University of Pretoria etd — Rimer, S C (2006)

DESIGN OF A GENERIC
CLIENT-SERVER MESSAGING INTERFACE
USING XML

by
Suvendi Chinnappen Rimer
Submitted in partial fulfilment of the requirements for the degree
Master of Engineering (Computer Engineering)
in the
Faculty of Engineering

UNIVERSITY OF PRETORIA

March 2003

University of Pretoria etd — Rimer, S C (2006)

DISSERTATION SUMMARY

DESIGN OF A GENERIC
CLIENT-SERVER MESSAGING INTERFACE
USING XML
by

Suvendi Chinnappen Rimer

Study Lreader: | -P;‘Of. G. P. Hancke

Department: Electrical, Electronic and Computer Engineering
UNIVERSITY OF PRETORIA
Degree: MEng (Computer Engineering)

Applications that use directory services or relational databases operate in client-server mode
where a client requests information from a server, and the server returns a response to the
client. Communication between each client-server application is achieved by using separate
custom built front-ends with non-portable data formats. A need exists to access information
from different heterogeneous client-server systems in a standard message request-response

format.

This research proposes a generic XML document that presents a common request-response
interface to the client from which they can access network protocol or database information.
The XML component is easily adaptable to accessing any new client-server type protocol or

database data that may be added to a server.

The approach in determining the XML elements is, firstly review each systems command and
data structure separately, and then determine if there are any commonalities within each
protocol that would allow for a common representation of both the data and command

structure.

For the purposes of this project, three different data sources that are typically used in an

Internet application were analysed, namely:

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)

e A TCP based server program.
e A relational type database.

e A directory service.

The solution was implemented using Linux as the operating system, Java as the programming
language, MySQL as the relational database, openLDAP as the directory server and a
proprietary TCP based server application. Initially the complete system was developed for the
proprietary TCP-based application. The other systems were added with minimum additional

work.

The result of the implementation was that it is relatively easy to add new protocols (for e.g.
LDAP) on an as needed basis with minimal changes required on the server side. A client will
receive XML responses that the client can either adapt (typically using a separate style-sheet)

to their specific needs or use the existing front-ends if they are suitable.

After the design was implemented and tested, the performance of XML and non-XML
messages was evaluated. As expected the increased verbosity of XML results in a larger
footprint that requires more processing time and resources. This means that any
implementation using XML has to carefully weigh the benefits of flexibility, extensibility and

standard message formats against reduced performance.

After evaluating XML type messages in an Internet type environment that involved human-
computer interaction, it was concluded that the slower response times is not that significant to

negate the benefits of a common message interface provided by using XML.

Electrical, Electronic and Computer Engineering i

University of Pretoria etd — Rimer, S C (2006)

SAMEVATTING VAN VERHANDELING

DIE ONTWERP VAN ‘N GENERIESE
BOODSKAP-INTERVLAK VIR ‘N KLIENTBEDIENER-STELSEL MET BEHULP
VAN XML
deur

Suvendi Chinnappen Rimer

- -étudieleier: Prof G.P. Hancke
Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese
UNIVERSITEIT VAN PRETORIA
Graad: Ming (Rekenaar-Ingenieurswese)

Toepassings wat gidsdienste of verhoudingsdatabasisse gebruik, werk in ‘n kliéntbediener-
modus waar die klient inligting van die bediener versoek en die bediener ‘n antwoord na die
kliént terugstuur. Kommunikasie tussen elke kliéntbediener-toepassing vind plaas deur die
gebruik van afsonderlike toegewyde intervlakke met nie-oordraagbare data-formate. ‘n
Behoefte bestaan om toegang te verkry tot inligting vanaf verskillende heterogene

kliéntbediener-stelsels deur ‘n standaard versoek-antwoord-formaat te gebruik.

Hierdie navorsing stel ‘n generiese XML-dokument voor wat ‘n algemene versoek-antwoord-
intervlak vir die kliént aanbied waarvandaan kliénte toegang het tot netwerk-protokol- of
databasis-inligting. Die XML-komponent is maklik aanpasbaar vir nuwe Internet-tipe

protokolle of databasis-inligting wat tot die bediener bygevoeg word.

Die benadering tot die bepaling van die XML-elemente was om elke stelselopdrag en
datastruktuur afsonderlik te beskou en dan te bepaal watter ooreenkomste binne die protokolle
bestaan wat ‘n gemeenskaplike voorstelling van beide die data- en die bevelstruktuur moontlik

maak.

Vir die doel van hierdie navorsing is drie verskillende bronne van data wat tipies in Internet-

toepassings gebruik word, ontleed:

Electrical, Electronic and Computer Engineering 111

University of Pretoria etd — Rimer, S C (2006)

e ‘n TCP-gebaseerde bediener-program
e ‘n verhoudingsdatabasis

e ‘n gidsdiens

Die oplossing is geimplementeer deur Linux as die bedryfstelsel, Java as die
programmeringstaal, MySQL as die verhoudingsdatabasis en openLDAP as die gidsdiens te
gebruik. Eerste is die totale stelsel vir die TCP-gebaseerde toepassing ontwikkel en die ander

twee toepassings is sonder veel bykomende werk bygevoeg.

Die bevinding tydens die implementeering was dat dit maklik is om nuwe protokolle (bv.
LDAP) by te voeg met minimale veranderings aan die bediener se kant. ‘n Kliént sal XML-
antwoorde kry wat die kliént kan aanpas vir sy spesifieke behoeftes of slegs deur die

beskikbare intervlakke te gebruik.

Nadat die ontwerp geimplementeer en getoets is, is die gedrag van XML teen nie—XML
boodskappe geévalueer. Soos verwag is, het die beter woordrykheid van die XML ‘n groter
voetspoor tot gevolg wat meer prosesseertyd en hulpbronne benodig. Dit beteken dat enige
implementering wat XML gebruik, die voordele van aanpasbaarheid, uitbreibaarheid en

standaard boodskapformate teen verlaagde werkverrigting moet afspeel.

Nadat die gebruik van XML-tipe boodskappe beoordeel is in ‘n Internet-omgewing waar
mens-rekenaar interaksie betrokke is, is tot die gevolgtrekking gekom dat die voordele van die
gemeenskaplike boodskapintervlak, deur die gebruik van XML, groter is as nadeel van die

effens stadiger reaksietyd.

Electrical, Electronic and Computer Engineering v

University of Pretoria etd — Rimer, S C (2006)

List of Abbreviations
CIM Common Information Model
DAP Directory Access Protocol
DIT Directory Information Tree
DN Distinguished Name
DTD Document Type Definition
DSML Directory Services Markup Language
| ESD ”Extendgéé;\;ices Daemon
HTTP HyperText Transport Protocol
LDAP Lightweight Directory Access Protocol
OSI Open Systems Interconnection
RDN Relative Distinguished Name
SGML Standard Generalized Markup Language
SOAP Simple Object Access Protocol
SQL Structure Query Language
TCP Transmission Control Protocol
XML eXtensible Markup Language
WSDL Web Services Description Language
UDDI Universal Description, Discovery and Integration

Electrical, Electronic and Computer Engineering

Chapter 1

University of Pretoria etd — Rimer, S C (2006)

Table of contents

: RESEARCH OVERVIEW

14

-
(&)

Introduction
Scope
Problem Statement
Research Context
Research Objective
Research Approach
1.6.1 Research Questions
1.6.2 Research Instruments

Chapter2 : LITERATURE STUDY

21

Overview of application technology
2.1.1 Lightweight Directory Access Protocol (LDAP)
2.1.2 Databases and SQL
2.1.3 Differences Between Directories and Databases
2.1.4 The IGUANA gateway
2.1.5 Extended Service Daemon (ESD)
2.1.6 XML
Related Work
2.2.1 LDAP and XML: Directory Services Markup Language (DSML)
2.2.2 SQL and XML: SQLX (INCITS)
2.2.3 Common Information Model (CIM)
2.2.4 Simple Object Access Protocol (SOAP)
Related Work in published Articles.

Chapter3 :SYSTEM OVERVIEW

3.1

w
N

Existing System
Proposed System

Chapter4 :SYSTEM SPECIFICATIONS

4.1

|

i N e
~N G| A jw (N

I
[04]

N
©

Introduction
System Requirements
System Constraints
Assumptions
Data Structure
Functional Specification
Software Methodology
Testing
External Software Components
4.9.1 Database
4.9.2 Directory Server
4.9.3 Web Server
4.9.4 XML Parser
4.9.5 XML Translator
4.9.6 Programming Language
4.9.7 Operating system

Chapter5 ;XML MODEL

5.1
5.2

|dentification of similarities between the heterogeneous applications

XML Document Design

[0 T) TS » TN SN U S ST S |

14
17
17
18
25
33
33
33
34
35
38

40

40
42

44
44
45
45
45
46
48
49
49
50
50
50
51
51
52
52

53

53
53

Electrical, Electronic and Computer Engineering

Vi

Chapter

University of Pretoria etd — Rimer, S C (2006)

6 :APPLICATION ARCHITECTURE

6.1

6.2

Chapter

Application Architecture
6.1.1 Presentation Layer
6.1.2 Business Layer
6.1.3 Data Layer
Interfaces to External Applications

7 . SOFTWARE DESIGN

1

~J
N

fonlfes
(&1} BN (O]

Chapter

Introduction
7.1.1 The package diagram
7.1.2 The class diagram
7.1.3 The flowchart

Design o S

7.2.1 The Presentation layer
7.2.2 The business layer
7.2.3 The Data layer
General library classes
Application flowchart

Error Handling
8 :RESULTS AND ANALYSIS

8.1

Results
8.1.1 ESD Results
8.1.2 SQL Results
8.1.3 LDAP Results
8.1.4 Results of different application servers

8.1.5 Measuring the relationship between number of XML messages and time.

Analysis of Results
8.2.1 Comparison of XML vs. non-XML type messages

59

59
61
62
63
63

65

65
65
65
65

66
66
70
82
85
86
88

89

89
89
90
91
91
92
96
96

8.2.2 Comparison of application server performance with respect to XML vs. non-XML type

messages.

8.2.3 Analysis of time taken to process multiple XML messages

Chapter9 :CONCLUSION

Chapter 10 : REFERENCES

Addendum A: IGUANA Structured Query Language Daemon (ISQLD)

Addendum B: IGUANA LDAP Schema

Contact

Information

97
98

99

102

104

106

108

Electrical, Electronic and Computer Engineering

Vil

University of Pretoria etd — Rimer, S C (2006)

List of figures

Figure 1: Traditional architecture requiring separate client applications.........cccceeeeeevevevveeeresnnns 2
Figure 2: Proposed architecture depicting protocol-to-XML clients interfacing to an XML

L Iy O T s mmessammn s xamam s A K RN N AR B S0 R R 3
Figure 3: Entries, Attributes and Values [1] ..ooeeeieeeoiieeieceeieeeecreeeceiee e eee s e 12
Bipute'4: Database table sthiehire[2] csosmmmivimramsrmmmsmsisis i s s siias 14
Figure 5 : XML data, the parser; and the applicgtion [6] ...isuusiicsissssssssrssssisassssmsassosssnss 26
Figure 6: Overview 0f Web SeIVICES ...uuviiiii ittt et a e s s e s ssnenneneaee 37
Figure 7: Current SYSIEIM O VEIVIEW...cciuuiieeeeeerereeeeeecrieeeeeeessseeeesssseeessssssssssssssessssesssessssnnmnnnnne 41
Figure 8: Overview of common messaging system using XMLooooioviiiieeioeeeeeeeeeeeeeeeeeeeanens 43
Figure 9: Functional block diagram of the proposed SYSIEIMcvvvevrrriereeiieiiiinreeeeeeeeeeeeesenneees 47
Fioure 10: Application- Architeefire .o, S TR o |
Figure 11: XML processing fOr DIOWSETccciiiiiiiiieeciiiee et eeteee e e e eee e e s e s s s e s snnenneees 62
Fioure 12: Representation of the bUSINESS TAVET.......uuuvrieeeieeeeeeceereeeeeeeeeeeeereveeeveeeeeeseeeeseeeneeees 62
Figure 13: EXternal INTeITaCES ..ooevureieeeceireeeieceteeeeesiirseeeeessreeseeesseseeessssseessesssseseesesssssnssnsessens 63
Figute 14: Pieldbus packago CBBIHM «cuvssssmmmsmssessuosss snssoss s s siisss s momamsames 66
Figure 15: FieldBusBean class dia@lam......cccooiuiiiiiieeiieeiieeieeeescetsesseessneesessesseeeenesesensaessneeens 66
Ficure 16: Sending a command from the front €ndcccvvvveviiivieriieeee e 67
Figure 17: Translating a response int0 HTIMLouiiiiiiiiiioiiieee e ee e eeeereeeeeeaeess 69
Figure 18: Snapshot of user interface for DPINFO command..........coeevvueeriireveieieeeeeeeeseeeeeenen. 70
Fioure: 1'9; Gateway packaoe diapramh.. o nimonssssesis v s s soiss s i s s st eaasins 71
Figure 20: ParseXmlToProtocolCommands class digdg@ramevveeeeeeveeieeeeeeeeieeeeeeeeeeeeeeeeneeenn 72
Ficure 21: Parsing and processing XIML datal......ooeevveerreeeeeeeeeerieeereeeeesssseseeeeseseseeeseneneneseenees 74
Ficure 22: ProcessEsdProtocol class diagraml. e ceeccevereereeeeeriensssreereesiesssassnmmemmeeeseemsmenmeesmmeses 76
Ficure 23: Connecting to ESD server and processing COMMANGS .v..eeeveererereermeeeeeeeeeeeeeeereeeeeenes 77
Figure 24: ProcessSqlProtocol class dIGQIamT .ovveeeveeereeeeereeeeieeeeesieeeeeeeeeeseeeeeee e anees 78
Figure 25: Connecting to MySQL database server and processing commands...........c............ 79
Figure 26: ProcessL.dapProtocol class diagramcccceeveeviiieenennesieeneeseee et 80
Figure 27: Connecting to openLDAP server and processing commands.........ccccceeeuvvveverreennnn. 81
Figure 28: esd package dIa@Iami.......eee it c e e e e e e eraae e e s e aas e e e e s easannsbeseeeesnnnns 82
Figure 29: EsdCommander Class PACKAGEooeeiieeveeeere e eeeeeeernreeeeeesesssseenesaeeeeeeeseeeseeeeeaees 83
Figure 30: sql package dIAGTAIM .oiieiereeeeeiiee e ceescecriiinrie e ee s srnt e e s e e s s e asssssateeaeeeseasassesesssessons 83
Eipure 31> SglCommander clags diBETaM «cussmssinsvssssssinssgs s s m s mismss 84
Bipure 37 1dap paclaog i BRI oo e v e S R A RS 84
Figure 33: LdapCommander class dia@ramooocveieiorieeiieieieeeisieesseeeereeseeneesseeseeaeesseneaesans 85
Figure 34: library package di@EIAIM ...cccvueeieiiirriieeeeeirieeeecere e e eeavrresessasesesssassseseesssanesessesssssens 85
Bisiite 35 Application HOWEhart .ciimiisasiminiisoissiissiimisivasmmmsmnees sersnsersssssssnnesssssesstns 87
Fieure 36: Request and single command sent multiple times........cccoeeueveecriinveieiosisenreeeeessonennes 93
Figure 37: Request with multiple commands sent once offcovvviiiiiiiiiiiiiiccieeeee e 94
Figure 38: Graphical representation of number of XML messages and timeccvevuvveeennnen. 95
Figure 39: Graphical representation of time taken to process an XML command as the number

O OIS IO ASE T i i s s s ie s eaie i arsasans i s simomemmr e e rs ceesemearenes 96

Electrical, Electronic and Computer Engineering viii

University of Pretoria etd — Rimer, S C (2006)

Table of tables
Table 1: Database TIELA TFDES covveeeeiieeeieiiiie ettt ettt s e e e s s e e et s e e e e e e e e e e e e e e s e eeeesaeassaaaassessesssssnen 15
Table 2: Differences between directories and databases......uueeeicecevieeeeiiiireeeesiieeeeereeeeeesresnees 17
Table 3: ESD request-reSponse COMMANGScuvveeeiiureiiiieeeiiriseeseeessseseeesossnseesseeessnmnnnneesssaeseens 24
Tiabled: DT BB wummmmssmms i s i i s SR T i S mps s brmmmmm e 29
Table 5: Dbtz 1eVels..... coidivmmemmvevinmsucscssunvmaisnssssmmsssis st saistie sossesstamvsinbssiiasisesssis 88
Table 6: Mo XML, w5, XML SOEEBSEL) . cmvensmsivisssnsmmsssssmvammessmdioin s ns s s 90
Table 7: No XML vs. XIML O MYSQL ..ot e e e e v eeeeeeseanaessssaeeesensees 90
Table 8: No XML vs. XIML for 0penLIDAPcoooiiiiiiiieiiieeeeieeeeeeeeseseee e e e e e e eeae e e e e eersaasseesas 91
Table 9: Time difference for application servers Without XMLcvvveerierieoeeeeeeeeeeeeeeeeeens 92
Table 10: Time difference for application servers With XMLcoovvueeiiiiiiieereeriecieereeesseesennns 92
_______Table 11: Time taken to process Single and Multiple command XML messages......ooveeveeeennn 95

Electrical, Electronic and Computer Engineering X

University of Pretoria etd — Rimer, S C (2006)

Chapter 1 : RESEARCH OVERVIEW

1.1 Introduction

This chapter describes the current problems businesses are increasingly facing when using
inter-networked computer systems to support multiple applications. It defines the problem
statement, the research objectives, the research approach and the scope of the work

undertaken.

