University of Pretoria etd — Rimer, S C (2006)

Chapter 8 : RESULTS AND ANALYSIS

This section shows the measurements of the time taken to send and receive non-XML and
XML type messages to the different application servers. All measurements are in milliseconds.
The results also show the differences between the different server applications in processing

request-response type messages.

8.1 Results

It should be noted that these time values are not optimal as there are a number of Input/Output
operations (such as writing messages to a log file and/or standard output) that occur during the
processing of each command. Because these operations are similar across application
implementations, no significant time benefit is accrued to any application server
implementation. However, the results are not meant to reflect the optimum performance levels

of each application server.

8.1.1 ESD Results

The following table shows the result of time taken (in milliseconds) to send a command to an
ESD server if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

READ 12

WRITE 5 172
DPINFO 3 237
NODEINFO - 270
ENODEINFO (47 data points) | 97 8590
NODELIST 8 143
NODELISTSEQNO 39 55
REFRESHNODELIST 3 50
UPDATENODELIST 32 40

Electrical, Electronic and Computer Engineering 89

University of Pretoria etd — Rimer, S C (2006)

Chapter 8 RESULTS AND ANALYSIS
CREATEEVENT 108 193

DELETEEVENT 117 638

EVENTLIST 43 125

EVENTLISTSEQNO 5 45

LOG 36 59

VERSION 9 62

Table 6: No XML vs. XML for ESD

8.1.2 SQL Results

The following table shows the result of time taken (in milliseconds) to send a command to a
SQL server (i.e. MySQL database server) if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

406

19 228

DPINFO 17 285
NODEINFO 10 210
ENODEINFO (4 data points) | 88 368
NODELIST 4 419
NODELISTSEQNO 7 164
CREATEEVENT 4 223
DELETEEVENT 1 153
EVENTLIST 7 126
EVENTLISTSEQNO 2 207
LOG 20 102

Table 7: No XML vs. XML for MySQL

Electrical, Electronic and Computer Engineering 90

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

As mentioned in section 4.5 not all commands are implemented in the MySQL and

openLDAP implementations.

Note, the fact that the enodeinfo command with XML is significantly larger in ESD compared
to SQL is because there are 47 data points in the ESD implementation, as compared to the

MySQL implementation, which only has 4 data points for the particular node.

8.1.3 LDAP Results) N
The following table shows the result of time taken (in milliseconds) to send a command to the
openLDAP server if:

1. The command is not enclosed in XML

2. The command is enclosed in XML and needs to be parsed.

141

READ 495
WRITE 138 430
DPINFO 125 377
NODEINFO 186 442
CREATEEVENT 264 530
DELETEEVENT 136 485
LOG 144 427

Table 8: No XML vs. XML for openLDAP

8.1.4 Results of different application servers

It is interesting to compare the times for the different protocols without XML and with XML

The following table shows the result of time taken (in milliseconds) to send and receive a non-

XML message to each of the different application servers.

Electrical, Electronic and Computer Engineering 91

Chapter 8

University of Pretoria etd — Rimer, S C (2006)
RESULTS AND ANALYSIS

141

READ 12 19

WRITE 5 19 138
DPINFO 3 17 125
NODEINFO 4 10 186
CREATEEVENT 108 - 264
DELETEEVENT 117 1 136
LOG 36 20 144

Table 9: Time difference for application servers without XML

The following table shows the result of time taken (in milliseconds) to send and receive an

XML message to each of the different application servers.

"READ

406

495

522
WRITE 172 228 430
DPINFO 237 285 377
NODEINFO 270 210 442
CREATEEVENT 193 223 530
DELETEEVENT 638 153 485
LOG 59 102 427

Table 10: Time difference for application servers with XML

8.1.5 Measuring the relationship between number of XML messages and time.

The time measurement per XML request and per XML command was taken to determine if
the relationship between the number of XML messages and the time taken to process them is

linearly proportional.

