
The use of software systems to implement
Case-Based Reasoning enabled intelligent
components for architectural briefing and

design

By

Dirk Cornelis Uys Conradie

Submitted in fulfilment of part of the requirements

for the degree of Philosophiae Doctor (Applied Sciences)
Faculty of Engineering, the Built Environment and

Information Technology
University of Pretoria

South Africa

Study Leader/Promotor: Prof. D. Holm

October 2000

University of Pretoria etd

2

 Abstract

This thesis describes the development of a prototype Case-Based Reasoning (CBR) enabled
intelligent component system, called Architectural General Object System (ARGOS), to
facilitate the storage of design information in lightweight cases that can be used on the
desktop computer over the total life of the facility. It uses CBR techniques combined with
Microsoft ActiveX controls (object technology) to provide a useful autonomous component to
implement some of the software requirements of such a system within the context of the
global design and construction environment. These technologies ensure a platform
independent environment and integration into the Internet. The use of XML (Extensible Mark-
up Language) as a design language is explored to facilitate the storage of design data in a
persistent and neutral manner independent from the software that originally created it. This
ensures a long data life and the enables different actors over the life cycle of a facility to use
their own relevant software to process the design information.

During the development of AEDES (Architectural Evaluation and Design System), the
research team realised that the problem of structuring design knowledge in such a way to
support relevant software systems across the life cycle of a facility is far more complex than
originally anticipated. Although there are many similarities between the construction and the
manufacturing industries, there are also significant and problematic differences. Architectural
design tasks take place in an open world where the reasoner’s knowledge is incomplete or
inconsistent. Due to this the focus in computer-aided architectural design research has shifted
back and forth from attempts to totally automate the entire design process to its partial support
through drafting tools.

In an attempt to overcome some of the enormous complexities, that researchers struggled with
over the past 35 years, a prototype intelligent autonomous design component ARGOS is
developed in this research. It is clear that automated design methods are not tractable and it is
therefore more worthwhile to pursue the creation of a neutral design language and the creation
of intelligent and flexible design tools to manipulate these design fragments.

An in-depth study is made of various important out-of-industry manufacturing techniques,
CBR and object technology and to establish clearly what the desirable characteristics of
ARGOS should be. An important requirement is that ARGOS should be generic and non-
prescriptive and should work in a Microsoft Windows compliant environment. A solution
without the use of CAD is proposed that ensure a generic solution that could add value to
many different construction industry actors in many different environments. More recently
attempts are being made to introduce post-modern Artificial Intelligence (AI) into design and
architecture. Despite all these efforts it is clear that architectural briefing and design has not
reached the status of a science and it is unlikely ever to. This is confirmed by recent
breakthroughs in the field of Artificial Intelligence (AI) and Knowledge Management that
provide deeper insights into the cognitive processes of the designer.

This study indicates that XML is a viable means of expressing design knowledge and a
feasible alternative for the complex Building Product Models currently proposed whilst at the
same time supporting operations in the Internet environment. Design information and the
ability to retrieve it is now more important than the software application that originally
created it. The autonomous intelligent component ARGOS provides a method to encapsulate
design knowledge at both tacit and explicit cognitive levels whilst at the same time providing
global communication in a convenient desktop environment. ARGOS is designed in a
parametric way that supports any design process that requires positional, volumetric and
spatial relationship analysis in both 2D and 3D. Multiple autonomous copies can be placed in
a container environment such as Excel. Any process written in any computer language that
supports the use of ActiveX controls can be used to manipulate the ARGOS instances.

University of Pretoria etd

3

Ekserp

Hierdie verhandeling beskryf die ontwikkeling van ‘n prototipe intelligente komponentstelsel
met Case-Based Reasoning (CBR) vermoë. Dit word Argitektuur Objek Stelsel (ARGOS)
genoem en maak die berging van lewenssiklus ontwerpinligting in kompakte gevalle op ‘n
mikrorekenaar moontlik. CBR-tegnieke word gekombineer met Microsoft ActiveX
objektegnologie in die ontwerp van ‘n outonome komponent wat sommige van die
programmatuurbehoeftes in die globale ontwerp- en konstruksie-omgewing kan bevredig. Die
tegnologieë verseker ‘n platform-onafhanklike uitvoering en gerieflike integrasie in die
Internet. XML (Extensible Mark-up Language) word as ‘n ontwerptaal gebruik wat die
berging van ontwerpinligting op ‘n standhoudende en neutrale wyse moontlik maak, ongeag
die programmatuur wat dit oorspronklik geskep het. Dit verseker ‘n lang dataleeftyd en laat
verskillende gebruikers oor die lewenssiklus van die fasiliteit relevante programmatuur
aanwend om die ontwerpinligting te verwerk.

Gedurende die ontwikkeling van AEDES (Architectural Evaluation and Design System), het
die span ontdek dat die strukturering van ontwerpinligting, op so ‘n wyse dat dit vir
programmatuurstelsels oor die lewenssiklus van ‘n fasiliteit bruikbaar is, aansienlik
komplekser is as aanvanklik vermoed. Alhoewel daar heelwat ooreenkomste tussen die
konstruksiebedryf en die vervaardigingsindustrie bestaan is daar ook betekenisvolle en
problematiese verskille. Argitektuurontwerp vind plaas in ‘n oop wêreld waar die ontwerper
(denker) se kennis onvolledig of inkonsekwent is. Derhalwe het die fokus in rekenaar-
gesteunde argiteksontwerpnavorsing tussen die uiterstes van totale outomatisasie tot
gedeeltelike ondersteuning deur tekenstelsels gewissel.

In ‘n poging om sommige van die enorme kompleksiteite die hoof te bied waarmee talle
navorsers oor die afgelope 35 jaar geworstel het, is die outonome ontwerpkomponent ARGOS
ontwikkel. Dit is duidelik dat geoutomatiseerde ontwerpmetodes nie haalbaar is nie en dat dit
dus die moeite werd om eerder die daarstelling van ‘n gerieflike en neutrale ontwerptaal en
skep van intelligente en aanpasbare elektroniese ontwerpgereedskap na te strewe wat die
betrokke ontwerpinligting kan gebruik.

‘n Omvattende studie word gemaak van verskeie belangrike vervaardigingsindustrie tegnieke,
CBR en objektegnologie buite die domein van argitektuur om die wenslike karakterestieke
van ARGOS te bepaal. Een van die belangrikste vereistes is dat ARGOS nie-voorskriftelik en
in ‘n Microsoft Windows aanpasbare omgewing ontplooibaar moet wees. ‘n Generiese
oplossing sonder die gebruik van CAD word voorgestel sodat dit kan waarde toevoeg tot
stelsels wat deur verskillende gebruikers in ‘n wye verskeidenheid van omgewings gebruik
word. Tans word verskeie pogings aangewend om post-moderne Kunsmatige Intelligensie
(KI) in ontwerp en argitektuur toe te pas. Desondanks al hierdie pogings is dit duidelik dat
argitektuuropdraggewing en ontwerp nog nie die status van ‘n wetenskap bereik het nie, en
waarskynlik nooit sal bereik nie. Dit word bevestig deur deurbrake in KI en kennisbestuur wat
diepere insigte in die kognitiewe vermoëns van die kreatiewe ontwerper aan die lig gebring
het.

Die studie toon aan dat XML ‘n lewensvatbare taal is om ontwerpinligting te struktureer en ‘n
alternatief vir die komplekse Gebou Produk Modelle (Building Product Models) is wat op die
oomblik voorgestel word. Ontwerpinligting en die vermoë om dit te herwin het nou
belangriker geword as die programmatuur wat dit oorspronklik geskep het. XML ondersteun
ook die Internet. ARGOS het metodes om ontwerpinligting van beide stilswyende en
eksplisiete kognitiewe aard te verpak. Globale kommunikasie is nou moontlik vanaf die
mikrorekenaar. ARGOS het ‘n parametriese ontwerp wat ontwerpprosesse in posisie, volume
en ruimtelike verwantskaps ontledings in beide 2D en 3D ondersteun. Veelvuldige outonome

University of Pretoria etd

4

kopieë kan in ‘n houeromgewing soos Microsoft Excel geplaas word. Enige proses in enige
rekenaartaal wat ActiveX objekte ondersteun kan ARGOS objekte manipuleer.

University of Pretoria etd

5

Acknowledgements

I would like to acknowledge the valued contributions and support of the following persons
and organisations:

• Prof. Dieter Holm for his enthusiasm, guidance and support throughout the project;
• Dr. Ben van Vliet for his expert guidance and insights on the QFD process;
• Prof. Craig Zimring, Janet Kolodner, Charles Eastman, Ashok Goel, and Marin Simina at

the Georgia Institute of Technology for expert guidance and insights into Case-Based
Reasoning and the cognitive aspects of design;

• Kirstin Küsel for her support, enthusiasm and persistence in the attempts to understand
the open world of architectural design better;

• My relatives and friends for their moral support and encouragement;
• My wife Christa for her love and endurance that has greatly contributed to the success of

the work presented here.

This thesis is dedicated to my father, who encouraged me to follow a career in the sciences
and set an exceptionally high standard for me to follow in dedicated service to his family and
South African citizens at large over many years.

University of Pretoria etd

6

Contents

Abstract...2
Ekserp ...3
Acknowledgements..5
Contents..6
List of figures ...11
List of tables ...12
Definition of terms..13
List of abbreviations ..16
Chapter 1: Introduction and overview ..19
Chapter 2: Motivation...23
2.1 Problem statement..23
2.2 Sub-problems ...23
2.3 Bounds and constraints ..24
2.4 Research method..24

Chapter 3: Review of literature ...26
Introduction ...26
3.1 Knowledge management ..29

3.1.1 Introduction ... 29
3.1.2 The nature of knowledge... 30

3.1.2.1 Socialisation ... 32
3.1.2.2 Externalization.. 32
3.1.2.3 Combination ... 32
3.1.2.4 Internalization... 32

3.1.3 The current situation.. 33
3.1.3.1 Desirable emerging technologies to enable knowledge management ... 34

3.1.4 Knowledge management architectures.. 36
3.1.4.1 Hypertext based systems ... 39
3.1.4.2 Search engines such as Alta Vista Discovery.. 40
3.1.4.3 Essential elements of a knowledge management architecture .. 41

3.1.5 Microsoft’s approach to KM ... 43
3.1.5.1 Messaging and collaboration.. 44
3.1.5.2 Complete Intranet ... 44
3.1.5.3 Communities, teams and experts... 45
3.1.5.4 Portals and search .. 45
3.1.5.5 Content management .. 46
3.1.5.6 Real-time collaboration .. 46

3.2 Knowledge based design..48
3.2.1 Introduction ... 48
3.2.2 Artificial intelligence and design .. 50

3.2.2.1 Life cycle enabled design ontology ... 53
3.2.3 Problem-solving architectures... 56

3.2.3.1 Top-down strategies.. 57
3.2.3.2 Bottom-up strategies ... 57
3.2.3.3 Middle-out strategies .. 58

3.2.4 Case-based design ... 59

University of Pretoria etd

7

3.2.4.1 Introduction .. 59
3.2.4.2 Advantages of a Case-Based Reasoner?... 61
3.2.4.3 The disadvantages and caveats of Case-Based Reasoning ... 62
3.2.4.4 Case-based Reasoning compared with other methods .. 63
3.2.4.5 Types of Case-Based Reasoners.. 64
3.2.4.6 Generic models ... 65
3.2.4.7 Associative models .. 66
3.2.4.8 Exemplar models... 66
3.2.4.9 The design precedent .. 67

3.2.5 Case-based Reasoning indexing and retrieval... 68
3.2.5.1 Introduction .. 68
3.2.5.2 The indexing problem ... 68
3.2.5.3 Choosing an indexing vocabulary... 69
3.2.5.4 Methods for index selection .. 70
3.2.5.5 Retrieving cases from the case library .. 72
3.2.5.6 The use of fuzzy sets for case indexing.. 74
3.2.5.7 The use of fuzzy sets to formulate dynamic linguistic variables for case retrieval.......................... 76
3.2.5.8 Fuzzy set linguistic modifiers .. 78

3.2.6 Conclusion... 83

3.3 The systems view of the world..84
3.3.1 Introduction ... 84
3.3.2 What is manufacturing? .. 84

3.3.2.1 Manufacturing capability.. 86
3.3.2.2 Manufacturing processes .. 86
3.3.2.3 Low-quantity production... 86

3.3.3 Concurrent engineering (CE) .. 87
3.3.3.1 Strategies for concurrent engineering... 88
3.3.3.2 Concurrent engineering enabling technologies .. 90
3.3.3.3 Flow management... 93
3.3.3.4 Theory of Constraints (TOC) .. 96

3.3.4 Taguchi techniques for quality engineering .. 97
3.3.4.1 The meaning of quality.. 97
3.3.4.2 Taguchi loss function .. 98

3.3.5 The Fuzzy Front End (FFE) .. 99

3.4 Objects..101
3.4.1 Introduction ... 101
3.4.2 Origins of the object approach .. 101
3.4.2 Why is the use of objects advisable... 102
3.4.3 Object-oriented programming ... 103

3.4.3.1 Encapsulation ... 103
3.4.3.2 Objects .. 104
3.4.3.3 Class ... 106

3.4.4 The model approach to architectural design.. 106
3.4.5 Frameworks for object components .. 107

3.4.5.1 Aims of object components.. 108
3.4.5.2 Technical components... 108
3.4.5.3 Compound documents... 108
3.4.5.4 Business components .. 109

3.4.6 OLE/ COM from Microsoft .. 109
3.4.6.1 Persistence of objects.. 110
3.4.6.2 Data exchange .. 110
3.4.6.3 Enabling relationships between documents .. 110
3.4.6.4 In-place activation .. 110
3.4.6.5 The object-component model .. 111
3.4.6.6 Support for distributed objects.. 111
3.4.6.7 OLE/ COM basic services... 111
3.4.6.8 The main OLE interfaces .. 113

3.5 Kansei engineering and new product development ..114
3.5.1 Introduction ... 114
3.5.2 What is Kansei Engineering (KE) ... 114
3.5.3 Types of Kansei Engineering .. 115

University of Pretoria etd

8

3.5.3.1 Type 1: Category Classification.. 116
3.5.3.2 Type 2: Kansei Engineering Computer System (KES) .. 116
3.5.3.3 Type 3: Kansei Engineering Modelling .. 117
3.5.3.4 Type 4: Hybrid Kansei Engineering.. 118
3.5.3.5 Type 5: Virtual Kansei Engineering.. 118

3.5.4 Main Kansei Engineering steps... 118
3.5.5 The Semantic Differential Method.. 119
3.5.5 Conclusion... 120

3.6 Quality Function Deployment (QFD)...121
3.6.1 Introduction ... 121
3.6.2 What is QFD?.. 122
3.6.3 The affinity diagram.. 124
3.6.4 Kano’s model of user satisfaction ... 129

3.6.4.1 Dissatisfiers .. 129
3.6.4.2 Satisfiers ... 129
3.6.4.3 Delighters ... 129

3.6.5 QFD software .. 130

3.7 Theory of inventive problem solving (TRIZ) ..134
3.7.1 Introduction ... 134
3.7.2 TRIZ.. 134
3.7.3 Steps in using TRIZ... 135

3.7.3.1 Formulate the problem: the prism of TRIZ ... 135
3.7.3.2 Search for previously well-solved problems ... 135
3.7.3.3 Look for analogous solutions and adapt to solution ... 136
3.7.3.4 Socially responsible TRIZ ... 136

Summary ..136

Chapter 4: Precedents to the present research.....................................139
Introduction ...139
4.1 The PREMIS Facilities Management System...139

4.1.1 Introduction ... 139
4.1.2 Intrinsic design principles ... 139
4.1.3 A typical application ... 140
4.1.4 Critique of PREMIS.. 141

4.2 The AEDES prototype system ..142
4.2.1 Integrated life cycle process .. 144

4.2.1.1 The characteristics.. 144
4.2.1.2 Evaluation during the process .. 144

4.2.2 Concurrent multimedia environment... 144
4.2.2.1 The need for multimedia in the architectural profession .. 144
4.2.2.2 Multimedia in AEDES... 144

4.2.3 Life cycle requirement validation.. 145
4.2.3.1 Multi-media QFD ... 145
4.2.3.2 Break-out tools.. 147

4.2.4 Ad-hoc queries and reports ... 148
4.2.4.1 Electronic traceability .. 148
4.2.4.2 Object manipulation.. 149
4.2.4.3 Flexible queries and reporting.. 149
4.2.4.4 Implicit linking technique.. 150

4.2.5 Major components... 150
4.2.5.1 Relational database .. 150
4.2.5.2 Software shell.. 151
4.2.5.3 Database forms ... 151
4.2.5.4 Help system... 151
4.2.5.5 QFD diagram software ... 151
4.2.5.6 Starter kit packaging... 151
4.2.5.7 Materials database.. 152

4.2.6 Conclusion... 152

University of Pretoria etd

9

4.2.7 Critique of AEDES.. 152

Summary ..153

Chapter 5: Aims of ARGOS ...154
Introduction ...154
5.1 Concept selection ...155

5.1.1 Introduction ... 155
5.1.2 Conceptual vulnerability ... 156
5.1.3 Overview of the method.. 156
5.1.4 Concept screening ... 159

5.1.4.1 Select possible solutions to the particular design problem ... 159
5.1.4.2 Prepare the evaluation matrix .. 159
5.1.4.3 Rate the concepts .. 159
5.1.4.4 Rank the concepts ... 160
5.1.4.5 Combine and improve the concepts .. 160
5.1.4.6 Select one or more concepts.. 160
5.1.4.7 Reflect on the results and the process ... 160

5.1.5 Concept scoring... 161
5.1.5.1 Prepare the selection matrix ... 161
5.1.5.2 Rate the concepts .. 162
5.1.5.3 Rank the concepts ... 162
5.1.5.4 Combine and improve the concepts .. 162
5.1.5.5 Select one or more concepts.. 163
5.1.5.6 Reflect on the results and the process ... 163
5.1.5.7 Some important factors ... 163

5.1.6 Enhanced QFD and concept selection... 164

Summary ..164

Chapter 6: Implementation details..166
Introduction ...166
7.3 Life cycle Information infrastructure ..166

6.1.1 Introduction ... 166
6.1.2 XML as a design language .. 167

6.2 Packaging and retrieval of design knowledge...180
6.2.1 Introduction ... 180
6.2.2 Constraints... 182
6.2.3 The design of the ARGOS intelligent component... 185
6.2.4 Classification and knowledge organisation in a packaged environment............... 187
6.2.5 The co-existence of ARGOS with other software... 189

6.2.5.1 Concept selection.. 190
6.2.5.2 Spreadsheets ... 190
6.2.5.3 Computer languages ... 190
6.2.5.4 Process analysis.. 191

6.2.6 The design of the ARGOS object.. 191

6.3 World Wide Web Implementation ...193
6.4 Hypothetical use of ARGOS ...194
6.5 Empirical response tests...199
Summary ..201

Chapter 7: Summary, Conclusions, Recommendations and
Assessment ..203
Introduction ...203
7.1 Summary ..203

University of Pretoria etd

10

7.1.1 Out-of-industry methodologies ... 203
7.1.2 Life cycle design knowledge... 204
7.1.3 ARGOS intelligent component ... 204

7.2 Conclusions ..205
7.3 Recommendations for further work...206
7.4 Assessment ..207

References..208
Appendix A: Implicit linking in PREMIS ...214
Appendix B: PREMIS search criteria definition.....................................216
Appendix C: Interface an ActiveX control to an Excel spreadsheet217
Appendix D: XSL stylesheet to convert XML into VML for web page
display...218
Appendix E: Visual Basic code to implement a minimal web browser222
Appendix F: Visual Basic code to implement ARGOS intelligent
component..224

University of Pretoria etd

11

List of figures

Figure 1: Ability to influence system characteristics (Sparrius 1998: 1.1).. 20
Figure 2: Product innovation methodologies (Collated by author) ... 26
Figure 3: The classical view of knowledge hierarchies (Author)... 31
Figure 4: The knowledge cycle and process. See text. (GartnerGroup 1998:2) .. 32
Figure 5: Concept extraction for representation (GartnerGroup 1998:8)... 35
Figure 6: Visualisation of representation (GartnerGroup 1998:9) ... 36
Figure 7: A typical Alta Vista Discovery screen (Author) ... 40
Figure 8: Knowledge management architecture (GartnerGroup 1998:3) ... 41
Figure 9: Knowledge Management technology model (GartnerGroup 1998:4) .. 42
Figure 10: Knowledge Management vendors (Based on GartnerGroup 1998:16) .. 43
Figure 11: The modules of a Knowledge Management evolution (Leibmann 1999:7) .. 44
Figure 12: Typical hierarchical relational database structures used in a Facilities Management system (Author)55
Figure 13: IAI, Industry Foundation Classes Release 2.0 Object Hierarchy (Author) .. 56
Figure 14: Case-Based Reasoning compared to concept selection (Collated by author from Kolodner (1993:18),

Ulrich et al. (1995) and Pugh (1996)).. 63
Figure 15: Terms of the linguistic variable age in a building context (Author)... 77
Figure 16: Two ways to define manufacturing, a technical or an economic process (Groover 1996:3) 85
Figure 17: Decoupling of time, cost and quality by means of Concurrent Engineering (Berndes 1996)................. 88
Figure 18: Strategies for concurrent engineering (PSI-strategy) (Berndes 1996)... 89
Figure 19: Different flow types in a process (Author) ... 94
Figure 20: Throughput in a manufacturing process (Author, based on Goldratt 1993:207)................................... 95
Figure 21: Costs associated with greenhouse film (Ross 1988)... 99
Figure 22: Using a Global Unique Identifier (GUID) to link graphic objects to other data (Author)................... 105
Figure 23: The Kansei engineering process (Nagamachi 1999).. 115
Figure 24: The translation of Kansei into physical car traits (Nagamachi 1999) ... 116
Figure 25: Type 2: Kansei Engineering Computer System (KES) (Nagamachi 1999)... 117
Figure 26: Components of a hybrid Kansei Engineering System (Nagamachi 1999) .. 118
Figure 27: Adjectives applicable to coffee cups when using the semantic differential method (Nagamachi 1999)120
Figure 28: Schematic representation of the QFD House of Quality (Cohen 1995:12) .. 123
Figure 29: Kano's customer satisfaction diagram (Cohen 1995:37) ... 130
Figure 30: QFD/Capture product planning matrix screen (Author).. 131
Figure 31: Relational database tables used in the AEDES prototype QFD software (Author) 132
Figure 32: Typical screen of the AEDES prototype QFD software (Author)... 133
Figure 33: PREMIS Facilities Management Software Components (Author).. 139
Figure 34: The life cycle phases of a building (Author)... 142
Figure 35: AEDES QFD Process (Conradie and Küsel 1999:24) ... 143
Figure 36: Three tiered collaborative data structure (Conradie and Küsel 1999:26)………………………………..145
Figure 37: A typical AEDES screen with multi-media information (Author)... 147
Figure 38: AEDES software components (Author) .. 150
Figure 39: Concept A, Oracle form with CAD in OLE container and Visual Basic attribute reader (Author) 157
Figure 40: Concept B, ActiveX control based starter kit (Author)... 157
Figure 41: Concept C, ActiveX control based starter kit (Author) .. 157
Figure 42: Concept D, ActiveX control based starter kit (Author) .. 158
Figure 43: Typical starter kit drawing as used in the design of the AEDES prototype used as the starter kit

reference concept (Author).. 158
Figure 44: The concept screening matrix for the concepts A to D (Author, based on Pugh 1996; Ulrich et al.

1995:114).. 161
Figure 45: The concept scoring matrix for the concepts B, C and D (Author, based on Pugh 1996; Ulrich et al.

1995:117).. 163
Figure 46: Structured Planning/ Design Knowledge Delivery (Author).. 178
Figure 47: Display of CAD drawing in XML format by means of VML (Author) .. 180
Figure 48: Taxonomy of constraint types (Hinrichs 1991:99) ... 185
Figure 49: ARGOS object in 2D mode (Author) .. 186
Figure 50: ARGOS object in 3D mode (Author) .. 186
Figure 51: The relationship between the ARGOS, ActiveX design object and the applications software (Author)189
Figure 52: The relationship of the ARGOS object to other intelligent data sources (Author) 191
Figure 53: Design of 16 bed male/ female/ paediatric in-patients section step 1 (Author).................................... 195
Figure 54: Design of 16 bed male/ female/ paediatric in-patients section step 2 (Author).................................... 196
Figure 55: Setting design properties of a paediatric ward (Author).. 197
Figure 56: The calculation of area and volume (Author) .. 198
Figure 57: The reduction of volume by lowering the ceiling (Author)... 198
Figure 58: The retrieval and insertion of a Four Bed Ward detailed case (Author).. 199
Figure 59: ARGOS component response (Author)... 200
Figure 60: ARGOS blackboard size (Author) .. 201

University of Pretoria etd

12

List of tables

Table 1: Stages of technological knowledge (Bohn 1997:77) .. 30
Table 2: Current and emerging multiple standards that form a barrier to responsive NGM information systems

(NGM 1997) ... 37
Table 3: The main requirements for a Knowledge Management enabling environment (Collated by author) 38
Table 4: A comparison between Case-Based, Rule-Based and Model-based Reasoning (Collated by author) 64
Table 5: Methods of obtaining Voice of Customer (Collated by author) ... 125
Table 6: Essential user requirements extracted for the AEDES VOC exercise.. 127
Table 7 : Sample of form used to extract constant sum paired comparisons from users....................................... 127
Table 8: Relative importance of user requirements within group .. 128

University of Pretoria etd

13

Definition of terms

AEDES
An acronym for Architectural Evaluation and Design System. This was an early attempt to
structure design data during the briefing and design phases to assist with knowledge
management across the life cycle of a facility (Conradie et al. 1999).

ARGOS
An acronym for Architectural General Object System, a Case-Based Reasoning enabled
ActiveX intelligent component that can be used in Microsoft compliant container
environments such as Microsoft Excel, Word, Access, Visio and Arena.

Artificial Intelligence (AI)
In the past definitions such as the following were used:
Luger and Stubblefield defined AI as the branch of computer science that is concerned with
the automation of intelligent behaviour (Riesbeck 1996:373).
Minsky defined AI as the field of research concerned with making machines do things that
people consider require intelligence (Riesbeck 1996:373).
Charniak and McDermott define AI as the study of mental faculties through the use of
computational models (Riesbeck 1996:373).

The definition that is used in the present study is the one of Riesbeck (1996:374) for Post-
Modern AI. AI is the search for answers to the eternal question why computers are so stupid.
In Post-Modern AI, the AI becomes an invisible part of the overall system.

Building Product Model (BPM)
A BPR is a digital information structure of the objects making up a building, capturing the
form, behaviour and relations of the parts and assemblies within the building. A BPR is
potentially a richer representation than any set of drawings and can be implemented in
multiple ways, including as an ASCII file or as a database (Eastman 1999).

Blackboard –Based Architecture
A Case-Based Reasoning architecture that offers flexible, opportunistic control capabilities. A
blackboard architecture separates control knowledge from the domain knowledge contained in
the knowledge sources (Rissland et al. 1991:77-78).

Case
A case is a contextualized piece of knowledge representing an experience that teaches a
lesson fundamental to achieving the goals of the reasoner (Kolodner et al. 1996:36).

Case-Based Reasoning (CBR)
CBR solves new problems by adapting solutions that were used to solve old problems. The
intuition of CBR is that situations recur with regularity. What was done in one situation is
likely to be applicable in a similar situation. If we know what worked in a previous situation
similar to the new one, we start with that in reasoning about the new situation (Riesbeck et al.
1989:25; Kolodner 1993:8).

Concept Selection
Concept selection is the emergence and selection of the best and strongest concepts with
respect to customer needs and other criteria. Although creativity is essential throughout the
entire product development process, concept selection reduces the number of alternatives
under consideration. Concept selection is one of the most critical and difficult problems in
design (Pugh 1996:167).

University of Pretoria etd

14

Constraint
In order to carry out some design activity, certain information must be available. In addition
certain conditions, states or evaluations may apply to the data.

Critic
A critic is a piece of software that fires under certain circumstances to alert of possible design
conflicts such as a fuel store that is right next to an operating theatre.

Frame
A frame is a case-like entity that records relationships between parts of a proposed solution
but is more abstract than a case itself. Framing a problem generally means choosing some set
of its specifications to concentrate on and deriving a framework that becomes more refined
over time (Kolodner 1993:523).

Fuzzy sets
Bellman and Zadeh (1970) and Bojadziev et al. (1995:113) describe fuzzy sets as a special
class of object in which there is no sharp boundary between those objects that belong to the
class and those that do not.

Intelligent Component
In this view the problem of AI is to describe and build components that reduce the stupidity of
the systems in which they function.

Knowledge Management (KM)
Knowledge management (KM), as defined by the GartnerGroup, is a discipline with new
processes and technologies that differentiate it from information management. New
technologies are required to capture knowledge that was previously tacit. Tacit knowledge is
embodied in the minds and expertise of individuals. Once captured, knowledge must be
shared to leverage its value and reused in similar situations and contexts.

Object-oriented design
According to Meyer (1988) Object-oriented design is the method which leads to software
architectures based on the objects every system or subsystem manipulates rather than the
function it is meant to ensure. Object-oriented design is also the construction of software
systems as structured collections of abstract data type implementations (Meyer 1988).

Open World
An open world denotes any problem-solving situation in which the reasoner’s knowledge is
incomplete or inconsistent (Hinrichs 1991:5).

Quality Function Deployment (QFD)
QFD is a method for structured product planning and development that enables a
development team to specify clearly the customer’s wants and needs and then to evaluate each
proposed product or service capability systematically in terms of its impact on meeting those
needs (Cohen 1995:11).

Scalable Vector Graphics (SVG)
A working draft of 29 June 2000 of the W3C defines the features and syntax for Scalable
Vector Graphics (SVG), a language for describing two-dimensional vector and mixed vector/
raster graphics in XML. SVG is a language for describing two-dimensional graphics in XML.
SVG allows for vector graphic shapes (paths consisting of straight lines and curves), images
and text. Graphical objects can be grouped, styled, transformed and composited into
previously rendered objects. The feature set includes nested transformations, clipping paths,
alpha masks, filter effects and template objects.

University of Pretoria etd

15

Systems Engineering (SE)
An interdisciplinary approach and means to enable the realisation of successful systems. It
focuses on defining customer needs and required functionality early in the development cycle,
documenting requirements, then proceeding with design synthesis and system validation
while considering the complete problem.

Vector Markup Language (VML)
Microsoft developed their own XML application for vector graphics called VML. VML is
more finished than SVG and is already supported by Internet Explorer 5.0 and Microsoft
Office 2000. VML is not as ambitious as SVG and leaves out advanced features such as
clipping and masking.

XML
XML was developed by an XML Working Group (originally known as the SGML Editorial
Review Board) formed under the auspices of the World Wide Web Consortium (W3C) in
1996. XML is a set of rules for defining semantic tags that break a document into parts and
identify the different parts of the document. It is also a meta-markup language that defines a
syntax used to define other domain-specific, semantic structured mark-up languages (Harold
1999:3).

University of Pretoria etd

16

List of abbreviations

ADE Application Development Environments
AEDES Architectural Evaluation and Design System
AI Artificial Intelligence
ARGOS Architectural General Object System
BEARS Building Environmental Assessment and Rating System for South Africa
BMMS Building Maintenance Management System
BOMSIG Business Object Model Special Interest Group
BPM Building Product Model
CASE Computer-Aided Software Engineering
CBD Case-Based Design
CBR Case-Based Reasoning
CBT Computer-Based Training and Teaching
CE Concurrent engineering (CE)
CKO Chief Knowledge Officer
COM Component Object Model
CONSENS Concurrent Simultaneous Engineering System
CORBA Common Object Request Broker Architecture
CPDM Common Product Data Model
CSS Cascading Style Sheets
DBMS Database Management Systems
DCE Distributed Computing Environment Group
DCOM Distributed Component Object Model
DTD Document Type Definition
DXF Data Interchange Format
EQFD Enhanced QFD
FFE Fuzzy Front End
FM Facilities Management
FMEA Failure Mode and Effects Analysis
GUID Global Unique Identifier
HOQ House of Quality
HTML Hypertext Mark-up Language
IAI International Alliance for Interoperability
IDC International Data Corporation
IGES Initial Graphics Exchange Specification
IR Information Retrieval
IS Information Science
ISO-STEP International Standards Organisation – Standard for the Exchange of Product

model data
KA Knowledge Architect
KBCAAD Knowledge Based Computer-aided Architectural Design
KBDS Knowledge-based Design Systems
KBS Knowledge Based System
KE Kansei Engineering
KE Knowledge Engineering
KES Kansei Engineering System
KM Knowledge Management
KMS Knowledge Management System
LTM Long Term Memory
MBR Model-based Reasoning
MIT Massachusetts Institute of Technology
MOP Memory Organisation Packet
NGM Next Generation Manufacturing Company

University of Pretoria etd

17

NLP Natural Language Processing
ODB Object-Oriented Database or Object Database
ODBC Open Database Connectivity
ODL Object Description Language
OE Operational Expense
OID Object Identifier
OLAP On-line Analytical Processing
OLE Object Linking and Embedding
OMG Object Management Group
OOCAD Object-Oriented Computer Aided Design
OOL Object-Oriented programming languages
ORB Object Request Brokers
PDES Product Data Exchange using STEP
PDM Product Data Modelling
PREMIS Professional Real Estate Management Information System
PROCAP Procedural Guide for Clients, Architects and Other Professionals
QA Quality Assurance
QC Quality Control
QFD Quality Function Deployment
RBR Rule-Based Reasoning
ROI Return on investment
SCM Service Control Manager
SD Semantic Differential
SE Systems Engineering
SGML Standard Generalised Mark-up Language
SME Subject Matter Experts
SQC Statistical Quality Control
SQL Structured Query Language
SVG Scalable Vector Graphics
TOC Theory of Constraints
TOP Thematic Organisational Packet
TQM Total Quality Management
TQM Total Quality Movement
UDE Undesirable Effects
UIF Universal Index Frame
UR User Requirement
VBA Visual Basic for Applications
VE Value Engineering
VML Vector Mark-up Language
VOC Voice of Customer
VR Virtual Reality
VRML Virtual Reality Mark-up Language
W3C World Wide Web Consortium
WM Working Memory
www world wide web
XML Extensible Mark-up Language
XSL Extensible Style language

University of Pretoria etd

19

19

Chapter 1: Introduction and overview

This chapter provides a brief introduction to the impact of the knowledge-age drivers on the
product development processes. This suggests that the construction industry need to be
improved in general and architectural briefing and design specifically if it is to remain
competitive. It identifies the fact that, although there are similarities between product
development and architectural design, there are also significant and problematic differences.
Realistic Artificial Intelligence in a post-modern form brought new opportunities to improve
architectural design activities.

The advent of the information age and a knowledge economy brought a necessity for global
competitiveness and a need for product innovation (TechnoSolve 1998:1).

The Global drivers of the new marketplace are (Agility Forum 1997):

• Ubiquitous availability and distribution of information.
• Accelerating pace of change in technology.
• Rapidly expanding technology access.
• Globalisation of markets and business competition.
• Global wage and job skills shift.
• Environmental responsibility and resource limitations.
• Increasing customer expectations.

The Next Generation Manufacturing Company (NGM) will succeed through the integrated
performance of people, business processes and technology. Of the NGM imperatives
identified Rapid Product/ Process Realisation is the aspect that is most relevant to the present
study.

This challenges firms to:

! Address smaller market segments, with an increased variety of products.
! Increase the frequency of product introductions.
! Compress the lead-time for product development.
! Shorten product life cycles.
! Increase product complexity.
! Distribute product development and production activities across a network of firms

instead of within a single integrated firm. (TechnoSolve 1998:1).

These challenges imply the need to design and develop families of products by networks of
firms on compressed development schedules, which in turn implies increasingly more
knowledge from the designer regarding the life cycle costs of a product at the conception of
the design problem, where few decisions have been made and little cost committed to
production. Designers are under increasing pressure to apply upstream design techniques to
improve quality, whilst decreasing downstream costs. “ Problems experienced downstream
are symptoms of neglect upstream. Upstream problems can only be solved upstream. The
ability to influence a system’s characteristics diminishes very rapidly as the system proceeds
from one phase of its life cycle to the next.” (Sparrius 1998:1-2) (Figure 1).

In order to implement these challenges, companies, especially in the manufacturing industry,
are re-engineering their business processes to survive in the new knowledge economy.
Traditional manufacturing development processes are more and more re-engineered towards a
concurrent engineering model, tailor made for the requirements of the information age. To
accommodate business shifts and an ever-changing social environment, it is important to
emphasise the importance of a holistic perspective in these re-engineering exercises. Re-

University of Pretoria etd

20

20

engineering should include setting up an integrated organisation information environment, an
organisational Information Ecology (Davenport 1997:4).

Figure 1: Ability to influence system characteristics (Sparrius 1998: 1.1)

Simultaneously to the abovementioned, the advent of Post-Modern Artificial Intelligence (AI)
brought new opportunities in the design field. According to Riesbeck (1996:374) AI is the
search for answers to the eternal question: Why are computers so stupid? Riesbeck
(1996:377) indicates that the problem of AI is to describe and build components that reduce
the stupidity of the systems in which they function. The goal should be the improvement of
how systems function through the development of intelligent components to those systems.
For example, one does not want an automated designer. One wants a design support facility
that is not stupid. One requires one that knows concepts, not keywords, that will be able to
retrieve relevant design information when the designer is designing a new departure lounge of
an airport. In Post-Modern AI , AI becomes an invisible part of the overall system.

Although architectural practitioners have not traditionally been seen as being in the business
of manufacturing products, research publications (Pugh 1996), (Anumba et al. 1997:8)
indicate strong similarities between the building construction industry and the manufacturing
industry. Not only are both industries in the business of designing and building physical
objects (products or artefacts) to satisfy specific client (customer) requirements in a specific
environment, but they are also following similar design-build processes. However there are
also significant and problematic differences.

Architectural design tasks take place in an open world (Hinrichs 1991:5). An open world
denotes any problem-solving situation in which the reasoner’s knowledge is incomplete or
inconsistent. A design problem solver’s knowledge can be incomplete in several ways
(Hinrichs 1991:5):

• Open categories. An open category is one for which membership cannot be determined

from lack of knowledge of membership. The set of primary colours is a closed set.

University of Pretoria etd

21

21

However the set of possible solutions for a particular architectural design problem is
open.

• Incomplete domain theories. In architecture the designer’s theory of his domain is
incomplete. He may not know or be able to retrieve all the causal relationships and facts
relevant to a given problem. Reasoning processes that demand theorem proving are not
possible.

• Under-specified problems: Design problems that are under-specified have solution criteria
that are incomplete. This means that the class of solutions forms an open category. If a
problem is under-specified the solution needs to be satisfactory rather than absolutely
correct. To determine when an architectural design solution is adequate is critical.

According to Hinrichs (1991:15-16) the generation of plausible solutions for a design problem
is not simply tedious, it is downright problematic. The generation of a solution is difficult for
the following reasons:

• The design problem spaces are not enumerable. As with irrational numbers, there is no

function that permits a designer to generate the next possible design. Because the
problems are ill structured in this way, the designer must supply his own structure in
terms of a vocabulary of categories of designs and design components. The content and
organisation of this design knowledge is critical for the task of generation. This indicates
the necessity for a convenient, flexible and structured language to express designs in.

• Design constraints are not constructive. The constraints of a design problem do not

directly suggest solutions. Constraints on most design problems rule out an infinite
number of possible designs and possibly still permit infinitely many. Due to this the
designer needs some kind of associative mechanism to identify members of the
categories.

• Categories in the design vocabulary are fuzzy and subjective. Design problems are not

described by necessary and sufficient conditions, but by experience and expectations. The
design solutions of today is contextually, functionally and normatively characterised by
designs we have known from the past. This strongly indicates that creative designs should
be generated from experience and not deductive rules. This seems to question one of the
basic antihistoric tenets of modernism.

• Problems may be barely decomposable. While it is sometimes possible to break problems

into smaller subproblems, these subproblems tend to be highly inter-constrained. Design
time and search can be reduced by using entire plausible solutions that are already
internally consistent. These designs can be modified when required. If it is not possible to
solve the design problem at this higher level of granularity then the problem can be
decomposed. Consequently, the design problem solver should be able to retrieve possible
solutions in large design knowledge fragments or cases.

• Design occurs in multiple problem-spaces. Because it is sometimes necessary to

decompose a problem the designer must work at different granularities or problem spaces,
such as the design of a door or an entire airport. All indications are that electronic design
knowledge should be hierarchically organised rather than relationally.

Over the last twelve years the author built up considerable experience in the design,
programming and implementation of Facilities Management (FM) systems that integrates the
long-term strategic and short-term operational maintenance. Most of the present FM systems
essentially only handle the operational part of the building life cycle. The integration of
processes and information between all the important stages of the life cycle of structures is
presently not well understood. The National Health Facilities Audits undertaken since 1996

University of Pretoria etd

22

22

brought the opportunity to implement quantification of observed phenomena. The condition
and suitability of every government hospital in the RSA were analysed and quantified in the
form of coloured grid, bar graphs and block plans (Conradie 1996). Recent movements and
requirements both locally and abroad indicate that FM will increasingly begin to cover the
entire life cycle of the building to ensure informed holistic and appropriate decisions. There is
also an increased realisation that decisions taken during the briefing and design phase
significantly influences the subsequent phases. Unfortunately these decisions sometimes have
to be taken with very little software support or the lack of structured design information.

Attempts were made to represent the properties of objects and to modelling and visualise their
forms. Design solutions were synthesised and their specific performances evaluated (Carrara
et al. 1994).

1. Key performance requirements of an Information Age development process (an
information management process, integrated with a structured development process) are:

! An integrated life cycle process.
! A concurrent multimedia environment.
! Life cycle requirement validation.
! Storing of structured design knowledge.
! Ad-hoc queries and reports.

2. The architecture for the proposed Information Age process should be designed as part of

an organisational Information Ecology, one that “emphasises an organisation’s entire
information environment. It addresses all of a firm’s values and beliefs about information
(culture); how people actually use information and what they do with it (behaviour and
work processes); the pitfalls that can interfere with information sharing (policies); and
what information systems are already in place (yes, finally technology).” (Davenport
1997:4).

The above mentioned already suggests that the improvement of architectural briefing and
design is not a trivial matter. The successful solution will be an appropriate synthesis of many
different techniques. The subsequent chapters will study well-established techniques from the
world of manufacturing, the characteristics of design and Artificial Intelligence (AI) in an
attempt to understand the characteristics of the early phases of architectural design better and
to discover if a significant improvement can possibly be made.

University of Pretoria etd

23

Chapter 2: Motivation

2.1 Problem statement

The purpose of this study is firstly to study well-established techniques from the world of
manufacturing, the characteristics of design and Artificial Intelligence (AI) to understand the
characteristics of the early phases of architectural design better and to discover if a significant
improvement can possibly be made. Secondly an attempt will be made to establish a simple
design language to support the life cycle of a construction and thirdly to build a prototype
design processor that could use the design information.

2.2 Sub-problems

Sub-problem 1: Can design requirements be sufficiently structured in functions that lead to
design elements and specifications to facilitate the storing of design knowledge?

Hypothesis: A building can be seen as a production product and hence established
Systems Engineering techniques and quality control measures can be applied to the
briefing and design process.

Assumption: Due to the high cognitive content of design it is assumed that
techniques from the manufacturing industry will only partially solve the problem and
therefore a bridging technique (non-prescriptive) between the capabilities of the
human brain and systematic approaches will have to be established.

Sub-problem 2: Can a flexible, multimedia database structure that addresses the total life cycle
requirements of a building be created using existing software?

Hypothesis: The architectural briefing and design process can be structured in such a
way that it can be implemented on a software system to ensure total life cycle design.

Assumption: The structuring and storage of design information will become more
important than the software application that originally created it. Although very
complex Building Product Models exist at this stage an attempt will be made to use
the technologies offered by the Internet.

Sub-problem 3: Can software object technology be used to store architectural designs in such a
way as to expedite future designs.

Hypothesis: Architectural designs and design parameters can be quantified and
electronically packaged in such a way as to expedite future designs that require
similar designs or parts of designs. Concurrent briefing and design processes can be
implemented on the www within a multi-disciplinary team on a global basis.

Assumption: Integration and structuring of the structured multi-media design
information is essential if global competitiveness is to be achieved. It is further
assumed that this should be the basis on which organisational processes should be
built.

University of Pretoria etd

24

2.3 Bounds and constraints

It is assumed that the present theoretical basis in diverse fields such as software object
technology, Systems Engineering, QFD, TRIZ, Kansei Engineering and CBR is sufficiently
developed to enable the implementation on desktop based software system operating in a
client-server mode or an Internet based Knowledge Portal. Such a system should be
implementable on present desktop computers using Microsoft Windows 95, 98 or NT and
standard hardware. The project will not attempt to develop a full commercial system, but will
concentrate on a framework and certain sub-modules to illustrate the principles due to
financial and time constraints.

The following strategic assumptions are made:

• Microsoft products such as the Windows operating systems, office integration products,

object technologies and Internet browsers will remain influential in the short to medium
term.

• The Internet/ World Wide Web will be the main information network in the world and the
preferred infrastructure for global e-commerce and data exchange.

• Hypertext Mark-up Language (HTML) and Virtual Reality Mark-up Language (VRML)
will continue to dominate the www. The new Extensible Mark-up Language (XML)
standard as defined by the World Wide Web Consortium 10 February 1998
(http://www.w3.org/TR/1998/REC-xml-19980210) provides a useful basis for the
implementation of a flexible and neutral design language. The co-existence of diverse and
distributed sources of design knowledge at different levels of specificity rather than a
centralised object store.

• Internet based subscriber services will become prominent. This is confirmed by Internet
service providers such as ZoomON (http://www.zoomon.com) and Autonomy
(http://www.autonomy.com).

• Java, Visual Basic Script (VB Script) and Visual Basic will be the language of choice for
Internet applications (Bouzeghoub et al. 1997; Lomax 1997).

• Microsoft ActiveX will gain more prominence than CORBA (Lomax 1997).

2.4 Research method

This research attempts to create a prototype generic software tool that could aid the early
difficult and conceptual stages of design whilst at the same time aiming as low as possible.
Aiming low implies the creation of a non-prescriptive affordable tool that can readily fit into
any Microsoft Windows compliant container environment, integrated into third party software
or be used directly in the Internet. The tool should be usable on the desktop and should be
non-CAD centric. The prototype software system will be implemented by means of existing
software techniques and products such as Microsoft Internet Explorer, Visual Basic and
Microsoft Personal Web Server. Object oriented technology will be used as far as possible.

Simultaneously well-established techniques such as Business- and Systems Engineering,
Kansei Engineering, Fuzzy Sets, QFD, Taguchi Techniques, TRIZ and Case-Based Reasoning
will be used as a reference framework for the prototype software system.

The results of a recent extensive QFD exercise from a cross-section of construction
professionals in the South African construction industry will be used as a means to guide the
general direction and characteristics of the generic software tool mentioned above. (Küsel
2000).

University of Pretoria etd

http://www.autonomy.com
http://www.zoomon.com
http://www.w3.org/TR/1998/REC-xml-19980210

25

Over the past 35 years commercial CAD systems have had little impact on the early,
conceptual stages of design. This is the phase where the maximum benefit over the life cycle
can be realised at the minimal cost. This inadequacy is further exacerbated by the pressing
need to follow a total life cycle approach to architectural briefing and design. Eastman
(1994:95, 1999) indicates how long efforts to develop integrated backend databases to support
architectural design and construction have been going on. Except in special cases, these
efforts have not been very successful.

New product design and development paradigms have emerged in other fields of expertise,
yet no total design system exists to address the high level of design complexity in a global
architectural environment, one that uses the world wide web (www) without compromising
aesthetics and ethics. There is also a clear indication that Knowledge Management (KM) is
becoming very prominent.

University of Pretoria etd

26

Chapter 3: Review of literature

Introduction

In this chapter the various well-established techniques from the world of manufacturing,
knowledge management, knowledge based design, Case-Based Reasoning, objects, Kansei
Engineering, Quality Function Deployment and TRIZ are analysed in depth in an attempt to
discover if improvements can be made to the early phases of design.

It is not intended to criticise the product innovation methodologies discussed below and
mapped out in Figure 2. The intention is rather to establish what value these methodologies
could add to the initial and also subsequent stages of the design process. At this stage it is also
presumed that the eventual solution proposed in this study should be such that any external
product innovation methodology (application) can be applied to it whenever desired.

It is beyond the purposes of this study to provide a detailed discussion of the numerous
different design theories.

Over the years many different product development techniques evolved in the world. None of
these product innovation methodologies or techniques is capable of solving all the problems
inherent in the product design process. However the rich set of techniques is successful in
solving many of the sub-aspects.

Figure 1: Product innovation methodologies (Collated by author)
The author is of the opinion that the great difficulty that is experienced is partly due to the fact
that technology, especially electronic computing, exploded beyond all recognition. This has
the effect that most problem solvers are almost by default attempting to solve the particular
problems by means of computer models, rules or cases. This creates the incredibly difficult

University of Pretoria etd

27

problem that design knowledge must first be quantified or moved from the tacit level to the
explicit level (Figure 1) to be in a readily processable form on the electronic computer.

The following current techniques exist that could assist the product development team in
product innovation (Figure 1). Although many more techniques exist the present study
concentrates on Case-Based Reasoning against the background of Theory of Constraints,
QFD, TRIZ and System Engineering. The assumption with sub-problem 1 was that techniques
from the manufacturing industry would only partially solve the problem and that a bridging
technique between the human brain and systematic (structured) approaches will have to be
established. CBR is specifically studied in the light of sub-problem 3 to see whether designs
can use experience from the past to expedite present designs.

Figure 1 maps the different tacit levels where these techniques source information and
indicate how far the information can be quantified or moved to a level of explicit knowledge.
On the horizontal axis the various main stages of the architectural design process are mapped
out. Traditionally QFD was only really useful in the initial design stages up to design
development. However in the prototype system AEDES attempts were made to stretch it
further across the life cycle of the structure, hence the dotted line. Natural Language
Processing (NLP) is an evolving technology that could greatly assist to turn the spoken and
written word into explicit knowledge. Attempts are currently been made to develop NLP
software to facilitate concept extraction out of text. However it is going to take at least
another three years before a sufficient level of reliability is reached.

The accurate extraction of customer needs are very important for ultimate success of the
architectural design. Some methods for defining customer needs are (Zultner 1999):

• Kansei Engineering – emotions of the customer.
• QFD – voice of the customer.
• Theory of Constraints – mind of the customer.
• Customer Context Analysis – context of the customer.
• Systems Dynamics – environment of the customer.

Methods for structuring product acquisition

• Business Engineering – attempt to structure entire product environment.
• Systems Engineering – structured methodology for sequencing design activities.

In order to create a digital representation of an architectural design artefact it is necessary to
create a building product model. A building product model is a digital information structure
of the objects making up a building. It captures the form, behaviour and relations of the parts
and assemblies within the building. Major efforts are being made throughout the world to
develop such a representation. Among the industry groups involved in achieving this are the
U.S.A. based Product Data Exchange using STEP (PDES) organisation and its international
counterpart, International Standards organisation – Standard for the Exchange of Product
model data (ISO-STEP). Efforts are also being undertaken by research groups funded by the
European Union in Europe and by the National Science Foundation in the U.S.A. Another
significant effort is of the International Alliance for Interoperability (IAI). According to
Eastman (1999) building product models will eventually be used by most people associated
with the building and real estate businesses such as architects, engineers, contractors, owners
and facility managers.

In this study the use of the structured hierarchical ASCII standard, XML will be used to
explore the creation of a simple, yet powerful design language to support desk top based
design tools such as design modellers whilst at the same time maintaining a close relationship

University of Pretoria etd

28

with the Internet. The opinion is expressed that the ASCII nature of XML makes it a strong
candidate for an application independent design language because it is simple but at the same
time flexible and extendable. It is also a very powerful integrator of non-XML data. XML
provides three constructs that could be used to achieve flexibility and extendibility:

• Notations
• Unparsed external entities
• Processing instructions.

University of Pretoria etd

29

3.1 Knowledge management

3.1.1 Introduction

This section is included because architectural design depends to a large extent on the
availability of sound knowledge. Some of the wide range of knowledge that is required in this
domain can be summarised as:

! National Building Regulations.
! Characteristics of materials.
! Construction components.
! Construction methods.
! Energy use.
! Surveyor General’s diagram.
! Acoustics.
! Solar movement.
! Anthropometrics.
! Climatic conditions such as temperature, wind and rainfall.
! Construction detail.

If this type of information cannot be readily obtained then it makes the designer ineffective. It
is highly desirable that the designer is able to quickly retrieve this knowledge whenever
required. Whatever solution is ultimately proposed its success will depend to a large extent on
the convenient access to this type of information. With the advent of large construction
projects it is also crucial that designers are able to collaborate globally. Microsoft’s approach
to KM is studied to establish if it is suitable for the proposed solution.

Nonaka (1998:22) states that in an economy where the only certainty is uncertainty, the one
source of lasting competitive advantage is knowledge. When markets shift, technologies
proliferate, competitors multiply and products become obsolete, successful companies are
those that consistently create new knowledge. These companies are also able to disseminate it
widely throughout the organisation and quickly embody it in new technologies and products.
The creation of knowledge is seen in the context of the Japanese approach that creating new
knowledge is not simply a matter of processing objective information. It depends on tapping
the tacit and often subjective insights, intuitions and guesses of individual employees. These
insights are then made available for testing and use by the company as a whole. Making
personal knowledge available to others is the central activity of the knowledge-creating
company, whose sole business is continuous innovation. By this is understood that According
to Nonaka the following four basic patterns for creating knowledge in an organisation exists
(Figure 3):

1. Tacit to tacit.
2. Explicit to explicit.
3. Tacit to explicit.
4. Explicit to tacit.

Harari (1999) confirms this with his interpretation of knowledge when he suggests that
companies should have cutting-edge skills, state-of-the-art tools, creative tools, creative
freedom, business accountability for employees and speed and intelligence in everything. This
is all aimed at doing something truly special that amazes customers.

Tom Davenport defines knowledge as a fluid mix of framed experience, values, contextual
information and expert insight that provides a framework for evaluating and incorporating

University of Pretoria etd

30

new experiences and information. It originates and is applied in the minds of knowers. In
organisations, it often becomes embedded not only in documents or repositories, but also in
organisational routines, processes, practices and norms.

Knowledge management (KM), as defined by the GartnerGroup, is a discipline with new
processes and technologies that differentiate it from information management. New
technologies are required to capture knowledge that was previously tacit. Tacit knowledge is
embodied in the minds and expertise of individuals. Once captured, knowledge must be
shared to leverage its value and reused in similar situations and contexts.

The unique requirements of KM have inspired many startup ventures and innovations by the
information industry (Figure 9). The needs for new technologies and the technological
advances have occurred simultaneously. The need is to quantify knowledge, codified in
digital form in the form of documents and apply it in new situations. The codified knowledge
must be found first and searching is dependent upon natural language. New KM capabilities
must overcome the ambiguity and context-dependent nature of natural language.

3.1.2 The nature of knowledge

Table 1: Stages of technological knowledge (Bohn 1997:77)

Stage

Name

Comment

Typical form of
knowledge

1 Complete ignorance Nowhere
2 Awareness Pure art Tacit
3 Measure Pre-technical Written
4 Control of the mean Scientific method feasible Written and embodied in

hardware
5 Process capability Local recipe Hardware and operating

manual
6 Process characterisation Fine-tune the process to

reduce costs
Empirical equations
(numerical)

7 Know why Science Scientific formulas and
algorithms

8 Complete knowledge Nirvana

Bohn (1997) identified eight stages of technological knowledge ranging from complete
ignorance to complete knowledge (Table 1).

The stages that a field of endeavour goes through before it can be considered a science are
(Goldratt 1990):

1. Classification
2. Correlation (The question why is not asked. How is at the centre of interest)
3. Effect-Cause-Effect (Know why)

The first stage, classification, in Facilities Management (FM) started about ten years ago.
Numerous classifications were developed to assist in the various activities that are undertaken
by facility managers. An example of this is the SAPOA standards with regards properties to
calculate rentable and usable space in buildings. During the National Health Facilities Audit
the concept of departments such as outpatients, operating and administrative were used to
group spaces that share a common planning unit. This was used specifically to facilitate a
large-scale condition and suitability analysis.

