
CHAPTER THREE 

THE MATCHED FILTER RECEIVER AND 
MULTIUSER DETECTION PERFORMANCE 
MEASURES 

This chapter contains the analysis of the single user matched filter. The single user matched filter is 

the simplest method to demodulate CDMA signals. Several criteria are given by which to measure 

the performance of multiuser detection schemes. The analysis contained here is largely based on the 

approach followed by Verdu in [31]. 

The analyses done in this chapter are done in the real domain. This is to facilitate a geometric 

understanding of the CDMA multiuser detection problem. In the following chapters, the complex 

valued CMDA model will be utili zed. 

3.1 OPTIMAL DECISION RULES AND SUFFICIENT STATISTIC 

3.1.1 DECISION RULES AND DECISION REGIONS 

To obtain a comprehensive understanding of CDMA detection , we will have to explore the subj ect of 

hypothesis testing [34]. A certain observed random quantity has a distribution known to belong to a 

finite set of distributions, each of which is associated with a possible outcome. By sampling and ob­

servi ng the random quantity, we must make a decision as to wh ich di stribution (or possible outcome) 

the sample belongs to. The set of possible outcomes or distributions is often referred to as hypotheses 

in statistical terms. The analysis of the observation or sample is mapped to a decision by means of a 

decision rule. Data demodulation is a hypothesis testing experiment in which the observed quanti ty 

is a noise corrupted version of the transmitted signal. There are as many decisions as different values 

for the transmitted data. For example, in the basic synchronous K user CDMA channel model (2.1 ), 

there are 2[( possible decisions, and the observed quantity is a waveform on the interval [0, T]. 
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CHAPTER 3: The Matched Filter Receiver and Multiuser Detection Performance Measures 30 

To make a decision as to what data was transmitted, we need to partition the observation space into 

decision regions, each of which coITesponds to a possible transmitted data symbol or hypothesis. 

Knowledge concerning the distribution of the information source is called a-priori knowledge. Let 

us first assume an equiprobable information source at the transmitter. Assume that within the whole 

observation space m optimum or non-optimum decision regions Ri i = 1, ... ,m exist corres­

ponding to m hypotheses. Each hypothesis is distributed according to a probability density function 

of a random variable Z: 

Hm: Z ~ fZ lm 

When refelTing to optimum regions, the regions are so chosen that they minimize the error probability. 

We write the probability of error Pe for arbitrary decision regions, as 

1 m 

1- - LP[Z E it;ji] 
m i=l 

(3.1) 

where the last integral is over the whole observation space. Inequality (3.1) is a lower bound which 

corresponds to the optimum error probability. There may exist several optimum solutions for the 

choice of decision boundaries. This non-uniqueness of optimum decision regions arises because 

there may exist points in the observation space at which the maximum density is achieved by several 

densities simultaneously. If these elements are arbitrarily assigned to the maximizing hypotheses with 

the lowest index, we obtain the following optimal decision rule for equiprobable hypotheses. 

Proposition 3.1 (Optimal decision rule - Equiprobable hypotheses) Consider m equiprobahle hypo­

theses under which an observed random vector Z has the following probability density junctions I 

(3.2) 

H m : Z ~ fZ lm, 

then the following decision regions minimize the error probability 

i-l 

it; = {z: fZ li (Z) = . max fZlj(z)} - U R j , i = 1, ... , m. 
J=l, ... ,m j=l 

(3.3) 

lThe symbol'" denotes "is distributed according to" 
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For the case of non-equiprobable transmitted symbols or hypotheses, the a-priori probabilities are 

denoted as P [Hil. The a posteriori probabilities can be computed using Bayes' rule. Conditioned on a 

particular realization of z of the observation, the conditional (a-posteriori) probabilities for hypothesis 

Hi is given by 

P [Hilzl = m (3.4) 

L: !zl j(z) P [Hjl 
j = l 

In general, the minimum error probability decision rule is termed the Maximum a posteriori (MAP) 

rule, which selects the hypothesis with the highest P [Hilzl . In the case of unknown a-priori probabi-

lities or equiprobable hypotheses (as in (3.3)), the decisions are known as Maximum Likelihood (ML) 

decisions. 

Consider the case of a m-hypothesis testing problem where the observation is a Gaussian vector with 

dimension L , with independent components, and variance equal to u2 . The distributions under each of 

the hypotheses are distinguished by their means. For example, the mean of the j th vector component 

under hypothesis Hi is denoted by aij . The probability density function corresponding to Hi is given 

by 

!Zli(zJ, '" ,zr,) = ( )L2 L exp (-~ t (Zj - aij)2 ) , 
21f U 2u j=J 

(3.5) 

and the optimum decision regions for equiprobable hypotheses are 

L L i - I 

Ri = {(zJ,"" z£l : L (Zj - aij? = _min L (Zj - akj)2} - U R j , (3.6) 
k- l, ... ,m 

j=1. j=1 j=1 

which means that we select the hypothesis whose mean vector is closest to the observed vector in 

Euclidian distance. 

3.1.2 CONTINUOUS-TIME GAUSSIAN SIGNALS 

In many hypothesis testing problems, the observed quantity is not a vector as in equations (3 .5) and 

(3.6), but a real valued function over a finite time interval. This is the case with both the synchronous 

and asynchronous COMA receivers. Sometimes a structure can be placed at the receiver input so 

that the decisions are based on functions of the received waveforms (called observables or decision 

statistics) which can be either scalars or vectors. In the case of a real valued observed quantity, we 

invoke the following counterpart to proposition 3.1. 
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CHAPTER 3: The Matched Filter Receiver and Multiuser Detection Performance Measures 32 

Proposition 3.2 (Optimal decision rule - Equiprobable hypotheses and real valued functions) Let 

xI, ... , Xm be finite energy deterministic functions defined on an interval R of the real line. Let net) 

be white Gaussian noise with unit power spectral density. Consider m equiprobable hypotheses. 

HI: yet) = XI(t) + an(t), t E R 

(3.7) 

Hm : yet) = xm(t) + an(t) , t E R, 

then the following decision regions minimize the error probability 

i-l 

IV, = {y = {yet), t E R} : f[Ylx i] = . max f[y IXj]} - U Rj, 
] = l, ... ,m . 