1.2 Scope

The scope of the research is to provide a generic XML interface to multiple client server
applications using Internet type transport protocols such as HTTP and TCP. It does not focus
on any security concerns especially with respect to the transportation of data over an open
network. It assumes that there will be some sort of access control mechanism in place on a
client server application and therefore that some authentication information will have to be

provided to the server applications.

1.3 Problem Statement

Protocols such as LDAP or applications that use a relational database operate using a client-
server type model where the client requests information from a server, and the server returns a

response to the client.

Applications using different protocols typically require support for each of the protocols to be
implemented on a separate front-end component. Application interaction (via messages) is
achieved by using separate custom built front-end applications with non-portable data formats

and functionality.

Traditionally, a client connected to the Internet that requires access to different server
applications would have protocol specific programs at the client to access the data. When a
new server application is added to the system, a separate client application is developed to

access the new protocol’s data on the host server.

Electrical, Electronic and Computer Engineering 1

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

For example consider a typical system connected to the Internet that has the following
applications/services running on it:

e A directory service (i.e. LDAP).

e A TCP based proprietary server program.

e A relational database server.

The traditional architecture would require separate client programs accessing each of the

server or database applications as shown in the figure below.

‘ Server

- TCP-based
- prnpmldrv

-~

" TCP-based P
client "

B NETWORK
LDAP 1_ L - ~| LDAP
C I:enl ; s
LS Sl v erver
=~ SeL
_ ~ V| Database

Figure 1: Traditional architecture requiring separate client applications

The system architecture depicted in Figure 1 increases the complexity on the client’s side. as it
needs to have the latest version of each specific protocol program installed on its workstation.
In addition, if a new server application is added, each client needs to load another client
program that can access the server’s data. The need to install specialised clients on
workstations increases the complexity of maintaining a system and reduces flexibility to
introduce new protocols into a system. Any addition of new software may require the addition
of new-shared libraries that may complicate or interfere with existing applications (such as

stability, versions etcetera).

Electrical, Electronic and Computer Engineering 2

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

A need exists to access information from different heterogeneous systems in a standard
message request-response format. The rules surrounding request-response type messages and
their data should be organized in a clear and consistent manner, so that information can be

shared among many applications.

The eXtensible Markup Language (XML) is proposed as a solution to access diverse
information systems through a common metadata model. XML is particularly suited to web-
based data exchange because it allows data exchange across disparate platforms and operating

systems.

This project describes an XML model that abstracts the differences in underlying

heterogeneous client-server systems and provides a common XML message interface.
To design the model the similarities of different client-server applications were identified, and
using these similarities a common messaging system using XML as the command

interpretation language was developed.

Figure 2 provides a high-level overview of the proposed system architecture.

Server
TCPclient | ,_\ TCP-based
Common I | —# proprietary
XML client |_i—L_ \ | program
| | L
| Faan - |
LDAP client | ‘ g |

' Common | | NETWORK — XML " LDAP | |
‘ XML client /r1’/ } 1 | GATEWAY | Server
= il x
SQL Client _/

I Lomm(:n =y
| XML chenl 7'1"’ / o W% |
Database J

. -

Figure 2: Proposed architecture depicting protocol-to-XML clients interfacing to an XML gateway

Electrical, Electronic and Computer Engineering 3

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

1.4 Research Context

Studies on the problem of restructuring and reformatting of data as it passes from one software
tool or process to another predates the widespread use of the Internet that started in the mid
1990s. Blattner et al. [18,19] in a study on generic message translation, attempted to solve the
problem by providing a visual interface that can create a mapping between fields in different
message types that specifies which fields have similar semantic content. The Blattner et al.
papers were published before the introduction of XML into the computing landscape.
However, in their paper, the authors conclude that some sort of “parser-generator” must be
constructed to take descriptions for data specifications and create a “translator’” between

systems.

Since the introduction of XML, several studies have been undertaken on the feasibility of
using XML, such as the article by Bi et al. [15] that focuses on using XML to interact with
multiple legacy applications, and an article by Peinl and Mitchang [20], which investigates
transforming independent, autonomous data sources into a common XML format in order to
provide an integrated communication platform for mobile applications. Both articles
acknowledge the advantages provided by using XML as the data modelling and exchange

mechanism between applications (clients) and information sources (servers).

However, use of XML for generic messaging does not come without some disadvantages,
namely slower processing speed caused by the additional overhead of using XML to transform
and parse messages. Boedjang et al. [21] in their study of distributed data structures conclude
that the performance measurements of applications that run application-specific code are faster

than those that use generic message passing software.

1.5 Research Objective

The main objective of this research is to abstract the differences in underlying heterogeneous
systems by designing a generic XML component that provides a common client that can

interface with multiple heterogeneous client-server applications.

To achieve this, a number of sub-objectives were examined. These sub-objectives are:

e Examine the current process in which the individual client-server applications (such as

Electrical, Electronic and Computer Engineering 4

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

LDAP, SQL and ESD) interact,

¢ Investigate current implementations of XML-LDAP and XML-SQL,

e Determine XML strengths and weaknesses,

¢ Identify advantages, if any in using XML for a common messaging system for multiple
heterogeneous applications,

e Investigate methods of error handling within the XML gateway component,

e Investigate using SOAP as the method of communicating with both client and server
devices and with other management entities,

e Identify problems in providing a single messaging interface to multiple applications,

e Analyse any existing generic XML interfaces that may be similar to area of research
undertaken,

e Investigate the current functions and objects used in the existing applications that will
have to be implemented in the XML gateway,

e Develop a generic XML schema that correctly models the commands and data of the
different applications.

e Design and develop a generic XML front-end that allows current Internet protocols to
access the gateway services through the same application, and

e Design and develop a generic XML gateway for use by multiple client-server

applications.

1.6 Research Approach

This section identifies the main questions that need to be answered and describes the research

approach used in attempting to answer these questions.

1.6.1 Research Questions

The following problem solving questions were identified to assist in better understanding and
defining the problem.
1. What is the current means of communication in terms of command structure and
message format between each of the multiple client-server applications?

2. What commonalities do these diverse applications share in terms of command structure

Electrical, Electronic and Computer Engineering 5

University of Pretoria etd — Rimer, S C (2006)

Chapter 1 RESEARCH OVERVIEW

o ee: o @y b

10.

1.6.2

2

and data format?

What advantages will be derived from using XML as the common interface language?
What disadvantages will arise from using a single XML interface to multiple
applications?

What are the application boundaries?

Why use XML?

How will the various technologies and applications interact?

What are the system resource constraints (if any) on the application?

How will the XML gateway application decide which of the different applications to
send a request to?

Does XML provide sufficient benefit to overcome its shortcomings?

Research Instruments

Literature Study:

a. The scope of the work was identified.

b. A literature study was undertaken to understand each applications message and
data structure used in client-server interaction.

c. A literature study was undertaken to investigate existing XML standards (if
any) for LDAP and SQL. Note ESD is a proprietary protocol and there is no
previous XML framework/standard for it.

d. A literature study was undertaken to understand the structure and syntax of
XML.

e. A literature study was undertaken to understand the structure and syntax of the
XML DTD and the XML Schema.

f. A search was done to identify appropriate open source applications that would
serve as an LDAP server, a relational database, a web server and an XML

parser.

Problem Solving Analysis
a. An analysis of each of the applications message and data structure was

undertaken and certain commonalities in commands and parameters were

Electrical, Electronic and Computer Engineering 6

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

identified.

b. An analysis of existing LDAP-XML and SQL-XML frameworks was
conducted to determine if they were suitable for the needs of the study/research
problem.

¢. Ananalysis of XML DTD’s and XML schema was undertaken to determine
which would be the most appropriate to define the designed common data

model.

3. Design

a. An XML schema was developed that models the request-response command
structures of client server applications in a generic way that can be used across
multiple client-server type applications.

b. An addressing mechanism was devised to identify which application the
request is destined for.

c. An XML gateway was designed to send requests to the correct destination
application using a structure that allows for easy addition of new applications.

d. A front-end interface was designed to provide a GUI to users to send requests
to multiple applications and to view the corresponding responses in a user-
friendly interface.

e. Several test programs were written to test individual components of the design.

4. Implementation
a. The open source applications that could serve as an LDAP server, a database, a
web server and an XML parser were set up to run on the specified operating
system.
b. The design was implemented using an appropriate programming language.
c. The design was tested using several test programs.
d. The complete design was tested using the implemented web front-end

component.

5. Analysis and Assessment

a. A final analysis of the system in terms of, meeting functional requirements, and

Electrical, Electronic and Computer Engineering 7

University of Pretoria etd — Rimer, S C (2006)
Chapter 1 RESEARCH OVERVIEW

performance was undertaken.
b. The results were provided and an analysis of the results in terms of the above-
mentioned research objectives and questions is provided.

c. Final conclusions of the results are provided.

Electrical, Electronic and Computer Engineering 8

University of Pretoria etd — Rimer, S C (2006)

Chapter 2 : LITERATURE STUDY

2.1 Overview of application technology

This chapter describes the server applications used in the design and implementation of the
research objectives. It provides a brief overview of a directory service, namely the
Lightweight Directory Access Protocol (LDAP), a proprietary socket service protocol, i.e. the
Extended Services Daemon (ESD) and SQL and database theory. These three “protocols” are
examined because they are used in the design and implementation stage to verify that a
common XML model is flexible enough to send and receive messages to heterogeneous server

applications.

In addition, a brief overview of XML is provided and the two main current standard methods
of creating an XML document, namely the XML document type definition or the XML

schema.

A brief look at the attempts made to standardize XML and LDAP and XML and SQL is
provided. A short description of the Common Information Model and SOAP is also provided,
together with reasons why it was not used. Finally an overview of current research published

in articles that are related to this area of research is given.

2.1.1 Lightweight Directory Access Protocol (LDAP)

2.1.1.1 Introduction: LDAP

The X.500 standard was created by the CCITT in 1988 to (among other functionality) specify
the communication between the directory client and the directory server using the directory
access protocol (DAP). DAP is an application layer protocol and requires the entire OS]
protocol stack to operate. The disadvantage of using the OSI protocol stack is that it requires

more resources than are available in many small environments.

Electrical, Electronic and Computer Engineering 9

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

LDAP was developed as a lightweight alternative to DAP. LDAP requires the less weighty
TCP/IP protocol stack and uses a simplified subset of X.500 operations. LDAP defines the
communication protocol, i.e. the transport and format of messages used by a client to access

data in an X.500-like directory but it does not define the directory service itself.

2.1.1.2 Overview of LDAP Architecture

LDAP is a client-server system. The server can use a variety of databases to store a directory,
each optimised for quick and copious read operations. When an LDAP client application
connects to an LDAP server it can either query a directory or upload information to it. In the
event of a query, the server either answers the query or, if it cannot answer locally, it can refer
the query upstream to a higher-level LDAP server that does have the answer. If the client
application is attempting to upload information to an LDAP directory, the server verifies that

the user has permission to make the change and then adds or updates the information.

The content of messages exchanged between an LDAP client and an LDAP server is defined
by LDAP. The messages specify the operations requested by the client (search, modify, delete,
and so on), the responses from the server, and the format of data carried in the messages.
LDAP messages are carried over TCP/IP, a connection-oriented protocol; so there are also

operations to establish and disconnect a session between the client and server [1, 26, 27].

The general interaction between an LDAP client and an LDAP server takes the following
form:

e Client attempts to establish a connection to the server. To do this, the client will
require the host name or IP address and TCP/IP port number where the LDAP server is
listening. If authentication is required, the client also needs to provide a user name and
a password.

e If a connection is successfully established, the client can send messages to perform
operations on the specified directory data.

e When the client has completed all requests, it closes the connection with the server.

Electrical, Electronic and Computer Engineering 10

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

2.1.1.3 Operations supported in LDAP

A directory is a listing of information about objects arranged in some order that gives details
about each object. The directory stores and organizes data structures known as entries.
A directory entry usually describes an object such as a person, a printer, a server, and so on.

LDAP defines the following operations for accessing and modifying directory entries [1, 26]:

e Searching for entries meeting user-specified criteria

e Adding an entry

e Deleting an entry

e Modifying an entry

e Moditying the distinguished name or relative distinguished name of an entry (move)

e Comparing an entry

2.1.1.4 The LDAP Models

LDAP is based on four models: Information, Naming, Functional and Security models.

The Information, Naming and Functional models are relevant to the research conducted and
are discussed in more detail in the following sections. The security aspect was not relevant to

the research and is not discussed.

1. The Information Model

The information model describes the structure of information stored in an LDAP directory.
The basic unit of information stored in the directory is called an entry. Entries represent
objects of interest in the real world such as people, servers, organizations, and so on. Entries
are composed of a collection of attributes that contain information about the object. Every
attribute has a type and one or more values and syntax. The syntax specifies what kind of
values can be stored. In addition to defining what data can be stored as the value of an
attribute, an attribute’s syntax also defines how those values behave during searches and other
directory operations. The relationship between a directory entry and its attributes and their

values is shown in Figure 3 [1, 26].

Electrical, Electronic and Computer Engineering 11

University of Pretoria etd — Rimer, S C (2006)

Chapter 2 LITERATURE STUDY
. e ENTRY - ; sl h S
/ . TN — N ' b ATTRIBUTE
7 g I,rf/ \'\, f.*" ¢ \.\"-. X '\‘) il a,r," 4 | _? ™ \.\‘-._
/| Attribute | [Attribute | \ By _ T) e &
'II ...\ /j I\\ / / IIII |III .f/ o \ [! III
= - e | { \ : Val
\ s — | | [Value | | vaue) |
\ I A ::/_// -.\.\..I !.'f "‘.\.\. \xh— _--//’;’) — IR ;."I
\ . Attribute _.? | Attribute j / \ [e :I /
\ \‘.\ .] y / LS \ \ /
i S T \\‘“"—‘-"-.f. - ~ . \\\'“-._H_ e //"'/

Figure 3: Entries, Attributes and Values [1]

2. The Naming Model

The LDAP naming model defines how entries are identified and organized. Entries are
organized in a tree-like structure called the Directory Information Tree (DIT). Entries are
arranged within the DIT based on their distinguished name (DN). A DN is a unique name that
unambiguously identifies a single entry. DNs are made up of a sequence of relative
distinguished names (RDNs), separated by commas. Each RDN in a DN corresponds to a
branch in the DIT leading from the root of the DIT to the directory entry. DNs are used as
primary keys to entries in the directory. LDAP defines a user-oriented string representation of

DN [1].

The Functional Model
The functional model describes what operations can be performed on the information stored in
an LDAP directory. LDAP defines operations for accessing and modifying directory entries.
LDAP operations can be divided into the following three categories:
¢ Queries include the search and compare operations used to retrieve information from a
directory.
e Update includes add, delete, and modify operations used to update stored information
in a directory.
e Authentication includes the bind, unbind, and abandon operations used to connect and
disconnect to and from an LDAP server, establish access rights and protect

information.

Electrical, Electronic and Computer Engineering 12

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

2.1.1.5 LDAP Operations

The following operations are used in the project implementation and are discussed in more

detail.

Search

The search operation allows a client to request that an LDAP server search through some
portion of the DIT for information meeting user-specified criteria in order to read and list the
result(s). There are no separate operations for read and list; they are incorporated in the search
function. The search can be very general or very specific. The search operation allows one to
specify the starting point within the DIT, how deep within the DIT to search, what attributes

an entry must have to be considered a match, and what attributes to return for matched entries.

