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Appendix A 

Diversity and Combining Techniques 

A-I Diversity 

A-1.I Polarisation Diversity 

In mobile radio environments, signals transmitted on orthogonal polarisations exhibit 

decorrelated fading and, therefore, offer potential for diversity combining. Polarisation 

diversity can be obtained either by explicit or implicit techniques . Note that with 

polarisation, only two diversity branches are available as opposed to space diversity where 

several branches can be obtained using multiple antennas . In explicit polarisation diversity, 

the signal is both transmitted and received in two orthogonal polarisations. For a fixed total 

transmit power, the power in each branch will be 3dB lower than if single polarisation was 

used. In the implicit polarisation technique, the signal is launched in a single polarisation 

antenna, but is received with cross-polarised antennas . The propagation medium couples 

some energy into the cross-polarisation plane. Polarisation diversity can be very useful at 

the base station and also for hand held terminals which are subjected to varying handset 

orientation. Under such condition, polarisation diversity is an obvious way of improving 

link quality [85]. 

The mobile hand set can be held at random orientations during a call. This results in energy 

being launched with varying polarisation angles ranging from vertical to horizontal. This 

further increases the advantage of cross-polarised antennas at the base station since at least 

one of the two antennas will be well matched to the polarisation of the launched signal. An 

extensive study of the subject, use of the technique and improvement of system 

performance has been shown in the literature [86-90]. 

A-I.2 Angle Diversity 

In situations where the angle spread is very high, as in the case of indoor or at the mobile 

unit in urban locations, signals collected from multiple nonoverlapping beams offer low-
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fade correlation with balanced power in the diversity branches. Clearly, since directional 

beams imply use of antenna aperture, angle diversity is closely related to the space 

diversity. Angle diversity has been utilised in indoor wireless local area networks (LANs), 

where its use allows substantial increase in LAN throughputs. 

A-1.3 Frequency Diversity 

Another technique to obtain decorrelated diversity branches is to transmit the same signal 

over different frequencies. The frequency separation between carriers should be larger than 

the coherence bandwidth . The coherence bandwidth depends on the multipath delay spread 

of the channel. The larger the delay spread is, the smaller the coherence bandwidth and the 

more closely the frequency diversity channels can be spaced. Clearly, frequency diversity 

is an explicit diversity technique and needs additional frequency spectrum. 

A-l.4 Path Diversity 

A sophisticated form of diversity is based on using a signal bandwidth much larger than 

the channel coherence bandwidth, as is used in the so-called direct sequence spread 

spectrum modulation techniques. This modulation scheme is used in the CDMA mobile 

networks. Spread spectrum signals can resolve multipath arrivals as long as the path delay 

are separated by at least one chip period. If the signal in each path shows low-fade 

correlation, as is usually the case, these paths offer a valuable source of diversity. 

In CDMA, diversity gain provided by the multiple paths (and other diversity branches, if 

any) not only reduces transmit power needs but also increases the number of users that can 

be supported per cell for a given bandwidth. 

A-1.5 Time Diversity 

In mobile communication channels, the mobile motion, together with scattering in the 

vicinity of the mobile, causes time selection fading of the signal with Rayleigh fading 

statistics for the signal envelope. Signal fade levels separated by the coherence time show 

low correlation and can be used as diversity branches if the same signal can be transmitted 

at multiple instants separated by the coherence time. The coherence time depends on the 
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Doppler spread of the signal, which in tum is a function of the mobile speed and the carrier 

frequency. 

One fundamental drawback with a time diversity approach is the delay needed to collect 

the repeated or interleaved transmissions. If the coherence time is large, as, for example, 

when the vehicle is slow moving, the required delay becomes too large to be acceptable for 

interactive voice conversation. 

A-2 Combining Techniques 

A-2.t Selection Combining 

Selection combining is the simplest of all techniques analysed here. A block diagram of 

selection combining is shown in Figure. A.I, and it is similar to Figure 2.4, where m 

demodulators are used to provide m diversity branches whose gains are adjusted to provide 

the same average SNR for each branch. As can be seen in Figure. A.I, if all branches have 

the same noise power, the amplitude of the output from the combiner is simply the 

strongest signal. It is possible to improve the performance of selection combining to be 

very close to that of MRC, by selecting the M strongest output, instead of selecting only 

the strongest one [91,92]. The technique has been extensively studied in the literature for 

different scenarios by considering different channel models, and different modulation 

schemes to find the best optimum performance for selection combining [93-96]. 