University of Pretoria etd

31

The second stage was entered about five years ago when FM developers and users realised
that all the various operational and strategic FM actions need to be integrated into a holistic
systems environment. The most important question at this stage is how. A characteristic of
this stage is many different highly detailed models and approaches, but a lack of deeper
scientific understanding. Both architectural briefing and design and FM are at the moment in
this stage. The latter developed significantly faster than the former. The author is of the
opinion that the scarcity of financial resources, energy and a general realisation that there are
limits to growth (Meadows et al. 1975) provided the impetus. The domain of FM is far less
challenging than architectural briefing and design, albeit extremely important.

The challenge of the present study is to make the quantum leap into the third stage where the
know why becomes the characteristic. A complete mastery of know why would indicate that
the level of science has finally been reached. Sir Isaac Newton finally turned physics into a
science when he discovered the fundamental laws of motion and gravity. He asked the
question why do apples fall down rather than flying in all directions? He assumed a cause for
this phenomenon. He assumed the gravitational law. Explanation appears on the stage. It is a
foreign word in the classification and correlation worlds where the only proof is in the
pudding. Past experience is no longer the only tool. He published works such as Philosophiae
Naturalis Principia Mathematica in 1687.

Nonaka (1998) clearly indicates that the classic pyramid model that consists of discrete layers
of data, information, knowledge and wisdom is an oversimplification, because this model
assumes a quantification of all data, hence a total transfer from tacit to implicit (Figure 2).

Figure 2: The classical view of knowledge hierarchies (Author)

Today it is recognised that the steps of the knowledge cycle consists of the actions of create,
capture, organise, access and use. The most appropriate model of the knowledge cycle is by
Nonaka (GartnerGroup 1998:2) and (Nonaka 1998:21). Humans have certain capabilities that
lead to the four broad, fundamental human behaviours illustrated in Figure 3.

University of Pretoria etd

32

Figure 3: The knowledge cycle and process. See text. (GartnerGroup 1998:2)

3.1.2.1 Socialisation

This is people learning from each other by doing. Tacit knowledge is exchanged, as a by-
product of collaborating, like an apprenticeship. Socialisation arises out of real-time
connections among people to consolidate their knowledge. Currently, tacit-to-tacit sharing
requires physical presence, but technologies such as virtual reality could eventually simulate
presence.

3.1.2.2 Externalization

The situation where knowledgeable people consciously convert their tacit knowledge to an
explicit form is called externalization. Publishing captures information, but KM requires
capturing processes, conditions, rules, timing and other factors that can be re-created in
subsequent situations. It requires that tacit knowledge such as a person’s experience be
engineered into an explicit form. Before KM, information was captured in documents, papers,
E-mail and notes. These textual sources look like long strings of words to most software. KM
technology attempts to represent the traditional content and new media by exploiting natural
language processing (NLP), sets of rules, document structure, context and relationships so
that it can be reapplied in related situations.

3.1.2.3 Combination

The activity of gathering and integration of the captured knowledge of individuals and groups
for access by the enterprise is called combination. Combination requires that the engineered
knowledge be evaluated, transferred to other groups and communities and leveraged through
reuse.

3.1.2.4 Internalization

University of Pretoria etd

33

Internalization is the “experience” of the explicit knowledge by individuals, who learn by
making the explicit knowledge their internal knowledge. Internalization employs the
techniques of pedagogy to teach knowledge that is customized and applicable to individual
needs. It requires engineering knowledge to engage the attention of the user.

3.1.3 The current situation

Currently tacit to tacit sharing requires physical presence, but technologies such as virtual
reality will eventually simulate presence. Current KM implementations depend on a small
subset of the types of products that are needed for the complete knowledge cycle. GroupWare
and information searches are the most used with more advanced technologies appearing in
less than 15 percent of implementations. The need to externalise tacit knowledge will drive
new technologies.

The ability to access stored information is far ahead of the ability to find relevant information.
Turning explicit knowledge into tacit knowledge is still the purview of computer-based
training (CBT) and teaching. Developments in distance learning are starting to appear from
vendors such as IBM/ Lotus. The use of products for meetings, such as group decision
support systems, has had very limited success (GartnerGroup 1998). Physical and virtual
workspaces are still experimental and tele-technologies are today less effective than face-to-
face meetings.

Improvements are expected to be made over the next five years, but the majority of sharing
will continue to be through oral communication for the next 10 years or more. There are four
main reasons why KM technologies will remain tools rather than replace current behaviours
in the knowledge cycle:

Situation. Each situation that requires knowledge is unique. It is not feasible to predict exactly
what knowledge is required beforehand.

Language. Humans share what they know through the imperfect vehicle of language.
Although language is imperfect it conveys precise information within the context of use that
the human brain is well adapted to. Language skills vary widely. Language is often
insufficient to represent other factors that cannot be expressed verbally. This is one of the
reasons why more than 50 percent of knowledge worker communication is still face-to-face,
where complex things like trust can be established.

Context. Making knowledge explicit often leads to storage out of context. The preservation of
context is very important for architectural design, because designs are always solutions within
the context of numerous requirements and constraints. One of the innovative methods to store
or communicate contextual knowledge is by means of business stories or novels. It is not
surprising if it is considered that the oldest means of storing information is found in epics
such as Homer’s Iliad and the Finnish Kalevala. An outstanding modern example of this is the
method that Goldratt, (1993) uses to explain the ideas which underlie the Theory of
Constraints (TOC). In books such as “The Goal” he uses the context of a novel to explain
manufacturing processes in the context of a manufacturing plant. The technique of using a
novel is successful because it gives contextual meaning to the various powerful and
innovative concepts explained. Because of the way that the human brain operates this method
of externalization makes the later internalization of vast amounts of knowledge feasible.

By considering context while processing natural language it is possible to interpret the
meaning of a sentence from related text by placing the individual sentence in context.
According to Popov (1982) there are various levels of context that need to be considered
when processing natural language.

University of Pretoria etd

34

Textual context is the meaning derived from the sentences preceding the current sentence.

Situational context is the meaning from the current sentence and is usually only given
implicitly.

Global context is like the topic of a conversation and allows an algorithm to choose between
several meanings. An example is the word overloaded that could mean having too much
luggage, put to great a demand on an electrical system or the technical term in computer
programming where one programming keyword such as “=” might have different meanings in
different syntactical constructs.

Local context is the meaning derived from only the few preceding sentences. This is useful
because the topic of the conversation may progress. Local context provides the most recent
topic.

A simple algorithm for processing context and reference is not possible since a form of fuzzy
processing is required. Researchers are experimenting with neural networks to train a
computer to recognize certain common situations (frames) and to generalize about new
situations.

A machine that processes natural language must be able to categorize, understand and process
the wide variety of language components. Some of the different hierarchical syntactical parts
of language identified by Russian analyst (Zvegintsev 1976) are:

• Discourse
• Sentences
• Phrases
• Words
• Morphemes
• Syllables
• Phonemes
• Differentiating signs

Relevance. The value of information is subjective. For information to be knowledge, it must
get the user’s attention relative to other information, comparable to a teacher-student
interaction.

The representation of tacit knowledge is currently the focus of development, but it is unlikely
that it will be used practically until after the year 2002 (GartnerGroup 1998).

3.1.3.1 Desirable emerging technologies to enable knowledge management

The storage and retrieval of knowledge in written form was viable with paper and limited
online access before the advent of the World Wide Web. The present unprecedented
quantities of information online made the retrieval of documents or records inadequate. New
capabilities are addressing the conversion of text into more usable forms. It is now important
to achieve summarization in order to find relevant knowledge. This is a capability that would
increase the quality of stored knowledge. However, it depends on accurately representing the
meaning of text. With the current information overload, users will want to know what a
document is about rather than having to read it or a summary. Capabilities are being
developed that describe the people, places and things discussed in document. This is at a far
higher level than a pure keyword search. Users can search in a natural language way for
subjects such as “Tell me about Microsoft, Internet components and Visual Basic”. Unlike
present search technology that search for those words specifically, representation technology

University of Pretoria etd

35

will identify what Internet components are and respond with the latest Microsoft Internet
Information Server technology used. The barriers to computer understanding of language
results from the innumerable ways to express the same thing, the different meanings of words
and the inherent imprecise nature of language structure. If information technology fails to
achieve significant breakthroughs in representation technology soon the knowledge
community will be faced with vast but virtually unusable knowledge stores.

If intelligent processing of design information is to take place on the electronic desktop then
relevant structured information needs to be delivered to the electronic design tools. This
indicates the necessity for a flexible and self-describing design language.

Concept extraction is at the same time one of the most promising and problematic of the
emerging capabilities. It depends on NLP to parse sentences according to rules (Figure 4). In
this particular example the Xerox Inxight Hyperbolic Tree was used in the Syracuse
University TextWise system. President is capitalized and directly precedes a name. The
lexicon says President is a title and Mubarak is a name. In a newspaper article users want to
know how concepts are used and not just the fact that they occur. In a document that contains
the concept “Chrysler” it could be an advertisement, stories about the company’s stock
performance or an article about a recent merger.

Figure 4: Concept extraction for representation (GartnerGroup 1998:8)

By representing the concepts according to conceptual relations, the technology could infer the
difference. Once concepts are extracted, they can be stored in databases according to their
usage and relationships Concepts are also the basis of visualization capabilities. They are
displayed on a screen where the relative proximity of each concept reflects relative similarity
of meaning. This provides the user with a conceptual map of a knowledge domain, enabling
navigation to the units of stored knowledge. It also shows relationships such as affiliation. For
the next two years automatic linguistic representations will require access to manual checking
through visual user interfaces to expose inaccuracies.

University of Pretoria etd

36

Figure 5: Visualisation of representation (GartnerGroup 1998:9)

Knowledge representation will expand beyond linguistics to include technologies that will
converge over the next five years. Significant developments in collaborative filtering resulted
in successful products such as grapeVine, NetPerceptions, Firefly and WiseWire. Users with
similar profiles are considered sources of recommendations to each other. Profiles use
representation technology to capture similar interests.

Concept extraction provides a way to describe documents. The concepts can be used as
attributes in a database. Expert systems continue to be focused on narrow domains, which can
be described by rules.

Knowledge representation is the conversion of captured knowledge into a reusable form. But
it focuses on the tacit-to-explicit part of the cycle. It must be integrated with sharing media to
overcome the scalability issues of space and time. Sharing over time has both a historical and
a coordination dimension. Knowledge must be maintained over time or it will lose its value. It
must be current, as is true of any information. Knowledge workers try to interact
synchronously, in real time, because they want the latest knowledge applied to the current
situation. Scheduling a simultaneous interaction is increasingly difficult, especially with
worldwide enterprises. The two notions of time exacerbate each other. One of the largest
demands in KM is to overcome the need to interact in real time to share current knowledge.
The reusability test requires that person A must be able to make sense of and apply person B’s
knowledge at person A’s time and place. When this is not feasible, users must resort to
sharing media by means of E-mail and teleconferencing.

3.1.4 Knowledge management architectures

There are several barriers to a next-generation responsive information system, which can be
rapidly composed or adapt itself to a new environment. Presently vendors are reluctant to
support truly open architectures. Neither the vendors nor the users understand the importance
or the nature of the interface between modules. In any modular system, the interface

University of Pretoria etd

37

definition is critical to the assembly of those modules into larger functional modules. Many
vendors claim to have open architectures, but they are only open if one adheres to their
proprietary standards. An architecture or framework can really only be called open if it is
freely available and the command interfaces and data interfaces are widely published and
easily accessible. The World Wide Web fits this picture.

Another major barrier to the imperative is the multiplicity of standards for specific domains
and the length of time it takes to create a new standard. While the availability of certain
standards will enable the move to information infrastructures, there are many conflicts and
many standards are lacking. There are multiple overlapping standards in high-level
communications, particularly for passing of messages among distributed objects on
heterogeneous systems and for data exchange (Table 2). There are also diverse standards for
graphical user interfaces for documents, images, video and sound. These are all important for
next-generation manufacturers. The multiplicity of standards makes access and use of the data
difficult. This particularly true in the design world where AEDES and ARGOS needs to be
implemented. STEP has come a long way in addressing these problems but it is taking too
long and has become so complex that users are adapting other standards to allow them to
progress.

Table 2: Current and emerging multiple standards that form a barrier to responsive
NGM information systems (NGM 1997)

Topic

Subtopic Example available or emerging standard

Communication CORBA, http, OLE/COM/DCOM, DCE, ISO/OSI
Data exchange Product STEP and its various APs
 Geometry STEP AP 210, DXF, STL, HPGL, ACIS SAT
 Text, hypertext http, SGML, XML, RTF
 Images JPEG, BMP, GIF, TIFF, DIB, PCX, MSP
 Simulation data SAVE MDF/ CDF
 Production plans ALPS, STEP AP
Presentation/ GUI Windows, X-Windows, Open GL, Tcl/Tk
Process modelling IDEF, NIAM
Computer languages C, C++, ADA, Java, Visual Basic
Sound WAV, AU, RA, MIDI, RMI, AIF
Video MPEG, AVI, MOV
Database Query
Languages

 SQL, SDAI

If there were standards for every aspect of the command and data interfaces among modules,
this would not be a barrier. Lacking these, it currently takes too long for a group of companies
to agree on even the product data exchange standards let alone all the other standards that
must be considered. For example the Distributed Computing Environment Group (DCE), the
Object Management Group (OMG) and Microsoft are all working on protocols for message
passing between distributed objects on heterogeneous systems. The HTTP Working Group is
working on similar standards. The contributors to the NGM (Agility Forum 1997) project are
of the opinion that CORBA, OLE and DCE will merge with http and Java having a strong
influence on all. Java and http will have a strong influence on the whole communication
domain, but it is not yet clear what it will be.

During a recent investigation by the author of 16 companies that positioned themselves in the
KM domain it became clear that the IT industry has already done a tremendous amount to
gain a deeper understanding of the exact requirements and architecture of a Knowledge
Management System (KMS). The solutions investigated ranged from attempts to integrate the
multimedia enterprise knowledge in various forms in a readily accessible user interface to

University of Pretoria etd

38

intelligent cross-linked repositories with highly configurable knowledge profiling
environments.

All the local suppliers are unanimous in their opinion that it is at this stage almost impossible
to fully quantify knowledge that originates at the tacit level. Tacit knowledge is seen as the
experiential knowledge of people that exists mostly in the minds of professionals. For this
reason all the solution providers are concentrating on the communications and access profile
aspects of KM.

The main technical requirements to implement a KM system successfully can be summarised
in Table 3. In order to implement a comprehensive briefing and design system the
infrastructure needs are very similar to the requirements for KM. The only difference that can
be identified is the type of knowledge that is stored and the mix of software tools that would
be used to solve the various problems in the design stages.

Table 3: The main requirements for a Knowledge Management enabling environment
(Collated by author)

Main Requirements

Expanded software requirements for integrated knowledge based
architectural briefing and design system

Communication

Network infrastructure

• Flexible high speed network configuration supporting distributed objects and an

ubiquitous service environment.

General office knowledge content management

• Store all forms of project and office knowledge such as scanned paper documents,

electronic word processing documents, video and voice recordings into an
information base.

• Provide support listing, browsing, sorting, grouping, filtering and searching of the
knowledge base.

Teams that collaborate in real time and over distance

• Conversation services with transcript functionality for distance discussions.
• Video conferencing for virtual meetings.
• Screen sharing services for sharing of the document creation process, virtual white

boards and application sharing.
• Streaming media services for recording virtual meetings and video (meeting) on

demand.
• Event and meeting databases for organising and optimising meetings.
• Home pages on Web servers for each task community, team or expert to speed up the

access to project information (knowledge sources)

Design team
flexibility and
responsiveness

Team skills profiles

• Directory and membership services that support the building of communities through

grouping people together into expert teams working on the same set of information.
• Forum services to create workspaces for communities and teams that contain all

interest-related data.
• Self-subscription services to specific matters of interest for dependent information

delivery and subscribing.
• Organisation databases integration like people skills and human resource databases

for enhancing community, team and experts information and searches this
information.

Responsibility and accountability

• Services to assign responsibilities to members of the team.

University of Pretoria etd

39

• Workflow services for automatic trace ability processes based on roles and Subject
Matter Experts (SME).

• Tracking services that follow team contacts and team activities.
• E-mail services for automating notification, routing and simple workflow services.

User Interface and
information search

User interface

• Personalization systems that allow customisation of the computer project interface.
• Web browsers with the ability to include e-mail, project data and design intelligence

tools for easy access.

Ubiquitous demand driven design and construction information

• Construction industry catalogue and search services.
• Availability of material and product databases.
• Acquire pre-packaged starter kits from other companies via the web.
• Services to build own office electronic storage that combines often used information

from external origin.
• Notification services that react on changes in design or fundamental information

contained in local catalogues and integrate with the e-mail system.

Reporting

• Dynamic project reports available on the Internet or intranet. (OLAP technologies

and services)
• Configurable ad-hoc, multi-media query builders that can be profiled to serve the

needs of the user or the task at hand.

Project resource
integration and
access

Information access

• One convenient entry/ access point to all project information and applications.
• Knowledge indexing services that can index all the documents for easy subsequent

retrieval.
• Subscriber services where the service provider maintains the infrastructure and the

subscriber accesses the service by means of his Internet Explorer/ Netscape driven by
credit card payments, if and when required. This saves the user buying less often
used specialised tools to analyse energy and cost if and when required.

• Rapid design concept selection for new designs and projects based on previously
stored structured knowledge.

Life cycle continuity of information

• Building design and operational information that is maintained over the life cycle of

the building.
• Captures project briefing and design decisions and knowledge automatically and

during the course of the project in the form of plug and play design starter kits.

3.1.4.1 Hypertext based systems

One of the most basic means to organise electronic knowledge is by means of hypertext
driven systems. An example of this is the use of a World-wide Web page with hyperlinks that
could point to documents such as word-processing, spreadsheets, images and presentation
documents. The capabilities of the Microsoft Windows operating system facilitate in-place
activation.

The main advantage of hypertext is that the reader can choose his own associative way
through hypertext, depending on his background knowledge, interests, context of use and his
task at hand. One of the difficulties for the reader of hypertext is to get an overview of the
structure of the knowledge presented. To this end hypertext systems normally provide tours.

University of Pretoria etd

40

History lists provide intelligent backtracking. Bookmarks also assist to orientate the user in
the vast hypertext landscape.

In AEDES a context sensitive help file was created that tested some of the underlying
principles mentioned above. The present help file was created in the Microsoft .HLP format.
This format will very likely be superseded with a HTML, www format help file. At the
moment the .HLP format is predominant on the desktop, but the gradual move to HTML
format is becoming evident in the Microsoft Office 2000 suite.

3.1.4.2 Search engines such as Alta Vista Discovery

The downloadable Alta Vista Discovery search engine provides a convenient means to index
documents on the personal computer and in a network environment. The author tested the
software and found it a good solution. The only problem is that the index needs to be rebuild
from time to time to keep it current. This action takes a long time, typically an hour on the
present equipment that we are operating on. The look and feel of the output is exactly the
same as the Alta Vista search engine used in the Internet environment (Figure 6). In the
example the search word was “Aedes”. The response was a list of all documents that contain
the word “Aedes”. In the example Powerpoint, rich text file and Microsoft Word formats were
found along with the local directory paths. The search engine is also capable to index email
messages. A very rudimentary summarise facility is provided, but unfortunately not of much
use, because it purely extracts random fragments of text up to the specified number of words.

The main advantage of this environment is that it can exist independently of any other system
software. It provides good search and find facilities for a diverse range of documents. It can
almost be seen as a very basic document management system.

Figure 6: A typical Alta Vista Discovery screen (Author)

University of Pretoria etd

41

3.1.4.3 Essential elements of a knowledge management architecture

Figure 7: Knowledge management architecture (GartnerGroup 1998:3)

Figure 7 details the technologies that are targeted at KM. They are classified according to the
architectural fit and the KM process that they support. The enterprise infrastructure is a
networked service supporting distributed object models such as the OMG CORBA and
Microsoft DCOM. Directory services and security services are becoming openly accessible by
the upper levels of software. Workgroup applications continue to be silos of unstructured,
mostly textual information that is set apart from database silos of structured information.
Progress is being made to bridge the text data wall through SQL. However currently KM must
be satisfied with the integrated retrieval of records. Text indices are easily offered using the
centralised model of the Internet, but databases demand complex program interfaces and
additional structures such as data warehouses.

University of Pretoria etd

42

Figure 8: Knowledge Management technology model (GartnerGroup 1998:4)

The KM technology layer of the architecture defines four essential elements (Figure 8).
Technologies include mathematical algorithms, statistical techniques and database
architectures. Frameworks define the central focus of an architecture, reflecting many subtle
differences in vendor orientation. Information retrieval vendors are likely to be document-
centric and more experienced with unstructured content. Database vendors are likely to be
data-centric and experienced in high-speed transaction processing. Components are units of
functionality that can be plugged into other products, but are not directly used by the
knowledge worker. Tools are directly manipulated by the end user and are often branded.
Good examples of desktop productivity tools are Visio, Word and Powerpoint. The software
available today provides different levels of support for each of the five process steps.
However neural networks, Baysian Nets and linguistics-natural language processing are all
unproven. Neural networks, a development of artificial intelligence, learns to recognise
patterns. Baysian Nets is a probabilistic model from past to future events. Linguistics-natural
language processing is the representation of everyday language for computer understanding.

New deployment of advanced, underlying technologies presents a conundrum. The
technologies are unproven but demanded by the market. Natural language processing (NLP)
development and neural network application are both being funded by the same agencies such
as the U.S. Department of Defence’s DARPA (High Performance Knowledge Base Program.
Neural nets require training that makes it very difficult to succeed with single pass queries.
NLP is still the most promising for capturing the meaning of language, a capability that will
soon be essential for KM.

University of Pretoria etd

43

3.1.5 Microsoft’s approach to KM

Figure 9: Knowledge Management vendors (Based on GartnerGroup 1998:16)

Although Microsoft remains strongly tied to the desktop, recent innovations in enterprise OS
and network technology indicate that they are in the process of functional leapfrog. Figure 9
indicates the current position of Microsoft in comparison to other software developers with
regard KM software. However in the present study the slight lack of vision as indicated is
more than adequately compensated by the excellent desktop, document centric, convenient
and portable object technology. Microsoft currently offers a comprehensive platform, albeit
slightly conservative in terms of what a fully functional KM system will require. To ensure
the success of the KMS very special professionals will be required such as Knowledge
Architect (KA) and chief Knowledge Officer (CKO).

The Microsoft approach to KM is not unlike the generic structures illustrated in Figure 7.
They are also of the opinion that the two prerequisite technologies for all KM systems are a
Complete Intranet and Messaging and Collaboration (Leibmann 1999).

University of Pretoria etd

44

C
om

m
un

iti
es

,
Te

am
s

an
d

Ex
pe

rts
Complete Intranet

Messaging and Collaboration

Pr
e -

re
qu

is
ite

s

C
on

te
nt

 M
an

ag
em

en
t

(P
ub

lis
h&

M
et

ad
at

a)

R
ea

l T
im

e
C

ol
la

bo
ra

tio
n

D
at

a
An

al
ys

is
(D

at
a

W
ar

eh
ou

si
ng

 a
nd

Bu
si

ne
ss

 In
te

lli
ge

nc
e)

Po
rta

ls
 a

nd
 S

ea
rc

h

KM Enabling Modules

Figure 10: The modules of a Knowledge Management evolution (Leibmann 1999:7)

The remaining KM-Enabling Modules extend the basic infrastructure to a KM system that
includes services like Content Management, Information Delivery and Data Analysis.
Automated services such as Data Tracking and Workflow processes are also included as part
of the Community and Team competencies.

The KM-Enabling Modules have a modular character. Although some of the modules profit
from the implementation of a previous module, they can be chosen in any order related to the
specific business case that needs to be accomplished. Real-time Collaboration services, such
as video conferencing, can be included on top of the pre-requisite technologies, but are
enhanced by the meta data services provided in the Content Management Module. Meta data
is a special database of where diverse sources of data can be found.

3.1.5.1 Messaging and collaboration

IT systems intended to support KM need to support the capturing of undocumented
information such as human thoughts, sharing of ideas and documents. It is important to find
this information efficiently. Another prerequisite of an IT system that supports KM is the
existence of a set of common tools that are well known by all knowledge workers.

The tool that is used to provide an entry point to this IT system presents the information and
controls all interaction with it. It needs to be capable of handling all the information that is
part of the working environment of the knowledge worker. Ideally only one tool or
application should exist for this interface.

The entry point to the information and applications in a KM system is also called a “Portal
Service”. If the same environment also supports also the creation of content, it is called a KM
desktop. The capabilities of web browsers make them ideal candidates for this task.

3.1.5.2 Complete Intranet

An information network that provides access to all the data needed supports this module of
KM. Decisions must be taken fast enough to get a competitive advantage. A Complete
Intranet KM system should enable people to find the right information or sources for helping
solve problems or drive decisions.

University of Pretoria etd

45

3.1.5.3 Communities, teams and experts

The two pre-requisite technologies of KM put all collaboration and document-based
knowledge sources together enabling the knowledge worker to browse information objects
based on knowledge groups. Communities, teams and experts add the next level of sharing
knowledge and turning it to results.

Teams differ from communities in that teams are task driven and communities are interest
driven. A team usually works closely together, in a workgroup, on the same tasks and goals.
In many cases the information produced by a team is closely held within the team until it has
reached a level of completeness where it can be shared, for example in a review, with a
broader audience. Communities are mostly driven by interests in the same area and are more
loosely coupled, for example by subscriptions. Communities are especially useful for building
knowledge to higher levels, often by getting successive levels of input from a wide audience.

The role of an expert is to qualify and filter information. Often an expert is related to a limited
set of subjects. Subject matter experts (SME) can be defined in two ways. He is either an
organisational function (defined by the KA) or as very knowledgeable person who is a well-
known expert in his team or organisation, assuming the status of an SME for contributing
high quality information or for reviewing it.

The SME is an important role for a KM-related Information Web or Intranet. In traditional
Intranet solutions, there is little control over who can store or upload information into the
Intranet. This is not a bad thing and is desirable in order to build an extensive information
repository. To maximise the usefulness of the Intranet, the information should be filtered,
classified and grouped. This process is part of the responsibility of the SME.

Communities, teams, and experts are also used for the controlled process of putting
information into the KM system. Filtering, qualification, approval or more complex workflow
processes for documents and other electronic data need to be established. In a KM system
these processes are not strictly based on traditional organisational roles such as manager,
reviewer, approver and author but more on Subject Matter Experts. This can add a great level
of dynamic and flexibility to the KM system and the automated processes.

3.1.5.4 Portals and search

Portal Services like Yahoo, Lycos and Excite are well known. They allow consumer oriented
services such as easy information shopping. Those Portals categorise personal interests in
groups like “News”, “Sports”, “Economy”, “Education”, “Science” and “Entertainment”.
They allow for easy browsing within those groups in building a logical hierarchy of
subgroups or forums. The browsing and search services support the consumer in his quest to
gain knowledge out of the large Internet information store. Another benefit of these consumer
Portals is the high customisation provided for its visitors. Objects of interest can be
bookmarked in a personalised Portal, allowing for immediately access when revisiting the
portal site.

This technique when applied to business-oriented goals is one of the key KM-enabling
modules following the same idea of the consumer-oriented portals in the corporate world.
Business Portals provide the knowledge workers within the company, and also external
suppliers and customers, with instantly task-relevant information objects. A Primary goal of a
portal is the transparent enterprise, hiding the complexity to access knowledge stores. Even if
the user accesses legacy information stores he should not be aware of it.

Examples of Business Portal Information Objects are:

University of Pretoria etd

46

• Corporate and team links.
• Team application links.
• Incoming mail notification and headers.
• Personal tasks.
• Corporate search.
• Integration of business intelligence data.

From the examples, some direct organisational tasks can be derived. Teams in the enterprise
need these definitions in order to locate internal or external company information. This allows
them to successfully include links to that information into the portal.

This Module also defines the creation of catalogues that build groups of related information
based on business needs over structured and unstructured enterprise information (KM
information base) to allow for full-text search against the partitioned data. An extension to the
Catalogues is the definition of Searches against these Catalogues.

In order to define the Catalogues for an organisation, there has to be a very good
understanding of the business and its processes. At this stage, the Knowledge Architect needs
the support from the different divisions, business units and departments that understand how
their information is organised and is related to their business goals, tasks, and needs.

3.1.5.5 Content management

Portals and Search address the problem of searching knowledge using all information sources
in the enterprise such as structured and unstructured internal information objects. Examples of
these are office documents and collaborative data. External sources such as partners, suppliers
and competitors can be identified. Other external sources such as the Internet provide a
tremendous potential for knowledge if the criteria for including such information are well
chosen.

All the pools of information sources that are part of and accessible to the KM system combine
to build the KM information base. This Module handles how knowledge assets get into the
KM information base. To handle this new complexity of the KM information base and help
knowledge workers to stay focused on solving business problems without disappearing in
technology a sophisticated KM taxonomy needs to be built based on meta data. It also needs
to publish information in the knowledge base. The KM information base must then be made
accessible through operations driven by the meta data complex.

When publishing, several things should be considered concerning the KM taxonomy. Meta
data tagging of documents is important for the quality of the content in the stage of document
publishing. However it should not be a burden for people to submit information. The KM
system must encourage users to submit information. Positive aspects for promoting this
condition are the building of well-focused Communities in order that users feel part of and
respected in a concentrated team and do not loose their inclination or motivation to submit.
Building huge submission and posting systems where users do not get recognised or rewarded
will discourage them from providing their knowledge, which will prevent the company from
evolving a culture for knowledge management.

3.1.5.6 Real-time collaboration

The knowledge on a specific subject is often not in documented form and is therefore lost to
the organisation. There are ways retrieve the lost knowledge into a state where an IT system
can manage it. This especially focuses on areas where computers can be used to exchange

University of Pretoria etd

47

thoughts, documents and other aids for capturing such tacit knowledge for the KM
information base.

The process of capturing tacit knowledge can start with the introduction of simple computer-
based chat services. Regular meetings arranged with expert groups to talk about specific
topics can be extended with these services, well known from the Internet and enriched by
building automatic transcripts for the chat sessions. Transcripts can be enriched with the
corporate KM meta data and stored in the KM information base for later search and retrieval.

More advanced services like video conferencing follow the same concept. The video stream is
recorded on video equipment and is subsequently transferred to the KM system. Descriptions
and meta data are either merged with this video stream or can be stored in parallel on a file or
database. For cultures where such virtual meetings are common, an event database is typically
built where upcoming and past meetings are stored, together with event titles and
descriptions. They can be listed or searched by subject matter by means of meta data. A
hyperlink is provided so those users may join a virtual meeting. If the meeting takes place in
the future, integration into the e-mail system ensures that this event is marked in the calendar,
and on the event date a reminder automatically guides the participant to the virtual meeting.
After the event or meeting, on-demand services will make that knowledge available, by
providing the recorded video out of the KM information base to the KM desktop.

When integrating this technology into the automated KM services scenario, notifications are
sent automatically to the appropriate knowledge workers to remind them of an interesting
meeting or event. The appropriate URLs can also be listed on the KM portal.

A hybrid of abovementioned technologies is the integration of presentation techniques. In this
an online presentation that consists of slides is sent over the network. The audience receives
the video, audio and slides of the presentation on the KM desktop. The chat service is
integrated as a separate area on the KM desktop and enables the audience to type questions
during the meeting into the chat area. These questions are transferred to the presenter or a
person controlling the online presentation. On receiving the questions the presenter can
answer them during or at the end of the event. The slides as a document, the chats as a
transcript document and the audio and video as a stream are linked together and stored in the
KM system.

The same technologies not only make virtual events available for the KM information base,
but also real events like conferences. Each session on a conference can be recorded and than
be made available for all employees in the events system on the corporate net. Another
solution is to produce CDs of the sessions and distribute them to all subsidiaries or make them
orderable for interested employees.

Real-time Collaboration KM also provides support for sharing the creation process. It enables
distant knowledge workers to share a single virtual working space and to collaborate on the
creation of documents. This includes not only the sharing of the creation process using the
productivity suite, but also white board functionality. This kind of technology is also known
as screen sharing.

University of Pretoria etd

48

3.2 Knowledge based design

3.2.1 Introduction

This section investigates the various Knowledge-Based Design approaches in an attempt to
see whether they could add value to the final solution proposed. Over the years many different
approaches were used that had different levels of success. It is intuitively sensed that highly
structural and prescriptive methods are not suitable. It also appears that certain information in
design is well defined whereas other information is incompletely specified and vague. This
section analyses Artificial intelligence and design, problem-solving architectures and Case-
based design.

The first generation of Knowledge-based Design Systems (KBDS) was characterised by the
dominance of logic models and rule-based systems then prevailing within expert systems
technology. The paradigm of Knowledge Engineering (KE) appeared to be promising and
relevant to design. KE turned out to be far more applicable to Knowledge Management (KM)
that is likely to form the holistic operational framework for globally enabled design and
project environments. KE has limited use for the range and complexity of design tasks.
Debenham (1998:1) states that a unified KE methodology treats data, information and
knowledge in a homogeneous manner. However, with a few exceptions, models of expert
knowledge appeared to have limited utility for the range and complexity of design tasks
(Oxman et al. 1994).

Debenham (1998:23) defines a Knowledge-based system as a system that represents an
application containing a significant amount of real knowledge and has been designed,
implemented and possibly maintained with due regard for the structure of the data,
information and knowledge. A significant amount means that the application boundary of the
system should identify an area of the application that is appropriately dealt with using
knowledge-based systems design techniques.

In an application:

• Data is the set of fundamental, indivisible things (Debenham 1998:18).
• Information is the set of implicit associations between data things (Debenham 1998:20).
• Knowledge is the set of explicit associations between the information things and/or the

data things (Debenham 1998:20).

An expert system is a system in which knowledge is represented as it is, possibly in the same
form that it was extracted from an expert. In an expert system the represented knowledge
should endeavour to solve problems in the same way as the expert knowledge source solved
them.

Debenham (1998:23) identifies differences between Knowledge-based systems and expert
systems:

• Expert systems perform in the manner of a particular trained expert. A knowledge-based

system is not constrained in this way. In a knowledge-based system the represented
knowledge should be “modular” in the sense that it can easily be placed alongside
knowledge extracted from another source.

• Expert systems do not necessarily interact with corporate databases. In general,
knowledge-based systems belong on the corporate system platform and should be
integrated with all principal, corporate resources.

University of Pretoria etd

49

Carrara et al. (1994) states that computer-aided architectural design research has inherited the
unanswered questions first raised by theorists like Rittel, Simon and Schon. To this has been
added the additional complexity of representing the answers in an explicit and complete way
so that they can be handed over to and reproduced by machines. The combined search for
solutions to these questions is called Knowledge Based Computer-aided Architectural Design
(KBCAAD). This title implies that the search for tools that could assist designers in the
design of buildings relies on one hand on understanding the cognitive processes of
architectural design itself as well as the theories, methods and techniques that have been
developed outside the discipline of architecture. It is the synthesis of these two sources that
holds the promise that an appropriate balance will finally be found.

Architectural CAD researchers have been focussing their attention on the cognitive aspects of
the architectural design process since approximately 1990. They have been constructing
models of design knowledge and reasoning. They developed data structures to represent them
computationally. Although the models are unique to the discipline of architecture they were
borrowed and adapted from other disciplines such as Artificial Intelligence (AI) and product
development. Inference engines that were prominent at the height of the interest in expert
systems have not proved themselves for design applications of substance.

Due to the complexity of design, systems for design have often defined the task with artificial
narrowness (Hinrichs 1991:3). In AI, as in Fuzzy Set theory, progress in the past was made by
limiting the universe of discourse or even closing it in an attempt to simplify the enormously
complex design problems. To make the systems tractable the following typical four
approaches were used (Hinrichs 1991:3):

• Selection. Select components to instantiate a skeletal design. Selection problems are

typically constraint satisfaction problems in which all variables to be satisfied for are
known ahead of time. The space of possible components is given as if from a catalogue.

• Configuration. Arrange a given set of components. Configuration is essentially the dual
of selection. This method concentrates on the relationship between components rather
than the components themselves.

• Parametric. Fix numeric parameters. Parametric problems are similar to selection
problems except that the components are quantities and the task is usually to optimise or
to partially satisfy constraints.

• Constructive. Build up designs from components. Constructive design is analogous to
planning, in that components take on the role of operators or actions. Typically, the space
of components is fixed throughout the design process.

Hinrichs (1991:3) observes the fact that if design problems are viewed as instances of
abovementioned types, they can often be solved using efficient algorithms and heuristics.
However, rigid classifications do not capture the flexibility that real designers exhibit. A
model of design or a system that supports design in an open world should be able to use any
of the four generic types of design.

In addition to the different types of design approaches, AI research has explored different
approaches to the process of design. Hinrichs (1991:3) summarises some of these approaches
as:

• Pure synthesis: Construct designs from the bottom up. The pure synthesis approach

assumes that the design problem space is basically a very large graph. If the appropriate
heuristics can be found to prune it, searching that graph can discover solutions. An
example of this type of approach can be found in the rule and production based systems
such as LOOS (Flemming 1994:5). It contains a generator able to accept a layout and find
all possible ways of adding a new object. A tester evaluates a layout generated in this way

University of Pretoria etd

50

and a controller mediates between these two components. After each generate-and-test-
cycle, the designer selects the next layout to be expanded based on the evaluations
produced by the tester.

• Hierarchical refinement: Refine skeletal designs from the top down. Hierarchical

refinement assumes that there are really only a few basic types of designs. If the problem
can be classified, a design template can be instantiated, and propagating constraints can
solve variables. An example of this is the simple cut-and-paste approach developed by the
Division of Building Technology of the CSIR in South Africa for health facility design. It
is based on a large set of templates at various levels and assists unskilled designers to
rapidly design a hospital or a clinic.

• Transformational approach: In this approach design is claimed to be a mapping from

function to structure. Just as Fourier and Laplace transforms map from one domain that is
difficult to reason in to another that is more tractable, the transformational approach to
design suggests decomposing functions and mapping primitive functions onto structures.
Conradie and Küsel (1999) experimented with this in the precedent system AEDES
discussed in Chapter 4.

• Case-Based Design: The case-based and analogical approaches assume that the problem

being solved is probably similar to one that was seen before. If a historical case can be
retrieved, a solution can be found by transferring directly from that previous case. An
example is the ARCHIE-2 system (Goel et al. 1991; Kolodner 1993) that uses similar
solutions from the past to solve the current problem.

Currently the most promising AI solution is the use of design cases. This is empirically
validated successful solutions and failures to design problems from the past. If structured
design methodologies are to be used then design knowledge generated should be stored in
such as way as to expedite future designs. This is also one of the key objectives of
Knowledge-Intensive CAD where attempts are being made to elevate CAD systems beyond
only electronic drawing boards. Mäntylä (1995: 3) states that a key objective for the logistical
management of information is reuse of existing information. Ideally all (design) information
created or learned should be made available to later use in a correct, useful and timely
fashion.

3.2.2 Artificial intelligence and design

In the late 1950s Allen Newell and Herbert Simon proved that computers could do more than
calculate. Marvin Minsky, head of the Massachusetts Institute of Technology (MIT) Artificial
Intelligence (AI) project at the time, announced with confidence that within a generation the
problem of creating Artificial Intelligence would be substantially solved. Then suddenly the
field of AI ran into unexpected difficulties. The trouble started with a failure of attempts to
program an understanding of children’s stories. The program lacked the common
understanding sense of a four year old and no one knew how to give the program the
background knowledge necessary for understanding even the simplest stories. An old
rationalist dream was at the heart of the problem. AI is based on the Cartesian idea that all
understanding consists in forming and using appropriate symbolic representations. For
Descartes, these representations were complex descriptions built up out of primitive ideas or
elements.

Dreyfus (1993:xi) states "Common-sense understanding had to be represented as a huge data
structure comprised of facts plus rules for relating and applying those facts."

AI struggles with essentially three central problems (Dreyfus 1993:xviii).

University of Pretoria etd

51

• How everyday knowledge must be organised so that inferences can be made.
• How skills or know-how can be represented as knowing-that.
• How relevant knowledge can be brought to bear in particular situations.

Dreyfus (1993:xxviii) states that "Heidegger, Merleau-Ponty, and the gestaltists would say
that objects appear to an involved participant not in isolation and with context-free properties
but as things that solicit responses by their significance."

"What we really need is a system that learns on its own how to cope with the environment and
modifies its own responses as the environment changes. To satisfy this need, recent research
has turned to an approach sometimes called ‘reinforcement learning’." (Dreyfus 1993:xxxix)

"The point is that a manager's expertise, and expertise in general, consists in being able to
respond to the relevant facts. A computer can help by supplying more facts that the manager
could possibly remember, but only experience enables the manager to see the current state of
affairs as a specific situation and so see what is relevant. That expert know-how cannot be put
into the computer by adding more facts, since the issue is which is the current correct
perspective from which to determine which facts are relevant." (Dreyfus 1993:xlii)

Feigenbaum makes the following comments in his analysis of MYCIN, a program developed
by Shortliffe in 1976 for diagnosing blood and meningitis infections and recommending drug
treatment (Dreyfus 1993:28).

" He conscientiously notes that the experts themselves are not aware of using rules:

...Experience has also taught us that much of this knowledge is private to the expert, not
because he is unwilling to share publicly how he performs, but because he is unable. He
knows more than he is aware of knowing. (Why else is the Ph.D. or the Internship a guild-like
apprenticeship to a presumed ‘master of the craft’? What the masters really know is not
written in the textbooks of the masters.) "

The author tested the translation capabilities of a translation program freely available on the
Internet. The result is really amazing, however upon closer inspection certain inherent and
fundamental problems become apparent.

The following slightly technical paragraph from a recent German conversation class was
submitted to the translator.

“ Die Stadt Frankfurt am Main

In der Stadt Frankfurt gibt es heute viele grosse Bürogebäude und in der Umgebung findet
man viel Industrie. Die Farbwerke Höchst, wo Farben, Lacke und andere Chemikalien
erzeugt werden, sind in der Nähe von Frankfurt zu Hause. Andere grosse industrielle
Konzerne sind Siemens und Halske AG., Hartmann und Braun (Elektroinstrumente) und
Mouson (Kosmetik). Auch die Glas- und Porzellanindustrie ist bedeutend.

Frankfurt ist auch ein kultureller Mittelpunkt und hat natürlich eine Universität und
verschiedene Hochschulen. Das Städel ist die städtische Kunstgalerie und besitzt viele
Kunstschätze. “

After a few seconds the translator responded back with the following partially correct answer.

“ The city Frankfurt/Main

University of Pretoria etd

52

In the city Frankfurt gives it today many large office buildings and in the environment finds
one much industry. The inking attachments Hoehst, where colours, lacquers and other
chemicals are produced, are in the proximity from Frankfurt at home. Other large industrielle
of companies are Siemens and Halske AG, hard man and brown (electrical instruments) and
Mouson (Kosmetik). Also the glass and porzellanindustrie are important.

Frankfurt is also a cultural focal point and has naturally a university and different
universities. The Staedel is the urban art gallery and possesses many art treasures. “

Upon analysis of the results it is apparent that the problems mentioned by Dreyfus are real.
The wrong translation of the phrase “gibt es heute” indicates that the context or idiomatic
expression was not understood. The most serious error was the company “Hartmann und
Braun” that was translated as “hard man and brown”. This indicates that purely mechanistic
parsing was used in this case without any higher level contextual comprehension. It is also
apparent in the short paragraph that the translator had difficulty with certain technical terms
such as “porzellanindustrie”. It is the author’s experience, and Dreyfus confirms it, that AI is
only successful in small well-defined domains. The above translation does not make sense on
its own. If AI is to be successful at all it is mandatory that context be well understood.
Nobody has yet succeeded in devising an algorithm that can accurately summarise written
text or a book, because this process would require exceptional contextual understanding. This
is indeed one of the most difficult problems known.

Dreyfus (1993:xxx) notes "It seems highly likely that the rationalist dream of
representationalist AI will be over by the end of the century”.

Designers and CAD researchers became interested in AI for two reasons. The first is the
influence of structured programming as propagated by Dahl, Dijkstra and Hoare (Flemming
1994:1). Computer programming is seen as a process of step-wise refinements where program
specifications are developed through several levels of abstraction. The specification is
complete at any level. Transitions from one level to the next consist of expanding the program
by adding greater detail. The prescriptions of structured programming are impossible to
follow in many design situations because they presuppose that the task at hand is well
understood and amenable to algorithmic treatment.

The second reason was due to the frustrations with the unintelligent nature of commercial
CAD systems. Even today CAD is contributing very little to the initial and most demanding
stages of design. In an attempt to solve the latter AI was applied. AI is generally concerned
with tasks whose execution appears to involve some intelligence if done by humans. Design
falls into this category.

AI research can be divided into two broad approaches.

• Understanding of the human brain. Computer models in this tradition represent a model

or simulate human cognition and succeed to the degree to which they emulate human
performance.

• Intelligent systems. Systems that perform intelligent tasks effectively without concerns for
how faithfully the model simulates human performance or cognition.

The efforts in the first category are theoretically motivated and must seek empirical
acceptance. Efforts in the second category are practically motivated and must stand the test of
practical usefulness. Computers that work exactly like people are unlikely to do better than
people. CAD tools, whether AI based or not, should always be seen as a complement to
human designers assisting them in tasks where they perform less well, but do not compete in

University of Pretoria etd

53

areas that the human brain performs well. Programs that assist in design are most useful in the
following areas:

• Suggest possibilities to designers they have not thought of.
• Remind them of things they might have forgotten.

The author will attempt to prove that in addition to the two possibilities a third option exists.
This is where intelligent components are used to facilitate the manipulation of complex design
information in a convenient environment to facilitate concept selection and design
experimentation during the early phases of design. During this phase the designer is often
confronted with incomplete information and designs could very easily change. At the same
time decisions taken during this phase will significantly influence operational characteristics.

Flemming (1994:21) states that the fixation of some AI researchers on processes rather than
results is puzzling. Chess-playing programs were initially considered a legitimate AI topic.
Recently the world chess champion, Kasparov was beaten by the super-computer Deep Blue.
This was not achieved by imitating chess players, but rather by a more efficient generate-and-
test approach that results, in part, simply from hardware improvements. In addition there was
behind-the-scenes expert intervention. Bellman (1978:144) came to the conclusion that the
human brain remains far above anything that can be mechanised. Oksala (1994:27) states that
many architectural problems are life-long and in a theoretical sense typically non-terminating.
Architectural products are often so complex with respect to environmental situations that we
can only describe them partially.

3.2.2.1 Life cycle enabled design ontology

In the design and implementation of software intended to support the design and construction
environment, ontology plays an important role. Simoff et al. (1998:23) mention that ontology
originated in philosophy as a systematic account on the nature and the organisation of reality.
Currently ontology is considered to be a branch of metaphysics addressing issues such as the
categorical structure of reality. There is no ontology that is accepted as the definitive
categorical scheme. A typical categorical scheme has a hierarchical structure with the most
general entity at the top of the hierarchy.

Simoff et al. (1998:23) mention that the concept of ontology entered the field of artificial
intelligence as a formal system for representing domain concepts and their related linguistic
realisations by means of basic elements.

Unfortunately there is growing confusion about the meaning of the term in the context of its
usage in AI in design. Presently the term is so wide that it ranges from the ISO STEP object
model description (a hierarchical interoperability standard) to concept structures for sharing
ideas. The application of ontology for the description of design domain faces additional
difficulties due to the interdisciplinary and evolutionary nature of the domain (Simoff et al.
1998:24).

In the precedent systems PREMIS and AEDES three fundamentally distinct ontologies can be
identified.

• Location (property). This is a hierarchical structure that expresses the hierarchical

relationship of locational entities. It starts with the country definition and goes right down
to shared space (Figure 11).

• Administration. This is related to the activities and administrative uses that are made of
these locational entities for managerial, classification or maintenance purposes.

University of Pretoria etd

54

• Graphical objects. The graphical database contains a set of structured entities that links to
the alphanumeric relational database.

Due to the fact that location/ property is pivotal to Facilities Management portion of the life
cycle this world was viewed as primary in PREMIS. Administration is broken down into the
main categories organisational structure, legal, people and construction elements (Figure 12).
The relationship between graphical objects and the location alphanumeric category is
maintained by means of a system of implicit linking (Appendix A). In this system a graphical
object has a relationship with an alphanumeric record by virtue of the fact that the graphical
object name is the same as the concatenation of the key fields in the relevant Relational
Database Record.

In an attempt to structure briefing and design Conradie and Küsel (1999) used an
oversimplified ontology in the AEDES prototype of active and passive requirements and
functions. Passive requirements are related to physical elements such as structure, services,
finishes, fittings, furniture and equipment. Active requirements are activities that were given
activity function names such as enable ablutions. In this approach SE principles as well as
functional decomposition were explored.

Simoff et al. (1998:28) suggest an ontology that delineates the categories of building design
space as activity and space. An activity consists of equipment, service, time, performer,
consumer and constraints. Space consists of geometry, divider, link and constraints. In this
model relations define the explicit connection between entities.

In Product Data Modelling (PDM) that is essentially the briefing and design phase of the
product life cycle another important world can be identified:

• BPM structure. This is a traceable hierarchical framework for organising design

knowledge and documentation on every stage of the design process. A good example of
this is the Industry Foundation Classes (IFC™ Release 2.0) as defined by the
International Alliance of Interoperability (IAI). This is essentially a hierarchical object
structure that describes structural interactions, but also attempts to facilitate
interoperability between different systems in the construction industry. This model is not
as comprehensive as the ISO STEP object standard (Figure 13).

University of Pretoria etd

55

Figure 11: Typical hierarchical relational database structures used in a Facilities Management
system (Author)

University of Pretoria etd

56

Figure 12: IAI, Industry Foundation Classes Release 2.0 Object Hierarchy (Author)

3.2.3 Problem-solving architectures

Today the following general design problem-solving strategies exist (Flemming 1994):

• Top-down strategies that develop a design specification through several levels of

abstraction.

University of Pretoria etd

57

• Bottom-up strategies that construct a design incrementally in small steps more or less at
the same, final level of abstraction.

• Middle-out strategies that start with a highly structured description and, transform it to
satisfy given requirements.

Within each of these strategies a function or behaviour driven approach could be
distinguished from a form driven approach. These distinctions correspond approximately to
the goal- and data-driven approaches in AI.

3.2.3.1 Top-down strategies

1. Function-driven strategies

The logic design component selects functional components from a knowledge base that
contains descriptions of individual components and templates that tell the system how to
design with them. This synthesis proceeds through the levels of a functional hierarchy. At the
highest level, it derives the overall system architecture in terms of functional subsystems and
ensures correct interconnections between subsystems. The next level inherits the
characteristics of the components determined at higher levels and can split single functional
components into successor parts. When the lowest level is reached the individual subsystem
components and their connections are known. The AEDES prototype system is an example of
this type of functionally based system.

2. Form-driven strategies

This strategy is closely related to the type of structures that the IAI (Figure 12) proposes. It is
a decomposition of the building structure into the various sub-structures and materials. The
fundamental approach is to build a model of a building and to generate all documentation
from the 3D model. The process to design a structure for a specific building starts from
specifications of the overall building form and type. It successively selects component types
and materials at each level in the hierarchy. The choices available at each step can be found
by one of three methods:

• Selection from a pre-defined, finite set of alternatives.
• Synthesis by further decomposition.
• Computation based on rules or numerical calculations.

Constraints can be defined to avoid certain combinations of decisions. A design approach in
which the parts for assembly are selected from a predefined set is also called configuration
design.

3.2.3.2 Bottom-up strategies

1. Function-driven strategies.

This approach takes individual functional, behaviour or performance specifications and
derives a description of a design incrementally by taking these specifications into account.
Flemming (1994) states that this approach is rare because the interactions between
performance indicators and design variables are so complex that it does not generally render
this approach feasible. One particular system (WRIGHT) avoided these problems by using a
system of disjunctive constraints that translate the desired behaviour characteristics into
constraints in the design variables. This system determines all feasible ways of satisfying the
constraints incrementally using constraint satisfaction techniques developed in AI.

University of Pretoria etd

58

2. Form-driven strategies

Form-driven, bottom-up strategies are employed by the classical incremental generate-and-
test approaches that generate a design in small steps. The intermediate evaluations are used to
direct the process into the most appropriate direction. Typically it would contain a generator
that is able to accept a layout and find all possible ways of adding a new object. A tester
evaluates a layout generated in this way and a controller mediates between these two
components. After each generate-and-test-cycle the controller selects the next layout to be
expanded, based on the evaluations produced by the tester. An early experimental system that
used this approach is LOOS. It is unlikely that future Case-Based Design methodologies
would use this type of approach, because it is so tedious. The computer attempts to execute
tasks that a human designer can do just as well.

3.2.3.3 Middle-out strategies

1. Function-driven strategies.

In this approach a system starts with a highly structured description of the desired behaviour
of a design. This description is transformed, at the same level of abstraction or granularity,
into a physical description. An example of this is a system that accepts a graph-based
description of an algorithm to be executed by a computer chip and transforms this description
into a collection of hardware components and their connections.

2. Form-driven strategies

This strategy starts with a highly detailed and structured design description and refines or
adapts it to the given context. Examples of this are the ARCHIE and ARCHIE-II systems
described in detail by Kolodner (1993). ARCHIE is an interactive prototype Case-Based
Reasoning (CBR) system for the design of buildings such as libraries and courthouses. It
supports the construction and evaluation of solutions. Users specify their problem description
and/ or solution description. The system retrieves and displays past designs and provides
suggestions and warnings. In support of evaluation, the system computes potential outcomes
and retrieves and displays past designs with similar outcomes. ARCHIE showed that design
cases could be very large and need to be decomposed into smaller units. Libraries of design
cases can be useful but may need to be supplemented with other types of design knowledge.
Practical support systems need usable interfaces to allow easy access to relevant information.
The most important lesson learnt is that the operation should be kept simple. ARCHIE is a
useful precedent for the present study even though Kolodner (1993:162) described ARCHIE
as a failure.

Architectural design systems based on CBR must solve two major system design and
implementation problems:

• Indexing. An indexing system must be designed to facilitate retrieval of stored cases so

that the most appropriate ones can be retrieved in the new design situation.
• Adaptation. They must support the refinement or adaptation of an existing case to the new

situation.

University of Pretoria etd

59

3.2.4 Case-based design

3.2.4.1 Introduction

A solution stored for possible reuse at a later time is called a case in the AI literature. The
ability to "frame" a problem is what differentiates great from ordinary designers. It is the
ability to distinguish between the vital few and mundane many design factors that leads to a
good design. Kolodner (1993:13) defines a case as a contextualized piece of knowledge
representing an experience that teaches a lesson fundamental to achieving the goals of the
reasoner. Rather than viewing reasoning primarily as a composition process, Case-Based
Reasoning (CBR) views reasoning as a process of remembering one or a small set of concrete
instances or cases and basing decisions on comparisons between the new situation and the old
instance. This view has important implications:

• CBR emphasises the use of concrete instances over abstract operators. It regards large

chunks of composed knowledge as the starting point for reasoning. Though there may be
smaller and more abstract chunks of knowledge in memory, they derive from cases and
are thus secondary to them (Kolodner 1996:361).

• CBR emphasises manipulation of cases over composition, decomposition and

recomposition processes. Reasoning by use of cases comes first and composition of
operators is of secondary importance (Kolodner 1996:364).

Of all the AI methods available today, Case-Based Design (CBD) is the most promising with
regards the storage of previously synthesised design solutions. CBD is a sub-set of CBR that
is aimed specifically at design using CBR methods.

CBD facilitates the provision of a comprehensive design database of past solutions that
designers will not remember on their own. CBD has distinct advantages over other AI
techniques such as Knowledge-Based Systems and Models.

The CBR paradigm has a bias against problem decomposition and recomposition implied by
composition of operators, because composition is a highly complex process. When problems
are entirely decomposable into noninteracting parts, decomposition and recomposition are
easy. As problems become less and less decomposable into non-interacting parts,
recomposition becomes harder and harder. Traditional methods must be stretched beyond
their original intent to deal with these problems. Such problems, which are called barely
decomposable, can be more efficiently solved by methods that do not have to decompose
them (Kolodner 1993:16).