Update, Add and Delete Operations

The operations used in the implementation are summarized below:
e Update: modity the contents of the directory.
e Add: inserts new entries into the directory

e Delete: deletes existing entries from the directory. Only leaf nodes can be deleted.

2.1.1.6 LDAP Data Interchange Format (LDIF)

The LDAP Data Interchange Format (LDIF) is used to import and export directory
information between LDAP-based directory servers. The LDIF format is used to convey
directory information or a description of a set of changes made to directory entries. An LDIF
file consists of a series of records separated by line separators. A record consists of a sequence
of lines describing a directory entry or a sequence of lines describing a set of changes to a
single directory entry. An LDIF file specifies a set of directory entries or a set of changes to be

applied to directory entries, but not both at the same time.

The basic form of a directory entry represented in LDIF is:
[<id>]

dn: <distinguished name>

objectClass: <object class>

objectClass: <object class>

Electrical, Electronic and Computer Engineering 13

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

<attribute type>[;language tag]:<attribute value>

<attribute type>[;language tag]:<attribute value>

Only the DN and at least one object class definition are required. In addition, any attributes
required by the object classes for the entry must also be defined in the entry. All other
attributes and object classes are optional. You can specify object classes and attributes in any

order. The space character after the colon is optional [1].

2.1.2 Databases and SQL

A database is a structured collection of data. A relational database is built of entities and
relationships. A relational database stores data in separate tables. The tables are linked to each
other by defined relations. This makes it possible to combine data from several tables on
request. A database table consists of a set of columns and rows represented in the following

structure:

Column 1 Column 2 Column n

<4—— Record (or Tuple)

Figure 4: Database table structure [2]

Each table in a database has a unique name. A table consists of rows that contain the stored
information. Each row contains exactly one record (or tuple). A table can have one or more
columns. Each column name represents a specified field that has a specified data type that
describes an attribute of the records. A table’s structure (or relation schema) is defined by its
attributes. A database schema is a set of relation schemas. The extension of a database schema

at database run-time is called a database instance or database, for short.

Electrical, Electronic and Computer Engineering 14

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

The typical field (data) types used in database tables are shown in the table below [2].

varchar (80)

used for a string require storage

CHAR Fixed-length character data, n characters long. char (40)
Strings of type char are always padded with

blanks to full length of n
NUMBER Numeric data type for integers and real number (8),number
_ (5,2)
INT Stores values of type integer int(4)
FLOAT Stores values of type float Float
DATE and Stores date and time values "1-Jan-03 12:30:02°

TIME

Table 1: Database field types

As long as no constraint restricts the possible values of an attribute, it may have the special
value null (for unknown). This value is different from the number 0,and it is also different
from the empty string *°. Further properties of tables are:
e the order in which records appear in a table is not relevant (unless a query requires an
explicit sorting).
e atable has no duplicate records (depending on the query, however, duplicate records

can appear in the query result).

The Structured Query Language (SQL) is a standard for data manipulation first established by
ANSI in 1982. SQL instructions are used to control relational databases, i.e. SQL instructions
are used to access, define and manipulate the data in a relational database. The SQL used in
this implementation is ANSI or standard SQL and only relevant areas of the querying

language are discussed.

Select
We only required the use of simple SQL queries. A simple SQL query has the following

Electrical, Electronic and Computer Engineering 15

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

(simplified) form (components in brackets [] are optional):
select [distinct] <column(s)>

from <table>

[where <condition>]

[order by <column(s) [asc |desc]>]

The columns to be selected from a table are specified after the keyword select.

Insert

The insert statement is used to insert records into a table. A simple SQL insert statement has

the following format.

insert into <table> [(< column i,...,column j >]

values (<value i,...,value j >;

For each of the listed columns, a corresponding (matching) value must be specified. An insert
does not necessarily have to follow the order of the attributes as specified in the creation of the

table. If a column is omitted, the value null is inserted instead [2].

Update
To modify attributes of a record, the update statement is used. A simple SQL update statement

has the following format.
update <table> set
<column i > =< expression i >...,<column j > =<expression j >

[where <condition>;

An expression consists of a constant (new value), an arithmetic or string operation, or a SQL
query. Note that the new value to assign to <column i > must be a matching data type. If an
update statement does not have a where clause, all the specified attributes of all records in the

specified table are changed [2].

Delete

Records can be deleted from a table using the following delete command:

Electrical, Electronic and Computer Engineering 16

University of Pretoria etd — Rimer, S C (2006)

Chapter 2

LITERATURE STUDY

delete from <table>

[where <condition>];

If the where clause is omitted, all records are deleted from the table [2].

2.1.3 Differences Between Directories and Databases

Important differences between directories and general-purpose databases are:

Optimized for read access because they are
accessed (read or searched) much more

often than they are updated (written).

Need to support applications (such as
airline reservation and banking) with high

update volumes.

May not support transactions

Always support transactions.

LDAP directories use a simplified and
optimized access protocol that can be used

in slim and relatively simple applications

Most databases support a standardized
access method (SQL, that allows complex
update and query functions at the cost of

program size and application complexity

Directories are not intended to provide as
many functions as general-purpose

databases,

Table 2: Differences between directories and databases

2.1.4 The IGUANA gateway

The IGUANA gateway provides access between fieldbus networks and clients using certain

Internet protocols. The gateway uses the FEB protocol to communicate with fieldbus

networks. The fieldbus system is a master—slave system, where the gateway is the master and

all other nodes on the fieldbus are slaves. Only the gateway can actively initiate

communication, slaves can only wait for the master to query them.

The gateway retrieves data from nodes on a fieldbus network. This data is represented as data

points. The gateway provides access to a data point to clients using the Internet to connect to

Electrical, Electronic and Computer Engineering 17

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

the gateway. The gateway allows a client connected to the Internet to read and write data to

nodes on the fieldbus.

Besides this data point access, the gateway provides the following services:
e Asynchronous notifications, i.e. inform the user about special situations that have
occurred by sending email, SMS messages or SNMP traps.

e Log the values of the data point and store these logs.

These services are available within a protocol called the Extended Services Daemon (ESD)
protocol. This protocol is text-based and uses TCP. It works as a stateless request-response
protocol. Multiple clients can simultaneously connect to the gateway and execute commands.
The gateway routes these commands to the specified node on a fieldbus network. Not all

commands require access to fieldbus network [3.4].

2.1.5 Extended Service Daemon (ESD)

ESD is a proprietary protocol used by the gateway to access data on the gateway, different
fieldbus networks or nodes. ESD uses TCP to establish a connection between a client and the
server. It uses request-response type commands with the ESD server acting as the slave and

only responding when the master (a client) initiates a request.

The message protocol requires that all messages be terminated by a CR-LF (carriage return -
line feed) pair. The maximum size of a message is 2048 characters, including spaces and the
CR-LF pair. All responses contain a response code. A response code of zero indicates no error
has occurred. A response code greater than zero indicates an error has occurred. No negative
values are used. For multiple line responses, the end of a message is indicated by a line

containing only a period (.) and a CR-LF pair.
The ESD protocol specifies a ““data point™ as an object that stores a value somewhere on the
fieldbus network. To access the data point, a user needs to specify the field area network

(FAN), the FAN daemon id, the node address and the data point address.

ESD Addressing

Electrical, Electronic and Computer Engineering 18

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

The FAN daemon id comprises the FAN type, which specifies the type of fieldbus network the
FAN daemon connects to and a unique identifier, separated by a dot character (i.e.

FANTYPE.FANID).

A node on a FAN is identified by a node address. A node address comprises two parts, namely
the FAN daemon id as discussed previously and the FAN specific physical node address
separated by an exclamation mark (i.e. FANId!FanNodeAddress).

The data point address identifies a data point at a node on a specific field area network. It
consists of the FAN daemon id, the data point id and the physical node address in the format

FANId!Dpid@FanNodeAddress [3].

Differentiation between FAN types in ESD is done in the FAN name. It is split into two parts:
e the FAN type and
e the name of the FAN (which is unique in every FAN family).

For example a valid FAN name is LON.MARIA where MARIA is one member of the LON
FAN family.

A node is any kind of device that is attached to the FAN and each node has got a collection of
data points it exposes to the FAN and ESD. Each data point basically has a name, a data type

and a value that can be read and changed.

The main purpose of events is to record a data point’s value in a defined time raster or on
some special incident. Recorded data of events can be read out in logs. Each log has a

timestamp that tells when it was taken and the data point’s value [5].

Each data point has a value and an encoding. The encoding represents the type of the data
value, i.e., integer that is equivalent to SCALARBIN in ESD notation or sequence of bytes,
which is equivalent to BINHEX in ESD notation [3.4].

Electrical, Electronic and Computer Engineering 19

University of Pretoria etd — Rimer, S C (2006)

Chapter 2 LITERATURE STUDY

An event can be registered with ESD. Event criteria have to be specified for each event. The

event criterion defines the conditions under which the event is triggered. For details about the

event criteria and actions available please refer to reference [3].

The commands available from the ESD protocol are described in the Table 3 [3].

Electrical, Electronic and Computer Engineering

A

1L @22z

xe\rneg Lt

Chapter 2

Requests the value of

ata point address and

Numeric response code (zero), the data pont

Numeric response

the specified FAN data | encoding. address, encoding style and data point value. | code (non zero) and
point in the specified error description.
encoding style.

WRITE Updates the value of Data point address, Numeric response code (zero) and description | Numeric response
the siaeciﬁed data point | encoding and new (OK). code (non zero) and
for the specified data point value. error description.
encoding style.

DPINFO Retrieves information | Data point address. Numeric response code (zero), the data point | Numeric response
about a specified data address, data type of data point, set of code (non zero) and
point encodings supported for data point, access error description.

rights to data point, data point name and data
point self identification string. !

NODEINFO Retrieves information | Node address. Numeric response code (zero), node address, | Numeric response
about a particular FAN number of data points on this node, node self- | code (non zero) and
node. identification string, encoded node location error description.

[optional], and encoded node program 1D

[optional].

Electrical, Electronic and Computer Engineering

21

I Node address.

ENODEINFO Retrieves information Numeric response (0), node ess, Numeric response
about a specified FAN number of data points on this node, node self- | code (non zero) and
node and all of the data identification string, encoded node location error description.
points that belong to [optional], and encoded node program ID
this node. [optional] and the data point information

(described in dpinfo’s response for every data
point on the node).

NODELIST Requests ESD for a None Numeric response code (zero), nodelist Numeric response
complete list sequence number and list of all node code (non zero) and
containing all nodes of addresses. error description.
all FANs.

NODELISTSEQNO Requests the sequence | None Numeric response code (zero), and nodelist Numeric response
number of the nodelist. sequence number. code (non zero) and

error description.

REFRESHNODELIST | Forces ESD to update | FAN daemon ID Numeric response code (zero) and description | Numeric response
its nodelist using the [optional] (OK). code (non zero) and

cached nodelists of the
FAN daemons.

error description.

Electrical, Electronic and Computer Engineering

22

UPDATENODELIST

Forces ESD to update
the contents of its
nodelist and forces
FAN daemons to
update their cached

daemon D

[optional]

umeric response code (zero) and description

(OK).

Numeric response
code (non zero) and

error description.

complete list of

registered events.

nodelists.

CREATEEVENT Requests ESD to Event criteria, event Numeric response code (zero) and event id Numeric response
register an event with action, event assigned to event by ESD. code (non zero) and
the given parameters. description and event error description.

ICC private
parameters [optional].

DELEVENT Requests ESD to delete | Event Id Numeric response code (zero) and description | Numeric response
the specified event. (OK). code (non zero) and

error description.

EVENTLIST Requests ESD for a None Numeric response code (zero), event list Numeric response

sequence number, followed by a list of all the
events in the order of event id, event action,

event description and event parameters.

code (non zero) and

error description.

Electrical. Flectronic and Computer Fnoineerine

73

| Requets ESD for the

actual sequence

number of the event list

Numeric response code (zero), and event list

sequence number.

Numeric response
code (non zero) and

error description.

ESD application’s

version number.

version string.

LOG Requests ESD for a Event Id Numeric response code (zero) and description | Numeric response
complete list of log (OK), followed by a list of all log entries for | code (non zero) and
entries associated with the specified event id, in the form of: log line | error description.

a specified event id. number of this log entry, the timestamp and
the log entry data.
VERSION Reports the current None Numeric response code (zero), and the None specified.

Table 3: ESD request-response commands ‘

Flectrical Flectronie and Comnputer Fnoineerino

24

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

2.1.6 XML

The following sections provide a brief overview of XML. This is not intended as a full

description of XML. For more information, refer to http://www.w3.org/XML/, specifically

references [22, 23].

2.1.6.1 XML Introduction

The eXtensible Markup Language (XML) is a simplified sub-set of the Standard Generalized
Markup Language (SGML). XML is a meta-language framework for defining and using tag-

based markup languages.

It uses a portable format that is both machine and human readable, and is used to produce
documents that convey content with semantic structure. An XML document does not need to

be a file; it can be generated dynamically.

An XML document consists of text data and markup tags. As with HTML, data is identified
using tags (identifiers enclosed in angle brackets, like this: <...>). Collectively, the tags (also
called elements) are known as “markup”. The markup indicates the syntactical structure of the
document. However, unlike HTML, XML elements identify the data, rather than specifying
how to display it [7].

The process of identifying data, called metadata provides some sense of how to interpret it.
Therefore, XML can be thought of as a mechanism for specifying the semantics (meaning) of

the data.

XML elements can be defined in a similar manner to the field names for a data structure, i.e.,
names are given that make sense for a given application. If multiple applications use the same

XML data, all applications need to use the same element names.

XML elements can also contain attributes. Attributes are additional information included as
part of the element itself, within the element’s angle brackets. An attribute name is followed

by an equal sign and the attribute value, and multiple attributes are separated by spaces.

Electrical, Electronic and Computer Engineering 25

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

A general XML requirement is that the elements of an XML document must form a tree and
the tree structure of elements must be clearly shown in markup. The parent-child tree
relationship corresponds to how elements are nested within each other in the linear text. The
following tree conditions must be met: [6].

e There must be a root of the element tree that contains all other elements.

e Start and end tags must be properly nested — overlapping elements are not allowed.

e All elements, including empty elements (i.e. elements which contain no value), must

have both the start and end tag.

2.1.6.2 XML Parsers

XML parsers are used to process XML. A parser is a software component that sits between
the application and the XML files. It interprets the XML file and creates the document tree. It
may also check the document's syntax and structure. There are two primary ways that
applications can obtain information from an XML parser: as an event stream or as an object-
based tree interface. The following figure shows the mutual relationship between the XML

document, the XML parser and the application.

d < H\'.\

XML N XML

| p f—
Document N Parser v

L

+ Application

Standard Interfaces
(DOM, SAX)

Figure 5 : XML data, the parser, and the application [6]

The application goes through the content of the XML file through the parser. The parser and

the application must share a common model for XML data.

Using an object-based interface, a parser explicitly builds a tree of objects that contains all the

elements in the XML document. The application is handed a tree in memory that exactly

Electrical, Electronic and Computer Engineering 26

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

matches the XML document (file). The Document Object Model (DOM) provides an API for

representing the logical structure (a tree) of documents.

With an event-based interface, the parser does not explicitly build a tree of objects. Instead, it
reads the file and generates events as it finds elements, attributes, or text in the file. There are
events for element start, element end, attributes, etcetera. An event-based interface tends to be
more efficient because it does not explicitly build the XML tree in memory. Fewer objects are

required and less memory is used [8].

The Simple API for XML (SAX) is the de facto standard for event-stream support. It provides

a callback API so that an application can be notified of XML elements as they are parsed.

2.1.6.3 XML file structure
The beginning of any XML file must contain the following processing instruction that

identifies the document as an XML document:

<?xml version="1.0"encoding="ISO-8859-1"standalone="yes"?>

The attributes in the heading are:

e Version: Identifies the version of the XML markup language used in the data. This
attribute is not optional.

e Encoding: Identifies the character set used to encode the data. “ISO-8859-1" is “Latin-
1 the Western European and English language character set. (The default is
compressed Unicode: UTF-8).

e Standalone: Tells whether or not this document references an external entity or an
external data type specification. If there are no external references, then “yes” is

appropriate.