SelectMoniter 
HighestSNR 

Channell 

Receiver 
Transmitter Channel 2 

Channel 3 

Figure A.I: Selection Combining. 
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In [97], new results show better performance of selection combining by considering 

moreaccurate signal-pius-noise (S+N Selection) as compared to the traditional models 

based on choosing the branch with the largest signal-to-noise ratio (SNR). The 

performance improved even further by increasing the number of branches. 

A-2.2 Feedback diversity 

Feedback or Scanning diversity is very similar to selection diversity except that instead of 

always using the best of M signals, the M signals are scanned in a fixed sequence until one 

is found to be above a predetermined threshold. This signal is then received until it falls 

below threshold and the scanning process is again initiated. The resulting fading statistics 

are somewhat inferior to those obtained by the other methods but the advantage with this 

method is that it is very simple to implement, only one receiver is required. A block 

diagram of this method is shown in Figure A.2. 

Antenna 
Preset Threhold Control 

Short-term 
Average 

Figure A.2: Feedback diversity. 

A-2.3 Switched Combining 

The disadvantage with selection combination is that the combiner is unable to monitor all 

N branches simultaneously. This requires N independent receivers, which is expensive and 

complicated. An alternative is to apply switched combining. Here only one receiver is 

required, and it is only switched between branches when the SNR on the current is lower 

than some predefined threshold. This is a 'switch and stay' combiner. 

The performance is less than in selection combining, since unused branches may have 

SNRs higher than the current branch if the current SNR exceeds the threshold. The 
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threshold therefore has to be carefully set in relation to the mean power on each branch, 

which must also be estimated with good accuracy. 

A-2.4 Equal Gain Combining 

Since both selection and switching combining receive the signal on only one branch at a 

given time, the signal energy in the other branches is wasted. One way to improve on this 

is to add the signals from all the branches. If this were done directly on the complex 

signals, however, the random real and imaginary components would combine incoherently, 

resulting in the fading statistics at the combiner input (although a greater total power). To 

provide any useful diversity, the signals must be co-phased so that they add coherently; the 

noise on each branch is independent and randomly phased, henoe it adds only incoherently. 

This process is shown in Figure A.3, where each branch is multiplied by a complex phasor 

j8I
(e- ) having a phase-8i , where 8 i is the phase of the channel associated with branch i. The 

resultant signals then all have zero phase. 

The EG combiner is of considerable interest for various reason. It offers performance 

comparable to that of the optimal maximal Ratio Combiner (MRC) with much greater 

simplicity than the MRC, making it hardware feasible and cost viable [98,34]. 

Co-phasing 

Channell 

-jEl2e 
.(1. 

Transmi tter Channel 2 Receiver 

Channel 3 

Figure A.3: Equal Gain Combiner. 
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Equal gain CEQ) combining is a powerful means to combat multipath fading and has been 

widely adopted in practice due to its good performance and ease of implementation, 

however exact calculation of error performance over different fading channels is a complex 

computation. A one step procedure that leads to an exact solution is presented in (99]. 
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Appendix B 

B-1 Small Scale Fading 

Small-scale fading, or simply jading, is used to describe the rapid fluctuation of the 

amplitude of a radio signal over short period of time or travel distance, so that large-scale 

path loss effect may be ignored. Fading is caused by interference between two or more 

versions of the transmitted signal, which arrive at the receiver at different times. These 

waves, called multipath, combine at the receiver antenna to give a resultant signal which 

can vary widely in amplitude and phase. Depending on the distribution of the intensity and 

relative propagation time of the waves and the bandwidth of the transmitted signal [2]. 

Multipath in the radio channel creates small-scale fading effects. The three most important 

effects are: 

• 	 Rapid changes in signal strength over a small travel distance or time interval. 

• 	 Random frequency modulation due to varying Doppler shifts on different multipath 

signals. 

• 	 Time dispersion (echoes) caused by multipath propagation delays. 