J = I 

(3 .8) 

where 

f[YIXi] = exp (- 2~2 L [yet) - Xi(t)Fdt) . (3.9) 

The function f[Ylxi] in (3.9) is termed the likelihood function, and corresponds to the unnormali zed 

conditional probability density function fZlj(z) in proposition 3.1. As with (3.6), minimizing [y(t)­

X:i(t)j2, maximizes (3.6), giving us the minimum distance decision region 

i - l 

R i = {y = {yet), t E R} : [yet) - Xi(t) ]2 = min [yet) - xdt)]2} - U R j 
k=l, ... ,m . 

J= 1 

(3.10) 

This means that the decision regions that minimize the error probability are minimum distance re­

gions. The waveform Xi(t) that is closest to yet) in mean-square distance is inferred. 

3.1.3 SUFFICIENT STATISTIC 

A function of an observable random variable Y = g(y), which does not depend on any unknown 

parameters, is called a statistic. A sufficient statistic can formally and generally be defined as fol­

lows [35]. In a statistical inference problem where a parameter e is to be inferred2 on the basis of 

observations y, we say that a function of the observation Y = g(y) is a sufficient statistic for e if the 

conditional distribution of y given g(y), denoted as fy lY' does not depend on e. This means that if Y 

is observed, then additional information cannot be obtained from y if the conditional distribution of y 

given Y is free of e. We will later see that in the case of a single user receiver, the decision statistic 

Y is given by 

Y = (y, Xi) = L y(t)xi(t) dt; i = 1, ... , m. (3.11) 

2In hypothesis testing e takes a finite or countably infinite number of values, whereas in estimation problems, it takes 

an uncountable number of values 
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CHAPTER 3: The Matched Filter Receiver and Multiuser Detection Performance Measures 33 

To prove that (3.1 1) is a sufficient statistic for e = {HI, ... , Hm} == {Xl, ... , Xm}, we will need 

another definition of sufficient statistic termed theJactorization criterion [35]. If y has a probability 

density function fly; Xi], then Y is a sufficient statistic for e if and only if 

fly; Xi] = g(Y; xi)h(y), (3. 12) 

where g(Y; Xi) does not depend on y, except through Y, and h(y) does not involve Xi . The proof that 

Y as defined in (3. 11) is a sufficient statistic for e, is given by 

fly; Xi] = f[ylx i] exp (;:,.~ in [y( t) - Xi(t)]2 dt ) 

= exp (;:,.~ [in y(t)2dt - 2 in y(t)xi(t)dt + in X; (t)2dt] ) 

exp (;:,.~ [in yWdt - 2Y + in Xi(t)2dt] ) 

exp ( ;:,.~ [2Y + in XiWdt]) exp (;:,.~ j~ yWdt) 

= g(Y; xi)h(y), (3.13) 

where we have split the function ![y; Xi] into the factors g(Y; xi)h(y). This satisfies the factorization 

criterion, and proves that (3 .11 ) contains all the information in the original observations to make an 

optimal decision. 

3.2 THE OPTIMAL RECEIVER - SINGLE USER 

In this section we will study the optimal receiver for the si ngle user COMA channel. For a single 

user, the channel simplifi es to 

y(t) = Abs(t) + (m(t), t E [0, T] (3.14) 

where s(t) is deterministic and has unit energy, the noi se term n(t) is white and Gaussian and bit 

b E {±1}. The amplitude of the single user is denoted by A. 

3.2.1 LINEAR DETECTORS 

Before deriving the optimum demodulator for the single user channel, it is insightful to consider the 

class of detectors termed linear deleclOrs. A detector that outputs the sign of the correlat ion of the 

received signal with a deterministic signal <p(t) of duration T is given by 

b = sgn (( y, <p)) = sgn (t' y(t)<P(t)dt ) 
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The detector extracts the information contained in the observed waveform y (t) by means of the scalar 

decision statistic (y, 'P) . The decision statistic is given by 

Y = (y, 'P) = Ab (s, 'P) + (7 (n, 'P) (3.16) 

The linearity of the decision statistic makes it easy to discern the respective contributions of signal 

and noise, whereby the choice of'P can be optimized. Having the signal and noise terms separated, 

we will attempt to determine an optimum value for 'P . A sensible way to do thi s, is to maximize the 

signal-to-noise ratio (SNR) I of the decision statistic Y. The signal variance is simply A2( (s, 'P))2 

A property of white Gaussian noise is that E[ (n, 'P)2] = 11'P112 The noise variance is thus equal to 

(7211'PW . The SNR of the deci sion stati stic Y maximized with respect to 'P is given by 

A2 ((s,'P))2 
'Y - max 
,max - <p (7211'P112 

(3.17) 

Equation (3 .17) can readily be solved by means of the Cauchy-Schwarz inequality ((s, 'P))2 :'= 

II'PWllsI12, where the equality is only satisfied if and only if 'P is a nonzero multiple cr of s . Thus we 

have the maximi zed SNR given by 

(3. 18) 

We conclude that any nonzero multiple cr of the signal s will maximize the SNR of the decision 

statistic Y. This excludes the negative multiples of s, as they will yield erroneous decisions in the 

absence of noise. The value of the constant will have no effect on the max imum SNR, as well as the 

decisions 

b = sgn ((y, crs)) = sgn (foT y(t)S(t)dt ). (3. 19) 

The detector in (3.19) is known as the matched filter or conventional detector. We have seen that the 

matched filter detector is optimal, in that it maximizes the SNR of the decision statistic Y. A linear 

filter with an impulse response 3(T - t) sampled at multiples of time T is equivalent to the decision 

statistic (y, 'P) in (3.16). 

3.2.2 ERROR PROBABILITY - OPTIMAL SINGLE USER LINEAR DETECTOR 

Let us investigate the conditional distributions of the decision statistic Y for a OS-COMA system 

with binary antipodal modulation. We assume that the noise term n(t) is a Gaussian process . A 

property of a Gaussian process n(t), is that the inner product (n, 'P) is a Gaussian random va­

riable. Therefore from (3.1 6), the decision statistic conditioned on {- I , + 1} is Gaussian with mean 

{-A(y,'P) , +A(y,'P)} respectively. The variance for both distributions is equal to (72 11 'P112 . The 

Gaussian conditional distributions ofY is abbreviated by N( - A (y, 'P), (721 1'P112) for a minus one and 
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N( +A(y, 'P), u 211'P112) for a one sent, respectively. Figure 3.1 shows the conditional distributions of 

Y conditioned on the transmission of b = -1 and b = 1. 

