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APPENDIX A

3G UPLINK/DOWNLINK SIMULATION
ENVIRONMENT

This appendix provides a brief description of the MATLAB 3G Uplink/Downlink
Simulation Environment. The simulation environment is controlled through a Graphical
User Interface (GUI). This has been developed to provide the user with an integrated 3G
CDMA simulation platform for performance evaluations. The package has been developed
using MATLAB 5.2, running on a WINDOWS 95/98/NT platform.

A.1 Link Level Simulation

This section will describe the MATLAB link-level software implementations of the uplink
and downlink. Figure A.1 and A.2 illustrate the general block diagrams of the transmission
links.

For both the up- and downlinks, the data sequence is firstly encoded, interleaved and
frame converted before data modulation using QPSK. A frame consists of multiple slots.
Tme consists of multiple slots. T- and slot- based processing for the receiver and transmit
functions. For the transmitter, the frame based processing consists of frame encoding and
interleaving. Then each slot is transmitted and received. When a slot is received and
placed into the de-interleaver buffer, the power control command is computed for the next
transmit slot. Only when the entire de-interleaver input is filled can the receiver frame based
processing (consisting of de-interleaving and decoding) commence. For the uplink, a single
transmitter antenna is assumed, while the downlink may include My transmit antennas, used
eitherin a CDTD or TDTD signalling configuration (see [84] for more details on the different
transmit diversity schemes).

In the simulation system the in-phase and quadrature components of the transmitted
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signal are multiplied by a random segment of a pre-generated fading channel complex
envelope.  The channel models under consideration, include the UMTS indoor,
outdoor-to-indoor/pedestrian and vehicular. The resulting signals are then summed and
finally AWGN of known power is added.

All of the users add their contribution to the centre slot buffer, then each user processes
this buffer after the addition of noise, to model AWGN. For each user the data transmitted on
the physical channel results from the encoding of an information sequence and the control
information transmitted on the channel is randomly generated.

The length of the information sequence and the encoding rate sets the number of binary
symbols to be transmitted on the I and Q arms of the modulator. This in turn sets the
processing gain of each user. By setting the information sequence length of each user, we
may control the processing gain of each user. Users with higher information rates will have
correspondingly lower spreading gains. Importantly, the frame interleaver sizes used in the
convolutional- and turbo encoding and decoding are also determined by the information data
rate.

The receiver first performs chip waveforming matching. Channel estimation is performed
on each resolved path, and used in the pilot symbol assisted (PSA) RAKE combiner to
resolve each of the transmitted streams from the multiple transmit antennas. The RAKE
receiver then consists of a number of correlators (or fingers), operating in parallel. Each
finger correlates a shifted version of the received signal with the spreading sequence for
the user of interest. The different shifts correspond to the different excess delays for
each multipath component received by the mobile terminal. Thus each RAKE finger is
synchronized to a different multipath component and picks up the energy associated with
that component. The outputs of the RAKE fingers must be combined (once per symbol
period) to obtain an estimate of the received symbol.

Closed loop power control is used on the dedicated channels to reduce the imbalance in
transmit power (near-far effect). Ideally the base station adjusts the transmitted power such
that the mobile terminal observes a prescribed signal-to-interference ratio (SIR). Both pilot
and data symbols are used in measuring the instantaneous received signal power, but pilot
symbols are used in measuring the instantaneous interference plus background noise power.
The measured SIR is then compared with the target value to generate the transmit power
control (TPC) command which is sent to the transmitter at the base station at the end of each

slot.
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A.1.1 Simulation Cases

Three types of users, each having different service requirements, may be considered. The

three service types are as indicated in Table A.1.

Parameter Class1 | Class2 Class 3
Physical channel rate (uncode) | 48 kbits/ | 256 kbits/ | 1024 kbits/
Spreading factor, N 32 16 4

FEC rate lor1/3 |1orl/3 lor1/3
Frame Interleaving 10 ms 10 ms 10 ms
DPCCH/DPDCH power 04dB 04dB 04dB

TABLE A.1l: Simulation service classes.

Table A.2 provides a summary of the implemented receivers, transmit diversity, and

coded techniques and their corresponding labels.

A.2 MATLAB Simulation Software

A.2.1 Getting Started

In order to get the MATLAB simulation platform up and running the following steps should
be followed:

Step 1 Create a suitable working directory to which the software will be copied. For

example: *c:\umts_sim’
Step 2 Copy the downloaded ‘p-code’ files (** .p’) to the working directory.