Many physical factors in the radio propagation channel influence small-scale fading. These 

include the following: 

• 	 Multipath propagation 

• 	 Speed of the mobile 

• 	 Speed of surrounding objects 

• 	 The transmission bandwidth of the signal 

When the received signal is made up of multipath reflective rays plus a significant line-of­

sight (nonfaded) component, the envelope amplitude due to small-scale fading has a Rician 

pdf, and is referred to as Rician Fading. The nonfading component is called the specular 

component. As the amplitude of the specular component approaches zero, the Rician pdf 
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approaches a Rayleigh pdf [49]. It is important to talk about some basic concept about 

fading as discussed below before we look at the different statistical fading models. 

(a) Flat Fading 

If the mobile radio channel has a constant gain and linear phase response over a bandwidth, 

which is greater than the bandwidth of the transmitted signal, then the received signal will 

undergo flat fading. 

Frequency-nonselective or flat fading, degradation occurs whenever fo>W. Hence, all of 

the signal's spectral components will be affected by the channel in a similar manner (e.g., 

fading or no fading). Flat-fading does not introduce channel-induced lSI distortion, but 

performance degradation can still be expected due to loss in SNR whenever the signal is 

fading. In order to avoid channel-induced lSI distortion, the channel is required to exhibit 

flat fading by ensuring that 

1 
fo > W~- ( B-l) 

Ts 

For the flat-fading case, where fo>W (or T m<Ts), as mobile radio changes its position, there 

will be times when the received signal experiences frequency-selective distortion even 

through fo>W. Whenever this occurs, the base band pulse will be especially mutilated by 

deprivation of its DC document. Even though a channel is categorised as flat fading (base 

on rms relationship), it can still manifest frequency-selective fading on occasions. It is fair 

to say that a mobile radio channel, classified as having flat fading degradation, cannot 

exhibit flat fading all time. By comparison, it should be clear that in Figure B .1 (a), the 

fading is independent of the position of the signal band, and frequency-selective fading 

occurs all the time, not just occasion all y [49]. 

Viewed in the time-delay domain, a channel is said to exhibit frequency-nonselective or 

flat fading if Tm<Ts. In this case, all of the receiver multi path components of a symbol 

arrive within the symbol time duration; hence, the components are not resolvable [100]. 

(b) Frequency Selective Fading 

If the channel possesses a constant-gain and linear phase response over a bandwidth that is 

smaller than the bandwidth of transmitted signal, then the channel creates frequency 

selective fading on the received signal. Frequency selective fading is due to time dispersion 
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of the transmitted symbols within the channel. Thus the channel includes intersymbol 

interference (lSI). 

I 
I 

Flat Slow I Flat Fast 
Fading 	 I Fading

I 
-------------------f------------------­

I 
0, I 

Frequency Selective I Frequency Selective 
Slow Fading 	 I Fast Fading 

I 
I 
I 

Te 
Transmitted Symbol Period 

(a) 

I 
I 

Frequency Selective I Frequency Selective 
I 
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I 

Be -------------------+------------------­
I 

I 


Flat Fast I Flat Slow 

I


Fading I Fading

I 

I 

I


~-------------+--------~--------------------~Bs 

Bd 
Transmitted Baseband Signal Bandwidth 

(b) 

Figure B.l: Matrix illustrating type of fading experienced by a signal as a function of 

(a) Symbol period and (b) baseband signal bandwidth. 

A channel is referred to as frequency-selective of fo<llTs ::::; W, where the symbol rate, l/T.v 

is nominally taken to be equal to the signal bandwidth W. Frequency-selective fading 

distortion occurs whenever a signal's spectral components are not all affected equally by 

the channel. Some of the signal's spectral components, falling outside the coherence 

bandwidth, will be affected differently (independently) compared to those components 

contained within the coherence bandwidth. This occurs whenever fo<W. 

When viewed in the time-delay domain, a channel is said to exhibit frequency-selective 

fading if Tm> Ts (the delay time is greater than the symbol time). This condition occurs 
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whenever the received multipath component has a symbol extend beyond the symbol's 

time duration, and is causing channel-included intersymbol interference [100]. 

