reduced from joint optimization, 

to optimization with respect to only one of the users. In the ensuing section the LMS algorithm for 

the linear MMSE detector is derived. 

The rest of the chapter focuses on the performance of the linear MMSE detector based on the cri­

teria stated in Chapter 3. The performance criteria considered include SIRs, asymptotic multiuser 
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efficiency, BEP and power tradeoff regions. In the case of BEP, the Gaussian approximation method 

and the infinite user limit for the MMSE detector is also considered. The following section contains 

the extension of the model in Verdu [31] to the complex valued multipath case. Certain assumptions 

are made, and the expressions for SIR and BEP are derived for the multipath channel. 
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