The command used to perform the measurements was the “READ” command sent to the ESD

server. The messages sent were of the following types:

Electrical, Electronic and Computer Engineering 92

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

1. Multiple individual request commands as shown in Figure 35, or

2. A single request containing multiple read commands as shown in Figure36.

- <gateway>
- <reguest>
- <connection-info>
<url>esd[localhost,9200,5000];sql[jdbe:mysqgl:/ /localhost.localdomain/iguana,root,];ldap
[com.sun.jndi.ldap.LdapCtxFactory,ldap://localhost:389/0=0openLDAP,cn=iguana,dc=iguana,dc=eu,password]
</url>
</connection-info>
- <authentication-info>
<access-name>iguana</access-name>
«access-code>password</access-code>
<access-rolexall</access-role>
</authentication=infos
<protocol>esd</protocoi>
- <command>
read
<data-location>8YS.GATEWAY ! CurHostName@agateway</data-location>
<data-encoding>STRING</data-encoding>
</command>
</request>
</gateway>

Figure 36: Request and single command sent multiple times

The XML message shown in Figure 35 was sent multiple times to the ESD server and the time

taken to process the XML messages was measured.

Electrical, Electronic and Computer Engineering 93

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

- <gateway>
- <reguest>
- <connection-info>
<uri>esd[localhost,9200,5000];sql[jdbe:mysql:/ /localhost.localdomain/iguana,root,];idap
[eom.sun.jndi.ldap.LdapCtxFactory,ldap://localhost:389/0=openLDAP,cn=iguana,dc=iguana,dc=eu,password]
</url>
</connection-info>
- <authentication-info>
<access-name>iguanac</access-name>
<access-code>passworde</access-code>
caccess-role>all</access-role>
<fauthentication-info>
<protocol>esd</protocol>
- <command>
read
cdata-location>8SYS.GATEWAY !CurHostName@gateway</data-location>
<data-encoding>8TRING</data-ancoding>
<fcommand>
—<command>
read
<data-location>8SYS.GATEWAY | CurHostName@gateway</data-location>
<data-encoding>STRING</data-ancoding>
</command>
- <command:>
read
<data-location>8YS.GATEWAY !CurHostName@gateway</data-location>
<data-encoding>8TRING</data-ancoding>
</coammand>
- <command>
read
<data-location>SYS.GATEWAY!CurHostName®@gateway</data-location>
<data-encoding>STRING</data-encoding>
</command>
- <command>
read
<data-location>8YS.GATEWAY |CurHostName®@gateway</data-location>
cdata-encoding>8TRING</data-encoding>
</command>
</raquest>
</gateway>

Figure 37: Request with multiple commands sent once off
The single XML message with multiple read commands shown in Figure 36 was sent to the

ESD server and the time taken to process the message was measured.

The measured time taken to process the XML message(s) are shown in Table 11.

Time per XML . .
R x Lo Request with| Time per XML
equest with message for : -
Number of | . : multiple |[message for single
single command| multiple request- .
messages : commands | request-multiple
(maec) CORITNG Pl (msec) commands (msec)
(msec)
1 211 211 217 217
2 270 135 257 129
3 325 108 276 92
4 399 100 307 77
5 480 96 333 67
6 618 103 479 80
7 715 102 555 79
8 691 86 649 81

Electrical, Electronic and Computer Engineering 94

University of Pretoria etd — Rimer, S C (2006)

Chapter 8 RESULTS AND ANALYSIS
Time per XML _ ; s
Request with message for Reques't with| Time per XML
Number of | . . multiple |message for single
single command| multiple request- y
messages : commands | request-multiple
(msec) command pairs
finsed) (msec) commands (msec)

9 860 96 807 90

10 929 93 777 78

15 1432 95 1287 86
20 1777 89 1981 99
25 2488 100 2340 94
30 3048 102 2939 98
35 | 3650 104 3455 | 99 | s
40 4106 103 3940 99

50 4854 97 5012 100
60 6895 115 6080 101
70 7045 101 7200 103

80 8455 106 8071 101
90 9486 105 9056 101
100 10349 103 10314 103

Table 11: Time taken to process Single and Multiple command XML messages

By plotting the above values on a line graph the following results were obtained.