-A< s,!p> A< s, !p> 

Figure 3.1: Conditional distributions of Y given b = -1 and b = + 1 

In the single user binary antipodal case, we have the hypothesis testing problem: 

fY I-1 = N(-A (s,'P),u211'P1 12) 

fY I+l = N (+A (s,'P) ,u211'P1 12) 
which is a special case of the vector Gaussian problem in (3.6) with L 

corresponding decision regions are 

1 and m 

{y E (-00,00): fY I-I (Y) > fY I+l(Y)} = (-00,0) 

{y E (- 00,00) : fY I+l(Y) > fY I- I(Y)} = [0 ,00), 

(3.20) 

2. The 

(3.21) 

(3.22) 

which means that the boundary or threshold between the two regions is at x = O. Using the decision 

regions in (3.21) and (3.22) the probability of error is given by 

~ ('''' fY I_I (V)dv + ~ JO fYI+l(v)dv 
2 Jo 2 -00 

~ ( 00 1 2 exp ( v
2 2) dv 

2 J A(s,<p) ..j2i[u II'P II 2u211'P 11 
1 J - A(S'<P) 1 (v2) +- 2 exp 2 dv 
2 - 00 ..j2i[u II'PII 2u2 11'P11 

100 1 " 
--e- ,dv 

A(, .,) ..j2i[ 
~ 

Q (A (s, 'P)) 
u II'PII ' 
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where (3.23) follows by symmetry and a change of integration variable, and (3.24) follows from the 

notation of the complementary cumulative distribution function of the unit normal random variable 

or Q function. Assuming a matched filter receiver, the error probability simplifies to 

(3.25) 

where --y denotes the SNR. 

In much of the literature on digital corrununication systems, bit error probability (BEP) is given in 

terms of bit energy Eb and No where No is related to noise variance by (J2 = No/2. The bit energy 

Eb is si mply equal to A2 , since the signature waveform is assumed to have unit energy. Thus the 

matched fi lter probability of error can also be written as 

which is equal to the BEP of a BPSK system [27]. 

3.2.3 ERROR PROBABILITY - OPTIMAL SINGLE USER NON-LINEAR 

DETECTOR 

(3.26) 

Let us now search for the detector that achieves the minimum error probability among all detectors, by 

dropping the linearity constraint as imposed in (3.16). This means that we can no longer assume that 

the observable is (s, 'P) and we have to work with the received process {y(t), t E [0, T]} itself. This 

is a special case of the problem solved in Proposition 3.2 with m = 2, R = [0, T] and xdt) = As(t), 

.T2(t) = - As(t). Because the energies of Xl and X2 are identical. the minimum error probability 

detector decides b = 1 if 

(3.27) 

and 

t y(t)xI(t)dt = - t y(t)x2(t)dt = A t
T 

y(t)s(t)dt, 
.In .In .10 

(3.28) 

which means the matched filter output statistic (s, 'P) is a sufficient statistic, and the detector in (3.19) 

is optimal among all detectors. The shape of the transmitted signal does nol affect the minimum bit­

error-rate, because of the inherent symmetry of white Gaussian noise, i.e., its projections along every 

direction has the same distribution. 
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Matched Filter 
User 1 

Sync =F 
A 

y/i) hP) 

Matched Filter 
User 2 

Sync =f 
A 

y,(i) h,(i) 

2 

yet) 

Matched Filter 
User 3 

Sync =F 
A 

y,(i) hP) 

3 

Matched Filter 
User K 

Sync 

Figure 3.2: Block diagram depicting the bank of matched filters for multiple CDMA users 

3.3 MATCHED FILTER ERROR PROBABILITY -

SYNCHRONOUS USERS 

In this section we will analyze the pelformance of the single user matched filter in a multiuser CDMA 

environment. In the multiuser case, demodulation is achieved by a bank of matched filters (Figure 

3.2), each matched to a specific user's signature waveform. In the synchronous case we need only to 

concern ourselves with the timing of a single synchronizer to sample the matched filter outputs of all 

the users. The output of the kth matched filter in a K user channel is given by 

T 

Yk = r y(t)sdt)dt = Akbk + L Ajbj pjk + nk 
io J;tk 

(3.29) 

as in equation (2.10), with 

nk = (f 1T n(t)sk(t)dt (3.30) 

a Gaussian random variable with zero mean and variance equal to (]"2 Consider the case of orthogonal 

signature waveforms, then Pjk = 0 for j # k, and the problem reduces to the single user case with 

Yk = Akbk + nk· The error probability with orthogonal signature waveforms also reduces to the 

single user case with 
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Pe('" k) = Q ( ~k ) , (3 .31) 

which leads us to the conclusion that the matched filter is optimal in a K user COMA channel with 

orthogonal signature waveforms. We return to the non-orthogonal COMA channel. 

3.3.1 THE TWO USER CASE 

s/l) 

A 

;:T YI =f bl 

y(t) 

A 

X ;:T Y, =F b, 

S2(t) 

Figure 3.3: Block diagram depicting the special case of the two user COMA matched filter receiver 

structure 

The two user COMA channel (Figure 3.3) is instrumental to developing a thorough intuitive and visual 

understanding of the multiuser interference problem. We start by determining the elTor probability of 

lI ser 1 as given by 

P [bl # bl ] 

P[b l = +1]P[YI < albl = +1] 

+P [bl = - 1] P [Yl ~ albl = - 1], 

but Yl conditioned on bl is not Gaussian, so we wi ll have to condition on b2 as well, with 

P [Yl ~ albl = -1,b2 = +1] P [b2 = +1] 

+P[Yl ~ albl = - 1, b2 = - 1]P[b2 = - 1]. 

Substitute (3.29) into (3.33) for {bl = -1,b2 = +1} and {bl = -1,b2 = -I}, to obtain 

(3.32) 

(3.33) 
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P [nl ?: Al - A2P J P [b2 = + lJ 

+P[nl?: Al + A2pJP [b2 = -lJ 

~Q ( Al ~ A2P) + ~Q ( Al : A2P) (3.34) 

where in the two user case, P12 = p. Due to the fact that we assumed equiprobable bitstreams b1 and 

b2, and due to symmetry, we get exactly the same expression for P [Yl < 0lb1 = +lJ. The bit error 

probability BEP of the conventional receiver with one interfering user is given by 

~Q ( Al ~ A2P) + ~Q ( Al : A2P) 

~Q ( Al - rJA2 IPI) + ~Q ( Al + rJA2 lpl ) (3.35) 

due to the fact that user 1 is arbitrary. Since the Q function is monotonically decreasing, we readily 

obtain the upper bound 

Pe(rJ, l ) :s; Q ( Al - :2Ipl) . (3.36) 

This bound is smaller than 1/2, provided that the interferer is not dominant, i.e. 

