University of Pretoria etd — Rimer, S C (2006)

Chapter 7: SOFTWARE DESIGN

The following section describes the design of the software components and their interactions.
Each software class uses or is used by other classes in the application. The different software
classes will be discussed according to their packages. A Java package is a set of classes and

interfaces that perform related tasks.

7.1 Introduction

The design document makes extensive use of figures to explain the design. There are three
types of figures:
1. The package diagram

N

The class diagram

The flowchart

L]

7.1.1 The package diagram

The package diagram identifies the packages that comprise a system and dependencies
between packages. Arrows between packages indicate that the classes of one package depend
on the classes of another (indicated by the arrow tail). In this document, only the packages
developed for the application are shown, i.e. any Java packages used in the implementation are

not shown in the diagram.

7.1.2 The class diagram

The class diagram identifies classes, interfaces and their relationships. Arrows between classes
indicate that a class (indicated by the arrow tail), extends from another class. implements an

interface or uses a class.

7.1.3 The flowchart

The class flowchart describes the flow of logic for a particular command within a class. The

arrow tail indicates the logic flow.

Electrical, Electronic and Computer Engineering 65

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.2 Design

7.2.1 The Presentation layer
The FieldBusBean class is a class that processes the HTTP requests sent by the JSPs. It parses
the messages to the XML gateway class and translates the response received from the XMI.

gateway into HTML format.

The following figure shows the package diagram. The fieldbus package uses classes from the

gateway package and the library package.

[fieldbus |

| gateway ’7 libraryJ

Figure 14: Fieldbus package diagram

The following figure illustrates the class diagram. The FieldBusBean class uses the
ParseXmlToProtocolCommands class from the gateway package and the J SPException class

from the library package.

FieldBusBean

uses uses

A S) a‘

ParseXmlToProtocolCommands ‘ JSPException

Figure 15: FieldBusBean class diagram

The following sections describe the main functionality of the FieldBusBean class.

Sending a command

Electrical, Electronic and Computer Engineering 66

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

The flowchart in Figure 16 (page 67) illustrates the logical flow of data from user input to the

server application.

Figure 16: Sending a command from the front end

Electrical, Electronic and Computer Engineering 67

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

HTML form

‘ Command Button ‘

e

:) 4
On Submit

v
send request to FieldBusBean
to be processed

|
Y 0

store session ‘

— _ ¥ i
get connection and
logging information

v

(get command type

y
‘ convert command and input fields
into required XML format

Y
instantiate instance of
ParseXmlToProtocolCommands
class and set log and debug levels

v
Send XML data stream to

i ParseXmlToProtocolCommands
class and wait for response

h 4

return XML response to JSP

Electrical, Electronic and Computer Engineering 68

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

Translating a response into HTML

The flowing figure describes the steps in transforming an XML response into HTML format.

esponse as an
XML document

v
get stylesheet ﬁlﬂ
—

I S
parse XML
document

A,

| use stylesheet to
transform XML

| to HTML

return HTML
response to JSP

Figure 17: Translating a response into HTML

The snapshot in Figure 18 shows a typical user interface web-screen. The request frame
contains an input box, in which the user enters the data point address. The user clicks on the
command button (*Dpinfo”) to send the request to the application server. The response frame
displays the result of the response from the application server. The response from the

application server has been formatted from XML into HTML before being displayed.

Electrical, Electronic and Computer Engineering 69

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

-~ Netscape: kguana System '
File Edit View Go Communicator Help
AT g g B .
« = 3 f 2 @= & o B T
Back Forwand Reload Hima Search Netscape Print Seclrity Shop Stop
1/ @9 what's Relatad

| ™ Bookmarks 4 Location: [http //1ocalhost:B0BD/iguans/indsx hial
il 4 Red Hat Network (5 Suppart 42 Java 2 Platform SE v14.0 42 Tips for LDAP Users ¢ iquana System o MySGL Referencs 4 INDI Basic Search

Required Data

¥igwana
TFieldbus Operations

o
" ..5";"8 {}n'l,'EWAmUP}{ T @G}.TEWQYI S—

=0 S
‘Encading BINHEXSTRING T !
| Data Pomt Access. RO - =

TP S— ‘Daca Pou Name “Corment howtmame of the system”
| Dota Pout [D "Currest Name of the Host System” o o B

P Log Operalions
P Goneral

—= A smee @ 2|

Figure 18: Snapshot of user interface for DPINFO command

7.2.2 The business layer

The business layer implements the main functionality of the application. It parses the XML

documents and decides which server application to send the request to.

7.2.2.1 gateway package
The following figure shows the package diagram. The gateway package contains the business

logic and uses classes from the library, esd, sql, and ldap packages.