12000
' 10000
8000
6000
4000 +
2000 -

Time in milliseconds

Number of requests

—e— Multiple Requests - -a- - Single Request-Multiple Command

Figure 38: Graphical representation of number of XML messages and time

Electrical, Electronic and Computer Engineering 95

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

250

200

150

100

50

Time per request (msec)

N N T T . T~ B S

Number of requests \

’:Multipie Requests - -a- - Single Request-Multiple Commands '| J

Figure 39: Graphical representation of time taken to process an XML command as the number of
commands increase

8.2 Analysis of Results

8.2.1 Comparison of XML vs. non-XML type messages

From the above results (Table 6, Table 7, and Table 8), it is clear that non-XML type
messages are faster and provide better performance results than XML type messages. It was
known in advance that transforming messages into XML format would increase the processing
overhead because of the inherent verbosity of XML. The additional time is due to the
construction of messages into XML format and the parsing of the XML messages to determine

the type of application server.

There is clearly a trade-off between performance (i.e. the amount of time it takes to send a
request and receive a response) and the flexibility of providing a common standard message

interface to multiple applications that comes with using XML.

The following advantages of using XML in the implementation were identified:
e Standard message format for multiple applications, i.e. XML is application independent.

e Common gateway handles requests to multiple application servers.

Electrical, Electronic and Computer Engineering 96

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

e Flexibility in extending the XML document structure to incorporate new application
servers with minimum additional changes to existing coding infrastructure.
e Additional security benefit of having only one access point (HTTP port) to multiple

applications made available to external networks.

The following disadvantages of using XML in the implementation were identified:
e Slower response times, leading to decreased performance
e Increased CPU usage

e Increased memory resource usage

8.2.2 Comparison of application server performance with respect to XML vs. non-

XML type messages.

It is interesting to look at the difference in performance levels across the different application
servers even though it is not a requirement of this research topic. It would appear that ESD has
been optimised for “read” type of operations, as shown by the better performance in reading

data point and node information.

The database implementation has better performance when it comes to inserting new data and
deleting data. The directory server implementation (i.e. openLDAP) is the worst performer in
terms of response times, although LDAP implementations are assumed to be better optimised

for read type operations compared to databases (Section 2.1.3).

Note, the changes in performance between ESD and MySQL when XML formatting is
imposed on the messages. The most probable explanation for this is that the ESD response for
non-XML messages is a string that is sent back to the test program without additional
formatting, whereas the SQL implementation has to read the result set and put the response

into a string format before returning the response to the test program.

For XML type messages, the ESD response string has to be processed according to the
predefined ESD protocol (as described in [3]) for each command response and put into the

XML format.

Electrical, Electronic and Computer Engineering 97

University of Pretoria etd — Rimer, S C (2006)
Chapter 8 RESULTS AND ANALYSIS

Therefore it would appear that if any interpretation of the ESD response according to the
protocol specification were required then its response times might be similar to the SQL

implementation. Again, the LDAP implementation is the worst performing “protocol”.

8.2.3 Analysis of time taken to process multiple XML messages

As expected and as shown in Figure 38, the time taken to process the messages increases as
the number of messages increase. However the time taken to process a message does not
increase in a directly proportional manner, i.e. the time taken for two messages is not double
the time taken for one message etc. as shown in Figure 39. The time taken, as the number of
messages increases appears to reach a constant plateau where the average time taken per
request/command tends to a constant level of around +-100 milliseconds per

request/command.

The time taken to process a single request with multiple commands within the request element
is slightly smaller then the time taken to process multiple request-command messages. This is
because connection-info, request and other higher order elements do not have to be parsed for
each command. Because the number of elements preceding a command element is small, the
time taken before reaching the command element is relatively small. This indicates that the
XML parser is efficient and may be able to handle larger XML documents with minimal

additional performance cost.

From the previous results, we can conclude that as the number of commands increases (i.e.
exceeds three requests/commands), the time taken to process each command increases in a
linear relationship that approximates the function y = 100 x (for single request-single

commands type messages) and y = 91 x (for single request-multiple command type messages).