Kolodner (1993) is of the opinion that engineering and architectural design is almost entirely
a process of adapting old solutions to fit a new situation or merging several old solutions to do
the same. Carrara et al. (1994) agree with this viewpoint when they characterise design as:

1. Defining a set of functional objectives that ought to be achieved by the design artefact.
2. Constructing design ‘solutions’ which, in the opinion of the designer, are (or should) be

capable of achieving the predetermined objectives.
3. Verifying that these solutions are internally consistent and that they achieve the

objectives.

Richens (1994:309) strongly disagrees with this point of view when he claims that
architectural objectives usually include functional ones, but are dominated by less definable
intentions. Flemming (1994:22) states that attempts to introduce machine innovation and

University of Pretoria etd

60

creativity are red herrings. Oksala (1994:41) expresses the opinion that it is realistic to design
machines that work as architectural design assistants and are capable of redesigning work
according to given rules.

It is essential that this database be built up during the normal activities of a design firm. If a
designer has generated a solution he should be able to store it literally with the push of a
button. Most experimental prototype systems at the moment rely on independent and separate
processes that may require the assistance of an expert that is intimately familiar with the
technicalities of indexing and retrieval. The author is of the opinion that Case-Based Systems
would be practical when designers themselves are actively involved in the modification of a
case and its storage for re-use. This machine/ designer relationship uses the best of both
worlds.

The author argues that CBD is a valid option for the following reasons:

1. Experts (domain experts) using any preferred front-end design method build up the

corpus of knowledge. It does not preclude traditional methods. Structured methods would
be more efficient.

2. Unlike other structured methods CBR allows a problem to be solved as a complete unit.
This is closer to the holistic synthesis of design problems that is dominant in architectural
design.

3. Successful precedents in an architectural environment already exist (Kolodner 1993).

 If a similar problem has been solved previously, it can provide the glue that holds barely
decomposable problems together. Rather than dealing with hard recomposition problems, the
reasoner only has to address those parts of the old solution that do not fit the new situation.

Case-Based Reasoning (CBR) is an approach to knowledge, memory structure and reminding
that is based upon modelling experiential knowledge. It is characterised in the literature as a
problem solving approach of a reasoner, which makes inferences from previous solutions
which are adapted to current situations. It has demonstrated its usefulness in domains where
experience is strong, but the domain model is weak or poorly formalised (Oxman et al. 1994).
Rather than duplicating human cognition, these models attempt to capture the essence of the
human cognitive processes and to explicate the principles of their operation. A new
generation of Knowledge-based System can potentially work in a partnership relationship
with the human designer. The objectives of support or aid systems have been defined as to
enhance human decision making by suggesting alternatives, predicting consequences and
conveniently grouping together the information that goes into decision making.

There are many different types of solutions. The solution to a design problem is the artefact
that was designed. With a solution in place, a reasoner that retrieves a case can use its solution
to derive a new solution. Solutions also have other components that aid adaptation. The
following list from the research community as interpreted by Kolodner (1993:154) is useful:

• The solution itself.
• The set of reasoning steps used to solve the problem. This was well addressed in the

AEDES prototype.
• The set of justifications for decisions that were made in solving the problem.
• Acceptable solutions that were not chosen and the reasoning and justifications that go

with them.
• Unacceptable solutions that were ruled out and the reasoning and justification that go with

them.
• Expectations of the result of deployment of the solution.
• Things that went wrong with the previous solution.

University of Pretoria etd

61

3.2.4.2 Advantages of a Case-Based Reasoner?

CBR has several advantages that give an indication when it should be used. The list below has
been collated and adapted from Kolodner (1993). The following advantages can be identified:

1. CBR reasoning allows the reasoner to propose solutions to problems quickly, because it

avoids the time necessary to derive those answers from scratch.
2. CBR allows a reasoner to propose solutions in domains that are not completely

understood. This is of particular importance to the advanced planning that is necessary to
design and build complex facilities such as hospitals.

3. Remembering previous experiences is particularly useful in warning of the potential for
problems that have occurred in the past, alerting a reasoner to take action to avoid
previous mistakes.

4. CBR can be used as a communication tool between designers and other less design
literate participants.

5. Cases help a reasoner to focus his reasoning on important parts of a problem by pointing
out what features of a problem are the important ones.

6. A CBR system can be made to learn. In CBR problem solving efforts are saved to
expedite future work. Learning is a natural consequence of problem solving efforts. CBR
systems can be designed in such a way that they adapt to changes in their environments
by means of adaptive fuzzy sets, discussed below. The system can continue to collect
cases after deployment.

7. When CBR is used to solve problems, solutions can be justified by the cases they are
derived from. In a domain where it is difficult to evaluate solutions objectively such as
architectural design, CBR has the advantage of providing illustrations of the effects of
particular solutions.

8. CBR can be designed to anticipate potential problems as natural part of their reasoning.
Unsuccessful experiences with past solutions can be used in case-based systems to
anticipate possible problems that might result from solving a problem a certain way. In
general this capability adds efficiency. In architectural design anticipation of problems is
critical.

9. CBR provides a way for designers and computers to interact in a realistic way. CBR is
fundamentally inspired by human behaviour. Certain tasks in design such as the
calculation of energy consumption or acoustic performance is easier for a computer to
achieve, whereas aesthetic design decisions is best decided by the designer. Designers are
good with creative reasoning, but poor at remembering the full range of applicable cases.
Humans tend to be biased in their remembering or as novices they not yet had the
experiences they need to solve the problem. During an interview of the professional team
involved in a large and complex construction project this fact was emphasised.

10. The knowledge acquisition for a CBR system is natural. Concrete examples rather than
piecemeal rules can be used. Experts (experienced practitioners) find it difficult to report
the knowledge they use to solve problems. They are quite at home reporting their
experiences and discussing the ways in which cases are different from one another.

11. CBR should be considered when it is difficult to formulate domain rules but cases are
available. Formulating rules is difficult in weak-theory domains such as architectural
briefing and design. In this domain knowledge is incomplete, uncertain or inconsistent. It
is impossible to formulate rules when there is a great amount of variability in design
situations that have the same outcome.

12. CBR can be considered when rules that can be formulated require more input information
that is normally available. This may be due to incomplete specified problems or the fact
that the knowledge required is not available at problem-solving time. This is often the
case in the construction industry and fast track projects where all project information is
not available up-front.

University of Pretoria etd

62

13. CBR should be considered when it is expensive to use rules because the average rule
chain is long.

14. CBR should be used when generally applicable knowledge is not sufficient to solve a
problem. This could be due to the fact that knowledge changes with context or because
some of the knowledge required solving the problem is used only under special
circumstances.

15. CBR should be considered when a case library already exists. In the present study some
hospital design cases (starter kits) are already available, albeit in an unstructured format.

16. When no fast computation method exists for deriving a solution from scratch, CBR
allows new solutions to be derived from old ones. In the case of the basic hospital starter
kit set developed at the Division of Building Technology at the CSIR, simple hospitals
but different hospital designs can quickly be built by means of different exemplar
department and architectural units.

17. When there is no fast computational method for evaluating a solution or when there are so
many unknowns that evaluation methods are unusable or difficult to use, CBR provides
an alternative.

18. CBR allows evaluation of solutions when no algorithmic method is available for
evaluation.

19. Cases are useful in interpreting open-ended and ill-defined concepts.

3.2.4.3 The disadvantages and caveats of Case-Based Reasoning

CBR has several disadvantages and caveats in architectural design that should also be
considered. The list below has been collated and adapted from Kolodner (1993):

1. CBR requires cases. Traditionally the effort in building a CBR system went into case

collection. It is apparent from a study and interviews1 with the designers of ARCHIE that
it was an enormous effort. To be successful in the architectural profession and the
construction industry it should not require such extraordinary efforts. The case library
should be automatically assembled during the normal professional design activities.

2. For CBR to be useful and reliable, cases with similar problem statements should have
similar solutions. CBR is based on the premise that situations recur in a predictable way.
Adaptation modifies old solutions to fit new situations. If a domain is discontinuous
where similar situations require wildly different kinds of solutions, then CBR cannot be
used and would be misleading. This is unfortunately only partially true in architecture.
Creative designers do not always solve related design problems in a similar way.

3. CBR solutions are not guaranteed to be optimal. The full range of possible design
solutions is usually not explored in a CBR system intended for design support. Optimal or
more creative solutions may be missed. This is a problem in any heuristic system such as
TRIZ that is also discussed in the present study. The designer cannot escape his
responsibilities, however the CBR system will remind him of design aspects he might
have forgotten.

4. An inexperienced case-based reasoner might be tempted to use old cases blindly, relying
on previous experience without validating it in the new situation.

5. A case-based reasoner might allow cases to bias him or her too much in solving a new
problem.

6. Case libraries require considerable storage space. In the design of CBR systems special
consideration must be given to ensure a long life of the case with changing technology. A
large sum of money in terms of intellectual capital, time and effort is encapsulated in the
case library. Persistence of data is therefore of paramount importance.

7. Inexperienced people are often not reminded of the most appropriate sets of cases when
they are reasoning.

1 Janet Kolodner and Craig Zimring personal communication during April 2000.

University of Pretoria etd

63

3.2.4.4 Case-based Reasoning compared with other methods

The CBR/ CBD cycle (Kolodner 1993:18) has striking similarities with the product
development method of concept selection proposed by (Pugh, 1996; Ulrich et al., 1995)
(Figure 13). In generalised terms the CBD cycle is the case equivalent of concept selection.

Figure 13: Case-Based Reasoning compared to concept selection (Collated by
author from Kolodner (1993:18), Ulrich et al. (1995) and Pugh (1996))

The typical stages of the CBD cycle are (Kolodner et al. 1996:35):

1. Retrieval. Partially matching cases must be retrieved to facilitate reasoning. This is called

case retrieval. The case was created in the first instance by a case storage process also
called memory update.

2. Solution proposal. In problem-solving CBR, a ballpark solution to the new problem is
proposed by extracting the solution from the retrieved case.

3. Adaptation. This is the process of altering an old solution to fit it to the context of the new
situation.

4. Criticism. This is a critical analysis of the new solution before applying it.
5. Justification. This is the process of creating an argument for the proposed solution, done

by a process of comparing and contrasting the new situation with prior cases. Sometimes
justification might by followed by a criticism step in which hypothetical situations are
generated and the proposed solution applied to them in order to test the solution.

6. Store (memory update). The new case is permanently saved for future use.

The following table compares Case-Based Reasoning, (CBR), Rule-Based Reasoning (RBR)
and Model-based Reasoning (MBR)1.

1 Janet Kolodner is of the opinion that CBR, MBR and RBR form a continuum. Personal communication 14 April 2000.

University of Pretoria etd

64

Table 4: A comparison between Case-Based, Rule-Based and Model-based
Reasoning (Collated by author)

Case-Based Reasoning

Rule-based Reasoning

Model-Based Reasoning

Cases in case libraries are constants
that describe the way things work.

Rules in rule bases are patterns.

Store causal models of devices or
domains.

Cases are retrieved that match the
input partially.

Rules are retrieved that match the
input exactly.

Cases are retrieved first,
approximating the entire solution at
once, then adapted and refined to a
final answer.

Rules are applied in an iterative
cycle of microevents.

Cases are large chunks of domain
knowledge, quite likely redundant,
in part, with other cases. Based on
idiosyncratic knowledge, specific to
episodes but mostly not normative.
Provides methods for constructing
solutions.

Rules are small, ideally independent
but consistent pieces of domain
knowledge.

Emphasise general knowledge that
covers a domain. Models hold
knowledge needed for validation or
evaluation of solutions but do not
provide methods for constructing
solutions.

CBR can be used both when a
domain is well and not so well
understood. In the latter case it
assumes the role of a generalised
model.

Not applicable Is used when a domain is well
enough understood to enumerate a
causal model.

Provides for efficient solution
generation and evaluation is based
on the best cases available.

Not applicable Provides a means of verifying
solutions, but solution generation is
unguided.

Needs a means of evaluating its
solutions, guiding its adaptation and
knowing when two cases are
similar.

Not applicable Models provide a means of
evaluating its solutions.

These differences led to differences in knowledge acquisition. In RBR, knowledge is
extracted from experts and encoded in rules. This is often difficult to achieve. In CBR most
(but not all) knowledge is in the form of cases. CBR needs adaptation rules and similarity
metrics and more types of knowledge, but knowledge is easier to acquire.

Both MBR and CBR were developed as methods for avoiding reasoning from scratch. Both
compose knowledge into large chunks and reason using large chunks. The differences have
mostly to do with the content of the knowledge used and the conditions of applicability for
each.

3.2.4.5 Types of Case-Based Reasoners

Kolodner (1993) distinguishes between automated reasoners and retrieval-only aiding and
advisory systems. Numerous cases can be found in the literature to illustrate the former type
that can achieve numerous diverse tasks. Typical examples are:

1. CHEF is a case-based planner. Its domain is recipe creation. Recipes are viewed as plans.
2. CASEY is a case-based diagnostician. It takes as its input a description of its new patient,

including normal signs and presenting signs and symptoms. Its output is a causal
explanation of the patient’s disorders.

3. JULIA is a case-based designer that works in the domain of meal planning.

University of Pretoria etd

65

4. HYPO is an interpretative reasoner that works in the domain of law. It takes as input a
legal situation and as its output it creates an argument for its legal client.

5. PROTOS implements both case-based classification and case-based knowledge
acquisition. Given a description of a situation or object, it classifies the situation or object
by type.

6. CLAVIER is a manufacturing industry related system for configuring the layout of
composite aeroplane parts for curing in an autoclave. It is used at Lockheed in California.

7. ROBBIE (Re-Organisation of Behaviour by Introspective Evaluation) combines a case-
based planner with an introspective component. It was used to simulate an intelligent
agent travelling in a limited world of a number of street blocks. The agent had to conform
to certain basic rules. The agent could intelligently work out alternative rules if an
unforeseen obstacle came in the way (Fox 1995).

The former group is where an application in an architectural domain is most likely to achieve
success. CBR fits well with the way that designers work. People use CBR naturally in much
of their everyday reasoning. Kolodner (1993) provides existing examples that are precedents
for the present study. These examples are all retrieval-only aiding and advisory systems. The
first one is a hypothetical architect’s assistant. ARCHIE and ARCHIE-II are useful precedents
of prototype systems that give direction to the present study. ARCHIE-II uses the concept of
design stories. Some stories in ARCHIE-II tell about design features that did not work and
what could be done to remedy the situation. Others report on features that were successful.
Users first describe to the system the problem they are working on. The system subsequently
retrieves buildings that are similar to the desired new one. The user can then display the
building or part of a building that is retrieved. He is shown a floor plan surrounded by
annotations. These annotations describe the various design features.

Domeshek et al. (1994) describe the MIDAS (Memory for Initial Design of Aircraft
Subsystems) system. This system used ARCHIE as a precedent to support early design of
aircraft subsystems. Both ARCHIE-II and MIDAS use the Design-MUSE shell that eases
construction of case-based design aids. An important goal of this system was that domain
experts should be able to maintain it, rather than AI experts.

Oxman (1994) recognises four cognitive approaches for modelling design case knowledge:

• Generic models (model-based)
• Associative models
• Exemplar models
• Precedent

3.2.4.6 Generic models

A design space is essentially a delineation of a class of things. That is designs conforming to
particular meanings and a particular syntax. Knowledge is used to define classes of designs
called generic designs. It is often convenient to make the generic nature of knowledge
explicit. Rather than using grammatical rules, a design space may be defined in terms of a
class description called a generic model. This is done by listing all properties of the class,
including the ranges of properties that an instance may take and also the interrelationships
between properties. A small house can be defined in terms of its generic form and attributes.
The graphic structure contains implicit information about the essential properties of the class.
The properties could also be listed. An example is the list of allowable rooms it may have. It
may also be stated that it includes items such as a roof and a front door.

In some cases a certain design instance is said to typify a class. It embodies the features of its
class in which we are interested. Such a design is said to be an archetype. The concept of an

University of Pretoria etd

66

archetype is useful because we prefer to think in terms of instances rather than in terms of the
abstract world of classes of things.

In design the term prototype is also used. This is generally seen as a design from which other
designs originate. A prototype typifies a class of designs and serves as a generic design.

3.2.4.7 Associative models

The associative mechanism is another key principle of cognition, which is present in design
thinking. In associative reasoning concepts are linked on the basis of conceptual relations to
form a structure of concepts. This can be represented by a conceptual network, which maps
the structure of relationships and emphasise semantics. A semantic network is the set of all
relationships which concepts have to other concepts. The semantic network is related to some
context in which it has meaning. This provides the basis upon which to model attribute-based
associative thinking in design. In typological design there is a restrictive definition of
essential formal variables in the type and how they can be hierarchically modelled into a set
of formal concepts. In associative reasoning it is the particular structure of conceptual
linkages in contrast to a well-defined hierarchical structure, which is significant.

In architectural design, knowledge associated with recognised categories such as building
types provides a clear domain example of typological knowledge through which generic
designs can be modelled. With regards to design concepts, there is no comparable consensus
on what constitutes the vocabulary of architectural concepts. One area where a vocabulary has
begun to emerge is that of the formal concept. Formal concepts describe particular features
(formal attributes) of the design entities. In the case of architecture, these are the vocabulary
of concepts, which describe the formal content of building designs. A system like this could
allow for the maintenance, presentation and possible modifications of associative linkages
between concepts within the designs.

An example of this type of model is the FORMNET system. This system contains a
vocabulary of more than hundred formal attributes that are hierarchically organised into nine
major categories and 40 sub-categories. These were established through the survey and
analysis of the literature on formal analysis and on the architecture of Le Corbusier. The
formal knowledge relative to the villas is organised into a semantic network in which the
formal attributes are the nodes. This provides a means to navigate within the system by
associative connections between formal concepts, to study the coincidence of formal concepts
in various designs and to study relationships between attributes. Some of the attributes that
are used in FORMNET are symmetry, grid, regulating lines and free plan. The projects are
described both two and three-dimensionally, while the concepts are described two-
dimensionally. Historical styles such as Doric and Gothic also provide associative models.
Doric gives democratic and Gothic religious associations.

3.2.4.8 Exemplar models

In this approach it is attempted to re-use prior knowledge rather than to generate new designs.
The previous solution is adapted to the current situation. Prior knowledge is associated with
specific design cases in which the knowledge is highly explicit.

The case, as specific knowledge, can be distinguished from generic knowledge by its unique
departure from the norm. A design case has something specific to communicate regarding the
solution, its history of generation and its implications in use. Since the knowledge of prior
problem solutions is used, the case is structured in such a way that it can be adapted.

Architectural details are an example of this type of case. Building details are example-based
and detailing is often based on the re-use of specific examples, which are exemplars, or

University of Pretoria etd

67

examples that function as models. The information base could be very broad and special
attention has to be paid to the access method. The traditional CI/SfB indexing conventions
are not adequate. Organisation of the index according to a convention of typological
categories of elements will support conventional search by taxonomic categories (category,
element name and product name). However it will not necessarily support search by other
categories such as design principles and it will not support browsing and cross-indexing.

Three broad classes of domain knowledge can be identified:

• Procedural knowledge is a process or algorithm for design. The design of a staircase is an

example where the calculations are based on floor to floor height, length of the stair run,
and the tread riser relationships.

• Causal knowledge is a detailed procedure for calculation. An example is the calculation
and design of partitions for thermal or acoustic properties.

• Behavioural knowledge is the understanding of the performance achieved by particular
materials or by a particular configuration of elements in a building. This characterises
much of the knowledge of building detailing.

Despite the abundance of literature and information in the field, knowledge is generally
poorly structured. The knowledge is not structured in such a way that it can be used in models
of the design process. It is the integration of knowledge behind the detail within the working
environment, which is a long-term objective of intelligent CAD libraries.

Some desirable characteristics of such a system are:

• Memory and indexing approach to support exploration as well as directed search.
• Explanations such as pitfalls and lessons should be integrated into the case.
• The graphic representation should be linked to a model of the case adaptation process.
• Library and the design environments should be integrated.

3.2.4.9 The design precedent

The selection process of relevant ideas from prior designs in current design situations has
been termed precedent-based design. During the course of exploration of design ideas within
precedents, designers are able to browse freely and associatively between multiple precedents
in order to make relevant connections. This makes the discovery of unanticipated concepts
possible in precedents. In precedent-based systems the ability to encode, search and extract
design knowledge relevant to the problem at hand is significant.

One method to represent design knowledge in this type of CBR is to base it upon a
decomposition of holistic case knowledge into separate chunks of design knowledge. One
means to decompose case knowledge into separate and independent chunks is the concept of
the story, which is currently employed in the CBR community (Oxman et al. 1994:59). The
design story is employed as a way to decompose existing descriptions of complex design
precedents into chunks. A story is also useful because it provides contextual information. In
order to structure a story in a useful format that can be analysed a tri-partite schema that uses
an issue-concept-form formalism can be used. Each design story is a way to link these three
components. Indexing of the cases could become story indexing rather than case indexing.
Linkages between precedents can be established through matching of issues and design and
design concepts.

The design precedent addresses some of the problems of the other models. Because of their
network structure, the knowledge representation can use a semantic network or in the form of
a node-link structure as provided in hypertext systems.

University of Pretoria etd

68

Precedent-based design is viewed as a significant paradigm in architectural design. However,
it has been the subject of less theoretical and research work than typological design. The
potential for design aid systems based upon precedent libraries (design thesauri) is another
realistic possibility.

3.2.5 Case-based Reasoning indexing and retrieval

3.2.5.1 Introduction

One of the important issues in CBR is retrieval of appropriate cases. The indexing and
retrieval methods as described by Kolodner (1993), Flemming (1994) and Charlton et al.
(1998) already solved the indexing and retrieval problem substantially. It is clear that the
indices required to facilitate the initial selection of relevant cases need to be based on
linguistic variables. All present methods are based on static linguistic variables that are
searched in order to find the most appropriate case. The author is of the opinion that static
linguistic variables fail to address the problem of context of the index. An example of this is a
description that states that the design for a specific building is energy efficient. The linguistic
variable energy efficient could have been quantified as a design that requires 50 2/ mW . If a
significant breakthrough is made in lighting design a new low energy design might be feasible
requiring only 20 2/ mW . This would invalidate the previous assumption that 50 2/ mW is
energy efficient. The best solution to this type of problem is to formulate a dynamic, context
sensitive linguistic variable energy efficient. The value is calculated at the time of retrieval in
terms of the known universe of designs. This implies that it is better to store the calculation
method with the linguistic variable, rather than absolute values. In the case of lower order
values that are absolute such as gross area, rentable area, volume and reverberation time it is
acceptable to store the values in an absolute way. If static non-linguistic variables are to be
compared and weighed then the Flemming method is convenient to weigh up the various
factors. The author is of the opinion that Charlton et al. (1998:322) comes the closest to a
dynamic approach by recommending the use fuzzy sets. However they fail to recognise the
need for dynamic linguistic indices.

3.2.5.2 The indexing problem

The indexing problem has several parts. When a case is created, appropriate labels must be
assigned to ensure that it can be conveniently recalled. Labels are also used at retrieval time to
judge the appropriateness of an old case in a new situation. Some of the basic requirements of
indices are (Kolodner 1993:194-195):

• They have to anticipate the vocabulary a retriever might use.
• Indexing has to be by concepts that are normally used to describe the items being

indexed, whether they are cosmetic features or something more abstract.
• Indexing has to anticipate the circumstances in which a retriever is likely to retrieve

something.

Tasks and domains must be analysed to find the functionally relevant descriptors that should
be used to describe and index cases. This is called the indexing vocabulary. Index vocabulary
is a subset of the vocabulary used for full symbolic representations of cases. In the event of
retrieval-only CBR it is not necessary to represent the entire contents of the cases
symbolically. It is only necessary to represent in the case index the part of the description
needed for retrieval. This is called index assignment. Indices are those combinations of
features of a case that describe the circumstances in which a reasoner might find the case
useful during reasoning.

University of Pretoria etd

69

The following general guidelines for choosing indices can be identified (Kolodner 1993:197):

• Indices should be predictive. This is those combinations of descriptors of a case that were

responsible for solving it the way it was solved and those combinations that influenced its
outcome.

• Predictions that can be made should be useful. They should address the purposes the case
will be used for.

• Indices should be abstract enough to make a case useful in a variety of future situations.
This often implies that indices should be more abstract than the detail of a particular case.

• Indices should be concrete enough to be easily recognisable in future situations. It should
be possible to recognise the case with little inference.

3.2.5.3 Choosing an indexing vocabulary

A vocabulary needs to cover relevant similarities rather than just surface features. Focussing
the indexing on the relevant features of a case does this. Because indices are chosen from a
case’s description, the requirements of the indexing vocabulary are known. The case can be
described from two main sets of material (Kolodner 1993:203):

1. The functional approach. By means of the functional methodology representative domain

cases are collected. The corpus of available cases and the tasks that must be supported are
examined. For each case the points it can make, the situations in which each point is
applicable and the ways the case needs to be described to make it available.

2. The reminding approach. The kind of reminding that is natural among human experts
who do the designated task is examined. Similarities between new situations and the cases
they are reminded of. This is an attempt to find out which descriptors are important to
judge similarity and the circumstances.

The indexing vocabulary must capture those domain dimensions that are useful for reminding.
One of the attempts to a vocabulary for intentional situations was the Universal Index Frame
(UIF). In 1982 Schank proposed organising structures called Thematic Organisational
Packets (TOPs). TOPs are organisers of cases that are thematically similar to each other. If
two cases have the same thematic structure they fall into the same thematic category. The
Universal Index Frame (UIF) of Schank and Osgood in 1990 built on this concept. It uses the
dimensions and vocabulary of goal and plan interactions to structure the descriptions of
intentional situations. The UIF suggests the following descriptors or dimensions (Kolodner
1993:228):

• Anticipatory affect: the emotions of the character going into the situation
• Pretask belief: relevant beliefs of the character going into the situation
• Task: the task the actor is actively engaged in as the episode plays itself out
• Theme: relevant thematic relationships, roles played by the character, character traits and

ambitions that the character brings to the situation
• Goal: the character’s relevant goal
• Plan: the plan the character uses or intends to use in the situation
• Result: the major impact of what happened in the situation
• Positive side effects
• Negative side effects
• Resultant affect: the emotions of the character leaving the situation
• Post-task belief: relevant beliefs of the character leaving the situation. This is what the

character learned from the situation
• Change in affect: a characterisation of the degree of change in the character’s feelings as

a result of the episode

University of Pretoria etd

70

3.2.5.4 Methods for index selection

Kolodner (1993:249) identified the following general steps of index selection:

1. Determine what the case could be useful for.
2. Determine under what circumstances it would be useful.
3. Translate the circumstances into the vocabulary of the reasoner.
4. Synthesise the circumstances to make them as recognisable and generally applicable as

possible.

Kolodner (1993:249-281) provides a detailed description of how indices can be chosen. The
description below is a summary of these methods:

1. Choosing indices by hand. This is used when the cases are complex and the indices need

to be accurate. This is also used when the knowledge required to choose the indices
accurately is not concretely available or is too complex to insert directly into the
computer.

2. Choosing indices by machine. This is useful when the problem solving and understanding
are already automated. Three methods of automated index selection exist i.e. checklist-
based, difference-based and explanation-based methods.

2.1 Choosing indices based on a checklist

This type of index is based on a specific set of dimensions. The checklist facilitates the
process of index selection. For each dimension on the checklist a value is found or computed
that describes the case. This method puts a significant responsibility on the system builder,
because it is only as good as the previously designed checklist. Typical problems that can be
encountered are incomplete checklists that result in insufficient indexing. It is also important
to discriminate between important and unimportant dimensions. The following steps
summarise the process for setting up a checklist:

• List the tasks that the case retrieval will support.
• For each task, determine the features that tend to predict solutions and outcomes.
• For each kind of feature, compute a set of useful generalisations of the feature. Make sure

that the features chosen are recognisable and available during reasoning.
• Create the checklist by collecting the complete set.

The list of heuristics below gives an indication of which features are indexing candidates.
Features should chosen that:

• Predict outcomes.
• Be predictive of other features.
• Make the kinds of predictions the reasoner needs.
• Discriminate.

2.2 Difference-based

In this indexing method the purpose of indexing is to keep track of the differences between
cases. During retrieval search algorithms can choose the best matching cases from the case
library. Not all features that are different across cases make useful indices. To ensure that a
difference-based index retriever selects only predictive features, difference-based indexing
must be combined with some method of choosing predictive features. One way of achieving
this is by a combination of difference- and checklist-based methods.

University of Pretoria etd

71

As discussed above, checklist-based indexing methods focus on which dimensions to focus on
for indexing. Difference-based methods concentrate on which values along any dimension are
useful for indexing. A combination of the two methods allows indexing on predictive
dimensions that differentiate a case from other similar ones. The following steps summarise
the process to set up this type of index:

• Select a classification for each case.
• Select types of features that are known to be predictive. These are usually context

sensitive checklists.
• For each feature its value is computed that results in dimension-value pairs.
• From this list all pairs are removed that are non-predictive in the specific context or

normative.

The pairs that are left are those that are predictive and that differentiate the case from others.

2.3 Explanation-based indexing

Difference- and checklist-based indexing methods provide a means of computing predictive
features to indices. The problem with this is that indices are based on a model of the features
that are usually predictive and do not analyse cases individually for their predictive features.
This leads to the problem that features are selected that are not predictive for the particular
case or features that are predictive are not indexed.

Explanation-based indexing methods attempt to choose indices appropriately for individual
cases. The reasoner uses explanation-based generalisation methods to generalise the
explanation. Indices are then chosen from the content of the generalised explanation. In
explanation-based indexing, domain knowledge is used to determine which facts of a case are
relevant and which can be safely ignored. The index is generalised to the most abstract point
where the explanation can still hold. After the reasoner discovers it has made a mistake, it
attempts to explain it or assign blame. After explaining the mistake, it extracts from the
explanation the concrete recognisable features of the situation that that were responsible for
the problem. It then generalises those features to the point where they are still concrete but
where the explanation that was derived can still be applied. Unlike checklist-based methods
this method chooses as indices only those features that are responsible for the failure. Those
features, if observed in future cases, will predict the failure observed in this case. Checklist-
and difference-based methods have no means of distinguishing which of the many potentially
predictive and differentiating features are responsible for the failure, and will index using far
more features.

The explanation-based index selection process consists of the following steps:

1. Create an explanation.
2. Select relevant observable features from the explanation.
3. Generalise those observable features as far as possible, making sure the resulting

generalisations are also observable. The original explanation must still apply, given this
general description.

4. If the index supports a solution-creation goal, then
• append additional information specifying the goal the case achieves.
• generalise the goal appropriately and repeat the process.

University of Pretoria etd

72

3.2.5.5 Retrieving cases from the case library

If a large case design library has been built up it should be possible to conveniently retrieve a
case by means of a retrieval procedure. Flemming (1994:84) identified a method that uses the
principle of a target index, t . t is compared with all available cases c . Given a target index,
the comparison with a case index proceeds object-by-object and attribute-by-attribute for
those objects that belong to and those attributes that have values in the target index. In the
simplest case, only objects of the same class or type and attributes with the same names are
compared. In order to extend the allowed matches several schemes are used that include
subtype, subrange and subset matching. The following general rules are defined:

• An object A comparable to an object B if B belongs to the same class or to a subclass of A.
• An attribute a is comparable to an attribute b if a is implied by b.

Comparability of attributes implies that attributes have values of the same type. For example a
minimum x-dimension attribute is implied by a minimum dimension attribute. In the simplest
case, the results of comparisons are binary. Sometimes it is important to distinguish whether a
lower bound is missed narrowly or by a large degree. It may also be important to know
whether only one or several functional units are missing when two constituent attributes are
compared. Flemming (1994:85) suggests that for each comparison the degree to which it
succeeds be computed. This is expressed as the closed bounded interval [0,100]. 100 is a
perfect match and lower numbers indicate the percentage by which a perfect match has been
missed.

When scanning cases for retrieval the individual comparisons must be aggregated so that
cases with the best overall fit are presented to the designer. One solution to arrive at ranked
values of cases would be to compare the weighed sums of the individual matches. However
plausible weights are difficult to determine in building design. Interactions between
comparisons cannot be taken into account. The way in which certain deficiencies enter an
overall evaluation may depend crucially on the way other comparisons succeed. This is
known as the problem of mutual preferential dependence. To avoid some of these problems
problem features are divided into predetermined priority classes and matches for prioritised
features are determined first. Cases that match the most features are preferred. This process
uses weighed sums implicitly. Features in the same class are given the same weight and
matches are added up. Features in higher classes overrule those in lower classes. The designer
is able to decide which features he is going to search on.

The method of calculation can be formalised in the following way by defining a special
retrieval function

),(ctϕ

which returns a real number in the closed bounded interval [0,100] to express the match
between a target index t and a case index c .

ϕ unpacks t recursively in terms of its valued attributes and computes their matches with
comparable valued attributes in c .

ϕ is specialised with regards the objects or data types that have to be compared. Some
special forms of ϕ are indicated below. The subscripts indicate the type of specialisation.

University of Pretoria etd

73

()=BAOBJ ,ϕ

{
0 if A and B are not comparable;
100 if A has no valued attribute;

()Baw OBJATTR
a

a ,,ϕ∑ otherwise,

Unordered lists like the value of attribute tests can be compared similarly to OBJϕ . The sum
goes over all valued attributes a of A . aw are weights with

1=∑
a

aw ; and

()=BaOBJATTR ,,ϕ

{
()baATTR ,ϕ if B contains a valued attribute b comparable with a ;

0 otherwise

()baATTR ,ϕ is specialised with respect to the data type of a and b . For attributes whose data

types are lower bounds (like the attributes minimum-width and min-area of a functional unit
of variable size.

()=baBOUNDLOWER ,_ϕ {
100 [] []ab / if [] <b []a ;

100 otherwise.

Where []x denotes the value of an attribute x . Upper bounds as well as general numbers can
be treated similarly. Names match either completely (100) or not at all (0).

The basic form of ϕ that unravels a constituent attribute in a target index can be defined as
follows:

()=LKLISTCONST ,_ϕ ()[]Lkkw OBJ
k

k ,,max γϕ∑

where the sum goes over all objects k in K . ()Lk ,γ is defined as an operator that traverses
L and the constituents of the objects in L to grab a corresponding object comparable with
k . γ satisfies the following conditions:

1. If no corresponding object can be found γ returns a dummy object to enforce a 0 value
of ϕ for this particular k .
2. Repeated calls to γ will not return objects that have been returned before; that is, the
mapping established by γ from objects in K to objects in L and their constituents is
right-unique.
3. If γ maps an object in K to a constituent m of an object l in L , it does not map other
objects in K to objects on the path from l to m .

Charlton et al. (1998:324) state that the descriptions on which retrieval of a relevant case
depends are ultimately based on classifications. A classification consisting of restricted values
is seen as a flat classification. The very reason for the existence of a classification is to enable

University of Pretoria etd

74

stored cases to be retrieved. The methodology discussed above is not very useful at the level
where the decision must taken if a design case is appropriate at all for the design problem
under consideration. This methodology is more appropriate at a direct technical level where
various different technical factors need to be directly considered before a final conclusion is
reached. It is difficult to develop suitable indices, because it needs to consider the reference
framework of the user. Static indices are rigid because they are unable to adapt to the context
of use.

Charlton et al. (1998:322) suggested the use of static fuzzy sets with labels that are
meaningful to the designer. For each prototypical case, designers are asked to specify its
membership values in fuzzy sets. Each label specifies the degree to which the particular
artefact is part of the fuzzy set identified by the label’s name. Collectively, the labels can be
seen as providing a multitude of descriptive names for a case, instead of a single possibility.
The use of fuzzy sets as described by Charlton is more flexible than Flemming’s, however the
membership values in the fuzzy sets themselves are still static. The author is of the opinion
that this can be significantly improved by means of a method of dynamic fuzzy sets. A
description of this proposed methodology follows below.

3.2.5.6 The use of fuzzy sets for case indexing

It is now 35 years since the first creation of Fuzzy Sets and Fuzzy Logic that bridge
mathematical precision and the vagueness of common-sense reasoning. Fuzzy sets have been
successfully implemented in numerous commercial products such as vacuum cleaners,
washing machines, rice cookers and cameras that resulted in energy efficiency and increased
convenience for the consumer. The Japanese city of Sendai has been using subway trains
controlled by fuzzy logic since 1986.

Bellman and Zadeh (1970) and Bojadziev et al. (1995:113) describe fuzzy sets as a special
class of object in which there is no sharp boundary between those objects that belong to the
class and those that do not. Below follows a short summary of the main characteristics of
fuzzy sets.

(1) Let))(,{(xxA Aµ=]}1,0[)(, ∈∈ xXx Aµ

Where)(xAµ is a function called the membership function of x in A.)(xAµ and
MXA →:µ is a function from X to a space called the membership space. When M only

contains two points, 0 and 1, A is nonfuzzy and its membership is identical with the
characteristic function of a nonfuzzy set. It can be assumed that M is the closed interval [0,1],
with 0 and 1 representing respectively the lowest and highest grades of membership.

A fuzzy set is normalised when at least one Xx ∈ attains the maximum membership grade
1, otherwise the set is called non-normalised. Assume that the set X is non-normalized, then
max 1)(<xAµ . To normalise the set X means to normalise its membership function)(xAµ .
This is given by:

)(max
)(
x

x

A

A

µ
µ

Empty set. A is called an empty set labelled φ if 0)(=xAµ for each Ax ∈ .

Fuzzy singleton. The fuzzy set))}(,{(iAi xxA µ= , where ix is the only value in UA ⊂ and

]1,0[)(∈iA xµ .

University of Pretoria etd

75

α - level set or α -cut. This is denoted by αA and is the crisp set of elements which belong to
A at least to the degree α :

xA {=α },)(, αµ ≥∈ xUx A]1,0[∈α

Strong α - level set. This is defined by:

xA {' =α]1,0[},,)(, ∈>∈ ααµ xUx A

In many practical situations the membership function Aµ has to be estimated from partial
information about the subject of consideration. The problem of estimating Aµ from the
knowledge of the set of pairs))(,()),....,(,(11 NANA xxxx µµ is the problem of abstraction.
This problem plays a central role in pattern recognition, but also in the selection of a suitable
case for architectural design. Similar abstractions had to be made to calculate the average
condition and suitability of facilities during the National Health Facilities Audit (NHFA) in
South Africa. In the case of the NHFA criteria had to be carefully derived to determine what
the rating of a particular construction element should be on a scale of [1,5] where 5 denoted
the optimum and 1 the worst case scenario. In the internal calculations this was replaced by a
normalised closed bounded interval [0,1].

Equality. Two fuzzy sets are equal, written as BA = , if and only if BA µµ = . That is

)()(xx BA µµ = for all x in X .

Containment. A fuzzy set A is contained in or is a subset of fuzzy set B , written as BA ⊂ ,
if and only if BA µµ ≤ . The fuzzy set of energy efficient buildings is a subset of the fuzzy
set of buildings.

Complementation. 'A is said to be the complement of A if and only if AA µµ −= 1' . For
example, the fuzzy sets: {=A high_rise_buildings} and {' =A not high_rise_buildings} are
complements of one another if the negation “not” is interpreted as an operation which
replaces)(xAµ with)(1 xAµ− for each x in .X

Intersection. The intersection of A and B is denoted by BAI and is defined as the largest
fuzzy set contained in both A and B . The membership function of BAI is given by
(2) XxxxMinx BABA ∈=)),(),(()(µµµ I where abaMin =),(if ba ≤ and

bbaMin =),(if ba > . In infix form, using the conjunction symbol ϖ in place of
Min , (2) can be written more simply as

(3) ABA µµ =I ϖ Bµ . The notion of intersection bears a close relation to the connective
“and”. If A is the class of high rise buildings and B is the class of energy efficient
buildings, then BAI is the class of buildings that is both high rise and energy
efficient. It should be noted that in the example “and” is interpreted in a “hard” sense.
That is, we do not allow any trade-off between)(xAµ and)(xBµ so long as

)()(xx BA µµ > or vice-versa. For example if 8.0)(=xAµ and 5.0)(=xBµ , then
5.0)(=xBAIµ so long as 5.0)(≥xAµ . In some cases, a softer interpretation of

“and” which corresponds to forming the algebraic product of)(xAµ and)(xBµ ,
rather than the conjunction)(xAµ ϖ)(xBµ may be closer to the intended meaning of
“and”. From the mathematical as well as the practical point of view, the identification

University of Pretoria etd

76

of “and” with ϖ is preferable to its identification with the product, except where ϖ
clearly does not express the sense in which one wants “and” to be interpreted.

Union. The union of A and B is denoted by BAU and is defined as the smallest fuzzy set
containing both A and B . The membership function of BAU is given by
(4) XxxxMaxx BABA ∈=)),(),(()(µµµ U where abaMax =),(if ba ≥ and

bbaMax =),(if ba < . In infix form, using the disjunction symbol ω in place of
Max , (4) can be written more simply as

(5) ABA µµ =U ω Bµ .

As in the case of the intersection, the union of A and B bears a close relation to the
connective “or”. If A = {high_rise_buildings} and B = {energy_efficient_buildings}, then

BAU = {high_rise_buildings or energy_efficient_buildings}. As in the case mentioned
above a “hard”, “or” which corresponds to (5) and a soft “or” that corresponds to the
algebraic sum of A and B can be distinguished. This latter is denoted by BA ⊕ and is
defined by (7).

Algebraic product. The algebraic product of A and B is denoted by AB and is defined by

(6) .),()()(Xxxxx BAAB ∈= µµµ

Algebraic sum. The algebraic sum of A and B is denoted by BA ⊕ and is defined by

(7) .),()()()()(Xxxxxxx BABABA ∈−+=⊕ µµµµµ

From (7) it follows that

(8))'.''(BABA =⊕

ϖ and ω are associative and distributive over one another. (product) and ⊕ (sum) are
associative but not distributive.

3.2.5.7 The use of fuzzy sets to formulate dynamic linguistic variables for case retrieval

Variables whose values are words or sentences in natural or artificial language are called
linguistic variables. Natural language words is a convenient means to retrieve architectural
design cases, because humans think in terms of words that most closely describe the desired
design qualities. To illustrate the concept of a linguistic variable consider the word age in a
natural language. The meaning of this word is the summary of an enormous large number of
individuals. It cannot be characterised precisely. This word also has a different meaning in
different domains. The meaning of age in a building domain is something totally different to
age in a human context. The discussion will continue with age in the context of buildings. By
means of fuzzy sets age can be described more precisely. Age is a linguistic variable
consisting of fuzzy sets such as very_new, new, old and historic. These words are called terms
of the linguistic variable age. Each term is defined by an appropriate membership function.
Bojadziev (1995:178) states that good candidates for membership functions are triangular,
trapezoidal or bell-type shapes with or without a flat. These mathematical shapes describe the
different ways membership functions can be structured. An example is a triangular fuzzy
number that are very often used in applications such as fuzzy controllers, managerial decision
making and the social sciences. The underlying advantage of the fuzzy relationship shapes

University of Pretoria etd

77

mentioned is that membership functions for terms using them can be constructed on the basis
of little information.

Let us describe the linguistic variable age on the universal set]200,0[=U (Figure 14) by
means of triangular fuzzy numbers, which specify the terms very_new, new, old and historic.

Figure 14: Terms of the linguistic variable age in a building context (Author)

The membership functions of the terms using a triangular calculation are:

=)(_ xnewveryµ {
1

10
20 x−

for

for

100 ≤≤ x ,

2010 ≤≤ x ,

=)(xnewµ { 10
10−x

40
60 x−

for

for

2010 ≤≤ x ,

6020 ≤≤ x ,

=)(xoldµ { 80
20−x

80
180 x−

for

for

10020 ≤≤ x ,

180100 ≤≤ x ,

=)(xhistoricµ { 120
60−x

1

for

for

18060 ≤≤ x ,

200180 ≤≤ x ,

University of Pretoria etd

78

Note that the triangular µ values for the linguistic terms of age are not linear. In this case it
can also be seen that compression of scale occurs at the very_new end. An important
limitation, of linguistic terms defined like these in the example, is that they are static. This
implies that the structure is not self-adjusting if the context where the terms that are used
changes. This limits the universal application of terms that are defined in this way. The author
proposes a system of linguistic variables to be defined that stores the calculation method.
When the linguistic variable is brought into a specific context, then the terms would assume
the correct relative values in the context of the specific environment.

Linguistic variables are important in applications. The parameters of technical systems such
as condition, suitability, energy, temperature, weight, speed, pressure and heat can be
understood as linguistic variables.

3.2.5.8 Fuzzy set linguistic modifiers

Let Ux ∈ and A is a fuzzy set with membership function)(xAµ . Assume that m is a
linguistic modifier such as very, not and fairly. mA is a modified fuzzy set whose
membership function)(xmAµ is a composition of a suitable function)(xf and))((xf Aµ .

The following selections for)(xf are often used to describe the modifiers not, very and
fairly.

xxf −= 1)(not,),(1)(xx AnotA µµ −=
2)(xxf = very, 2)]([)(xx AveryA µµ = ,

2
1

)(xxf = fairly, 2
1

)]([)(xx AfairlyA µµ = .

Consider the fuzzy set A that describes the size of a particular facility in terms of gross m² by
the linguistic variable SIZE. Assume a small database of five facilities each having a specific
gross m².

Facility Name Facility Code Gross m²

Facility 1

1F 5 830

Facility 2
2F 1 431

Facility 3
3F 12 979

Facility 4
4F 11 500

Facility 5
5F 7 500

Assume further that SIZE has three terms large, medium and small having the following
values in the closed bounded interval [0,1].

large [0.66,1] 166.0 ≤≤ x
medium [0.33,0.66) 66.033.0 <≤ x
small [0,0.33) 33.00 <≤ x

In order to ensure a dynamic and flexible system the values of the terms are expressed in
terms of a universal set in the context of the application under consideration. The gross m²
values therefore range from)](),([areaarea FMaxFMin where areaF is the facility gross area.

University of Pretoria etd

79

In terms of the small example database above the range of values from small to large would
be:

(1) [1431,12979]

Assume that Facility xF has a gross m² area of 8 000 m². In terms of the data above it can be
stated that:

(2) ==
−

= 69,0
))()((

)(_

aa

areax
size FMinFMax

F
xµ large

areaxF _ is the area of Facility x.

Assume that a new facility with a gross area of 15 000 m² is added to the database above. In
terms of Facility xF the following is now true:

(3) ==
−

= 59,0
))()((

)(_

aa

areax
size FMinFMax

F
xµ medium

Due to the inclusion of the large facility, xF has been reclassified as medium. Due to the
flexible formulated definitions the system under consideration will be self-adjusting. This is
especially useful when fuzzy sets are considered that give a measure of performance such as
energy use.

In the case of interpreting case indices the intersection, union and complement are the most
useful. The author is of the opinion that fuzzy sets can be used to select the most appropriate
cases from the possible set of cases in the CBR based system envisioned. If a vocabulary of
words can be carefully selected that best describe certain index phenomena then, by means of
a process of abstraction suitable Aµ , values can be allocated.

The author comes to the conclusion that the calculations that were made in the NHFA with
regards condition and suitability are really a subset of total number of possible fuzzy sets
possible in this domain. To quantify condition in abovementioned audit the author allocated
discrete meanings to fuzzy condition rating words such as as_new, maintain, repair, replace/
upgrade and condemn/ leave. Each of these keywords was allocated a value in the [0,1] range:

as new = 1,0
maintain = 0,8
repair = 0,6
replace/ upgrade = 0,4
condemn/ leave = 0,2

In a similar way suitability assessments were allocated keywords with values in the [0,1]
range:

ideal = 1,0
acceptable = 0,8
tolerable = 0,6
hardly tolerable = 0,4
intolerable = 0,2

University of Pretoria etd

80

The contribution of cost per gross m² for each of 98 construction elements was derived from
an analysis of bills of quantities from quantity surveyors. During the audit the average
condition for a particular facility was derived by means of the following:

(1) caw
e

e∑
=

98

1

 where the meaning of the variables is:

=e the construction element number
=ew the condition cost model weight in the range]1,0[

=c condition rating in the range]1,0[
=a gross area in m² of the department, building or total facility are where the element

occurs.

In a similar way the average suitability for the facility was calculated as:

(2) saw
e

e∑
=

98

1

 where the meaning of the variables is:

=e the construction element number
=ew the suitability cost model weight in the range]1,0[

=s suitability rating in the range]1,0[
=a gross area in m² of the department, building or total facility are where the element

occurs.

Abovementioned calculations resulted in the average condition and suitability per facility that
could be summarised to district, region, province and country level. The conclusion is made
that on the basis of abovementioned concept super concepts can be defined that would
facilitate the powerful manipulation of derived high level concepts. The processing domain of
the facilities audit is limited. This makes it feasible to formulate fuzzy data abstractions. The
keyword SIZE can be expressed in terms of the size in gross m² found in the audit. It is
impossible to define SIZE as a universal quantified concept.

An example of an expression in fuzzy terms could be the following:

List all large hospitals (size description), in a new condition that occur in the province of
Western Cape (location). In this case we have two fuzzy variables and one non-fuzzy
variable. If suitable ranges of words (labels) can be defined and by means of abstraction fuzzy
values be allocated then the fuzzy operations, intersection and union can be used.

Structured Query Language (SQL) as implemented in Oracle has the capability to process
sets, although this capability is not often used. The following SQL operators are available in
the SELECT statement:

UNION Combines two queries and returns all distinct rows returned by either

individual query.
UNION ALL Combines two queries and returns all rows returned by either query,

including duplicates.
INTERSECT Combines two queries and returns all distinct rows returned by both

individual queries.
MINUS Combines two queries and returns all distinct rows by the first but not by the

second.

These set operators make it possible to implement traditional set theory easily. This can
readily be expanded to implement fuzzy sets. The following would be required:

University of Pretoria etd

81

• Definition library (labels) of concepts that will typically be manipulated.
• Standard functions and procedures that can be included in a CBR program or object.
• A data set where the domain operational parameters are known.

The following list of linguistic fuzzy sets and terms can be defined for use in queries related
to the life cycle of buildings:

CONDITION

new = 1,0
maintain = 0,8
repair = 0,6
replace = 0,4
condemn = 0,2

SUITABILITY

ideal = 1,0
acceptable = 0,8
tolerable = 0,6
hardly tolerable = 0,4
intolerable = 0,2

SIZE

very large
large
average
small
very small

AGE

very old
old
recent
new

DISTANCE

far
close

LARGE

exceptionally large
very large
large
average size

SMALL

very small
small

University of Pretoria etd

82

average size

UTILISATION

totally over utilised
very over utilised
over utilised
normal use
under utilised
significantly under utilised
under utilised

In all cases the keyword that is closest to the main subject in the list appears at the top of the
list. These keywords can be converted into static fuzzy set labels by allocating approximate
membership values. It can be assumed that Aµ will be in the range [0,1]. In the case of
CONDITION the values could be:

new 0.1)(9.0 ≤≤ xAµ
maintain 9.0)(7.0 <≤ xAµ
repair 7.0)(5.0 <≤ xAµ
replace 5.0)(3.0 <≤ xAµ
condemn 3.0)(0.0 <≤ xAµ

In this case all the values are linear. The abstraction to the particular values was calculated in
such a way as to get a clear distinction between the different condition categories in order to
map it to colours. In this case absolute accuracy was not important. It doesn’t matter how
many terms the particular fuzzy set contains. If the fuzzy set only contains two categories then
it becomes a traditional set.

If a user needs to define a dynamic fuzzy set that displays a list of all new (condition)
buildings, that is small (gross area) the equivalent dynamic database SQL statement could be
the following:

University of Pretoria etd

83

SELECT FacilityCode
FROM FacilityResource
WHERE (RemainingResource/TotalResource) >= 0.9
AND ConditionCode = 0

INTERSECT

SELECT FacilityCode
FROM Facility
WHERE ((FacilityArea/(MAX(FacilityArea) – MIN(FacilityArea)) < 0.4)
AND ((FacilityArea/321300.0) >=0.2)

INTERSECT

SELECT FacilityCode
FROM Facility
WHERE FacilityCode LIKE ‘WCP%’;

3.2.6 Conclusion

Kolodner (1993:263) suggests that the following methods be used to maintain context
sensitivity in the case index selection.

• Use several checklists, each organised around a different well-known context.
• Keep track of how useful individual indices are and modify lists when they are not useful.

Kolodner (1993) also suggested the method of parameter adjustment for interpolating values
in a new solution based on those from an old one. In parameter adjustment changes in
parameters in an old solution are made in response to differences between problem
specifications in an old and a new case. Several case-based reasoning systems use parameter
adjustment as a method of adaptation. A system called PERSUADER adjusts old labour-
management contracts with new information. If an old contract was signed in a location
where the cost of living is high and has risen faster than the norm, but it is not the case in the
new dispute, then a smaller percentage wage increase is in order in the new contract.

In all cases the use of a dynamic adaptive fuzzy set based indexing system comes the closest
in solving the problems associated with context sensitivity and parameter adjustment. The
inherent flexibility of fuzzy sets make them ideal for indexing in many different environments
as well as level of detail. This will be the case with design cases found in the construction
industry.

Linguistic variables offer a convenient means to intensify or soften the effect of the terms of a
fuzzy set.

University of Pretoria etd

84

3.3 The systems view of the world

3.3.1 Introduction

In this section manufacturing, concurrent engineering, Taguchi techniques and the Fuzzy
Front End is included because of the prominence of these in the world of manufacturing.
Architectural design is seen as a type of low-quantity production. Concurrent Engineering
attempts to speed up the engineering process in order to be more effective. Taguchi
Techniques indicate how big the impact of small variations in critical parameters or
dimensions might be. The Fuzzy Front End provides an opportunity to buy value time during
the design process.

In this study it is proposed that architectural design experience be packaged in cases and
design starter kits. A case is seen as an entire project where all the design knowledge is stored
in the form of artefact descriptions and process descriptions. Artefact descriptions consist of
shape- and functional views. The process description consists of sequences over time. The
author observed that the data that are required to structure the existence of an artefact over the
life cycle exist in different worlds spread over time. These worlds were identified in chapter
3.2. It is observed that attempts to unify the different worlds into one single model such as the
Industry Foundation Classes, discussed under 3.2 is unlikely to succeed. In the author’s
experience it is far more flexible to use processes as a means of formulating relationships
between these worlds over time. This has been tested in the PREMIS facilities management
system.

The present study attempts to store architectural design knowledge in the form of cases and to
create portable mini architectural design cases (starter kits) which many domain-specific tools
such as CAD and spreadsheets can share. The term mini design case refers to a design case at
a level where it becomes portable and small enough to plug into many different design
environments. It must also be small enough to be conveniently distributable via the World
Wide Web. This approach is supported by Charlton et al. (1988:311) where a Common
Product Data Model (CPDM) is mentioned. In the CPDM design data is represented by
structured objects, which can be shared. The CPDM can capture a large portion of the data
involved in the artefact’s development without coercing artefacts into static class hierarchies.
This allows flexible and dynamic modelling in terms of multiple object perspectives, dynamic
object reclassification and dynamic class evolution. Attempts to achieve this were made in the
prototype system AEDES, however the integration between the artefact description and
process description is still primitive.

Once a user has decided to use a specific mini design case it will be brought into a specific
context. The purpose of this chapter is to explore the fundamental characteristics of the
context of the project environment that consists of main topics such as processes, product
modelling and life cycle decision validation. In a highly competitive environment the
processes and product modelling could be concurrent. Although there are strong similarities
between the construction and manufacturing industry there are also fundamental differences.

It is important to realise that the best techniques would not succeed if the motivation, attitude,
spirit, personality are not supported by the corporate culture.

3.3.2 What is manufacturing?

The word manufacture is derived from two Latin words manus (hand) and factus (made). The
combination means made by hand. Modern manufacturing is accomplished by automated and
computer-controlled machinery that is manually supervised. Manufacturing can be defined in
many ways with two directly applicable to the manufacturing industry (Groover 1996):

University of Pretoria etd

85

• Technologically.
• Economically.

Other types of manufacturing not addressed in this study are:

• Energy manufacturing.
• Environmentally.
• Informatically.
• Socially.

Technologically, manufacturing is the application of physical and chemical processes to alter
the geometry, properties and appearance of a given starting material to make parts or
products. The processes to accomplish manufacturing involve a combination of machinery,
tools, power and manual labour (Figure 15). Manufacturing is almost always carried out as a
sequence of operations. Each operation brings the material closer to the final desired state.