70

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

gateway J
] |

L ; |

esd . sql 1 ‘ lciap ‘ ‘ library_ J

Figure 19: Gateway package diagram

The gateway package consists of the following classes:
e ParseXmlToProtocolCommands
e ProcessProtocollnterface
e ProcessEsdProtocol
e ProcessSqlProtocol
e ProcesslLdapProtocol

e ProtocolException

Each of these classes is discussed in the following sections.

Class:: ParseXmlToProtocolCommands
This is the main *“brain” of the application. The XML document is parsed and the logic to

determine which server application to use, resides in this class.

The self-describing capabilities of XML means that as the XML stream is parsed, specific
descriptions are looked for (such as protocol or data location) and the values of these elements
are extracted and used to determine the type of application server the message is intended for.
The other elements that are command specific are not relevant to the gateway application and

are passed to the application specific class as a table of key-value pairs.

The following figure shows the ParseXmlIToProtocolCommands class diagram. The
ParseXmlToProtocolCommands class uses the LogMessage class (to log warning, error and
exception type messages in a log file), the ProcessProtocolInterface interface and the

ProtocolException class.

Electrical, Electronic and Computer Engineering 71

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

ParseXmlToProtocolCommands

uses uses Tuses

| a— e o i . : T~
LogMessage | ' ProcessProtocollnterface | ProtocolExcepti_on—‘_
| . |

Figure 20: ParseXmlIToProtocolCommands class diagram

The following figure illustrates the flow of logic in the ParseXmIToProtocolCommands class.

Electrical, Electronic and Computer Engineering T2

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

XML
document

st réam
o

-

v

‘ parse XML request—|
| |

h 4
‘ Start document ‘

-

v
‘ Start element ‘

- ~—

__—Are there any ~ Yes- Store
- attributes | attribute

No
v i
= ~

s

o -
_Ts this the start of an™~ Store previou
6. _>—Yes—» P ® .
~_embedded element - l element value pair

- -~

H\m.r/"" >

No
. vy
End element —‘

|
!

Store element ‘
value pair

.
s
S "

close connection to | N “Is this the end of"-u.\}
server application “._request element

|
L No
! l
I |
continued continued

continued

Electrical, Electronic and Computer Engineering 73

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN
A
continued continued continued
v s 4
"'/’ \\“'\....__
~Ts this the end of o
< SR ———Yes—» save server identifier
~._protocol element_~ |
-]
No
///l\‘\"-
(--/‘"i':s. this the end of

. >—No- process next element =
~.command element -
“-\H\-\- >

-

b3 -

~ .

s the server ~_ q
= e T rocess comman
<: application specified >— No p
s e any server
~n a parameter~ .
“\ '_/,,,

o

|
Yes
| e
- | attempt a connection
‘ instantiate instance of ‘ ‘ with each of the

specified server class server applications

-
send command to

send command to :
. server class that is able to
specified server class . "
establish a connection to

l 1 1

— e ===

h 4

| end document

Figure 21: Parsing and processing XML data

Electrical, Electronic and Computer Engineering 74

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

The class names are stored in a properties file. This properties file is parsed as an input
parameter to the ParseXmlIToProtocolCommands class on instantiation. A typical example of

the contents of the properties file is shown below.

esd=za.ac.up.iguana.gateway.ProcessEsdProtocol
sgql=za.ac.up.iguana.gateway.ProcessSqlProtocol
ldap=za.ac.up.iguana.gateway.ProcessLdapProtocol

logfile=iguana.log

If a new server application is added the code that will identify the application such as sql is

added to this properties file together with the class name that needs to be instantiated.

Interface::ProcessProtocollnterface

This interface is provided to allow custom applications to be used by the
ParseXmlToProtocolCommands class. As the ParseXmlToProtocolCommands class allows
the client application to integrate with multiple disparate types of server applications, it is
imperative that it should not have an intimate understanding of the workings of the different

server applications. This interface therefore provides this abstraction layer.

Class::ProcessEsdProtocol

This class implements the ProcessProtocollnterface interface. It provides connectivity to the
ESD server application. The ProcessEsdProtocol class uses the LogMessage, the
EsdCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

Electrical, Electronic and Computer Engineering 75

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

ProcessProtocollnterface

A
|
implements

ProcessEsdProtocol

_uses uses uses

LogMessage EsdCommander ProtocolException

Figure 22: ProcessEsdProtocol class diagram

The main logic flows for this class is shown in the figure below.