2.1.6.4 XML Advantages

e The interpretation of XML languages is unconstrained by XML itself, i.e. XML can be

used for describing data, programs that process data, communication protocols or

Electrical, Electronic and Computer Engineering 27

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

transmitting data, etcetera. The interpretation of an XML language is entirely up to the
application that uses it.

e [t is relatively easy to switch between the character sequence of XML and the tree-
structured data view of XML, using an XML parser.

e Character sequences are easy to send over the network using standard protocols.

e Tree-structured data is easy to work with and it is easy to transform one tree into
another.

e Since XML can encode both data and metadata, applications that communicate using
XML can discover each other and establish a communication channel without prior
arrangements.

e As XML is text-based, a standard text editor can be used to create and edit files.

e XML tells you what kind of data you have, not how to display it. This means that
different parts of the information can be used in different ways by different
applications. For example, an email program can process it, a search program can look
for messages sent to particular people, and an address book can extract the address
information from the rest of the message.

e XML provides a way to validate the data being delivered across the Internet, thus
verifying that all data is complete.

e Validation of the XML message structure is inherent in the structure of the message.

2.1.6.5 XML Disadvantages

e Difficulties in using embedded binary data. The following techniques were proposed for
embedding binary data in XML documents [13];
o Refer to the data externally (such as with a URL)
o Represent the data with MIME
o Embed the binary data as CDATA
However, CDATA cannot truly contain binary data as the CDATA end marker "]]>" is

merely an unusual sequence, not a forbidden one.

Electrical, Electronic and Computer Engineering 28

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

e Larger footprint (message size): XML combined with associated standards is more verbose
than standard protocols or languages such as SNMP, LDAP and SQL and should have
higher static and dynamic implementation footprints.

However, the benefits from using XML as the standard messaging mechanism between the

application and its external client interface is simpler with XML, and may result in an overall

reduction in footprint size.

2.1.6.6 XML DTD

A Document Type Definition (DTD) is a mechanism to describe every object (element,
attribute etc.) that can appear in a document. The DTD also defines the hierarchical structure
of an XML document. including the order in which the elements must occur. For example, the

following is a DTD element declaration:

<!ELEMENT address-book (entry+)>.
In the above example, the right side (the content model) defines the left side (the element
name), i.e. the content model lists the children that are acceptable in the element. In the

example this indicates that the address-book element contains one or more entry elements [8].

The following table describes the typical components of the DTD syntax.

ELEME ontains the element name followed y its content e.

#PCDATA Parsed character data implying the element can contain text.

EMPTY Means the element is an empty element

ANY Means the element can contain any other element declared in the
DTD.

<IATTLIST ...> Defines the elements attributes. The components consist of the

element name, the attribute name, the attribute type and a default

value.

CDATA Raw character data.

Table 4: DTD Syntax

Electrical, Electronic and Computer Engineering 29

University of Pretoria etd — Rimer, S C (2006)

Chapter 2 LITERATURE STUDY

A DTD is used to validate a document’s XML structure, because it specifies which elements
are allowed where in the XML document. The DTD can exist at the front of the document, as
part of the prolog. It can also exist as a separate entity (external file), or it can be split between

the document prolog and one or more additional entities.

The DTD syntax is different from XML document syntax. There are also difficulties in
specifying a DTD for a complex document in such a way that it prevents all invalid
combinations and allows all the valid ones. Also, DTDs are not very effective in specifying
data ranges and have limited capability in specifying data types, i.e. DTDs support at most 10

data types.

2.1.6.7 XML Schema

XML Schema is the W3C schema specification for XML documents. An XML schema is a

vocabulary for expressing a set of data's business rules. XML Schemas have a similar purpose

as DTDs, namely to specify the following:

e the structure of XML documents, (for e.g. this element contains these elements, which
contains these other elements, etcetera).

o the data type of each element/attribute (for e.g. this element shall hold an integer with the

range 0 to 12,000).

The XML Schema is a significantly more powerful language than DTD. The following are

some of the advantages of XML Schemas [7, 8, 23, 28]:

e Uses the same syntax as XML documents

e Improves data typing to support strings, and also numbers, dates etcetera.

e Supports more than 44 different data types.

e Allows you to create your own data types and to extend or restrict a type (derive new types
on the basis of old ones).

e Introduces object-oriented concepts such as inheritance.

e Can express sets, i.e., can define the child elements to occur in any order.

e Can define multiple elements with the same name but different content.

Electrical, Electronic and Computer Engineering 30

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

¢ (Can define elements with nil content.
o (Can define substitutable elements - e.g., the "Book" element is substitutable for the

"Publication" element.

However, XML schemas are generally more verbose than equivalent DTDs.

2.1.6.8 XML Schema Syntax

Declaring Elements
There are three patterns for declaring elements [6, 23, 28]:
e With a named type, specified by the type attribute, for example:

<xs:element name="name" type="type" minOccurs="int" maxOccurs="int" />

e Examples of type are int, string etcetera.
« minOccurs and maxOccurs are the minimum and maximum number of times

the element can occur respectively.

e With an unnamed complex type, for example:
<xs:element name="name" minOccurs="int" maxOccurs="int" />

<xs:complexType>

</xs:complexType>

</xs:element

e With an unnamed simple type, for example:
<%xs:element name="name" minCccurs="int" maxOccurs="int" />
<xs:simpleType>

<xs:restriction base="type">

</xs:restriction>
</xs:simpleType>

</xs:element>

Declaring Attributes

There are two patterns for declaring attributes:

Electrical, Electronic and Computer Engineering 31

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

e With a named type, specified by the type attribute, for example:

¢xs:attribute name="name" type="simple-type" use="how-used" default/fixed="val

¢ With an unnamed simple type, for example:
<xs:attribute name="name" use="how-used" default/fixed="value">
<xs:simpleType>

<xs:restriction base="simple-type">

</%xs:restriction>
</xs:simpleType>

</xs:attribute>

The use attribute has three possible values: required, optional or prohibited. If there
isadefault ora fixed attribute, there must be no use attribute. The value of a default or

fixed attribute is a simple type value.

In content model (i.e. complex type) definitions, attribute declarations are placed at the end of

all the element declarations [6].

Defining Complex Types

There are four patterns for defining complex types [6].

e Complex type that is not derived from another user-defined type or from a simple type.
e Complex type that is derived from another user-defined complex type by extension.

e Complex type that is derived from another user-defined complex type by restriction.

e Complex type that is derived from a simple type by adding attributes.

The definitions can be global (with a name attribute) or embedded (without a name attribute).

Electrical, Electronic and Computer Engineering 32

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

2.2 Related Work

2.2.1 LDAP and XML: Directory Services Markup Language (DSML)

The Organization for the Advancement of Structured Information Standards (OASIS) has
approved the Directory Services Markup Language (DSML) as a standard. DSML defines a
means of representing directory structural information as an XML document. The intention is
that eventually DSML will offer a standardized method of accessing and manipulating data in

a LDAP directory.

A DSML document describes either directory entries, a directory schema or both.

Each directory entry has a universally unique name called its distinguished name. A directory
entry has a number of property-value pairs called directory attributes. Every directory entry is
a member of a number of object classes. An entry's object classes constrain the directory
attributes the entry may take. Such constraints are described in a directory schema that may be

included in the same DSML document or may be in a separate document [9].

The design approach of the initial version of DSML (DSMLv1) “is not to abstract the
capabilities of LDAP directories as they exist today but instead to faithfully represent LDAP
directories in XML " |9].

Therefore DSML attempts to use XML to map LDAP requests and responses, without creating
a more generic XML model that could be used by multiple protocols. It uses XML as a means

to transport messages over a variety of protocols, including HTTP and SMTP.

2.2.2 SQL and XML: SQLX (INCITS)
The work done by the SQLX group to combine the use of SQL and XML has been

incorporated into the work done by the International Committee for Information Technology
Standards (INCITS) Technical Committee H2-Database group. The main aim of this group is

to define a standard to develop a well-defined relationship between SQL and XML.

The objectives of the group is to define a standard to cover specifications addressing the

following issues [10]:

Electrical, Electronic and Computer Engineering 33

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

e Representation of SQL in XML form, and vice versa
e Mapping SQL schema to and from XML schema

e Representation of SQL Schemas in XML

e Representation of SQL actions (insert, update, delete)
e Messaging for XML when used with SQL

e The manner in which SQL language can be used with XML

The mapping of SQL values to XML values is largely determined by the mapping from the
SQL data type to the XML Schema data type. XML Schema Part 2 defines simple data types
for XML and lexical representations for the values of these types. SQL/XML provides a
mapping for each of SQL’s scalar data types to an XML Schema data type. The approach
SQL/XML has taken is to select the closest possible XML Schema data type for each SQL
data type [11].

As is the case for DSML, the SQLX group is concerned only with representing a single
language (application), i.e. SQL, in XML format. It is not concerned with creating a more

generic XML model that could be used by multiple protocols.

2.2.3 Common Information Model (CIM)
The Common Information Model (CIM) is an object-oriented information model standardized
within the Distributed Management Task Force (DMTF) for the purposes of providing a
conceptual framework within which any management data may be modelled [12]. It
comprises:

e A meta-schema to formally describe the model.

e Core schemas to capture notions that are applicable to all areas of management.

e Standard schema to model vendor-independent information within a small number of

specific areas of management.

e Extension schemas to represent vendor specific extensions of standard schemas.

Electrical, Electronic and Computer Engineering 34

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

Currently CIM schema (class and instances) is expressed textually in Managed Object Format.
XML allows for interchange of this CIM information using XML tools such as XML parsers
[12].

This research aspect is focused on a conceptual model, namely CIM. It does not look at using

XML as a messaging mechanism across multiple client-server applications.

2.2.4 Simple Object Access Protocol (SOAP)

The use of Simple Object Access Protocol (SOAP) messages over HTTP was considered.
SOAP defines standards for XML messaging and the mapping of data types so that

applications adhering to these standards can communicate with each other.

The SOAP 1.1 specification, available from http://www.w3.org/, defines a framework for the
exchange of XML documents. It specifies, among other things, what is required and optional

in a SOAP message and how data can be encoded and transmitted.

The SOAP specification defines envelope structure, encoding rules, and a convention for
representing remote procedure calls and responses. These calls and responses are transmitted

as SOAP messages over HTTP.

SOAP works by "wrapping" the client and server applications with a SOAP client and SOAP

server respectively. It uses Remote Procedure Calls as the method of communication.

The two main types of SOAP messages are those with attachments and those without

attachments.

Messages with No Attachments
The following outline shows the very high level structure of a SOAP message with no
attachments. Except for the SOAP header, all the parts listed are required.
1. SOAP message
A. SOAP part
1. SOAP envelope

Electrical, Electronic and Computer Engineering 35

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

a. SOAP header (optional)
b. SOAP body

Messages with Attachments

A SOAP message may include one or more attachment parts in addition to the SOAP part. The
SOAP part may contain only XML content. Any part of the message content that is not in
XML format, must occur in an attachment part. Note, since an attachment part can contain any

kind of content, this means it can contain data in XML format as well.

SOAP messages are sent and received over a connection. The connection can go directly to a
particular destination or to a messaging provider. A messaging provider is a service that
handles the transmission and routing of messages and provides additional features not

available when you use a connection that goes directly to its ultimate destination [7].

Web Services

SOAP messages typically work in conjunction with the Web Service Description Language
(WSDL). A Web service can make itself available to potential clients by describing itself in a
WSDL document. A WSDL description is an XML document that gives all the pertinent
information about a Web service, including its name, the operations that can be called on it,
the parameters for those operations, and the location of where to send requests. A consumer
(Web client) can use the WSDL document to discover what the service offers and how to
access it. In a typical Web services scenario, a business application sends a request to a
service at a given URL using the SOAP protocol over HTTP. The service receives the request,

processes it, and returns a response [7].

Figure 6 provides a brief overview of the various components used in offering Web Services
and describes their interactions. Two services, namely Service A and Service B register their
service with a business registry. Each service also defines the WSDL that they will use to
communicate with other applications. It Service A wants to communicate with Service B, It
locates Service B via the UDDI business registry that service B has registered with. It then

sends a WSDL type message enclosed in a SOAP envelope to Service B.

Electrical, Electronic and Computer Engineering 36

University of Pretoria etd — Rimer, S C (2006)

Chapter 2 LITERATURE STUDY
 WSDL 'I
~ Service Description ~
/'J.// | \
SN J N
/--/ find service
Business | « =
Registry) UDDI UDDI
5)
R iz
& »
‘ Service A{ ‘ 4 C SOAP/ebXML \// ‘ Service B ‘ ‘

Figure 6: Overview of Web Services

A Universal Description, Discovery and Integration (UDDI) service is a business registry and
repository from which you can get information about businesses that have registered with the
registry service. A registry provider is an implementation of a business registry that conforms

to a specification for XML registries.

An XML registry is an infrastructure that enables the building, deployment, and discovery of
Web services. It is a neutral third party that facilitates dynamic and loosely coupled business-
to-business (B2B) interactions. A registry is available to organizations as a shared resource,
often in the form of a Web-based service. Currently there are a variety of specifications for
XML registries [7]. These include
e The ebXML Registry and Repository standard, which is sponsored by the Organization
for the Advancement of Structured Information Standards (OASIS) and the United
Nations Centre for the Facilitation of Procedures and Practices in Administration,
Commerce and Transport (U.N./CEFACT).
e The Universal Description, Discovery, and Integration (UDDI) project that is being

developed by a vendor consortium.

Electrical, Electronic and Computer Engineering 37

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

After investigation it was decided not to use SOAP for the following reasons:
e The additional overhead of using a SOAP server and a SOAP client.
e The SOAP specification (version 1.2) is still a working draft and is not yet stable.
e This research is not focused on Web services. XML is a data description language
developed and standardised independently of Web services. XML is currently being

used for Web services as well as other applications that are not related to Web services.

2.3 Related Work in published Articles.

Studies on the problem of restructuring and reformatting of data as it passes from one software
tool or process to another predates the widespread use of the Internet that started in the mid
1990s. Blattner et al. [18,19] in a study on generic message translation, attempted to solve the
problem by providing a visual interface that can create a mapping between fields in different
message types that specifies which fields have similar semantic content. The Blattner et al.
papers were published before the introduction of XML into the computing landscape.
However, in their paper, the authors conclude that some sort of “parser-generator” must be
constructed to take descriptions for data specifications and create a “translator™ between

systems.

The following articles while they do not relate directly to the research area are of some interest
because the articles demonstrate the increasing use of XML as an interface language between

diverse applications.

A study to use XML as the wrapper interface in migrating legacy applications to the browser
based Internet platform conducted by Bi. Hull and Nicholl [15], focused on understanding the
functionality of the legacy system and the user interaction in the legacy system. Bi et al.
developed a thin web based client to interact with the legacy system that was wrapped within
an XML application. The focus of the paper was legacy applications but it demonstrated the

effectiveness of using XML to interact with multiple legacy applications.

An article by K.L. Law [16] describes an attempt to use XML and LDAP messages to describe

network database schema, with the intention that modification of database information could

Electrical, Electronic and Computer Engineering 38

University of Pretoria etd — Rimer, S C (2006)
Chapter 2 LITERATURE STUDY

be achieved without taking down the whole system. The authors reached the conclusion that
XML’s extensibility results in increased flexibility in setting up data content according to
different applications and/or different vendors. This conforms to the design of this XML
document that if the main elements are defined in a common schema, the sub-elements within

the schema can be extended according to the specific needs of the application.

The use of XML to provide a bridge between older network applications and the web browser
based Internet platform in a TMN environment is proposed by Lewis and Mouritzsen [17].
‘While the article focuses on the potential role XML can play in the evolution of TMN, it is
interesting to note the increasing number of areas where XML is being considered as a
solution in providing a common interface between traditional client-server applications and

the Internet.

An article by Peinl and Mitchang [20], which investigates transforming independent,
autonomous data sources into a common XML format in order to provide an integrated

communication platform for mobile applications.

However, use of XML for generic messaging does not come without some disadvantages,
namely slower processing speed caused by the additional overhead of using XML to transform
and parse messages. Boedjang et al. [21] in their study of distributed data structures conclude
that the performance measurements of applications that run application-specific code are faster

then those that use generic message passing software.

Electrical, Electronic and Computer Engineering 39

University of Pretoria etd — Rimer, S C (2006)

Chapter 3: SYSTEM OVERVIEW

This section provides an overview of the larger project in which this research area is a part of.
It attempts to provide the reader with a clearer picture of the domain in which the design was

developed and implemented.

3.1 Existing System

The IGUANA gateway is discussed in Chapter 2. The gateway has multiple server
applications running on it. The server applications that were the focus of this project are

openLDAP server, MySQL database server and ESD server.

The ESD server controls access to all the FAN daemons that provide access to each field area
network. The current implementations of openLDAP and the SQL database have been adapted
to query ESD to obtain information about a FAN and to update their directories or database

respectively.

Each server has a separate client application that requests information about a particular field
area network. The gateway will use some sort of security mechanism, either Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) to provide a secure connection for

transporting messages between client and server.