Step 3 Create the simulation data directory to which ’ error’ and ' log_file’ results
will be stored. This directory should be created on the ‘C’ drive as follows:
‘c:\data’

Step 4 Start MATLAB, and add the directory created under Step 1 to the MATLAB path.

Step 5 You should be able to run the simulation platform. Type in ‘umts_sim’ at the
MATLAB command line.
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Acronym | Description

SICL Iterated SIC, no clip/linear (3 Iterations)
SICH Iterated SIC, hard (3 Iterations)

SICL Iterated SIC, clip (3 Iterations)

PICL Iterated PIC, no clip/linear (3 Iterations)
PICH Iterated PIC, hard (3 Iterations)

PICL Iterated PIC, clip (3 Iterations)

NLMS Normalized LMS (u = 0.02)

EMF Estimated Matched Filter (1 = 0.02)

NOTD No Transmit-Diversity

O-CDTD | Orthogonal Code-Division Transmit-Diversity
RR-TDTD | Round-Robin Time-Division Transmit-Diversity
AS-TDTD | Antenna-Selection Time-Division

UNC Uncoded Transmission

RC Repetition Coding

CC Convolutional Coding (128 or 256 states)

TC Turbo Coding (4, 8 or 16 states)

MAP decoder, 8 Iterations

Table A.2: Implemented single- and multiuser detection, transmit-diversity and channel
coding techniques and corresponding labels.
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A.2.2 Main Simulation Window

By invoking ‘umts_sim.p’ at the MATLAB command line, the main GUI from which
different simulation engines are called from will be opened. A screen capture of this GUI

window is depicted in Figure A.3.

A.2.3 Simulation Environment Configuration

‘Figure A.4 shows a screen capture of the simulation environment configuration window. By
selecting ‘Transceiver/Channel Setup’ button, the configuration window, shown
in Figure A.4 will be opened.

The DS/CDMA transceiver and environment parameters controlled through this GUI are

given below:

o General transceiver parameters:

~ Number of simultaneous users, K.

- Users’ load in a mixed throughput environment, given as percentage of number

of simultaneous transmitting users.

— Signal-to-Noise ratio range and step increments.
e Channel environment parameters:

- Type: AWGN, UMTS Indoor, UMTS Outdoor-to-Indoor and Pedestrian, and
UMTS Vehicular.

— Average speed and log-normal shadowing variance.
e Monte-Carlo simulation parameters:

— Minimum number of bit errors to detect.

— Minimum and maximum number of frames to receive.
e Parameters common to uplink and downlink:

— Number of RAKE fingers available.

— Power control algorithm selection.
e Parameters specific to uplink:

— Number of receiving antenna.
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- Choice of receiver (choice between single and multi user detectors):
* Iterated SIC, No clip.
* Iterated SIC, Clip.
* Iterated SIC, Hard.
* Iterated PIC, No clip.
* Iterated PIC, Clip.
* Iterated PIC, Hard.
* Estimated Matched Filter (EMF).
* Normalized LMS (NLMS).
— Choice of FEC technique:
* No coding.
* Convolutional encoder with soft-input Viterbi decoder.

* Turbo encoder with iterative MAP decoder (8 Iterations).
e Parameters specific to downlink:

~ Number of transmitting antenna.
— Transmit diversity selection:
* No transmit diversity.
* Orthogonal CDTD.
* Round-Robin Time-Division Transmit Diversity (RR-TDTD). |
* Antenna-Selection Time-Division Transmit Diversity (AS-TDTD).
~ Choice of receiver:
* Estimated Matched Filter (EMF).
* Normalized LMS (NLMS).
— Choice of FEC technique:
* No coding.
* Convolutional encoder with soft-input Viterbi decoder.

* Turbo encoder with iterative MAP decoder (8 Iterations).
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A.24 Example

To understand how to use the simulation platform, an example is presented.

Step 1 Type ‘umts_sim’ at the MATLAB command line. This will bring up the main

interface window (figure), shown in Figure A.3.

Step 2 Click on the ‘Transceiver/Channel Setup’ button. This will open the

configuration window, as shown in Figure A 4.
Step 3 Select the number of users, K.