Electrical, Electronic and Computer Engineering 76

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

process command called from
ParseXmlToProtocolCommands

| L

/ e
__~"Ts aconnection™_
< lothe ESD server
~~_established?
\\““-._ .'/’f/
No

R Y

Yes >

establish connection

| to ESD server
v
process according to
command type
» v _
| l
: l'_ — 3 —— ¥ ,_i_ 4
| rea write dpinfo | nodeinfo ‘ nodelist Lcreateeverﬂ |delevent | eventlist log
T & & | ' &
- ‘ [enodeinfo | | nodelistsegno eventlistseqno
| — |
l h L i Y ra + ¥ I l

|

put command into required
message protocol format as
required by the ESD server

Y
send command
to ESD server

-

Tﬂé%ﬁﬁé}“&*
< o >——No—
~—received? —

—

|
Yes
v

,[convert response into XML format

h
| return XML data string ‘

Figure 23: Connecting to ESD server and processing commands

Electrical, Electronic and Computer Engineering 77

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

Class::ProcessSqlProtocol

This class implements the ProcessProtocollnterface interface. It provides connectivity to the
MySQL server application. The ProcessSqlProtocol class uses the LogMessage, the

SqlCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

ProcessProtocollnterface

i
|

implements

ProcessSqlProtocol
uses uses uses
LogMessage SqlCommander ProtocolException

Figure 24: ProcessSqlProtocol class diagram

The main logic flows for this class is shown in the figure below.

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

process command called from
Pdrhc.XmlToProtnco!Commands

L R

_1sa connection to the my&be

N —»
T server established? ek

establish connection
1—‘ to-mySql database—| = . -

‘ server

<+
¥

k.

|
process according to
command type

[T ¥

4—"

‘ read] ‘ write ‘ |dpinfo| nodeinfo | | nodellﬂt crea ecvcnt ent | |delevenﬂ cvm;tlisf ‘ I]
& &]
enodeinfo ! noddlbtscqno eventlistseqno
SN S B! !]
select update| | sel_t_ac_l . ‘ select ‘ ‘ sclt.m | insert | |dclete| | select ‘ | select]
v ——— 1|' A v o v v . 3 R

put command into SQL format ‘
L .

h 4

send command to mySql database server

-
1!’
,,/Tb rcspon‘;“cﬁ o

- J_LLLWLLLE, —

Yes
v

convert response into XML format

| return XML data string

Figure 25: Connecting to MySQL database server and processing commands

Electrical, Electronic and Computer Engineering 79

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

Class::ProcessLdapProtocol
This class implements the ProcessProtocollnterface interface. It provides connectivity to the
openLDAP server application. The ProcessLdapProtocol class uses the LogMessage, the

LdapCommander and ProtocolException classes. The class diagram for this class is shown in

the figure below.

—

ProcessProtocollnterface

4

implements

ProcessLdapProtocol

LogMessage LdapCommander ‘ | ProtocolException
|

Figure 26: ProcessLdapProtocol class diagram

The main logic flows for this class is shown in the figure below.

80

Electrical, Electronic and Computer Engineering

University of Pretoria etd — Rimer, S C (2006)

process command called from
ParseXmiToProtocolCommands

Chapter 7 SOFTWARE DESIGN

Y
= TS

s connection to the—_

< openL.DAP server >——Yes—»
T~ established?

—— -

~—

No
v

establish connection
< to openLLDAP
database server

‘ h 4
Y

process according to
command type

[

T | - —
| | v
Y h 4

e :: 4 0 h A = l
read | l w;it_e[Mﬂ@ ‘ nodeinfo | nodelist ‘createcvcnt kjele_\.ﬁ‘ : eventlist §‘ i;g;[

| o & &
| enodeinfo | | nodelistseqno | l ‘eventlistseqno |
—— |

|5::a.rch| | mo:!ify | |sca‘1rch| ‘Earaﬂ [sea:‘ch'
|

crdate | destroy Sear_h - ‘t‘
sub context | | sub context ' | searc search

| |
17' R l v > v l i j
| ——

put command into openLDAP format

send command to openL.DAP server

1S response—__
< i ee—NG -
——received? —
Yes
v

convert response into XML format

. b

return XML data string ‘

Figure 27: Connecting to openLDAP server and processing commands

Electrical, Electronic and Computer Engineering

81

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.2.3 The Data layer

The data layer implements the details of the specific server application functionality. It

currently consists of three packages, namely, the esd, sql and ldap package.

7.2.3.1 esd package

The following figure shows the package diagram for esd.

esd

v

‘ library

Figure 28: esd package diagram

The esd package contains two classes: EsdCommander and EsdResponse. The EsdResponse

class is used by the EsdCommander class.

Class::EsdResponse
The EsdResponse class is used to store the response data returned from the ESD server for the

EsdCommander class.

Class::EsdCommander
The EsdCommander class implements the specific functionality to connect to the ESD server,
using TCP sockets to send the commands in the required ESD format. The responses are

converted into the standard XML format before being returned to the calling function.

The following figure shows the EsdCommander class diagram. The EsdCommander class uses

the LogMessage class and the EsdResponse class.