The client applications will either use data existing on the gateway, for example, openLDAP
will use data point information stored in a directory or it may send a query to ESD to obtain

the information it requires.

The openLDAP and SQL implementations do not provide all the functionality as provided by
ESD, such as REFRESHNODELIST, UPDATENODELIST etcetera. These commands can
only be sent to the ESD server directly from the ESD client. ESD itself may use the event and

log files on the gateway to respond to certain types of commands.

The figure below provides an overview of the components in the current system and their

interactions.

Electrical, Electronic and Computer Engineering 40

LDAP

two
(e.g. rnet)

Client

' ESD

Client

Secure Internet Connection (SSL/TLS)

Secure Internet Connection (SSL/TLS)

SQL

Secure Internet Connection (SSL/TLS)

Client j\

Figure 7: Current System Overview

Note: FD stands for Field Area Network (FAN) Daemon.

Field Area
Network
(LonWorks)

Field Area
Network
(EIB)

Field Area
Network
(DIO)

Electrical. Electronic and Computer Eneineerinoe

University of Pretoria etd — Rimer, S C (2006)
Chapter 3 SYSTEM OVERVIEW

3.2 Proposed System

In the common XML messaging system, there is a common client interface to heterogeneous
client-server applications that use network transport protocols such as TCP. The server
specific messaging protocol is abstracted away from the client side, i.e. the client is provided
with a generic user interface to the gateway irrespective of the protocol specific data access

method on each server.

The client sends command messages to a common server (the XmlGateway), using a
predefined XML format. The XmlGateway module uses the location of the information as a
mechanism to determine which server on the gateway the message is intended for. The
message is then reformatted into the specific server’s message protocol format and sent to the

SErver.

The response from the server is reformatted by the XmlGateway into an XML message
response format as specified in a predefined XML document and sent to the client. All clients,
therefore only have to process XML type requests and responses. This reduces the complexity

of the client application and creates a truer thin client — fat server architecture.

Because messages are sent as an XML document, they can be transported over a number of
transport protocols, such as HT'TP, TCP/IP and encapsulated within a SOAP envelope.
Therefore, if in the future, the gateway was placed behind a firewall, and the firewall restricted

access to the HTTP port, the XML messages can still be transported via the firewall.

The XmlGateway currently provides access to LDAP, ESD servers and a SQL database. It is

easily expandable and a different server application can be added with minimum overhead.

The proposed system using a common XML messaging protocol is shown in the figure below.

Electrical, Electronic and Computer Engineering 42

ESD
Clieﬂi :

A

,./'/i l\\
/ Secure Internet Connection {SSUTLS)/
N L~

C]iem_

Figure 8: Overview of common messaging system using XML

Note: FD stands for Field Area Network (FAN) Daemon.

XmlGateway «—» ESD

¥ 3
SQL
Database

Field Area
Network
(LonWorks)

Field Area
Network
(EIB)

Field Area
Network
(DIO)

The slashed lines between LDAP, SQL and ESD indicate that the system can easily be integrated to the openLDAP and SQL

implementations shown in the previous section, which do connect to ESD to obtain FAN data.

Electrical Flectronie and Comnnter Ernoinearina

A9

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

Chapter 4 : SYSTEM SPECIFICATIONS

This section describes the system requirements and functional specifications, the software and

methodology used and the testing that was done to verify and validate the system.

In addition, a brief overview of the external software packages utilised in the implementation

are provided.

4.1 Introduction

The IGUANA gateway currently provides access to data in a field area network node using
ESD. It also runs versions of an LDAP server (openLDAP) and a database server that provides

access to the same data.

The focus of this research to develop a system to send and receive messages to each of the

above-mentioned applications using XML to represent the messages in a common format.

The following sections describe the system requirements identified, the system constraints,

and the functional specification.

4.2 System Requirements

The following system requirements were identified:

1. Design and develop a component that allows clients to retrieve data from the IGUANA
gateway using XML as the data description language

The system should provide access to ESD, LDAP and SQL

a

3. The component should interface with the above-mentioned applications to access data
point and node information, event tables and logs.

4. The system should have some sort of web-based interface to provide online access.

5. An analysis of the performance (speed) for each of the above-mentioned applications

should be carried out.

Electrical, Electronic and Computer Engineering 44

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

6. Prefer usage of Java as the programming language because it can be used across
multiple platforms and does not require re-compilation on different operating systems

7. Prefer use of open source software to limit costs

4.3 System Constraints

The following system constraints were identified:
1. Use XML as the data description language.
2. Application must run on the Linux operating system.
3. There are limited resources available in terms of processor power and memory (486

processor and 8M RAM), but it can be upgradeable if required.

4.4 Assumptions

e The design will not be responsible for security of the gateway data or the security of
messages sent and received over the Internet or fieldbus.

e The design will not be responsible for access control and authentication of user login
information.

e The XML component may eventually make use of other sub-systems such as SSL or TLS

to transmit data securely over the Internet.

4.5 Data Structure

The standard ESD schema is used for compatibility across all server implementations. The
reason for this is to enable easier integration between the different application servers in the
future and to ensure as close correlation as possible between the different application servers

when analyzing the results.

For SQL and LDAP not all commands are implemented in the implementations currently
available (i.e. from the IGUANA project). For the sake of completeness to obtain at least one
complete comparison, it was decided to add a GENERAL table to the database design that

would contain the information (such as eventlistseqno) that is not available in the current table

Electrical, Electronic and Computer Engineering 45

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

design. Refer to “Addendum A: IGUANA Structured Query Language Daemon (ISQLD)” for

a description of the database schema.

It was felt that the database server application would be easier to change and remove the
changes from at a later stage if the programs were integrated. However, the updatenodelist and
refreshnodelist functionality that is specific to ESD is not implemented. The LDAP
implementation only implements the objectclasses specified in the documentation [5]. Refer to

“Addendum B: IGUANA LDAP Schema” for a description of the LDAP schema.

4.6 Functional Specification
The following diagram describes the main functional blocks in the project. The arrows
indicate the direction of data flow. A description of each functional unit (FU) or user

interface (IF) is provided after the diagram.

Electrical, Electronic and Computer Engineering 46

University of Pretoria etd — Rimer, S C (2006)

Chapter 4 SYSTEM SPECIFICATIONS
IF1 IF2
/ ser User '_
// interface to / interface to /
capture ' to display
/ inputdata / response /
FU1 FU6
Convert Request Translate XML

into XML format

FU2

Parse XML data

FU3

| Determine which

protocol message

into HTML format

FUS

Translate response
into XML format

FU4

Send command to
specified server and

is intended for

get response

Figure 9: Functional block diagram of the proposed system

IF1: This is a web-browser type user interface. The screen displays forms to capture user
input. There are separate forms for each command. It comprises Java Server Pages (JSPs) that

display the forms used to capture user input per command.

FU1: This functional unit converts the HTTP request into the predefined XML document

format.

FU2: This functional unit parses the XML data stream it receives and stores the information as

element-value pairs.

Electrical, Electronic and Computer Engineering 47

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

FU3: This functional unit uses the location of the data to determine which application server

the request should be sent to.

FU4: This functional unit connects to the specified application server and sends the request

command to the server. It waits for a response from the server.

FUS: This functional unit converts the response received from the application server into the

XML format as defined in the XML Schema.

FU6: This functional unit translates the XML response data stream into HTML format as

specified by a selected stylesheet.

IF2: This user interface displays the response to the request sent earlier in HTML format.

The main design components are FU2, FU3, FU4 and FUS. They are concerned with
processing an input XML data stream, sending a command to the correct application and

processing the command response back into an XML data stream.

The units: FU1 and FU6 are peripheral and can easily be replaced if a client applications
decides to send an XML data stream directly to FU2 and to receive an XML data stream back

as a response.

The IF1 and IF2 and FUI and FUG6 blocks provide completeness in the system to show how it

can be used with a browser based interface.

4.7 Software Methodology

The methodology followed was an iterative software development lifecycle methodology
using a feedback based waterfall method. This means that after completing a needs analysis by
determining the system requirements and system constraints, an initial system architecture and
high-level design was developed. This architecture and design was then discussed with the

relevant stakeholders and where applicable, the design was reworked.

Electrical, Electronic and Computer Engineering 48

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

The design was then implemented for the ESD application only using the Java programming
language on the Linux (Red Hat) operating system. The design and XML model was again
refined as implementation progressed. Each section of implementation was initially developed
as independent entities and tested individually. The final system was integrated to provide a
complete application that consisted of a user interface and backend processes working

together.

The system was shown to relevant stakeholders and changes made. Because the system is
designed to enable new client-server applications to be added on with minimum additional
coding time required, the MySQL and openLDAP implementation were then developed and

tested.

4.8 Testing
The testing of the system was carried out on a micro and macro level. Initially, a simple test
program was built to ensure that a connection to the server application could be established

and messages processed.

Then, separate test programs were developed for each server implementation which verified
that XML and non-XML messages are correctly processed when sent to the specified server

and that the respective XML or non-XML response messages were received.

For the front-end system, a proof of concept test program was written to test if an XSLT

program would correctly transform XML into HTML format.

Finally the entire system was integrated and the actual application was tested from user input

to backend server applications, through to the conversion of responses into HTML format.

4.9 External Software Components

The following section lists the external software applications that were used and provides a

brief description of each application.

Electrical, Electronic and Computer Engineering 49

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

The software components used are all open source applications. Open source means that it is
possible for anyone to use and modify the code, as it is freely available (generally for non-

commercial purposes).

4.9.1 Database

The database used is MySQL. MySQL is a multi-user, multi-threaded, relational database
management system. Clients may connect to the MySQL server using sockets or named pipes.
There also are ODBC and JDBC drivers available that allow application programs to connect

to MySQL (refer to www.mysgl.com for more information). The database was chosen for the

following reasons:
e [tisan open source application.
e [tisa fast, reliable, easy to use relational database system.

e [t supports ANSI SQL.

4.9.2 Directory Server
The directory server used is OpenLDAP. The OpenLDAP program was originally developed

as a project at the University of Michigan. Further and future development is now handled by

the OpenLDAP foundation. Refer to www.openldap.org for more information and specifically

to references [24, 25, 27]. The OpenLDAP application was chosen for the following reasons:
e [tis an open source application.
e The OpenLDAP implementation supports the complete LDAP functionality needed for
setting up an LDAP service on a Linux machine.
e [t conforms to the LDAP standards.

e [tisthe LDAP service currently used in the IGUANA project.

4.9.3 Web Server

The web server user is Tomcat (version 4). Tomcat is a Java Servlet and JSP container

developed by The Apache Software Foundation (www.apache.org). Tomecat was chosen for

the following reasons:

Electrical, Electronic and Computer Engineering 50

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

e [t is an open source application.

e [tis relatively easy to configure and use.

e [tis reliable and stable and supports usage of JSP.

e It is part of the well known and widely used and supported Apache suite of enterprise

products.

4.9.4 XML Parser
The XML parser used is Xerces. Xerces is a reliable and easy to use tool for XML parsing and
generation. Xerces was chosen for the following reasons:

e [tis an open source application.

e [tis relatively easy to configure and use.

e [t is available for both Java and C++.

e [t implements the W3C XML and DOM (Level 1 and 2) standards, as well as the de

facto SAX (version 2) standard.

e The parsers are highly modular and configurable.

e [t provides initial support for XML Schema (draft W3C standard).

e [t is part of the well known and widely used and supported Apache suite of enterprise

products.

4.9.5 XML Translator
The XML translator used is Xalan. Xalan provides high-performance XSLT stylesheet
processing. The reasons for using Xalan are:

e [tis an open source application.

e [tisrelatively easy to configure and use.

e [tis available for both Java and C++.

e [t implements the W3C XSLT and XPath recommendations.

e [tis part of the well known and widely used and supported Apache suite of enterprise

products.

Electrical, Electronic and Computer Engineering 51

University of Pretoria etd — Rimer, S C (2006)
Chapter 4 SYSTEM SPECIFICATIONS

4.9.6 Programming Language

The programming language used is Java (version 1.4). The reasons for using Java are:
e Jtis arelatively open standard programming language.
e It can be used across multiple platforms.

e It supports object-oriented programming.

4.9.7 Operating system
The operating system used is Red Hat Linux. The reasons for using Linux are:
e [t is an open source application.
e Itisrelatively easy to use.
e All the above-mentioned software applications are compiled to work on this operating

system.

Electrical, Electronic and Computer Engineering 32

University of Pretoria etd — Rimer, S C (2006)

Chapter 5: XML MODEL

This section describes the methodology followed in designing the XML model that is used in
the implementation. An XML model was developed to represent client server messages from

heterogeneous applications in a generic format.

The next sub-sections describe the commonalities between the different server applications,
the XML model design and XML document structure. To the best of our knowledge the XML

model proposed is novel.

5.1 Identification of similarities between the heterogeneous applications

The following similarities were identified:
e All applications are client-server applications.
e All applications require connection information.
e All applications send requests in text-based format.
e All applications receive responses in text-based format.
e The applications operate on similar request-response format.
e All applications currently require (or will require) authentication information.
e All applications have mechanisms to read a specified data point/field’s value.
e All applications have mechanisms to modify a specified data point/field’s value.
e All applications have mechanisms to insert new data.

e All applications have mechanisms to delete data.

5.2 XML Document Design

The model was designed by initially focusing on how messages are sent between the client

and server.

In client-server architecture, the server behaves as a slave and the client as the master. A
typical client-server application using TCP as the message transport mechanism, will function

as follows:

Electrical, Electronic and Computer Engineering 53

University of Pretoria etd — Rimer, S C (2006)

Chapter 5 XML MODEL

1.

LFS]

10.

A server will stay in a listen state, which means that the server application listens for
input data on a specific port.

The client will send a connection request to the server.

The server will validate the client’s authentication details.

If the client’s authentication details are valid, the server will inform the client that the
connection is accepted.

Otherwise the server will inform the client that the authentication details are invalid
and that the connection will not be established.

The client can send a message (command) to the server.

The server will process the request and return a response to the client.

After the client has processed all requests, it informs the server that the connection will
be closed.

The client then closes the connection.

The server remains in the listen state, in case it has other clients that are still connected

to it or may want to connect to it.

From the above description, the following commonalities in most client-server applications are

identified:

1.

[§S]

The client has to provide connection information to connect to the server. This
connection information could be the host name on which the server resides, the port
number on which the server is listening on, a timeout value to wait while attempting a
connection, the context or directory in which the server is located, the data source
name and JDBC/ODBC driver details, etcetera.

The client has to provide the server with authentication details, so that the server can
verify that the client has access to the information that the server will be able to
provide. This is for security reasons so that rogue client applications that may have
malicious intent are not allowed to gain access to the information that the server
provides. Typical authentication information required is a user name, a user password
(or access code) and the role of the user (i.e. some users may have more privileges to

information than other users).

Electrical, Electronic and Computer Engineering 54

University of Pretoria etd — Rimer, S C (2006)
Chapter 5 XML MODEL

3. The messages, sent between the client and the server, are of the request-response type.
The message sent from a client is a request, which contains some specific command.

The message sent from the server is a response to the specific command.

Therefore, from the above, the following information is required and has to be included in the

XML model, namely:

= (Connection Information, i.e.

<connection-info>
<connection-url>" .. ¥ </connection-url>

</connection-info>

= Authentication Information, i.e.

<authentication-info>

<auth-name>" .. ™ </ auth-name>
<auth-code>" .. M </ auth-code>
<auth-role>” .. " </ auth-role>

</authentication-info>

= Request message with a specific command

<request>

ALY

<command>" </command>
[command parameters]

</request>

* Response message to a specific command

<response>
<command>" “ </ command>
[response details]
</response>

The command value can be the specific command name used in the application. Note, the

schema does not specify what the input elements within a command should be. Each

Electrical, Electronic and Computer Engineering 55

University of Pretoria etd — Rimer, S C (2006)
Chapter 5 XML MODEL

command has specific fields that it needs to parse to a server application in order for the server

application to correctly process the request.

The advantage of not specifying the elements within a command element in the generic
schema is that additional server applications with different commands and command
parameters can use the same schema (with the proviso that a unique data identifier is one of
the sub-elements included in the command hierarchy). This is because the XML gateway only
requires the following elements: the connection-location, the authentication-info, and the

request, response, command and unique data location (or protocol) elements.

All other elements are stored as element-value pairs in a hashtable that is sent to the relevant
server application. The value of the command element is irrelevant, because the XML gateway
application assumes that the server application to which the command value is sent, will be

able to correctly interpret and process the command.

Which application to send request to?
The next question that needs to be asked is how to differentiate between the different

applications?