Economically, manufacturing is the transformation of materials into items of greater value by
means of one or more processing and/or assembly operations (Figure 15). Manufacturing adds
value to the material by changing its shape or properties or by combining it with other
materials that have been similarly altered.

Figure 15: Two ways to define manufacturing, a technical or an economic process
(Groover 1996:3)

Groover (1996) identifies primary, secondary and tertiary industries. Primary industries are
those that cultivate and exploit natural resources such as agriculture and mining. Secondary
industries take the outputs of the primary industries and convert them into consumer and

University of Pretoria etd

86

capital goods. Manufacturing is the principal activity in this category, but it also includes
construction and power utilities. Tertiary industries constitute the service sector of the
economy.

The quantity of products made by a factory has an important influence on the way its people,
facilities and procedures are organised. Production quantity refers to the number of units
produced annually of a particular product type. Product variety refers to different product
designs or types that are produced in the plant. The construction industry is presently a low
quantity high variety industry. There is an inverse correlation between product variety and
production quantity in terms of factory operations. If a factory’s product variety is high, then
its production quantity is likely to be low. If the production quantity is high, then product
variety will be low. The terms soft and hard product variety can be identified. Soft product
variety occurs when there are only small differences between products, such as the differences
between car models made on the same production line. In an assembled product, soft variety
is characterised by a high proportion of common parts among the models. In hard product
variety, the products differ substantially and there are few common parts, if any. Again the
construction industry is unique in the sense that a lot of parts are common at a low level, but a
large variety exist at higher levels. There is also variation between the various construction
trades as to the level of standardisation that can be achieved. Air-conditioning parts can be
standardised and pre-assembled in a factory before being brought onto site, however this is
less feasible with structural elements such as slabs, columns and walls.

3.3.2.1 Manufacturing capability

Manufacturing plants consist of processes and systems designed to transform a certain limited
range of materials into products of increased value. The three building blocks, materials,
processes and systems constitute the subject of modern manufacturing. There is a strong
interdependence among these factors. A company engaged in manufacturing cannot do
everything. Manufacturing capability refers to the technical and physical limitations of a
manufacturing firm and each of its plants. The following dimensions of this capability can be
identified:

• Technological processing capability.
• Physical size and weight of product.
• Production capacity.

3.3.2.2 Manufacturing processes

Manufacturing processes can be divided into two basic types:

• Processing operations.
• Assembly operations.

A processing operation transforms a work material from one state of completion to a more
advanced state that is closer to the final desired product. It adds value by changing the
geometry, properties or appearance of the starting material. An assembly operation joins two
or more components in order to create a new entity, which is called an assembly or sub-
assembly.

3.3.2.3 Low-quantity production

Groover (1996:21) describes this type of production as a low-quantity range of 1 to 100
units/year. The construction industry bears a close resemblance to this type of manufacturing.
In manufacturing the term job shop is often used to describe this type of production facility.

University of Pretoria etd

87

A job shop makes low quantities of specialised and customised products. The products are
typically complex, such as space capsules, prototype aircraft and special machinery.
Construction activities are normally not nearly as complex as the former.

A job shop must be designed for maximum flexibility in order to deal with the wide product
variations encountered. In an analysis by the author of a large construction project this is
evident in the large variation of project team configurations and types of construction projects
undertaken. If the product is large and heavy and difficult to move in the factory, it typically
remains in a single location during its fabrication or assembly. Workers and processing
equipment are brought to the product, rather than moving the product to the equipment.
Examples of such products include ships, aircraft, railway locomotives and heavy machinery.
These products are usually built in large modules at single locations and then the completed
modules are brought together for final assembly using large-capacity cranes. In South Africa
these practices are not widespread in the construction industry and in-situ construction
predominates.

3.3.3 Concurrent engineering (CE)

Many terms have been used to describe similar approaches, including simultaneous
engineering, life cycle engineering, design integrated manufacturing, design fusion, early
manufacturing involvement, parallel engineering, concurrent design and design in the large.

Ziemke et al. (1993:26) trace the origins of CE back to 1940, during the Second World War.
The American Aviation Corporation received an order for 320 NA-73 fighter aircraft from the
British Air Purchasing Commission. These aircraft were later known as the US P-51
Mustangs. The condition of this order was that the first prototype, NA-73X, had to be ready
for testing 120 days after receipt of contract. Given the short schedule one would have
assumed that the design engineers would only have used proven and conservative design
features. Instead the Mustang included the first use of novel concepts such as laminar flow
airfoils and the introduction of a combined radiator housing-ejector nozzle that provided 300
pounds of jet thrust, instead of the usual radiator air drag. The aircraft was designed and built
in 102 days. During that time, 2 800 drawings representing 600 000 hours of effort were
produced. In retrospect it now seems that critical success factors in such wartime design and
development teams were their small size, their broadly experienced leadership and above all,
motivation.

Currently there is a different reason for CE. During the last decade the life cycle time of
products from different branches of industry decreased while the time spent on product
development greatly increased. This is known as the time-trap. In terms of the local
construction industry this is an over-simplification, because other factors such as the period of
high inflation and the fact that buildings are still constructed for a relatively long life. In the
new Menlyn Shopping centre project the planning horizon is 25 years. Due to these changes
the pay-off period between market entry and amortisation extended as well. In order to meet
the challenges of successfully competing in innovative markets the development and design
of new products has become one of the most significant factors. The situation can be
characterised by three main tendencies:

• Shift from a seller’s to a buyer’s market.
• Increasing globalisation.
• Change in the importance of technology.

The optimisation of the magic triangle that consists of time, quality and costs is necessary to
face competition and complexity in the changed environment described above.

University of Pretoria etd

88

The most important elements when applying CE are people and the design of product
development processes. Co-operation and communication are regarded as the most important
success factors by companies, which are successfully practising CE. This involves:

Figure 16: Decoupling of time, cost and quality by means of Concurrent Engineering
(Berndes 1996)

• Cutting back barriers among departments and hierarchies.
• Promoting interdepartmental co-operation.
• Building up close links between suppliers and customers.
• Support of CE by top management.

3.3.3.1 Strategies for concurrent engineering

University of Pretoria etd

89

Figure 17: Strategies for concurrent engineering (PSI-strategy) (Berndes 1996)

Generally, three possible strategies can be identified as CE guiding principles (Figure 17):

• Parallelisation.
• Standardisation.
• Integration.

1. Parallelisation

Parallelisation in the product development process implies the cutting and optimisation of
time. The first step is to remove existing float time in the development process. This means
that processes, which do not have any dependencies on other processes, are carried out
simultaneously. In practice most processes depend on others. In this case the dependent
process has to be started before the preceding process is completed. An earlier start of the
succeeding process is possible in most cases, because it can be carried out without having
completed the preceding process. Not all information is required to start a new process. The
result of this approach is the advantage of an accelerated execution of linked processes, but
also the disadvantage of a higher decision complexity. This additional complexity is caused
by an increased amount of information transfer between departments or teams. The proportion
of uncertain and incomplete information is also higher due to the fact that not all parallel
processes are finished which give inputs to other processes when they are started. In contrast
to the Tayloristic principle, not only time can be cut due to parallelisation, but also
amendment costs because of a lower number of mistakes. An example of parallelisation is the
synchronisation of the development of product and means of production. The approach of
parallelisation should be carried out under the principle that parallelisation does not mean to
work side by side only but to work with one another.

2. Standardisation

Standardisation is defined as the unity of aspects in the product development process which
show a high degree of similarity or the possibility of repetition. This is achieved by means of
two basic approaches:

• Structuring of processes. Processes, which are often repeated, are specified and

generalised.
• Structuring of product. This is the standardisation of products inclusive of its systems,

elements and construction kit.

University of Pretoria etd

90

Standardisation is related to:

• Technical and structural aspects such as the usage of modules or components in the final

product such as standard parts.
• Procedural aspects, structuring of operations and the definition of sequences of activities.
• Software standards such as ISO STEP  , IAI IFC (Industry Foundation Classes).
• Aspects relating to the organisation of the structure such as interface between projects and

departments. A clear definition of the organisation, i.e. standardised structures, is required
to reduce and control the increased outlay of providing required information due to the
implementation of CE.

The objectives of standardisation are to avoid repetition and needless work as well as to learn
from existing experience of the company, industry or nation. Project staff can take repetitive
and similar decisions quickly. Better co-ordination will be achieved. If routine tasks are
optimised then theoretically more time will be available for innovative and creative work and
for the management of unpredictable events. Standardisation should only be carried out if it is
really necessary for parallelisation and integration (Berndes et al. 1996). Too much
standardisation can lead to increased bureaucracy. Standardisation can vary from guidelines to
compulsory arrangements and rules to fixed detailed operations.

3. Integration

If the product development process is seen as a uniform value-added chain then several
departments such as R&D, sales, marketing, production and service are involved in the
development of the product. The allocation of development tasks in different functional areas
increases interface problems that result in the loss of information. The reason for the
information loss is non-synchronised time scales, different interpretation of tasks and
ignorance of the requirements at the other side of the interface.

Integration requires working in interdisciplinary teams and thinking and behaving in a process
oriented way. There has to be the realisation that there is one common objective instead of
several objectives that are department specific. The various departmental staff (or
professionals in a construction team) must establish a view of the whole process that enables
them to take appropriate action within their specific domains. Another important aspect of
integration is data integration. A large proportion of construction data on large projects such
as Menlyn is still in paper format. Integration will be greatly increased if more electronic
information can be made reliable enough as to be trusted.

3.3.3.2 Concurrent engineering enabling technologies

The successful implementation of CE requires a convenient-to-use information technology
infrastructure. To achieve parallelisation, standardisation and integration and to introduce and
support throughout the entire product life cycle process the CE platform consists of three
major components (Kessler 1996:104):

• A framework to model, support, control and integrate processes and teams. All the data

necessary for the product must be produced within these processes.
• An information Management System to manage, change, release and store metadata

related to the product.
• A Products Information archive to store and access a common product data model.

Abovementioned requirements were identified in the ESPRIT project CONSENS (Concurrent
Simultaneous Engineering System) in 1992. The objective of this project was to develop an

University of Pretoria etd

91

organisational and information technology concept to realise Concurrent Simultaneous
Engineering in European companies.

Typical features built into abovementioned to support parallelisation are:

• Controlled and concurrent access to distributed data and information.
• Multi project management.
• Client-server architecture and multiple desktops.
• Interactions between different software packages.
• Modelling of independent and dependent processes to enable parallel and simultaneous

work.
• Flexible reaction to changes in the product development process as well as in the

organisation of the project.
• Support the user in adapting the installed project according to new requirements.
• Distributed database.
• Common method for executing tasks via the user interface.
• Visualisation of information and data flows to and from other processes.
• Structuring of the project or product into distinct interrelated or independent work

packages, which can be worked in parallel.
• Possibility to divide the project into its components and flexible management in work

packages.
• To support teamwork and parallel access of team members to different tasks of an

installed project.
• To provide mechanisms to free information or data in time for other users to enable

concurrent and simultaneous work in this project.

Standardisation:

• Software is implemented on different hardware platforms in a heterogeneous network.
• Distributed databases.
• Standardised interfaces to exchange data between different software tools and

frameworks.
• Support of standardisation with the possibility to reuse results in multiple projects and to

ensure their consistency.
• To allow the reuse of results and work packages.
• To prepare libraries for the reuse of processes and project tasks.
• To support the installation and reuse of standardised processes and projects.
• To provide functionality to model processes and their data interdependence.
• Reuse of existing components by an interface connected to external documents handling

systems and archives.

Integration:

• To integrate different kinds of users such as supplier, designer and project manager and to

provide each user with his customised profile of the integration platform.
• To provide a common graphical user interface for each user of the system.
• To allow the integration of domain neutral tools to support the user in controlling the

processes.
• To offer interfaces for communication and integration.
• Access to different tools through the user interface of the integration platform.
• To run the integration platform as a distributed system to support different user locations.
• To use standardised interfaces and mechanisms to allow the exchange of data between

different design tools.

University of Pretoria etd

92

• Use of standards for communication and integration.
• To manage the status of results and keep track of their consistency so that completely

specified information can be distinguished from partially specified information.
• To manage all interdependencies between work packages and to inform the participants

of the effects of their task.
• To provide the possibility to exchange information in a controlled and defined way

between different processes.
• To execute tools necessary to fulfil tasks in a convenient and controlled way.
• To check the data transfer between processes.
• Multiple schemas, interrelated data and a shared data model.
• Object-oriented structuring of the real world.
• Consistency control and storage in the data-handling component provides a defined status

of the data.
• To support a project or process oriented organisation and changes in the organisation of

the current project.

University of Pretoria etd

93

3.3.3.3 Flow management

The storing of architectural design knowledge in the form of cases or a smaller more portable
format will be in the form of an encapsulated environment. This environment when it is
brought into the specific design project will form part of a life cycle process. At this point it
will be governed by the flow patterns of the specific process environment. For this reason the
author is of the opinion that a study of the basic flows in the construction development
process phases gives an idea of the information flows, but fails to clearly identify production
capacity of the user types. This has the effect that the criticality of various decisions and the
lead times required to ensure proper synchronisation in the fast track or concurrent
engineering project cannot be planned for.

Activities used in a design process cannot be invoked in an arbitrary order as data and time
dependencies of activities have to be taken account of. To enable the user the possibility to
define a set of activities in a specific order, flows are introduced. A flow defines time and data
interdependencies between activities. Specific features of CAD and CASE (in a software
engineering sense) that are used in a design or software engineering process cannot be
invoked in an arbitrary order. The output data of one activity might be required as input for
another. Figure 18 illustrates the basic different types of flows that are possible in any
process. The rectangular elements represent activities or processes. Their interrelations are
symbolised by an arrow, which presupposes that the activity on the left of the arrow has to be
executed before the one on the right.

Both in the ESPRIT SCENIC project and local studies undertaken by Allen at the CSIR in
1999 information flows between the different users of project information in construction
were extensively studied. The SCENIC project identified the following generic stages in the
building life cycle:

1. Inception.
2. Briefing.
3. Feasibility.
4. Concept design.
5. Scheme or outline design.
6. Detail design.
7. Tender documentation.
8. Estimating and tendering.
9. Evaluation of tenders.
10. Off-site fabrication or prefabrication.
11. Delivery or logistics.
12. Production or assembly.
13. Testing, commissioning and hand-over.
14. Operation and facilities management.
15. Re-use or demolition (disassembly).

The author noted that in all cases the links between the different users, the time of occurrence
and the nature of communication were recorded. However there are two major omissions.
Firstly the diagrams fail to identify the throughput capability of the various different
constituent processes. No research has been done on the time taken to achieve certain design
and decision taking activities. This analysis is critically important to implement a successful
CE system within the construction industry. The second omission is the fact that certain
activities or even processes should be grouped together to ensure efficiency and modularity.
This has a direct influence on the future sustainability and maintainability of systems.

University of Pretoria etd

94

Figure 18: Different flow types in a process (Author)

To the information in Figure 18 throughput information should be added (Figure 19). It is
clear from a Voice of Customer (VOC) exercise, recently undertaken by the author that
numerous bottlenecks can be identified during the construction process. Goldratt (1993:207)
explained the impact on throughput in a process where bottleneck and non-bottleneck
activities, equipment or even team members are combined (Figure 19).

University of Pretoria etd

95

Figure 19: Throughput in a manufacturing process (Author, based on Goldratt
1993:207)

In Figure 19, non-bottleneck activities (machines or workers) are designated with A and
bottleneck ones with a B. The activities are connected by information or material flows. In
each rectangular block the capability of the activity is indicated at the top right in bold
numerals. The amount of the capability that can be utilised in each case is indicated by the
value at the top left. The information flow consists of the following typical abstract and
tangible activities and entities in the construction industry:

• Analyses (strategic, client and facilities analysis)
• Communication (appoints, reports, request, approves, program, brief, schedule)
• Design information (concept, scheme and detail design drawings, models)
• Construction material (pre-assembled and raw)
• Waste removal

Consider the various throughput types detailed in Figure 19.

Throughput type 1:

Non-bottleneck activity A is feeding bottleneck activity B. If B runs at full capacity, then 150
units will end up as inventory. In context this would mean unprocessed entities that cannot be
handled by B. The production throughput of A is therefore effectively limited to 450 units.

Throughput type 2:

Bottleneck activity B is feeding non-bottleneck activity A. In this case, even if B runs at its
full capacity, A will be starved of input, or it cannot run at full capacity. In this case only 450
units out of a possible 600 can be utilised. From this it can be concluded that the level of
utilisation of a non-bottleneck is not determined by its own potential, but by some other
constraint in the system.

University of Pretoria etd

96

Throughput type 3:

In this case output coming from both bottleneck and non-bottleneck processes are combined
into a final product by means of assembly. In this simplified case, it is assumed that the final
assembled product requires one item from A and one item from B. If process A runs at full
capacity the effect will be that inventory (parts) will be manufactured that cannot be
assembled into a final product, because too few parts are coming from the bottleneck B
process. This has the effect that a significant amount of capital could be caught up in excess
inventory. Goldratt (1993) identified the unexpected fact that a system running at full capacity
is not necessarily an efficient system.

Throughput type 3 and 4:

In these cases there is no constraint in the system. Both A and B can produce at full capacity.
However the constraint has now shifted from the internal processes to the ability to sell the
products produced, in this case X and Y. Product X can only be sold at only 300 units per time
unit. 300 units will therefore end up in inventory. In the case of product Y the sales force is
able to sell all units per time unit. If the manufactured products cannot be sold, then capital
will be tied up in inventory. If the sales tempo cannot be balanced with throughput the process
could also become very inefficient.

3.3.3.4 Theory of Constraints (TOC)

Theories are usually classified as either descriptive or prescriptive. Descriptive theories, such
as the law of gravity, tell us why things happen, but they do not help us to do anything about
them. Prescriptive theories both explain why and offer guidance on what to do. TOC is in
essence a prescriptive theory. Goldratt states that several principles converge that make the
manufacturing environment particularly applicable for TOC. Goldratt identified the following
TOC principles:

• Systems thinking is preferable to analytical thinking in managing change and solving

problems.
• An optimal system solution deteriorates over time as the system’s environment changes.

A process of ongoing improvement is required to update and maintain the effectiveness
of a solution.

• If a system is performing as well as it can, not more than one of its component parts will
be. If all parts are performing as well as they can, the system as a whole may not be
optimal. The system optimum is not the sum of the local optima.

• Systems are analogous to chains. Each system has a weakest link (constraint) that
ultimately limits the success of the entire system.

• The strengthening of any link in a chain other than the weakest link (constraint) does
nothing to improve the strength of the whole chain.

• Knowing what to change requires a thorough understanding of the system’s current
reality, its goal and the magnitude and direction of the difference between the two.

• Most of the undesirable effects within a system are caused by a few core problems.
• Core problems are almost never superficially apparent. They manifest themselves

through a number of undesirable effects (UDEs) linked by a network of cause and effect.
• Elimination of individual UDEs gives a false sense of security while ignoring the

underlying core problem. Solutions that do this are likely to be short-lived. Solution of a
core problem simultaneously eliminates all resulting UDEs.

• Core problems are usually perpetuated by a hidden or underlying conflict. Solution of
core problems requires challenging the assumptions underlying the conflict and
invalidating at least one.

University of Pretoria etd

97

• System constraints can be either physical or policy. Physical constraints are relatively
easy to identify and simple to eliminate. Policy constraints are usually more difficult to
identify and eliminate, but removing them normally results in a larger degree of system
improvement than the elimination of a physical constraint.

• Inertia is the worst enemy of a process of ongoing improvement. Solutions tend to
assume a mass of their own that resists further change.

• Ideas are not solutions.

Goldratt (1993) states that to be productive you must have accomplished something in terms
of the goal. Productivity is meaningless unless you know what your goal is. If the goal is to
make money, an action that moves the company towards making money is productive. The
high level measurements that are normally used to measure company performance is:

• Net profit
• Return on investment (ROI)
• Cash flow

The primary goal of any company is therefore to make money by increasing net profit, while
simultaneously increasing return on investment and simultaneously increasing cash flow. In
practical terms this can be stated as in terms of the operational rules throughput, inventory and
operational expense. Throughput (T) is the rate at which the system generates money through
sales. It is specifically sales and not production, because if you produce something but do not
sell it, it is not throughput. Inventory (I) is all the money that the system has invested in
purchasing things, which it intends to sell. Operational Expense (OE) is all the money the
systems spends in order to turn inventory into throughput. Everything that goes into a process
is covered by the relationship between these three operational measurements.

In order to improve a system the question is where the attention should be focussed. The
theoretical limit in reducing OE and I is zero. A system cannot produce output with no
Inventory and no Operating Expense and they are therefore somewhat above zero.
Theoretically there is no upper limit to how high you can increase T, but as is apparent from
Figure 19, there is a practical limit to the size of your market. The potential for increasing T is
likely to be much higher than the potential for decreasing OE and I. It makes sense to expend
as much effort as possible on activities that tend to increase T primarily and make reduction
of I and OE a secondary priority (Dettmer 1997:17).

3.3.4 Taguchi techniques for quality engineering

According to Ross (1988) Taguchi addresses quality in two main areas namely off-line and
on-line quality control (QC). Both off these areas are very cost sensitive in the decisions that
are made with respect to the activities in each. Off-line QC refers to the improvement of
quality in the product and process development stages. On-line QC refers to the monitoring of
current manufacturing processes to verify the quality levels produced. Off-line QC is of
particular importance in this study due to the fact that it is proposed that CBR/ CBD methods
will be used in the design process. It is also important to improve quality as early as possible
in the product life cycle. Taguchi methods should be seen in context with the other important
methods discussed such as QFD and Kansei engineering.

3.3.4.1 The meaning of quality

Products have characteristics that describe their performance relative to customer
requirements. Characteristics such as energy use of a house with regards heating of water, fuel
economy of a vehicle and the strength of a door knob are all examples of products
characteristics that are important to customers at one time or another. The quality of a product

University of Pretoria etd

98

is measured in terms of those characteristics. Quality is related to the loss to society caused by
a product during its life cycle. A high quality product will have minimal loss to society as it
goes through this life cycle. The loss that a customer sustains can take many forms. It is
generally a loss of product function or properties. Other losses are time, pollution and noise. If
a product does not perform as expected the customer experience some loss. After a product is
shipped, a decision point is reached. It is the point at which the producer can do nothing more
to the product. Before shipment the producer can use expensive or inexpensive materials, use
an expensive or inexpensive process, but once shipped, the commitment is made for a certain
product expense during the remainder of its life cycle. This is of particular importance in the
construction industry where the correct choice of lighting in a large shopping complex can
save hundreds of thousands of Rands during the operational life of the complex.

Quality has but one true evaluator, the customer. The birth of a product is when a designer
takes information from the customer to define what the customer wants, needs and expects
from a particular product. Sometimes a new idea creates its own market, but once a
competitor can duplicate the product, the technological advantage is lost.

3.3.4.2 Taguchi loss function

The Taguchi loss function recognises the customer’s desire to have products that are more
consistent and the producers desire to make a low-cost product. The loss to society is
composed of the costs incurred in the production process as well as the costs encountered
during use by the customer such as repair and lost business. A supplier in Japan made a
polyethylene film with a nominal thickness of 0,991 mm that is used for greenhouse
coverings (Figure 20). The customers want the film to be thick enough to resist wind damage
but not too thick to prevent the transmission of light. The producers want the film to be
thinner to be able to produce more area of the material at the same cost. At the time the
national specifications for film thickness stated that the film should be 0,991 mm ± 0,203 mm.
A manufacturer that made this film could control film thickness to 0,02 mm consistently. The
company made an economic decision to reduce the nominal thickness to 0,813 mm and with
their ability to produce film within 0,02 mm of the nominal the product would meet the
national specification. The intention of this was reduce manufacturing costs and increased
profits.

Unfortunately at the time strong typhoon winds caused a large number of the greenhouses to
be destroyed. The cost to replace the film had to be paid by the customer. These costs were
much higher than expected. What the producer had not considered was the fact that the
customer’s cost would rise while the producer’s cost was falling. The loss function, loss to
society, is the upper curve. This is the sum of the producer and customer’s curves. This curve
shows the proper thickness for the film to minimise loss to society. This is where the nominal
value of 0,991 mm is located.

It is clear from the function that as the film gets thicker from the nominal 0,991 mm the
producer is loosing money. On the other hand when the film gets thinner the customer is
loosing money. The producer should fabricate film with a nominal thickness of 0,991 mm and
reduce variation to that thickness to a low amount. If the manufacturer does not attempt to
hold the nominal thickness at 0,991 mm and causes additional loss to society, then it is worse
than stealing from the customer. If someone steals R10-00, the net loss to society is zero.
Someone has a R10-00 loss and the thief gained R10-00. If the manufacturer causes an
additional loss to society, everyone in society has suffered some loss. A producer who saves
less money than the customer spends on repairs has done something worse than stealing from
the customer. Subsequent to this experience the national specification was changed to make
the average thickness produced 0,991 mm. The tolerance was left unchanged at ± 0,02 mm.

University of Pretoria etd

99

The cost of damages to the environment through energy production (externalities) are also a
loss to society.

Figure 20: Costs associated with greenhouse film (Ross 1988)

3.3.5 The Fuzzy Front End (FFE)

In the high pressure environment of fast track (concurrent projects) time is an irreplaceable
resource. The construction team should find opportunities to buy cycle time for less than cost.
These opportunities appear throughout the development process. One place that is not often
exploited seriously is the fuzzy zone between when a project opportunity is known and when
we mount a serious effort on the development project. This approach is very different from
conventional approaches that try to get a perfect solution at this stage by adding numerous
checks and balances. The conventional logic is sound when markets are predictable and the
cost of delay is low. However it breaks down in fast moving markets and when the cost of
delay is high. This situation has been observed on large construction projects in this country.

Three critical factors combine to make the Fuzzy Front End an area of opportunity (Smith et
al., 1998):

• It lasts a long time.
• It is a cheap place to look for cycle time.
• Individual companies have big performance differences.

1. It lasts a long time.

Various delays occur right at the start of a construction project. There is a lot of time between
when the team knows about a project and the time when a full development team started
working on it.

2. It is a cheap place to look for cycle time.

If the typical actions that can be taken to buy a week of cycle time at various stages of the
development process are analysed, enormous differences in cost are discovered. One

University of Pretoria etd

100

consumer company spent $ 750 000 to buy three weeks of cycle time near the end of its
development process by accelerating the shipment of critical capital equipment. This was a
sound business decision, because the cost of delay on the programme was much higher than $
250 000 per week. Yet the same three weeks could have been purchased for less than $100 a
week during the FFE. This is 2 500 times cheaper!

3. Individual companies have big performance differences.

Some large companies plan so well that compelling market opportunities are lost due to the
long period of time it takes to produce products. It has often been noticed that dynamic small
companies can design and produce products long before the large company can even start.
Instances have been noted where a small start-up company was 500 times faster than a large
Fortune 500 company where well-intentioned planning and budgeting processes guaranteed
defeat (Preston et al. 1998:52).

The following actions can be taken to improve the front-end processes:

• Institute metrics.
• Calculate the cost of delay.
• Assign responsibilities.
• Assign resources and deadlines.
• Capture opportunities frequently and early.
• Subdivide the planning.
• Create technology and marketing infrastructure.
• Create a strategy and a master plan.
• Prevent overloads.
• Create a quick-reaction plan.

Wheelwright et al. (1992:93) identified the primary types of development projects as:

• Enhancements, hybrids and derivatives.
• Next generation or platform.
• Radical breakthroughs.
• Research and advanced development.
• Alliance or partnered projects.

It is interesting to note the similarities between the construction industry and the platform
development projects with regards the FFE. Platform projects represent the bundling and
packaging of a set of improvements (design requirements) into a new system solution (design
synthesis) for a much broader range of customer needs than the category of derivatives. Much
creativity, insight and initiative are required at the FFE of a platform project than a derivative
project.

University of Pretoria etd

101

3.4 Objects

3.4.1 Introduction

This section is included due to the dominance of objects in software engineering, CAD and
interoperability. If the final application can be based on a generic platform using these
technologies the likelihood of success is much higher. The author worked with one of the first
object based CAD systems in the world i.e. GDS from Applied Research in Cambridge. The
origins of this pioneering system through OXSYS, BDS and eventually GDS is described by
Eastman (1999:53-61).

The concept of objects in software engineering, CAD and interoperability is dominating
current software applications and new solutions proposed. Most modern programming
languages claim to be based on objects. CAD systems such as MicroGDS, AutoCAD and
MicroStation also claim to use object-oriented technology. To package software routines and
data in the form of objects is very useful mainly because it keeps relevant, related data
together. However objects are not the ultimate solution to all the problems studied in this
thesis. This is mainly due to the fact that architectural design knowledge is generated at both
tacit and explicit levels. The very fact that objects are encapsulated instances of a class
implies that some higher order of system integration is required. This chapter explores
various theories surrounding this very broad subject. The chapter is concluded with an
analysis of the main industry standard object technologies available. In order to be successful
in the complex knowledge driven environment we are currently operating in, it is very
important that objects conform to certain essential requirements such as interoperability, www
enabling and platform independence.

3.4.2 Origins of the object approach

The central concept in the object approach is that of the object. An object associates data and
processes in a single entity, leaving only the interface visible from the outside. The interface
gives the user access to the operations that can be performed on the object. This approach is
not new, it appeared in the language Simula. Simula was designed as a structured
programming language for simulating parallel processes. The classes of Simula made
abstraction possible by hiding the implementation and creating increasingly complex entities.
The abstract aspect of the object approach, which enables a data structure to be hidden by the
allowable operations for that structure was, formalised in the 1970s in the theory of abstract
data types.

In parallel with this formalisation of abstract types, the language Smalltalk was developed.
This language also implemented the object concept in the form of classes but added message
passing taken from the actor concept and the use of inheritance to structure the classes
hierarchically in terms of generalisation.

After Smalltalk the relations between generalisation and inheritance were developed
extensively in artificial intelligence (AI) in connection with knowledge representation and
more particularly in the context of frames and semantic networks.

Three points of view led to the object concept:

• Structural – the object is seen as an instance of a data type, characterised by a structure

that is hidden by the permitted operations.
• Conceptual – the object corresponds to a concept of the real world, which can be

specialised.
• Actor – the object is an active, autonomous entity that can respond to messages.

University of Pretoria etd

102

3.4.2 Why is the use of objects advisable

The object approach is characterised by the structuring of problems into object classes. The
domains where this approach is used all require complex software that can handle large
volumes of information. In the hope of controlling this complexity a number of objectives
have been defined:

• Representation of real world entities without distorting or decomposing them.
• Re-use or extension of existing software.
• Development of environments rich in facilities such as tools for creating interfaces,

debugging and for tracing execution paths.
• Rapid construction of high-quality graphical interactive man-machine interfaces, able to

react to any external event such as a change of data.
• Facilitate the rapid prototyping of applications particularly for man-machine interfaces

and general processing logic, without incurring the need for complete recoding.
• Facilities for exploiting parallelism when the software is implemented on multiple or

distributed processor systems.

Objects can help the developer achieve these aims by their powers of abstraction,
generalisation and interaction.

The object approach entails firstly defining the features of the objects that constitute an
application and then making these objects interact by message passing. An object has a static
aspect, which represents its state by means of instance variables or attributes. This is hidden
by its dynamic aspect, which represents its behaviour and corresponds to the operations that
can be performed on the object.

Object-oriented design is without doubt the main field in which the use of objects facilitates
the work of the designer. It enables entities of the real world and the relationships between
these to be represented directly. According to Meyer (1988) Object-oriented design is the
method which leads to software architectures based on the objects every system or subsystem
manipulates rather than the function it is meant to ensure. Object-oriented design is also the
construction of software systems as structured collections of abstract data type
implementations (Meyer 1988).

Object-oriented programming is unlike traditional programming. Objects are seen as active
entities that perform their actions in response to messages sent to them. Instead of a software
system program structure that consists of data and functions or procedures, a program is
organised into active entities composed of data structures hidden by functions. The same
function name can be used to perform similar actions on different objects, which makes it
possible to construct an abstract language with which essentially different objects can be
acted on in a similar manner.

An object approach program consists of a set of objects that exchange messages with each
other, triggering operations (triggers or methods depending on the environment) that cause the
internal state of the object to change and results to be returned.

An object-oriented database or object database (ODB) differs from traditional databases,
because the real world objects are represented identically in the database on disk and in the
application program in memory. An object is said to be persistent if its lifetime is greater than
that of the program that created it and in this case it exists in the database. In traditional
relational database management system an object is often decomposed in order to be stored

University of Pretoria etd

103

into different database tables. In the object databases the object memory image is written
directly to the disk.

It is estimated that by 1996 at least 80% of software developers were using object approaches
(Bouzeghoub et al. 1997). One of the reasons for this gain in popularity is the fact that the
object approach does not necessitate having pure object languages or pure object Database
Management Systems (DBMS).

The market for object-oriented tools is very varied:

• Design methodology tools (CASE).
• Application Development Environments (ADE), including fourth-generation languages.

These are usually used for building client-server applications for relational databases,
using predefined graphical objects and a proprietary object language.

• Object-oriented programming languages (OOL) either pure object such as Smalltalk or
hybrid such as C++.

• Object-oriented Database Management Systems (ODBMS). Either pure object or
extensions of relational systems to include objects often called object-relational DBMS.

• Object-oriented middleware based on object request brokers (ORB) for passing messages
between objects such as Common Object Request Broker Architecture (CORBA).

The four fields in which the object approach seems particularly important are:

• Programming, using either object-oriented extensions of existing languages (such as C,

Pascal, Visual Basic) or pure object languages (Smalltalk, Eiffel or Java).
• Databases, using extensions to existing relational systems such as Ingres, Oracle, DB2,

Informix or new systems, often based on OOL such as Gemstone, ObjectStore, Versant
and O2.

• Design methods based on a combination of object-oriented models and specific
representations. Objects have influenced most traditional methods.

• Distributed systems where distributed objects collaborate. As a result of the activities of
the OMG, the object approach is bringing about a unification of the middleware products.
This makes it possible to assemble objects over a network or even the Internet. Microsoft
is important with its propriety approach at the core of Object Linking and Embedding
(OLE) which is very likely to become a de facto standard in the near future.

3.4.3 Object-oriented programming

3.4.3.1 Encapsulation

Structured programming languages such as Pascal and ALGOL were designed with the aim of
improving the structure of complex programs. They relate the processing to the data structure.
In this approach there are three parts to an application program:

• Data structure
• Operations
• Main program

This approach was suitable if the application, albeit large, did not have to evolve a lot. It
reaches it limits when the data structures or the procedures have to be shared by different
programs and the data structures change with time.

Object programming solves these problems by encapsulation of the data and the operations
that manipulate them in objects. This is an application of the principle of abstraction. An

University of Pretoria etd

104

object is only accessible by means of its external interface operations that are visible. Its
implementation is hidden from the programs that manipulate the object and have no effect on
the programs that use it. Encapsulation thus ensures mutual independence among programs,
operations and data. The advantage is that different programs can share the same objects
without the need for import and export procedures.

There are two very similar approaches that give a partial solution to the problems inherent in
structured programming. The modular approach as used in the Modula language enables
semantically related procedures to be grouped into modules that import or export procedures
from and to other modules. This effectively encapsulates procedures in modules and thus
makes it easier to represent the structure of an application. The object-based approach as used
in the Ada language, extends the modular approach by adding abstract data types so as to
make encapsulation of data structures possible. This increases the re-usability and
extendibility of an application. Unlike the object-oriented approach the object-based
approach lacks the concepts of inheritance and polymorphism.

3.4.3.2 Objects

Object and class are interdependent. An object is an instance of a class. A class is a logical
grouping of objects having the same structure and the same behaviour. An object is an
abstraction of a data item and consists of:

Object = identity + behaviour + state

An object identifier (OID) defines an object’s identity. It is an unique and invariant attribute
that enables the object to be referenced independently of all other objects. In the AEDES
prototype system the Microsoft Global Unique Identifier (GUID) was used to this effect for
the unique and persistent identification of CAD objects. The identifier is either generated by
the system where the object is created or is packaged with the object during construction. An
example of the former is the implicit linking type object names used in PREMIS. An example
of the latter is the GUID pioneered by Microsoft to ensure global unique identification of
ActiveX controls. In AEDES this was used to ensure unique identification of the graphical
packaging of the starter kits (Figure 21).

University of Pretoria etd

105

Figure 21: Using a Global Unique Identifier (GUID) to link graphic objects to other
data (Author)
Figure 21 illustrates various different object concepts. The CAD drawing that contains the
layout of a small bathroom has been inserted into an Oracle form. The particular data field of
the form is defined as an OLE container. By double clicking on the CAD drawing the server
for the CAD drawing is activated. The server is actually the CAD program itself, but the user
is not really aware of it. Once the CAD server for the particular drawing is running it modifies
the menu structure of the Oracle form to reflect the capabilities of the particular application
running. In this case the command language of the CAD package uses Visual Basic as its
command language. This small autonomous Visual Basic application with the List and Exit
buttons can retrieve the attributes of a particular object within the CAD drawing. In this case
it is responding back with the RGUI of the FIXTURE:WC graphic object. The Global Unique
Identifier (RGUI) has been generated by the Microsoft utility guidgen.exe that is distributed
with the Visual Basic language system. The R in RGUI indicates that we are dealing with a
particular instance of the class of objects called FIXTURE:WC. In the particular CAD system
an R as the first letter indicates that the attribute data applies only to this particular reference
or instance of the object.

The state of an object is a value that can either be simple, a literal, or structured, for example a
list. In the latter case it can be composed of simple values, referenced to other objects or
values that are themselves structured.

The behaviour of an object is defined by a set of operations that can be applied to it (the
methods) and are defined in the class to which the object belongs.

An object is an abstraction of a data item characterised by a unique and invariant identifier, a
class to which it belongs and a state represented by a simple or a structured value.

University of Pretoria etd

106

Two objects O1 and O2 are identical if their OIDs are equal. They are equal if their states are
equal. For objects O1, O2 we write O1 == O2 if O1 and O2 are identical and O1 = O2 if their
states are equal. This implies, O1 == O2 ⇒ O1 = O2.

3.4.3.3 Class

Objects of the same nature, for example a CAD representation of a building component, will
generally have the same structure and behaviour. The class expresses the common features
and is a means of classification.

Class = instantiation + attributes + operations

A class provides the mechanism of instantiation that enables a new object (design object in
AEDES terms) to be created. The object that is thus created is an instance of the class. The set
of all instances of a given class is the class extent. In the AEDES prototype eight hierarchical
classes of architectural objects were identified:

• Complex (Hospital complex: Group of buildings)
• Facility (Hospital building and site)
• Department (Administration department)
• Unit (Bathroom)
• Zone (Wet area)
• Building Element (Door)
• Component (Door lock set)
• Sub-component (Screw)

A class is also an abstract data type, which specifies the attribute and behaviour of operations
for object instances of the class. The instance attributes have a name and a type. The
operations are the operations that can be applied to an object belonging to the specific class.

A class is an abstract data type characterised by a set of properties (attributes and operations)
common to its objects, with a means for creating objects with these properties.

The principle of encapsulation ensures that the attributes of a class can only be accessed
externally by means of the operation (method) of reading that is provided.

3.4.4 The model approach to architectural design

In the past many attempts were made to structure architectural design in the form of full 3D
models. One of the earliest attempts was OXSYS. All these attempts failed to achieve full
automation of the design process or full quantification of the various design factors. Richens
(1994) states that the Knowledge Based System (KBS) community is over-optimistic in their
analysis of the nature of design. The KBS community (Carrara et al. 1994) typically
characterises design as:

• Defining a set of functional objectives that ought to be achieved by the design artefact.
• Constructing design solutions which, in the opinion of the designer, are (or should) be

capable of achieving the predetermined objectives.
• Verifying that these solutions are internally consistent and achieve the objectives.

However, the abovementioned is only a part of what really goes on in architectural design.
Architectural objectives usually include functional ones, but are dominated by less definable

University of Pretoria etd

107

intentions and are never collected completely before design starts. They evolve and are
discovered as the work proceeds.

This is not due to architects that are badly trained, but more due the nature of the problem.
Yet an approach that starts with a requirement that leads to derived functions and to design
objects is useful if the intention is to package the explicit design knowledge. Pugh (1996)
states that design is not only the integrative mechanism that brings together the arts and
sciences but also the culture which envelopes both. Design is not like mathematics or physics.
It does not represent a body of knowledge. It is the activity that integrates the bodies of
knowledge present in the arts and sciences. The author is of the opinion that design is both an
integration between arts and sciences in a horizontal dimension, but also an integration
between tacit and explicit knowledge in a vertical dimension over time.

The reasons that could be identified why an electronic model approach to architecture is only
partially successful and why attempts towards interoperability are likely to fail are the
following:

• Model based approaches assume that all design knowledge must reside in a single model,

or a set of interoperable objects. This approach assumes that all design knowledge can be
quantified.

• It is assumed that working drawings such as plans, elevations, sections and details can be
produced from the model. In OXSYS, BDS and other subsequent systems this failed
because architectural drawings contain notations such as specifications, dimensions and
general notation that can only be conveniently placed on 2D extractions of the 3D model.
These extractions to 2D worked well, however if any changes are required then changes
had to be made in the 3D model. This was time consuming and inefficient.

• The model approach captures only the functional manifestations of the design process, not
the invisible tacit and experience aspects.

• Intelligence in a CAD system is inversely related to flexibility. The more detailed you
wish to make the data model, the more circumscribed is the Universe and so flexibility is
lost.

• Even after 5 years the International Alliance for Interoperability (IAI) failed to solve the
problem of the intelligent internal interoperability of design objects such as a door in a
wall. The IAI is likely to achieve extraneous interoperability due to standardisation of the
design objects. Even at this stage the definitions of internal design objects are very
incomplete and still require a significant effort to bring about a new industry standard.

3.4.5 Frameworks for object components

The use of objects improves technologies such as languages, tools, databases and other
technologies that are essential for the construction of complex applications. The objects that
can be produced by means of these technologies are very heterogeneous, particularly in size
and level of abstraction. To assemble these into an application creates very difficult problems.
The task can be simplified by using middleware products such as CORBA for communicating
between these heterogeneous objects.

An object component is an independent, autonomous object, capable of co-operating with
other objects in a distributed system with the intention to provide a globally available service
to the application. Components were initially developed to ease the work of system
developers and integrators where the synonymous terms technical object and technical
component had their origins. More recently the concept of business object came into use.

Object middleware is a software bus that enables any object component to inter communicate
in a manner that is transparent to the network and to the specific software application. It must

University of Pretoria etd

108

be convenient to create, deploy and maintain complex systems. The components should be
extendable and adaptable to specific needs and be capable of being combined dynamically in
many different ways. Object frameworks offer an architecture into which the object
components can be integrated and co-operate. An object framework provides tools for
creating and assembling the components. The development of such frameworks, a very
important requirement in the object world, is a great challenge. Only a few designers have
mastered the technology of middleware. Recently frameworks for compound documents such
as Object Linking and Embedding (OLE) developed by Microsoft appeared. The metaphor of
a document is used for the integration of components.

3.4.5.1 Aims of object components

A component should have the following properties:
• Standard interface.
• Encapsulation
• Extendibility.

Standardisation of interfaces is the only way to ensure that independent components,
developed with different programming languages, can co-operate. Encapsulation ensures that
as components evolve they will not impact on the interface and the application that must use
it.

The creation of abstract superclasses improves the extendibility of a software product. The
superclass defines the general behaviour common to all possible classes. If a new special
subclass is desired all you have to do is to implement a new subclass with only the specialised
behaviour that is different.

The term object component includes many different software products such as libraries of
classes, graphical interfaces, compound-document components and business objects. Three
main categories can be identified:

• Technical components.
• Compound documents.
• Business components.

3.4.5.2 Technical components

These are libraries of classes developed by programming languages such as C++ or
Smalltalk. They are normally generic and extend the services provided by the language. In the
PREMIS parametric symbol programming language, Symbolix, special components are
provided to facilitate the programming of complex graphic visualisations. They are sometimes
specialised for a particular activity such as access to relational databases or the development
of graphical interfaces. The use of technical components is more along the classical lines in an
object-oriented manner, by including classes from these components in the application
program.

3.4.5.3 Compound documents

A compound document is an electronic document into which diverse components can be
incorporated. Such a document is typically presented as a graphical window in which each
component has its own graphical interface. The document metaphor is used extensively in the
personal computer world. The document is generalised to enable objects of a variety of types
to be edited and visualised in a uniform manner. In contrast to the cut and paste approach to
joining heterogeneous objects, the compound document approach is essentially dynamic. This

University of Pretoria etd

109

enables the object component to be manipulated directly from the document in which it is
contained. This has the benefit of simplifying the creation and maintenance of complex
documents.

Use of this approach requires many document components to be available in particular
multimedia components. Technical components are easily integrated into a compound
document.

3.4.5.4 Business components

A business object is an element of a typical business field of activity such as that of a bank or
manufacturing company with rich semantic properties such as name, attributes, interfaces,
relationships and constraints. Typical business objects for a manufacturing company may be
address book, customer management, warehouse management, cash management, purchases,
orders, finances, parts and deliveries. The objects must be able to communicate at a high
semantic level. The company Discon uses a business object approach (Engelbrecht 1998).
They use the technique of Functional Effect Back tracking to calculate the most appropriate
grouping of these objects. The intention is that if a major component such as the financial
module is replaced with a newer one it should not in any way destabilise the existing rest of
the components.

Business components are of large size, with classes composed of many subclasses. They are
unlike technical components and components of documents that are designed to facilitate the
re-use of code. They are created in a top-down manner by means of object-oriented analysis
and design.

Due to the availability of powerful CASE and 4GL tools more and more time is devoted to
the analysis and design of business systems. Business components are becoming increasingly
important in giving structure to applications. Enterprises are developing these components to
meet their own needs for interoperability and re-use of applications.

The Business Object Model Special Interest Group (BOMSIG) of the OMG is working on the
standardisation of business objects. It proposes to define these in terms of three types of
object:

• Presentation, for managing the object’s graphical interface.
• Business, for managing the object on disk.
• Process, for realising complex operations on the business objects.

Objects of these three types can be heterogeneous and will communicate over a distributed
architecture such as CORBA.

3.4.6 OLE/ COM from Microsoft

In 1994 Microsoft began to introduce Visual Basic custom controls. Today these controls are
known as ActiveX. Microsoft is actively promoting the use of a new object-component model
(COM) for the efficient management of distributed objects and the incorporation of these into
compound documents. Today it is possible to use these controls in a wide variety of
environments such as Microsoft Word, Excel, Visual Basic, Access, the www and other third
party products such as Arena and Visio.

The problem of the fragile base class in classical models such as C++ inhibits distribution of
components and particularly successive versions in binary. Classical object models are
therefore unsuitable for distribution over a network. This problem motivated the development

University of Pretoria etd

110

of dynamic languages such as Java. Microsoft’s aim of code exchange in binary implies the
need to define a means for invoking objects at binary level, independent of any language. The
CORBA approach, which specifies the interface in terms of a language, is not suitable.

Management of compound documents is an important objective of producers of distributed
component frameworks. Microsoft is seriously committed to this route with its OLE
architecture that is based on Component Object Model (COM).

There are two possible methods for integrating objects into a compound document, i.e. linking
and embedding. The linking option uses a pointer in the forms of a name or identifier into the
document. The linked object continues to reside in the original source document. The
advantage of this is that it does not increase the size of the document and allows for multiple
applications to share the object. In the case of embedding a copy of the original source object
is inserted into the current document. This increases the size of the document but allows the
linked object to evolve independently.

A framework for compound documents offers various basic services when components are
assembled, stored and modified. The main services are persistence, saving objects, data
exchange, construction of documents and interactive activation for making these active and
modifying them.

3.4.6.1 Persistence of objects

Containers can be saved to disk and returned to memory when needed. It is important to
remember the type of every object component. Microsoft organises the objects into compound
files each containing a number of subfiles.

3.4.6.2 Data exchange

The facility of exchanging data between documents enables parts of documents to be copied
directly into another. It is an essential requirement for drag-and-drop. This service can make
use of the more rudimentary cut-and-paste service that uses the clipboard as an intermediary
place of storage.

3.4.6.3 Enabling relationships between documents

A basic relationship service is necessary for enabling one document to point to another or to
an object. In the case of simple compound documents the relationship is logical inclusion. The
management of hyper documents requires other types of links to construct the hyperlinks. For
compound documents aggregation is the only type of link that is handled. The invariance of
the pointers creates special problems. Use of absolute file names with offsets inside the file is
prohibited so as to ensure this invariance in the face of modifications. OLE uses names of
files or subfiles, but these are modified if the reference is changed.

3.4.6.4 In-place activation

Activation occurs when the object is selected in the document window. The document
remains under the control of its application or of an adapted application. This facilitates
visualisation and editing. The editing menu of the main application is changed to reflect the
needs of the object under consideration whilst maintaining full synchronisation.

In the case of OLE this is achieved by contacting the application that created the object under
consideration. It continues to load it under a server process (if it is not already active) and
transfers control to the server.

University of Pretoria etd

111

3.4.6.5 The object-component model

COM supports classes. A class is being implemented as a set of functions provided by servers
in the form of executables (EXE) or by libraries (DLL). Encapsulation is total and data are
hidden. Only the functions are visible. A class has a 32-bit global identifier (GUID) that is
generated by an OLE utility or for basic classes specified by Microsoft.

An object is an instance of a class, with hidden data. In general it will have several interfaces
each with an identifier and accessible at binary level by a pointer. Clients communicate with
an interface by means of this pointer. This can be obtained through the medium of the
interface identifier. It references a table of functions of the interface, given in the order they
were specified.

To enable users to find the interfaces, each object is provided with a standard interface
IUnknown through which its other interfaces can be found. The interface to IUnknown is thus
a root from which all classes providing basic functions descend. It enables a user to point to
any object and obtain at least a pointer to IUnknown. IUnknown also enables counts of
references to be kept, so that the memory space of objects no longer being referenced can be
reclaimed.

Inheritance of structure does not exist in COM. Inheritance of structure is replaced by objects
with multiple interfaces. This enables modification of components without incurring the need
for recompilation. It also makes versions of interfaces possible. The existence of one interface
through which the others can be found means that objects are self-documenting.

3.4.6.6 Support for distributed objects

This enables access to the interface of distant objects, managed by a different process EXE.
The server process can be local or distant. OLE ensures transparency of the type of server for
all client objects. Different components are brought into play for this purpose and a service is
provided for localising the server and initiating execution. This service, service control
manager (SCM), localises the server by first consulting the system directory and then
activating the server. If it is already active it will establish contact with it. Message passing is
based on the RPC of DCE. It is a matter of creating an issuing proxy object in the client and a
receiving stub in the server. This mode of dialogue takes place over a proprietary software
bus.

3.4.6.7 OLE/ COM basic services

COM and OLE provide the services essential to distributed systems. The basic services are
implemented more in COM and those relating to compound documents more on OLE. Some
of the services provided are:

• Persistence, for storing and retrieving distributed persistent objects.
• Exchange, for transferring data between components in a uniform manner.
• Relationships, for implementing links by means of intelligent names.
• In-place activation, for assembling and activating multiple components in a container.
• Automation for dynamic invocation of typed objects from programming languages such

as Visual Basic and Visual C++.

The functions essential to these services are described below. They are grouped according to
the interfaces to the objects that use the services.

University of Pretoria etd

112

Persistence

This provides for saving and restoring collections of objects either directly or by means of
links within a single file. The container receives the application objects in memory pages and
its contents can be saved in a compound file. There is therefore a hierarchy of files consisting
of data elements and directories held in a single physical file.

Transaction management is used. Writing is in transaction mode, with either complete
validation at the end of the transaction (commit) or cancelling all the updates performed in the
course of the transaction (revert). Files can be modified incrementally without the need for a
complete rewrite. Files are shared, making it possible for data to be exchanged between
processes. The basic interfaces provided by the file management service are as follows:

IStorage(Record->Create,Open,Copy,EnumElementTo, …)
IStream(File->Create,Read,Write,Seek, …)

Data exchange

COM provides a uniform data transfer service, for which there is a standard interface
IDataObject. This interface provides functions for recording in memory and retrieving data in
various formats. The basic functions are GetData, SetData and EnumerateFormat. Objects
with the interface IDataObject can exchange data directly without needing to go through a
clipboard as is required in Windows. The interface also enables a user to be advised of a
change in the source.

On top of IDataObject the drag-and-drop service enables data to be moved from a source
object to a target. This is by means of a pointer to an IDataObject. The service acts as a
mediator between the source and the target. The two must have the interfaces IDropSource
and IDropTarget respectively.

Relationship

This enables objects to be linked to or incorporated into compound documents. It manages
relationships that are simple aggregations. A link references an object from a compound
document. It is implemented by a persistent name, a moniker. A moniker is an object that
implements a link. Monikers support composite names, relative names and a function
BindToObject that gives access to an object.

In-place activation

An object that forms part of a compound document is activated by a double click. The
application that created the document is loaded as a server and takes over control. It can act
either in-place or in a new window. The document can be edited directly on-screen. Linked or
incorporated objects can also be activated in place, without the need to create a new window.
The application takes over the document window and the object becomes the active agent that
controls the keyboard. Only incorporated objects can be modified. Several interfaces are
needed for in-place editing. The container must support IOleInPlaceSite and
IOleInPlaceFrame and the object must have been given IOleInPlaceActiveObject.

Automation is a key OLE service that enables the functions of an application to be described
(EXE), incorporated into OLE and made dynamically callable by any language that can use
scripts. A good example of this is the VBScript sub-set of Visual Basic that is now extensively
used in Internet web pages. The interface is described in the Object Description Language
(ODL). Object descriptions are held in a type library. The type libraries can be managed
directly by the ICreateType interface for creation.

University of Pretoria etd

113

A client OLE automation controller invokes an OLE automation server. The invocation is
dynamic and is passed by the interface IDispatch. IDispatch receives the function Invoke
from the client, decodes its parameters and sets up a link with the server. It calls the required
function and passes the parameters.

3.4.6.8 The main OLE interfaces

Microsoft introduced the OLE architecture in 1991 for the purpose of managing compound
documents. Since 1994 all the interfaces described above have been combined in a single
context. Multiprocesses are supported in Windows NT and single processes in Windows 95/
98. Recent distributions of Visual Basic include the distributed version of COM, DCOM. This
has the effect that OLE is steadily evolving from its original use in compound documents to a
distributed system where any client can communicate with any server.

The kernel implements COM and brings together the basic functions of persistence of objects,
management of intelligent names and uniform transfer of data between objects. OLE is built
on top of COM or DCOM. It provides management of compound documents by means of in-
place visual editing and drag-and-drop of objects between documents. It also supports nesting
of linked or copied objects and management of relative links.

Microsoft provides a very complete architecture. It is object based rather than object-oriented.
Unfortunately it does not support inheritance. The services and framework provided is very
complex. The architecture goes well beyond the handling of compound documents.
Distribution is achieved by means of message exchange between proxies and stubs using
RPC.

Objects are multi-interfaced providing a kind of multiple inheritance with convenient
properties. Microsoft is already using a component approach, based on OLE in many fields
such as operating systems, databases and multimedia. Other suppliers can enhance
Microsoft’s products by incorporating their own components.

University of Pretoria etd

114

3.5 Kansei engineering and new product development

3.5.1 Introduction

Kansei Engineering (KE) is one the lesser-known product development techniques. Due to the
enormous influence that the Japanese had in the domain of product development this
technique was included. Figure 2 indicates that KE is one the techniques that is able to extract
tacit needs from the level of unexpressed thought. This is exactly the area in design where
very little has been achieved in design systems over the past 35 years. KE is also one of the
few proven techniques that can operate at this high tacit level. It is envisaged that some
support for KE be included in the final product.