A2 1 
-<­
Al Ipl' 

(3.37) 

In this case, because of the asymptotic behavior (rJ --+ 0) of the Q function , equation (3.35) is 

dominated by the term with the smallest argument. Thus, the upper bound (3.36) is an excellent 

approximation (modulo a factor two) to Pe(rJ, 1) for all but low SNRs. This implies that the BEP of 

the conventional receiver behaves like the BEP of a single user system with a reduced SNR, i.e . 

. _ (AI - A2 1PI)2 
reqUlY - rJ 

(3.38) 

On the other hand, if the relative amplitude of the interferer is such that 

A2 1 

Al > lPT ' (3.39) 

then the conventional receiver exhibits a highly anomalous behavior called the near-far problem. For 

example, the error probability is not monotonic with rJ. When we consider the limit rJ --+ 00, we 

obtain the error probability from (3.35) as 

. 1 
hm Pe(rJ, 1) = -2 ' 
~-+oo 
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which is what we would expect from any detector. At the other extreme for a --+ 0, we get 

lim Pe(a, 1) =~, 
0"---+0 2 

(3 .41 ) 

because due to (3.39), as a --+ 0, the polarity of the output of the matched filter for user 1 tends to 

be governed by the bitstream of user 2, rather than that of user 1. In this case, a little Gauss ian noise 

is better than no noi se. With zero noise, it can be seen that the interference shifts the matched fi Iter 

output to the wrong side of the threshold, as in Figure 3.4. The addition of noise can have one of three 

effects on the decision, 

1. no effect, 

2. to prevent an en'or and 

3. to induce an error. 

The noi se sample amplitude needed for 3. is at least IpI A2 + AI, whereas the noise excursion for 2. 

is only IpIA2 - AI · 

1 1 
-IPlA,-A I A, 

+ 
User 1 transmitted a I 

User 1 transmi ned a -1 

Figure 3.4: Output of the matched filter with one interfering user and A2 /Al > l/ ipi 

The noise level that minimizes the BEP under (3.39) is (from [3 1]): 

a2 = __ A.....:..I A-T2P_, 

arctan h (..6..L) A,p 

Finally we consider the case of equality wi th 

A2 1 

Al P 
Then the error probability of the single user matched filter reduces to 

1 1 (2AI) 
Pe(a , l ) = 4: +"2 Q --;-

(3 .42) 

(3.43) 

(3 .44) 
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which means that the signal of user 2 exactly cancels the signal of user 1 with a probability of ~ at 

the matched filter output. It becomes a zero mean Gaussian random variable; with probability ~, the 

signal of user 2 doubles the contribution of the desired signal to the matched filter output. With respect 

to the two user case, we will now consider methods of using the BEP as a performance measure. This 

will give us insight and intuition when considering the K user scenario. 

3.3.1.1 BEP AS PERFORMANCE MEASURE - THE TWO USER CASE 

When evaluating the performance of digital communication systems, the BEP with respect to the 

SNR, or alternatively Eb/No, is commonly used in the literature. Figure 3.5 shows the BEP for the 

two user matched filter detector with p = 0.2 and different relative amplitude values for Al and A2 . 

It can be seen that the BEP degrades rapidly as the relative amplitude of the interferer increases. The 

top curve is an example of the near-far problem under the condition (3.39). 

BEP for Matched Filter Detector - 2 Users, p = 0.2 
10° ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

10-
6 

•••.• . •••• .• ••• ••. 

-+- A =0 
2 

--A- A2=Al 
-t- A =2A 

2 I 
--jE- A2=6A[ 

:: : : : ::: : ::. 

10-9L-~~~~L-~~~~L-~~~~~~~~~~~~~~~~~---
o 2 4 6 8 10 12 

Eb IN 0 = A~I2()'2 

Figure 3.5: BEP of the matched filter detector for different relative amplitudes and p = 0.2 
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It is often the case that a digital communication system needs to be designed with a maximum to­

lerable BEP in mind. The necessary bit energies then need to be found to satisfy that BEP. Figure 

3.6 represents the power-tradeoff regions so that both users have a BEP of 1 x 10- 5 , with the cross­

correlation between the two users characterized on the z-axis. In the case of orthogonal users, the 

objective will be reached for both users if their SNRs are greater than Q-l (3 x 10-5 ) = 12dB. From 

Figure 3.6 it can be seen that as the cross correlation increases: 

• even at equal amplitudes the necessary signal energy increases rapidly; 

• the sensitivity to imbalances in the received signal grows, making power control necessary. 

Q. 

0.8 

0.6 

0.4 

0.2 

o 
25 

20 

15 

10 

5 

o 

SNR necessary to Achieve a BEP < 3xlO- 5 

.. .. . " . 

20 
15 

10 
5 

o 

Figure 3.6: Regions of signal-to-noise ratios to attain a BEP of 3 x 10- 5 for both users 
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3.3.1.2 THE TWO USER SIGNAL SPACE REPRESENTATION 

Verdu [31] mentions another useful visualization of CDMA detector operation that involves decision 

regions on a signal space diagram. The signal space representation of detector operation was concei­

ved by Shannon [36] and popularized in the textbook of Wozencraft and Jacobs [37]. 

For a K user synchronous channel. there are 2[( hypotheses within the observation space on [0, TJ. 

Thi s space has infinite dimensions, but the conventional K user demodulator has decision vector 

space of K dimensions 

(YI, ... ,y[() = (loT y(t )SI (t)dt , . .. , loT y(t)S[«(t)dt) . (3.45) 

To represent the deci sion regions on a signal space diagram, we wi ll need K dimensions or axes. It 

is obvious that the two user (two dimensional) case will yield a practical visualization of the signal 

space. In this case, (YI , Y2) conditioned on (bl , b2 ) is a Gaussian vector (3.29) , (3.30) with mean 

(3.46) 

and covariance matrix 

COV(YI,Y2) = a
2 
[: ~] (3.47) 

In the (YI , m) signal space (Figure 3.7), we can depict each of the mean vectors for each of the four 

hypotheses where Al = A2 = 1 and p = 0.2. 