Step 4 Change the *E, /N, range in dB’ entry to the desired range. Note that this parameter
is entered in typical MATLAB style for vectors which is start:step:end with step
defaulting to 1.0 if not specified.

Step 5 Select the desired channel environment.
Step 6 Select the vehicle speed and log-normal shadowing variance.

Step 7 Set up the users’ loads as a percentage. Upon exit the entries will be normalized to a
total load of 100 %.

Step 8 Change the simulation control parameters.
Step 9 Set up the parameters common to both the uplink and downlink.
Step 10 Set up the uplink specific parameters.

Step 11 Set up the downlink specific parameters. Note that when only a single transmit
antenna has selected, that the transmit diversity scheme will be defaulted to the 'No

Transmit Diversity (TD)’ selection.

Step 12 Click on the ‘Continue’ button. This causes the configuration window to close.
The theoretical curve for selected uncoded DS/QPSK system will be plotted over the
E}/N, range in dB.

Step 13 (Optional) Click onthe ‘Clear’ button to remove the plotted curves.

Step 14 Click on either the ‘UPLINK Simulation’ or ‘DOWNLINK Simulation’
button to start the simulation. The simulation continuous for each Ey/N, value

specified in the ’E;, /N, range in dB’ entry. Information on ’Simulation Completion’
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will be displayed. The plot will be updated as the bit error rate of each evaluation
point bit error exceeds has been completed. Note that each point is evaluated until
the condition where the bit error count exceed the *minimum number of errors’, and
the received frame counter exceeds the *minimum number of simulation blocks’, is
reached for that particular value of E;/N,. At completion of the simulation, a legend
is added and results are displayed on the graph. At this stage, the result can be copied
to the clipboard to paste in some other application for recalling purposes.

Step 15 The main figure window can now be exit from by clicking on the ‘Exit’ button,

or more simulations can be performed.
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FIGURE A.1: Overall block diagram of the uplink.
DEPARTMENT OF ELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 170

UNIVERSITY OF PRETORIA



APPENDIX A 3G UPLINK/DOWNLINK SIMULATION ENVIRONMENT
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FIGURE A.2: Overall block diagram of the downlink.
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INK SIMULAIIUN ENVIRONME

FIGURE A.4: Simulation platform configuration window.
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$function TransOne
global statusl; global status2; global status3; global status4;
global status5; statusl = 0; status2 = 0; status3 = 0; statusd =

0; status5 = 0; global AveSigPwr; AveSigPwr = 1;

store = struct{...

"n’ . (1,... $ MAI /simulator
"ht y [1,... % channel effect /frame
"Rayleigh’ , [1,... % Multipath fading /frame
’ shadow’, [1,... % Shadow /frame
'userData’ , [1,... % User Data buffer /frame
'Txsignal’, [1,...

% Transmitted signal /slot (Text: Transmitted power)
'Rxsignal’, {1,... % Received signal /slot
'profile’ P [1,... % Power Profile /frame
"PControl’ , [1,...

% Transmitted power & received SIR /slot
% (Text: Actual SIR & Estimated SIR

’SIRset’, {1,...
' SIRmea’, PR
'PConsump’ B {1,-.. % Power Consumption /frame
'ErrorDist’, [1,... ) % Error distribution /frame
'NoisePower’, {1,... ) % Noise power at channel
'AvePw’, [1,... % Average Transmitted power
"Pe’, [1,... % Error Probability /FER
’iteration’, [1,...
"extrinsic’, [3,...
"iterationl’, [1,...
'extrinsicl’, [1):

mud = §;

l: SIC with iterations, no clip

2: 8IC with iterations, clip
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- 3: SIC with iterations,
4: PIC with iterations,
5: PIC with iterations,
6: PIC with iterations,
7: Normalised LMS
8: estimated MF

rake = 3; % Rake fingers

hard?
no clip
clip
hard

fec = 4; % selected forward error correction scheme

Convolutional coding,

Convolutional coding,

A s W N

chan = 1;

No error correction coding

K=8, Rate-1/3 (1l28-state)
K=9, Rate-1/3 (256-state)

Turbo coding, K=3, Rate-1/3 (4-state)
Turbo coding, K=4, Rate-1/3 (8-state)
¢ Turbo coding, K=5, Rate-1/3 (l6-state)

% selected channel

: AWGN Channel, no multipath
: UMTS Indoor

UMTS Pedestrian
UMTS Vehicular

1-Path Rayleigh
2-Path Rayleigh
3-Path Rayleigh

logn_s =2;
v = 60/3.6;
1IRxA = 1;
IT = 8;

dP P o0 IF

PwrCtrl = 2;

Shadowing variance
speed, convert from km/h to m/s
number of receiver antenna

number of iteration to perform for turbo decoder

1: Perfect PC
2: CLPC (2dB)
3: CLPC (1dB)
4: Xial

Xia2

fuzzy

2

k]
% System Parameters: UMTS/UTRA standards
%

sys = struct (...