(c) Fast Fading 

Depending on how rapidly the transmitted baseband signal changes as compared to the rate 

of change of the channel, a channel may be classified either as a fast fading or slow fading 

channel. In a fast fading channel, the channel impulse response changes within the symbol 

duration. That is, the coherence time of the channel is smaller than the symbol period of 

the transmitted signal. A flat fading, fast fading channel is a channel in which the 

amplitude of the delta function varies faster than the rate of change of the transmitted 

baseband signal. In the case of a frequency selective, fast fading channel, the amplitudes, 

phases, and time delays of anyone of the multi path components vary faster than the rate of 

changes of the transmitted signal. 

When viewed in the domain, a channel is referred to as fast fading whenever To<Ts, where 

To is the channel coherence time and Ts is the symbol time. Fast fading describes a 

condition where the time duration for which the channel behaves in a correlated manner is 

short compared to the time duration of a symbol. Therefore, it can be expected that the 

fading character of the channel will change several times during the time a symbol is 

propagating [lOa]. 

(d) Slow Fading 

In a slow fading channel, the channel impulse response changes at a rate much slower than 

the transmitted baseband signal set}. 

Viewed in the time domain, a channel is generally referred to as introducing slow fading if 

To> Ts. Here, the time duration for which the channel behaves in a correlated manner is 

long compared to the symbol time [100]. 

B-2 Rayleigh Fading Distribution 

In mobile radio channel, the Rayleigh distribution is commonly used to describe the 

statistical time varying nature of the receiver envelope of a flat fading signal, or the 
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envelope of an individual multipath component. It is well known that the envelope of the 

sum of two quadrature Gaussian noise signals obeys a Rayleigh distribution. The Rayleigh 

distribution has a probability density function (pdf) given by (B.2). Rayleigh distribution 

has been widely used in the literature to model fading channels for diversity reception [49, 

100-108]. 

p(r)={~exp[-~)} (0 ~ r~ 00) (B -2)
2 2a2a 

= o (r < 0) 

where (J' is the fIllS value of the received signal voltage before envelope detection, (J' 2 is 

the time-average power of the received signal before envelope detection and r is the 

variable in this case volts, that is Rayleigh distributed. 

Rayleigh fading distribution can be effectively used to model multipath fading signals and 

combining the different paths for diversity reception. It has also been shown in literature 

that diversity combining of independent Rayleigh-faded signals offers significant 

improvement in the signal level. 

As with temporal or frequency diversity methods, they help to combat fading by resolving 

several fully or partially decorrelated fading channels. Since it is unlikely that these 

channels will go through a deep fade at the same time, higher average received SNR results 

when the output of the branches are combined [109]. The system model here is based on 

diversity combining of correlated signals, as can be seen in Chapter 5, where maximal­

ratio combining is used to combine the signals. 

B-3 Rician Fading Distribution 

When there is a dominant stationary (nonfading) signal component present, such as a line­

of-sight propagation path, the small-scale fading envelope distribution is Rician. As the 

dominant signal becomes weaker, the composite signal resembles a noise signal which has 

an envelope that is Rayleigh. The Rician distribution degenerates to a Rayleigh distribution 

when the dominant component fades away. The Rician distribution is given by 
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for ( A ? 0, r ? 0 ) ( B-3) 

= o for(r < 0) 

where the parameter A denotes the peak amplitude of the dominant signal and 10 (e) is the 

modified Bessel function of the first kind and zero-order. The Rician distribution is often 

described in terms of a parameter K which is defined as the ratio between the deterministic 

signal power and the variance of the multipath. It is given by K =A2j(2o-2) or in terms of 

dB as 

A 2 

K (dB )= 10 log --dB ( B - 4 ) 
20" 2 

The parameter K is known as the Rician factor and completely specifies the Rician 

distribution. As A~, K -7 _00 dB, and as the dominant path decreases in amplitude, the 

Rician distribution degenerates to a Rayleigh distribution. 