The received vector can be viewed as the sum of the transmitted vector (3 .46) and a zero mean 

Gaussian vector (nl ' n2). The two user received joint Gaussian vector density functions for all four 

hypotheses is depicted in Figure 3.8 with p = 0.2 and a = l. 
In the absence of noise, as depicted in Figure 3.7, the detector will make correct decisions, since 

the signal points lie in the correct regions. The probability of error found in (3 .34) is the average 

of the probabilities that the received vector satisfies YI < 0 given that (+, +) and (+ , -) has been 

transmitted. There is a shortcoming in the (YI, Y2) signal space diagram in Figure 3.7 in that the noise 

components (nIl n2) are correlated, i.e. 

(3.48) 

This has the consequence that the noise vector is not symmetric, nor does the norm of the noi se vector 

determine the likelihood of that reali zation. This can be seen in Figure 3.9 in the 'overhead' view of 

Figure 3.8. 

Center for Radio and Digital Communication (CRDC) 
Department of Electrical , Electronic and Computer Engineering 

University of Pretoria 

 
 
 



CHAPTER 3: The Matched Filter Receiver and Multi user Detection Performance Measures 44 

Non-Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5 

* ++ 
r-

-+ S2 

* 

0.5 

S l 

o 

-0.5 

* +-
-1 

--
* 

- l.5 
, 

-1.5 -I -0.5 0.5 

Figure 3.7: Signal space diagram in the (Y1, Y2 ) space for equal amplitudes and p = 0.2 

A more suitable diagram than the (YI , Y2) signal space diagram is the (YI, Y2 ) signal space diagram 

whose axes are equal to the correlations of the received waveform with an arbitrary orthonormal basis 

(1h , 1/!2) that spans the linear space generated by the signals (Sl, 82). For example, a choice for that 

orthonormal basis by means of the Gram-Schmidt procedure is 

1/!1 = 81 

I P 
1/!2 = ~82 - ~81 . 

V I - p2 VI - p2 

Conditioned on (b l , 1>, ), (Yl, Y2) is Gaussian with mean 

(Alb, (S I,1/!l ) + A21>, (82,1/!1) , A1bl (St,1/!2) + A2b2 (S2,1/!2) ) 

= (A I bl + A2b2P, A2b2~) 

(3.49) 

(3 .50) 

(3 .5 I) 
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The Two User Gaussian Received Vector PDFs (p=0.2,0=1) 

0.2 

0.15 

0.1 

0.05 

o 
4 

.. " ... 

. " . . . 

-4 

Figure 3.8: Joint probability density function in the (Y1, m) space for equal amplitudes, p = 0.2 and 

a =l 

and covariance matrix equal to 

(3.52) 

The whitened counterpart to Figure 3.7 in alternative orthogonal representation (ih, ih) is shown in 

Figure 3.10. Here, the decision regions are defined by the lines (or hyperplanes in K dimensional 

space) orthogonal to 8 1 and 82 respectively. With the alternative representation, the inner product 

between the vectors representing the signature waveforms 8 1 and 82 in Figure 3.10 are, in contrast 

with Figure 3.7, indeed equal to their cross-correlation. 

Even though (iiI, i12) are not computed by the detector, it is useful to visualize the received vector 

as belonging to the alternative orthogonal two dimensional space. Indeed, the dimensions of the 

detector in Figure 3.10 are transparent to all the infinite components in y(t) orthogonal to ,pl and ,p2. 
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The Two User Gaussian Received Vector PDFs (p=0.2, 0-=1) 
4 

3 

2 

~ 0 

-I 

-2 

-3 

-4 
- 4 -3 -2 -I o 1 2 3 4 

Figure 3.9: Overhead view of the joint probability density function in the (Yl, Y2) space for equal 

amplitudes, p = 0.2 and (J = 1 

The anomalous behavior of the conventional matched filter detector in the near-far situation in (3.39) 

is illustrated in Figure 3.11 with A2 = 6A 1 . The decision regions stay exactly the same as in Figure 

3.10. The transmitted vectors corresponding to (+, -) and (-, +) have now migrated outside the 

correct decision regions. This means that given (+, -) or (-, +) was transmitted, an error will occur 

unless the noise reali zation moves the vector back into the correct decision region. In a noiseless 

environment, the decisions of both users is equal to the data transmitted by user 1. 

3.3.2 THE K-USER CASE 

In the generalization of the BEP to the K user case, we will follow a similar approach a in the two 

user case. Following the same reasoning as before, the kth user BEP is given by 
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Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5 ,--------,-------,--------,--------,--------,--------, 
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Figure 3.10: Signal space diagram in the alternative orthogonal (fh, ih) space for equal amplitudes 

A l = A2 and P = 0.2 

P[bk = I ]P [Yk < Olbk = 1] 

+P [bk = -1]P[Yk > Olbk = - 1] 

~P [nk < -Ak - L Aj bjPjk ] 
j# 

+~P [nk > Ak - LAj bjpjk ]. 
j# 

(3.53) 

Because of the symmetry of the two terms in (3.53), they are equal, and the BEP of the kth user 

becomes 
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Orthogonal Signal Space Diagram for 2 Users and p=0.2 
1.5,--------,-------,--------,--------,--------,--------, 

I 

0.5 

- + * * ++ 
SI ________ _______ _ :::-0,-_--1'-=-____ ......:... .... _ - - - - -

* * +-

-0.5 

-I 

_1.5 ---------L--------~------~~-------L--------~------~ 

-1.5 - I - 0.5 o 0.5 1 

Figure 3.11: Signal space diagram in the alternative orthogonal (Yl, i12) space for A2 

P= 0.2 

P [nk > Ak - L AjbjPjk] 
j# 

1 (Ak Aj) 
2I<-1 L Q -- + Lbj-Pjk 

(h, ... ,bK l=({ - l,I}, ... ,{ - I,I}) (J j# (J 

1.5 

6A l and 

(3.54) 

(3.55) 

where (3 .55) is conditioned on all the interfering bits. We see from equation (3.55) that the kth 

user error probability depends only on the shape of the signature waveforms through their cross­

correlations over the interval [0, T], as determined by the receiver. This is also due to the fact that the 

noise is white and Gaussian. The error probability, as in all digitally modulated systems, depend on 

the SNR 4: and in the CDMA case on the relative amplitudes of the interfering users. As in (3.36), 
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error probability or average of the Q functions in (3 .55) is upper bounded by 

Pe(u,k) S; Q ( ~k - L; IPjkl) . 
j# 

(3.56) 

When we look at the anomalous behavior of the condition (3.39) in the K user case, we note that 

(3.55) goes to zero as u --7 0 if and only if the argument of each of the Q functions therein is positive, 

that is if 

Ak> L Aj IPjkl 
Jik 

(3.57) 

The condition in (3 .57) is commonl y referred to as the open eye condition. Under this condition , the 

bound (3.56) becomes tight (modulo a factor independent of u) as u --7 O. 