'NEf’, 41472,... %
M’ , 16,... %
m’ , 1,... %
‘Nm’, 0,... %
'S’ , 4,... %
'sf’, 0,... %
sm’, 0,... %
'B" , 1,... %
s’ , [),... %
fet , {1, ... %
QT , 0,... %
‘chan’,chan, ... %

%

VLV, ...

# of chips in a frame

# of slots in a.frame
current slot

# of chips in a slot

# of samples per chip

¥ of samples per frame

# of samples per slot

# of receive antenna (diversity)
long code

chip waveform

centre tap of chip waveform
AWGN (selected) channel
vehicle speed (60/3.6 ms~-1)
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‘h',[1,... multipath fading profile at chip rate

'receiver’ ,mud, ... type of receiver (SC, MF, PC)
’'rake’,rake, ... RAKE fingers
' fec’, fec, ... fec type
"pwr_ctrl’,PwrCtrl); power control
sys.Nm = sys.Nf/sys.M; chips per slot

sys.Sf = sys.Nf*sys.S; samples per frame

W P OP P I P I N

sys.Sm = sys.Sf/sys.M; samples per slot
% Long Code
s = 2*(rand(sys.Nf,l)>0.5)—l;

sys.s = [s;s]; % avoid $Nf by replication of long code

% chip waveform

sys.c = chip(2,sys.5,1);

type 0 = square, type 1 = root raised cosine
sys.Q = floor(length(sys.c)/2);

index of centre tap (-1), offset in conv
Multifading
channel = 1; % channel

store = Multifading(store,channel,sys);

sys.h = store.h;

Py
k)

% User Required Parameters: Data Rate, QoS,

Py
e

% Single transmit antenna

channel = channels(sys.S, sys.chan); % pick type of fading channel
P = size(channel, 1); % # of multipath delays
if fec == 1
n=1;
else
n = 3;
end

~Store.profile = channel’;

Lu = sys.Nf/32/n; N = 32;
L = n*Lu;
% # of channel symbols per frame (% # bits out of encoder)
Lm = L/sys.M; % # of channel symbols per slot
Tx(1l) = struct(...
‘Lu’ , Lu,... % Data buffer $ # of bits into frame encode
', Ly... % # of bits at encoder output per frame
"Lm’ , Lm,... : % # of bits at encoder output per slot
‘b’ , (1,... % User data generate in frame based
'd1’ , zeros{(L,1l),... % Encode user data at output register
rT’ , [1,... % bitwise channel interleaver
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rdQ’ , I[1,... % training symbols

N’ , N,o.. % spreading gain

'cl’ , zeros(N,1),... % I arm spreading code
"cQ’ , zeros(N,1),... % Q arm spreading code

'n" , 3,...

'sIp’, 0,... % phase of I arm scramble
‘sQp’, 0,... % phase of Q arm scrambl

'w’ , zeros{sys.B*P,1l),... % adaptive filter

P’ , P,... % Channel parameter % # of multipath delays

"hp’, zeros(P,sys.B),... % phases of multipath profile

"ho’, zeros(P,sys.B),...
% offset into fading array of multipath profile into sys.h
"delay’,0,... group delay (models async to other users
'power’, zeros(P,1),... relative power of fading channels
‘tau’, zeros(P,l),... multipath delays measured in samples
’SINRset’,0.5,... % Receiver parameter
’SINR’,0,...
’QoS’, 1l0e-3,...