The term KE was first used in 1986 by Kenichi Yamamoto, the current chairman of Mazda
Motors, in a special lecture given at the University of Michigan. Thirty years ago companies
could easily make a profit because it was a seller’s market. The product development
strategies of the time were based on product output. With the increasing saturation of the
market product developers and marketing had to pay increasingly more attention to quality to
differentiate their products. Today consumers demand good quality products. The economic
success of a manufacturing firm depends on their ability to identify the needs of customers
and to quickly create products that meet these needs and can be produced at low cost (Ulrich
et al. 1995:2). To achieve these goals is a marketing, design and manufacturing problem. The
totality can be called product development or total design (Pugh 1996). The basic needs
manifested itself in movements such as the Total Quality Movement (TQM). Moss (1995:4)
states that TQM is both a philosophy and a set of guiding principles that represent the
foundation of a continuously improving organisation. TQM is the application of quantitative
and human resources to improve the material and service supplied to an organisation. It is also
the degree to which the needs of the customer are met, now and in the future. KE is one of the
methods that can be used to quantify the higher order tacit feelings of the consumer into a
product.

Nagamachi (1999a) is of the opinion that even in a strong economy, like that of the U.S.A.,
one of the reasons why some products sell well and some not is due to fact that not all
products focus on consumer feelings and emotions. He calls this Kansei. The use of KE could
provide quantified knowledge that can potentially be encapsulated in object-oriented
architectural design packaging (Figure 1). Zultner (1999:360) identified KE as one of the
methods to define customer needs that concentrate on the emotional responses.

3.5.2 What is Kansei Engineering (KE)

It is a technology that attempts to quantify cognition and product image in such a way as to
influence the product development process (Figure 22). Like Quality Function Deployment
(QFD), Kansei is a technique that is consumer-oriented and attaches importance to the voice
of the customer. Nagamachi started KE at Hiroshima University about 25 years ago. It is an
ergonomic consumer-oriented technology for new product development. In Kansei
engineering Nagamachi focuses on three main aspects:

• Accurately understanding of consumer Kansei.
• To translate the quantified Kansei values into the product design.
• To create a system and organisation for Kansei-oriented design.

University of Pretoria etd

115

Figure 22: The Kansei engineering process (Nagamachi 1999)

The word Kansei encompasses the following meanings:

• A feeling that one holds about a certain thing that may or may not exist but is thought to

help enhance one’s quality of life.
• All feelings and emotions that one has about a product, including its functions and

appearance.
• Vague psychological emotions and senses that one holds but is not yet expressed.

The techniques used in Kansei attempts to quantify human cognition through the six senses of
vision, hearing, smell, taste, touch and inner sense (feeling). For example you would walk
into a building and approach the receptionist’s desk. You rapidly form a first impression. You
might feel that interior design is very modern (vision), the receptionist is very professional
(cognition) and the acoustics is very good due to the soft carpets, wall and ceiling
construction (hearing). Kansei initially sounds vague and ambiguous. However with special
methods the feelings can be made tangible for the specific product where they manifest.

KE is a technology to translate Kansei into the design domain. Presently well-developed
methodologies and software systems support it. The general input sources of KE data could
be:

• Physiological data. When using physiological data to measure Kansei, the software can be

used to determine data patterns.
• Psychological data can be handled by means of the sorting of data into clusters using a

neural network model, classification of the data by means of genetic algorithms and
breaking down the data into design elements using the quantification theory.

The latter method is most often used because of its convenience.

3.5.3 Types of Kansei Engineering

Five main technical types of KE is most often used:

• Type 1: Category Classification. It identifies the design elements of the product to be

developed, translated from the consumer’s feelings and image.
• Type 2: Kansei Engineering System (KES). A computer aided system, with an inference

engine and Kansei databases, is used.
• Type 3: Hybrid Kansei Engineering System. The dual software systems of forward KES

that goes from Kansei to the design specifications and reverse KES that goes from design
specifications to Kansei is used in this type.

• Type 4: Virtual Kansei Engineering. This is an integration of virtual reality technology
and Kansei engineering in a computer system.

• Type 5: Collaborative Kansei Engineering Designing. Group work design system utilising
intelligent software and databases over the Internet.

University of Pretoria etd

116

3.5.3.1 Type 1: Category Classification

Category Classification is a method by which a Kansei category of a planned target is broken
down into a tree structure to determine the physical design detail. Mazda used this type of KE
for the new “Miata” (Eunos Roadster in Japan). KE became the fundamental technology for
new product development at Mazda.

In the case of the “Miata” the project team decided that the zero level product purpose
(mission or aim) would be “Human-Machine Unity” (Figure 23). The team broke the zero-
level concepts into subconcepts level 1, 2 to n. In the case of the “Miata” the zero-level
concepts were tight feeling, direct feeling, speedy feeling and communication. The various
feelings are translated into physical traits, ergonomic specifications and automotive design
elements.

Figure 23: The translation of Kansei into physical car traits (Nagamachi 1999)

3.5.3.2 Type 2: Kansei Engineering Computer System (KES)

The KES is a computerised system with an Expert System that supports the transfer of the
consumer’s feeling into physical design elements. The KES has four databases and an
inference engine in the KES structure (Figure 24). The following databases are used:

• Kansei Database. Kansei words used in the new product domain are collected. Typically

600 to 800 words are initially collected. This is reduced to approximately 100 words that
best describe the new product. These words are normally adjectives and sometimes
nouns. In the automotive industry words such as “fast”, “easy to control” and “gorgeous”
are used. After an ergonomic evaluation has been conducted these Kansei words are
analysed by multivariate techniques such as factor and cluster analysis. The Kansei
database contains the statistically analysed data. The KE is conducted by means of a
Semantic Differential (SD) method on a five-point scale.

University of Pretoria etd

117

• Image Database. Data evaluated by SD scales are then further analysed using Hayashi’s
Quantification Theory Type II (Nagamachi 1999b). It is a multiple regression technique
for qualitative data. The statistical relationships obtained between Kansei words and
design elements constitute the image database. This database relates the most appropriate
design elements to Kansei words and vice versa.

• Knowledge base. The knowledge base is a rule based database in if then form. It controls

the image database. It also includes design guidelines and digital colour expression
system.

• Shape and colour databases. The design detail is implemented in a shape design and

colouring database. The parts are design aspects that are co-ordinated into the final
assembled product with each Kansei word. The colour database consists of colours co-
ordinated with Kansei words. The design and colour is extracted by a purpose made
inference system based on the rule-base and is graphically displayed on the screen.

Figure 24: Type 2: Kansei Engineering Computer System (KES) (Nagamachi 1999)

3.5.3.3 Type 3: Kansei Engineering Modelling

KE type 3 uses a mathematical model constructed in the computerised system in stead of a
rule-base system as described above at type 2. The mathematical model is based on Fuzzy
Logic. Sanyo attempted to use Fuzzy Logic in an intelligent colour printer that could enhance
bad original images. The developers carried out an experiment on an image of a beautiful girl
and obtained data of the hue, brightness and saturation for a girl’s face colour which are
represented by a membership function in Fuzzy Set Theory. The data were transformed to
Red: Green: Blue in the computer colour system. This enabled the KE colour printer to
enhance the original picture by means of the KE inference system. The intelligent colour
printing system comprised a camera, computer and a colour printing system driven by Fuzzy
Logic. It was able to diagnose the original picture.

University of Pretoria etd

118

Nagamachi also developed a computerised language analysis system for the Japanese
language to analyse words in terms of Fuzzy Integral and Fuzzy Measure Logic. It is used to
analyse brand name feeling. Several Japanese companies use this system to select appropriate
product names (ring and feeling) for new brand products.

3.5.3.4 Type 4: Hybrid Kansei Engineering

In contrast to the forward KE discussed under type 2, type 4 is called Backward KE. This is
used in the situation where there is an existing product and the designer wants to know how
well this design fits a specific set of Kansei criteria. The computerised system makes design
suggestions. If types 2 and 4 are combined then it is called a hybrid KE. (Figure 25).

By means of this type of KE system the designer is able to get design specifications from
Kansei words through the forward KE. This helps the designer to be more creative based on
his own ideas and suggestions offered by the system. The drawings generated can be input
into the system. An image processing system can analyse the sketch. The system is then able
to diagnose the input sketch by reference to the Kansei database. This enables the designer to
evaluate his own creative design.

Figure 25: Components of a hybrid Kansei Engineering System (Nagamachi 1999)

3.5.3.5 Type 5: Virtual Kansei Engineering

This technique is new and combines KE and Virtual Reality (VR). The advantage of VR is
that it enables people to experience computer generated virtual designs by means of a head-
mounted display. Control is by means of data gloves. With this technique customers can
evaluate the new product that were built by means of KE. Nagamachi constructed a Virtual
Kansei Engineering kitchen design system for Matsushita. The kitchen was designed by KE to
fit the exact customer needs. Subsequently the customer could evaluate the virtual kitchen by
means in terms of his specific Kansei requirements.

3.5.4 Main Kansei Engineering steps

The following main steps are used in a typical KE process. It is a category classification
method and is used most often today.

• Clearly define the product purpose.
• Collect the Kansei data using various marketing methodologies.

University of Pretoria etd

119

• Determine the Kansei product mission or baseline. This is the main purpose of the
product. In the case of AEDES this could have been “Total Architectural Knowledge
Management”.

• Break the base line product concept down into primary, secondary and tertiary sub-
concepts.

• During the breakdown pay special attention to the appropriate design metrics and issues
such as size, mass and material.

• Implement tests such as ergonomic engineering in order to find more detailed design
specifications.

• Summarise the overall specifications and review whether they fit the baseline concept.
• Verify the results with the designers’ 3D design mock-ups.
• Make adjustments to the final requirements.

3.5.5 The Semantic Differential Method

Advertising and marketing men are frequently faced with the problem of quantifying
subjective data with regards the reactions of customers to image of a brand, product or
company. In an attempt to solve this problem Snider and Osgood (Snider et al. 1957) devised
a technique called the Semantic Differential technique (SD). SD attempts to measure what
meaning a concept have for people in terms of dimensions which have been empirically
defined and factor-analysed. There is a remarkable similarity between this technique and
Fuzzy sets (Zadeh et al. 1970).

Osgood used a seven-point, equal-interval ordinal scale. These scales were usually selected
from 50 pairs of polar adjectives. An example is:

Good bad

Progressing from left to right on the scale, the positions are described as representing
extremely good, very good, slightly good, being both good and bad, slightly bad, very bad and
extremely bad.

Numeric weights can be assigned to each position. These can be converted to individual or
group means and presented in a profile form. The reliability of this method is reasonably high.

The main advantages of SD are:

• It is a quick and efficient way of quantifying large data samples. It captures the direction

and intensity of opinions and attitudes towards a concept.
• It provides a comprehensive picture of the image or meaning of a product or personality.
• It is a standardised technique for capturing the multitude of factors which a brand or

product comprises.
• It is easily repeatable and reasonably reliable. It can be used on a continuous basis to

capture changes in customer attitudes.
• It avoids stereotyped responses and allows individual frames of reference.
• It eliminates some of the problems of question phrasing such as ambiguity and

overlapping of statements.

Nagamachi simplified the original Osgood seven-point scale somewhat when he applied it to
the design of coffee cups.

University of Pretoria etd

120

Figure 26: Adjectives applicable to coffee cups when using the semantic differential
method (Nagamachi 1999)

3.5.5 Conclusion

KE is used in diverse industries such as the automobile, apparel, home appliance, office
machinery, home and cosmetics. These industries include some of the most important car
manufacturers in the world. Other applications include diverse fields such as digital colour
expression, language analysis, video camera and discomfort analysis by means of cross-
modality matching. During a workshop attended by the author, Nagamachi stated that
although KE is a very comprehensive system it is not a design system, but rather a design
support system. KE could certainly be useful to move certain tacit data down to explicit levels
where it could be used in design knowledge management and packaging. It is interesting to
note the similarities between SD and the dynamic linguistic variables discussed under 3.2.5.7

University of Pretoria etd

121

3.6 Quality Function Deployment (QFD)

3.6.1 Introduction

Due to the important role that a holistic approach to quality plays in the product realisation
process this section was included. If architectural design knowledge is to be successfully
packaged for use during the product life cycle then quality must form an integral part of it.
Figure 2 gives an indication of the tacit level of knowledge that QFD operates at. In the
precedent system AEDES (Conradie et al. 1999) QFD was made an integral part of the
briefing and design system. In the present study QFD was used to analyse the needs of the
construction team for a very large construction project. This indicated the need for a design
processor clearly. It is now known that QFD is too elaborate for the normal architectural
design project. For this reason ARGOS does not form a core part of ARGOS anymore. If it is
necessary to use it, it should rather be applied as an outside process. Certain projects might
still be suitable for QFD.

The author first learned about Quality Function Deployment (QFD) in May 1998. During
further study it was discovered that QFD is one of the most powerful and robust methods to
support the product design process. Although QFD was already conceived in Japan in the late
1960s the western world was slow to adopt it. At the moment it is still largely unknown in
South Africa and met with scepticism. QFD is an adaptation of some of the Total Quality
Management (TQM) tools. The author gained practical experience in the use of QFD during a
recent Voice of Customer (VOC) exercise with the members of the professional team to
establish accurate user requirements for the AEDES prototype system that is a precedent for
the present study.

After World War II statistical quality control (SQC) was introduced to Japan and became the
central quality activity in the area of manufacturing. This was integrated with the teachings
Juran and Ishikawa. This gradual evolution was strengthened by 1961 publication of Total
Quality Control by Feigenbaum. The result of this was that SQC was transformed into TQC
during the transitional period between 1960 and 1965. It was at this stage that Akao (1997:
19) became prominent and influential in the subsequent development. Two important factors
led to QFD, as we know it today:

• People started to recognise the importance of design quality.
• Companies were already using Quality Control (QC) charts. However the charts were

produced during manufacturing after the new products were conceived clearly leaving a
quality gap at the initial product conceptualisation.

Akao (1997:19) states that by the time design quality is determined, there should already exist
critical Quality Assurance (QA). In 1972 abovementioned deficiencies were addressed in an
approach described as “hinshitsu tenkai” (Quality Deployment). This established a method to
deploy, prior to production start-up, the important quality assurance points needed to ensure
the design quality throughout the production process. The method was still inadequate in
terms of setting the design quality. This was resolved by means of the quality chart used at the
Kobe shipyards of Mitshubishi Heavy Industry. Value Engineering (VE) also influenced
QFD. VE is a way to define functions of a product.

In 1978 the term Quality Function Deployment became firmly entrenched. QFD is a literal
translation of the Japanese words “hinshitsu kino tenkai”.

The most important contributions of QFD are (Akao 1997):

• Established quality management in product development and design.

University of Pretoria etd

122

• Provides a communication tool to designers. Engineers and hopefully architects in future
are positioned halfway between the market and production. They need to lead product
development. QFD gives a powerful means to build a system for product development.

• QFD can significantly contribute to the software industry.
• Future TQM will become important in future to align company-wide activities to

customer focus. Akao believes that Voice of Customer (VOC) should be the common
bedrock for creating a partnership of such activities.

The Americans are attempting to combine many different ideas with QFD. This includes
TRIZ, Taguchi methods and conflict management. QFD and Taguchi methods are gaining
attention in the USA as effective methods for concurrent engineering. In product and
manufacturing process design, a key optimisation tools is Taguchi’s Robust Design Method.
The prioritisation capabilities of QFD assist the development team to decide where to apply
Taguchi’s methods.

The global use ISO 9000 series influenced quality control greatly. It established a global
quality standard for the first time. The ISO 9000 series require companies to earn their
customer’s trust by demonstrating a system of quality assurance. ISO defines a quality system
as the organisational structure, responsibility, procedure, process and resource for
implementing quality control. Akao predicts that QFD will be recognised as an international
standard and be incorporated in ISO.

3.6.2 What is QFD?

QFD is a method for structured product planning and development that enables a
development team to specify clearly the customer’s wants and needs and then to evaluate each
proposed product or service capability systematically in terms of its impact on meeting those
needs (Cohen 1995).

The QFD process involves constructing one or more matrices, sometimes referred to as
quality tables. The first of these matrices is called the House of Quality (HOQ) (Figure 27). It
displays the customer’s requirements along the left and the development team’s technical
response to meeting those needs along the top. The matrix consists of several sections or
submatrices joined together in various ways that contains interrelated information.

University of Pretoria etd

123

Figure 27: Schematic representation of the QFD House of Quality (Cohen 1995:12)

Each of the labelled sections is a structured expression of the product or process development
team’s understanding of an aspect of the overall planning process for a new product, service
or process.

Section A contains a structured list of customer wants and needs. The structure is usually
determined by qualitative market research. The data are in the form of a tree diagram that is
obtained by methods such as a Voice of Customer exercise.

Section B contains three main types of information:

• Quantitative market data. This category consists of three columns that indicate

importance to the customer, customer satisfaction performance and competitive
satisfaction performance.

• Strategic goal setting for the new product or service. This category indicates the level of
customer performance being aimed for and the improvement ratio required. The two
columns normally used here are goal and improvement ratio.

• A computation for rank ordering the customer wants and needs. Under this main category
the ability to sell the product or service, overall importance to the development team of
each customer need and cumulative normalised raw weights are normally captured. These
three columns are called sales point, raw weight and normalised raw weight.

Section C contains in technical language the description of the product or service they intend
to develop. This is normally generated or deployed from the customer wants and needs in
section A. It is important to note that there will probably not a one-to-one correlation between
the user requirements and the technical solutions offered.

Section D contains the development team’s judgements of the strength of the relationship
between the items in A and the technical response in C. Typically a 9,3,1 scale is used that can
also be written by means of special symbols (Figure 27).

University of Pretoria etd

124

Section E contains the technical development team’s assessment of technical correlation (roof
of the quality house) between the items in the technical response.

Section F contains three types of information:

• The computed rank ordering of the technical responses, based on the rank ordering of

customer wants and needs from section B and the relationships in section D.
• Comparative information on the competition’s technical performance.
• Technical performance targets.

Not all the various sections of the QFD diagram will always be used. In the literature many
different variations exist. It is possible to go beyond the initial House of Quality. In the
AEDES prototype a system of 5 matrices were used. In this system the HOW of one level of
matrix becomes the WHAT at the next level. The effect is that progressive refinement is
attained until the desired level of detail is reached.

3.6.3 The affinity diagram

The affinity diagram is a means of for organising qualitative information. The hierarchy is
built from the bottom up. The source of ideas into the affinity diagram can be internal or
external. The team developing the diagram brainstorms internal ideas. Brainstormed ideas are
appropriate for a team that has no data to begin with. In the case of the AEDES Voice of
Customer (VOC) exercise an extensive prior literature study was made as to what the
requirements might be and also to prepare a structured questionnaire to assist the interviewers
in asking the correct questions.

Methods that could be used to hear the VOC are (Technosolve 1998; Cohen 1995):
• Focus group interviews.
• Contextual inquiry.
• Conference room interviews.
• Surveys.
• Gemba visits (Observe user in his working environment).
• Walk mile in his shoes.
• Customer complaints.
• Customer requests for existing product enhancement or new products.
• Expert opinion.
• Published sources.
• Social events such as parties or exhibitions.

University of Pretoria etd

125

Table 5: Methods of obtaining Voice of Customer (Collated by author)

Formal methods Informal methods

Fo
cu

s
gr

ou
p

C
on

te
xt

ua
l i

nq
ui

ry

C
on

fe
re

nc
e

ro
om

in

te
rv

ie
w

Su
rv

ey
s

G
em

ba
 v

is
its

W
al

k
m

ile
 in

 h
is

sh

oe
s

C
us

to
m

er

co
m

pl
ai

nt
s

C
us

to
m

er
 re

qu
es

ts

Ev
en

ts
 s

uc
h

as

ex
hi

bi
tio

ns

Speed (S,M,F or ~)

F

S

M

~

S

S

F

S

S

Cost (L,M,H or ~)

L

H

M

~

H

H

L

L

M

Requirement yield
(L,M,H or ~)

L

H

M

~

M

M

L

~

L

External ideas are the facts that the team acquires. One of the most thorough methods of
obtaining data is by means of a customer interview VOC exercise. This takes very careful
planning. Questions are prepared beforehand to prepare the interviewers for their task. During
an interview attempts are made to uncover as many real unexpressed customer needs as
possible. The complete interview is tape-recorded for a subsequent verbatim transcription.

The AEDES development team conducted eight one-hour interviews with the professional
team of a large construction project. The example passage below is an example of such a
fragment of information that was communicated by one of the interviewees.

In the subsequent analysis the transcribed interviews are very carefully screened to find
passages, statements or remarks that clearly express useful thoughts of the customer. The
analysis team then hypothesised as to what the statement actually meant and extracted
hypothesised user requirements. In the case of the AEDES VOC exercise 173 such user
requirements (URs) were identified. On the analysis form careful note was taken of direct
product features that are mentioned during the interview that gives direct clues as to desirable
product features.

An example of a probing question during a recent VOC interview was:

Q. “ So you can store the process case that you had here and transfer it. From that point of
view we already have a bit of a case library that you can draw on in the future?”

A. “That is how we go from project to project. I’ve got a file down there, that has got your
process methods and production rates and durations, so that every time you come onto a
project…e.g. how many bricks do a bricklayer lay, I’ve got a set standard that is there. I
program the whole programme. I know exactly what should be the duration, then the
construction guys go along, they program the whole program and if it is way out, I can say to
the guys you are smoking yourselves and it is not from my brain, it is from the files, from the
database, it is from the cases that we have put together. That case study is somehow static,
however, there is suddenly a new way of laying bricks, then the bricklaying process will
change, the duration will change and we will have to update that knowledge that information

University of Pretoria etd

126

will have to change. But, it is probably quite static at the moment. No new techniques have
been developed the last couple of years for brick laying.”

During the subsequent analysis of abovementioned verbatim that clearly expresses a customer
need the following hypothesised customer requirements and issues and factors were extracted
from the transcription.

Issues/ factors:
• Pre-packaged case histories (experiential knowledge).
• Base information across life cycle process.
• Updating of cases.
• Validation of decisions.

Customer Requirement:
• Enables all team members to refer back to and retrieve experiential project knowledge at

any level of grain as and when required.

The URs were printed on large sticky labels and pasted onto post-it-notes. The cards were
placed on the boardroom table where they could be seen by the entire team. At this stage the
team observes total silence and first reads all the cards in sequence in order to get the contents
in short term memory. Each member then begins to move the cards together that they think
belong together. It is important that the cards are not grouped by similar wording, but rather
by similar benefits to the customer. If a card continues to shuttle between different piles the
card can be duplicated and placed in two piles. It eliminates a test of wills between two team
members.

After the silent sorting process is complete, discussion may start again. The initial 173 URs
were grouped into heaps of similar user benefits and a summary title added that best describes
the contents of the heap. At this stage the team had 23 abstracted heaps. The next day more
effort was put into the grouping exercise and this produced seven higher level URs. At top
level it was possible to abstract this to three ultimate user requirements (Table 6).

University of Pretoria etd

127

Table 6: Essential user requirements extracted for the AEDES VOC exercise

Broad Category User Requirement Detailed user requirements
1. Planning in holistic context 1.1 Requirements & methods of life cycle process

1.2 Fast track operational processes
1.3 Contextual visualisation

Enhance project
Effectiveness
(Relates to strategy:
doing the right thing) 2. Life cycle sustainability 2.1 Optimise project in terms of sustainability

2.2 Timeous planning according to type & scale
2.3 Demonstrated financial risk & return

3. Enhanced decision making 3.1 Sound decision-making

3.2 Co-ordinated decision making
3.3 Trace-ability & validation of decision

4. Enhanced information management 4.1 Access to information
4.2 Information flows and interchange-ability
4.3 Transparency of interactions & information

Enhanced project
efficiency
(Relates to productivity:
doing things right)

5. Product delivery efficiency 5.1 Problem solving
5.2 Product performance characteristics
5.3 Contractor supply chains
5.4 Quality assurance
5.5 Efficiency in terms of time/cost savings

6. Facilitates practical project experience 7.1 Skills transfer & job creation

7.2 Practical training & learning
Enhanced human
capital and learning

7. Learning infrastructure 7.1 Organisational memory
7.2 Experiential project knowledge
7.3 Rapid access to experiential knowledge
7.3 Generic briefing templates

Table 7 : Sample of form used to extract constant sum paired comparisons from
users

Subsequently a method called “constant sum paired comparisons” was used where each
attribute is compared to every other attribute (Cohen 1995:97). This technique is preferred

University of Pretoria etd

128

over a five point scoring scales because it yields better statistical accuracy and is non-ordinal.
The QFD institute in Detroit also recommends this technique. In this technique a participant is
expected to weigh up pairs of factors against each other. This takes careful thinking. The
comment is normally that unlike factors are compared, however it must be seen as an
importance rating or a rating that tries to determine which factor gives you the most problems.
Of the 35 questionaires sent out, a total of nine were returned.

The results of the pairings were analysed and the results indicated clearly the need for a
strategic what-if scenario system across the project life-cycle.

The consolidated results produced the results below that are ordered from the most important
to the least important.

Table 8: Relative importance of user requirements within group

User requirement Level of
Consensus

Relative
importance
as a
percentage

Normalised
relative
importance

U2 – Strategic what-if scenarios across project life cycle Good 30.91 0.31
U1 – Planning in an appropriate holistic context Good 24.89 0.25
U6 – Practical project experience and learning Good 16.03 0.16
U7 – Learning support infrastructure during project delivery Useful 11.47 0.11
U5 – Project delivery efficiency Useful 7.35 0.07
U4 – Information management across project life cycle Useful 7.33 0.07
U3 – Decision management across project life cycle Good 2.02 0.02

The user requirements (Customer needs and benefits) can now be filled in on the What side of
the QFD matrix. The relative importance values can be placed on the planning matrix. The
technical team can proceed to generate technical concepts (Technical response or substitute
quality characteristics). Analysis of the most important requirements clearly indicates that the
following functionalities are required:

• Structured data in appropriate classification containers
• Life cycle software tool modularity
• Systems approach
• Data hierarchies because construction element relationships exhibit a hierarchical

structure.
• World wide web connectivity of tools and data
• Data labelling
• Desktop working environment
• Life cycle supply support data like material performance libraries
• Learning support such as intelligent archived case studies that is a complete cognitive

snapshot of the various design factors.
• Process support

From this it becomes clear that life cycle process and data integration need to be created. This
must further be supported by appropriate modular analysis tools and packaging of designs at
various levels of granularity. This is a clear indication that a need for intelligent Case-based
Reasoning enabled components exists that could assist the project team with design and
operational decisions. This type of component must be flexible to operate in many different
software environments at various stages of the product life cycle.

University of Pretoria etd

129

3.6.4 Kano’s model of user satisfaction

The Japanese TQM consultant Noriaki Kano provides useful insights of customer satisfaction
as it relates to product characteristics. Kano’s model divides product characteristics into three
distinct categories, each of which affects customers in a different way. The three categories
are (Figure 28):

• Dissatisfiers. These are “must-be”, “basic” or “expected” characteristics.
• Satisfiers. These are also known as “one-dimensional” or “straight-line” characteristics.
• Delighers. These are also known as “attractive” or “exciting” characteristics.

3.6.4.1 Dissatisfiers

These are product characteristics that the customer takes for granted when they are present,
but that cause dissatisfaction when they are missing. Dissatisfiers are things customers do not
normally ask for, because they tacidly assume that they will be taken care of. If a product or
service is delivered that has many dissatisfiers, customers will be extremely unhappy.

If dissatisfiers are eliminated then customers will hardly notice all the work that has been
done to eliminate the dissatisfiers. The reduction of dissatisfiers can only raise customer
satisfaction to a “not dissatisfied” state.

3.6.4.2 Satisfiers

This is a feature or characteristic that a customer wants in his product and would usually ask
for. The more satisfiers that are provided, the happier customers will be. It is also known as
desired quality because it represents the aspects of the product that define it for the customer.
Examples of this that were expressed during the AEDES VOC exercise are:

• Compatible data interchange amongst project participants.
• Project specific configuration of software.
• On-line availability of information

In the competitive world of software development one can expect satisfiers to be present in all
the competitive products.

3.6.4.3 Delighters

These are product attributes or features that are pleasant surprises to customers when they first
encounter them. However if delighters are not present, customers will not be dissatisfied,
because they do not know what they are missing. We cannot learn about product delighters by
directly asking our customers. Examples of delighters are not as instructive as examples of
satisfiers and dissatisfiers. Each delighter is unique and no particular patterns can be
identified. Some delighters are entire new products that created entirely new markets. In the
present study delighters for the portable design cases called ARGOS could be:

• Integration into any ActiveX compliant container environment such as spreadsheets.
• All pertinent design information available in a convenient to use environment of the users

choice.
• Support for design via the Internet.
• Integration of function, shape and quality into a single highly portable mini-case

environment.

University of Pretoria etd

130

• The ability to use structured information from the past to assist with future design
problems.

Figure 28: Kano's customer satisfaction diagram (Cohen 1995:37)

The needs that delighters fill are often called latent or hidden needs because they are not
directly communicated. QFD offers some assistance in this regard where the interviewers
during a VOC exercise attempts to scaffold into the unconscious product desires of the client.
During subsequent analysis of the VOC the analysts attempt to cover assumed, expressed and
latent elements. QFD is particularly useful because it helps the development team to clearly
separate customer needs from technical solutions.

3.6.5 QFD software

Very good commercial QFD software such as QFD/Capture Professional is available. Typical
features of this software includes:

• The ability to publish HTML web page output of QFD reports.
• Generate customer surveys in text, Microsoft Word, Rich Text Format and HTML Web

Page formats.
• Produce market opportunity map reports identifying the best opportunities for product

improvement.
• Generate relationship tree diagrams showing measures for each requirement in a graphical

tree and branch format.
• Print out and work with blank chart templates, which are useful as documents-in-progress

during team meetings.

University of Pretoria etd

131

Figure 29: QFD/Capture product planning matrix screen (Author)

During the prototype development of the AEDES software the author developed QFD
software that could integrate the architectural briefing and design process directly in an
underlying database. This was an attempt to make the information captured during the QFD
briefing and design sessions directly available to other distant members of the design team.
The biggest difference between the AEDES QFD and standard software is the fact that it
worked in depth as well. In-depth implied that the user could see more detail by clicking on
the intersection of a specific row or cell (Figure 31).

QFD has a practical limitation in the sense that it cannot conveniently accommodate more
than a 20 by 20 matrix. Architecture contains information at many different levels of detail
that is likely to give rise to very large matrices. This was solved by means of the in-depth
method. The disadvantage of the latter is that it is not possible to see information directly at a
glance. However reports were developed that can be printed out and studied at leisure.

University of Pretoria etd

132

The in-depth method required a special database structure that is detailed in Figure 31. The
relational database table QFD contained the main QFD project information. Two main
hierarchies branch from this main table, i.e. the QFDHow and QFDWhat branches each
having respective subtables called QFDSubHow and QFDSubWhat. Special connecting tables
(somewhat unusual in relational database design) were used to keep book of the relationships
between the What and How data branches. The relationships are what would occur in section
D (Figure 27). The tables QFDRoof and QFDSubRoof are self-referring tables (recursive) and
are designed to support the relationships that are required by the QFD technical correlations
(QFD roof).

Figure 30: Relational database tables used in the AEDES prototype QFD software
(Author)

The software only allowed viewing of the design data. Editing was accomplished by means of
special database forms. The QFD software provided a convenient means to view the
numerous different technical correlations that exists in architecture. The software provided
convenient navigational command buttons that facilitated navigation across a larger than
displayed virtual QFD matrix. A drawback of this was that it was not possible to view the
entire matrix at a glance. The author is of the opinion that it is not always necessary to see all
design issues at once in architecture, because not all design factors at all levels are so closely
related that it is necessary to have simultaneous visual display. Future improvement of the
software could be to write QFD software in a Visual Basic ActiveX control. This would
greatly improve the usefulness of the QFD software because it would then be possible to use
the advanced methodology in a convenient environment such as a spreadsheet, CAD systems
or it could be integrated into software shells developed in languages such as Visual Basic or
Visual C++.

University of Pretoria etd

133

Figure 31: Typical screen of the AEDES prototype QFD software (Author)

University of Pretoria etd

134

3.7 Theory of inventive problem solving (TRIZ)

3.7.1 Introduction

There are two groups of problems people face, those with generally known solutions and
those with unknown solutions. Those with known solutions can usually be solved by
information found in the technical literature or through extensive training. These solutions
follow the general pattern of problem solving. Here a standard solution is elevated to a
standard problem of a similar or analogous nature. A standard solution is known and from that
standard solution comes a particular solution to the problem.

The other type of problem has an unknown solution. It is called an inventive problem and
may contain contradictory requirements. In modern times inventive problem solving falls in
the field of psychology where the links between the brain, insight and innovation are studied.
Methods such as brainstorming and trial-and-error are commonly suggested. Depending on
the complexity of the problem, the number of trials will vary. If the solution is within the field
of experience then the number of trials will be fewer. If the solution is not found the inventor
must look beyond his experience and knowledge to new fields such as manufacturing or
aviation. Then the number of trials will grow large depending on how well the inventor can
master psychological tools like brainstorming, intuition and creativity. A further problem is
that psychological tools like experience and intuition are difficult to transfer to other people in
the organisation.

This leads to what is called psychological inertia where the solutions being considered are
within the inventor’s own experience and do not consider alternative technologies to develop
new concepts. When we overlay the limiting effects of psychological inertia on a solution
map covering broad scientific and technological disciplines the ideal solution might lie
outside the inventor’s field of expertise. Psychological inertia defeats randomness and leads to
looking only where there is personal experience.

3.7.2 TRIZ

Genrich S. Altshuller, born in the former Soviet Union in 1926, developed a superior
approach relying on technology. His curiosity about problem solving led him to search for
standard methods. Altshuller screened over 200 000 patents looking for inventive problems
and how they were solved. Only 40 000 had somewhat inventive solutions, the rest were
straightforward improvements. At this stage it is estimated that more than a 1 000 000 patents
have been screened world-wide. Altshuller defined an inventive problem as one in which the
solution causes another problem to appear. Usually inventors must resort to a trade-off and
compromise between the features and thus do not achieve an ideal solution. In his study of
patents he found that many described a solution that eliminated or resolved the contradiction
and required no trade-off. Altshuller identified five levels of inventive solutions (Kaplan
1996:2; Mazur 2001):

• Level one. These are routine design problems solved by methods well known within the

speciality. No invention is required. About 32% of the solutions fell into this level.
• Level two. These are solutions that leave the existing system fundamentally unchanged.

New features are introduced or minor improvements are made to the existing system. This
is effected by known methods and sometimes compromises may be made. About 45% of
the solutions fell into this level.

• Level three. This constitutes an essential improvement of an exiting system. Methods
outside the known industry are used. Certain contradictions need to be resolved. About
18% of the solutions fell into this category.

University of Pretoria etd

135

• Level four. At this level inventions are characterised by solutions found in more in
science than in technology. Only about 4% of the solutions fell into this category.

• Level five. This is the level where rare scientific discoveries or pioneering inventions
occur. Only about 1% of the solutions fell into this category.

He also noted that with each succeeding level, the source of the solution required broader
knowledge and more solutions to be considered before an ideal one could be found. Altshuller
found that 90% of the problems engineers faced had been solved somewhere before. If
engineers could follow a predictable through the various levels and using their knowledge and
experience most of the solutions could be derived from knowledge already present in the
particular company or industry.

Altshuller distilled the problems, contradictions and solutions to these patents into a
comprehensive theory of inventive problem solving which he named TRIZ.

There are a number of laws in the theory of TRIZ. One of them is the law of Increasing
Ideality. A technical system evolves in such direction as to increase its degree of Ideality
(Kaplan 1996). Ideality is defined as the quotient of the sum of the system’s useful effects,

iU , divided by the sum of its harmful effects, jH .

Ideality =
∑
∑

j

i

H
U

Useful effects include all the valuable results of the system’s functioning. Harmful effects
include undesired inputs such as cost, the space occupied, energy consumed, pollution and
danger. The ideal state is one where there are only benefits and no harmful effects also termed
the Ideal Final Result. From a design point of view, engineers must continue to pursue greater
benefits and reduce cost of labour, materials, energy and harmful side effects. If the
improvement of a benefit results in increased harmful effects, a trade-off is made, but the Law
of Ideality drives designs to eliminate or solve any trade-offs or design contradictions. The
ideal final result will eventually be a product where the beneficial function exists but the
machine itself does not. The evolution of the mechanical spring-driven watch into the
electronic quartz crystal watch is an example of this move towards Ideality.

Boris Zlotin and Alla Zusman, TRIZ scientists at the American company Ideation and
students of Altshuller have developed an “Innovative Situation Questionnaire” to identify the
engineering system being studied, its operating environment, resource requirements, primary
useful functions, harmful effects and ideal result.

3.7.3 Steps in using TRIZ

3.7.3.1 Formulate the problem: the prism of TRIZ

This first step is to restate the problem in terms of physical contradictions. Identify problems
that could occur. Could improving one technical characteristic in solving the problem cause
other technical characteristics to worsen, resulting in secondary problems? Are there technical
conflicts that might force a trade-off?

3.7.3.2 Search for previously well-solved problems

Altshuller extracted from over 1 500 000 worldwide patents 39 standard technical
characteristics that cause conflict. These are called the 39 Engineering Parameters. Find the
contradicting engineering principles. First find the principle that needs to be changed. Then
find the principle that is an undesirable secondary effect. State the standard technical conflict.

University of Pretoria etd

136

3.7.3.3 Look for analogous solutions and adapt to solution

Altshuller also extracted from the worldwide patents 40 inventive principles. These are hints
that will help an engineer find a highly inventive (patentable) solution to the problem. To find
which inventive principles to use, Altshuller created the table of Contradictions. This table
lists the 39 Engineering Parameters on the X-axis (undesired result or conflict) and Y-axis
(feature to change or improve). The appropriate Inventive principles that could lead to a
solution are listed in the intersecting cells.

3.7.3.4 Socially responsible TRIZ

Structurally and philosophically TRIZ methods look at the big picture. During problem
definition the TRIZ practitioner looks at nine combinations of the past, present and future
models of the sub-system, system and super-system. Interactions, resources, harmful and
secondary effects are identified during the definition of the problem.

Terninko (1999:285) states that the TRIZ method can support sound environmental design
through the recognition of resources within the sub-systems, systems and super-systems. If
the future of the system and super-system is well understood then possible future disastrous
effects can be avoided. He suggests a different type of TRIZ formula to take account of the
harmful effects.

Ideality =
∑ ∑

∑
+ harmsts

benefits
cos

The equation above is more a construct than a directly usable equation. This particular version
of the ideality equation contains cost and harmful effects in the denominator.

It is not difficult to identify the benefits and this is what the TRIZ specialist normally tries to
understand. The identification of possible harmful effects and its alternatives is just as
important. The product designer is normally far too casual about the costs and harms in the
denominator. See item 4.2.1.2 for Sustainable Development.

TRIZ does represent a method that can be socially responsible, but the practitioner must resist
pressure from society and industry for rapid and incomplete analysis. Organisations are often
driven by profit while ignoring the customer and the medium to long consequences of their
solutions.

Summary

The techniques and product innovation methodologies discussed in this chapter are useful at
various tacit and explicit levels. They are also applicable in different building life cycle
phases (Figure 2).

It is clear that after the initial optimism about the possibilities of AI in design, a more mature
and realistic approach is now followed. CBR is a promising sub-field of AI that can greatly
contribute to the contextual storing of design knowledge. It is clear that AI should be used
more in the background and especially in architecture automatic adaptation of designs should
not be attempted.

Knowledge Management is becoming very prominent although there are still unsolved
problems. However many researchers are working on the particular sub-problems due to the

University of Pretoria etd

137

importance of this for the global economy. KM is still fluid, however the theory is well
understood such as the movements of the knowledge cycle. The sharing of knowledge is
important in any enterprise and this is supported by the current importance attached to
intellectual capital. Concept extraction and Natural Language Processing remains
problematic, however significant progress has already been made. The current and emerging
technical standards that form a barrier to responsive NGM were identified. The main
requirements for a KM enabling environment are:

• Communication
• Design team flexibility and responsiveness
• User Interface and information search
• Project resource integration and access

The problems of ontology and the role that AI can play in Knowledge Based Design were
investigated. It was observed that CBR and the concept selection cycle of Pugh (1996) bear
striking similarities. The various main known problem-solving architectures were investigated
and the conclusion can be made that CBR, RBR and MBR should be not be seen in isolation
but should rather be viewed as a continuum of techniques.

The use of fuzzy sets as a means of formulating dynamic linguistic variables for aiding the
retrieval of design knowledge in general and cases specifically were investigated. It was
discovered that the semantic differential method of Snider and Osgood (Snider et al. 1957)
and the semantic differential adjectives as used by Nagamachi bear a relationship to the
approach advocated by the author.

The analysis of the characteristics of manufacturing such as process, flow and throughput
indicate that these are not directly applicable to problems under consideration, but should
rather be applied at the process level. Concurrent Engineering is an important technique to
avoid the so-called time-trap. This is where the life cycle time of products decreased while the
time spent on product development greatly increased. Three possible strategies could be
identified as CE guiding principles:

• Parallelisation.
• Standardisation
• Integration

The theories of Goldratt showed that the manufacturing environment is particularly applicable
for Theory of Constraints and that the system optimum is not the sum of the local optima.

Taguchi techniques indicate the importance of off-line and on-line quality control. This
indicates that quality is related to the loss to society caused by a product during its life cycle.
In terms of the current thesis these methods should rather be used select appropriate materials
to minimise life cycle costs in the context of sustainable development.

The advantages of the fuzzy Front End (FFE) was identified:

• It lasts a long time
• Cheap place to look for cycle time
• Individual companies have big performance differences

The investigation of objects indicates that it is the preferred way to achieve abstraction,
generalisation and interaction in systems supporting the life cycle development process. The
unique way those objects were used in the precedent systems PREMIS and AEDES were
discussed. This section was concluded with strategies followed by Microsoft to establish if

University of Pretoria etd

138

these could offer opportunities for the packaging of architectural design and design
parameters.

Kansei Engineering (KE) is a mature and useful technique to quantify cognition and product
image in such a way as to influence the product development process. KE operates at a very
high tacit level is could make a significant contribution to the storage of tacit architectural
design information.

The QFD exercise undertaken indicated that the ability to generate what-if scenarios across
the project life cycle as the most important user requirement. QFD as a technique to extract
raw architectural user requirements was pioneered in the AEDES system. QFD is useful if the
time and cost can be justified. QFD is an important technique in the manufacturing industry
and was one of the techniques that saved the Detroit automotive industry from ruin in the face
of severe competition from Japan. The contribution that QFD can make in architecture is
dependent on the acceptance that this slightly elaborate technique can gain.

The chapter is concluded with TRIZ that is a powerful method to solve inventive problems.
However the present commercial TRIZ software emphasise engineering type of problems. A
significant amount of work will have to be done to make its use tractable in architecture.

University of Pretoria etd

139

Chapter 4: Precedents to the present research

Introduction

This chapter provides an overview of the two precedent systems PREMIS and AEDES that
the author developed. This provides useful insights as to the approach that should be taken in
the present research. It also highlights lessons learnt in the two critiques.

4.1 The PREMIS Facilities Management System

4.1.1 Introduction

Conradie (1996) developed the PREMIS (Professional Real Estate Management Information
System) over the last 12 years. The core system currently has the following main components
(Figure 1).

Figure 1: PREMIS Facilities Management Software Components (Author)

The PREMIS software system is based on industry standard components as far as possible.
The system uses the Oracle database and AutoCAD as graphics editor. To these industry
standard components were added a multi-purpose Ad-hoc query builder, Symbolix graphic
visualisation language, viewer and MISION hybrid GIS system. These components are
integrated together by means of a fully user configurable shell.

4.1.2 Intrinsic design principles

• The system core is generic and can act as a platform for a broad spectrum of facilities

management application software.

University of Pretoria etd

140

• Data are organised as information in raw format. No processed information is stored
because it is impossible to unscramble scrambled information. The cost per m² will not be
stored, rather the number of m² and the cost. The cost/m² is then calculated by means of a
report. This enables users and application writers to customise the system easily to suit
their specific environment. The system is designed in a generic way and is therefore very
flexible and adaptable to changing needs.

• There is a clear distinction between data and reports and ultimately process. This is to
ensure a long life system that can easily adapt to changes in the facilities management
arena.

• Process is seen as something that sits on top of the data and uses the data. A good
example of this is the difference between the way that different organisations might
operate their space management systems. The author wrote two distinct systems for two
different organisations. Although the reports and processes on top are vastly different they
use exactly the same PREMIS/ Oracle database tables and forms. Company A might use
the concept of calculated area to derive rent and company B operational cost
apportioning.

• Software is designed for a high level of modularity to ensure the replacement of obsolete
software components with more modern ones without affecting the stability of existing
components (Open ended structure).

• The data backbone of the system is the Property category. This consists of a hierarchy
starting from country right down to site, building, floor and space. Unless this structure is
used it is impossible to handle the large range of different facility sizes. The property
category incorporates the basic data required for asset registers and space management.

• The system is highly optimised for speed. Very high throughput is achieved even on
moderate capability equipment due to the PREMIS systems architecture. The Symbolix
language is a purpose made language that is compiled to achieve high speed. The index
system in the MISION, hybrid GIS is highly optimised and shows no deterioration even
with large file sizes over 2 Mb. Oracle PRO*C is used to ensure the highest possible
communication speed with the database.

• The use of an implicit linking between alphanumeric data in the relational database and
the graphic objects was pioneered in this system (Figure 2).

4.1.3 A typical application

A typical application such as the Building Maintenance Management System (BMMS)
consists of 84 relational database tables and 60 Oracle forms of varying complexity. The main
data table categories covered by the system is Property, Legal, People, Elements and
Organisation Structure.

The system uses object-oriented principles to link graphic and alphanumeric data. This
facilitates the integration of the graphic, alphanumeric and spreadsheet environments.

Implicit linking of graphic data to alphanumeric data is used. By using object-oriented
principles the graphic data are linked to the alphanumeric data. This is done in such a way that
although the items exist in totally separate environments relationships exist by virtue of the
fact that the graphic object names are the same as the concatenated data key fields in Oracle.
This has far reaching implications in the sense that one alphanumeric record may have
multiple graphic representations. This also ensures a very high level of modularity and
portability. Data may be independently added in the two environments. Relationships exist the
moment that the graphic object name and the concatenated alphanumeric database record key
are the same (Appendix A).

This particular application integrates strategic facilities planning with operational
maintenance. This is achieved by means of a generic list of 352 construction elements that can

University of Pretoria etd

141

be used for strategic planning. The very same list of elements can be used in an operational
environment by means of maintenance action verbs like Remove, Replace, Repair, Patch,
Repaint, Refix/ Refit, Cut, Clean and Service. These actions can then be combined to the
elements to derive unlimited, but at the same time well-structured, combinations of actions.

The system can expand from a single user system to a large networked system. This ensures
an unlimited growth path. The Oracle database performs particularly well with a large amount
of data without significant deterioration in speed.

The PREMIS, Oracle forms can be deployed over the web by means of the Oracle web
cartridge. Oracle offers a very high level of connectivity and openness to other systems. It is
therefore relatively easy to interface Oracle to other systems.

The PREMIS graphic visualisation language SYMBOLIX offers superior graphic symbol
processing capabilities. SYMBOLIX enables the programmer to design parametric symbols
that vary their shape, colour and size according to parameters or values retrieved from the
ORACLE database. SYMBOLIX enables graphic visualisation of issues. This is more
advanced than business graphics, because the results can be geographically placed as well.

ORACLE FORMS 4.5 (one of the products in the Oracle Developer/2000 suite of software) is
being used as the user interface to enter data into the database. FORMS 4.5 is a generic forms
front end that supports ODBC (Open Database Connectivity), Custom Interfaces, User Exits,
Visual Basic and OLE (Object Linking and Embedding)

Due to the fact that ORACLE is used as the database a user can start with a single user
workstation with Personal Oracle 7 for Windows and expand to a virtually unlimited multi-
user size. PREMIS is therefore able to offer a low cost entry point but with no upper limit on
the size of the estate. In fact an estate can be anything from a single building to a complete
estate consisting of many buildings.

PREMIS is designed in such a way that it facilitates very flexible combinations of multi-user
access. It is possible in a multi-user system to install PREMIS on say ten workstations. If the
user has only bought a 3-user concurrent license any combination of three out the ten users
can used simultaneously. The access control will impose a limit of three concurrent users at
any time.

4.1.4 Critique of PREMIS

PREMIS was developed over many years and significant experience was gained in the display
of large volume data in way that makes it comprehensible for the strategic planner especially
in health related facilities. The PREMIS method has become an established way of life in
South Africa and numerous strategic condition and suitability audits have been undertaken
subsequent to the large scale original National Health Facilities Audit. The processing speed
of the parametric language SYMBOLIX (a recursive descent parser implemented as a stack
machine) designed by the author is still very fast in comparison to what is offered by modern
languages such as Visual Basic.

However the world changed significantly since the first version. PREMIS is currently being
rewritten to utilise the capabilities of the Internet (PREMIS 2000i). The implicit linking
technique pioneered in this system still works well (see Appendix A) except that it takes
significant manpower to cross-link the alphanumeric RDBMS records with the graphic
information.

The ad-hoc query builder enabled users to formulate complex (multi table joined) user
defined queries to produce alphanumeric, spread sheet and graphical reports. Due to the

University of Pretoria etd

142

complexity of the system very few users could unfortunately use the query builder without
assistance.

The hierarchical ontology required for facilities highlighted the difficulty of creating
hierarchical structures in a RDBMS.

4.2 The AEDES prototype system

Research undertaken over the last year at the CSIR resulted in providing a rudimentary
framework for a holistic total life cycle methodology. The author wrote a prototype software
system called AEDES (Architectural Evaluation and Design System). The results of this
research were presented at the Eleventh Symposium on Quality Function Deployment in
Detroit (Conradie & Küsel 1999).

Figure 2: The life cycle phases of a building (Author)

The AEDES Prototype System offers an integrated, concurrent project environment for
building designers, tailor-made for architects. It offers the following capabilities:

University of Pretoria etd

143

Figure 3: AEDES QFD Process (Conradie and Küsel 1999:24)

University of Pretoria etd

144

4.2.1 Integrated life cycle process

4.2.1.1 The characteristics

In AEDES a building is designed by an interdisciplinary collaborative approach, in order to
derive, evolve and validate a life cycle balanced building solution. This is done to achieve
optimal architecture with regards responsible, economic and quality driven design. All
decisions across the life cycle of the building development process are structured, traceable
and time based.

4.2.1.2 Evaluation during the process

AEDES supports a measuring system to facilitate structured decisions. The AEDES mission
is “To measure is to know, to quantity is to master.”

Architecture is characterised by many different fashions, trends and major movements.
Various quantified indicators are required to implement a life cycle development process. For
example presently there is a need to achieve sustainable development. The pillars of
sustainable development are social, economic, biophysical and technical sustainability (Hill et
al. 1998:11) To achieve sustainable development or any other technical requirement such as
an energy efficient design, appropriate quantified measurements or indicators needs to be
devised. These need to be quantified for the total life cycle of the building. Systems like the
Building Environmental Assessment and Rating System for South Africa (BEARS) have been
devised to measure certain aspects of the building operation and design (Grobler et al. 1997).
BEARS offer a “rating” system that can be used to rate existing buildings according to a list
of indicators. This list includes heating, ventilation and air-conditioning, building and
furnishing materials, lighting and solar control, noise, layout, operation and maintenance
issues. The South African industry offers electronic web based product databases of specific
construction products. However these services do not offer any quantified material attributes
that is required to base technical design analyses on.

The AEDES measuring system assists with the measurement of technical sustainability. To
this end a structured generic materials library was created. A prototype materials library
containing 395 materials and 760 quantified attributes were therefore constructed. Typical
generic but well quantified attributes for wood are for example bending and tension parallel to
grain, compression parallel to grain, compression perpendicular to grain, density, durability,
modulus of elasticity and shear parallel to grain. On the basis of this the materials and
components used in a proposed design solution can be technically analysed with regards
factors such as life cycle cost, sustainability, condition, suitability and utilisation of the
facility (Conradie 1997).

4.2.2 Concurrent multimedia environment

4.2.2.1 The need for multimedia in the architectural profession

Traditionally architects are trained to think in terms of shape, texture, colour and space. This
is an analogue way of thinking, with an emphasis on the visual aspects. Therefore, design
supported by multimedia would be more acceptable.

4.2.2.2 Multimedia in AEDES

In AEDES information is structured according to how the building will be built. This
automatically ensures that design information is produced in a concurrent environment and
available in the order that it is required. This information is the golden thread that enables life

University of Pretoria etd

145

cycle decisions. It is envisaged that different users with multi-variant requirements will
manipulate the information with software tools.

Figure 4: Three tiered collaborative data structure (Conradie and Küsel 1999:26)

Users are allocated specific information profiles to achieve certain tasks. A profile defines
user rights as well as the visibility of information for that particular user and the relevant
events that can occur. If the content of the task changes, then only the task profiles need to be
changed without affecting the underlying information object structure. For example the
maintainer responsible for replacing the light bulbs needs to access task applicable
information.

The life cycle continuity of design information ensures that downstream decisions are taken
within the life cycle context of the building, informed by the history of upstream actions. In
this regard, it is virtually impossible to devise a suitable classification that will work across
the different life cycle phases. Different life cycle phases have different information sets. For
example in the operational phase, a software tool such as a Facilities Management System is
used. During this phase there is a need for outsourcing, which requires an accurate
specification of the task. This requires an appropriate subset of the total life cycle information
set.

To accommodate different user profiles information containers were devised. All relevant
project information is structured in 156 main categories implemented in a relational database.

4.2.3 Life cycle requirement validation

4.2.3.1 Multi-media QFD

In AEDES a five-matrix House of Quality (HOQ) system is used. A System Engineering
design methodology is superimposed on these matrices. This determines the structuring of
data in the matrices. An architect is able to design a building starting with a raw client

University of Pretoria etd

146

requirement down to component level. All design information is directly available to the
development team in a concurrent multimedia project environment.

Multimedia-QFD enables the development team to validate design baselines throughout the
development process (Figure 3). It offers dual validation:

Graphic:
Due to the analogue design approach of the traditional architectural design process,
provision is made to capture diagrams and sketches in electronic QFD forms. When
the most appropriate technical solution is sought, the standard QFD relationship
matrix or context sensitive drawings, sketches and photographs back up the designer
decision.

Textual:
Textual (alphanumeric) information facilitates the validation of design baselines and
progressive design development through status reports. This implies that designer
decisions are validated by substantiated documentation accumulated throughout the
development process.

In AEDES the use of a generic set of client requirements (WHATs) and technical solutions
(HOWs) proved to be more suitable, rather than generating a set by the Affinity Diagram
method (Cohen 1995:47). 156 main categories (containers) cover performance requirements
and constraints across the life cycle. Careful attention was given to ensure that data containers
were correctly levelled at more or less the same level of grain. Furthermore, the system design
makes it possible to theoretically create any number of matrices, vertically, as well as
horizontally for any container, at any level of detail. This is perhaps a new type of matrix of
matrices, albeit in a far simpler form than the Akao version (Cohen 1995:310).

When a new project is started the QFD software generates templates for WHATs and HOWs.
The WHATS categories are always numbered A and the HOWS categories with a B. The
HOQ1 is called the Facility Required Operational Capability. In this house one of the 156
containers is the Space container. This container is numbered A1.2.2.3 on the WHATs side
and B1.2.2.3 on the HOWs side of the matrix. The number is indicative of the grain that
originated from the data levelling exercise. The HOQ1 is rotated to the second level Facility
Specification (HOQ2). In this process the Space container number is automatically changed
to A2.2.2.3 on the WHATs side and B2.2.2.3 on the HOWs side.

The system offers a total system subsystem type analysis starting with system-level
specifications down to component level of design. The following QFD system-levels are
used:

House of Quality 1 Facility Required Operational Capability
House of Quality 2 Facility Specification
House of Quality 3 Unit Required Operational Capability
House of Quality 4 Unit Specification
House of Quality 5 Component Required Operational Capability

These five matrices handle eight classes of architectural design objects:

• Complex (Hospital complex: Group of buildings)
• Facility (Hospital building and site)
• Department (Administration department)
• Unit (Bathroom)
• Zone (Wet area)

University of Pretoria etd

147

• Building Element (Door)
• Component (Door lock set)
• Sub-Component (Screw)

A typical AEDES computer screen (written with the ORACLE Developer 2000 Forms
System) that supports multi-media is included in Figure 37.

Figure 5: A typical AEDES screen with multi-media information (Author)

4.2.3.2 Break-out tools

A new concept called breakout has been pioneered. Matrices are linked to either supporting
generic data forms or industry standard software analysis tools.