The requirement states that there should be a common messaging structure that is independent
of individual protocols (application message formats). In addition, the XML schema should
allow the client side to be able to use the same user interface to access the same type of data

from multiple server applications.

Data and node points and events have an identifier that is unique to a data point, node or event.
To solve the problem of deciding which application to send the request to, the location of the
data is used, as the determinant in deciding which application server the request should be
directed to. Many request commands require some sort of unique address or field that
indicates where the data can be located as an input parameter. This address may be a directory
location, a database table and or field name, a file name, a network node and file name and

many other possible location type variables.

Electrical, Electronic and Computer Engineering 56

University of Pretoria etd — Rimer, S C (2006)
Chapter 5 XML MODEL

The address content is used in the implementation to determine which server application to
send the message to. The first part of the address before the end punctuation point (left side of
the address taken as beginning of address) indicates the type of server application. For
example if the message address is “SQL.SYS.GATEWAY@DataHostAddress!gateway”,
then the characters before the first punctuation point is “SQL”. This indicates that the request is
intended for the database server specified in the connection URL. A typical XML document

using this approach is shown below.

uest>

<command>read

<data-location>SQL.SYS.GATEWAY@DataHostAddress!gateway </data-locati

<data-encoding>STRING</data-encoding>

</command>

quest>

This method works well where the command requires input data that can be used to identify
the application server the request is intended. However, some commands may not require any

input data. To solve this problem, the following three possible solutions were investigated.

The first solution would force the client application to send through a dummy input field that
contains a string identifier that can be used to determine the server application. A separate user
form would be used for each server application, with a hidden field indicating which server

application to send the request to.

The problem with this approach is that, it requires new user forms to be created every time a
new server application is added to the gateway. This would create additional overhead. An
alternative solution may be to create a form that allows the user to enter in a location value
(similar to the address location) that is used solely to differentiate which server application to
use. Therefore as additional server applications are added on the server machine, the client
side should remain relatively stable with no changes but should still be able to access the new

server application data.

Electrical, Electronic and Computer Engineering 57

University of Pretoria etd — Rimer, S C (2006)
Chapter 5 XML MODEL

The second solution involves having an additional element in the XML Schema that will
identify the server application. The problem with this approach is the same as the previous
solution, namely that it requires new user forms to be created every time a new server
application is added to the gateway. The forms would indicate which server application the

request will be routed to. The XML document for this type of solution is shown.

<request>
<protocol>LDAP</protocol>
<command>nodelist</command>
<command>eventlist</command>

</request >

The third solution involved attempting to connect to each server application specified in the
connection URL. The request is sent to the first server application that is available and the
result returned to the client. This solution works well if there is only one server application up
at the time and it happens to be the server application the client intended the request to be sent
to. However, if these exact requirements are not met, then the flaws in this solution become
apparent. For example, if more than one server application is available, the XML gateway may

send the request to the incorrect server application.

The XML model uses either the additional protocol element or a dummy location identifier on
the client side to indicate which server to route the command to. This provides the user with
the flexibility of not requiring that all commands have a data location identifier element or that

all requests require a protocol element.

Solution two is suitable for batch type interactions where the server identifier can be passed as
an input parameter to the batch application when it is run. This negates the need for separate

client applications on the client workstation.

Solution one is suitable for user interfaces such as web browsers where a common user

interface can be used to send messages to multiple server applications.

Electrical, Electronic and Computer Engineering 58

University of Pretoria etd — Rimer, S C (2006)

Chapter 6 : APPLICATION ARCHITECTURE

This section describes the application architecture of the proposed system. The external

interfaces (from a black box point of view) to the application are also identified.

6.1 Application Architecture

Previous client-server architecture consisted of a relatively thick client application connecting
to a server data-source type application that provided the client with requested information.
With the advent of the WWW and Internet technologies, application architecture has moved to
three-tier (or more as in n-tier) architecture, where the application is further separated into
three distinct layers. Each layer concentrates on specific areas and tasks, such as presentation,

interpretation of business logic or obtaining data.

The client application has gradually had its overhead and complexity reduced and it is
increasingly common that thinner client applications which mainly serve as user interfaces to
capture and display user input are becoming available. The computation intensive business
and data instructions are increasingly being performed on the server machine. The server
machine may consist of one or more machines. In web applications the business and data logic
are typically located on separate machines to enable each machines resources to be used

optimally for specific tasks.

The application architecture used in this implementation is a typical three-tier architecture.
The application architecture consists of the following major components:

1. The presentation layer.

2. The business layer.

3. The data layer

Currently, the business and data instructions are processed on a single server machine, but the
data sources can be moved to another server without impacting on the application. In addition.
most of the presentation pre-processing is done on the server, so that the client is presented

with only HTML type forms that require user input or which displays the server response to a

request command. The application architecture is shown in Figure 10.

Electrical, Electronic and Computer Engineering 59

Application Architecture

Application Presentation | | Data
Boundary Boundary ‘ | Boundary |
. . N L —
N \ | \
Client View \\\ s . \]
[p—— ' © XML Document
| XSL ‘ i i ESDlnterfaﬂ
’7 v Common =
Il XSLT N Data ™\
HIML | Translator | Description i |
J ‘ - 7‘ .
XML
T o P » xmlGateway | » Datalnterface —» LDAPInterface
- Parser
SOAP } L— |
Client N n
__| - XML over Protocol ‘
SOAP < Specific)
— Description S —
XML » "4»‘ SQLInterface
. XML over
— | HTTP i =
v
|'\ ./]k |
N v o —4
Presentation :
Faigiap Business Layer Data Layer
Figure 10: Application Architecture
Fayat

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)
Chapter 6 APPLICATION ARCHITECTURE

6.1.1 Presentation Layer

This layer represents the user interface. The user interface consists of web pages in the form of
Java Server Pages (JSPs). These pages display forms with input fields and tables containing

the server’s response.

The XML document can be returned to the client in three possible ways:
1. Asan XML document using HTTP as the transport protocol, i.e. the user views the
XML syntax in a web browser that has an XML parser such as Internet Explorer.
2. The XML document can be transformed into an HTML form using a stylesheet and the
eXtensible Stylesheet Language for Transformations (XSLT)
3. The XML document can be enclosed in a SOAP envelop and sent over HTTP to a
SOAP client.

The implementation uses the second option. XSLT is a programming language for
transforming XML data. The XSLT processor receives an XML data source and stylesheet and
transforms the XML into the format specified by the stylesheet. The result can be XML,
HTML or plain text. In this case, XSLT is used to convert XML data to HTML for display in

the browser.

The stylesheet is loaded as a stream of characters and parsed into a tree. The XSLT processor

applies the stylesheet to the input tree: and renders the result using the stylesheet for HTML.

As Figure 11 shows, it is relatively easy to construct pipelines of XML processors in which
each processor receives XML data, does some transformation and/or computation on it and

sends the result as XML to the next processor.

Electrical, Electronic and Computer Engineering 61

University of Pretoria etd — Rimer, S C (2006)
Chapter 6 APPLICATION ARCHITECTURE

DTD or Schema for

Validation
.'_'_!__-\-\.___ ——1 — e e
Serialised Ve e A § S P %
XML «—» Parser |j«—» XML data —» - B) Browser |
/ \ XSLT / document
document M ! R S 4
——-- TP "

Figure 11: XML processing for browser

6.1.2 Business Layer

This layer interprets the XML data and determines what command to execute, i.e. type of
request to be sent to the appropriate data layer for processing. The business layer returns a

response to the presentation layer.

The business layer is where the interpretation of the XML data occurs using the standard XML
API’s. The business layer interprets the XML data and metadata. Depending on the data it
determines the type of protocol to use, the type of command to execute on the data and
initiates communication with the data layer to perform the command on the specified data
value. After it completes processing of the command, it processes the response into the correct

XML structure and sends the response to the client layer.

Figure 12 describes the procedure of the business layer.

Business Application

- - DTD or Schema for
Standard Validation

_ | Serialised | __APIs \ /
Browser < o]l XML 4 > SA‘VD(?M - » Data Layer |
document ' v
XML data

Figure 12: Representation of the business layer

Electrical, Electronic and Computer Engineering 62

University of Pretoria etd — Rimer, S C (2006)

Chapter 6 APPLICATION ARCHITECTURE

6.1.3 Data Layer

This layer accesses a specified data source and retrieves, updates, adds or deletes data in the

data store. Depending on the server application type, the business layer instantiates an instance

of a specific data class that will be able to access data from the specified server application.

These are currently three data classes, namely an ESD, LDAP and SQL class. When new

server applications are added, supporting data interface classes will be added in this layer.

6.2 Interfaces to External Applications

The scope of the research and the identified external applications it interacts with are

identified in Figure 13 below.
Black Box Interfaces

. Interface R
| Boundary Interface ‘

Boundary |

e | —
e

o | | ~

il <___ESD Protocol r,__'x ESD
(- XML Messages '
Server |

\ —C?_

xmlGateway ¢ LDAP Protocol \\, openLDAP ‘
% * 7

SQL Protocol mySQLW
e

v L \d

N ——
¥ -
Thesis
Focus

Figure 13: External Interfaces

Electrical, Electronic and Computer Engineering

63

University of Pretoria etd — Rimer, S C (2006)
Chapter 6 APPLICATION ARCHITECTURE

The interface to the XML gateway on the data side is the ESD, LDAP and SQL servers.
Application server specific protocols are used to retrieve information from the servers. The
interface to the XML component on the presentation side is the Web server. The Web server
receives HTML requests from the client and parses it to the specified Java class for

processing.

Electrical, Electronic and Computer Engineering 64

University of Pretoria etd — Rimer, S C (2006)

Chapter 7: SOFTWARE DESIGN

The following section describes the design of the software components and their interactions.
Each software class uses or is used by other classes in the application. The different software
classes will be discussed according to their packages. A Java package is a set of classes and

interfaces that perform related tasks.

7.1 Introduction

The design document makes extensive use of figures to explain the design. There are three
types of figures:
1. The package diagram

N

The class diagram

The flowchart

L]

7.1.1 The package diagram

The package diagram identifies the packages that comprise a system and dependencies
between packages. Arrows between packages indicate that the classes of one package depend
on the classes of another (indicated by the arrow tail). In this document, only the packages
developed for the application are shown, i.e. any Java packages used in the implementation are

not shown in the diagram.

7.1.2 The class diagram

The class diagram identifies classes, interfaces and their relationships. Arrows between classes
indicate that a class (indicated by the arrow tail), extends from another class. implements an

interface or uses a class.

7.1.3 The flowchart

The class flowchart describes the flow of logic for a particular command within a class. The

arrow tail indicates the logic flow.

Electrical, Electronic and Computer Engineering 65

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.2 Design

7.2.1 The Presentation layer
The FieldBusBean class is a class that processes the HTTP requests sent by the JSPs. It parses
the messages to the XML gateway class and translates the response received from the XMI.

gateway into HTML format.

The following figure shows the package diagram. The fieldbus package uses classes from the

gateway package and the library package.

[fieldbus |

| gateway ’7 libraryJ

Figure 14: Fieldbus package diagram

The following figure illustrates the class diagram. The FieldBusBean class uses the
ParseXmlToProtocolCommands class from the gateway package and the J SPException class

from the library package.

FieldBusBean

uses uses

A S) a‘

ParseXmlToProtocolCommands ‘ JSPException

Figure 15: FieldBusBean class diagram

The following sections describe the main functionality of the FieldBusBean class.

Sending a command

Electrical, Electronic and Computer Engineering 66

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

The flowchart in Figure 16 (page 67) illustrates the logical flow of data from user input to the

server application.

Figure 16: Sending a command from the front end

Electrical, Electronic and Computer Engineering 67

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

HTML form

‘ Command Button ‘

e

:) 4
On Submit

v
send request to FieldBusBean
to be processed

|
Y 0

store session ‘

— _ ¥ i
get connection and
logging information

v

(get command type

y
‘ convert command and input fields
into required XML format

Y
instantiate instance of
ParseXmlToProtocolCommands
class and set log and debug levels

v
Send XML data stream to

i ParseXmlToProtocolCommands
class and wait for response

h 4

return XML response to JSP

Electrical, Electronic and Computer Engineering 68

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

Translating a response into HTML

The flowing figure describes the steps in transforming an XML response into HTML format.

esponse as an
XML document

v
get stylesheet ﬁlﬂ
—

I S
parse XML
document

A,

| use stylesheet to
transform XML

| to HTML

return HTML
response to JSP

Figure 17: Translating a response into HTML

The snapshot in Figure 18 shows a typical user interface web-screen. The request frame
contains an input box, in which the user enters the data point address. The user clicks on the
command button (*Dpinfo”) to send the request to the application server. The response frame
displays the result of the response from the application server. The response from the

application server has been formatted from XML into HTML before being displayed.

Electrical, Electronic and Computer Engineering 69

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

-~ Netscape: kguana System '
File Edit View Go Communicator Help
AT g g B .
« = 3 f 2 @= & o B T
Back Forwand Reload Hima Search Netscape Print Seclrity Shop Stop
1/ @9 what's Relatad

| ™ Bookmarks 4 Location: [http //1ocalhost:B0BD/iguans/indsx hial
il 4 Red Hat Network (5 Suppart 42 Java 2 Platform SE v14.0 42 Tips for LDAP Users ¢ iquana System o MySGL Referencs 4 INDI Basic Search

Required Data

¥igwana
TFieldbus Operations

o
" ..5";"8 {}n'l,'EWAmUP}{ T @G}.TEWQYI S—

=0 S
‘Encading BINHEXSTRING T !
| Data Pomt Access. RO - =

TP S— ‘Daca Pou Name “Corment howtmame of the system”
| Dota Pout [D "Currest Name of the Host System” o o B

P Log Operalions
P Goneral

—= A smee @ 2|

Figure 18: Snapshot of user interface for DPINFO command

7.2.2 The business layer

The business layer implements the main functionality of the application. It parses the XML

documents and decides which server application to send the request to.

7.2.2.1 gateway package
The following figure shows the package diagram. The gateway package contains the business

logic and uses classes from the library, esd, sql, and ldap packages.

70

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

gateway J
] |

L ; |

esd . sql 1 ‘ lciap ‘ ‘ library_ J

Figure 19: Gateway package diagram

The gateway package consists of the following classes:
e ParseXmlToProtocolCommands
e ProcessProtocollnterface
e ProcessEsdProtocol
e ProcessSqlProtocol
e ProcesslLdapProtocol

e ProtocolException

Each of these classes is discussed in the following sections.

Class:: ParseXmlToProtocolCommands
This is the main *“brain” of the application. The XML document is parsed and the logic to

determine which server application to use, resides in this class.

The self-describing capabilities of XML means that as the XML stream is parsed, specific
descriptions are looked for (such as protocol or data location) and the values of these elements
are extracted and used to determine the type of application server the message is intended for.
The other elements that are command specific are not relevant to the gateway application and

are passed to the application specific class as a table of key-value pairs.

The following figure shows the ParseXmlIToProtocolCommands class diagram. The
ParseXmlToProtocolCommands class uses the LogMessage class (to log warning, error and
exception type messages in a log file), the ProcessProtocolInterface interface and the

ProtocolException class.

Electrical, Electronic and Computer Engineering 71

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

ParseXmlToProtocolCommands

uses uses Tuses

| a— e o i . : T~
LogMessage | ' ProcessProtocollnterface | ProtocolExcepti_on—‘_
| . |

Figure 20: ParseXmlIToProtocolCommands class diagram

The following figure illustrates the flow of logic in the ParseXmIToProtocolCommands class.

Electrical, Electronic and Computer Engineering T2

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

XML
document

st réam
o

-

v

‘ parse XML request—|
| |

h 4
‘ Start document ‘

-

v
‘ Start element ‘

- ~—

__—Are there any ~ Yes- Store
- attributes | attribute

No
v i
= ~

s

o -
_Ts this the start of an™~ Store previou
6. _>—Yes—» P ® .
~_embedded element - l element value pair

- -~

H\m.r/"" >

No
. vy
End element —‘

|
!