'Wtx’, zeros (sys.M+1,1));

target received SINR
measured SINR
Target received BER

Tx scaling to satisfy SINRset

9P d° dP d° dP JP OJP dP

[Tx(1).cI, Tx(1l).cQ)l = tree(N);
% multipath fading\
J = sqrt (~1);

binary antipodal channelisation code

homax = length(sys.h)-sys.Nf; % max multipath sequence offset%

Tx(l) .power = 10." (channel (:,2)/10); % convert MP strengths from dB to linear\
Tx(1l).tau = channel(:,1);

3 assign MP delays as a function of the selected channel
Tx(1l) .delay = floor(rand*10*sys.S); % asynchronism
Tx (1) .hp = exp(J*2*pi*rand(P,sys.B)); % phases of multipath profile
Tx(1).s8Ip = 0; Tx(1).sQp = 0;%

Initiate Transmitter Parameters

Errs = 0;
EbonNodB = 0;
% find the required EbonNodB for various data rate, channel,
run = 0;
% diversity scheme and coding
Interleaver

CEbNodB = EbonNodB(1);

I=1:L; for i=1:L, j=ceil(rand*L);
temp=I(j);
I(3)=I(i);
I(i)=temp;
end; Tx(l).I=I;
% Tx (1) .dQ = 2*round{rand(L,1))-1;
% training symbols
Tx (1) .SINRset = (10" (EbonNodB/10))/Tx (1) .n;
% QoS scaling controls Tx power
Tx(l).Wtx(l) = 0.5;

% rough initial value for Tx amplitude
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store.PConsump = Tx (1) .Wtx(1l);

9%
k)

% Frame-wise encoding and interleaving

9%
k)

while run < 20,

run = run + 1;
if fec == 1, Tx(l).b = round (rand (Tx (1) .Lu, 1)) ; $Uncoded system
else Tx(1).b = round{rand(Lu,1)); end; %$Coded system

switch fec
case 1
Tx(l) .d1r = 2*Tx (1) .b-ones(size(Tx (1) .b});
case {4,5,6} %$Turbo Encoder
% Turbo-encoder
Rc = 1/3;
Q=fec-2;
T_out = turboenc(Q,Tx(l).Lu,Rc,Tx(1).b’);
T_out = T_out’;
% Interleaver
Tx(1l).dI = T_out(I);
end

store.userData = [store.userData,Tx(1l).b];

%
k)

% Slot-by-Slot transmission — Enables Utilized-based PC

%
Rx=Tx;
¥save Rx Rx
% =] ;
ebno = 10" (EbonNodB/10) ; %

for m=l:sys.M
sys.m = m;
Tx(1) .ho = m*sys.N£/16; %ceil (rand (P, sys.B)*homax);
% offset of multipath profile into sys.
ds = (m~1)*Tx(1).Lm + (1:Tx(1l).Lm);
% Index the current user-data buffer
% Spread spectrum
dIm= Tx(1l).dI(ds);
\ % User index (ds) to attain slot data
dQm= Tx(1l).dQ(ds);
% Training index (ds) to attain slot training symbols
kron(dIm, Tx (1) .cI);

xI

% spread I arm, chip rate

xQ kron(dQm, Tx (1) .cQ) ;
% spread Q arm, chip rate, antenuated
% Check for orthogonality for cI and cQ
orthogonal=sum (Tx (1) .cI+Tx(1l).cQ);
X = Tx(l).Wtx (m)*(XI+J*xQ);
% QPSK symbols to scramble, chip rate, power control
%¥Scrambling Code
sI = (m-1l)*sys.Nm + Tx(l).sIp + (l:sys.Nm);

% index I scrambling chip sequence for slot
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sQ = (m—-1)*sys.Nm + Tx(l).sQp + (l:sys.Nm);
% index Q scrambling chip sequence for slot m
sl = sys.s(sI) + J*sys.s(sQ);

% get scrambling sequence (The scrambling assigned for

y = sl.*x;
% complex scramble, chip rate
% initialise observed sequence -

€ = zeros{sys.Sm,sys.B);

% Diversity
% no diversity yet at this time

for b=1l:sys.B,

% do for each antenna
for p=1:Tx (1) .P, % do for each multipath delay
tau = Tx(1l).tau(p); % no delay first+Tx(l).delay;
% w = sqrt (sys.power(p)); % assume average power same on all ants

sh = Tx(1).ho(p,b) + (m-1)*sys.Nm + (l:sys.Nm);