Generic data breakout forms enables more detailed analysis to be undertaken in order to reach
a conclusion on the WHAT (characterisation) and HOW (specification) side.

A software analysis tool is linked to the QFD roof. The AEDES QFD roof is used in a slightly
different way to textbook QFD. In an architectural environment it is useful to express affinity
between different design objects such as units mentioned above. The relationship values have
been modified to 9, 3, 0, -3, and -9. For example a value of 9 would imply that it is highly
desirable to have the kitchen close to the dining room. A -9 implies that a bathroom should
not be close to the living area. In complex buildings such as hospitals the correct circulation
of activities and hence affinity between design units are crucial for a successful design. If the
affinity decision is very complex, a standard software package such as Arena by the Systems
Modelling Corporation can be used to model the proposed solution.

University of Pretoria etd

148

4.2.4 Ad-hoc queries and reports

4.2.4.1 Electronic traceability

Structured methodology

As discussed a System Engineering methodology is superimposed on the QFD matrices. All
information accumulated during the design process is hierarchically structured and captured
within a relational database (Error! Reference source not found.).

A building is developed following a logical sequence of steps, starting at the HOQ1
(requirement) and ending at the HOQ5 (component). The process starts with the identification
of a performance requirement (For example: SERVICES: PLUMBING) and developed to
component level. Requirements and functions fall into two main groups i.e. passive and
active. Passive requirements are physical elements such as structure, services, finishes,
fittings, furniture and equipment. Active requirements are activities such as enable ablutions.
A set of functions required to successfully enable the operational capability of the
requirement is then identified. For example a requirement for SERVICES: PLUMBING
would have as typical functions (supply water), (distribute water), (store water), (heat
water), (control pressure), (drain waste), (drain sewerage) and (process sewerage). These
functions are individually characterised according to functional and physical characteristics
and constraints. A characterised function is then allocated to a physical element, for example
SERVICES: PLUMBING (supply water) >Supply pipe. The physical element is then
specified according to 9 indicators. Firstly to physical indicators (dimensions, appearance,
construction) and secondly to operational support indicators (maintenance, personnel, data,
equipment, supplies and facilities).

Starter Kits

“QFD is time-consuming. Worse than that, it is explicitly time-consuming, in the sense that
QFD makes obvious and visible the several long meetings, attended by quite a few people.
For groups that have never used QFD before, this appears as time added to their already
crowded schedules. What’s not as explicit or visible is the time that QFD saves.” (Cohen
1995:31).

If quality time is devoted in systematically engineering a design solution, knowledge should
be saved for subsequent use. If a completed design proves useful then it can be permanently
packaged as a complete generic design object. AEDES uses an object-oriented approach to
this effect. In future the designer can call on these packaged objects to speed up his design
process.

Over the years the Division of Building Technology of the CSIR designed and packaged
architectural design starter kits, which contributed towards an accelerated and more efficient
design process. The intention was to assist hospital designers with complex designs. These
starter kits are available in CAD format and contain “empirical ideal” total facility layouts.

In AEDES architectural design objects are introduced in order to address the diverse and
hierarchical nature of construction industry data. An object is a non-specific term
synonymous with the System Engineering item for any graphic (drawing) or alphanumeric
(database) data in the system. Each object belongs to a specific class and each occurrence is
an instance of one of the eight object classes it belongs to. The packaged object contains 2 or
3 dimensional CAD graphic objects, full specification, characteristics and a comprehensive
family of functions. The CAD object names have been carefully chosen to be compatible with
the main function libraries. For example: Class: House and Instance: Residential house. It is

University of Pretoria etd

149

possible to package any number of functions and main indicators for any level of architectural
design object.

4.2.4.2 Object manipulation

When a packaged object is subsequently retrieved, it will automatically go to the appropriate
level in the QFD matrices. Each of these packaged units exists as an encapsulated world on its
own. If it is brought into a specific project environment, it acquires or inherits specific
localised qualities specific to the environment where it is used. At all stages full electronic
traceability is maintained.

In AEDES electronic traceability can be defined as: “The degree to which a relationship can
be established between two or more products of the development process, especially products
having predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given system element match.”
(IEEE 1996:3). Electronic traceability ensures that the history of all actions, messages and
changes are kept.

To this requirement were added event triggers that would transfer documents in the
concurrent environment. All of these events are traceable as to time of occurrence and parties
involved. An example is the architect that changes a layout. The AEDES system
automatically generates an e-mail message to the engineer. This informs him that a change
has occurred in the layout of the building and that the architect requires him to check the
stability of the concrete columns.

4.2.4.3 Flexible queries and reporting

The structured project data, information and knowledge facilitates flexible ad hoc queries and
flexible reporting, for example:

• Report 1: Complete list of all What’s at all QFD house levels.
• Report 2: Complete list of all How’s at all QFD house levels.
• Report 3: Detailed characterisations of the solution required (QFD What side)
• Report 4: Complete specification of all items in the design (QFD How side)
• Report 5: Separate reports/customised design guides that can extract specifications for an

element, according to any of the 9 indicator groups, for example a report on maintenance
or equipment required.

• Query 1: Select a suitable pre-packaged unit

Report 5 is useful to assess operational requirements with regards to maintenance and to
enable scientific operational comparisons to be made between different facilities of the same
type.

Query 1 is used to select an appropriate pre-packaged solution. Pre-packaged units can be
selected out of the data repository by any of the following means:

• Visual inspection of the characteristics.
• Structured query language based ad hoc query builders.
• Structured query language based query builders, enhanced by fuzzy set logic.
• Electronic Pugh concept selection.

Data repositories could be web-based and be provided by third party developers in a similar
way that building product information is acquired. When a selection is made, the object is

University of Pretoria etd

150

brought into the project environment and localised with regards the local material prices,
maintainers and equipment required.

4.2.4.4 Implicit linking technique

It is a technique originally pioneered in the development of the CSIR Facilities Management
system, PREMIS developed by the author. This technique creates relationships between
diverse sources of alphanumeric and graphic data. This facilitates connection between
existing commercially available information and new alphanumeric and graphical objects
created (Conradie 1996). Appendix A describes this method in detail.

4.2.5 Major components

4.2.5.1 Relational database

In AEDES data relate to the life cycle of a building and is continuous and concurrent. They
are accessible by appropriate software tools. All software components are well integrated with
the underlying stratum of data, by means of specific AEDES diagramming and data
manipulation tools.

AEDES incorporates a relational database management system, based on prior experience. It
supports world-wide-web deployment. It is in the nature of structured methodologies that a
significant amount of data is generated. The database structure is such that it is possible to cut
the data horizontally or vertically. It is possible to extract all specifications for all indicator
categories or only construction related items. If a specific data object is changed all dependant
documentation will be synchronised. If a design is changed the impact with regards the main
indicator categories can be assessed easily.

Figure 6: AEDES software components (Author)

University of Pretoria etd

151

4.2.5.2 Software shell

The software shell provides an integrated environment for the development team. Users
identify themselves by means of user names and passwords giving them certain access rights
and user profiles. The ad hoc query builders as well as the standard reports are accessed from
the shell.

4.2.5.3 Database forms

The database forms are designed in such a way as to give the user visual clues as to what is
required. The intention is that the main QFD data capture forms will be used in conjunction
with the help system. Users may cut and paste template examples from the help system to
assist them to quickly populate the required form data fields.

The AEDES forms are completely generic. Any complexity of architectural design object can
be conveniently handled. Any level can contain any number of sub-objects. The only
restriction is that the description per text object or sub-text-object may not be more than 2 000
characters. The size of any graphic object may not be more than 2 Giga bytes. For practical
purposes the system has virtually no limit.

4.2.5.4 Help system

A comprehensive context sensitive help system is provided, due to the fact that architectural
practitioners are new to the field of structured briefing design. The help file provides a step by
step description of the various actions that need to be taken in the briefing and design process.
New definitions were invented for the intended environment to make it more acceptable.

4.2.5.5 QFD diagram software

Visio software proved useful to generate large pre-printed QFD charts for QFD sessions.
Visio is electronic drawing sheet based with sufficient programming support to connect it to
the central server-based database or even a portable personal database. The intention is that a
scribe, familiar with the software, will be seated out of the way of the group’s activities and
quietly record data into the computer as the team reaches consensus. The decisions can then
be copied onto large wall charts or even re-plotted from Visio. Decisions are captured in the
main Oracle database forms that ensure full traceability and integrity. The Visio diagrams are
used to capture the data required for matrices such as the relationships, technical matrix,
planning matrix and technical correlation. Relationships can be defined across the container
categories such as A1.3.4.1 Landscape features and B1.2.2.3 Space. At a finer grain items
within the space container can be related such as a relationship between A2.2.2.3.2.3
Structure: Superstructure and B2.2.2.3.2.5 Structure: Roofing. At this stage the authors are
of the opinion that due to the fact that the design is related to an architectural domain, the data
will tend to cluster around physical containers and especially the space category A1.2.2.3
through to A4.2.2.3

4.2.5.6 Starter kit packaging

A first attempt, albeit in very raw form, was made to package architectural design knowledge.
The starter database kit form attempts to enable a designer to package an architectural object
in a 2 or 3D CAD drawing, inclusive of main characteristics, specification and related
materials. No attention was given to the tacit knowledge aspects or the intelligent
interoperability of objects.

University of Pretoria etd

152

4.2.5.7 Materials database

The materials database form makes provision for the main material description, a generic set
of user definable attributes and a photograph or technical diagram depending on the type of
material.

4.2.6 Conclusion

The AEDES Prototype System provides a new prototype structured design methodology,
within an integrated concurrent multimedia project environment. An attempt is made to turn
certain parts of the architectural briefing and design process into a science without
compromising architecture or existing design ethics. According to Kolodner1 the intention
should not be to turn Architecture into a science but rather to create good tools that maximise
the efforts of creative designers. This ensures the highest possible level of competitiveness,
professionalism and use of scarce resources for architectural practitioners in a developing
country.

In order to bring AEDES closer to commercial realisation and to protect the existing
substantial investment in the FM system PREMIS (Professional Real Estate Management
Information System) more focussed research is required. The two most pressing needs in
South Africa are:

• The creation of a World Wide Web enabled continuous data infrastructure over the life

cycle of a building.
• The ability to store and retrieve carefully engineered design knowledge in the form of

electronic design starter kits.

In the present AEDES prototype system the abovementioned points are still poorly researched
although the theoretical need can be clearly identified.

4.2.7 Critique of AEDES

AEDES was a first attempt to create an Integrated Project Environment that could span the
entire life cycle of the facility. The system managed to use aspects of QFD, Systems
Engineering and Concurrent Engineering. The research and development team (Conradie and
Küsel 1999) succeeded in creating a system that enables the designer to start with a raw client
requirement and go right down to the component level. Functional decomposition was used
extensively.

The most significant shortcomings of the system were:

• An over emphasis of the functional decomposition (transformational approach) aspects

led to a rigid system that is very prescriptive to the creative people that is supposed to use
it.

• It was difficult to map multiple functions from different main container categories
identified in AEDES to physical structural elements.

• The team never fully achieved the objective of creating starter kits2 (cases at various
levels of specificity) to expedite future designs. This was due to the fact that the benefits
that AI could offer and specifically CBR was not known at the time.

1 Kolodner, J., Georgia Insitute of Technology, 2000 – personal communication
2 A starter kit is a simple architectural CAD drawing that contains a complete ideal layout of for example a hospital ward and
could be used to rapidly design a hospital. This is useful in South Africa with the shortage of skilled designers. The division of
Building Technology of the CSIR developed an extensive set of these designs that are currently used to design significant
hospitals and clinics. See 4.2.4.1 Starter Kits.

University of Pretoria etd

153

• Adaptation of designs was very difficult due to the rigid structure.

AEDES highlighted the enormous complexity of creative design in an open world that is
confirmed by numerous authors. The AEDES team failed to understand the implications of
the fact that design constraints are not constructive and that the design problem spaces are
not enumerable (Hinrichs 1991:15-16).

Summary

The long operational life of PREMIS can be attributed to the fact that it is modular (primitive
object oriented structure) but also succeeded in separating data, process and application
clearly. These facts made the system flexible. This provided useful insights into the design of
applications that use the same data infrastructure yet serve totally different clients. The
implicit linking technique is a useful way to link object oriented graphic and alphanumeric
information together.

PREMIS provided useful insights into a deeper understanding of ontology in a Facilities
Management environment. The development also highlighted the inadequacies of Relational
Databases with regard hierarchical structures. Facility Managers are often confronted with the
problem of maintaining construction structures that were badly designed. This emphasises the
importance of the early phases of the building life cycle.

Although AEDES can be viewed as a failure in commercial terms it provided the first insights
into the how user requirements might be extracted and structured to obtain a performance
requirement. It was discovered that requirements and functions fall into two main groups i.e.
active and passive. A set of functions to successfully enable the operational capability of the
requirement could be identified. These functions could be individually characterised
according to functional and physical characteristics and constraints. Finally a characterised
function could be allocated to a physical element.

University of Pretoria etd

154

Chapter 5: Aims of ARGOS

Introduction

Chapter 3 and 4 indicate that an opportunity exists to bridge the explicit and tacit aspects of
design with an intelligent component. This chapter introduces the main aims of ARGOS and
also discusses the important technique of concept selection (Pugh 1996; Ulrich et al.
1995:105-122). Concept selection takes place in the phases of design. The examples are used
to develop possible conceptual solutions on the basis of the experience gained with the
precedent systems discussed in Chapter 5 whilst at the same time describing the process. The
concepts are specifically hand drawn to emphasise the creative and exploratory nature of what
concept selection should be. On the basis of this a detailed prototype implementation for
ARGOS will be developed in Chapter 6.

From the previous chapters it is clear that it is very difficult to improve the briefing and
design processes successfully. Systems that attempt to improve these processes need to be
very flexible. Designers work in many different equally valid ways. The design of the
ARGOS intelligent component should be such that it can manipulate design information
easily. Hinrichs (1991) and Simina (1999) provide useful insights as to the direction that
should be taken specifically with regards creative design. It is clear that the creative human
designer should remain in control and that systems should be designed in such a way as to
assist the human designer. The following significant areas of assistance can be identified that
could possibly be improved with ARGOS on the desktop:

• The ability to select the best concept for a project or part of project
• The availability of previous design experience at various levels of specificity to remind

the designer of aspects he might have forgotten
• The ability to test shape and placement of design parts (relationships)
• To ability to judge the suitability of a design with regards function and performance

(scenario planning)
• Long life and persistence of design fragments in a neutral environment
• Collaboration in a multi-disciplinary team on a global basis
• Support for modelling and simulation.

New branches of Artificial Intelligence (AI) such as Case-based Reasoning (CBR) brought
realism as to the possible contribution AI could make in this environment. Current AI
attempts to assist the human designer, not to simulate the capabilities or improve the human
brain. To this end CBR has already contributed significantly to capture experiential
knowledge. The study and also practical experience indicate that it is unlikely that all design
knowledge could ever be concentrated in a single location or database. In the present world
knowledge is added at such a tempo in general that attempts to gather it in a single database is
unlikely to succeed, because of the diverse formats that exist in the world of design. Even
after 20 years the world of CAD has not succeeded in formulating data exchange standards
that can connect these diverse systems reliably beyond the pure exchange of graphical
information. It must be admitted that although many different standards have seen the light,
they only satisfy very specific needs. Due to the different ontological needs of design
knowledge over the life cycle data standards such as the Industry Foundation Classes (IAI),
IGES and DXF are not really suitable if CBR needs to be introduced in a neutral environment.

The World Wide Web has grown beyond recognition as the largest network the world has
ever seen. Cheswick and Burch at Bell Laboratories (2 000) recently mapped the Internet by
means of electronic tracers or packets. In the process at least 88 000 main routers were
discovered. These routers are connected to millions of individual users. It became clear that

University of Pretoria etd

155

an intelligent design component should both be object based and Internet enabled. Its
knowledge must be structured and self-documenting. It should be able to operate in a wide
variety of environments over a long period of time. It must be useful in small and large
project teams using different design and construction processes. It cannot be predicted with
certainty what the nature of these processes will be in future.

Due to these diverse requirements the author came to the conclusion that the optimal solution
would be the introduction of an intelligent design components. These must be highly flexible
and be able to operate in very diverse desktop container environments without being
dependant on single technologies such as databases, CAD or other propriety programs for its
success. Riesbeck (1996) stated that his theme for post-modern AI is the concept of intelligent
components. The goal should be the improvement of how systems function through the
development of intelligent parts to those systems. In post-modern AI, AI becomes an invisible
part of the overall system. The goal is not smart appliances and cars that talk to the user. The
goal is now street lamps that do not waste electricity on totally deserted sidewalks and traffic
lights that do not turn green for streets closed for construction. Riesbeck (1996) indicates
several research areas for CBR relevant to making CBR feasible for intelligent components in
non-intelligent systems such as the indexing and adaptation aspects.

Concept selection is discussed under 5.1 for the following reasons:

• Concept selection is one of the most critical and difficult problems in design.
• The examples are used to develop possible conceptual solutions on the basis of the

experience gained from Chapter 5 for the detailed implementation of ARGOS in Chapter
6 whilst at the same time describing the process.

5.1 Concept selection

5.1.1 Introduction

Concept selection is the emergence and selection of the best and strongest concepts with
respect to customer needs and other criteria. Although creativity is essential throughout the
entire product development process, concept selection reduces the number of alternatives
under consideration. Concept selection is one of the most critical and difficult problems in
design. It is the selection of the optimal concept with which to proceed to detail and
ultimately manufacture or in the case of architecture construction. A lack of thoroughness in
concept selection will bring conceptual vulnerability. Due to the nature of architecture it is
easy to select the wrong concept and difficult to select the optimal one. In practice it is
impossible to evaluate all possible solutions to a particular problem.

Concept selection is an integral part of the product development process. By using different
methods the design team generates alternative concept solutions. According to Ulrich
(1995:111) the use of a structured concept selection method offers the following main
benefits:

• A customer focused product. Concepts are evaluated against customer-oriented criteria.
• A competitive design. The benchmarking of concepts with respect to existing designs push

the designers to exceed their competitors’ performance along key dimensions.
• Better product-process co-ordination. Explicit evaluation of the product with respect to

manufacturing criteria improves the product’s manufacturability and helps to match the
product with the process capabilities of the firm.

• Reduced time to product introduction. A structured methodology becomes a common
language among the design team members such as manufacturing and industrial
engineers. This avoids ambiguity, improves communication and reduces false starts.

University of Pretoria etd

156

• Effective group decision-making. A structured methodology encourages decision-making
based on objective criteria and minimises the likelihood that arbitrary or personal factors
influence the product concept.

• Documentation of the decision process. A structured method results in a documented
rationale behind concept decisions. This record is useful for integrating new team
members. It is also useful to assess the impact of changes in the customer needs or in the
available alternatives.

• Traceability. The commitment or “buy-in” of team members is recorded.
• Structured decision. Should it be necessary to backtrack on decisions it can be done in a

structured way.

The following disadvantages can be identified:

• Concept selection could force the team to stick to the beaten track.
• It could inhibit lateral thinking.
• “Hard issues” and “hard people” could dominate the decisions taken.
• It is more work to analyse design problems in this structured way.

5.1.2 Conceptual vulnerability

Pugh (1996:169) states that conceptual weakness in design manifests itself in two ways:

• The final concept is weak due to lack of thoroughness in the conceptual approach.

Thereafter no amount of attention to technical and detail requirements will save the
situation.

• The final concept is good and the best within the constraints. Due to lack of thoroughness
in conceptual approach and selection the reasons for its strength are not known or fully
understood. It is also difficult to persuade or refute others on the basis of a sound
technical argument.

5.1.3 Overview of the method

Concept selection is often performed in two stages to manage the complexity of evaluating
dozens of product concepts. Screening is a quick evaluation aimed at producing a few viable
alternatives. Scoring is a careful analysis of these concepts to choose a single concept that will
lead to product success. Concept screening follows a seven-point process and scoring a six-
point process that leads the team through the activity. If the design decisions are simple then
concept screening is adequate. As an example four hand drawn alternative concepts are
included in Figure 39 to Figure 42. This illustrates the design of a user interface for starter kits
(intelligent case enabled components) that will be discussed in much more depth in chapter 6.
The reference concept is the type of CAD drawings drawn in MicroGDS that is currently
being made available on the Internet to architects designing hospitals (Figure 43). At the
moment CAD is a mature technology and is widely used by most design professionals.

University of Pretoria etd

157

Figure 1: Concept A, Oracle form with CAD in OLE container and Visual Basic
attribute reader (Author)

Figure 2: Concept B, ActiveX control based starter kit (Author)

Figure 3: Concept C, ActiveX control based starter kit (Author)

University of Pretoria etd

158

Figure 4: Concept D, ActiveX control based starter kit (Author)

Figure 5: Typical starter kit drawing as used in the design of the AEDES prototype
used as the starter kit reference concept (Author)

The following procedure could be used for concept screening:

1. Select possible solutions to the particular design problem.
2. Prepare the evaluation matrix.
3. Rate the concepts.
4. Rank the concepts.
5. Combine and improve the concepts.
6. Select one or more concepts.
7. Reflect on the results and the process.

If a Case-Based Reasoning (CBR) methodology were to be applied, then point 1 would be
equivalent to a case retrieval process (Kolodner 1993:17). Concept scoring is identical to
screening except that point 1 is not applicable.

University of Pretoria etd

159

5.1.4 Concept screening

5.1.4.1 Select possible solutions to the particular design problem

It is important that semantics are clarified and that the team members attach the same
meaning to the criteria. The design team gathers all possible potential solutions for the design
problem. Sketches are produced to the same level of detail in each case if it is a manual
system.

5.1.4.2 Prepare the evaluation matrix

The selected concepts are entered on the matrix. The concepts are best displayed with a
written as well as a graphic representation. If the team is considering more than 12 concepts,
then voting should reduce them. The selection criteria are listed on the left-hand side of the
screening matrix. The needs should be based on the needs of the customer as well as of the
enterprise. At this stage the criteria should be at a reasonably high abstraction level and
should contain about 5 to 10 metrics or criteria. It is important that the criteria should be
selected in such a way that a distinction can be drawn between the different concepts. The
team should also avoid to list too many unimportant criteria because during the screening
phase each criterion is weighted equally. The criteria must be on the same basis and all to the
same generic level.

Examples of initial screening criteria in an architectural environment could be area and
volume measurement, comfort indicators, acoustical qualities, physical shape and location,
materials, energy and abstracted design metrics (Conradie 1997). Due to the general
complexity of criteria in an architectural environment the Saaty (1980) analytic hierarchy
process might be more appropriate for comparing and evaluating different design solutions on
a technical basis. Saaty (1980) describes advanced examples such as conflict analysis for
health care management, energy examples such as optimum choice of coal plants and energy
storage systems.

After careful consideration the team chooses the reference concept against which all the other
concepts will be rated. If design or industry standards already exist for the product under
consideration this should be included in the matrix to form a datum choice. The datum could
be any of the following:

• A commercially available product.
• An earlier version of the product.
• Any of the concepts under consideration.
• Combination of subsystems combined to represent the best features of different products.

5.1.4.3 Rate the concepts

During this stage each concept is a general notion of the final product. Weighting of the
ratings or detail is therefore not relevant at this stage. The spreadsheet was implenented in
Excel and the command button used VBA to calculate the results (Figure 44).

Each concept’s criterium is rated against the chosen datum by means of the following legend:

• A plus sign (+) means better than, less than, less prone to, easier than relative to the
datum.

• A minus sign (-) means worse than, more expensive than, more difficult to develop
than, more complex than, more prone to, harder than relative to the datum.

University of Pretoria etd

160

• Where any doubt exists as to whether a concept is better or worse than the datum, use
a (0) that means the same as the datum.

If objective metrics are available they should be used. In the design of a shopping centre
usable and rentable area could give a very good indication of the commercial viability of a
design. These metrics minimise the judgmental error that is inherent in the process. Objective
metrics suitable for concept screening can also be derived from the establishment of target
specifications of the product. At this stage it can also be established whether some criteria
need further investigation.

5.1.4.4 Rank the concepts

After rating the concepts the team sums the ratings. The sum of +’s, -’s and 0’s are first
derived. The net score is then obtained (Figure 44). Once the summation has been calculated
the concepts can be ranked. It is convenient at this stage to identify the differentiating criteria,
which really make the biggest difference.

5.1.4.5 Combine and improve the concepts

After the concepts have been ranked the results should be verified to make sure that they
make sense. After assessment of the individual scores the following possible phenomena
could be observed:

• A certain concept exhibits exceptional strength. In this case the matrix should be rerun

with the strengths removed. If, as a result of running the matrix several times, the initial
high scores persist they are likely to be the best concepts with which to proceed.

• A strong pattern of concepts does not emerge and each concept appears to have a uniform
strength. This is very unusual. In this case the datum should be changed and the pattern
reassessed.

• A particular concept persists. The datum should be changed and the process repeated. If
the result remains the same the emergent strong concept can assume the role of datum.
The matrix should then be rerun and the results assessed.

Ways can now be considered to combine and improve certain concepts. Two possibilities are:

• Is there a good concept that is degraded by one single bad feature? Can a small

modification improve the overall concept and maintain an edge over the other concepts?
• Can concepts be combined in such a way as to improve the good characteristics?

5.1.4.6 Select one or more concepts

At this stage it is clear what each concept is worth and a decision can be taken which concepts
can be further analysed and refined. It must also be decided whether another round of concept
screening will be performed or whether the team will proceed to concept scoring. If the
screening did not provide sufficient clarity then the more detailed concept scoring can be
used.

5.1.4.7 Reflect on the results and the process

All the team members should agree with the outcome. If somebody does not agree with the
results it is possible that crucial criteria are missing from the matrix or a particular rating
could be wrong. It is important that the team agrees with the results, because it increases the
commitment to subsequent product development stages.

University of Pretoria etd

161

Figure 6: The concept screening matrix for the concepts A to D (Author, based on
Pugh 1996; Ulrich et al. 1995:114)

5.1.5 Concept scoring

Concept scoring is used when the previous concept screening could not provide sufficient
differentiation. During scoring more detail is considered and the relative importance of the
selection criteria is considered. The concept scores are determined by the sum of the different
rating weights. In this case a six-stage process is followed. Point 1. Under concept screening
is omitted this time.

The designers proceed to develop the strongest concepts emerging from the initial evaluation.
The concepts are now engineered to a higher level of detail. The additional work results in a
greater understanding of the problem and its solutions. Such understanding leads to a
refinement and expansion of the criteria for evaluation. The matrix is reformed to incorporate
the enhanced concepts and also the revised or expanded criteria. The general mechanism of
the first phase is repeated. The outcome will confirm the earlier patterns or give rise to a
reordered set of concepts. In each case the designer should have a critical review of the
emergent pattern.

5.1.5.1 Prepare the selection matrix

The process is the same as previously with the screening stage. Due to the more complex
calculations a computer spreadsheet is a convenient way to do calculate the results. The
concepts are now more detailed than during the screening phase and therefore more detail is
available. The concepts that have been selected are entered on the top of the matrix. More
detail can be added to the selection criteria. A hierarchical approach can be followed where
general terms such as “comfortable livingroom” could be broken down into “Internal

University of Pretoria etd

162

Temperature”, “Lighting Levels” and “Ventilation”. The level of detail depends on the needs
of the designer.

After the criteria have been entered, the team adds importance ratings to the matrix. Several
different schemes can be used to weigh the criteria, such as a scale of 5, 4, 3, 2, 1 or a
distribution of 100 percentage points amongst the criteria. Refined marketing techniques exist
that can be used to determine weights from customer data.

5.1.5.2 Rate the concepts

As in the screening stage the concepts are compared to the reference concept. However at this
stage a finer scale is used to give finer resolution. A 1 to 5 five scale is normally used. It is
generally best to have a scale that is symmetric around the reference concept score.

Relative Performance

Rating

Much worse than reference concept 1
Worse than reference concept 2
Same as reference concept 3
Better than reference concept 4
Much better than reference concept 5

Unless by coincidence the reference concept is of average performance with regards all
criteria, the use of the reference concept for the evaluation of all criteria will lead to scale
compression for some of the criteria. For example if the reference concept happens to be the
easiest construction, then all remaining concepts will get 3, 2 or 1 scores. In a situation like
this the team can choose different concepts as the reference points for different criteria.

5.1.5.3 Rank the concepts

Once the ratings are entered for each concept, weighted scores are calculated by multiplying
the raw scores by the criteria weights. The total score for each concept is the sum of the
different scores. Each concept is given a rank according to its total score. The following
formula is used:

i

n

i
ijj wrs ∑

=

=
1

where ijr = raw rating of concept j for the i th criterion

 iw = weighting for the i th criterion
 n = number of criteria
 js = total score for concept j

5.1.5.4 Combine and improve the concepts

As in the screening stage, the team looks for changes that would improve the concepts
reviewed. The team is now aware of the strengths and weaknesses of certain features of the
product concepts.

University of Pretoria etd

163

5.1.5.5 Select one or more concepts

The final selection is not just to select the concept that achieves the highest ranking. The team
should explore its initial evaluation by conducting a sensitivity analysis. As is the case in
Figure 44 a spreadsheet can be used to vary weights and ratings to determine their effect on
the ranking (Figure 45).

By careful analysis of how sensitive a ranking is to variation in a particular rating, it can be
determined whether uncertainty about a particular rating has a large impact on the choice.
Sometimes it is advisable to select a lower scoring concept that has less uncertainty than the
high scoring one.

If the customer groups have different preferences then two different matrices can be prepared.
It is possible that one concept is dominant in both cases. In the examples given it is clear from
the data that Concept C is the most promising.

5.1.5.6 Reflect on the results and the process

Figure 7: The concept scoring matrix for the concepts B, C and D (Author, based on
Pugh 1996; Ulrich et al. 1995:117)

Finally the team reflects on the selected concept and on the concept selection process. This is
an important point where the entire team should be convinced that all the relevant issues have
been discussed and that the selected concept will satisfy customers and will be economically
viable.

5.1.5.7 Some important factors

If the technique proposed is to be used in architectural design then the following points need
to be considered carefully.

• Decomposition of concept. The idea of concept selection is that the selection criteria and

therefore customer needs can be evaluated separately. It is also assumed that concept
quality is the sum of the quality of each criterion. It is difficult to decompose certain
products into a set of independent criteria. This is often the case in architecture due to the
complex relationships among design criteria. Architectural design is a good example of
multi-attribute decision making. Many of the relationships are non-linear. By means of
QFD the customer preferences and the relative importance attached to certain criteria can
be clearly established. This should be used in the concept selection process.

University of Pretoria etd

164

• Subjective criteria. Some selection criteria especially the ones related to aesthetics are

highly subjective. In this case the team cannot decide on those issues on behalf of the
customer. It is recommended that an accurate subjective voice of the customer be
obtained by means of techniques such as Kansei Engineering discussed in chapter 3.

• Where to include cost. The selection criteria are mostly customer needs that could have

originated from the use QFD techniques as suggested in the AEDES prototype. “Ease of
manufacturing” and “manufacturing cost” are not customer needs. Depending on the type
of construction project cost is an important factor in choosing a concept. To facilitate
concept selection some measure of cost and life cycle cost should be included into the
evaluation matrix.

• Elements of complex concepts. Some complex concepts are aggregations of simpler

concepts. If all the concepts are aggregations of several simpler concepts, then the simple
concepts can first be evaluated independently.

• Ubiquitous use of concept selection. Concept selection should be used throughout the

product development process and not just in the beginning. The same is true of the
numerous other techniques available such as QFD, Kansei, Theory of Constraints and
TRIZ.

5.1.6 Enhanced QFD and concept selection

When QFD was first introduced into the U.S.A., the QFD model assumed that the selection of
appropriate technology for a product was outside the scope of QFD (Cohen 1995:182). Don
Clausing and Stuart Pugh realised that the process for selecting innovative concepts should
interact with the translation of customer needs to prioritised technical responses. These ideas
were embodied in a process called Enhanced QFD (EQFD). EQFD consists of five
interrelated processes:

• Contextual analysis and static/ dynamic analysis.
• Structuring of product design specification.
• House of Quality.
• Concept selection.
• Total system/ subsystem analysis.

The concept selection process as described by Pugh is pivotal in EQFD. It is recommended
that the EQFD be facilitated and managed by a person that is not directly involved in
producing concepts to avoid suspicion of favouring a particular idea or interest.

Summary

An intelligent design component should be both object based and Internet enabled. Its
knowledge should be structured and self-documenting. It must be able to operate in a wide
variety of environments over a long period of time. It should serve small and large project
teams using different design and construction processes. It cannot be predicted with certainty
what the nature of these processes will be in future.

This chapter identified the significant areas of assistance that an autonomous intelligent
component such as ARGOS could improve such as:

• Concept selection

University of Pretoria etd

165

• Retrieval of design experience
• Test of relationships
• Scenario planning
• Collaboration on a global basis
• Modelling and simulation

University of Pretoria etd

166

Chapter 6: Implementation details

Introduction

This chapter discusses the main building blocks that are necessary to implement ARGOS such
as the life cycle information infrastructure, constraints and the design of a conceptual
ARGOS. It explores the role that ARGOS could play in structured planning and design
knowledge delivery. The relationships between the ARGOS, ActiveX design object and
typical applications software are explored.

The basis for successful implementation is the formulation of a flexible and self-describing
design language. From the previous chapters and a study of ontology it is clear that a design
language with a hierarchical structure best facilitates the processing of design knowledge
fragments. A successful design is the result of many different cognitive processes at both tacit
and explicit levels. These processes can be augmented with many different techniques from
the world of manufacturing such as Knowledge Based Design, Systems Analysis, Kansei
Engineering, QFD and TRIZ. Many other techniques could be discussed such as FMEA
(Failure Mode and Effects Analysis), but it would not contribute significantly to the problem
under consideration, the storing of artefact design knowledge over the life cycle of a building
and the secondary adaptation of designs.

Once a design is available it can be brought into the ARGOS component (container) to
facilitate the positional and shape testing of design fragments. All of this must happen in a
neutral environment to guarantee a long life of design information and make it possible for
diverse design tools to process relevant parts of the information.

6.1 Life cycle Information infrastructure

6.1.1 Introduction

Of all the possible candidates investigated Extensible Mark-up Language (XML) proved to be
most useful language to solve the stringent requirements for the problem under consideration.

XML, describes a class of data objects called XML documents and partially describes the
behaviour of computer programs which process them. XML is an application profile or
restricted form of the Standard Generalised Mark-up Language (SGML). XML documents are
made of storage units called entities, which contain either parsed or unparsed data. Parsed
data is made up of characters, some of which form character data and some, which form the
mark-up structure. Mark-up encodes a description of the document’s storage layout and
logical structure. XML also provides a mechanism to impose constraints on the storage layout
and logical structure. A software module called an XML processor is used to read XML
documents and provide access to their content and structure.

XML was developed by an XML Working Group formed under the auspices of the World
Wide Web Consortium (W3C) in 1996. It was chaired by Bosak of Sun Microsystems with
the active participation of an XML Special Interest Group also organised by the W3C.

The primary design goals for XML are:

• XML shall be straightforwardly usable over the Internet.
• XML shall support a wide variety of applications.
• XML shall be compatible with SGML.
• It shall be easy to write programs which process XML documents.

University of Pretoria etd

167

• The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

• XML documents should be in human-legible form and reasonably clear.
• The XML design should be prepared quickly.
• The design of XML shall be formal and concise.
• XML documents shall be easy to create.
• Terseness in XML mark-up is of minimal importance.

6.1.2 XML as a design language

Consider Code Fragment 1 below. This is a trivial example of how a materials library could
be structured by means of XML. This offers the immediate advantage that the information
can be used in other applications and downloaded from the Internet. This structure could be
used to implement the Materials Library as detailed in Figure 52 [E1]. In this case the
material library starts with the <MATERIAL_LIBRARY> label and ends with the
</MATERIAL_LIBRARY> label. Each separate material starts with the label
<MATERIAL keyword1=”METAL”> and ends with a </MATERIAL>. Hierarchically
nested under this is the <DESCRIPTION> label that contains a short description of the
material.
<DESCRIPTION>Aluminium (Al) 99.0% pure</DESCRIPTION>
This is followed by the list of applicable attributes. Note that the attributes are grouped
within the attribute label for example:
Density
There are no hard and fast rules when to use child elements and when to use attributes.
Generally the application developer uses whichever suits his application. A rule of thumb is
that data themselves should be stored in elements. Information about the data (meta-data)
should be stored in attributes (Harold 1999:101).

Code Fragment 1 could be generated by means of many different methods such as:

• Output from a relational database.
• Dynamic upon demand generation by a web based search engine or query builder.

Domain specific application software such as a design scenario builder could use the basic
information contained in the database or could present it in neatly formatted document for
reference purposes.

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="Material_fragment.xsl"?>
 <MATERIAL_LIBRARY>
 <MATERIAL keyword1="METAL">
 <NAME>ALUMINIUM</NAME>
 <DESCRIPTION>Aluminium (Al) 99.0% pure</DESCRIPTION>
 <ATTRIBUTES>
 Density
 Melting point
 Modulus of elasticity (minimum)
 Modulus of elasticity (average)
 Modulus of elasticity (maximum)
 Thermal conductivity (k)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="METAL">
 <NAME>ALUMINIUM BRONZE</NAME>
 <DESCRIPTION>Aluminium-Bronze Cu 5-10%: Al</DESCRIPTION>
 <ATTRIBUTES>
 Density (minimum)
 Density (average)
 Density (maximum)

University of Pretoria etd

168

 Melting point (minimum)
 Melting point (average)
 Melting point (maximum)
 Modulus of elasticity
 Thermal conductivity (k) (minimum)
 Thermal conductivity (k) (average)
 Thermal conductivity (k) (maximum)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="METAL">
 <NAME>BRASS</NAME>
 <DESCRIPTION>Brass Cu 60%: Zn 40%</DESCRIPTION>
 <ATTRIBUTES>
 Density
 Melting point
 Modulus of elasticity
 Thermal conductivity (k)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="WOOD" keyword2="CONSTRUCTION">
 <NAME>PINE</NAME>
 <DESCRIPTION>British Columbia pine</DESCRIPTION>
 <ATTRIBUTES>
 Density (minimum)
 Density (average)
 Density (maximum)
 Durability (minimum)
 Durability (average)
 Durability (maximum)
 </ATTRIBUTES>
 </MATERIAL>
</MATERIAL_LIBRARY>

Code Fragment 1: Suggested XML structure for the storage of material definitions
(Author)

Code Fragment 1 could be formatted, for reporting purposes, at the most basic level by means
of Cascading Style Sheets (CSS). CSS styles only apply to XML element content not to
attributes in the elements. If CSS were applied to Code Fragment 1 in an Internet Explorer
then the attributes would be invisible rendering most of Code Fragment 1 data invisible.
However there is an alternative style sheet language that allows the user to access and display
attribute data as well. This language is Extensible Style language (XSL). XSL is divided into
two main sections:

• Transformations
• Formatting

Consider Code Fragment 2 for an example of a typical XSL that could be used to convert
Code Fragment 1 into a neatly formatted output for a web page.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <html>
 <xsl:apply-templates/>
 </html>
 </xsl:template>

 <xsl:template match="/MATERIAL_LIBRARY">
 <html>
 <body>
 <h1>Example Material Library</h1>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

University of Pretoria etd

169

 <xsl:template match="MATERIAL">
 <p>
 <h3><u><xsl:value-of select="NAME"/></u></h3>
 <xsl:apply-templates/>

<hr></hr></br>
 </p>
 </xsl:template>

 <xsl:template match="ATTRIBUTES">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="A">

<i><xsl:value-of select="."/> = </i>
 <xsl:value-of select="@minvalue"/>
 <xsl:value-of select="@value"/>
 <xsl:value-of select="@maxvalue"/>
 <xsl:value-of select="@unit"/></br>
 </xsl:template>
</xsl:stylesheet>

Code Fragment 2: Typical style sheet to format XML data for web page display
(Author)

If the XSL in Code Fragment 2 is applied to Code Fragment 1 the output looks like Code
Fragment 3. At this stage the XML data in Code Fragment 1 can be used for two entirely
different purposes:

• The transfer of structured material attributes for design purposes
• The display of the material characteristics in a web page

University of Pretoria etd

170

Example Material Library

ALUMINIUM

Density = 2650.000 kg/m3

Melting point = 660.000 Deg C

Modulus of elasticity (minimum) = 68300.000 N/mm2

Modulus of elasticity (average) = 70350.000 N/mm2

Modulus of elasticity (maximum) = 72400.000 N/mm2

Thermal conductivity (k) = 214.000 W/m deg C

ALUMINIUM BRONZE

Density (minimum) = 7570.000 kg/m3

Density (average) = 2650.000 kg/m3

Density (maximum) = 8150.000 kg/m3

Melting point (minimum) = 1041.000 Deg C

Melting point (average) = 1052.000 Deg C

Melting point (maximum) = 1063.000 Deg C

Modulus of elasticity = 120000.000 N/mm2

Thermal conductivity (k) (minimum) = 64.000 W/m deg C

Thermal conductivity (k) (average) = 74.500 W/m deg C

Thermal conductivity (k) (maximum) = 85.500 W/m deg C

BRASS

Density = 8380.000 kg/m3

Melting point = 904.000 Deg C

Modulus of elasticity = 103000.000 N/mm2

Thermal conductivity (k) = 129.000 W/m deg C

Code Fragment 3: Output generated by Code Fragment 2 applied to Code Fragment
1 (Author)

Consider the formatted output in code fragment 3 that is achieved by means of the XSL code
in Code Fragment 2. In this case the output generated from the XML in Code Fragment 1 is
HTML format that makes it suitable for direct display in web pages.

Code Fragment 4 below is an example of how the information of a CAD system such as
MicroGDS 6.0 is expressed in XML. This system was the first to offer the ability to translate
CAD drawings into XML. The XML output is translated into Vector Mark-up Language
(VML) by means of a style file. VML is an XML application that combines vector

University of Pretoria etd

171

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"?

>
<!

D
O

C
TY

PE
 M

ic
ro

G
D

S
PU

B
LI

C
 "

+/
/ID

N
 in

fo
rm

at
ix

.c
o.

uk
//M

ic
ro

G
D

S6
00

 D
TD

//E
N

"
"f

ile
://

c:
\u

sr
\P

hD
\X

m
l\M

ic
ro

G
D

S
Ph

D
 X

M
L\

M
ic

ro
G

D
S6

00
.d

td
">

<M

ic
ro

G
D

S>

<S
ty

le
Pa

th
/>

<A

lia
se

s/
>

<S
ty

le
s>

<C

V
C

ha
rs

ty
le

 N
am

e=
"1

8"
 H

ei
gh

t=
"1

.8
"

Fo
nt

N
am

e=
"D

EF
A

U
LT

"/
>

<C
V

C
ha

rs
ty

le
 N

am
e=

"2
5"

 H
ei

gh
t=

"2
.5

"
W

id
th

="
2.

5"
 F

on
tN

am
e=

"D
EF

A
U

LT
"/

>
<C

V
C

ha
rs

ty
le

 N
am

e=
"3

5"
 H

ei
gh

t=
"3

.5
"

W
id

th
="

3.
5"

 F
on

tN
am

e=
"D

EF
A

U
LT

"/
>

<T
TC

ha
rs

ty
le

 N
am

e=
"A

R
06

"
H

ei
gh

t=
"6

E-
1"

 W
id

th
="

2.
8E

-1
" F

on
tN

am
e=

"A
ria

l"
 W

ei
gh

t=
"N

or
m

al
"

U
nd

er
lin

e=
"f

al
se

"
St

rik
eO

ut
="

fa
ls

e"
 It

al
ic

="
fa

ls
e"

 P
itc

h=
"V

ar
ia

bl
e"

Fa

m
ily

="
Sw

is
s"

/>

<T
TC

ha
rs

ty
le

 N
am

e=
"A

R
10

"
H

ei
gh

t=
"3

.5
"

W
id

th
="

1.
48

"
Fo

nt
N

am
e=

"A
ria

l"
 W

ei
gh

t=
"N

or
m

al
" U

nd
er

lin
e=

"f
al

se
"

St
rik

eO
ut

="
fa

ls
e"

 It
al

ic
="

fa
ls

e"
 P

itc
h=

"V
ar

ia
bl

e"

Fa
m

ily
="

Sw
is

s"
/>

<T

TC
ha

rs
ty

le
 N

am
e=

"A
R

12
"

H
ei

gh
t=

"2
.5

"
W

id
th

="
1"

 F
on

tN
am

e=
"A

ria
l"

 W
ei

gh
t=

"N
or

m
al

"
U

nd
er

lin
e=

"f
al

se
"

St
rik

eO
ut

="
fa

ls
e"

 It
al

ic
="

fa
ls

e"
 P

itc
h=

"V
ar

ia
bl

e"
 F

am
ily

="
Sw

is
s"

/>

...

<L
in

es
ty

le
 N

am
e=

".
00

"
Fo

nt
="

D
EF

A
U

LT
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

" S
ym

bo
lH

ei
gh

t=
"2

.5
" P

en
="

0"
 G

ap
="

2"
/>

<L

in
es

ty
le

 N
am

e=
".

18
"

Fo
nt

="
D

EF
A

U
LT

"
B

or
de

r=
"t

ru
e"

 O
pa

qu
e=

"f
al

se
" L

ef
tO

ff
se

t=
"4

E-
2"

 R
ig

ht
O

ff
se

t=
"-

4E
-2

"
Sy

m
bo

lH
ei

gh
t=

"2
.5

"
Pe

n=
"0

" G
ap

="
2"

/>

<L
in

es
ty

le
 N

am
e=

".
25

"
Fo

nt
="

D
EF

A
U

LT
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

" L
ef

tO
ff

se
t=

"9
E-

2"
 R

ig
ht

O
ff

se
t=

"-
9E

-2
"

Sy
m

bo
lH

ei
gh

t=
"2

.5
"

Pe
n=

"0
" G

ap
="

2"
/>

...

<L

in
es

ty
le

 N
am

e=
"C

E
N

T
1"

 F
on

t=
"S

Y
M

B
O

L
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

"
L

ef
tO

ff
se

t=
"5

E
-2

"
R

ig
ht

O
ff

se
t=

"-
5E

-2
"

Sy
m

bo
lH

ei
gh

t=
"5

"
Ph

as
in

g=
"L

in
e"

>
<F

ix
ed

Li
ne

 L
en

gt
h=

"7
"/

>
<E

nd
O

fS
ta

rt/
>

<V
ar

ia
bl

eG
ap

 L
en

gt
h=

"1
"/

>
<V

ar
ia

bl
eL

in
e

Le
ng

th
="

2"
/>

<V

ar
ia

bl
eG

ap
 L

en
gt

h=
"1

"/
>

<V
ar

ia
bl

eL
in

e
Le

ng
th

="
2"

/>

<V
ar

ia
bl

eG
ap

 L
en

gt
h=

"1
"/

>
<V

ar
ia

bl
eL

in
e

Le
ng

th
="

8"
/>

<S

ta
rtO

fE
nd

/>

</
L

in
es

ty
le

>
...

<T

ex
tM

ne
m

on
ic

 N
am

e=
"R

G
U

I"
 P

ro
m

pt
="

A
tta

ch
 M

ic
ro

so
ft

gl
ob

al
 u

ni
qu

e
id

en
tif

ie
r"

 M
in

Li
ne

Le
ng

th
="

1"
/>

</

St
yl

es
>

...

<L
ay

er
>

<L
ay

er
 N

am
e=

"S
TR

U
C

"
La

be
l=

""
 L

in
kN

um
be

r=
"3

4"
 H

ig
he

st
O

bj
ec

tL
in

kN
um

be
r=

"2
90

">

<E
xt

en
t L

X
="

0"
 L

Y
="

-2
.0

92
75

00
24

79
55

32
2E

2"
 L

Z=
"0

"
H

X
="

1.
74

90
62

50
47

68
37

16
E2

"
H

Y
="

2.
05

43
74

99
52

31
62

84
E2

"
H

Z=
"0

"/
>

...

University of Pretoria etd

172

<O
C

D
 N

am
e=

"S
T

R
U

C
:S

T
A

IR
">

<O

bj
ec

t L
in

kN
um

be
r=

"2
81

"
H

ig
he

st
Pr

im
iti

ve
L

in
kN

um
be

r=
"4

1"
 L

ig
ht

st
yl

e=
"N

O
N

E
"

C
on

ta
in

sI
te

m
s=

"f
al

se
">

<E

xt
en

t L
X

="
1.

05
27

50
00

09
53

67
43

E2
"

LY
="

-1
.2

53
78

45
56

38
88

55
E2

"
LZ

="
0"

 H
X

="
1.

42
90

63
58

83
50

19
73

E2
" H

Y
="

-
9.

46
50

41
39

90
02

07
52

E1
"

H
Z=

"0
"/

>
<A

xe
s Y

="
-3

"
R

Z=
"-

7.
85

39
81

47
58

30
07

86
E-

1"
 S

="
5E

1"
/>

<T

ex
tP

ri
m

iti
ve

 L
in

kN
um

be
r=

"4
1"

 M
ir

ro
re

d=
"f

al
se

"
B

ox
="

fa
ls

e"
 D

im
="

fa
ls

e"
 D

at
a=

"f
al

se
"

Y
Fa

ct
or

="
1.

12
81

11
24

32
47

98
58

"
C

ha
rs

ty
le

="
T

N
R

25
"

Ju
st

ifi
ca

tio
n=

"B
C

">

<E
xt

en
t L

X
="

1.
26

59
24

99
97

13
89

77
E2

"
LY

="
-1

.2
32

75
00

00
95

36
74

3E
2"

 L
Z=

"0
" H

X
="

1.
30

83
25

00
21

93
45

09
E2

" H
Y

="
-

1.
19

47
49

99
52

26
60

84
E2

"
H

Z=
"0

"/
>

<A
xe

s X
="

1.
28

71
25

00
09

53
67

43
E2

"
Y

="
-1

.2
32

75
00

00
95

36
74

3E
2"

 S
="

8.
86

43
75

35
92

34
30

33
E-

1"
/>

<D

ef
in

iti
on

Te
xt

>U
P

</
D

ef
in

iti
on

Te
xt

>
</

T
ex

tP
ri

m
iti

ve
>

<L
in

eP
ri

m
iti

ve
 L

in
kN

um
be

r=
"4

0"
 M

ir
ro

re
d=

"f
al

se
"

L
in

es
ty

le
="

.0
0"

 S
ta

rt
M

ar
k=

"t
ru

e"
 E

nd
M

ar
k=

"t
ru

e"
>

<E
xt

en
t L

X
="

1.
15

63
85

66
49

39
88

04
E2

"
LY

="
-1

.0
82

75
00

15
25

87
89

1E
2"

 L
Z=

"0
" H

X
="

1.
16

81
67

34
31

39
64

84
E2

" H
Y

="
-

1.
06

94
84

05
26

58
08

11
E2

"
H

Z=
"0

"/
>

<P
ol

yl
in

e>

<P
oi

nt
 X

="
1.

16
81

67
34

31
39

64
84

E2
"

Y
="

-1
.0

76
43

82
55

31
00

58
6E

2"
/>

<P

oi
nt

 X
="

1.
15

76
22

49
94

65
94

24
E2

"
Y

="
-1

.0
82

75
00

15
25

87
89

1E
2"

/>

<P
oi

nt
 X

="
1.

15
63

85
66

49
39

88
04

E2
"

Y
="

-1
.0

69
48

40
52

65
80

81
1E

2"
/>

</

Po
ly

lin
e>

...

</

O
bj

ec
t>

</

O
C

D
>

</
L

ay
er

>
...

</

M
ic

ro
G

D
S>

Code Fragment 4: Structure of a MicroGDS 6.0 CAD file described with XML (Author)

information with CSS markup to describe vector graphics that can be embedded in Web pages
in stead the bitmapped GIF and JPEG images loaded by HTML’s IMG element. VML is
supported by the various components of Microsoft Office 2000 as well as by Internet Explorer
5.0.

The W3C has received four different proposals for vector graphics in XML from a wide
variety of vendors. It’s formed the Scalable Vector Graphics (SVG) working group composed
of representatives from all these vendors to develop a single specification for an XML
representation of Scalable Vector Graphics. When SVG is complete it should provide
everything VML currently provides plus a lot more including animation, interactive elements,

University of Pretoria etd

173

filters, clipping, masking and pattern fills. A full SVG specification and the software that
implements the specification are some time away.

The World Wide Web Consortium released the first working draft of SVG in February 1999
and revised the draft in April 1999. A well advanced working draft appeared 29 June 2000.
Microsoft has stated publicly that they intend to ignore any Web graphics efforts except
VML.

Code Fragment 4 contains a portion of an XML file that encodes the graphics of a CAD
drawing. The XML data starts with the <MicroGDS> label and ends with </MicroGDS>.
In this case the <StylePath/> and <Aliases/> labels are empty. The next section
between the <Styles> and </Styles> labels defines the various character and linestyles
as well as the mnemonics for the attribute data that could be attached to drawing objects
(coloured in blue). The particular CAD system under consideration supports both vector type
and true type character styles. The former is indicated in a label such as

<CV Charstyle Name=”18” Height=”1.8” FontName=”Default”/>
and the latter by
<TT Charstyle Name=”AR06” Height=”6E-1” Width=”2.8E-1”
FontName=”Arial” Weight=”Normal” Underline=”false”
Strikeout=”false” Italic=”false” Pitch=”Variable”
Family=”Swiss”/>

Linestyles could be simple or complex. A typical simple linestyle of .18 mm thickness is
described by:

<Linestyle Name=”.18” Font=”DEFAULT” Border=”true”
Opaque=”false” Leftoffset=”4E-2” RightOffset=”-4E-2”
SymbolHeight=”2.5” Pen=”0” Gap=”2”/>

A more complex linestyle that contains patterns is described by:

<Linestyle Name=”CENT1” Font=”SYMBOL” Border=”true”
Opaque=”false” LeftOffset=”5E-2” RightOffset=”-5E-2”
SymbolHeight=”5” Phasing=”Line”>
<FixedLine Length=”7”/>
<EndOfStart/>
<VariableGap Length=”1”/>
<VariableLine Length=”2”/>
<VariableGap Length=”1”/>
<VariableLine Length=”2”/>
<VariableGap Length=”1”/>
<VariableLine Length=”8”/>
<StartOfEnd/>
</Linestyle>

The <TextMnemonic> label contains the definition of attribute data templates that could be
used in this particular case to attach non-graphical information to the graphical objects. In this
example a mnemonic called RGUI has been defined. The R in RGUI indicates that the data
will apply to a specific instance (reference) of a graphical object. GUI is a mnemonic for
Global Unique Identifier. This method has been used in the precedent system AEDES to
connect alphanumeric data and graphical data. This particular aspect will have to be
developed much further to accommodate the various levels of specificity required for CBR as
well as to facilitate constraint propagation, tacit and explicit requirements of design.

University of Pretoria etd

174

The actual graphical data are contained between the <Layer> and </Layer> labels. In this
system graphical data must occur on a layer although it is not a layer-based system. In this
case the layer under consideration is “STRUC” that indicate that graphical and textual entities
related to the structure of the building should be on this layer. The first graphical object is
indicated by the <OCD Name=”STRUC:STAIR”> label. This label is closed by the
matching </OCD> label lower down. Within the bounds of the <Object> and </Object>
labels the graphical text and lines are defined. The part related to text is indicated in blue and
the part related to the graphical entities such as polylines in red. The text part is bounded by
the <TextPrimitive> and </TextPrimitive> labels. The polylines are bounded by
the <Polyline> and </Polyline> labels.

The hierarchical nature of the graphical example object conceptually follows the hierarchical
structure of:

<Layer>

<OCD>
<Object>

<TextPrimitive>
</TextPrimitive>
<Polyline>
</Polyline>

</Object>
</OCD>

</Layer>

This forms a useful basis for a design language on which the more extensive requirements of
a CBR system that supports design scenario generation and suspension of partially completed
designs can be built.

The integrity of Code Fragment 4 is supported by an extensive Document Type Definition
(DTD). A DTD provides a list of the elements, attributes, notations and entities contained in a
document as well as their relationships to one another. DTDs specify a set of rules for the
structure of a document. The DTD accomplishes this with a list of mark-up declarations for
particular elements, entities, attributes and notations.