Store element ‘
value pair

.
s
S "

close connection to | N “Is this the end of"-u.\}
server application “._request element

|
L No
! l
I |
continued continued

continued

Electrical, Electronic and Computer Engineering 73

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN
A
continued continued continued
v s 4
"'/’ \\“'\....__
~Ts this the end of o
< SR ———Yes—» save server identifier
~._protocol element_~ |
-]
No
///l\‘\"-
(--/‘"i':s. this the end of

. >—No- process next element =
~.command element -
“-\H\-\- >

-

b3 -

~ .

s the server ~_ q
= e T rocess comman
<: application specified >— No p
s e any server
~n a parameter~ .
“\ '_/,,,

o

|
Yes
| e
- | attempt a connection
‘ instantiate instance of ‘ ‘ with each of the

specified server class server applications

-
send command to

send command to :
. server class that is able to
specified server class . "
establish a connection to

l 1 1

— e ===

h 4

| end document

Figure 21: Parsing and processing XML data

Electrical, Electronic and Computer Engineering 74

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

The class names are stored in a properties file. This properties file is parsed as an input
parameter to the ParseXmlIToProtocolCommands class on instantiation. A typical example of

the contents of the properties file is shown below.

esd=za.ac.up.iguana.gateway.ProcessEsdProtocol
sgql=za.ac.up.iguana.gateway.ProcessSqlProtocol
ldap=za.ac.up.iguana.gateway.ProcessLdapProtocol

logfile=iguana.log

If a new server application is added the code that will identify the application such as sql is

added to this properties file together with the class name that needs to be instantiated.

Interface::ProcessProtocollnterface

This interface is provided to allow custom applications to be used by the
ParseXmlToProtocolCommands class. As the ParseXmlToProtocolCommands class allows
the client application to integrate with multiple disparate types of server applications, it is
imperative that it should not have an intimate understanding of the workings of the different

server applications. This interface therefore provides this abstraction layer.

Class::ProcessEsdProtocol

This class implements the ProcessProtocollnterface interface. It provides connectivity to the
ESD server application. The ProcessEsdProtocol class uses the LogMessage, the
EsdCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

Electrical, Electronic and Computer Engineering 75

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

ProcessProtocollnterface

A
|
implements

ProcessEsdProtocol

_uses uses uses

LogMessage EsdCommander ProtocolException

Figure 22: ProcessEsdProtocol class diagram

The main logic flows for this class is shown in the figure below.

Electrical, Electronic and Computer Engineering 76

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

process command called from
ParseXmlToProtocolCommands

| L

/ e
__~"Ts aconnection™_
< lothe ESD server
~~_established?
\\““-._ .'/’f/
No

R Y

Yes >

establish connection

| to ESD server
v
process according to
command type
» v _
| l
: l'_ — 3 —— ¥ ,_i_ 4
| rea write dpinfo | nodeinfo ‘ nodelist Lcreateeverﬂ |delevent | eventlist log
T & & | ' &
- ‘ [enodeinfo | | nodelistsegno eventlistseqno
| — |
l h L i Y ra + ¥ I l

|

put command into required
message protocol format as
required by the ESD server

Y
send command
to ESD server

-

Tﬂé%ﬁﬁé}“&*
< o >——No—
~—received? —

—

|
Yes
v

,[convert response into XML format

h
| return XML data string ‘

Figure 23: Connecting to ESD server and processing commands

Electrical, Electronic and Computer Engineering 77

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

Class::ProcessSqlProtocol

This class implements the ProcessProtocollnterface interface. It provides connectivity to the
MySQL server application. The ProcessSqlProtocol class uses the LogMessage, the

SqlCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

ProcessProtocollnterface

i
|

implements

ProcessSqlProtocol
uses uses uses
LogMessage SqlCommander ProtocolException

Figure 24: ProcessSqlProtocol class diagram

The main logic flows for this class is shown in the figure below.

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

process command called from
Pdrhc.XmlToProtnco!Commands

L R

_1sa connection to the my&be

N —»
T server established? ek

establish connection
1—‘ to-mySql database—| = . -

‘ server

<+
¥

k.

|
process according to
command type

[T ¥

4—"

‘ read] ‘ write ‘ |dpinfo| nodeinfo | | nodellﬂt crea ecvcnt ent | |delevenﬂ cvm;tlisf ‘ I]
& &]
enodeinfo ! noddlbtscqno eventlistseqno
SN S B! !]
select update| | sel_t_ac_l . ‘ select ‘ ‘ sclt.m | insert | |dclete| | select ‘ | select]
v ——— 1|' A v o v v . 3 R

put command into SQL format ‘
L .

h 4

send command to mySql database server

-
1!’
,,/Tb rcspon‘;“cﬁ o

- J_LLLWLLLE, —

Yes
v

convert response into XML format

| return XML data string

Figure 25: Connecting to MySQL database server and processing commands

Electrical, Electronic and Computer Engineering 79

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

Class::ProcessLdapProtocol
This class implements the ProcessProtocollnterface interface. It provides connectivity to the
openLDAP server application. The ProcessLdapProtocol class uses the LogMessage, the

LdapCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

—

ProcessProtocollnterface

4

implements

ProcessLdapProtocol

LogMessage LdapCommander ‘ | ProtocolException
|

Figure 26: ProcessLdapProtocol class diagram

The main logic flows for this class is shown in the figure below.

80

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)

process command called from
ParseXmiToProtocolCommands

Chapter 7 SOFTWARE DESIGN

Y
= TS

s connection to the—_

< openL.DAP server >——Yes—»
T~ established?

—— -

~—

No
v

establish connection
< to openLLDAP
database server

‘ h 4
Y

process according to
command type

[

T | - —
| | v
Y h 4

e :: 4 0 h A = l
read | l w;it_e[Mﬂ@ ‘ nodeinfo | nodelist ‘createcvcnt kjele_\.ﬁ‘ : eventlist §‘ i;g;[

| o & &
| enodeinfo | | nodelistseqno | l ‘eventlistseqno |
—— |

|5::a.rch| | mo:!ify | |sca‘1rch| ‘Earaﬂ [sea:‘ch'
|

crdate | destroy Sear_h - ‘t‘
sub context | | sub context ' | searc search

| |
17' R l v > v l i j
| ——

put command into openLDAP format

send command to openL.DAP server

1S response—__
< i ee—NG -
——received? —
Yes
v

convert response into XML format

. b

return XML data string ‘

Figure 27: Connecting to openLDAP server and processing commands

Electrical, Electronic and Computer Engineering

81

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.2.3 The Data layer

The data layer implements the details of the specific server application functionality. It

currently consists of three packages, namely, the esd, sql and ldap package.

7.2.3.1 esd package

The following figure shows the package diagram for esd.

esd

v

‘ library

Figure 28: esd package diagram

The esd package contains two classes: EsdCommander and EsdResponse. The EsdResponse

class is used by the EsdCommander class.

Class::EsdResponse
The EsdResponse class is used to store the response data returned from the ESD server for the

EsdCommander class.

Class::EsdCommander
The EsdCommander class implements the specific functionality to connect to the ESD server,
using TCP sockets to send the commands in the required ESD format. The responses are

converted into the standard XML format before being returned to the calling function.

The following figure shows the EsdCommander class diagram. The EsdCommander class uses

the LogMessage class and the EsdResponse class.

Electrical, Electronic and Computer Engineering 82

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

EsdCommander

_uses “uses

-~ =

LogMessage EsdResponse

Figure 29: EsdCommander class package

7.2.3.2 sql package

The following figure shows the sql package diagram.

sql

- h

library

Figure 30: sql package diagram

The sql package contains one class: SqlCommander.

Class::SqlCommander

The SqlCommander class implements the specific functionality to connect to the MySQL
database server, using a JDBC driver and to send the commands in the required SQL format.
The responses are converted into the standard XML format before being returned to the calling

function.

The following figure shows the SqlCommander class diagram. The SqlCommander class uses

the LogMessage class.

Electrical, Electronic and Computer Engineering 83

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

SqlCommander

LogMessage

Figure 31: SqlCommander class diagram

7.2.3.3 ldap package

The following figure shows the ldap package diagram.

Idap

Y

library

Figure 32: ldap package diagram

The ldap package contains one class: LdapCommander.

Class::LdapCommander
The LdapCommander class implements the specific functionality to connect to the openLDAP
server, and to send the commands in the required LDAP format. The responses are converted

into the standard XML format before being returned to the calling function.

The following figure shows the LdapCommander class diagram. The LdapCommander class

uses the LogMessage class.

Electrical, Electronic and Computer Engineering 84

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

LdapCommander

uses

B

LogMessage

Figure 33: LdapCommander class diagram

The business layer uses the above-mentioned data layer classes, namely, EsdCommander,
EsdResponse, SqlCommander and LdapCommander and the logical flow is shown previously

with the business layer flowcharts.

7.3 General library classes

The following figure shows the library package diagram. As can be seen from the diagram, the
library package has no dependencies on other application packages. It is intended to be used

by other packages (refer to previous package diagrams).

7.3.1.1 library package

library

Figure 34: library package diagram

The library package consists of the following classes:
e LogMessage
e CommonDefs
e (ClientSocket

e JSPException

LogMessage is used by the other classes, to write messages to the log file in a standard way. It

requires the using class to parse it the log file as an input parameter.

Electrical, Electronic and Computer Engineering 85

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

The CommonDefs class contains all constant values that are used across the application

classes.

The ClientSocket class provides the functionality to open a socket connection.

The JSPException class extends the standard Exception class. It gets thrown if the front-end

program detects an error, such as null values parsed as an input parameter.

7.4 Application flowchart

The application uses functions from the various classes described previously. A high level

view of the application flowchart is shown below.

Electrical, Electronic and Computer Engineering

86

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN
‘ receive request from front-end |
h A

{ parse XML data source l

—

| decode address

L

determine server class using ‘
identifier
~ —
i —~ : // g =y Error in
create server specific class —————»< S0 EES No —— server
\\T 7 specification.
Yes
r I . . — .l.____ I | 3
i
v . .
| ESD server ‘ MySQL server | openLDAP
L — [—N—— server
= ¥ . v
Connect Connect Connect
to ESD to MySQL to openLDAP — ,
T . o) return error
: - i . _ response
Send command Send command Send command
to ESD to MySQL to openLDAP |
l . -y . ¥
Receive response | Receive response Receive response |
from ESD | from MySQL from openLDAP |

‘, l

b 4

convert response
into XML format

|
e

return XML data B
stream to front-end

Figure 35: Application flowchart

Electrical, Electronic and Computer Engineering 87

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.5 Error Handling

There are two classes of exceptions, namely:
e ProtocolException: the server application specific interface class throws this exception,
if an error such as being unable to connect to the server application occurs.
e JspException: this exception is thrown if the class that processes the browser requests

detects an error, such as null values parsed as an input parameter.

_ The application also has a log file that logs information to a specified file that can be read for
debug purposes. There are different log levels that ensure that the user can set the level for the

type of debug messages to be logged to the file. The debug levels are:

B_ONE No debug messages are written to lo

DBG_EXCEPTION Exception type debug messages are written to the log file
DBG _ERROR Class error type messages are written to the log file

DBG WARNING Warning type messages are written to the log file

DBG MESSAGE A general type of message is written to the log file

DBG ALL All types of messages are written to the log file

Table 5: Debug levels

Electrical, Electronic and Computer Engineering 88

University of Pretoria etd — Rimer, S C (2006)

Chapter 8 : RESULTS AND ANALYSIS

This section shows the measurements of the time taken to send and receive non-XML and
XML type messages to the different application servers. All measurements are in milliseconds.
The results also show the differences between the different server applications in processing

request-response type messages.

8.1 Results

It should be noted that these time values are not optimal as there are a number of Input/Output
operations (such as writing messages to a log file and/or standard output) that occur during the
processing of each command. Because these operations are similar across application
implementations, no significant time benefit is accrued to any application server
implementation. However, the results are not meant to reflect the optimum performance levels

of each application server.

8.1.1 ESD Results

The following table shows the result of time taken (in milliseconds) to send a command to an
ESD server if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

READ 12

WRITE 5 172
DPINFO 3 237
NODEINFO - 270
ENODEINFO (47 data points) | 97 8590
NODELIST 8 143
NODELISTSEQNO 39 55
REFRESHNODELIST 3 50
UPDATENODELIST 32 40

Electrical, Electronic and Computer Engineering 89

University of Pretoria etd — Rimer, S C (2006)

Chapter 8 RESULTS AND ANALYSIS
CREATEEVENT 108 193

DELETEEVENT 117 638

EVENTLIST 43 125

EVENTLISTSEQNO 5 45

LOG 36 59

VERSION 9 62

Table 6: No XML vs. XML for ESD

8.1.2 SQL Results

The following table shows the result of time taken (in milliseconds) to send a command to a
SQL server (i.e. MySQL database server) if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

406

19 228

DPINFO 17 285
NODEINFO 10 210
ENODEINFO (4 data points) | 88 368
NODELIST 4 419
NODELISTSEQNO 7 164
CREATEEVENT 4 223
DELETEEVENT 1 153
EVENTLIST 7 126
EVENTLISTSEQNO 2 207
LOG 20 102

Table 7: No XML vs. XML for MySQL

Electrical, Electronic and Computer Engineering 90

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

As mentioned in section 4.5 not all commands are implemented in the MySQL and

openLDAP implementations.

Note, the fact that the enodeinfo command with XML is significantly larger in ESD compared
to SQL is because there are 47 data points in the ESD implementation, as compared to the

MySQL implementation, which only has 4 data points for the particular node.

8.1.3 LDAP Results) N
The following table shows the result of time taken (in milliseconds) to send a command to the
openLDAP server if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

141

READ 495
WRITE 138 430
DPINFO 125 377
NODEINFO 186 442
CREATEEVENT 264 530
DELETEEVENT 136 485
LOG 144 427

Table 8: No XML vs. XML for openLDAP

8.1.4 Results of different application servers

It is interesting to compare the times for the different protocols without XML and with XML

The following table shows the result of time taken (in milliseconds) to send and receive a non-

XML message to each of the different application servers.

Electrical, Electronic and Computer Engineering 91

Chapter 8

University of Pretoria etd — Rimer, S C (2006)
RESULTS AND ANALYSIS

141

READ 12 19

WRITE 5 19 138
DPINFO 3 17 125
NODEINFO 4 10 186
CREATEEVENT 108 - 264
DELETEEVENT 117 1 136
LOG 36 20 144

Table 9: Time difference for application servers without XML

The following table shows the result of time taken (in milliseconds) to send and receive an

XML message to each of the different application servers.

"READ

406

495

522
WRITE 172 228 430
DPINFO 237 285 377
NODEINFO 270 210 442
CREATEEVENT 193 223 530
DELETEEVENT 638 153 485
LOG 59 102 427

Table 10: Time difference for application servers with XML

8.1.5 Measuring the relationship between number of XML messages and time.

The time measurement per XML request and per XML command was taken to determine if
the relationship between the number of XML messages and the time taken to process them is

linearly proportional.

The command used to perform the measurements was the “READ” command sent to the ESD

server. The messages sent were of the following types:

Electrical, Electronic and Computer Engineering 92

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

1. Multiple individual request commands as shown in Figure 35, or

2. A single request containing multiple read commands as shown in Figure36.

- <gateway>
- <reguest>
- <connection-info>
<url>esd[localhost,9200,5000];sql[jdbe:mysqgl:/ /localhost.localdomain/iguana,root,];ldap
[com.sun.jndi.ldap.LdapCtxFactory,ldap://localhost:389/0=0openLDAP,cn=iguana,dc=iguana,dc=eu,password]
</url>
</connection-info>
- <authentication-info>
<access-name>iguana</access-name>
«access-code>password</access-code>
<access-rolexall</access-role>
</authentication=infos
<protocol>esd</protocoi>
- <command>
read
<data-location>8YS.GATEWAY ! CurHostName@agateway</data-location>
<data-encoding>STRING</data-encoding>
</command>
</request>
</gateway>

Figure 36: Request and single command sent multiple times

The XML message shown in Figure 35 was sent multiple times to the ESD server and the time

taken to process the XML messages was measured.

Electrical, Electronic and Computer Engineering 93

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

- <gateway>
- <reguest>
- <connection-info>
<uri>esd[localhost,9200,5000];sql[jdbe:mysql:/ /localhost.localdomain/iguana,root,];idap
[eom.sun.jndi.ldap.LdapCtxFactory,ldap://localhost:389/0=openLDAP,cn=iguana,dc=iguana,dc=eu,password]
</url>
</connection-info>
- <authentication-info>
<access-name>iguanac</access-name>
<access-code>passworde</access-code>
caccess-role>all</access-role>
<fauthentication-info>
<protocol>esd</protocol>
- <command>
read
cdata-location>8SYS.GATEWAY !CurHostName@gateway</data-location>
<data-encoding>8TRING</data-ancoding>
<fcommand>
—<command>
read
<data-location>8SYS.GATEWAY | CurHostName@gateway</data-location>
<data-encoding>STRING</data-ancoding>
</command>
- <command:>
read
<data-location>8YS.GATEWAY !CurHostName@gateway</data-location>
<data-encoding>8TRING</data-ancoding>
</coammand>
- <command>
read
<data-location>SYS.GATEWAY!CurHostName®@gateway</data-location>
<data-encoding>STRING</data-encoding>
</command>
- <command>
read
<data-location>8YS.GATEWAY |CurHostName®@gateway</data-location>
cdata-encoding>8TRING</data-encoding>
</command>
</raquest>
</gateway>

Figure 37: Request with multiple commands sent once off
The single XML message with multiple read commands shown in Figure 36 was sent to the

ESD server and the time taken to process the message was measured.