" % indexes of fading sequence
h = sys.h(sh); % get path (p,b) fading profile, chip rat
e(tau+(1:sys.S:sys.Sm),b)=e(tau+(l:sys.S:sys.Sm),b)+y.*h;% tx times channe
[mf, vf] = gstat(h);

ea2 = vf+mf;

euf (tau+(l:sys.S:sys.Sm),b) = y;
[meuf, veufl = gstat(euf(:,1));
eas = meuf+veur;
end;
end;
AveSigPwr = abs(eas / ea2); %Average Signal Power per slot
% Chip pulse shaping:
% perform chip waveform convolution (after sum_k) since convolution is linear
for b=1:sys.B, % each antenna
eb = conv(e(:,b),sys.c); % convolve with chip waveform
e(:,b) = eb(sys.Q+(l:size(e,1)));
% slide due to convolution
end;
if run ==
Txsignal = store.Txsignal;
store.Txsignal = [Txsignal,e];

end

g
°

% Slot-by—Slot transmission ~ Multi~Access-Interference (MAI)

9
k]

n = randn(size(e))+...

sqrt (-1) *randn (size (e)); % generate complex AWGN of unit variance$
No = 0;
for k=1:K,

% for every user calculate noise scaling factor to provide desired Eb/No ratio
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ecno=ebno/ (sys.S*sys.B*Tx (1) .N*Tx (1) .n); % equal transmit power constraint

Nok = 1l/ecno;

% Thermal noise variance per chip for single user
No = Nok;
% end
No2 = (No/(1*2))*AveSigPwr;
if sys.pwr_ctrl == 1,
% for case of perfect power control
No = 3°-1*No2/10; % Noise power (watt)
n = n*sqrt (No2/2);
else )
No = 1/3*No2; % Nocise power (watt)
end;

e =e + n; % add AWGN to rx samples

store.n = n; store.NoisePower (m, run) No;

[mn, var]=gstat(e(:,1));
Le

length(e);
AVE=sum(e.*conj(e))/Le;

Avel=mn+var; $

AvePw store,AvePw;

store.AvePw
%

[AvePw,AVE] ;

% Slot-by-Slot Receiver

%
k]
if run ==

Rxsignal = store.Rxsignal;

store.Rxsignal [Rxsignal,e];

end
[Rx, store] = slotreceiver(e,sys,Rx,store,Tx,run);
%
% Slot-by-Slot Power Controller
% %
if sys.pwr_ctrl > 1
if sys.pwr_ctrl > 1
% power control step size in dB
G = 10" (GdB/10) ;
g = Rx(1l) .SINRset/Rx (1) ,SINR;
Tx(l) .Wex (m+1) = Tx(l) .Wtx(m); % assume no adjustment
if g>aG Tx(l) .Wtx(m+l) = G*Tx(1l) .Wtx(m);
elseif g < 1/G Tx(l).Wtx(m+l) = Tx(1l).Wtx(m)/G;
end
Rx (1) .Wtx(m+l) = Tx(l).Wtx(m+l); % copy to Receiver
else
% perfect power control
Tx (1) .Wtx(m+1l) = Tx(l).Wtx(m); % amplification remains fixed
Rx(l) .Wetx(m+1l) = Tx(l).Wtx(m+1l);% copy to Receiver
end;

% Power Consumption

PControl = store.PControl; store.PControl

Rx (1) .Wtx (m+1)]; store.PControl;

% Transmit Power

[PControl,
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% Power Consumption % Transmit Power

PComsump = store.PConsump; store.PConsump = [PComsump,
Rx (1) .Wtx (m+1)3;

end$

%

Tx (1) .Wex (1) = Rx (1) .Wtx(17);

Rx (1) .dI(1:100) = 1*Tx(1l).dI(1:100); % give some symbols to Rx
% Check for Error

sum({gt (Rx (1) .dI,0) .*2-1==Tx (1) .dI);

I
Ll

% Frame Receiver
&
]

d = Rx (1) .dI;

switch fec

case 1

d=d';

b = Decide(d,0); % return uni-polar array of decisions
Rx(1l).b = b’; % re-order rows and columns%%

Err{(l) = sum{{Rx(1l).b) "=(Tx(1l).b)) % calculate bit errors

case {4,5,6}
d(Rx(1l).I) = d; % De-interleaver
M = fec ~ 2;

Re = 1/3;
[Errs,store] = TurboMAP (M, Tx(l).Lu,IT,Rc,No,d,Tx(l).b,store,run);
Err (1) = Errs(IT*2);
end
end;
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