Signal fading, which is due to the multi path propagation, is one of the main transmission 

impairment in cellular mobile radio transmission. It has been shown in the literature that in 

some microcellular systems, the fading amplitude of the received signal has Rician 

probability density function. And the distribution has been used to model the fading 

channel for a microdiversity in [110] and to model a macrodiversity cellular model in 

[111]. It is observed that fading (either Rayleigh or Rician) has little effect on the diversity 

gain of local-mean-based macrodiversity system. The diversity gain is the same, but 

Rayleigh fading is always worse than Rician fading. A more effective model to use is the 

Nakagami-m distribution. 
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Q-function [2 pp 593-597] 

C-l Q-function 

(C-l) 

Important properties of Q (z) 

Q( -z ) = 1 - Q( z ) (C -2) 

Q(O) =!... (C -3)
2 

C-2 The erf and erfc functions 

The error function is defined as 

2 z 2 

erf( z) = ,- Je- x dx (C -4) 
'" 1r 0 

And the complementary error function (erfc) is defined as 

20()2 
erfc( z) = ,- Je- x dx (C -5) 

'" 1r z 

The eifc function is related to the eiffunction by 

erfc( z ) = 1 - erf ( z ) (C -6) 

The Q-function is related to the erf and erfc function by 

(C -7) 


erfc( z) = 2Q(.J2z) (C -8) 

erf(z) = 1-2Q( .J2z) (C -9) 
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Appendix D 
D-l Bit Error Rate of Frequency Hopping Spread Spectrum. 

In FH-SS systems, several users independently hop their carrier frequencies while BFSK 

modulation. If two users are not simultaneously utilising the same frequency band, the 

probability of error for BFSK can be given by 

(D-I) 


However, if two users transmit simultaneously in the same frequency band, a collision, or 

"hit", occurs. In this case it is reasonable to assume that the probability of error is 0.5. The 

over all probability of bit error can be modelled to incorporate the probability of hit as 

well. 

D-2 BER For Some Common Modulation Schemes in A WGN. 

P __1_ ( coherent FSK ) ( D-2)
e,FSK ­ 2r 

P =_1_ ( Differential PSK ) ( D-3)
e,DPSK 2r 

P -~ (noncoherent orthogonal binary FSK ) (D-4)e, NCFSK - r 

For GMSK, the expression for BER in the AWGN (Additive white Gaussian noise) 

channel when evaluated Equation (2.9) yields a Rayleigh fading BER of 

P = ~[1- ,-ar-i ~_1 ( coherent GMSK ) ( D-5)
e,GMSK 2 ~~ j - 4Jr 

Where 

for BT = 0.25J -;;;. {0.68 ( D-6)
0.85 for BT = 00 

BT is the 3dB-bandwidth-bit duration product. 
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Appendix E 
E Mathematical Formulas [51] 

(E -lay 

(E -lb) 

(E -2) 


. . ) _ r( C ) ~ r( a + n )r(b + n) x" 
2 F1( a, b ,C,Z - ----L. (E - 3a) 

r( a )r(b) 11=0 r( C + n) n! 

F(a b'c'z)= r(c) 1ftb - l (l_t)C-b-1(1_tX)-adt 
2 1 '" r( b )r(C - b) 0 

Re( C) > Re( b) > 0 (E -3b) 

r'-'e-" ,F,(a,c ;kt jdt ~ )T(b)s-'. ,F,(a,b;c; ~ 
o Re(b) > 0, Re( s ) > 0, Re( s ) > Re( k ), lsi> Ik I (E -4) 

Z ra 
2 FI ( a, b,.b,. Z ) = ( 1 - (E -5) 

f 
co r (s + a )2 F1 ( l, s + a,. s + l,. ~ ) 

s-1 -focr( )d - 1 + fJx e a,x x - -----------'-­
o s(1 + fJ )s+a 

Re( fJ ) > 1, Re( s) > 0 (E -6) 

r( £) = '2-2n + 1 r( 2n) - 0 1 2 ...n+..y7r ,n-", (E -7)
2 r(n) 
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(E -8a) 

(E -8b) 

a-I n]
P(a,x)=F(a) 1-e-x I'::',a =1,2,.·· (E -9)[ 

n=O n. 

(E -10) 

(/J (a b C x ) = F( C ) ~~ F( a + i + j )F( b + j) . Xi i Ixl < 1 I I < 1 (E -11 ) 
I "" Y F( )F( b ) L.J L.J F( . . )., ., Y , , Ya i=Oj=O C+l+] I.]. 
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F Determinant for k x k matrix 

If we define the following k x k matrix as: 

I-a -ab -ab 

-ab I-a -ab 
(F -1)A= 

-ab -ab -ab 

-ab -ab I-a 
k xk 

Then we can write 

det( A) = [1 - a( 1 - b )Y-I) .[1 - a( 1 - b + bk )] (F -2) 
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