The measured time taken to process the XML message(s) are shown in Table 11.

Time per XML . .
R x Lo Request with| Time per XML
equest with message for : -
Number of | . : multiple |[message for single
single command| multiple request- .
messages : commands | request-multiple
(maec) CORITNG Pl (msec) commands (msec)
(msec)
1 211 211 217 217
2 270 135 257 129
3 325 108 276 92
4 399 100 307 77
5 480 96 333 67
6 618 103 479 80
7 715 102 555 79
8 691 86 649 81

Electrical, Electronic and Computer Engineering 94

University of Pretoria etd — Rimer, S C (2006)

Chapter 8 RESULTS AND ANALYSIS
Time per XML _ ; s
Request with message for Reques't with| Time per XML
Number of | . . multiple |message for single
single command| multiple request- y
messages : commands | request-multiple
(msec) command pairs
finsed) (msec) commands (msec)

9 860 96 807 90

10 929 93 777 78

15 1432 95 1287 86
20 1777 89 1981 99
25 2488 100 2340 94
30 3048 102 2939 98
35 | 3650 104 3455 | 99 | s
40 4106 103 3940 99

50 4854 97 5012 100
60 6895 115 6080 101
70 7045 101 7200 103

80 8455 106 8071 101
90 9486 105 9056 101
100 10349 103 10314 103

Table 11: Time taken to process Single and Multiple command XML messages

By plotting the above values on a line graph the following results were obtained.

12000
' 10000
8000
6000
4000 +
2000 -

Time in milliseconds

Number of requests

—e— Multiple Requests - -a- - Single Request-Multiple Command

Figure 38: Graphical representation of number of XML messages and time

Electrical, Electronic and Computer Engineering 95

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

250

200

150

100

50

Time per request (msec)

N N T T . T~ B S

Number of requests \

’:Multipie Requests - -a- - Single Request-Multiple Commands '| J

Figure 39: Graphical representation of time taken to process an XML command as the number of
commands increase

8.2 Analysis of Results

8.2.1 Comparison of XML vs. non-XML type messages

From the above results (Table 6, Table 7, and Table 8), it is clear that non-XML type
messages are faster and provide better performance results than XML type messages. It was
known in advance that transforming messages into XML format would increase the processing
overhead because of the inherent verbosity of XML. The additional time is due to the
construction of messages into XML format and the parsing of the XML messages to determine

the type of application server.

There is clearly a trade-off between performance (i.e. the amount of time it takes to send a
request and receive a response) and the flexibility of providing a common standard message

interface to multiple applications that comes with using XML.

The following advantages of using XML in the implementation were identified:
e Standard message format for multiple applications, i.e. XML is application independent.

e Common gateway handles requests to multiple application servers.

Electrical, Electronic and Computer Engineering 96

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

e Flexibility in extending the XML document structure to incorporate new application
servers with minimum additional changes to existing coding infrastructure.
e Additional security benefit of having only one access point (HTTP port) to multiple

applications made available to external networks.

The following disadvantages of using XML in the implementation were identified:
e Slower response times, leading to decreased performance
e Increased CPU usage

e Increased memory resource usage

8.2.2 Comparison of application server performance with respect to XML vs. non-

XML type messages.

It is interesting to look at the difference in performance levels across the different application
servers even though it is not a requirement of this research topic. It would appear that ESD has
been optimised for “read” type of operations, as shown by the better performance in reading

data point and node information.

The database implementation has better performance when it comes to inserting new data and
deleting data. The directory server implementation (i.e. openLDAP) is the worst performer in
terms of response times, although LDAP implementations are assumed to be better optimised

for read type operations compared to databases (Section 2.1.3).

Note, the changes in performance between ESD and MySQL when XML formatting is
imposed on the messages. The most probable explanation for this is that the ESD response for
non-XML messages is a string that is sent back to the test program without additional
formatting, whereas the SQL implementation has to read the result set and put the response

into a string format before returning the response to the test program.

For XML type messages, the ESD response string has to be processed according to the
predefined ESD protocol (as described in [3]) for each command response and put into the

XML format.

Electrical, Electronic and Computer Engineering 97

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

Therefore it would appear that if any interpretation of the ESD response according to the
protocol specification were required then its response times might be similar to the SQL

implementation. Again, the LDAP implementation is the worst performing “protocol”.

8.2.3 Analysis of time taken to process multiple XML messages

As expected and as shown in Figure 38, the time taken to process the messages increases as
the number of messages increase. However the time taken to process a message does not
increase in a directly proportional manner, i.e. the time taken for two messages is not double
the time taken for one message etc. as shown in Figure 39. The time taken, as the number of
messages increases appears to reach a constant plateau where the average time taken per
request/command tends to a constant level of around +-100 milliseconds per

request/command.

The time taken to process a single request with multiple commands within the request element
is slightly smaller then the time taken to process multiple request-command messages. This is
because connection-info, request and other higher order elements do not have to be parsed for
each command. Because the number of elements preceding a command element is small, the
time taken before reaching the command element is relatively small. This indicates that the
XML parser is efficient and may be able to handle larger XML documents with minimal

additional performance cost.

From the previous results, we can conclude that as the number of commands increases (i.e.
exceeds three requests/commands), the time taken to process each command increases in a
linear relationship that approximates the function y = 100 x (for single request-single

commands type messages) and y = 91 x (for single request-multiple command type messages).

[t should be noted that these measurements were done on a single computer, i.e. no network
transmission overheads affect the results. The choice of the appropriate XML message format
must take into account the size of the message and the transmission delays of sending data

across a network.

Electrical, Electronic and Computer Engineering 98

University of Pretoria etd — Rimer, S C (2006)

Chapter 9 : CONCLUSION

An XML document model for sending and receiving messages between heterogeneous server
applications was designed and implemented. The modelling of the XML document required
evaluating client-server applications and determining an optimum method of communicating

with each application using a standard message format.

The XML model achieves this by using the location of the required data to determine which
application server the message is intended for. The upside of this is that a single user interface
can be used to send and receive messages to multiple application servers. The downside is that

the user has to enter in a unique application identifier when entering in the location of the data.

An alternative method is to include an additional element in the XML request document that
describes the application server the message is intended for. The upside of this solution is that
the user is not required to specify a unique identifier per application. However, the downside
is that there has to be a separate user interface per application server such that when it formats
a message request, the type of application server the message is intended for is added as the

appropriate protocol element value.

The possibility of allowing the gateway to identify the application server was also developed
but this solution proved inadequate if more than one application server was active at the time
because the message would be sent to the first active server, even though it was not intended
for that server. The only time this solution would be appropriate is when data from multiple

application servers needs to be collected and collated in a single response. Then the message

can be sent to all active servers and combined into a single response message.

The application was designed to be easily expandable. This is achieved by making use of the
properties functionality provided by Java that enables a program to read a file that stores data
as key-value pairs. Therefore each application server is assigned a unique identifier (such as

ESD) and the identifier is related to the class that processes messages intended for that server.

Electrical, Electronic and Computer Engineering 99

University of Pretoria etd — Rimer, S C (2006)
Chapter 9 CONCLUSION

Therefore, new application servers can be easily added to the implementation by providing a
new class that provides access to the new server application and updating the properties file to
include a key-value pair that associates the unique identifier of the application server with the

class that will process its specific commands.

The use of XML as the data description language and integration mechanism, where the XML
parser is used as the “translator” between the description of the data and different systems

validates the conclusions drawn by Blattner et al. [18,19] that a “parser-generator” would be

most suitable for generic message translation.

There appears to be no similar XML model for client-server message interaction developed
previously. Bi et al. [15] developed an XML model for interaction with legacy applications but
did not focus on the development of a common message interface that could be used across
multiple client-server applications. The developed XML model can therefore be considered to

be a novel solution.

After the design was implemented and tested, the performance of XML and non-XML
messages were evaluated. As expected the increased verbosity of XML results in a larger
footprint that requires more processing time and resources. This means that any
implementation using XML has to carefully weigh the benefits of flexibility, extensibility and
standard message formats against reduced performance. This conforms to the conclusions of
the study conducted by Boedjang et al. [21] that the performance measurements of
applications that run application-specific code are faster than those that use generic message

passing software.

XML is currently not suitable for applications that require high-speed real time responses.
Client applications that use the Internet to obtain server information from multiple applications
will benefit from reduced client side complexity. Server applications that serve large client
bases and therefore require smaller resource allocation per request may not be scalable
because of the integration with XML. The reduced performance levels from using XML

means it does not scale to handle large numbers of concurrent client requests.

Electrical, Electronic and Computer Engineering 100

University of Pretoria etd — Rimer, S C (2006)
Chapter 9 CONCLUSION

However, if the applications are run in batch mode where the need for fast (i.e. micro and
millisecond) responses are not important, then the solution is useful. As long as the time delay
is not too long in human (user) terms (and in this implementation it is not noticeable as
responses are less than or within seconds) then the additional response times caused by the
XML footprint is negligible. Therefore, it can be concluded that when used to encode
messages in a standard format for use in client-server type environments requiring human-

computer interaction or batch processing, that XML can provide significant advantages.

Electrical. Electronic and Computer Engineering 101

University of Pretoria etd — Rimer, S C (2006)

Chapter 10 : REFERENCES

1. H. Johner, L. Brown, F. Hinner, W. Reis, J. Westman, Understanding LDAP,

http://www.redbooks.ibm.com.

(g

M. Gertz, Oracle/SQL Tutorial 1, http://www.db.cs.ucdavis.edu.

3. M. Lobachov, Communication to the Extended Service Daemon (esd), Iguana project

documentation. (ESD daemon proto.txt).

4. M. Lobachov, Event Language, Iguana project documentation. (event language.txt).

5. H. Kleiner, O. Triebl, Implementing LDAP connectivity for the Iguana Project.

6. A.Nahimovsky; T. Myers, XML Programming, Apress, 2002.

7. E. Armstrong, S. Bodoff, D. Carson, M. Fisher, D. Green, K. Haase, The Java™ Web
Services Tutorial, August 2002.

8. B. Marchal, XML by Example, Que, 2000.

9. Directory Services Markup Language v2.0, http://www.oasis-

open.org/committess/dsml/docs.
10. “SQL-XML Group Picks INCITS to Develop Standards.htm”, www.incits.org.
11. A. Eisenberg and J. Melton, SQL/XML and the SQLX Informal Group of Companies,

http://www.acm.org/sigmod/record/issues/0109/standards.pdf.

12. An XML vocabulary for CIM Management Information,
http://www.dnmtf.org/standards/xmlw.php.

13. T. Goddard, Towards XML Based Management and Configuration, Internet-Draft.

14. J. Jaworski, Java2 Certification Training Guide, 1999.

15.Y. Bi, M.E.C. Hull, P.N. Nicholl, An XML approach for legacy code reuse, The
Journal of Systems and Software, 2002, Pages: 77 - 89.

16. K.L.E. Law XML on LDAP Network Database, IEEE Canadian Conference on
Electrical and Computer Engineering, 2000.

17. D. Lewis and J.D. Mouritzsen, The role of XML in TMN evolution, IEEE International
Symposium of Integrated Network Management Proceedings, 2001.

18. M. Blattner, L. Kou, J. Carlson, D. Daniel, A Visual Interface for Generic Message
Translation, IEEE Workshop on Visual Languages, 1988, Page(s): 121 —126.

Electrical, Electronic and Computer Engineering 102

Chapter 10

University of Pretoria etd — Rimer, S C (2006) REFERENCES

19.

20.

21,

22.

23.

24,

25.

26.

27.

28.

M. Blattner and L. Kou, A User Interface for Computer-Based Message Translation,
IEEE Proceedings of the Twenty-Second Annual Hawaii International Conference on
System Sciences, 1989. Vol.IV: Emerging Technologies and Applications Track.

P. Peinl and B. Mitschang, Towards an integrated Systems Approach for Mobile
Traveller Applications, IEEE First International Conference on Web Information
Systems Engineering (WISE'00)-Volume 1, June 19 - 20, 2000.

R. Bhoedjang, J. Romein, H. Bal, Optimizing Distributed Data Structures Using
Application—_Speciﬁc Network Interface Software, IEEE Proceedings. 1998
International Conference on Parallel Processing, 1998, Page(s): 485 —492.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler (Editors), Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, October 2000,
http://www.w3.org/TR/REC-xml.

D. C. Fallside (Editor), XML Schema Part 0: Primer, W3C Recommendation, May
2001. http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

The OpenLDAP Project http://www.openldap.org.

The OpenLDAP Administrator’s Guide, http://www.openldap.org/doc/admin.

M. Wahl, T. Howes, S. Kille, Lightweight Directory Access Protocol (version 3),
1997, RFC 2251, www.ietf.org.

V. Ryan, S. Seligman, R. Lee, Schema for Representing Java(tm) Objects in an LDAP
Directory, October 1999, RFC 2713, www.ietf.org.

R. L. Costello (coordinator), XML Schemas: Best Practices, 2003,
http://www.xfront.com/BestPracticesHomepage html.

Electrical, Electronic and Computer Engineering 103

University of Pretoria etd — Rimer, S C (2006)

Addendum A: IGUANA Structured Query Language Daemon (ISQLD)

The database schema used is similar to the IGUANA Structured Query Language Daemon
(ISQLD). The database tables are:

1. NODES

2. DATAPOINTS
3. LOGS

4. EVENTS

1. NODE TABLE

‘NodeAddress

T FANTYPE.FANID!FanNodeAddress

FANTYPE control network type

FANID unique symbolic name of a FAN daemon

FanNodeAddresss | symbolic name of the node

dp_num number of data points on this node

nsid_str self identification string

optl _str optional parameters for LonWorks (node location)

opt2_str optional parameters for LonWorks (program ID)

Error Error code for this node, received from ESD or, 0 on success

2. DATAPOINTS TABLE

T FANTYPE.F,

D!FanNodeAddress

odeAddress
DpAddress data point address
DataType FAN-specific data type of the data point
Encoding encoding of the data
Access accessibility of this data point
dp_name data point name
sid_string self identification string
Data data value
Error Error code for this datapoint received from ESD, or 0 on success

Electrical, Electronic and Computer Engineering 104

University of Pretoria etd — Rimer, S C (2006)
Addendum A

3. LOGS TABLE

unique

SQLEven
LoglLineNum line number of this log entry
Timestamp timestamp
~ | LogData | thelogentry data P— S
Error Error code for this datapoint received from ESD, or 0 on success

4. EVENTS TABLE

| SQLEventI unique 1D generaed by the client

EventCriteria event criteria
EventAction event action

EventDescription | event description

Electrical, Electronic and Computer Engineering 105

University of Pretoria etd — Rimer, S C (2006)

Addendum B: IGUANA LDAP Schema

The IGUANA LDAP schema describes the objectclass and the attributes of that objectclass.

The following tree structure describes the schema, starting with the object class and its

attributes.
e ObjectClass = iguanaFAN
o Attributes
= JguanaFanID
* [guanaFanDaemonID
= JguanaFanType

= jguanaDescription

e ObjectClass = iguanaNode
o Attributes
= iguanaNodeAddress
* jguanaFanNodeAddress
* jguanaFanDpNum
= iguanal.ocationString

* jguanaProgramID

e ObjectClass = iguanaDp
o Attributes
* jguanaDpAddress
* jguanaDpld
* jguanaEncoding
= jguanaSupportedEncodings
= jguanaDataType
® iguanaAccess
= jguanaName

= jguanaValue

Electrical, Electronic and Computer Engineering

106

University of Pretoria etd — Rimer, S C (2006)
Addendum B

e ObjectClass = iguanaEvent
o Attributes
* jguanaEventID
* jguanaEventCriteria
* jguanaAction

* jguanalCCPrivate

e ObjectClass = iguanalL.og
o Attributes
* jguanalLineNum
* iguanaTimeStamp

» jguanal.ogData

Electrical, Electronic and Computer Engineering 107

University of Pretoria etd — Rimer, S C (2006)

Contact Information

Postal Address | P.O. Box 1337, Roosevelt Park, 2129
E-mail schinnappen@postino.up.ac.za

Tel number +27-12-420-4335

Cell number +27-84-580-3226

Electrical, Electronic and Computer Engineering 108