3.3.3 THE GAUSSIAN APPROXIMATION FOR BEP 

Equation (3.55) is cumbersome in the sense that the number of operations required increases exponen­

tially with the number of users. It is for this reason that a number of authors, including the classical 

papers of Pursley [38] and Yao [39], have approximated (3 .55) by replacing the binomial random 

variable 

LAjbj IPjkl 
Ji k 

(3.58) 

with a Gaussian random variable with identical variance. The Gaussian approximated BEP becomes 

Pe(u, k) = Q 
u2 + I: A21p2kl 

Ji k J J 

(3.59) 

The approximation in (3.59) is fairly accurate at low SNRs, but for high SNRs it may become more 

unreliable. A comparison of the exact BEP versus the Gaussian approximation is shown in Figure 

3.12 and Figure 3.13 for 10 and 14 equal energy users, respectively. The cross correlation p is set 

at 0.08. Figure 3.12 is representative of the open eye situation and Figure 3.13 of the closed eye 

situation. In the latter case we notice that the behavior of the BEP of the single user matched filter 

detector is non-monotonic. This was al so observed in the two user case as the "anomalous" near far 

situation. In the limit as u --7 0, equations (3.55) and (3.59) behave differently. Equation (3.59) 

has a nonzero limit, even if the open eye condition is satisfi ed. The reason for this is that when we 

approximate the binomial random variable with a Gaussian random variable, the error is greatest in 

the tails, which determine the BEP for high SNRs. When the performance is averaged with respect 
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to random carrier phases, the multiuser interference is no longer binomially distributed, but remains 

amplitude limited. This is in contrast to a Gaussian random variable with the same variance. 

BEP for Matched Filter Detector - K Users, p = 0.08 

10-2~~~~~~~~~~~~~~~~~~~~~~~==C====J 
~ Exact 
4- Gaussian 

10-6 L-__ ~L-__ ~ ____ ~ ____ -i ____ -L ____ ~ ____ -L ____ -L ____ -L ____ ~ 

10 11 12 13 14 15 16 17 18 19 

SNR = ~/0 (dB) 

Figure 3.12: BEP as a function of SNR with K = 10 equal energy users and p = 0.08 (eye open) 

Proposition 3.3 Suppose that the random direct sequence model is used and BEP is averaged with 

respect to the choice of binary sequences with spreading gain N. If K -+ 00 and N -+ 00, but their 

ratio is kept constant 

then the averaged BEP converges to 
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BEP for Matched Fi lter Detector - K Users, p = 0.08 

-+- Exact 
---+- Gaussian 

12 14 16 18 20 22 24 26 28 30 
SNR = A/0 (dB) 

Figure 3.13: BEP as a function of SNR with K = 14 equal energy users and p = 0.08 (eye closed) 

where 

K 

A-2~f I' 1 LA2 - 1m - . 
K---too K J 

j=2 

(3.62) 

A sufficient condition for the validity of(3.62) is that the amplitudes A j be bounded. 

Let us justify (3.62) under the condition that all energies are equal for all users, i.e. Ak A. 

According to (3.54) we need to compute the limit of 
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P [n1 + A t bjP1j > A] 
) = 2 

= P [n!+ A j~2 bj (*' n~1 djn) > A] (3.63) 

= P [n!+ A,t;./ ~ t f djn > A] (k 1)1\ j=2 n=1 

where the random variables djn in (3.63) are independent and equally likely to be {~l, +l}. The 

De Moivre-Laplace Central Limit Theorem dictates convergence in distribution as K --) 00 of the 

random variable 

1 

J(k ~ l )N j;~djn 
K N 

(3.64) 

to a zero mean, unit variance Gaussian random variable. The right side of (3.63) converges to 

(3.65) 

which is what we wanted to verify. 

The limiting result in (3.61) can be strengthened to show that even if the BEP is not averaged with 

respect to random sequences, it converges as K = (3N --) 00 to the right side of (3.61) with probabi­

lity one for any signal to noise ratio [40]. It must be said however, that convergence is very slow with 

K for high SNRs. An easily computable upper bound to Pe(CT, k) can be found by partitioning the set 

of users into 

{I, ... ,K} = {k} UGUG (3.66) 

where G is a subset of interferers that satisfies the partial eye open condition, i. e. 

Ak > L Aj [Pjk [. (3.67) 
JEG 

Then the error probability of the single user matched filter is bounded by 

Pe(CT, k) :s; exp (3.68) 

of which the justification is given in [31 ]. This bound is known as the Chernoff bound [41]. The 

freedom to choose G subject to (3.67) can be exploited to minimize the upper bound in (3.68). The 

conditions of G = 0 and G = 0 deserve special attention. 
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First, if the fully open eye condition in (3.57) is satisfied and (; = 0, then 

Pe(a, k) :S exp (3 .69) 

Second, we can set G = 0, then (3.68) becomes (cf. (3.59» 

2 (a2 + L A2p\) 
j'l'k J J 

Pe(a, k ) :S exp 
A~ 

(3.70) 

Equations (3.69) and (3.70) are the two extreme conditions for the upper bound of the single-user 

matched filter BEP. 

There have been several other attempts to find better approx imations for COMA BEP bounds for 

random signature sequences . Some of these are presented in [42], [43] and [44]. 

3.4 MATCHED FILTER ERROR PROBABILITY -

ASYNCHRONOUS USERS 

In an asynchronous COMA system where all users use the same basic chip wavefOlm , the continuous­

time to discrete-ti me conversion can be carried out by a single chip matched filter sampled at K times 

the chip rate, with the sampling instants determined by the synchronizers. 

The analysis of the asynchronous case is identical, except for the fact that each bit is affected by 

2K - 2 interfering bits. This doubles the number of terms in (3.55) 

The condition in (3.57) can be extended to the asynchronous case, 

Ak > L Aj(lPjkl + IPkjl) 
j'l'k 

(3.72) 

The asynchronous cross correlations in (3.7 1) depend on the relative timing offset between users. 