Consider Code Fragment 5 below for a shortened example of a DTD that ensures the integrity
of the XML in Code Fragment 4. Only the entities used in Code Fragment 4 are included. The
DTD is not necessary if the output is generated by an application. If XML fragments are
obtained from other external sources then the DTD ensures conformance to the design
language.

<!-- Styles -->

<!ELEMENT Styles (
 CVCharstyle|TTCharstyle|
 Linestyle|Material|Lightstyle|
 TextMnemonic|WordMnemonic|DoubleMnemonic|SingleMnemonic|IntegerMnemonic
)*>

<!-- Character Styles
A character style is either defined as a CAD Vector font or a (Windows)
True-Type font.
-->

<!-- Attributes common to character styles -->

<!ENTITY % CharstyleAttributes '
 Name CDATA #REQUIRED
 Height CDATA #REQUIRED
 Width CDATA #IMPLIED

University of Pretoria etd

175

 Pen CDATA "1"
'>

<!-- CAD Vector Fonts. The FontName attribute is a font name. -->

<!ELEMENT CVCharstyle EMPTY>
<!ATTLIST CVCharstyle
 %CharstyleAttributes;
 FontName CDATA #REQUIRED
>

<!-- True-Type (Windows) font -->

<!ELEMENT TTCharstyle EMPTY>
<!ATTLIST TTCharstyle
 %CharstyleAttributes;
 FontName CDATA #REQUIRED
 Weight (DontCare|Thin|ExtraLight|Light|Normal|Medium|SemiBold|Bold|
 ExtraBold|Heavy)
 "DontCare"
 Underline (true|false) "false"
 StrikeOut (true|false) "false"
 Italic (true|false) "false"
 Pitch (Default|Fixed|Variable)
 "Default"
 Family (Decorative|DontCare|Modern|Roman|Script|Swiss)
 "DontCare"
 CharSet (ANSI|Baltic|ChineseBig5|Default|EastEurope|GB2312|Greek|
 Hangul|Mac|OEM|Russian|ShiftJIS|Symbol|Turkish|Hebrew|Arabic|
 Thai)
 "ANSI"
>

<!-- Line styles -->

<!ELEMENT Linestyle (
 (FixedLine|FixedGap|Symbol)*,
 EndOfStart,
 (FixedLine|FixedGap|VariableLine|VariableGap|Symbol)*,
 StartOfEnd,
 (FixedLine|FixedGap|Symbol)*
)?>
<!ATTLIST Linestyle
 Name CDATA #REQUIRED
 Font CDATA #IMPLIED
 VertexStart CDATA #IMPLIED
 VertexInternal CDATA #IMPLIED
 VertexEnd CDATA #IMPLIED
 VertexMidPoint CDATA #IMPLIED
 SegLineStart CDATA #IMPLIED
 SegLineEnd CDATA #IMPLIED
 SegSegStart CDATA #IMPLIED
 SegSegEnd CDATA #IMPLIED
 FillSymbol CDATA #IMPLIED
 Border (true|false) "true"
 Opaque (true|false) "false"
 LeftOffset CDATA "0"
 RightOffset CDATA "0"
 SymbolHeight CDATA "2.5"
 Pen CDATA "1"
 Phasing (None|Angle|Line|Grid)
 "None"
 Fill (None|HatchHorizontal|HatchVertical|HatchFDiagonal|HatchBDiagonal|
 HatchCross|HatchDiagCross|Solid0|Solid1|Solid5|Solid10|Solid15|Solid20|
 Solid25|Solid30|Solid35|Solid40|Solid45|Solid50|Solid60|Solid70|
 Solid80|Solid90|Solid100|BrushBDiagonal|BrushCross|BrushDiagCross|
 BrushFDiagonal|BrushHorizontal|BrushVertical|FillSymbol)
 "None"
 Gap CDATA #IMPLIED
 Space CDATA #IMPLIED
 Shear CDATA #IMPLIED
 Slope CDATA #IMPLIED
>

<!-- Linestyle pattern elements -->

University of Pretoria etd

176

<!ELEMENT EndOfStart EMPTY>
<!ELEMENT StartOfEnd EMPTY>

<!ELEMENT FixedLine EMPTY>

<!ATTLIST FixedLine
 Length CDATA #REQUIRED
>

<!ELEMENT FixedGap EMPTY>
<!ATTLIST FixedGap
 Length CDATA #REQUIRED
>

<!ELEMENT VariableLine EMPTY>
<!ATTLIST VariableLine
 Length CDATA #REQUIRED
>

<!ELEMENT VariableGap EMPTY>
<!ATTLIST VariableGap
 Length CDATA #REQUIRED
>

<!ELEMENT Symbol EMPTY>
<!ATTLIST Symbol
 Symbol CDATA #REQUIRED
>

<!-- Mnemonic definitions -->

<!ENTITY % MnemonicAttributes '
 Name CDATA #REQUIRED
 Prompt CDATA ""
'>

<!ELEMENT TextMnemonic EMPTY>
<!ATTLIST TextMnemonic
 %MnemonicAttributes;
 MaxLines CDATA "1"
 MinLineLength CDATA "0"
 MaxLineLength CDATA "132"
>

<!-- Layers -->

<!ELEMENT Layer (Extent?, (Attribute|OCD)*)>
<!ATTLIST Layer
 Name CDATA #REQUIRED
 Label CDATA ""
 LinkNumber CDATA #IMPLIED
 HighestObjectLinkNumber CDATA #IMPLIED
 GUID CDATA #IMPLIED
>

<!-- OCD
This is the top-level element for an Object which is a container for the object
name. OCD is short for Object Code (ie name) Definition.
-->

<!ELEMENT OCD (Attribute|Object|ObjectInstance)*>
<!ATTLIST OCD
 Name CDATA #REQUIRED
>

<!-- Objects -->

<!ELEMENT Object (Extent?, Axes,
 (Attribute|LinePrimitive|TextPrimitive|RasterPhotoPrimitive|
 WindowPhotoPrimitive|OlePhotoPrimitive|ClumpPrimitive)*
)>
<!ATTLIST Object
 LinkNumber CDATA #IMPLIED
 HighestPrimitiveLinkNumber CDATA #IMPLIED
 Lightstyle CDATA "NONE"
 ContainsItems (true|false) "false"
>

University of Pretoria etd

177

<!-- Line Primitive -->

<!ELEMENT LinePrimitive (%PrimitiveContent;, Polyline)>
<!ATTLIST LinePrimitive
 %PrimitiveAttributes;
 Linestyle CDATA "DEFAULT"
 StartMark (true|false) "true"
 EndMark (true|false) "true"
>

<!-- Text Primitive -->

<!ELEMENT DefinitionText (#PCDATA)>
<!ELEMENT ExpandedText (#PCDATA)>

<!ELEMENT TextPrimitive (
 %PrimitiveContent;, Axes,
 DefinitionText, ExpandedText?
)>

<!ATTLIST TextPrimitive
 %PrimitiveAttributes;
 Charstyle CDATA "DEFAULT"
 Linestyle CDATA #IMPLIED
 Justification (TL|TC|TR|CL|CC|CR|BL|BC|BR)
 "BL"
 Box (true|false) #IMPLIED
 Dim (true|false) #IMPLIED
 Data (true|false) #IMPLIED
 YFactor CDATA "1"
>

<!-- Points simply consist of x,y,z coordinates -->

<!ELEMENT Point EMPTY>
<!ATTLIST Point
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
>

<!-- As far as the DTD is concerned, a vector is equivalent to a point -->

<!ELEMENT Vector EMPTY>
<!ATTLIST Vector
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
>

<!-- BulgeAxis - this is a bulge factor
The B attribute represents the bulge factor, a value between 0 and 1. -->

<!ELEMENT BulgeAxis EMPTY>
<!ATTLIST BulgeAxis
 B CDATA "0"
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
 A CDATA #IMPLIED
>

<!-- Polyline
Start point, followed by a sequence of line segments (curved or straight). If
the first and last points are the same, the polyline is closed.
-->

<!ELEMENT Polyline (Point, (BulgeAxis?, Point)*)>

Code Fragment 5: Partial MicroGDS 6.0 XML Document Type Definition (DTD)
described with XML (Author)

University of Pretoria etd

178

At this stage it is possible to implement the conceptual design processor illustrated in Figure
46.

Figure 1: Structured Planning/ Design Knowledge Delivery (Author)

The design knowledge delivery system will conceptually work as detailed in Figure 46. A
designer that wants to design a facility or solve a specific operational problem will activate a
purpose made search engine [B] in Microsoft Internet Explorer. The search engine [B] will
enable the user to set basic constraints and search criteria in order to expedite information
retrieval. If the relevant information is found it will be packaged in the form of XML design
knowledge fragments. The user can first view the result in Internet Explorer and if he is
satisfied ask the system to download it to the desktop. The desktop planning/ design processor
[D] will retrieve the downloaded XML knowledge fragment [C]. Due to the fact that design
takes place in an open world it is expected that many different planning concepts might exist
that need to be explored. These partially completed scenarios are stored in [F] and [G] again
in XML format. Once the planner is satisfied the solution can be plugged into a live project
environment [H]. It is also possible to publish good designs back into an office web page [A]
to make them available to other designers.

[D] could be seen as working memory (WM), [F] and [G] as long term memory (LTM)
(Simina 1999:39-43). The main purpose of WM is:

• Promote synergy among design parts
• WM facilitate external and internal event detection and processing
• WM keeps a limited store of recently accessed artefacts

The purpose of LTM is:

• Main repository of past design or design fragments
• Retrieval from LTM could be based on any combination constraints or functions

University of Pretoria etd

179

The XML Fragment interchange working draft (W3C 1999) defines a way to send fragments
of an XML document to an XML user, in this case the designer using the desktop/ planning
processor. It must be emphasised that although Figure 46 is an oversimplified example the
following important principles are used:

• The designer remains in full control of the ultimate solution at all times
• Design experience is stored in a structured format (the beginning of CBR)
• Most information required in the planning and design environments are basically

hierarchical and occur at various levels of specificity
• XML supports the inclusion of non-XML data and can act as an integrator of diverse data

sources
• XML supports distribution of data as well as data hyper linking
• XML supports multi-media data sources
• The example attempts to support design as a pragmatic as well as a cognitive activity
• The solution assumes that planning and design requires a continuum of design methods

that use model based, rule based and case-based reasoning. It is ultimately up to the
designer to decide what method he prefers

• Current relational databases such as Oracle already support the generation of XML data
from a relational query

By means of a style sheet defined in XSL it is possible to display the XML such as Code
Fragment 4 in vector format in a web page (Figure 47). For a complete listing of the style
sheet please consult Appendix D. The style sheet converts the XML code into Microsoft
VML format that makes the display in a web page possible.

The display as illustrated in Figure 47 was done in the smallest possible custom developed
web browser for the following reasons:

• To test the feasability of a thin browser developed in Visual Basic by means of the

convenient Inet ActiveX control.
• To facilitate retrieval of XML code fragments in the ARGOS autonomous design objects

a small Internet Explorer is required that has the ability to interpret the XML, stylesheets
and DTDs.

The actual code required to implement the minimal browser is included in Appendix F. The
browser was tested by means of a small test web page run on a personal computer by means
of the Personal Web Server provided with Microsoft Windows 98. Only minimal
functionality is provided but enough to facilitate connection to any potential design site in the
world or design knowledge fragment on the personal machine or Intranet.

University of Pretoria etd

180

Figure 2: Display of CAD drawing in XML format by means of VML (Author)

Careful analysis of the display reveals numerous small errors such as inaccurate text display,
and problems with the interpretation of the bulge factor to display circles or arcs. Bit map
images, although saved in the XML file are not displayed at all in the web page. At this stage
the display capabilities of an AutoCAD Whip file in the web environment are superior to
what is offered by the static VML display. However the XML provides a structured and
accessible data format that can be processed further whereas the Whip1 format is closed and
proprietary.

6.2 Packaging and retrieval of design knowledge

6.2.1 Introduction

The author proposes a totally new approach to architectural design knowledge packaging that
would require the lowest possible level of platform technology, such as a spreadsheet, as the
entry level. Many ambitious attempts have been made in the past to define universal Building
Product Models. At this stage none of them are entirely satisfactory due to complexity of the
artefact creation world. All indications are that conscensus will be reached soon (Eastman
1999)

The portable nature of Microsoft ActiveX controls makes it possible to support a wide range
of platforms without being tied into particular CAD systems, databases or design software. It
also ensures a cost effective design environment. By means of ActiveX controls that are
embedded into web pages it is possible for service providers to offer a subscription service of
design tools such as lightweight cases (architectural design kits) to designers. The designer
could then use design software in his Internet explorer without even installing or buying

1 Whip is a proprietary format that facilitates the display of CAD drawings in a web page

University of Pretoria etd

181

expensive software. The user could then purchase time from the software service provider
only when required. It is proposed that the approach that has been followed in the
development of the precedent systems AEDES and PREMIS up to date be completely
changed around. The approach in the past was an application centric approach with particular
emphasis on specific database technology and CAD systems. It is proposed to use a
document-based approach (Figure 52). Designers and Architects are used to the concept of
documents. This will ensure that anybody that has Microsoft OLE, COM and DCOM
compliant software can significantly benefit from the approach. Microsoft developed these
technologies specifically to support the intelligent use of documents in a collaborative
environment.

The architectural design starter kits, developed by the Division of Building Technology, over
a long period of time provided a useful starting point for AEDES and the present research.
These starter kits have already contributed significantly towards an accelerated and more
efficient design process in the domain of health facilities. These starter kits are available in
CAD format and contains “empirical ideal” total facility layouts. The author recently wrote a
prototype web page to test the technical feasibility of the distribution of these design kits via
the Internet.

The main shortcomings of the present CSIR starter kits (cases) are:

• They contain no traceability of the design process.
• Although staffing required, fixed and loose equipment are available in supporting

design documents, it is not in a structured way that could be used in Case-Based
Reasoning.

• No distinction is made between neutral and localised information. Heidegger
described this as the “Dasein” of tools (Biemel 1976:38).

• No object naming conventions have been used that can facilitate connection with
other data sources.

• No intelligence is available to predict operational performance.
• No integration with the total life cycle information infrastructure.
• Starter kits should contain knowledge from both the tacit and explicit levels of

knowledge management to give future users an idea what the design rationale was.

The use of structured methods such as QFD, Kansei and System Engineering is explicitly
time-consuming (Cohen 1995:31). In order to achieve the best possible future use of the
design knowledge it is important that knowledge can be reused. The object technologies
presently available are already mature enough to support this need well.

The AEDES prototype software solved some of the abovementioned knowledge packaging
challenges. However a few fundamental matters are still unresolved such as support for the
Internet, complete object encapsulation and a low-level entry platform. In the prototype CAD
drawings were embedded into an OLE field into an Oracle form field in an attempt to
encapsulate the various types of knowledge required. The main disadvantages of this
approach were:

• The object data is not persistent.
• Low-level users would require a database such as Oracle, Microsoft Access or SQL

Server as a minimum to use the starter kit.
• It would be difficult to distribute the design globally.
• The response by means of Visual Basic during interrogation of the embedded CAD

objects is presently very slow. This improved significantly in Oracle 8.0i (The latest
Oracle RDBMS release).

University of Pretoria etd

182

• It is difficult and inconvenient to interface the alphanumeric and graphic contents of
the starter kit with other applications.

• It would be difficult for third party companies to build starter kits independently. This
is a prerequisite if the starter kits are to gain widespread commercial acceptance in
future.

• It is particularly difficult to profile or deliver design data to suit the specific needs of
the designer, planner or reasoner.

6.2.2 Constraints

Constraints form an important part of planning and design in general and should be supported
by ARGOS. The following different main categories of constraints can be identified that
could be supported by ARGOS:

• Formulation. This is the process of adding or creating new constraints based on decisions.

Constraints could originate from the designer, propagation of second order constraints
and by inheritance.

• Propagation. This is the process of inferring values and constraints from other values and
constraints. This is achieved by means of functions associated with the constraint type.

• Satisfaction. This is the process of finding values that satisfy a constraint set. Different
constraints can have different functions associated with the particular constraint.

The implementation of constraints in an open world is subject to several requirements:

• Sensitivity to incomplete knowledge. It is possible that constraints need to be evaluated

with some arguments missing. Hinrichs (1991:98) suggests that two evaluation functions
are used in this situation, one that is optimistic about the missing information and one that
is pessimistic.

• Ability to relax preferences. Since design problems may have satisficing solutions, the
design processor needs to be able to relax constraints. To facilitate this the importance of
a specific constraint needs to be known.

• Flexibility of propagation. The constraint poster should be able to propagate constraints
between different sets of variables in a problem.

• Protection of problem-independent constants. The flexibility of propagation necessitates
the restriction of what counts as a variable in a problem.

The constraints determine the class of problems that can be represented. Figure 48 illustrates
the taxonomy of constraint types that could be used in a design processor. The constraints fall
into five main categories:

• Logical Connectives permit recursive combinations of constraints.
• Nominal Constraints relate identities of values.
• Ordinal Constraints capture relationships between continuous valued quantities.
• Structural Constraints constrain the existence of variables rather than their values.
• Functional Constraints degenerate constraints (rules) that propagate only in one direction.
• Second-Order Constraints are constraints on other constraints.

In the descriptions below, the term variable refers to a slot in some frame and argument refers
to an actual argument to the constraint, which could be either a variable or a constant (Figure
48).

Same. Two arguments are constrained to be identical. This is typically used to connect two
variables together. It could also be used to restrict a variable to a constant.

University of Pretoria etd

183

Instance. The first argument must be a frame subtype of the second. In this case instances and
subtypes are treated equivalently.

Compatible. The arguments must be frames, in which neither is represented as being
incompatible with the other.

Inverse. The first argument must be the logical or functional inverse of the second.

Member. The first argument is a member of the set designated by the second argument.

Contains. The second argument is an ingredient or component of the first argument. This is a
transitive relationship.

Does-not-Contain. The second argument is not an ingredient or component of the first
argument. This is a transitive relationship.

Within. The first argument is in the numerical range designated by the second argument.

At-least. The first argument is greater than or equal to the second.

At-Most. The first argument is less than or equal to the second.

Max. The first argument is the maximum of all subsequent arguments.

Min. The first argument is the minimum of all subsequent arguments.

Same-Structure. The variables in the first argument are the same as the variables in the second
argument. The arguments to structural constraints of this sort are effectively quoted1 such that
variables themselves are returned, rather than the values of those variables. This permits
constraints on structure as well as on content.

Struc-Member. The variable in the first argument is a member of the variables in the second
argument.

Same-Constraints. Every constraint on the internal slots of the value of the variable is present
on the corresponding slots of the frame containing the variable.

Constraints. The constraints on the first argument are propagated to all the variables
designated by the second argument.

To carry out a planning and design activities certain information must be available. In
addition, certain conditions, states or evaluations may apply to the data. Eastman (1999: 343)
calls this the Readset and Before Constraints. When an activity is completed data will be
added or modified. That design data will possibly have new conditions, constraints or states
associated with it. Eastman call this the activities’ Writeset and After Constraints. Together
they define an activity Φ that has the following general structure:

)}{,}{,}{,}({ ABWR CCEE=Φ

where =RE}{ the set of entities to be read into the application
 =WE}{ the set of entities that are written by the application

1 This term refers to a convenient LISP construct. LISP was a prominent language in AI ten years ago.

University of Pretoria etd

184

=BC}{ the set of constraints that must be satisfied before the application can
be executed

=AC}{ the set of constraints that are satisfied within the application and can
be relied on by later operations

The before constraints and after constraints specify a logical relationship between activities
and the information and the conditions that the activities require. The Readsets and Writesets
define data dependancies. The before constraints and after constraints identify process
dependencies.

Constraints, as defined here, can have one of four values (Eastman 1999:343):

 TrueT >==< implies that it has been satisfied
 FalseF >==< implies that it has been evaluated and has failed

UnknownU >==< implies that it has not been evaluated, possibly because it is
not available to do so

BlankX >==< implies that changes have been made to the context, so that
the state of the constraint is uncertain

University of Pretoria etd

185

Figure 3: Taxonomy of constraint types (Hinrichs 1991:99)

6.2.3 The design of the ARGOS intelligent component

In order to conveniently process design fragments on the desktop without the use of CAD
requires intelligent components that can encapsulate the design fragments. The component
should also be able to retrieve design fragments from anywhere. To test the idea a prototype
control was built. Consider Figure 49 for an example of the control running in Internet
Explorer 5.0 The component has the ability to be resized in the x and y axis whilst in two
dimensional mode and the x and z axis whilst in three dimensional mode. Appendix F
contains the actual code that connects the various parts of the control parametrically together.
The intention is that a designer might place a number of the controls in a spreadsheet to test
the relationship between architectural design units at any level of specificity. Each component
is an autonomous encapsulated world on its own.

University of Pretoria etd

186

Figure 4: ARGOS object in 2D mode (Author)

Figure 5: ARGOS object in 3D mode (Author)

University of Pretoria etd

187

Synchronisation between the autonomous components can achieved by means of very simple
Visual Basic for Application code if it is used in a spreadsheet.

Figure 50 illustrates the ARGOS control in 3D mode. The 3D mode enables a designer to get
a feeling for volume in a basic way. The z-axis adjustment facilitates the adjustment of the
height. The controls can be made highly sophisticated by adding automatic volume
calculation and readout of pertinent design parameters. It is envisaged that many different
variants of ARGOS can be built such as:

• Controls that are unlocked, leaving it up the user to place, size and populate them with

design information
• Controls that contain cases from the past at various levels of specificity
• Rule-Based controls that model certain well known design characteristics such as energy

use
• Model-Based controls that model the constructional performance of a structure such as

the forces on a slab

6.2.4 Classification and knowledge organisation in a packaged environment

If the packaging of architectural design knowledge in the form of encapsulated Microsoft
ActiveX controls is to be successful then it is important that a designer can easily find
relevant controls anywhere in the world. It is also important to realise that a control that has
not been brought into the specific environment where it will be used should contain
knowledge that is neutral. Once it arrives in the specific environment where it will be used it
should take on the localised qualities. An example of this is the cost of plant, labour,
construction materials, temperature and soil conditions.

The core problem in Information Science (IS) is seen as information seeking and “information
retrieval (IR). The design of information systems and knowledge organisation by
classification and indexing is a means to that end.

Hjörland (ISKO 1994:91) identifies nine principles on the organisation of knowledge.

1. Naïve-realistic perception of knowledge structures is not possible in more advanced

sciences. The deepest principle on the organisation on knowledge rests upon principles
developed in and by scientific disciplines.

2. Categorisations and classifications should unite related subjects and separate unrelated

ones. In naïve realism, subject relationships are based on similarity. Two things or
subjects are seen as related if they are “alike”, that is if they have common properties or
descriptive terms ascribed.

3. For practical purposes, knowledge can be organised in different ways and with different

levels of ambition.

• Ad-hoc classification (categorisation) reflects a very low level of ambition in
knowledge organisation. Every time you arrange flowers in your private home, you
use a kind of “ad-hoc classification” determined by your private taste, the colours of
your rooms, what other objects they should match with.

• Pragmatic classification reflects a middle level of ambition in knowledge
organisation. It is a compromise between ad hoc classifications and scientific
classifications. Amateur gardeners or horticulturists have other criteria for
categorising proteas and azaleas than the biologist would imply.

University of Pretoria etd

188

• Scientific classification reflects a very high level of ambition in knowledge
organisation. It is highly abstract and generalised way of organising knowledge. An
example of this is the classification of animals and plants according to biological
taxonomies.

4. Any given categorisation should reflect the purpose of that categorisation. It is very

important to teach the student to find out the lie of the land and apply ad hoc
classifications, pragmatic classifications or scientific classifications when appropriate.

5. Concrete scientific categorisations and classifications can always be questioned. The

concept of “science” has more than one meaning.

• Science as a social institution, consisting of people paid to do research. This is the
cultural concept of science.

• Science as a normative, epistemological concept (to argue in a scientific way). What
constitutes science in this respect is a matter of continuous development, argument
and criticism in methodology and theory of science and in the development of science
itself.

6. The concept of “polyrepresentation” is important. In typical information seeking

situations, some categorisations are useful to some degree, others to some other degree.

7. To a certain degree different arts and sciences could be understood as different ways of

organising the same phenomena.

8. The nature of disciplines varies. The distinction between “hard sciences” and “soft

sciences” is well known, but perhaps not fruitful.

9. Many authors indicated the important problem that the quality of knowledge production

in many disciplines is in great trouble. It seems if the priorities become more and more
short-sighted, that less effort are made to develop long-sighted, well organised and well-
cared for bodies of knowledge and literature. This means, that the integrity of scientific
knowledge as well as other forms of knowledge is threatened.

University of Pretoria etd

189

Figure 6: The relationship between the ARGOS, ActiveX design object and the
applications software (Author)

6.2.5 The co-existence of ARGOS with other software

The Architectural General Object System (ARGOS) is a Microsoft ActiveX object with the
internal design fragment stored in XML. Microsoft Visual Basic provides enough
functionality to build the object (Appleman 1999). Although third party users can generate the
object independently, it is recommended that a structured front end consisting of an
appropriate collection of methodologies as described for the AEDES system could be used.
This will ensure that the object is optimal for the given set of requirements. COM software
components such as ActiveX controls can be developed with several different programming
languages. The most common choice, if Web pages on the subject are any indication, is
Microsoft Visual C++. Presently Visual Basic 5 and 6 also support the development of
ActiveX controls very well. Using Visual C++, COM software can be written using one of
three development libraries, the ActiveX Template Library, Microsoft Foundation Class
Library or the BaseCtl framework. ActiveX controls can use a variety of programming
languages from Microsoft for component design in addition to Visual C++ like Visual Basic,
Visual J++ and even Word or Excel’s programming languages.

Currently only highly skilled programmers can build the ActiveX objects. For this reason a
special module B1, Packaging Software is proposed (Figure 51). This software tool takes the
final design fragment and encapsulates it into a single object. Once the object is created it can
be distributed in many different ways and used in a wide variety of environments. The
contents of the object can be imported back into the original environment that created it.
However the object can be used in many other environments such as spreadsheets, Web pages
and process analysis.

University of Pretoria etd

190

6.2.5.1 Concept selection

The process of concept selection is important in the product development environment and
therefore architectural design. In Architecture it is often necessary to compare alternative
architectural design concepts, especially during the early phases of design. To this end the
ARGOS kits could be inserted into a spreadsheet. The designer could then conveniently
analyse various design aspects in the familiar environment of a spreadsheet without doing any
programming. In this case the controls containing the likely concepts would be drawn into a
spreadsheet or a simple Visual Basic program. The ratings from the different concepts are
derived from the controls and subsequently compared with one another.

6.2.5.2 Spreadsheets

Spreadsheets such as Microsoft Excel support the use of ActiveX controls. Many people use
spreadsheets and it is a convenient environment for initial project planning tasks such as cost
estimating, area and energy analysis. In this environment there is no need to be connected to a
database, although the proposed design of the ARGOS object includes links to material and
product databases.

In order to use the control in this environment, a user simply has to insert the control into the
spreadsheet. To access the list of properties and methods provided in the control in the
spreadsheet, the user has to connect the desired property in the control to a cell(s) in the
spreadsheet. This can be achieved by the example code fragments below (Code Fragment 3).

In this case the cells are manipulated by the Visual Basic GotFocus and LostFocus events. In
the case of the function ArgosAB_GotFocus a range of cells Range(“A1:A10”) on
Worksheet(“Sheet1”) is set to the value of the GrossArea property retrieved from object
instance ArgosAB. Note that during the creation of the object certain properties were set to
read only. In a similar way the function ArgosAB_lostFocus sets the value of a range of cells
Range(“A1:A10”) to an empty string. At the same time a property text of the text box
txtArgos is set to the text string “RESET TO EMPTY”. The control is a totally encapsulated
world that contains many properties. These autonomous controls need to be connected
together in order to do something useful with it. This can be achieved in any ActiveX
compliant container environment.

Private Sub ArgosAB_GotFocus()
 Worksheets("Sheet1").Range("A1:A10").Value = ArgosAB.GrossArea
 txtArgos.Text = ArgosAB.GrossArea
End Sub

Private Sub ArgosAB_LostFocus()
 Worksheets("Sheet1").Range("A1:A10").Value = ""
 txtArgos.Text = "RESET TO EMPTY"
End Sub

Code Fragment 3: Communication between an ARGOS ActiveX control and Excel
Spreadsheet cells (Author)

6.2.5.3 Computer languages

A systems integrator or software tool designer can use the ActiveX controls (objects) in
exactly the same way. However he can implement the objects in far more advanced
environments. A typical scenario would be where a suggested method such as
ArgosAB.UnpackFunction or ArgosAB.UnpackCAD could be invoked. This tells the particular

University of Pretoria etd

191

instance of the design component (ArgosAB) that the user wants to inspect the particular
design functions embodied into the design or want the design object to download the CAD
drawing to start with CAD based layout planning.

6.2.5.4 Process analysis

In an environment such as offered by Arena users can use the control to extract the desired
properties that he wants to analyse. The capabilities of Arena can be utilised to optimise flow
of people in the specific layout. Arena uses Visual Basic for Applications (VBA) as its
command language.

6.2.6 The design of the ARGOS object

The ARGOS object [A1] can be placed inside any ActiveX container [B1] such as supported
by Excel, Word, Visio or World Wide Web pages. Due to the intrinsic information that is
built into the object the designer can use the object immediately without connecting to any
outside information sources. However to realise the full power of this approach it is
recommended that a user connects to the Internet to access convenient outside data sources to
provide information such as product data [D1], material characteristics [E1], other existing
cases [F1] and Facilities Management cost models. Figure 52 illustrates this concept as well
as the relationship of the object with such remote data sources.

Figure 7: The relationship of the ARGOS object to other intelligent data sources
(Author)

Internally the ARGOS design case contains 4 main types of design knowledge that consists of
both alphanumeric and graphic information:

• Tacit design information
• Explicit design information

University of Pretoria etd

192

• Graphic information in the form of a design drawing that should preferably be in a neutral
data format

• Functional design information such as the design functions and their allocation to
physical design elements in a structured format. The W3C, XML format is ideal for this

Some of the information in the first two groups is exposed directly as ActiveX properties. In
this case the design object properties is a synonym for surface features1. The indices of a case
are those combinations of features that distinguish it from other cases, because they are
predictive of something important in the case. In addition to be being predictive of something
important, indices need to be concrete enough to be recognisable and abstract enough to
make a case useful in a variety of future situations. This enables a designer to assess the
applicability of the design or to estimate approximate cost. If the design appears to be suitable
then the detailed functional design can be inspected.

Again it is important to note that it is an incorrect assumption when people argue about
surface features, deep features, structural features, pragmatic features and thematic features in
the sense of designing retrieval methods for cases based on one of those. To build a good
index it is important to choose from all these levels and make sure that it has the important
properties (Kolodner 1996:357). Those descriptors describe where a feature lies in a
representation or what its content is. Sengupta et al. (1999) gives an indication of the
usefulness of the W3C, XML standard for the representation of a case structure and describes
methods to translate between relational databases and XML. The author is of the opinion that
XML is almost ideal for the structured documentation of the intrinsic artefact design
functions. By structured the following is assumed:

• The structure can be analysed by means of computer software.
• It is a complete documentation of the design performance requirement, functions,

allocations to construction elements and specifications using systems engineering
principles.

• Design function groups can be inserted into the existing structure.
• Constraint posting can be supported.
• Quality is an intrinsic part of the function structure.

If adaptation is required then the functional tree can be modified. Modification could be by
means of the insertion of function fragments, elements or specifications. If existing design
fragments cannot be found then the designer has to design the specific parts from first
principles following a process of structured design.

Although the user definable properties that a user can set in this environment are persistent
within the particular container, this persistence is destroyed the moment the object is moved
to a different container environment. To overcome this problem two object methods
PersistDesignOut and PersistDesignIn are introduced that will write the design data into an
XML computer file on a local disk or an ftp directory on a remote project server. In this way
structured design functions can be freely exchanged. As indicated in Figure 52 there is a bi-
directional exchange of persistent data.

[D1] and [C1] are fictitious remote data sites that can be nominated by means of a data
address within the object. This is achieved by setting the object property DataLocation to a
valid URL. By means of the method DisplayRemoteData or by pressing the command button,
these data will be displayed. The designer can then select the record and apply it to the current
design object. Note that the data flow from remote data sources is uni-directional at this stage.

1 There is a difference between easily available and surface features. Surface features make good indices to the extent that they
are predictive of something important or useful.

University of Pretoria etd

193

The connection to the local database is conveniently achieved by means of the Microsoft
ActiveX Data Object.

6.3 World Wide Web Implementation

Microsoft Internet Explorer supports the ActiveX controls. When the ARGOS design object is
inserted into a web page the code looks like in Code fragment 4. The object starts with the
label

<object classid="clsid:59DF65DF-632C-11D3-8D31-4854E8284FB0"
id="UserControl11" width="250" height="467">

and ends with the label

</object>

The classid is particularly important, because it is a totally unique code that is used to
identify the particular class of the ActiveX control. This code is guaranteed to be unique in
the world. This object was labelled with this code during the design and programming of the
object. The id is the name that will appear on the list of possible controls when a user wants
to insert an ActiveX control into his container software. In this case the id is
UserControl1. The properties available for the object is exposed with the statements that
read <param name="_ExtentX" value="5292">. In this example the ARGOS
object contains 15 user definable properties. These properties fall into two main groups:

• Explicit
• Tacit

The explicit attributes have the prefix AE_ and the tacit ones AT_. The explicit properties
contain surface features (in CBR terminology) such as gross area, net area, rentable area,
construction area, volume, shape, durability, energy use and cost. The tacit properties contain
factors that were identified in Chapter 3, 3.5 where Kansei engineering was discussed in
detail. This gives an indication of the sensory aspects of the design such as sight, hearing,
taste, smell, internal sensitivity and recognition. Architecture has lot to do with the sensory
aspects such as feeling of space, colour and acoustics.

It is apparent from the code fragment that the design detail is hidden away from the designer
at this stage. The directly available properties make it possible to do basic preliminary
feasibility studies. To make the detail visible the user will have to press the command buttons
for CAD or Function that will unload the CAD drawing or the XML function tree. The
ARGOS object also contains two buttons that a user can use to maximize or minimize the
object. If a user wants to perform a specialised task he can invoke one of several object
methods available.

<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<title>AEDES</title>
</head>

University of Pretoria etd

194

<body background="aedes_b.gif" link="#0000FF" vlink="#800080"
bgproperties="fixed">

. . .

<object classid="clsid:59DF65DF-632C-11D3-8D31-4854E8284FB0" id="UserControl11"
width="250" height="467">
 <param name="_ExtentX" value="5292">
 <param name="_ExtentY" value="9885">
 <param name="BackColor" value="0">
 <param name="ForeColor" value="0">
 <param name="Enabled" value="0">
 <param name="BackStyle" value="0">
 <param name="BorderStyle" value="0">
 <param name="AE_grossarea" value="0">
 <param name="AE_nettarea" value="0">
 <param name="AE_rentable_area" value="0">
 <param name="AE_construction_area" value="0">
 <param name="AE_volume" value="0">
 <param name="AE_shape" value="0">
 <param name="AE_durability" value="0">
 <param name="AE_energy_use" value="0">
 <param name="AE_cost" value="0">
 <param name="AT_sight" value="0">
 <param name="AT_hearing" value="0">
 <param name="AT_taste" value="0">
 <param name="AT_smell" value="0">
 <param name="AT_internal_sensitivity" value="0">
 <param name="AT_recognition" value="0">
 <param name="AF_function" value="0">
</object>
. . .

<hr size="1" noshade color="#0000FF">

<p align="left"><!--webbot
bot="Timestamp" startspan s-type="EDITED"
s-format="%d %B %Y %I:%M %p" -->12 February 2000 06:46 AM<!--webbot bot="Timestamp"
i-CheckSum="54291" endspan --></p>
</body>
</html>

Code Fragment 4: ARGOS object placed in a web page (Author)

6.4 Hypothetical use of ARGOS

Due to time and financial constraints it is not the intention to develop a full commercial
system in this study. However this section provides a run-through of how a designer might
use the system.

It is assumed that a designer wants to design a new 16-bed male/female/paediatric in-patients
section. The designer decides to see whether a previous conceptual layout of this type of
facility exists. Unfortunately nothing exists in the office and a search of the web is also
unsuccessful. It is also assumed that the ARGOS ActiveX control set is installed and available
on the design workstation.

The designer decides that he will be using his Microsoft Excel Spreadsheet as a blackboard,
because this is convenient for the type of design testing that he wants to do. The design brief
specifies a design of not more than 260 m² and the cost should be below R 780 000-00. The
accommodation requirement for the design is the following:

Capacity of 16 beds
Staff WC
Patient ablution

University of Pretoria etd

195

Sit bath
Nurse station
Duty room
Clean linen storage
Clean utility room
Ward kitchen
Dirty utility room
Store

The client states that it is a specific requirement that energy be saved especially with regards
air conditioning.

The designer starts the process by calling up an Excel Spreadsheet with a default ARGOS
control panel. He selects a minimal parametric ARGOS control from the Control Toolbox
(ARGOS.CBR) and inserts it into the spreadsheet (Figure 53).

Figure 8: Design of 16 bed male/ female/ paediatric in-patients section step 1
(Author)

At this stage the spreadsheet contains four command buttons that enable the designer to
calculate net m², gross m², volume m³ and a special button that enables him to export the
design in XML format to an XML aware CAD system for subsequent detailed design. For
convenience a combobox is also included where the designer can list the spaces in the design.
At the moment the ARGOS control is still default size and the internal properties all have
default or undefined values.

The designer now continues to develop the design according to the brief and his experience.
After some time the design looks like in Figure 54. The design contains 14 ActiveX controls
of varying size. The designer adjusts some of the properties that will be important for
subsequent retrieval of previous design cases. He sets the wall thickness in the M_wall1,

University of Pretoria etd

196

M_wall2, M_wall3 and M_wall4 properties to respectively 55, 220, 55 and 220. Seeing that
this is a special section intended for paediatrics some Kansei adjectives are added in the
AT_hearing, AT_internal_sensitivity, AT_recognition, AT_sight, AT_smell and AT_taste
properties.

Figure 9: Design of 16 bed male/ female/ paediatric in-patients section step 2
(Author)

Some useful adjectives that could be used are listed in Figure 27. The Kansei properties now
read:

AT_hearing = quiet
AT_internal_sensitivity = warm, tranquil, cheerful
AT_recognition = cute, elegant
AT_sight = cute, elegant
AT_smell = pleasant
AT_taste =

These properties are very important for subsequent retrieval of possible previous design
experience. The ARGOS properties can be defined by typing directly into the relevant
property, set by program or indirectly adjusted by means of the x, y or z slide controls. The
properties are also useful because they can be directly transferred to CAD systems that
support the definition of attributes such as MicroGDS or AutoCAD.

At this stage a typical property list for the 4 Bed Ward would look like the one illustrated in
Figure 55. Note the Kansei definitions at the top of the list and the various wall thickness
properties at the bottom of the list.

University of Pretoria etd

197

Figure 10: Setting design properties of a paediatric ward (Author)

At this stage the designer would like to know the gross and net area. This is accomplished by
selecting the relevant command buttons that start Visual Basic routines that scan through all
the design controls present and retrieve all the areas. In a similar way the volume is
determined.

The system reports the following (Figure 56):

Net m² = 221.256
Gross m² = 251.5808
Volume m³ = 639.42984

At this stage he is not sure what the construction cost per m² is and activate his Microsoft
Internet Explorer. He accesses the http://design.case.co.za web page that is one of the
available design information sites to search for an estimated construction cost/m² for this type
of facility. This is conceptually illustrated in Figure 52. He finds this cost to be R 2800-00/m².
On the basis of this it is estimated that it would cost R 704 426-24 to build this facility. In the
meantime the air conditioning engineer is analysing the design from an energy point of view.
He finds that the current volume would require a significantly larger installation than
originally anticipated. In an attempt to solve this the ceiling height is lowered from 2 890mm
(34 brick courses) to 2 720mm (32 brick courses) (Figure 57). This is accomplished by setting
the AA_zdim property to 2 720 for each ARGOS component. The recalculation indicates that
the volume has now in fact been reduced from 639.43 m³ to 604.29 m³. This is an immediate
saving of 5,5%. In a similar way other direct design parameters can be adjusted and tested.

University of Pretoria etd

198

Figure 11: The calculation of area and volume (Author)

Figure 12: The reduction of volume by lowering the ceiling (Author)

University of Pretoria etd

199

The designer is now satisfied with the basic design and continues with the detailed design. By
double clicking1 on the ward the search engine is invoked to search for previous design cases
that fit the type and dimensions previously captured. Initially only the main description is
used to search for a list. The system reports that three types of ward is available:

Two Bed Ward
Four Bed Ward
Observation/ Trauma Ward

He selects the Four Bed Ward. ARGOS now uses the AA_xdim, AA_ydim, AA_zdim as well as
the set of Kansei descriptions such as AT_hearing, AT_internal_sensitivity, AT_recognition,
AT_sight, AT_smell and AT_taste as search parameters. This is implemented with the dynamic
linguistic variable method described in detail in Chapter 3. Only one solution is found and
placed into the design (Figure 58). In a similar way other parts of the design can be developed
and further refined. Once the designer is satisfied he can export the entire design to an XML
aware CAD system or a rendering/ visualisation package for detailed design and the
production of working drawings.

Figure 13: The retrieval and insertion of a Four Bed Ward detailed case (Author)

6.5 Empirical response tests

To ensure that the proposed system would be scalable and could eventually be applied to real
problems in the architectural design domain a series of response tests were conducted. A
recently completed very large shopping centre analysed to establish the needs of the

1 Two possibilities exist to implement the CBR retrieval in ARGOS. The basic ARGOS can switch to CBR mode or a special
separate ARGOS control can be written to handle only this aspect. The final implementation will become clearer with continued
research.

University of Pretoria etd

200

professional team consists of 57 spaces on the lower first floor, 148 on the ground floor and
73 on the upper first floor. The proposed component system should be capable of supporting
the following types of design activities in large and complex designs:

• Concept selection
• Retrieval of design experience
• Test of spatial relationships
• Scenario planning
• Collaboration on a global basis
• Modelling and simulation

To support and implement these activities require the ARGOS components to support any
combination of parametric, Rule-based, Model-based and Case-Based methodologies. The
tests concentrated on how responsive the components are to return direct and derived
parametric values such as gross area and wall-space ratio. The prototype component presently
supports 30 primary design properties, inter linked where appropriate.

The efficient response is primarily due to the fact that the parametric calculations are
performed inside the ARGOS components where it is optimal and in a compiled form. The
software that interrogated the components was, in this case, Visual Basic for Applications
running at a more moderate interpreted speed than compiled Visual Basic. Although the prime
purpose of the system is not efficient response, but rather opportunistic control, flexibility and
interfacing to external software these tasks need to be accomplished within reasonable time.

The tests were conducted on a Microsoft Excel spreadsheet used as a blackboard, because it is
so widely used and offers a convenient interface to spreadsheet capabilities and analysis
software. It is clear that the slow computer (266 MHz CPU with 32 MiB1 of RAM) is efficient
up to about 75 components, whereas the moderate and fast computers are still efficient well
beyond 100 components. The tests consisted of a Visual Basic program requesting parametric
values that could be used in complex external analysis programs (Figure 59).

ARGOS component response

7.9 8.7 9.5

16.5

0.63 0.62 0.5 0.74

4.77 4.33 5.1
6.1

0
2
4
6
8

10
12
14
16
18

15 30 45 60 75 90 105

Number of ARGOS components

R
es

po
ns

e
tim

e
m

ill
is

ec
on

ds
(m

s)

266 MHz CPU
900 MHz CPU
466 MHz CPU
Poly. (266 MHz CPU)
Poly. (900 MHz CPU)
Poly. (466 MHz CPU)

Figure 14: ARGOS component response (Author)

1 One mebibyte (MiB) is equivalent to 1 048 576 bytes whereas one megabyte is equivalent to 1 000 000 bytes.

University of Pretoria etd

201

The increase in file size is linear (Figure 60). It should be noted that the size is expressed in
kibibytes2 as recommended by the International Electrotechnical Commission for binary
multiples in December 1998.

ARGOS blackboard size

140

224

287

390

0
50

100
150
200
250
300
350
400
450

15 25 35 45 55 65 75 85 95

Number of ARGOS components

Si
ze

 in
 k

ib
ib

yt
e

(K
iB

)

Figure 15: ARGOS blackboard size (Author)

Summary

A life cycle information infrastructure based on XML is used as a basis for ARGOS. The use
of XML as a design language facilitates design knowledge delivery to users. The use of
Cascading Style Sheets, XSL and VML was explored. This proves the versatility of XML
beyond doubt. The storage of a CAD drawing in XML was analysed in detail.

Due to the generic nature of ARGOS the range of possible applications is large. The role in
structured planning and design knowledge delivery is proposed. The relationships of ARGOS
to other intelligent data sources were explored.

A detailed parametric ARGOS object was written with the ability to switch between 2D and
3D modes. A compact miniature Internet browser was developed that could be combined with
the basic ARGOS component. This will enable unlimited data access.

Internally the ARGOS design case should contain four main types of design information
consisting of both alphanumeric and graphic information:

• Tacit design information
• Explicit design information
• Graphic information in the form of XML
• Functional design information and constraints

2 One kibibyte (KiB) is equivalent to 1 024 bytes whereas one kilobyte (kB) is equivalent to 1 000 bytes.

University of Pretoria etd

202

Finally a short hypothetical run-through of how the ARGOS system might be used is
described. Empirical response tests were also conducted for a blackboard (spreadsheet) with
25, 50 and 100 controls on different types of computer. This indicates that the ARGOS
blackboard type of architecture using a spreadsheet is effective.

University of Pretoria etd

203

Chapter 7: Summary, Conclusions, Recommendations
and Assessment

Introduction

This chapter concludes the study with a summary of the research work, conclusions,
recommendations for further work and a critical assessment of what has been achieved.

7.1 Summary

7.1.1 Out-of-industry methodologies

Product innovation methodologies are useful at various tacit and explicit levels. AI can play
an important role in Knowledge Based Design. CBR is a promising sub-field of AI that can
greatly contribute to the contextual storing of design knowledge. It is clear that AI should be
used more in the background and especially in architecture automatic adaptation of designs
should not be attempted. CBR, RBR and MBR should be not be seen in isolation but should
rather be viewed as a continuum of techniques.

PREMIS provides useful insights into a deeper understanding of ontology in a Facilities
Management environment. The development of PREMIS highlighted the inadequacies of
Relational Databases with regards hierarchical structures. The problems with ontology will be
perpetuated in the BPMs and life cycle information infrastructures investigated in this study.

Knowledge Management is becoming very prominent although there are still unsolved
problems. However many researchers are working on the particular sub-problems due to the
importance of this for the global economy. Concept extraction and Natural Language
Processing remains problematic, however significant progress has already been made.

Fuzzy sets are useful for aiding the retrieval of design knowledge in general and cases
specifically by means of dynamic linguistic variables. The semantic differential method of
Snider and Osgood (Snider et al. 1957) and the semantic differential adjectives as used by
Nagamachi bear a relationship to the approach advocated by the author.

The analysis of the characteristics of manufacturing such as process, flow and throughput
indicate that these are not directly applicable to the problem under consideration, but should
rather be applied at the process level. The theories of Goldratt indicate that the manufacturing
environment is particularly applicable for Theory of Constraints and that the system optimum
is not the sum of the local optima. Concurrent Engineering is an important technique to avoid
the so-called time-trap. This is where the life cycle time of products are decreased while the
time spent on product development is greatly increased.

Taguchi techniques indicate the importance of off-line and on-line quality control. These
indicate that quality is related to the loss to society caused by a product during its life cycle.
In terms of the current thesis these methods should rather be used to select appropriate
materials to minimise life cycle costs in the context of sustainable development.

Kansei Engineering (KE) is a mature and useful technique to quantify cognition and product
image in such a way as to influence the product development process. KE operates at a very
high tacit level and could make a significant contribution to the storage of tacit architectural
design information.

University of Pretoria etd

204

The QFD exercise undertaken indicates that the ability to generate what-if scenarios across
the project life cycle as the most important user requirement. QFD as a technique to extract
raw architectural user requirements was pioneered in the AEDES system. QFD is useful if the
time and cost can be justified. QFD is an important technique in the manufacturing industry
and was one of the techniques that saved the Detroit automotive industry from ruin in the face
of severe competition from Japan. The contribution that QFD can make in architecture is
dependent on the general acceptance of this slightly elaborate technique.

TRIZ is a powerful method to solve inventive problems. However the present available
commercial TRIZ software emphasise engineering type of problems. A significant amount of
work will have to be done to make its use tractable in architectural design.

7.1.2 Life cycle design knowledge

The use of objects is the preferred way to achieve abstraction, generalisation and interaction
in systems supporting the life cycle development process. The unique way that objects are
used in the precedent systems PREMIS and AEDES provides valuable insights. Microsoft
ActiveX controls are a convenient means to implement ARGOS.

A life cycle information infrastructure based on XML is used as the basis for ARGOS. The
use of XML as a design language facilitates design knowledge delivery to users. The use of
Cascading Style Sheets, XSL and VML is explored. This proved the versatility of XML
beyond doubt. The storage of a CAD drawing in XML is analysed in detail.

7.1.3 ARGOS intelligent component

Although AEDES can be viewed as a failure in commercial terms, it provided the first
insights into the how user requirements might be extracted and structured to obtain a
performance requirement. It was discovered that requirements and functions fall into two
main groups i.e. active and passive. A set of functions to successfully enable the operational
capability of the requirement could be identified. These functions could be individually
characterised according to functional and physical characteristics and constraints. Finally a
characterised function could be allocated to a physical element. This transformational method
should however not be overemphasised.

An intelligent design component should be both object based and Internet enabled. Its
knowledge must be structured and self-documenting. It should be able to operate in a wide
variety of environments over a long period of time. It must be useful in small and large
project teams using different design and construction processes. It cannot be predicted with
certainty what the nature of these numerous processes will be in future.

ARGOS could improve activities such as:

• Concept selection
• Retrieval of design experience
• Test of relationships
• Scenario planning
• Collaboration on a global basis
• Modelling and simulation

Due to the generic nature of ARGOS the range of possible applications is large. The new
innovative role in structured planning and design knowledge delivery is proposed. The
relationships of ARGOS to other intelligent data sources were also explored.

University of Pretoria etd

205

A detailed parametric ARGOS object was written with the ability to switch between 2D and
3D modes. A compact miniature Internet browser was developed that could be combined with
the basic ARGOS component. This will enable unlimited data access.

Internally the ARGOS design case should contain four main types of design information that
consists of both alphanumeric and graphic information:

• Tacit design information
• Explicit design information
• Graphic information in the form of XML
• Functional design information and constraints

7.2 Conclusions

The focus of this study was to discover how useful techniques from the world of
manufacturing and Artificial Intelligence are in the light of the unique characteristics of the
early phases of design. To achieve these three sub-problems were identified.

In sub-problem 1, the hypothesis was that a building can be seen as a production product and
hence established Systems Engineering techniques and quality measures can be applied to the
briefing and design process. Although there are many similarities between the two industries
in the sense that efficiency and globalisation are forcing improvement there are also
significant and problematic differences. The numerous examples studied from the various out-
of-industry perspectives indicated that structured methodologies can only assist at the various
tacit and explicit levels, never equal the phenomenal creative capabilities of the human brain.
It is clear that the techniques should not be seen in isolation, but rather forms a continuum that
should be used when appropriate. Rule-Based Reasoning is useful with for example acoustical
design, Model-Based Reasoning assists with the testing of structural behaviour of a design,
wind loads and circulation. Case-Based Reasoning is useful to remember previous designs
and as such extend the designer’s vocabulary. Due to the importance of context in
architectural design CBR proved to be useful as a means of recording past experience for
possible future use and in the process expedite the design process.

In sub-problem 2, the hypothesis was that the architectural briefing and design process could
be structured in such a way that it can be implemented on a software system to ensure total
life cycle design. The surprising discovery was made that the structuring and storage of in-
context design information will become more important than the software application that
originally created it. This study has shown that the use of XML as a design language is a
viable alternative for the highly complex Building Product Models currently proposed. The
flexible structure and extendibility of XML forms a useful basis for a design language and
further processing can be achieved by means of style languages such as CSS and XSL. It is
already viable to display XML data in vector format by means of VML and the SVG standard
announced very recently. The other forthcoming W3C standards such as the XML Fragment
Interchange Working Draft and XML Query Data Model will leverage XML even further.
Although XML was not primarily intended to be used as a means of storing BPM type of
knowledge the inherent characteristics makes it very powerful. According to Cohen
(2000:257) XML will, if it widely adopted, result in data sharing and electronic commerce in
the building industry on a scale not previously imagined. This is confirmed by the recent
(September 1999) first meeting of the aecXML Working Group that was held in Dallas,
Texas, attended by over 130 companies and organisations (Cohen 2000:259).

The intelligent component ARGOS, together with the miniature Internet browser developed,
makes it feasible to source any design information (graphic and alphanumeric) from anywhere
in the world inside any number of autonomous instances of ARGOS in any Microsoft

University of Pretoria etd

206

compliant container. ARGOS is a non-prescriptive autonomous component that makes it
possible to use any external process to manipulate or interrogate it. ARGOS can be used at
any level of specificity, but practical considerations are likely to limit it to larger architectural
units such as spaces, buildings and facilities. ARGOS succeeded in integrating the two
important technologies of object-oriented design and XML.

It is clear that the approaches previously followed in software products placed the software
application more centrally. This is seen in movements such as Knowledge-Intensive CAD.
Microsoft started a new approach that placed the intelligent electronic document in a more
central position. The possibilities of this approach were explored throughout the dissertation.
Although this is very different from the more traditional approach followed in PREMIS and
the prototype AEDES, it is more likely to succeed. The reasons for this can be summarised as:

• A Low-level minimum entry-level platform can be used
• Low cost starting point
• The convenience of portable object technology possibly structured in the form of cases
• Avoids the use of expensive CAD during the early briefing and design stages
• The same technology can be used in small and very complex applications
• The starter kit (intelligent design broker) can be used throughout the life cycle of the

building
• Independent third parties can produce starter kits (packaged cases)
• The user can use his own case templates to facilitate what if questions
• Ubiquitous availability of structured design knowledge through the Internet for

international teams

In sub-problem 3, the hypothesis was that architectural designs and design parameters can be
quantified and electronically packaged in such a way as to expedite future designs that require
similar designs or parts of designs. The Microsoft object technologies (ActiveX) as well as
the modern interpretation of Object Oriented Computer Aided Design prove that it is the
preferred way to store architectural designs. If the power of the Internet is taken account of
then the design language that is likely to be preferred would be XML.

7.3 Recommendations for further work

The ARGOS methodology would still require more research to refine the initial prototype. It
is envisaged that different generic types of ARGOS objects should be created to support the
various aspects of the design activities better. The problem of adaptation was not adequately
addressed in this thesis. The implementation of constraints will also need more research.

From the work done in AEDES it is clear that an important requirement is the further
development of technologies such as Construction Project Simulators. This could be based on
ARGOS type technology to provide professionals with the ability to manipulate project
information across the life cycle of a facility and to create what-if scenarios by means of
affordable desktop tools.

A major challenge is to change to a paradigm where the life cycle information infrastructure
becomes primary and the applications that use it secondary. The current international
emphasis of XML indicates that it is important that researchers first establish a sound BPM
(the means of expressing design information) basis before placing too much emphasis on
formalising processes.

University of Pretoria etd

207

7.4 Assessment

Although exciting breakthroughs were made in this study with the discovery of an intelligent
component that could be used to bridge structured methodologies and the creative aspects of
design there are unfortunately also a number of shortcomings such as:

• XML was never designed as a means to structure design knowledge. It will take a while

to formalise and prove the idea to other academics and the commercial world.
• The graphic XML examples shown still have mistakes in the processing of text and the

correct translation of the bulge factors for arcs and circles. At this stage the XSL style
sheet translation into VML is still primitive and slow. This will improve significantly as
SVG begins to gain wider acceptance. However the success of XML is fortunately not
dependent on these technologies that use it as basis for processing. With the information
overload experienced in the global community the ability to deliver information profiled
to the needs of the individual knowledge worker is important. Here XML is again a useful
means of achieving this.