Electrical, Electronic and Computer Engineering 82

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

EsdCommander

_uses “uses

-~ =

LogMessage EsdResponse

Figure 29: EsdCommander class package

7.2.3.2 sql package

The following figure shows the sql package diagram.

sql

- h

library

Figure 30: sql package diagram

The sql package contains one class: SqlCommander.

Class::SqlCommander

The SqlCommander class implements the specific functionality to connect to the MySQL
database server, using a JDBC driver and to send the commands in the required SQL format.
The responses are converted into the standard XML format before being returned to the calling

function.

The following figure shows the SqlCommander class diagram. The SqlCommander class uses

the LogMessage class.

Electrical, Electronic and Computer Engineering 83

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

SqlCommander

LogMessage

Figure 31: SqlCommander class diagram

7.2.3.3 ldap package

The following figure shows the ldap package diagram.

Idap

Y

library

Figure 32: ldap package diagram

The ldap package contains one class: LdapCommander.

Class::LdapCommander
The LdapCommander class implements the specific functionality to connect to the openLDAP
server, and to send the commands in the required LDAP format. The responses are converted

into the standard XML format before being returned to the calling function.

The following figure shows the LdapCommander class diagram. The LdapCommander class

uses the LogMessage class.

Electrical, Electronic and Computer Engineering 84

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

LdapCommander

uses

B

LogMessage

Figure 33: LdapCommander class diagram

The business layer uses the above-mentioned data layer classes, namely, EsdCommander,
EsdResponse, SqlCommander and LdapCommander and the logical flow is shown previously

with the business layer flowcharts.

7.3 General library classes

The following figure shows the library package diagram. As can be seen from the diagram, the
library package has no dependencies on other application packages. It is intended to be used

by other packages (refer to previous package diagrams).

7.3.1.1 library package

library

Figure 34: library package diagram

The library package consists of the following classes:
e LogMessage
e CommonDefs
e (ClientSocket

e JSPException

LogMessage is used by the other classes, to write messages to the log file in a standard way. It

requires the using class to parse it the log file as an input parameter.

Electrical, Electronic and Computer Engineering 85

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN

The CommonDefs class contains all constant values that are used across the application

classes.

The ClientSocket class provides the functionality to open a socket connection.

The JSPException class extends the standard Exception class. It gets thrown if the front-end

program detects an error, such as null values parsed as an input parameter.

7.4 Application flowchart

The application uses functions from the various classes described previously. A high level

view of the application flowchart is shown below.

Electrical, Electronic and Computer Engineering

86

University of Pretoria etd — Rimer, S C (2006)

Chapter 7 SOFTWARE DESIGN
‘ receive request from front-end |
h A

{ parse XML data source l

—

| decode address

L

determine server class using ‘
identifier
~ —
i —~ : // g =y Error in
create server specific class —————»< S0 EES No —— server
\\T 7 specification.
Yes
r I . . — .l.____ I | 3
i
v . .
| ESD server ‘ MySQL server | openLDAP
L — [—N—— server
= ¥ . v
Connect Connect Connect
to ESD to MySQL to openLDAP — ,
T . o) return error
: - i . _ response
Send command Send command Send command
to ESD to MySQL to openLDAP |
l . -y . ¥
Receive response | Receive response Receive response |
from ESD | from MySQL from openLDAP |

‘, l

b 4

convert response
into XML format

|
e

return XML data B
stream to front-end

Figure 35: Application flowchart

Electrical, Electronic and Computer Engineering 87

University of Pretoria etd — Rimer, S C (2006)
Chapter 7 SOFTWARE DESIGN

7.5 Error Handling

There are two classes of exceptions, namely:
e ProtocolException: the server application specific interface class throws this exception,
if an error such as being unable to connect to the server application occurs.
e JspException: this exception is thrown if the class that processes the browser requests

detects an error, such as null values parsed as an input parameter.

_ The application also has a log file that logs information to a specified file that can be read for
debug purposes. There are different log levels that ensure that the user can set the level for the

type of debug messages to be logged to the file. The debug levels are:

B_ONE No debug messages are written to lo

DBG_EXCEPTION Exception type debug messages are written to the log file
DBG _ERROR Class error type messages are written to the log file

DBG WARNING Warning type messages are written to the log file

DBG MESSAGE A general type of message is written to the log file

DBG ALL All types of messages are written to the log file

Table 5: Debug levels

Electrical, Electronic and Computer Engineering 88

	Front
	Chapter 1
	Chapter 2
	Chapters 3-4
	Chapter 5-6
	CHAPTER 7
	7.1 Introduction
	7.2 Design
	7.3 General library classes
	7.4 Application flowchart

	Chapters 8-9
	Back