These parameters are time varying random variables. Given a set of signature waveforms, it is pos­

sible to compute the distribution (or simply expectation) of (3.7 1). This however is computationally 
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intensive. 

The infinite user limit as K -+ CXl can be extended to the asynchronous case by incorporating two 

fictitious interferers per actual interferer. Averaging over the received uniformly distributed delays 

and considering that the autocorrelation for rectangular chip waveforms is 

Rp(T) = 1 - E, 0:; T :; Tc (3.73) 

we can obtain the second moment of the asynchronous cross correlations Pjk and Pkj [31] 

(3.74) 

The second moment of Pkj is equal to that of Pj k due to symmetry and a uniformly distributed de­

lay. This implies that the BEP is equivalent to that of a synchronous system with (2/ 3) x (K - 1) 

interferers. 

3.5 ASYMPTOTIC MULTIUSER EFFICIENCY AND RELATED 

MEASURES 

We already considered BEP as a performance measure for the multiuser COMA environment. There 

are several other performance measures that can be derived from BEP that will be of value in the 

comprehension of COMA detector operation. One such performance measure mentioned earlier, is 

the power tradeoff region of SNRs that results in a given guaranteed BEP level. 

When we consider a slowly time varying channel with respect to delays, phases, and most impor­

tantly, SNRs, averaging BEPs may be misleading. This is due to the fact that the channel may be 

dominated by particularly unfavorable, but rare channel conditions. It is common practice to design a 

digital communication system with outage as design parameter. Outage is defined as the percentage 

of time that the system performs below a certain level. When designing according to outage as design 

parameter, the cumulative distribution function of the BEP is more informative than its average. 

In this section we will consider signal to interference ratio, multiuser efficiency, asymptotic multiuser 

efficiency and near-far resistance as COMA multiuser detector performance measures. 
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interference caused by other users after detection. We can achieve this by letting a --) 0 in (3 .81). 

The asymptotic multiuser efficiency of user k is defined in [2] and [45] as 

1
. eda) 

'lk = lmo - A2 (3.82) 
<7-+ k 

and is the log BEP of the kth user going to zero with the same slope as that of a single user with 

energy 'lkA~. That is, 

'lk = sup {o <:: r <:: 1 : ~$o Pe(a, k)/Q ( ~Ak ) = 0 } (3 .83) 

where "sup" denotes the supremum of the argument and is formally defined as the smallest upper 

bound with respect to r for which the condition to the right of the semicolon is true. Let us prove the 

relation between (3.82) and (3.83). We start with the condition 

lim Pe(a, k )/Q -- = 0 (
JTAk) 

a -tO (J 

where Pe(a, k) is given by (3.76). From (A.4) in appendix A, we can determine the following 

[JTAk]+ < vek(a) 

JTAk < veda) 

r < 

(3.84) 

(3.85) 

where the operation [.J+ chooses either zero or the argument, depending on which is the larger of the 

two. From (3.78), and since ek and A~ can only be positive, r can take a value between zero and one. 

We can now make the right side of the inequality (3.85) a minimum upper bound of r' by taking the 

limit a --) 0: 

1
. eda) 

r < 1m --2-' 
<7-+0 A k 

Since the right side of the inequality (3.86) is the minimum upper bound of T, 

{ (
JTAk)}. ck(a) sup 0 <:: r <:: 1 : lim Pe(a, k)/Q -- = 0 = 'lk = hm - A 2 . 

0"-t0 (J a -tO k 

An equivalent expression for'lk in [31] is 

'lk = -;. lim a 2 log 1/ Pe(a, k). 
Ak <7-+o 

(3.86) 

(3.87) 

(3.88) 

From (3.88) it can be concluded that in the situations where the BEP does not approach zero as a --) 0, 

such as the single user closed eye situation, the multiuser efficiency is O. On the other hand, if the 
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multiuser effi ciency is a positive value, the bit error rate approaches zero exponentially as a --+ O. 

The multiuser efficiency is very close to the asymptotic multiuser efficiency, unless the SNR is very 

low. 

Verdu [31] defines the worst asymptotic effective energy was the minimum effective energy among 

all users as a --+ O. That is 

def 
w(A1 , ... , AI() min lim eda) 

k=l , ... ,K cr-). O 

min lim A~7)k 
k=l, .. . ,I< 0"--+0 

2 lim a 2 log 1/ P [U {bk # bd ] 
a-> O 

k=l 

(3.89) 

(3.90) 

(3 .91) 

provided that w(A t , . .. , AI() > O. Equation (3.90) fo llows from (3.82), and (3.91) follows from 

taking the lima->o a 2 10g(.) of both sides of 

k;r{~~1( Pe(a, k) :s; P [kQl {bk # bd] :s; 'f;/e(a, k ) (3 .92) 

The near1ar resistance [46] is a figure of merit which defines the detector in terms of the near-far 

capture immunity and is defi ned as the minimum asymptotic efficiency over the received energies of 

all the other users, i.e. 

(3.93) 

where "inf" denotes the infimum, and is defined as the maximum lower bound of the argument. In 

the case where we have received energies which vary with time (such a the mobile channel), we have 

a more restrictive definition 

inf '7k . 
A j [il>o 

(i,j) -,i (O ,k ) 

3.5.1 ASYMPTOTIC MULTIUSER EFFICIENCY OF THE TWO USER 

MATCHED FILTER 

(3.94) 

Let us consider asymptotic multiuser efficiency in terms of the two user matched filter case. For the 

matched filter recei ver we have the case of the closed eye under the condition 
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where we have from equation (3.88) that if the BEP does not approach zero as a --+ ° the asymptotic 

multiuser efficiency is 

(3 .96) 

Conversely, in the open eye condition if 

(3.97) 

we have from (A.3) and (3.35) 

lim P,(a,J) 
t7-rO Q (v:,Al ) (3.98) 

from which we get 

(3.99) 

Taking sup{r}, we get 

'71 = (1 _ ~: ipi) 2 (3.100) 

Combining the asymptotic multiuser efficiency for both regions of (3.95) and (3.97), we get 

~l = [max { 0, 1 - ~~ ipi} ]2 , (3.101) 

which is the asymptotic efficiency for the two user matched filter receiver. A linear plot of the asymp­

totic multiuser efficiency for the two user matched filter detector is given in Figure 3.14. 