• ARGOS in its present form is very orthogonal and makes the design of organic free
flowing forms difficult. It is impossible to say whether designers will accept this new type
of blackboard autonomous component approach in design. At the moment CAD still
dominates the production of drawings although experience has shown that the
contribution of CAD to the creative aspects of design has been disappointing over many
years.

• The Internet bandwidth in South Africa is at the moment too slow for the collaborative
projects envisaged.

• The unsatisfactory contribution up to date of Knowledge-Based Computer-Aided
Architectural Design in the conceptual stages of design will make critics highly sceptic as
to the possibilities of ARGOS. In the light of the exciting new information supporting
technologies available today, the author is of the opinion that a sensible solution is
imminent.

University of Pretoria etd

208

References

Agility Forum. 1997. Next-generation manufacturing. Bethlehem, PA : Agility Forum.

AKAO, Y. 1997. QFD: Past, present and future, in Proceedings of the third annual
international QFD symposium. Linköping, Sweden.

ANUMBA, C.J., Baron, G. & Evbuomwan, N.F.O. 1997. Communications issues in
concurrent life-cycle design and construction, in BT Technology Journal, 15(1), Jan. 1997.

APPLEMAN, D. 1999. Developing COM/ ActiveX components with Visual Basic 6.
Indianapolis, IN. : Sams.

BELLMAN, R. 1978. An introduction to artificial intelligence: can computers think? San
Francisco, California : Boyd & Fraser Publishing Company.

BELLMAN, R.E. & Zadeh, L.A. 1970. Decision-making in a fuzzy environment, in
Management Science, 17(4), Dec. 1970:141-164.

BERNDES, S. & Stanke, A. 1996. A concept for revitalisation of product development, in
Concurrent simultaneous engineering systems. Berlin : Springer-Verlag.

BIEMEL, W. 1976. Martin Heidegger. An Illustrated Study by Walter Biemel. London, New
York: Harcourt Brace Jovanovich.

BOHN, R.E. 1994. Measuring and managing technological knowledge. Sloan Management
Review Association.

BOJADZIEV, G. & Bojadziev, M. 1995. Fuzzy sets, fuzzy logic, applications. Singapore :
World Scientific.

BöRNER, K. 1998. CBR for design, in Lecture Notes in artificial intelligence: Case-based
reasoning technology. Berlin : Springer-Verlag.

BOUZEGHOUB, M., Gardarin, G., & Valduriez, P. 1997. Object Technology: Concepts and
Methods. Boston : International Thomson Computer Press.

CARRARA, G. & Kalay, Y.E. 1994. Knowledge-based computer-aided architectural design.
Amsterdam : Elsevier.

CHARLTON, C.T., Ball, N.R. & Matthews, P.C. 1998. Towards mechanical design object
reuse, in Artificial intelligence in design. Dordrecht: Kluwer Academic Publishers.

COAD, P. & Yourdan, E. Object-Oriented Analysis. Englewood Cliffs, NJ: Yourdan press.

COHEN, L. 1995. Quality Function Deployment: How to make QFD work for you. Reading,
MA : Addison-Wesley.

COHEN, J. 2000. Communication and Design with the internet. New York : W.W. Norton &
Company.

University of Pretoria etd

209

CONRADIE, D.C.U. & Küsel, K. 1999. The use of QFD for architectural briefing and design,
in Transactions from the eleventh symposium on Quality Function Deployment. Novi,
Michigan : QFD Institute.

CONRADIE, D.C.U. & Abbott, G. 1996. The use of a Facilities Management System for the
South African National Health Facilities Audit, in Proceedings of the CIB W70 Symposium.
Helsinki:71-74.

CRAIG, J.C. & Webb, J. 1997. Microsoft visual Basic 5.0 developer’s workshop. 4th edition.
Redmond, Washington : Microsoft Press.

DAVENPORT, T.H. 1997. Information Ecology: Mastering the information and knowledge
environment. New York, NY : Oxford University Press.

DEBENHAM, J.K. 1998. Knowledge engineering. Berlin : Springer-Verlag.

DREYFUS, H.L. 1993. What computers still can’t do. Cambridge, Mass. : The MIT Press.

DETTMER, H.W. 1997. Goldratt’s theory of constraints: A systems approach to continuous
improvement. Milwaukee, Wisconsin : Quality Press.

DOMESHEK, E.A., Kolodner, J.L. & Zimring, C.M. 1994. The Design of a Tool Kit for
Case-Based Design Aids. Internet:
http://www.cc.gatech.edu/aimosaic/faculty/kolodner/muse.html. Accessed: 03 October 2000.

EASTMAN, C.M. 1999. Building Product Models: Computer Environments Supporting
Design and Construction. Boca Raton : CRC Press.

ENGELBRECHT, B. 1998. Business Engineering: the object oriented framework, in Course
documentation, DISCON Specialists CC. CSIR Training Centre, Pretoria.

FEIJO, B., Rodacki Gomes, P.C., Bento, J., Scheer, S. & Cerqueira, R. 1998. Distributed
agents supporting event-driven design processes, in Artificial intelligence in design.
Dordrecht : Kluwer Academic Publishers.

FLEMMING, U. 1994. Artificial Intelligence and Design: A Mid-term Review, in
Knowledge-based computer-aided architectural design. Amsterdam : Elsevier.

FLEMMING, U. 1994. Case-based design in the SEED system, in Knowledge-based
computer-aided architectural design. Amsterdam : Elsevier.

FOX, S. 1995. Introspective Learning for Case-Based Planning. PhD thesis, Indiana :
Department of Computer Science, Indiana University.

GartnerGroup. 1998. Knowledge management innovation. Stamford, Connecticut :
GartnerGroup.

GartnerGroup. 1998. Collaboration and groupware. Stamford, Connecticut : GartnerGroup.

GartnerGroup. 1998. Knowledge management architectures. Stamford, Connecticut :
GartnerGroup.

GOEL, A.K., Kolodner, J.L., Pearce, M. & Zimring, C. 1991. Towards a Case-Based Tool for
Aiding Conceptual Design Problem Solving, in Proceedings of the DARPA Case-Based

University of Pretoria etd

http://www.cc.gatech.edu/aimosaic/faculty/kolodner/muse.html

210

Reasoning Workshop. Washington : Defense Advanced Research projects Agency
Information Science and Technology Office.

GOLDRATT, M & Cox J. 1993. The Goal. Aldershot, Hampshire : Gower Publishing
Company.

GOLDRATT, E. 1990. What is this thing called theory of constraints. Croton-on-Hudson,
New York : North River Press.

GROBLER, L.J., Knoetze, T. & Truter, R. 1997. BEARS Building Enivironmental Assessment
and Rating System for South Africa. Pretoria : CSIR Division of Building Technology.

GROOVER, M. 1996. Fundamentals of modern manufacturing. Upper Saddle River, New
Jersey : Prentice Hall.

HARARI, O. 1999. Leapfrogging the competition. Rocklin, California : Prima Publishing.

HAROLD, E.R. 1999. XML Bible. Foster City, California : IDG Books WorldWide.

HILL, R.C., Pienaar, J., Bowen, PA. & Küsel. 1998. The transition to sustainability in the
planning, construction and management of the built environment in South Africa, in
Proceedings of the CIB World Building Congress, 7-12 June, 1998, Gävle, Sweden.

HINRICHS, T.R. 1991. Problem Solving In Open Worlds: A Case Study In Design. PhD
thesis, Atlanta : Artificial Intelligence Group College of Computing, Georgia Institute of
Technology.

HJöRLAND, B. 1994. Nine principles of knowledge organization, in Knowledge
Organization and Quality Management. Frankfurt/ Main: Indeks Verlag.

IEEE Computer Society. 1996. IEEE Std 1233-1996: IEEE Guide for developing system
requirements specifications. New York, NY : Institute of Electrical and Electronics
Engineers.

International Alliance for Interoperability. 1997. Industry foundation classes. Washington,
DC : IAI.

KAPLAN, S. 1996. An introduction to TRIZ: the Russian theory of inventive problem solving.
Ideation International, Inc.

KESSLER, S. 1996. Enabling technologies I, the CONSENS platform, in Concurrent
simultaneous engineering systems. Berlin : Springer-Verlag.

KLIR, G.J. & Yuan, B. 1995. Fuzzy sets and fuzzy logic: Theory and applications. Upper
Saddle River, NJ. : Prentice Hall.

KORN, G. 1996. MDS: A system for decision support in the economic efficiency analysis
and controlling of the product developing process, in Concurrent simultaneous engineering
systems. Berlin : Springer-Verlag.

KOLODNER, J. 1993. Case-based reasoning. San Mateo, California : Morgan Kaufmann
Publishers.

University of Pretoria etd

211

KOLODNER, J.L. 1996. Making the implicit explicit: Clarifying the principles of Case-
Based Reasoning, in Case-Based Reasoning edited by D.B. Leake. Menlo Park, California :
AAAI Press.

KOLODNER, J.L. 1996. A tutorial introduction to CBR, in Case-Based Reasoning edited by
D.B. Leake. Menlo Park, California : AAAI Press.

KüSEL, K. 2000. The Requirements of an Integrated Project Environment in the South
African Construction Industry. MSc thesis, Pretoria : Faculty of Engineering, the Built
Environment and Information Technology, University of Pretoria.

LASZLO, E. 1996. The systems view of the world. Cresskill, NJ. : Hampton Press.

LAWRENCE, J. 1993. Introduction to Neural Networks. Nevada City, CA.: California
Scientific Software Press.

LEIBMANN, M. 1999. A Way to KM Solutions. Things to Consider when Building
Knowledge Management Solutions with Microsoft Technologies. Microsoft.

LOMAX, P. 1997. Laura Lemay’s web workshop ActiveX and VBScript. Indianapolis, Indiana
: Sams.net Publishing.

MAZUR, G. 2001. Theory of Inventive Problem Solving (TRIZ). Internet: http://www-
personal.engin.umich.edu/~gmazur/triz/ .Accessed: 26 June 2001.

MEADOWS, D.H., Meadows, D.L., Randers, J. and Behrens, W.W. 1975. The limits to
growth. London : Pan Books.

MENGES, R. & Eigenmann, U. 1996. Design of production facilities, in Concurrent
simultaneous engineering systems. Berlin : Springer-Verlag.

MEYER, B. 1988. Object-oriented software construction. New York : Prentice Hall.

NAGAMACHI, M. 1999a. Kansei Engineering and new product development, in Kansei
Engineering Workshop at the eleventh symposium on Quality Function Deployment. Novi,
Michigan : QFD Institute.

NAGAMACHI, M. 1999b. Kansei engineering and its applications in automotive design, in
Kansei Engineering Workshop at the eleventh symposium on Quality Function Deployment.
Novi, Michigan : QFD Institute.

NONAKA, I. 1998. The knowledge-creating company, in Harvard business review on
knowledge management. Boston, Mass. : Harvard Business School Publishing.

O’SULLIVAN, B. & Bowen, J. 1998. A constraint-based approach to supporting conceptual
design, in Artificial intelligence in design. Dordrecht : Kluwer Academic Publishers.

OKSALA, T. 1994. KAAD: Evolutionary and cognitive aspects, in Knowledge-based
computer-aided architectural design. Amsterdam : Elsevier.

OXMAN, R. & Oxman, R. 1994. Case-based design: cognitive models for case libraries, in
Knowledge-based computer-aided architectural design. Amsterdam : Elsevier.

POPOV, E.V. 1982. Talking with computers in natural language. Berlin : Springer-Verlag.

University of Pretoria etd

http://www-personal.engin.umich.edu/~gmazur/triz/

212

PUGH, S. 1996. Creating innovative products using total design. Reading, MA : Addison-
Wesley.

RICHENS, P. 1994. Does knowledge really help? CAD research at the Martin Centre, in
Knowledge-based computer-aided architectural design. Amsterdam : Elsevier.

RIESBECK, C.K. 1996. What next? The future of case-Based Reasoning in Post-Modern AI,
in Case-Based Reasoning edited by D.B. Leake. Menlo Park, California : AAAI Press.

RISSLAND, E.L., Basu, C., Daniels, J.M., Rubenstein, Z.B. & Skalak, D.B. 1991. A
Blackboard-based Architecture for CBR: An Initial Report, in Proceedings of Case-Based
Reasoning Workshop Sponsered by Defence Research Projects Agency Information Science
and Technology Office. San Mateo, California : Morgan Kaufman Publishers.

ROSS, P.J. 1988. Taguchi techniques for quality engineering. New York : McGraw-Hill.

RUMBAUGH, J., Blaha, M. Premerlani, W., Eddy, F. & Lorensen, W. 1991. Object-oriented
modelling and design. Englewood Cliffs, New Jersey : Prentice-hall.

SAATY, T.L. 1980. The analytic hierarchy process. New York : McGraw-Hill.

SENGUPTA, A., Wilson, D.C. & Leake D.B. 1999. On constructing the right sort of CBR
implementation. Computer Science Department, Indiana University.

SHEA, K. & Cagan, J. 1998. Generating structural essays from languages of discrete
structures, in Artificial intelligence in design. Dordrecht : Kluwer Academic Publishers.

SIMOFF, S.J. & Maher, M.L. 1998. Designing with the activity/ space ontology, in Artificial
intelligence in design. Dordrecht : Kluwer Academic Publishers.

SIMINA, M. 1999. Enterprise-directed reasoning: opportunism and deliberation in creative
reasoning. PhD thesis, Atlanta : Artificial Intelligence Group College of Computing, Georgia
Institute of Technology.

SMITH, PG. & Reinertsen, D.G. 1998. Developing Products in Half the Time. New York :
John Wiley & Sons.

SNIDER, J.G. & Osgood, C.E. 1999. Semantic differential technique, in Kansei Engineering
Workshop at the eleventh symposium on Quality Function Deployment. Novi, Michigan :
QFD Institute.

SPARRIUS, A. 1998. Specification Practices, in Course documentation, Ad Sparrius System
Engineering and Management (Pty) Ltd. South Africa, June 1998, Armscor Training Centre.

TECHNOSOLVE, CSIR. 1998. World class products and services with Quality Function
Deployment, in Workshop Guide presented collaboratively by TechnoSolve and Aerotek,
CSIR.

TERNINKO, J. 1999. Socially responsible QFD, in Transactions from the eleventh
symposium on Quality Function Deployment. Novi, Michigan : QFD Institute.

ULRICH, KT. & Eppinger, S.D. 1995. Product design and development. New York :
McGraw-Hill.

University of Pretoria etd

213

WATSON, I. 1997. Appying Case-Based Reasoning.: Techniques for enterprise systems. San
Francisco, California : Morgan Kaufmann Publishers.

WHEELWRIGHT, S.C. & Clark, K.B. 1992. Revolutionizing product development. New
York : The Free Press.

WILKE, W., Smyth, B. & Cunningham, P. 1998. Using configuration techniques for
adaptation, in Lecture Notes in artificial intelligence: Case-based reasoning technology.
Berlin : Springer-Verlag.

WORLD WIDE WEB CONSORTIUM. 1998. Extensible Markup Language (XML) 1.0.
W3C Recommendation 10 February 1998. Internet: http://www.w3.org/TR/1998/REC-xml-
19980210.html . Accessed: 18 July 2000.

WORLD WIDE WEB CONSORTIUM. 2000. Scalable Vector Graphics (SVG) 1.0
Specification. W3C Working Draft 29 June 2000. Internet: http://www.w3.org/TR/2000/WD-
SVG-20000629/index.html . Accessed: 18 July 2000.

WORLD WIDE WEB CONSORTIUM. 1999. XML Fragment Interchange. W3C Working
Draft 30 June 1999. Internet: http://www.w3.org/1999/06/WD-xml-fragment-19990630.html
. Accessed: 18 July 2000.

WORLD WIDE WEB CONSORTIUM. 2000. XML Query Data Model. W3C Working Draft
11 May 2000. Internet: http://www.w3.org/TR/2000/WD-query-datamodel-20000511 .
Accessed: 18 July 2000.

YOSHIOKA, M., Oosaki, M. & Tomiyama, T. 1996. An application of quality function
deployment to functional modelling in a knowledge intensive design environment, in
Knowledge intensive CAD Volume 1. London : Chapman & Hall.

ZIEMKE, M.C. & Spann, M.S. 1993. Concurrent engineering’s roots in the World War II era,
in Concurrent Engineering contemporary issues and modern design tools. London : Chapman
& Hall.

ZULTNER, R.E. 1999. Defining customer needs for brand new products, in Transactions
from the eleventh symposium on Quality Function Deployment. Novi, Michigan : QFD
Institute.

ZVEGINTSEV, V.A. 1976. Predlozzheye I yevo otnoshenye k yaziku i rechi. Moscow :
Mosovskiy Universitet.

University of Pretoria etd

http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/2000/WD-SVG-20000629/index.html
http://www.w3.org/1999/06/WD-xml-fragment-19990630.html
http://www.w3.org/TR/2000/WD-query-datamodel-20000511

214

Appendix A: Implicit linking in PREMIS

The method of implicit linking was used in the precedent system PREMIS as a means of
connecting alphanumeric information in a relational database to the graphic objects in an
indexed graphical object library. This was a very convenient means of connecting diverse
sources of information together. Consider Code Fragment 6 below that contains the ASCII
representation of a simple rectangular graphic entity in PREMIS. The subject label
indicates that the subject under consideration is related to SPACE. The object label
indicates that the space is called FS28:B7:F0:E2. This is essentially a hierarchy that
indicates that the graphical object describes the shape of a room E2 that occurs on floor F0 in
a building called B7 and a facility identified as FS28. The : separates the different parts of
the object name or facets. It is interesting to note that this type of hierarchy fits naturally into
the modern XML hierarchical paradigm. At the time when this format was used the
processing speed of computers were such that raw ASCII code would have been inefficient.
The fragment below was compiled into an efficient binary format and indexed with a highly
optimised hashing procedure. The efficiency of current computers makes the use of structured
ASCII code such as HTML, XML and the code fragment below feasible. The use of ASCII
coding huge advantages such as:

• Very easy to read and understand
• Non-proprietary neutral knowledge formats that can be interpreted by any compliant

software applications
• Very long life of data that can easily outlive the application that originally created it

. . .
subject
SPACE
object
FS28:B7:F0:E2
Hook
43.814300 –149.229000 0.000000
extents
1
4
40.965500 –149.532200 0.000000
44.323400 –152.048800 0.000000
46.663200 –148.926800 0.000000
43.305300 –146.410200 0.000000
drawing
E2
Scale
1.000000
rotation
0.000000 1.000000
world
0.000000 0.000000 0.000000
. . .

Code Fragment 6: Structure of a typical PREMIS graphical record

To connect a relational database record to the graphical record it is only necessary to create a
database table record with four not null keys in a database such as Oracle or SQLServer.
Relational database technology ensures that the combination of the key fields will always be
unique. Two further constraints were placed on the database records:

University of Pretoria etd

215

The key fields must only contain uppercase characters
All key fields must have values (not null)

If during a query a user wants to display all graphical records related to the database a very
simple SQL statement could be used such as:

SELECT
Space.SiteId||’:’||Space.BuildingId||’:’||Space.FloorId||’:’||Space.S
paceId FROM Space WHERE SiteId = ‘FS28’

By means of the concatenation of the key fields in abovementioned statement the graphical
and alphanumeric records are logically related. This method is known as implicit linking
because graphical and alphanumeric records are related by virtue of the similarity in the
names. This offers the following important advantages:

• Data from diverse sources can easily be related together
• One alphanumeric relational database record can have multiple graphical representations

ranging from outline to highly detailed
• Different operators (knowledge workers) can create the information knowing that it is

logically related
• Information can conveniently be exported and imported from diverse distributed

environments

The disadvantage of this method is that classification system must still be agreed on
beforehand. Facilities managers have to decide what the codes should be and the graphical
records must be structured in a similar way. This can nowadays be overcome by using a
Global Unique Identifier (GUID) such as used in ActiveX controls. This provides the ultimate
in globally unique codes. The only drawback of a GUID is that the code is non-mnemonic of
nature making it difficult to know on face value what it relates to.

University of Pretoria etd

216

Appendix B: PREMIS search criteria definition

The Following logic has been used for the search area definition in PREMIS.

Consider polygon p1 … pn and an arbitrary polygon s.

O if s is outside pi
Define a function T (s,i) = { I if s is inside pi
 C if s if s crosses pi
Union

Inside: i 0  n : T(s,i) = I
Inside crossing: i 0  n : T(s,i) 0 {I,C}
Crossing: i 0  n : T(s,i) = C ϖ i 0  n : T(s,i) 0 {O,C}

Intersection

Inside: i 0  n : T(s,i) = I
Inside crossing: i 0  n : T(s,i) 0 {I,C}
Crossing: i 0  n : T(s,i) 0 {I,C} ϖ i 0  n : T(s,i) = C

Excluded intersection

Inside: i 0  n : T(s,i) = I ϖ i 0  n : T(s,i) = O
Inside crossing: i 0  n : T(s,i) 0 {I,C} ϖ i 0  n : T(s,i) 0 {O,C}
Crossing: i 0  n : T(s,i) = C ϖ (i 0  n : T(s,i) 0 {I,C} ω i 0  n : T(s,i) 0

{O,C})

University of Pretoria etd

217

Appendix C: Interface an ActiveX control to an Excel
spreadsheet

Private Sub ArgosAB_GotFocus()

Worksheets("Sheet1").Range("A1:A10").Value = ArgosAB.GrossArea
 txtArgos.Text = ArgosAB.GrossArea
End Sub

Private Sub ArgosAB_LostFocus()
 Worksheets("Sheet1").Range("A1:A10").Value = ""
 txtArgos.Text = "RESET TO EMPTY"
End Sub

University of Pretoria etd

218

Appendix D: XSL stylesheet to convert XML into VML
for web page display

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:v="urn:schemas-microsoft-com:vml">

 <xsl:template match="MicroGDS">
 <xsl:variable name="LX">
 <xsl:for-each select="Layer/Extent">
 <xsl:sort select="number(@LX)" data-type="number" order="ascending"/>
 <xsl:if test="position()=1">
 <xsl:value-of select="number(@LX)"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>

 <xsl:variable name="LY">
 <xsl:for-each select="Layer/Extent">
 <xsl:sort select="number(@LY)" data-type="number" order="ascending"/>
 <xsl:if test="position()=1">
 <xsl:value-of select="number(@LY)"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>

 <xsl:variable name="HX">
 <xsl:for-each select="Layer/Extent">
 <xsl:sort select="number(@HX)" data-type="number" order="descending"/>
 <xsl:if test="position()=1">
 <xsl:value-of select="number(@HX)"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>

 <xsl:variable name="HY">
 <xsl:for-each select="Layer/Extent">
 <xsl:sort select="number(@HY)" data-type="number" order="descending"/>
 <xsl:if test="position()=1">
 <xsl:value-of select="number(@HY)"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:variable>

 <xsl:variable name="SX">
 <xsl:value-of select="$HX - $LX"/>
 </xsl:variable>

 <xsl:variable name="SY">
 <xsl:value-of select="$HY - $LY"/>
 </xsl:variable>

 <xsl:variable name="WW">
 800
 </xsl:variable>

 <xsl:variable name="HH">
 <xsl:value-of select="$WW * $SY div $SX"/>
 </xsl:variable>

 <v:group
 style="position: absolute; margin-left: 10px; margin-top: 10px; width:
{$WW}px; height: {$HH}px;"
 coordsize="{$SX},{$SY}"
 coordorigin="{$LX},{$LY}"
 >

 <!--frame-->

 <v:polyline
 points="{$LX},{$LY},{$HX},{$LY},{$HX},{$HY},{$LX},{$HY},{$LX},{$LY}"
 />

 <!--layer-->

University of Pretoria etd

219

 <xsl:for-each select="Window/Phase">
 <xsl:if test="not(@State[.='Invisible'])">

 <xsl:variable name="LinkNo">
 <xsl:value-of select="@Layer"/>
 </xsl:variable>

 <xsl:for-each select="../../Layer">

 <xsl:if test="@LinkNumber[.= $LinkNo]">

 <!--lines-->
 <xsl:for-each select="OCD/Object/LinePrimitive">

 <v:polyline filled="false">
 <xsl:attribute name="points">
 <xsl:for-each select="Polyline/Point">
 <xsl:value-of select="number(@X)"/>,
 <xsl:value-of select="$HY + $LY - number(@Y)"/>,
 </xsl:for-each>
 </xsl:attribute>
 </v:polyline>

 </xsl:for-each>
 <!--end line-->

 <!--text-->
 <v:shapetype id="TextPrim" coordsize="21600,21600"
 path="m0,-14400l21600,-14400e">

 <v:path textpathok="t" />
 <v:textpath on="t" fitshape="t" xscale="t"/>
 </v:shapetype>

 <xsl:for-each select="OCD/Object/TextPrimitive">

 <!--extent-->
 <xsl:variable name="CharLX">
 <xsl:for-each select="Extent">
 <xsl:value-of select="number(@LX)"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="CharLY">
 <xsl:for-each select="Extent">
 <xsl:value-of select="$HY + $LY - number(@LY)"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="CharHX">
 <xsl:for-each select="Extent">
 <xsl:value-of select="number(@HX)"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="CharHY">
 <xsl:for-each select="Extent">
 <xsl:value-of select="$HY + $LY - number(@HY)"/>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="CharEX">
 <xsl:value-of select="$CharHX - $CharLX"/>
 </xsl:variable>
 <xsl:variable name="CharEY">
 <xsl:value-of select="$CharLY - $CharHY"/>
 </xsl:variable>

 <!--Char String-->
 <xsl:variable name="CharStringExpanded">
 <xsl:value-of select="ExpandedText"/>
 </xsl:variable>
 <xsl:variable name="CharString">
 <xsl:choose>
 <xsl:when test="$CharStringExpanded=''">
 <xsl:value-of select="DefinitionText"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$CharStringExpanded"/>

University of Pretoria etd

220

 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!--CharStyle-->
 <xsl:variable name="CharFontType">
 <xsl:value-of select="@Charstyle"/>
 </xsl:variable>
 <xsl:variable name="CharFontFamily">
 <xsl:choose>
 <xsl:when test="$CharFontType=''">
 Times New Roman
 </xsl:when>
 <xsl:when test="$CharFontType='DEFAULT'">
 Times New Roman
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="../../../../Styles/TTCharstyle">
 <xsl:if test="@Name[.= $CharFontType]">
 <xsl:value-of select="@FontName"/>
 </xsl:if>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!--Italic-->
 <xsl:variable name="CharItalic">
 <xsl:choose>
 <xsl:when test="$CharFontType=''">
 normal
 </xsl:when>
 <xsl:when test="$CharFontType='DEFAULT'">
 normal
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="../../../../Styles/TTCharstyle">
 <xsl:if test="@Name[.=$CharFontType]">
 <xsl:choose>
 <xsl:when test="@Italic='true'">
 italic
 </xsl:when>
 <xsl:otherwise>
 normal
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!--text align-->
 <xsl:variable name="CharJustify">
 <xsl:value-of select="@Justification"/>
 </xsl:variable>
 <xsl:variable name="CharAlign">
 <xsl:choose>
 <xsl:when test="$CharJustify='BL'">
 left
 </xsl:when>
 <xsl:when test="$CharJustify='CL'">
 left
 </xsl:when>
 <xsl:when test="$CharJustify='TL'">
 left
 </xsl:when>
 <xsl:when test="$CharJustify='BC'">
 center
 </xsl:when>
 <xsl:when test="$CharJustify='CC'">
 center
 </xsl:when>
 <xsl:when test="$CharJustify='TC'">
 center
 </xsl:when>
 <xsl:when test="$CharJustify='BR'">

University of Pretoria etd

221

 right
 </xsl:when>
 <xsl:when test="$CharJustify='CR'">
 right
 </xsl:when>
 <xsl:when test="$CharJustify='TR'">
 right
 </xsl:when>
 </xsl:choose>
 </xsl:variable>

 <v:shape type="#TextPrim"
 style="position:absolute; top: {$CharLY} ; left: {$CharLX};
width: {$CharEX} ;height: {$CharEY};"
 adj="0" fillcolor="black" strokeweight="1pt">

 <v:fill method="linear sigma" focus="100%"/>
 <v:textpath
 style='font-family : {$CharFontFamily};
 font-style : {$CharItalic};
 font-weight : normal;
 v-text-align: {$CharAlign};
 v-text-kern:t'
 trim="t" fitpath="t" xscale="f" string="{$CharString}"/>
 </v:shape>

 </xsl:for-each>
 <!--end text-->

 </xsl:if>
 </xsl:for-each>

 </xsl:if>
 </xsl:for-each>

 </v:group>
 </xsl:template>
</xsl:stylesheet>

University of Pretoria etd

222

Appendix E: Visual Basic code to implement a
minimal web browser

Option Explicit
Public StartingAddress As String
Dim mbDontNavigateNow As Boolean

Private Sub cboAddress_Click()
 If mbDontNavigateNow Then Exit Sub
 timTimer.Enabled = True
 brwWebBrowser.Navigate cboAddress.Text

End Sub

Private Sub cboAddress_KeyPress(KeyAscii As Integer)
 On Error Resume Next
 If KeyAscii = vbKeyReturn Then
 cboAddress_Click
 End If
End Sub

Private Sub cmdBack_Click()
 timTimer.Enabled = True
 brwWebBrowser.GoBack
End Sub

Private Sub cmdForward_Click()
 timTimer.Enabled = True
 brwWebBrowser.GoForward

End Sub

Private Sub cmdHome_Click()
 timTimer.Enabled = True
 brwWebBrowser.Navigate StartingAddress
End Sub

Private Sub cmdRefresh_Click()
 timTimer.Enabled = True
 brwWebBrowser.Refresh
End Sub

Private Sub cmdSearch_Click()
 timTimer.Enabled = True
 brwWebBrowser.GoSearch
End Sub

Private Sub cmdStop_Click()
 timTimer.Enabled = False
 brwWebBrowser.Stop
 Me.Caption = brwWebBrowser.LocationName
End Sub

Private Sub Form_Load()
 On Error Resume Next
 Me.Show
 Form_Resize

 StartingAddress = "http://conradie/welcome.htm"

University of Pretoria etd

223

 If Len(StartingAddress) > 0 Then
 cboAddress.Text = StartingAddress
 cboAddress.AddItem cboAddress.Text
 timTimer.Enabled = True
 brwWebBrowser.Navigate StartingAddress
 End If

End Sub

Public Sub brwWebBrowser_NavigateComplete(ByVal URL As String)

 Dim i As Integer
 Dim bFound As Boolean
 Me.Caption = brwWebBrowser.LocationName
 For i = 0 To cboAddress.ListCount - 1
 If cboAddress.List(i) = brwWebBrowser.LocationURL Then
 bFound = True
 Exit For
 End If
 Next i
 mbDontNavigateNow = True
 If bFound Then
 cboAddress.RemoveItem i
 End If
 cboAddress.AddItem brwWebBrowser.LocationURL, 0
 cboAddress.ListIndex = 0
 mbDontNavigateNow = False

End Sub

Private Sub Form_Resize()
 cboAddress.Width = Me.ScaleWidth - 100
 brwWebBrowser.Width = Me.ScaleWidth - 100
 brwWebBrowser.Height = Me.ScaleHeight - 200
End Sub

Private Sub timTimer_Timer()
 If brwWebBrowser.Busy = False Then
 timTimer.Enabled = False
 Me.Caption = brwWebBrowser.LocationName
 Else
 Me.Caption = "Working..."
 End If
End Sub

University of Pretoria etd

224

Appendix F: Visual Basic code to implement ARGOS
intelligent component

'Default Property Values:

Const m_def_BackColor = 0
Const m_def_ForeColor = 0
Const m_def_Enabled = 0
Const m_def_BackStyle = 0
Const m_def_BorderStyle = 0
Const m_def_AA_xdim = 1000
Const m_def_AA_ydim = 1000
Const m_def_AA_zdim = 1000
Const m_def_AA_scale = 1
Const m_def_AA_unit = "mm"
Const m_def_AE_construction_area = 1000
Const m_def_AE_cost = 1
Const m_def_AE_durability = 1
Const m_def_AE_energy_use = 1
Const m_def_AE_grossarea = 1
Const m_def_AE_nettarea = 1
Const m_def_AE_rentable_area = 1
Const m_def_AE_shape = 6
Const m_def_AE_volume = 1
Const m_def_AF_function = ""
Const m_def_AT_hearing = ""
Const m_def_AT_internal_sensitivity = ""
Const m_def_AT_recognition = ""
Const m_def_AT_sight = ""
Const m_def_AT_smell = ""
Const m_def_AT_taste = ""
Const m_def_AE_wall_space_ratio = 0.9

'Property Variables:

Dim m_BackColor As Long
Dim m_ForeColor As Long
Dim m_Enabled As Boolean
Dim m_Font As Font
Dim m_BackStyle As Integer
Dim m_BorderStyle As Integer
Dim m_AA_xdim As Double
Dim m_AA_ydim As Double
Dim m_AA_zdim As Double
Dim m_AA_scale As Double
Dim m_AA_unit As String
Dim m_AE_construction_area As Double
Dim m_AE_cost As Currency
Dim m_AE_durability As Double
Dim m_AE_energy_use As Double
Dim m_AE_grossarea As Double
Dim m_AE_nettarea As Double
Dim m_AE_rentable_area As Double
Dim m_AE_shape As Double
Dim m_AE_volume As Double
Dim m_AF_function As String
Dim m_AT_hearing As String
Dim m_AT_internal_sensitivity As String
Dim m_AT_recognition As String
Dim m_AT_sight As String
Dim m_AT_smell As String
Dim m_AT_taste As String
Dim m_AE_wall_space_ratio As Double

'Event Declarations:

Event Click()
Event DblClick()
Event KeyDown(KeyCode As Integer, Shift As Integer)
Event KeyPress(KeyAscii As Integer)
Event KeyUp(KeyCode As Integer, Shift As Integer)
Event MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
Event MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
Event MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)

University of Pretoria etd

225

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=8,0,0,0
Public Property Get BackColor() As Long
 BackColor = m_BackColor
End Property

Public Property Let BackColor(ByVal New_BackColor As Long)
 m_BackColor = New_BackColor
 PropertyChanged "BackColor"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=8,0,0,0
Public Property Get ForeColor() As Long
 ForeColor = m_ForeColor
End Property

Public Property Let ForeColor(ByVal New_ForeColor As Long)
 m_ForeColor = New_ForeColor
 PropertyChanged "ForeColor"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=0,0,0,0
Public Property Get Enabled() As Boolean
 Enabled = m_Enabled
End Property

Public Property Let Enabled(ByVal New_Enabled As Boolean)
 m_Enabled = New_Enabled
 PropertyChanged "Enabled"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=6,0,0,0
Public Property Get Font() As Font
 Set Font = m_Font
End Property

Public Property Set Font(ByVal New_Font As Font)
 Set m_Font = New_Font
 PropertyChanged "Font"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=7,0,0,0
Public Property Get BackStyle() As Integer
 BackStyle = m_BackStyle
End Property

Public Property Let BackStyle(ByVal New_BackStyle As Integer)
 m_BackStyle = New_BackStyle
 PropertyChanged "BackStyle"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=7,0,0,0
Public Property Get BorderStyle() As Integer
 BorderStyle = m_BorderStyle
End Property

Public Property Let BorderStyle(ByVal New_BorderStyle As Integer)
 m_BorderStyle = New_BorderStyle
 PropertyChanged "BorderStyle"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=5
Public Sub Refresh()

End Sub

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1000

University of Pretoria etd

226

Public Property Get AA_xdim() As Double
 AA_xdim = m_AA_xdim
End Property

Public Property Let AA_xdim(ByVal New_AA_xdim As Double)
 m_AA_xdim = New_AA_xdim
 PropertyChanged "AA_xdim"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1000
Public Property Get AA_ydim() As Double
 AA_ydim = m_AA_ydim
End Property

Public Property Let AA_ydim(ByVal New_AA_ydim As Double)
 m_AA_ydim = New_AA_ydim
 PropertyChanged "AA_ydim"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1000
Public Property Get AA_zdim() As Double
 AA_zdim = m_AA_zdim
End Property

Public Property Let AA_zdim(ByVal New_AA_zdim As Double)
 m_AA_zdim = New_AA_zdim
 PropertyChanged "AA_zdim"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AA_scale() As Double
 AA_scale = m_AA_scale
End Property

Public Property Let AA_scale(ByVal New_AA_scale As Double)
 m_AA_scale = New_AA_scale
 PropertyChanged "AA_scale"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,mm
Public Property Get AA_unit() As String
 AA_unit = m_AA_unit
End Property

Public Property Let AA_unit(ByVal New_AA_unit As String)
 m_AA_unit = New_AA_unit
 PropertyChanged "AA_unit"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MappingInfo=lblDescription,lblDescription,-1,Caption
Public Property Get AA_name() As String
 AA_name = lblDescription.Caption
End Property

Public Property Let AA_name(ByVal New_AA_name As String)
 lblDescription.Caption() = New_AA_name
 PropertyChanged "AA_name"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1000
Public Property Get AE_construction_area() As Double
 AE_construction_area = m_AE_construction_area
End Property

Public Property Let AE_construction_area(ByVal New_AE_construction_area As Double)
 m_AE_construction_area = New_AE_construction_area
 PropertyChanged "AE_construction_area"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=2,0,0,1

University of Pretoria etd

227

Public Property Get AE_cost() As Currency
 AE_cost = m_AE_cost
End Property

Public Property Let AE_cost(ByVal New_AE_cost As Currency)
 m_AE_cost = New_AE_cost
 PropertyChanged "AE_cost"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AE_durability() As Double
 AE_durability = m_AE_durability
End Property

Public Property Let AE_durability(ByVal New_AE_durability As Double)
 m_AE_durability = New_AE_durability
 PropertyChanged "AE_durability"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AE_energy_use() As Double
 AE_energy_use = m_AE_energy_use
End Property

Public Property Let AE_energy_use(ByVal New_AE_energy_use As Double)
 m_AE_energy_use = New_AE_energy_use
 PropertyChanged "AE_energy_use"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AE_grossarea() As Double
 AE_grossarea = m_AE_grossarea
End Property

Public Property Let AE_grossarea(ByVal New_AE_grossarea As Double)
 m_AE_grossarea = New_AE_grossarea
 PropertyChanged "AE_grossarea"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AE_nettarea() As Double
 AE_nettarea = m_AE_nettarea
End Property

Public Property Let AE_nettarea(ByVal New_AE_nettarea As Double)
 m_AE_nettarea = New_AE_nettarea
 PropertyChanged "AE_nettarea"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1
Public Property Get AE_rentable_area() As Double
 AE_rentable_area = m_AE_rentable_area
End Property

Public Property Let AE_rentable_area(ByVal New_AE_rentable_area As Double)
 m_AE_rentable_area = New_AE_rentable_area
 PropertyChanged "AE_rentable_area"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,6
Public Property Get AE_shape() As Double
 AE_shape = m_AE_shape
End Property

Public Property Let AE_shape(ByVal New_AE_shape As Double)
 m_AE_shape = New_AE_shape
 PropertyChanged "AE_shape"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,1

University of Pretoria etd

228

Public Property Get AE_volume() As Double
 AE_volume = m_AE_volume
End Property

Public Property Let AE_volume(ByVal New_AE_volume As Double)
 m_AE_volume = New_AE_volume
 PropertyChanged "AE_volume"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AF_function() As String
 AF_function = m_AF_function
End Property

Public Property Let AF_function(ByVal New_AF_function As String)
 m_AF_function = New_AF_function
 PropertyChanged "AF_function"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AT_hearing() As String
 AT_hearing = m_AT_hearing
End Property

Public Property Let AT_hearing(ByVal New_AT_hearing As String)
 m_AT_hearing = New_AT_hearing
 PropertyChanged "AT_hearing"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AT_internal_sensitivity() As String
 AT_internal_sensitivity = m_AT_internal_sensitivity
End Property

Public Property Let AT_internal_sensitivity(ByVal New_AT_internal_sensitivity As
String)
 m_AT_internal_sensitivity = New_AT_internal_sensitivity
 PropertyChanged "AT_internal_sensitivity"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AT_recognition() As String
 AT_recognition = m_AT_recognition
End Property

Public Property Let AT_recognition(ByVal New_AT_recognition As String)
 m_AT_recognition = New_AT_recognition
 PropertyChanged "AT_recognition"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AT_sight() As String
 AT_sight = m_AT_sight
End Property

Public Property Let AT_sight(ByVal New_AT_sight As String)
 m_AT_sight = New_AT_sight
 PropertyChanged "AT_sight"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=13,0,0,
Public Property Get AT_smell() As String
 AT_smell = m_AT_smell
End Property

Public Property Let AT_smell(ByVal New_AT_smell As String)
 m_AT_smell = New_AT_smell
 PropertyChanged "AT_smell"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!

University of Pretoria etd

229

'MemberInfo=13,0,0,
Public Property Get AT_taste() As String
 AT_taste = m_AT_taste
End Property

Public Property Let AT_taste(ByVal New_AT_taste As String)
 m_AT_taste = New_AT_taste
 PropertyChanged "AT_taste"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MappingInfo=txtDescription,txtDescription,-1,Text
Public Property Get AA_description() As String
 AA_description = txtDescription.Text
End Property

Public Property Let AA_description(ByVal New_AA_description As String)
 txtDescription.Text() = New_AA_description
 PropertyChanged "AA_description"
End Property

'WARNING! DO NOT REMOVE OR MODIFY THE FOLLOWING COMMENTED LINES!
'MemberInfo=4,0,0,0.9
Public Property Get AE_wall_space_ratio() As Double
 AE_wall_space_ratio = m_AE_wall_space_ratio
End Property

Public Property Let AE_wall_space_ratio(ByVal New_AE_wall_space_ratio As Double)
 m_AE_wall_space_ratio = New_AE_wall_space_ratio
 PropertyChanged "AE_wall_space_ratio"
End Property

Private Sub cmd2D_3D_Click()
' Toggle the 2D - 3D mode command button
 Dim Isometric_y As Double
 Dim Isometric_x As Double

 Isometric_y = AA_ydim * 0.5
 Isometric_x = AA_ydim * 0.866

 If cmd2D_3D.Caption = "2" Then
 cmd2D_3D.Caption = "3"

 yzSlide.Value = AA_zdim

 UserControl.Height = AA_zdim + Isometric_y
 UserControl.Width = AA_xdim + Isometric_x
 UserControl.Height = AA_zdim + Isometric_y
 UserControl.Width = AA_xdim + Isometric_x

 cmdEnlarge.Top = Isometric_y + 25.1
 lblDescription.Top = Isometric_y + 25.1
 cmdReduce.Top = Isometric_y + 25.1
 cmd2D_3D.Top = Isometric_y + 361.446
 txtDescription.Top = Isometric_y + 361.446
 txtDescription.Height = AA_zdim - 680.72
 yzSlide.Top = Isometric_y + 25.1
 yzSlide.Height = AA_zdim - 149.498

 lblFrom.Top = UserControl.Height - 325.301
 lblCurrent.Top = UserControl.Height - 325.301
 lblTo.Top = UserControl.Height - 325.301
 xSlide.Top = UserControl.Height - 149.598

 shpDesign.Top = Isometric_y
 shpDesign.Height = UserControl.Height - Isometric_y

 ' Make the isometric projection lines visible

 linLine30_1.Visible = True
 linLine30_1.X1 = 0#
 linLine30_1.Y1 = Isometric_y
 linLine30_1.X2 = Isometric_x
 linLine30_1.Y2 = 0#

 linLine30_2.Visible = True
 linLine30_2.X1 = AA_xdim

University of Pretoria etd

230

 linLine30_2.Y1 = Isometric_y
 linLine30_2.X2 = UserControl.Width
 linLine30_2.Y2 = 0#

 linLine0_1.Visible = True
 linLine0_1.X1 = Isometric_x
 linLine0_1.Y1 = 0#
 linLine0_1.X2 = UserControl.Width
 linLine0_1.Y2 = 0#

 linLine90_1.Visible = True
 linLine90_1.X1 = UserControl.Width
 linLine90_1.Y1 = 0#
 linLine90_1.X2 = UserControl.Width
 linLine90_1.Y2 = UserControl.Height - Isometric_y

 linLine30_3.Visible = True
 linLine30_3.X1 = AA_xdim
 linLine30_3.Y1 = UserControl.Height
 linLine30_3.X2 = UserControl.Width
 linLine30_3.Y2 = UserControl.Height - Isometric_y

 Else

 cmd2D_3D.Caption = "2"

 yzSlide.Value = AA_ydim

 UserControl.Height = AA_ydim
 UserControl.Width = AA_xdim
 UserControl.Width = AA_xdim

 cmdEnlarge.Top = 25.1
 lblDescription.Top = 25.1
 cmdReduce.Top = 25.1
 cmd2D_3D.Top = 361.446
 txtDescription.Top = 361.446
 yzSlide.Top = 25.1

 lblFrom.Top = UserControl.Height - 325.301
 lblCurrent.Top = UserControl.Height - 325.301
 lblTo.Top = UserControl.Height - 325.301
 xSlide.Top = UserControl.Height - 149.598
 shpDesign.Top = 0#
 shpDesign.Height = UserControl.Height
 txtDescription.Height = UserControl.Height - 680.72
 yzSlide.Height = UserControl.Height - 149.498
 xSlide.Top = UserControl.Height - 149.498

 ' Set the projection lines invisible

 linLine30_1.Visible = False
 linLine30_2.Visible = False
 linLine30_3.Visible = False
 linLine0_1.Visible = False
 linLine90_1.Visible = False

 End If
End Sub

'Initialize Properties for User Control
Private Sub UserControl_InitProperties()

 m_BackColor = m_def_BackColor
 m_ForeColor = m_def_ForeColor
 m_Enabled = m_def_Enabled
 Set m_Font = Ambient.Font
 m_BackStyle = m_def_BackStyle
 m_BorderStyle = m_def_BorderStyle
 m_AA_xdim = m_def_AA_xdim
 m_AA_ydim = m_def_AA_ydim
 m_AA_zdim = m_def_AA_zdim
 m_AA_scale = m_def_AA_scale
 m_AA_unit = m_def_AA_unit
 m_AE_construction_area = m_def_AE_construction_area
 m_AE_cost = m_def_AE_cost

University of Pretoria etd

231

 m_AE_durability = m_def_AE_durability
 m_AE_energy_use = m_def_AE_energy_use
 m_AE_grossarea = m_def_AE_grossarea
 m_AE_nettarea = m_def_AE_nettarea
 m_AE_rentable_area = m_def_AE_rentable_area
 m_AE_shape = m_def_AE_shape
 m_AE_volume = m_def_AE_volume
 m_AF_function = m_def_AF_function
 m_AT_hearing = m_def_AT_hearing
 m_AT_internal_sensitivity = m_def_AT_internal_sensitivity
 m_AT_recognition = m_def_AT_recognition
 m_AT_sight = m_def_AT_sight
 m_AT_smell = m_def_AT_smell
 m_AT_taste = m_def_AT_taste
 m_AE_wall_space_ratio = m_def_AE_wall_space_ratio

End Sub

'Load property values from storage
Private Sub UserControl_ReadProperties(PropBag As PropertyBag)

 m_BackColor = PropBag.ReadProperty("BackColor", m_def_BackColor)
 m_ForeColor = PropBag.ReadProperty("ForeColor", m_def_ForeColor)
 m_Enabled = PropBag.ReadProperty("Enabled", m_def_Enabled)
 Set m_Font = PropBag.ReadProperty("Font", Ambient.Font)
 m_BackStyle = PropBag.ReadProperty("BackStyle", m_def_BackStyle)
 m_BorderStyle = PropBag.ReadProperty("BorderStyle", m_def_BorderStyle)
 m_AA_xdim = PropBag.ReadProperty("AA_xdim", m_def_AA_xdim)
 m_AA_ydim = PropBag.ReadProperty("AA_ydim", m_def_AA_ydim)
 m_AA_zdim = PropBag.ReadProperty("AA_zdim", m_def_AA_zdim)
 m_AA_scale = PropBag.ReadProperty("AA_scale", m_def_AA_scale)
 m_AA_unit = PropBag.ReadProperty("AA_unit", m_def_AA_unit)
 lblDescription.Caption = PropBag.ReadProperty("AA_name", "A")
 m_AE_construction_area = PropBag.ReadProperty("AE_construction_area",
m_def_AE_construction_area)
 m_AE_cost = PropBag.ReadProperty("AE_cost", m_def_AE_cost)
 m_AE_durability = PropBag.ReadProperty("AE_durability", m_def_AE_durability)
 m_AE_energy_use = PropBag.ReadProperty("AE_energy_use", m_def_AE_energy_use)
 m_AE_grossarea = PropBag.ReadProperty("AE_grossarea", m_def_AE_grossarea)
 m_AE_nettarea = PropBag.ReadProperty("AE_nettarea", m_def_AE_nettarea)
 m_AE_rentable_area = PropBag.ReadProperty("AE_rentable_area",
m_def_AE_rentable_area)
 m_AE_shape = PropBag.ReadProperty("AE_shape", m_def_AE_shape)
 m_AE_volume = PropBag.ReadProperty("AE_volume", m_def_AE_volume)
 m_AF_function = PropBag.ReadProperty("AF_function", m_def_AF_function)
 m_AT_hearing = PropBag.ReadProperty("AT_hearing", m_def_AT_hearing)
 m_AT_internal_sensitivity = PropBag.ReadProperty("AT_internal_sensitivity",
m_def_AT_internal_sensitivity)
 m_AT_recognition = PropBag.ReadProperty("AT_recognition", m_def_AT_recognition)
 m_AT_sight = PropBag.ReadProperty("AT_sight", m_def_AT_sight)
 m_AT_smell = PropBag.ReadProperty("AT_smell", m_def_AT_smell)
 m_AT_taste = PropBag.ReadProperty("AT_taste", m_def_AT_taste)
 txtDescription.Text = PropBag.ReadProperty("AA_description", "")
 m_AE_wall_space_ratio = PropBag.ReadProperty("AE_wall_space_ratio",
m_def_AE_wall_space_ratio)

End Sub

'Write property values to storage
Private Sub UserControl_WriteProperties(PropBag As PropertyBag)

 Call PropBag.WriteProperty("BackColor", m_BackColor, m_def_BackColor)
 Call PropBag.WriteProperty("ForeColor", m_ForeColor, m_def_ForeColor)
 Call PropBag.WriteProperty("Enabled", m_Enabled, m_def_Enabled)
 Call PropBag.WriteProperty("Font", m_Font, Ambient.Font)
 Call PropBag.WriteProperty("BackStyle", m_BackStyle, m_def_BackStyle)
 Call PropBag.WriteProperty("BorderStyle", m_BorderStyle, m_def_BorderStyle)
 Call PropBag.WriteProperty("AA_xdim", m_AA_xdim, m_def_AA_xdim)
 Call PropBag.WriteProperty("AA_ydim", m_AA_ydim, m_def_AA_ydim)
 Call PropBag.WriteProperty("AA_zdim", m_AA_zdim, m_def_AA_zdim)
 Call PropBag.WriteProperty("AA_scale", m_AA_scale, m_def_AA_scale)
 Call PropBag.WriteProperty("AA_unit", m_AA_unit, m_def_AA_unit)
 Call PropBag.WriteProperty("AA_name", lblDescription.Caption, "A")
 Call PropBag.WriteProperty("AE_construction_area", m_AE_construction_area,
m_def_AE_construction_area)
 Call PropBag.WriteProperty("AE_cost", m_AE_cost, m_def_AE_cost)
 Call PropBag.WriteProperty("AE_durability", m_AE_durability, m_def_AE_durability)

University of Pretoria etd

232

 Call PropBag.WriteProperty("AE_energy_use", m_AE_energy_use, m_def_AE_energy_use)
 Call PropBag.WriteProperty("AE_grossarea", m_AE_grossarea, m_def_AE_grossarea)
 Call PropBag.WriteProperty("AE_nettarea", m_AE_nettarea, m_def_AE_nettarea)
 Call PropBag.WriteProperty("AE_rentable_area", m_AE_rentable_area,
m_def_AE_rentable_area)
 Call PropBag.WriteProperty("AE_shape", m_AE_shape, m_def_AE_shape)
 Call PropBag.WriteProperty("AE_volume", m_AE_volume, m_def_AE_volume)
 Call PropBag.WriteProperty("AF_function", m_AF_function, m_def_AF_function)
 Call PropBag.WriteProperty("AT_hearing", m_AT_hearing, m_def_AT_hearing)
 Call PropBag.WriteProperty("AT_internal_sensitivity", m_AT_internal_sensitivity,
m_def_AT_internal_sensitivity)
 Call PropBag.WriteProperty("AT_recognition", m_AT_recognition,
m_def_AT_recognition)
 Call PropBag.WriteProperty("AT_sight", m_AT_sight, m_def_AT_sight)
 Call PropBag.WriteProperty("AT_smell", m_AT_smell, m_def_AT_smell)
 Call PropBag.WriteProperty("AT_taste", m_AT_taste, m_def_AT_taste)
 Call PropBag.WriteProperty("AA_description", txtDescription.Text, "")
 Call PropBag.WriteProperty("AE_wall_space_ratio", m_AE_wall_space_ratio,
m_def_AE_wall_space_ratio)

End Sub

Private Sub xSlide_Change()

 Dim Control_x As Double ' Actual current total control width
 Dim Isometric_y As Double
 Dim Isometric_x As Double

 Isometric_y = AA - Ydim * 0.5
 Isometric_x = AA_ydim * 0.866

 ' The control is in 2D mode
 If (cmd2D_3D.Caption = "2") Then

 Control_x = xSlide.Value
 UserControl.Width = Control_x
 shpDesign.Width = Control_x
 lblDescription.Width = Control_x - 680.72
 cmdReduce.Left = Control_x - 427.71
 lblTo.Left = Control_x - 427.71
 lblCurrent.Left = (Control_x / 2#) - 190.771
 txtDescription.Width = Control_x - 445.783
 yzSlide.Left = Control_x - 149.498
 xSlide.Width = Control_x - 149.498

 'The control is in 3D mode
 Else

 Control_x = xSlide.Value
 UserControl.Width = Control_x + Isometric_x
 shpDesign.Width = Control_x

 lblDescription.Width = Control_x - 680.72
 cmdReduce.Left = Control_x - 427.71
 lblTo.Left = Control_x - 427.71
 lblCurrent.Left = (Control_x / 2#) - 190.771
 txtDescription.Width = Control_x - 445.783
 yzSlide.Left = Control_x - 149.498
 xSlide.Width = Control_x - 149.498

 linLine0_1.X2 = UserControl.Width
 linLine30_2.X1 = Control_x
 linLine30_2.X2 = UserControl.Width
 linLine90_1.X1 = UserControl.Width
 linLine90_1.X2 = UserControl.Width
 linLine30_3.X1 = Control_x
 linLine30_3.X2 = UserControl.Width

 End If

 AA_xdim = xSlide.Value

End Sub

Private Sub yzSlide_Change()

 Dim Control_y As Double ' Actual current total control width

University of Pretoria etd

233

 Dim Control_z As Double ' Actual current total control height
 Dim Isometric_y As Double
 Dim Isometric_x As Double

 Isometric_y = AA_ydim * 0.5
 Isometric_x = AA_ydim * 0.866

 ' The control is in 2D mode
 If (cmd2D_3D.Caption = "2") Then

 Control_y = yzSlide.Value
 UserControl.Height = Control_y
 shpDesign.Height = Control_y

 txtDescription.Height = Control_y - 680.72
 lblFrom.Top = Control_y - 325.301
 lblCurrent.Top = Control_y - 325.301
 lblTo.Top = Control_y - 325.301
 yzSlide.Height = Control_y - 149.498
 xSlide.Top = Control_y - 149.498

 AA_ydim = yzSlide.Value

 ' The control is in 3D mode
 Else
 Control_z = yzSlide.Value
 UserControl.Height = Control_z + Isometric_y
 shpDesign.Height = Control_z

 txtDescription.Height = Control_z - 680.72
 lblFrom.Top = (Control_z + Isometric_y) - 325.301
 lblCurrent.Top = (Control_z + Isometric_y) - 325.301
 lblTo.Top = (Control_z + Isometric_y) - 325.301
 yzSlide.Height = Control_z - 149.498
 xSlide.Top = (Control_z + Isometric_y) - 149.498

 linLine90_1.Y2 = Control_z
 linLine30_3.Y1 = UserControl.Height
 linLine30_3.Y2 = Control_z

 AA_zdim = yzSlide.Value

 End If

End Sub

University of Pretoria etd