[t should be noted that these measurements were done on a single computer, i.e. no network
transmission overheads affect the results. The choice of the appropriate XML message format
must take into account the size of the message and the transmission delays of sending data

across a network.

Electrical, Electronic and Computer Engineering 98

University of Pretoria etd — Rimer, S C (2006)

Chapter 9 : CONCLUSION

An XML document model for sending and receiving messages between heterogeneous server
applications was designed and implemented. The modelling of the XML document required
evaluating client-server applications and determining an optimum method of communicating

with each application using a standard message format.

The XML model achieves this by using the location of the required data to determine which
application server the message is intended for. The upside of this is that a single user interface
can be used to send and receive messages to multiple application servers. The downside is that

the user has to enter in a unique application identifier when entering in the location of the data.

An alternative method is to include an additional element in the XML request document that
describes the application server the message is intended for. The upside of this solution is that
the user is not required to specify a unique identifier per application. However, the downside
is that there has to be a separate user interface per application server such that when it formats
a message request, the type of application server the message is intended for is added as the

appropriate protocol element value.

The possibility of allowing the gateway to identify the application server was also developed
but this solution proved inadequate if more than one application server was active at the time
because the message would be sent to the first active server, even though it was not intended
for that server. The only time this solution would be appropriate is when data from multiple

application servers needs to be collected and collated in a single response. Then the message

can be sent to all active servers and combined into a single response message.

The application was designed to be easily expandable. This is achieved by making use of the
properties functionality provided by Java that enables a program to read a file that stores data
as key-value pairs. Therefore each application server is assigned a unique identifier (such as

ESD) and the identifier is related to the class that processes messages intended for that server.

Electrical, Electronic and Computer Engineering 99

University of Pretoria etd — Rimer, S C (2006)
Chapter 9 CONCLUSION

Therefore, new application servers can be easily added to the implementation by providing a
new class that provides access to the new server application and updating the properties file to
include a key-value pair that associates the unique identifier of the application server with the

class that will process its specific commands.

The use of XML as the data description language and integration mechanism, where the XML
parser is used as the “translator” between the description of the data and different systems

validates the conclusions drawn by Blattner et al. [18,19] that a “parser-generator” would be

most suitable for generic message translation.

There appears to be no similar XML model for client-server message interaction developed
previously. Bi et al. [15] developed an XML model for interaction with legacy applications but
did not focus on the development of a common message interface that could be used across
multiple client-server applications. The developed XML model can therefore be considered to

be a novel solution.

After the design was implemented and tested, the performance of XML and non-XML
messages were evaluated. As expected the increased verbosity of XML results in a larger
footprint that requires more processing time and resources. This means that any
implementation using XML has to carefully weigh the benefits of flexibility, extensibility and
standard message formats against reduced performance. This conforms to the conclusions of
the study conducted by Boedjang et al. [21] that the performance measurements of
applications that run application-specific code are faster than those that use generic message

passing software.

XML is currently not suitable for applications that require high-speed real time responses.
Client applications that use the Internet to obtain server information from multiple applications
will benefit from reduced client side complexity. Server applications that serve large client
bases and therefore require smaller resource allocation per request may not be scalable
because of the integration with XML. The reduced performance levels from using XML

means it does not scale to handle large numbers of concurrent client requests.

Electrical, Electronic and Computer Engineering 100

University of Pretoria etd — Rimer, S C (2006)
Chapter 9 CONCLUSION

However, if the applications are run in batch mode where the need for fast (i.e. micro and
millisecond) responses are not important, then the solution is useful. As long as the time delay
is not too long in human (user) terms (and in this implementation it is not noticeable as
responses are less than or within seconds) then the additional response times caused by the
XML footprint is negligible. Therefore, it can be concluded that when used to encode
messages in a standard format for use in client-server type environments requiring human-

computer interaction or batch processing, that XML can provide significant advantages.

Electrical. Electronic and Computer Engineering 101

	Front
	Chapter 1
	Chapter 2
	Chapters 3-4
	Chapters 5-6
	Chapters 7
	CHAPTER 8
	8.1 Results
	8.2 Analysis of results

	CHAPTER 9
	Back