3.5.2 ASYMPTOTIC MULTIUSER EFFICIENCY OF THE K USER MATCHED 

FILTER 

It is trivial to expand the expression for matched filter asymptotic multiuser efficiency to the K user 

case. Using the same reasoning as before, we can combine (A.3) and (3.55) to obtain 

for the synchronous case, and combine (A.3) and (3 .71) to obtain 
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Two User Matched Filter Asymptotic Multiuser Efficiency , p=0.2 
1 
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Figure 3.14: Asymptotic multiuser efficiency for a matched filter detector with two equal energy 

users and P = 0.2 

for the asynchronous case. The asymptotic multiuser efficiency can be viewed as a normalized mea­

Slife of the openness of the eye (refer to equations (3.57) and (3.72)). 

Form (3.102) and (3.103) we can see that minimizing the asymptotic multiuser efficiency over all 

users, the near-far resistance of user k is equal to zero unless Pj k = Pkj = 0 V j of k for all over­

lapping user bits for both the synchronous and asynchronous cases. This means that the single-user 

matched filter detector is not near-far resistant, since it is impossible that the orthogonality constraint 

can be maintained over all offsets in the asynchronous channel. 
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3.6 PERFORMANCE OF THE COHERENT SINGLE USER 

MATCHED FILTER DETECTOR IN FREQUENCY FLAT 

FADING 

Let us now evaluate the single user matched filter where the received signals are subject to frequency 

flat Rayleigh fading. We assume coherent detection, i.e. that the fading amplitude and phase of 

the user of interest is perfectly known at the receiver. Let us adopt the synchronous version of the 

complex valued model in (2.3 1): 

K M 

yet) = L L Akbdi]sk(t - iT) + an(t), (3. 104) 
k=l i=l 

where Ak is the complex valued amplitude of user k due to a phase Ih. The real and imaginary part 

of Ak are independent and Gaussian with zero mean and standard deviation equal to A k . First, let us 

examine the single user case. 

3.6.1 THE SINGLE USER CASE IN THE PRESENCE OF FADING 

Here we consider the one-shot model without loss of optimality, since we consider the fading coeffi­

cients to be perfectly known. In the single-user case we have 

yet) = Abs(t) + an(t) , t E [0, T ]. (3.105) 

The optimum decision rule selects the value of b =E {±1} that minimizes the mean-square distance 

faT Iy(t) - Abs(t) 12 dt = faT ly(t) 12 dt + faT IAbs(t) 1- 2!R {faT y*(t)AbS(t)dt } , (3.106) 

that is, where the optimum decision rule is given by 

b = sgn (!R {A f y*(t)S(t)dt }) . (3 .107) 

The inner product 

y = (y*, s) = faT y*(t)s(t)dt (3 .108) 

is a suffi cient statistic. The decision rule in (3.107) is equal to b only if the angle between the complex 

values A and y is acute. That is to say that their absolute phase difference is less than 7r / 2. Let us 

find the error probability of the decision rule by conditioning on the transmitted bits and the received 

fading coefficients: 
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P[b = lib = - l ,A] P [-IAI2 + aR { A faT n*(t)S(t)dt} > ° IA 1 

P [-IAI2 + aR {A} N!)l + a'S {A} Ncs > ° IA 1 

Q ( I ~ I) , (3.109) 

where 

(3.110) 

(3.111) 

The symbols (3.110) and (3. 111 ) denote Gaussian random variables with zero mean and unit variance. 

As in previous cases, the probability of error if a one is sent is identical. We assume that the received 

complex amplitude A has a independent Rayleigh distributed real and imaginary parts. From (2.49) 

we have 

fR(r) = { rexp (_r;) , O:S l' :Soo, 

0, r < 0, 
(3.112) 

where R is the Rayleigh distributed random variable. We may write the received amplitude as the 

product of the Rayleigh distributed random variable and a deterministic part where A = AR. To 

find the BEP of the single user, we have to average over all values of the Rayleigh faded received 

amplitude. Subsequently, the BEP is given by 

E[Q(I~I)] 
faoo r exp ( - 1'2

2

) Q ( ~ ) d1' 

~ (1 -}l /a2/A2), (3.113) 

where (3. 11 3) follows from (A.?). The BEP exhibits an interesting property when compared to the 

case of a deterministic amplitude. In the deterministic case, the decay in BEP is exponential. In 

the Rayleigh faded case, however, the BEP has a much slower hyperbolic decay. This highlights the 

detrimental effect a Rayleigh fading channel has on a digital communication system, and in our case, 
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a single user COMA system. 

The exact BEP of user k in the case of Rayleigh fading is given in [31] as 

P{(u,k) 
2Ll (bl'h)=({~l},.' { -l 'l} ) E [Q ( I~kl + ~ bj 

R ~ 1~:lk } PJk) ] 

E [Q ( I~kl + ~ R{:j} pjk)] (3.1 14) 

+ ( c' j:~ AJPi' ) j (3 .11 5) 

{ -r+A~AJ".) (3. 116) 

where the phase term Ak / IAk l and the binary coefficients bk have been dropped in (3 .114) since they 

do not affect the distribution of the random variable inside the Q-function. Similar to the single user 

case, (3. 115) follows from (A.7) because R{Aj} are independent Gaussian random variables . We 

can obtain (3 .116) by solving the averaging integral that led to the single user result. The asymptotic 

multiuser efficiency in the case of Rayleigh fading is given by [31], 

2 
F I' U 

17k = 1m 2 F . 
a-+O 4Ak Pe (u, k) 

(3.117) 

3.7 SUMMARY 

The chapter begins by declaring the multiuser detection problem as a hypothesis testing problem. 

The concept of sufficient statistic is visited, and it is shown that the single user matched filter receiver 

contains sufficient statistic to make an optimal decision. The optimal (matched filter) single user re­

ceiver is analyzed and discussed. The COMA matched filter detector for multiple users is presented, 

and is analyzed for the two user case. Performance measures such as BEP and power tradeoff regions 

are introduced, with the two user channel in mind. The phenomenon of the near-far effect is discus­

sed as a basic limitation of the matched filter COMA receiver. A useful visualization of the two user 

matched filter detector is presented in terms of a signal space representation. 

The K user matched filter detection case is also analyzed in this chapter. The exact and Gaussian 

approximated BEP equations are derived and presented as a performance measure for the K user 
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case. The infinite user limit for BEP in a CDMA channel is also visited. Asymptotic multiuser 

efficiency and related measures such as near-far resistance and signal to interference ratios are also 

presented and discussed. The chapter is concluded with analysis of the matched filter detector in 

single and multiuser channels with frequency fl at fading. 
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